1
|
Zhang XJ, Pu YK, Yang PY, Wang MR, Zhang RH, Li XL, Xiao WL. Isolicoflavonol ameliorates acute liver injury via inhibiting NLRP3 inflammasome activation through boosting Nrf2 signaling in vitro and in vivo. Int Immunopharmacol 2024; 143:113233. [PMID: 39366075 DOI: 10.1016/j.intimp.2024.113233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/06/2024]
Abstract
BACKGROUND NOD like receptor pyrin domain containing 3 (NLRP3) inflammasome is involved in innate immunity, and related to liver injury. However, no inflammasome inhibitors are clinically available until now. Our previous research suggests that isolicoflavonol (ILF), isolated from Macaranga indica, is a potent NLRP3 inflammasome inhibitor, but its mechanism is unclear. METHODS Fluorescent imaging and Western blot assay were used to ascertain the effects of ILF on pyroptosis and NLRP3 inflammasome activation in macrophages. Next, Nrf2 signal pathway, its downstream gene transcription and expression were further investigated. ML385, a Nrf2 inhibitor, was used to verify whether ILF targets Nrf2 signaling. A carbon tetrachloride induced liver injury model was introduced to evaluate the liver protection activity of ILF in mice. RESULTS This work revealed that ILF inhibited macrophage LDH release and IL-1β secretion in a dose-dependent manner. ILF had no significant cytotoxic effect on macrophage, it reduced pyroptosis and Gasdermin D N-terminal fragment formation. Moreover, ILF inhibited IL-1β maturation and Caspase-1 cleavage, but did not affect NLRP3, pro-Caspase-1, pro-IL-1β and ASC expression. ILF decreased ASC speck rate and reduced ASC oligomer formation. ILF decreased aggregated JC-1 formation restoring mitochondria membrane potential. In addition, ILF increased Nrf2 expression, extended Nrf2 lifespan and upregulated Nrf2 signaling pathway in macrophages whether the NLRP3 inflammasome was activated or not. Besides, ILF increased Nrf2 nuclear translocation, maintained a high proportion of Nrf2 in the nucleus, and upregulated ARE-related gene transcription and expression. Furthermore, Nrf2 signal inhibition attenuated compound ILF-mediated inhibition of pyroptosis, inflammasome activation and upregulation of Nrf2 signaling. ILF in a liver injury mouse model inhibited NLRP3 inflammasome activation and enhanced Nrf2 signaling. CONCLUSION Our study verified that ILF ameliorates liver injury via inhibiting NLRP3 inflammasome activation through boosting Nrf2 signaling, and highlighted that ILF is a potent anti-inflammatory drug for inflammasome-related liver diseases.
Collapse
Affiliation(s)
- Xing-Jie Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Key Laboratory of Research and Development for Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming 650500, Yunnan, China
| | - Yu-Kun Pu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Key Laboratory of Research and Development for Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming 650500, Yunnan, China
| | - Peng-Yun Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Key Laboratory of Research and Development for Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming 650500, Yunnan, China
| | - Meng-Ru Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Key Laboratory of Research and Development for Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming 650500, Yunnan, China
| | - Rui-Han Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Key Laboratory of Research and Development for Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming 650500, Yunnan, China
| | - Xiao-Li Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Key Laboratory of Research and Development for Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming 650500, Yunnan, China.
| | - Wei-Lie Xiao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Key Laboratory of Research and Development for Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming 650500, Yunnan, China; Southwest United Graduate School, Kunming 650500, Yunnan, China.
| |
Collapse
|
2
|
Elhemiely AA, Darwish A. Pharmacological and biochemical insights into lead-induced hepatotoxicity: Pathway interplay and the protective effects of arbutin via the oral and intraperitoneal routes in silico and in vivo. Int Immunopharmacol 2024; 142:112968. [PMID: 39226827 DOI: 10.1016/j.intimp.2024.112968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 09/05/2024]
Abstract
INTRODUCTION Lead acetate (PbAc), a hazardous heavy metal, poses significant threats to human health and the environment because of widespread industrial exposure. PbAc exposure leads to liver injury primarily through oxidative stress and the disruption of key regulatory pathways. Understanding these mechanisms and exploring protective agents are vital for mitigating PbAc-induced hepatotoxicity. Therefore, we aimed to investigate the molecular pathways implicated in PbAc-induced liver damage, focusing on Sirt-1, Nrf2 (HO-1, NQO1, and SOD), Akt-1/GSK3β, m-TOR, and P53. Additionally, we aimed to assess the hepatoprotective effects of arbutin, which is administered orally and intraperitoneally, to determine the most effective delivery method. METHODOLOGY In silico analyses were conducted to identify relevant protein networks associated with Sirt-1 and AKT-1/GSK-3B pathways. The pharmacodynamic properties of arbutin were examined, followed by molecular docking studies to elucidate its interactions with the selected protein network. In vivo preclinical studies were carried out on adult male rats randomly assigned to 6 different treatment groups, including PbAc exposure and PbAc exposure treated with arbutin either orally or intraperitoneally. RESULTS PbAc exposure led to hepatic oxidative stress, as evidenced by elevated MDA levels and SIRT-1 inhibition, disrupting antioxidant pathways and activating antiautophagic and proapoptotic pathways, ultimately resulting in hepatocyte necrosis. Both oral and intraperitoneal arbutin administration effectively modifed these effects, with intraperitoneal delivery showing superior efficacy in mitigating PbAc-induced histological, immunological, and biochemical alterations. CONCLUSION This study provides insights into the molecular mechanisms underlying PbAc-induced liver injury and highlights the hepatoprotective potential of arbutin. These findings suggest that arbutin, particularly when administered intraperitoneally, holds promise as a therapeutic agent for combating PbAc-induced hepatotoxicity.
Collapse
Affiliation(s)
| | - Alshaymaa Darwish
- Department of Biochemistry, Faculty of Pharmacy, Sohag University, Sohag, Egypt.
| |
Collapse
|
3
|
Luo Z, Li Q, He S, Liu S, Lei R, Kong Q, Wang R, Liu X, Wu J. Berberine sensitizes immune checkpoint blockade therapy in melanoma by NQO1 inhibition and ROS activation. Int Immunopharmacol 2024; 142:113031. [PMID: 39217888 DOI: 10.1016/j.intimp.2024.113031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/31/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Unprecedented progress in immune checkpoint blockade (ICB) therapy has been made in cancer treatment. However, the response to ICB therapy is limited to a small subset of patients. The development of ICB sensitizers to improve cancer immunotherapy outcomes is urgently needed. Berberine (BBR), a well-known phytochemical compound isolated from many kinds of medicinal plants such as Berberis aristata, Coptis chinensis, and Phellondendron chinense Schneid, has shown the ability to inhibit the proliferation, invasion and metastasis of cancer cells. In this study, we investigated whether BBR can enhance the therapeutic benefit of ICB for melanoma, and explored the underlying mechanisms involved. The results showed that BBR could sensitize ICB to inhibit tumor growth and increased the survival rate of mice. Moreover, BBR stimulated intracellular ROS production partially by inhibiting NQO1 activity, which induced immunogenic cell death (ICD) in melanoma, elevated the levels of damage-associated molecular patterns (DAMPs), and subsequently activated DC cells and CD8 + T cells in vitro and in vivo. In conclusion, BBR is a novel ICD inducer. BBR could enhance the therapeutic benefit of ICB for melanoma. These effects were partially mediated through the inhibition of NQO1 and ROS activation.
Collapse
Affiliation(s)
- Zhuyu Luo
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Qiao Li
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Shan He
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Suqing Liu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Rui Lei
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Qing Kong
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ruilong Wang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiao Liu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Jinfeng Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
4
|
Hu R, Wu F, Zheng YQ. Ivacaftor attenuates gentamicin-induced ototoxicity through the CFTR-Nrf2-HO1/NQO1 pathway. Redox Rep 2024; 29:2332038. [PMID: 38563333 PMCID: PMC10993751 DOI: 10.1080/13510002.2024.2332038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
OBJECTIVES Gentamicin is one of the most common ototoxic drugs that can lower patients' quality of life. Oxidative stress is a key factors inducing sensory hair cell death during gentamicin administration. So far, there are no effective drugs to prevent or treat gentamicin- induced hearing loss. A recent study found cystic fibrosis transmembrane conductance regulator (CFTR) as a new target to modulate cellular oxidative balance. The objective of this study was to estimate the effect of the CFTR activator ivacaftor on gentamicin-induced ototoxicity and determine its mechanism. METHODS The hair cell count was analyzed by Myosin 7a staining. Apoptosis was analyzed by TUNEL Apoptosis Kit. Cellular reactive oxygen species (ROS) level was detected by DCFH-DA probes. The Nrf2 related proteins expression levels were analyzed by western blot. RESULTS An in vitro cochlear explant model showed that gentamicin caused ROS accumulation in sensory hair cells and induced apoptosis, and this effect was alleviated by pretreatment with ivacaftor. Western blotting showed that ivacaftor administration markedly increased the protein expression of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO1), and NAD(P)H:quinone oxidoreductase 1 (NQO1). The protective effect of ivacaftor was abolished by the Nrf2 inhibitor ML385. DISCUSSION Our results indicate the protective role of the CFTR-Nrf2-HO1/NQO1 pathway in gentamicin-induced ototoxicity. Ivacaftor may be repositioned or repurposed towards aminoglycosides-induced hearing loss.
Collapse
Affiliation(s)
- Rui Hu
- Shenshan Medical Center, Memorial Hospital of Sun Yat-Sen University, Shanwei, People’s Republic of China
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Fan Wu
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Department of Pathology and Laboratory Medicine, The Medical University of South Carolina, Charleston, SC, USA
| | - Yi-Qing Zheng
- Shenshan Medical Center, Memorial Hospital of Sun Yat-Sen University, Shanwei, People’s Republic of China
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| |
Collapse
|
5
|
Jiang X, Yu M, Wang WK, Zhu LY, Wang X, Jin HC, Feng LF. The regulation and function of Nrf2 signaling in ferroptosis-activated cancer therapy. Acta Pharmacol Sin 2024; 45:2229-2240. [PMID: 39020084 PMCID: PMC11489423 DOI: 10.1038/s41401-024-01336-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/04/2024] [Indexed: 07/19/2024] Open
Abstract
Ferroptosis is an iron-dependent programmed cell death process that involves lipid oxidation via the Fenton reaction to produce lipid peroxides, causing disruption of the lipid bilayer, which is essential for cellular survival. Ferroptosis has been implicated in the occurrence and treatment response of various types of cancer, and targeting ferroptosis has emerged as a promising strategy for cancer therapy. However, cancer cells can escape cellular ferroptosis by activating or remodeling various signaling pathways, including oxidative stress pathways, thereby limiting the efficacy of ferroptosis-activating targeted therapy. The key anti-oxidative transcription factor, nuclear factor E2 related factor 2 (Nrf2 or NFE2L2), plays a dominant role in defense machinery by reprogramming the iron, intermediate, and glutathione peroxidase 4 (GPX4)-related network and the antioxidant system to attenuate ferroptosis. In this review, we summarize the recent advances in the regulation and function of Nrf2 signaling in ferroptosis-activated cancer therapy and explore the prospect of combining Nrf2 inhibitors and ferroptosis inducers as a promising cancer treatment strategy.
Collapse
Affiliation(s)
- Xin Jiang
- Department of Medical Oncology, Zhejiang Key Laboratory of Multi-omics Precision Diagnosis and Treatment of Liver Diseases, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Min Yu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Jinhua Hospital, School of Medicine, Zhejiang University, Jinhua, 321000, China
| | - Wei-Kai Wang
- Department of Medical Oncology, Zhejiang Key Laboratory of Multi-omics Precision Diagnosis and Treatment of Liver Diseases, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Li-Yuan Zhu
- Department of Medical Oncology, Zhejiang Key Laboratory of Multi-omics Precision Diagnosis and Treatment of Liver Diseases, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Xian Wang
- Department of Medical Oncology, Zhejiang Key Laboratory of Multi-omics Precision Diagnosis and Treatment of Liver Diseases, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Hong-Chuan Jin
- Department of Medical Oncology, Zhejiang Key Laboratory of Multi-omics Precision Diagnosis and Treatment of Liver Diseases, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
| | - Li-Feng Feng
- Department of Medical Oncology, Zhejiang Key Laboratory of Multi-omics Precision Diagnosis and Treatment of Liver Diseases, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
| |
Collapse
|
6
|
Svobodová G, Horní M, Velecká E, Boušová I. Metabolic dysfunction-associated steatotic liver disease-induced changes in the antioxidant system: a review. Arch Toxicol 2024:10.1007/s00204-024-03889-x. [PMID: 39443317 DOI: 10.1007/s00204-024-03889-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a heterogeneous condition characterized by liver steatosis, inflammation, consequent fibrosis, and cirrhosis. Chronic impairment of lipid metabolism is closely related to oxidative stress, leading to cellular lipotoxicity, mitochondrial dysfunction, and endoplasmic reticulum stress. The detrimental effect of oxidative stress is usually accompanied by changes in antioxidant defense mechanisms, with the alterations in antioxidant enzymes expression/activities during MASLD development and progression reported in many clinical and experimental studies. This review will provide a comprehensive overview of the present research on MASLD-induced changes in the catalytic activity and expression of the main antioxidant enzymes (superoxide dismutases, catalase, glutathione peroxidases, glutathione S-transferases, glutathione reductase, NAD(P)H:quinone oxidoreductase) and in the level of non-enzymatic antioxidant glutathione. Furthermore, an overview of the therapeutic effects of vitamin E on antioxidant enzymes during the progression of MASLD will be presented. Generally, at the beginning of MASLD development, the expression/activity of antioxidant enzymes usually increases to protect organisms against the increased production of reactive oxygen species. However, in advanced stage of MASLD, the expression/activity of several antioxidants generally decreases due to damage to hepatic and extrahepatic cells, which further exacerbates the damage. Although the results obtained in patients, in various experimental animal or cell models have been inconsistent, taken together the importance of antioxidant enzymes in MASLD development and progression has been clearly shown.
Collapse
Affiliation(s)
- Gabriela Svobodová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05, Hradec Králové, Czech Republic
| | - Martin Horní
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05, Hradec Králové, Czech Republic
| | - Eva Velecká
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05, Hradec Králové, Czech Republic
| | - Iva Boušová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05, Hradec Králové, Czech Republic.
| |
Collapse
|
7
|
Kadela-Tomanek M. Design, Synthesis, Physicochemical Properties, and Biological Activity of Thymidine Compounds Attached to 5,8-Quinolinedione Derivatives as Potent DT-Diaphorase Substrates. Int J Mol Sci 2024; 25:11211. [PMID: 39456992 PMCID: PMC11508761 DOI: 10.3390/ijms252011211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
After heart disease, cancer is the second-leading cause of death worldwide. The most effective method of cancer treatment is target therapy. One of the potential goals of therapy could be DT-diaphorase, which reduces quinone moiety to hydroquinone, and reactive oxygen species are create as a byproduct. The obtaining of hybrid compounds containing the quinone moiety and other bioactive compounds leads to new derivatives which can activate DT-diaphorase. The aim of this research was the synthesis and characterization of new hybrids of 5,8-quinolinedione with thymidine derivatives. The analysis of the physicochemical properties shows a strong relationship between the structure and properties of the tested compounds. The enzymatic assay shows that hybrids are good substrates of NQO1 protein. The analysis of the structure-activity relationship shows that the localization of nitrogen atoms influences the enzymatic conversion rate. The analysis was supplemented by a molecular docking study. Comparing the results of the enzymatic assay and the molecular docking presents a strong correlation between the enzymatic conversion rate and the scoring value.
Collapse
Affiliation(s)
- Monika Kadela-Tomanek
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland
| |
Collapse
|
8
|
Wang S, Zhang W, Tian B, Hu Y, Li T, Cui X, Zhang L, Luo X. Regulation Progression on Ellagic Acid Improving Poultry Production Performance by Regulating Redox Homeostasis, Inflammatory Response, and Cell Apoptosis. Animals (Basel) 2024; 14:3009. [PMID: 39457938 PMCID: PMC11505372 DOI: 10.3390/ani14203009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
It has been approximately 2000 years since the medicinal homologous theory, which primarily holds that food has the same therapeutic value as medicine in order to improve the health of both humans and animals. In recent years, this theory has also been proposed to be used in poultry breeding. Ellagic acid (EA), a natural compound primarily extracted from medicinal homologous foods such as raspberries and pomegranates, is reported to have incomparable advantages in improving the production performance and disease resistance of poultry due to its pharmacological properties, which regulate the processes of redox homeostasis, inflammatory response, and cell apoptotic death. However, the application and research of EA in poultry production are still in the initial stage, and the potential mechanisms of its biological functions affecting animal health have not been clearly identified, which requires more attention worldwide. This mini-review collects the latest 10-year achievements of research on the effects of EA on poultry health, aiming to promote the practical application of EA in maintaining animal health and formulating corresponding targeted strategies.
Collapse
Affiliation(s)
- Shengchen Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China; (S.W.); (W.Z.)
| | - Wenjun Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China; (S.W.); (W.Z.)
| | - Bing Tian
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China; (S.W.); (W.Z.)
| | - Yun Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China; (S.W.); (W.Z.)
| | - Tingting Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China; (S.W.); (W.Z.)
| | - Xiaoyan Cui
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China; (S.W.); (W.Z.)
| | - Liyang Zhang
- State Key Laboratory of Animal Nutrition, Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xugang Luo
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China; (S.W.); (W.Z.)
| |
Collapse
|
9
|
Meng J, Xiao L, Li Q, Gong L, Luo P, Zhao Y, Wang S. Di-(2-ethylhexyl) phthalate exposure induces ferroptosis by regulating the Nrf2-mediated signaling pathway in mouse ovaries. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117104. [PMID: 39321527 DOI: 10.1016/j.ecoenv.2024.117104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 09/19/2024] [Accepted: 09/22/2024] [Indexed: 09/27/2024]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP), an endocrine-disrupting chemical present in plasticized products, exerts strong modulation on the anatomy and function of the female reproductive system. However, the potential mechanisms underlying DEHP-induced regulation of prepubertal female reproductive toxicity have not yet been elucidated. Therefore, this study was designed to elucidate the molecular mechanism of ovarian injury induced by DEHP exposure in mice. Elevated serum mono-2-ethylhexyl phthalate (MEHP) concentrations, decreased levels of ovarian hormones (E2 and P4), and observed ovarian injury were found after DEHP exposure. Ovarian transcriptome analysis revealed significant alterations in ferroptosis-associated gene expression, with potential regulation by Nrf2. Subsequent analysis of ferrous iron, malondialdehyde (MDA), Western blotting, and immunofluorescence of the ovaries confirmed the RNA-seq findings. Transcriptome analysis of granulosa cells revealed a direct or indirect regulatory relationship between Nrf2 and downstream ferroptosis-related proteins following MEHP exposure. Further experiments demonstrated that ferrostatin-1 attenuated MEHP-induced ferroptosis in granulosa cells. Additionally, Nrf2 stabilization and accumulation in the nucleus of granulosa cells were observed following MEHP treatment. RNAi-mediated knockdown of Nrf2 exacerbated MEHP-induced ferroptosis in granulosa cells. This evidence indicates that DEHP exposure induces ferroptosis through regulation of the Nrf2-mediated signaling pathway in mouse ovaries, laying the groundwork for future studies aiming to develop therapeutic strategies against DEHP toxicity.
Collapse
Affiliation(s)
- Jinzhu Meng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China; Guizhou Provincial Key Laboratory for Biodiversity Conservation and Utilization in the Fanjing Mountain Region, Tongren University, Tongren, China
| | - Lilin Xiao
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Qiuye Li
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Ling Gong
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Ping Luo
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Yuanyuan Zhao
- Guizhou Provincial Key Laboratory for Biodiversity Conservation and Utilization in the Fanjing Mountain Region, Tongren University, Tongren, China.
| | - Shuilian Wang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China.
| |
Collapse
|
10
|
Li K, Yan J, Wang S, Zhu C, Zhu Q, Lu S, Hu P, Dessie T, Kim IH, Ahmed AA, Liu HY, Ennab W, Cai D. Transcriptome analysis provides new insights into the response of canine intestinal epithelial cells treated by sulforaphane: a natural product of cruciferous origin. Front Vet Sci 2024; 11:1460500. [PMID: 39415954 PMCID: PMC11479859 DOI: 10.3389/fvets.2024.1460500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
This study presents a comprehensive transcriptome analysis of canine intestinal epithelial cells following treatment with sulforaphane (SFN), a naturally occurring compound found in cruciferous vegetables with established anti-inflammatory and antioxidant properties. Through high-throughput sequencing, we identified 29,993 genes, among which 1,612 were differentially expressed, with 792 up-regulated and 820 down-regulated in response to SFN treatment. Our analysis revealed significant enrichment of genes in pathways associated with the inflammatory response, lipid metabolism, oxidative stress response, and T-cell mediated immunity, suggesting SFN's potential in modulating these biological processes. Notably, the PPARγ gene, which plays a crucial role in the body's oxidative stress and inflammatory response, was highly up-regulated, indicating its possible centrality in SFN's effects. Gene-gene interaction analysis further supported SFN's role in alleviating inflammation through PPARγ, with key genes in oxidative stress and inflammatory response pathways showing significant correlations with PPARγ. Overall, our findings provide molecular evidence for SFN's protective effects on canine intestinal health, potentially through the modulation of inflammatory and oxidative stress pathways, with PPARγ emerging as a critical mediator.
Collapse
Affiliation(s)
- Kaiqi Li
- Laboratory of Animal Physiology and Molecular Nutrition, Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jin Yan
- Laboratory of Animal Physiology and Molecular Nutrition, Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Shiqi Wang
- Laboratory of Animal Physiology and Molecular Nutrition, Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Chuyang Zhu
- Laboratory of Animal Physiology and Molecular Nutrition, Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Qi Zhu
- Laboratory of Animal Physiology and Molecular Nutrition, Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Sichen Lu
- Laboratory of Animal Physiology and Molecular Nutrition, Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ping Hu
- Laboratory of Animal Physiology and Molecular Nutrition, Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Tadelle Dessie
- International Livestock Research Institute, Addis Ababa, Ethiopia
| | - In Ho Kim
- Department of Animal Resource and Science, Dankook University, Cheonan, Republic of Korea
| | - Abdelkareem A. Ahmed
- Department of Veterinary Biomedical Sciences, Botswana University of Agriculture and Agriculture and Natural Resources, Gaborone, Botswana
| | - Hao-Yu Liu
- Laboratory of Animal Physiology and Molecular Nutrition, Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Wael Ennab
- Laboratory of Animal Physiology and Molecular Nutrition, Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Demin Cai
- Laboratory of Animal Physiology and Molecular Nutrition, Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou, Jiangsu, China
| |
Collapse
|
11
|
Zhang Y, Liu J, Yuan S, Liu S, Zhang M, Hu H, Cao Y, Hu G, Fu S, Guo W. Unveiling the regulatory role of SIRT1 in the oxidative stress response of bovine mammary cells. J Dairy Sci 2024; 107:8722-8735. [PMID: 38876213 DOI: 10.3168/jds.2024-24936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/13/2024] [Indexed: 06/16/2024]
Abstract
High-yield dairy cows typically undergo intense cellular metabolism, leading to oxidative stress in their mammary tissues. Our study found that compared with ordinary cows, these high-yield cows had significantly elevated levels of H2O2, lipoperoxidase, and total antioxidant capacity in their blood. This increased oxidative stress is associated with heightened expression of genes such as GCLC, GCLM, and SIRT1 and proteins such as SIRT1 in the mammary tissue of high-yield cows. We stimulated MAC-T cells with H2O2 at a concentration equal to the average H2O2 level in the serum of ethically high-yielding cows, as detected by an assay kit. Our observations revealed that short-term exposure (12 h) to H2O2 upregulated the expression of the SIRT1 gene and SIRT1 protein. It also increased gene expression for SOD2, CAT, GCLC, GCLM, PGC-1α, and NQO1, elevated the phosphorylation of AMPK, and enhanced protein expression of PGC-1α, NQO1, Nrf2, and HO-1, as well as reduced the phosphorylation of NF-κB. Additionally, short-term H2O2 stimulation resulted in increased total antioxidant capacity and levels of superoxide dismutase, glutathione, and catalase in the mammary epithelial cells of dairy cows. In contrast, prolonged exposure to H2O2 (24 h) yielded opposite results, indicating reduced antioxidant capacity. Further investigation showed that the SIRT1 inhibitor EX 527 could reverse the enhanced cellular antioxidant capacity triggered by short-term oxidative stress. However, it is crucial to note that although 12 h of H2O2 stimulation improved antioxidant capacity, reactive oxygen species (ROS) and malondialdehyde (MDA) levels inside the cell gradually increased over time, suggesting greater damage under long-term stimulation. Conversely, the SIRT1 activator SRT 2104 could reverse the reduced cellular antioxidant capacity caused by long-term oxidative stress and significantly inhibit the accumulation of ROS and MDA. Notably, SRT 2104 demonstrated similar effects in MAC-T cells during lactation. In summary, SIRT1 plays a crucial role in regulating the antioxidant capacity of mammary epithelial cells in dairy cows. This discovery provides valuable insights into the antioxidant mechanisms of mammary cells, which can serve as a theoretical foundation for future mammary health strategies.
Collapse
Affiliation(s)
- Yufei Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Juxiong Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Shuai Yuan
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Shu Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Meng Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Huijie Hu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yu Cao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Guiqiu Hu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Shoupeng Fu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Wenjin Guo
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China; Chongqing Research Institute, Jilin University, 401120 Chongqing, China.
| |
Collapse
|
12
|
Alhaji JH, Pathak D, Ashfaq F, Alsayegh AA, Khatoon F, Almutairi BJ, Khan MI, Beg MMA. Role of NQO1 Gene Involvement and Susceptibility of T2DM Among Saudi Arabia Population. Rejuvenation Res 2024; 27:145-153. [PMID: 38959119 DOI: 10.1089/rej.2024.0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024] Open
Abstract
NQO1 disruption enhances susceptibility to oxidative stress during hyperglycemia and is a significant contributor to the development and progression of diabetes. Oxidative stress has been linked to several symptoms, including hyperglycemia, reactive oxygen species buildup, high blood pressure, and the expression of inflammatory markers. Therefore, the present research aimed to evaluate the genetic abnormality of NQO1 (rs1800566, C609T) gene polymorphism, expression, and vitamin-D level assessment among Type 2 diabetes mellitus (T2DM) patients. The study included 100 newly diagnosed T2DM cases and 100 healthy individuals as healthy controls. Total RNA was extracted from the whole blood using the TRIzol method, and further cDNA was synthesized, and expression was evaluated. There is a significant difference in NQO1 (rs1800566, C609T) genotype distribution among the T2DM patients and healthy controls (p = 0.04). Compared with the NQO1 CC wild-type genotype, the NQO1 CT heterozygous genotype had an odds ratio of 1.96 (1.08-3.55), and the NQO1 TT mutant type genotype had an odds ratio of 3.31 (0.61-17.77). Significantly decreased expression of NQO1 mRNA was observed with heterozygous CT (p < 0.0001) and homozygous mutant TT genotype (p = 0.0004), compared with homozygous wild-type CC genotype. NQO1 mRNA expression level was also compared with vitamin D levels among the T2DM patients. T2DM patients with vitamin D deficiency had 1.83-fold NQO1 mRNA expression, while vitamin D insufficient and sufficient T2DM cases had 3.31-fold (p < 0.0001) and 3.70-fold (p < 0.0001) NQO1 mRNA expression. It was concluded that NQO1 (rs1800566, C609T) CT and TT genotypes played a significant role in the worseness of type II diabetes mellitus, and decreased expression of NQO1 mRNA expression could be an essential factor for disease worseness as well as hypermethylation could be a factor for reduced expression leading to disease severity. The decreased NQO1 mRNA expression with heterozygous CT and mutant TT genotype associated with vitamin D deficiency may contribute to disease progression.
Collapse
Affiliation(s)
- Jwaher Haji Alhaji
- Department of Health Sciences, College of Applied Studies and Community Service, King Saud University, Riyadh, Saudi Arabia
| | - Divya Pathak
- Central Drugs Standard Control Organisation, New Delhi, India
| | - Fauzia Ashfaq
- Clinical Nutrition Department, Applied Medical Sciences College, Jazan University, Jazan, Saudi Arabia
| | - Abdulrahman A Alsayegh
- Clinical Nutrition Department, Applied Medical Sciences College, Jazan University, Jazan, Saudi Arabia
| | - Fahmida Khatoon
- Department of Biochemistry, College of Medicine, University of Ha'il, Ha'il, Saudi Arabia
| | | | - Mohammad Idreesh Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Mirza Masroor Ali Beg
- Faculty of Medicine, Alatoo International University, Bishkek, Kyrgyzstan
- Center for Promotion of Medical Research, Alatoo International University, Bishkek, Kyrgyzstan
| |
Collapse
|
13
|
Wang Y, Lilienfeldt N, Hekimi S. Understanding coenzyme Q. Physiol Rev 2024; 104:1533-1610. [PMID: 38722242 PMCID: PMC11495197 DOI: 10.1152/physrev.00040.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/08/2024] [Accepted: 05/01/2024] [Indexed: 08/11/2024] Open
Abstract
Coenzyme Q (CoQ), also known as ubiquinone, comprises a benzoquinone head group and a long isoprenoid side chain. It is thus extremely hydrophobic and resides in membranes. It is best known for its complex function as an electron transporter in the mitochondrial electron transport chain (ETC) but is also required for several other crucial cellular processes. In fact, CoQ appears to be central to the entire redox balance of the cell. Remarkably, its structure and therefore its properties have not changed from bacteria to vertebrates. In metazoans, it is synthesized in all cells and is found in most, and maybe all, biological membranes. CoQ is also known as a nutritional supplement, mostly because of its involvement with antioxidant defenses. However, whether there is any health benefit from oral consumption of CoQ is not well established. Here we review the function of CoQ as a redox-active molecule in the ETC and other enzymatic systems, its role as a prooxidant in reactive oxygen species generation, and its separate involvement in antioxidant mechanisms. We also review CoQ biosynthesis, which is particularly complex because of its extreme hydrophobicity, as well as the biological consequences of primary and secondary CoQ deficiency, including in human patients. Primary CoQ deficiency is a rare inborn condition due to mutation in CoQ biosynthetic genes. Secondary CoQ deficiency is much more common, as it accompanies a variety of pathological conditions, including mitochondrial disorders as well as aging. In this context, we discuss the importance, but also the great difficulty, of alleviating CoQ deficiency by CoQ supplementation.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Noah Lilienfeldt
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Siegfried Hekimi
- Department of Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
14
|
Luo F, Yang J, Yang X, Mi J, Ye T, Li G, Xie Y. Saikosaponin D potentiates the antineoplastic effects of doxorubicin in drug-resistant breast cancer through perturbing NQO1-mediated intracellular redox balance. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155945. [PMID: 39146878 DOI: 10.1016/j.phymed.2024.155945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/09/2024] [Accepted: 08/07/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND Drug resistance to doxorubicin (DOX) significantly limits its therapeutic efficacy in breast cancer (BC) patients. Saikosaponin D (SSD), a triterpene saponin derived from the traditional herb Radix Bupleuri, has shown promise as a chemotherapeutic sensitizer in preclinical studies due to its notable antitumor activity. However, the role and mechanism of SSD in DOX-resistant BC cells remain largely unexplored. PURPOSE This study aimed to investigate the chemosensitizing effect of SSD on DOX-resistant BC and the underlying molecular mechanisms both in vitro and in vivo. METHODS In vitro assays, including cell viability, clone formation, three-dimensional tumor spheroid growth, and apoptosis analysis, were conducted to evaluate the synergistic effect of SSD and DOX on resistant BC cells. Reactive oxygen species (ROS), GSH/GSSG, NADPH/NADP+, and NADH/NAD+ detections were employed to assess the impact of SSD on cellular redox homeostasis. Western blotting, cell cycle distribution assay, and DOX uptake assay were performed to further elucidate the possible antineoplastic mechanism of SSD. Finally, a subcutaneous MCF7/DOX cell xenografted model in nude mice was established to identify the in vivo anticarcinogenic effect of SSD combined with DOX. RESULTS SSD significantly inhibited cell viability, proliferation, and clone formation, enhancing DOX's anticancer efficacy in vitro and in vivo. Mechanistically, SSD reduced STAT1, NQO1, and PGC-1α protein levels, leading to cellular redox imbalance, excessive ROS generation, and depletion of GSH, NADPH, and NADH. SSD induced DNA damage by disrupting redox homeostasis, resulting in G0/G1 phase cell cycle arrest. Additionally, SSD increased DOX accumulation in BC cells via inhibiting P-gp protein expression and efflux activity. CONCLUSION We demonstrated for the first time that SSD enhances the sensitivity of chemoresistant BC cells to DOX by disrupting cellular redox homeostasis through inactivation of the STAT1/NQO1/PGC-1α signaling pathway. This study provides evidence for SSD as an adjuvant agent in drug-resistant BC treatment.
Collapse
Affiliation(s)
- Fazhen Luo
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China; Pharmacy Department, Shanghai Integrated Traditional Chinese and Western Medicine Hospital, 184 Baoding Road, Shanghai 200082, China
| | - Juan Yang
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Xiuru Yang
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Jinxia Mi
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Taiwei Ye
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Guowen Li
- Pharmacy Department, Shanghai Integrated Traditional Chinese and Western Medicine Hospital, 184 Baoding Road, Shanghai 200082, China.
| | - Yan Xie
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| |
Collapse
|
15
|
Kawamura A, Ito A, Takahashi A, Sawamoto A, Okuyama S, Nakajima M. Benproperine reduces IL-6 levels via Akt signaling in monocyte/macrophage-lineage cells and reduces the mortality of mouse sepsis model induced by lipopolysaccharide. J Pharmacol Sci 2024; 156:125-133. [PMID: 39179331 DOI: 10.1016/j.jphs.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/18/2024] [Accepted: 08/01/2024] [Indexed: 08/26/2024] Open
Abstract
Benproperine (BNP) is a nonnarcotic antitussive drug that is used to treat bronchitis. In the present study, we examined the anti-inflammatory effects of BNP in vitro and in vivo. BNP was found to reduce the secretion of pro-inflammatory cytokines, such as interleukin (IL)-6, in lipopolysaccharide (LPS)-treated RAW264.7 monocyte/macrophage-lineage cells in vitro. As IL-6 is a biomarker for sepsis and has been suggested to exacerbate symptoms, we used an animal model to determine whether BNP reduces IL-6 levels in vivo and improves sepsis symptoms. Notably, BNP reduced IL-6 levels in the lungs of LPS-treated mice and improved LPS-induced hypothermia, one of the symptoms of sepsis. BNP reduced the mortality of septic mice administered a lethal dose of LPS. To reveal the mechanisms underlying the anti-inflammatory function of BNP, we assessed intracellular signaling in LPS-treated RAW264.7 cells. BNP induced the phosphorylation of protein kinase B (Akt) in RAW264.7 cells with/without LPS treatment. Wortmannin, an inhibitor of phosphoinositide 3-kinase reduced the phosphorylation levels of Akt. Wortmannin also obstructed the reduction of IL-6 secretion caused by BNP. Altogether, BNP was found to exhibit an anti-inflammatory function via Akt signaling. Therefore, BNP could be a drug candidate for inflammatory diseases, including sepsis.
Collapse
Affiliation(s)
- Ayumi Kawamura
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime, 790-8578, Japan
| | - Akane Ito
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime, 790-8578, Japan
| | - Ayaka Takahashi
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime, 790-8578, Japan
| | - Atsushi Sawamoto
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime, 790-8578, Japan
| | - Satoshi Okuyama
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime, 790-8578, Japan
| | - Mitsunari Nakajima
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime, 790-8578, Japan.
| |
Collapse
|
16
|
Lai W, Zhang J, Sun J, Min T, Bai Y, He J, Cao H, Che Q, Guo J, Su Z. Oxidative stress in alcoholic liver disease, focusing on proteins, nucleic acids, and lipids: A review. Int J Biol Macromol 2024; 278:134809. [PMID: 39154692 DOI: 10.1016/j.ijbiomac.2024.134809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
Oxidative stress is one of the important factors in the development of alcoholic liver disease. The production of reactive oxygen species and other free radicals is an important feature of alcohol metabolism in the liver and an important substance in liver injury. When large amounts of ROS are produced, the homeostasis of the liver REDOX system will be disrupted and liver injury will be caused. Oxidative stress can damage proteins, nucleic acids and lipids, liver dysfunction. In addition, damaging factors produced by oxidative damage to liver tissue can induce the occurrence of inflammation, thereby aggravating the development of ALD. This article reviews the oxidative damage of alcohol on liver proteins, nucleic acids, and lipids, and provides new insights and summaries of the oxidative stress process. We also discussed the relationship between oxidative stress and inflammation in alcoholic liver disease from different perspectives. Finally, the research status of antioxidant therapy in alcoholic liver disease was summarized, hoping to provide better help for learning and developing the understanding of alcoholic liver disease.
Collapse
Affiliation(s)
- Weiwen Lai
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiahua Zhang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiawei Sun
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Tianqi Min
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Jincan He
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd, Science City, Guangzhou 510663, China
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
17
|
Wang W, Yang H, Fan Z, Shi R. NQO1 promotes osteogenesis and suppresses angiogenesis in DPSCs via MAPK pathway modulation. Stem Cell Res Ther 2024; 15:306. [PMID: 39285500 PMCID: PMC11406740 DOI: 10.1186/s13287-024-03929-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Influence on stem cells' angiogenesis and osteogenesis of NAD(P)H Quinone Dehydrogenase 1(NQO1) has been established, but its impact on dental pulp stem cells (DPSCs) is unexplored. An important strategy for the treatment of arteriosclerosis is to inhibit calcium deposition and to promote vascular repair and angiogenesis. This study investigated the function and mechanism of NQO1 on angiogenesis and osteogenesis of DPSCs, so as to provide a new ideal for the treatment of arteriosclerosis. METHODS Co-culture of human DPSCs and human umbilical vein endothelial cells (HUVECs) was used to detect the angiogenesis ability. Alkaline phosphatase (ALP) activity, alizarin red staining (ARS), and transplantation of HA/tricalcium phosphate with DPSCs were used to detect osteogenesis. RESULTS NQO1 suppressed in vitro tubule formation, migration, chemotaxis, and in vivo angiogenesis, as evidenced by reduced CD31 expression. It also enhanced ALP activity, ARS, DSPP expression and osteogenesis and boosted mitochondrial function in DPSCs. CoQ10, an electron transport chain activator, counteracted the effects of NQO1 knockdown on these processes. Additionally, NQO1 downregulated MAPK signaling, which was reversed by CoQ10 supplementation in DPSCs-NQO1sh. CONCLUSIONS NQO1 inhibited angiogenesis and promoted the osteogenesis of DPSCs by suppressing MAPK signaling pathways and enhancing mitochondrial respiration.
Collapse
Affiliation(s)
- Wanqing Wang
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Haoqing Yang
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Zhipeng Fan
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, 100050, China.
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100069, China.
- Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China.
| | - Ruitang Shi
- Department of Endodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
18
|
Wang M, Wang H, Wang X, Shen Y, Zhou D, Jiang Y. Identification of cellular senescence-related genes and immune cell infiltration characteristics in intervertebral disc degeneration. Front Immunol 2024; 15:1439976. [PMID: 39328407 PMCID: PMC11424418 DOI: 10.3389/fimmu.2024.1439976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
Background Intervertebral disc degeneration (IDD) progression involves multiple factors, including loss of nucleus pulposus cells and extracellular matrix as the basic pathological mechanism of degeneration, and is closely related to cellular senescence and immune cell infiltration. The aim of study was to identify critical cellular senescence-related genes and immune cell infiltration characteristics in IDD. Methods Four datasets, including GSE70362, GSE112216, GSE114169, and GSE150408, were downloaded from the Gene Expression Omnibus database. The senescence-related genes were acquired from the CellAge Database and intersected with differentially expressed genes (DEGs) between IDD and control samples for senescence-related DEGs (SRDEGs). Protein-protein interaction (PPI) network analysis was performed to obtain ten hub SRDEGs. A consensus cluster analysis based on these hub genes was performed to divide the patients into clusters. The functional enrichment, and immune infiltration statuses of the clusters were compared. Weighted gene co-expression network analysis was used to identified key gene modules. The overlapping genes from key modules, DEGs of clusters and hub SRDEGs were intersected to obtain potential biomarkers. To verify the expression of potential biomarkers, quantitative polymerase chain reaction (qPCR) and immunohistochemistry were performed by using human intervertebral disc tissues. Results In the GSE70362 dataset, a total of 364 DEGs were identified, of which 150 were upregulated and 214 were downregulated, and 35 genes were selected as SRDEGs. PPI analysis revealed ten hub SRDEGs and consensus cluster analysis divided the patients into two clusters. Compared to Cluster 2, Cluster 1 was highly enriched in extracellular matrix organization and various metabolic process. The level of Follicular T helper cells in the Cluster 1 was significantly higher than that in the Cluster 2. IGFBP3 and NQO1 were identified as potential biomarkers. The remaining 3 datasets, and the result of qPCR and immunohistochemistry showed that the expression levels of NQO1 and IGFBP3 in the degenerated group were higher than those in the control or treatment groups. Conclusion Senescence-related genes play a key role in the development and occurrence of IDD. IGFBP3 and NQO1 are strongly correlated with immune infiltration in the IDD and could become novel therapeutic targets that prevent the progression of IDD.
Collapse
Affiliation(s)
- Muyi Wang
- Department of Orthopedics, Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China
| | - Hao Wang
- Department of Orthopedics, Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China
| | - Xin Wang
- Department of Orthopedics, Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China
| | - Yifei Shen
- Department of Orthopedics, Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China
| | - Dong Zhou
- Department of Orthopedics, Affiliated Changzhou Children’s Hospital of Nantong University, Changzhou, Jiangsu, China
| | - Yuqing Jiang
- Department of Orthopedics, Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China
| |
Collapse
|
19
|
Hardesty JE, Warner JB, Wilkey DW, Phinney BS, Salemi MR, Merchant ML, McClain CJ, Warner DR, Kirpich IA. Hepatic Proteomic Changes Associated with Liver Injury Caused by Alcohol Consumption in Fpr2-/- Mice. Int J Mol Sci 2024; 25:9807. [PMID: 39337294 PMCID: PMC11432144 DOI: 10.3390/ijms25189807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
Alcohol-associated liver disease (ALD) is a prevalent medical problem with limited effective treatment strategies. Although many biological processes contributing to ALD have been elucidated, a complete understanding of the underlying mechanisms is still lacking. The current study employed a proteomic approach to identify hepatic changes resulting from ethanol (EtOH) consumption and the genetic ablation of the formyl peptide receptor 2 (FPR2), a G-protein coupled receptor known to regulate multiple signaling pathways and biological processes, in a mouse model of ALD. Since previous research from our team demonstrated a notable reduction in hepatic FPR2 protein levels in patients with alcohol-associated hepatitis (AH), the proteomic changes in the livers of Fpr2-/- EtOH mice were compared to those observed in patients with AH in order to identify common hepatic proteomic alterations. Several pathways linked to exacerbated ALD in Fpr2-/- EtOH mice, as well as hepatic protein changes resembling those found in patients suffering from AH, were identified. These alterations included decreased levels of coagulation factors F2 and F9, as well as reduced hepatic levels of glutamate-cysteine ligase catalytic subunit (GCLC) and total glutathione in Fpr2-/- EtOH compared to WT EtOH mice. In conclusion, the data suggest that FPR2 may play a regulatory role in hepatic blood coagulation and the antioxidant system, both in a pre-clinical model of ALD and in human AH, however further experiments are required to validate these findings.
Collapse
Affiliation(s)
- Josiah E. Hardesty
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville, Louisville, KY 40202, USA; (J.E.H.); (J.B.W.); (C.J.M.); (D.R.W.)
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA;
| | - Jeffrey B. Warner
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville, Louisville, KY 40202, USA; (J.E.H.); (J.B.W.); (C.J.M.); (D.R.W.)
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA;
| | - Daniel W. Wilkey
- The Proteomics Core, School of Medicine, University of Louisville, Louisville, KY 40202, USA;
| | - Brett S. Phinney
- Proteomics Core Facility, University of California Davis, Davis, CA 95616, USA; (B.S.P.); (M.R.S.)
| | - Michelle R. Salemi
- Proteomics Core Facility, University of California Davis, Davis, CA 95616, USA; (B.S.P.); (M.R.S.)
| | - Michael L. Merchant
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA;
- The Proteomics Core, School of Medicine, University of Louisville, Louisville, KY 40202, USA;
| | - Craig J. McClain
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville, Louisville, KY 40202, USA; (J.E.H.); (J.B.W.); (C.J.M.); (D.R.W.)
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA;
- Robley Rex Veterans Medical Center, Louisville, KY 40202, USA
- Alcohol Research Center, School of Medicine, University of Louisville, Louisville, KY 40202, USA
- Hepatobiology & Toxicology Center, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Dennis R. Warner
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville, Louisville, KY 40202, USA; (J.E.H.); (J.B.W.); (C.J.M.); (D.R.W.)
| | - Irina A. Kirpich
- Alcohol Research Center, School of Medicine, University of Louisville, Louisville, KY 40202, USA
- Hepatobiology & Toxicology Center, School of Medicine, University of Louisville, Louisville, KY 40202, USA
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
20
|
Xie G, Xu Z, Li F, Kong M, Wang P, Shao Y. Aerobic Exercise Ameliorates Cognitive Disorder and Declined Oxidative Stress via Modulating the Nrf2 Signaling Pathway in D-galactose Induced Aging Mouse Model. Neurochem Res 2024; 49:2408-2422. [PMID: 38839706 DOI: 10.1007/s11064-024-04164-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 03/03/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024]
Abstract
The aim of this research was to explore the potential of treadmill exercise in preventing brain aging and neurodegenerative diseases caused by oxidative stress, by studying its effects on D-galactose-induced mice and the mechanisms involved. The results showed that C57BL/6 mice induced with D-gal exhibited cognitive impairment and oxidative stress damage, which was ameliorated by treadmill exercise. The Morris water maze also showed that exercise improved cognitive performance in aging mice and alleviated hippocampal and mitochondrial damage. The study also found that treadmill exercise increased the expression of nuclear factor Nrf2, p-GSK3β, HO-1, NQO1, BDNF, and Bcl-2 proteins while decreasing the expression of Bax. Furthermore, there was a substantial increase in the levels of CAT, GSH-PX and SOD in the serum, along with a decrease in MDA levels. The outcomes propose that aerobic exercise has the potential to hinder oxidative stress and cell death in mitochondria through the modulation of the Nrf2/GSK3β signaling pathway, thus improving cognitive impairment observed in the aging model induced by D-galactose. It appears that treadmill exercise could potentially serve as an effective therapeutic approach to mitigating brain aging and neurodegenerative diseases triggered by oxidative stress.
Collapse
Affiliation(s)
- Guangjing Xie
- Institute of Geriatrics, Hubei University of Chinese Medicine, Wuhan, Hubei, China
- College of Physical Education and Health, Hubei University of Chinese Medicine, Wuhan, Hubei, China
- Hubei Shizhen Labortary, Wuhan, Hubei, China
| | - Zixuan Xu
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Feizhou Li
- College of Clinical Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Meng Kong
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Ping Wang
- Institute of Geriatrics, Hubei University of Chinese Medicine, Wuhan, Hubei, China.
- Hubei Shizhen Labortary, Wuhan, Hubei, China.
| | - Yuping Shao
- College of Physical Education and Health, Hubei University of Chinese Medicine, Wuhan, Hubei, China.
- Hubei Shizhen Labortary, Wuhan, Hubei, China.
| |
Collapse
|
21
|
Chen H, Li H, He M, Lai Z, Huang L, Wen D, Shi M, Kan A. UBA2 SUMOylates NQO1 and promotes the proliferation of hepatocellular carcinoma by modulating the MAPK pathway. Cancer Sci 2024; 115:2998-3012. [PMID: 39013843 PMCID: PMC11462937 DOI: 10.1111/cas.16290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/05/2024] [Accepted: 07/04/2024] [Indexed: 07/18/2024] Open
Abstract
In our previous study, we found that small ubiquitin-related modifier (SUMO)-activating enzyme ubiquitin-associated-2 domain (UBA2) was upregulated in hepatocellular carcinoma (HCC) patients who were insensitive to chemoembolization. In this study, we aimed to investigate the role of UBA2 in HCC progression. Three cohorts were used to evaluate the efficacy of UBA2 as a prognostic factor for HCC. Our results indicated that UBA2 was associated with aggressive clinical behaviors and was a strong indicator of poor prognosis in HCC. In vitro experiments demonstrated that UBA2 accelerated cell growth, invasion, and migration. These results were further supported by in vivo experiments. RNA-sequencing analysis indicated NQO1 as a target of UBA2, with its levels altering following UBA2 manipulation. The results were verified by western blotting (WB) and quantitative PCR. The SUMOplot Analysis Program predicted lysine residue K240 as a modification target of UBA2, which was confirmed by immunoprecipitation (IP) assays. Subsequent mutation of NQO1 at K240 in HCC cell lines and functional assays revealed the significance of this modification. In addition, the oncogenic effect of UBA2 could be reversed by the SUMO inhibitor ML792 in vivo and in vitro. In conclusion, our study elucidated the regulatory mechanism of UBA2 in HCC and suggested that the SUMO inhibitor ML792 may be an effective combinatory treatment for patients with aberrant UBA2 expression.
Collapse
Affiliation(s)
- Hailong Chen
- Department of Hepatobiliary OncologySun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerGuangzhouPeople’s Republic of China
- Department of Hepatobiliary SurgeryThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Huifang Li
- Department of Hepatobiliary OncologySun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerGuangzhouPeople’s Republic of China
| | - Minke He
- Department of Hepatobiliary OncologySun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerGuangzhouPeople’s Republic of China
| | - Zhicheng Lai
- Department of Hepatobiliary OncologySun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerGuangzhouPeople’s Republic of China
| | - Lichang Huang
- Department of Hepatobiliary OncologySun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerGuangzhouPeople’s Republic of China
| | - Dongsheng Wen
- Department of Hepatobiliary OncologySun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerGuangzhouPeople’s Republic of China
| | - Ming Shi
- Department of Hepatobiliary OncologySun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerGuangzhouPeople’s Republic of China
| | - Anna Kan
- Department of Hepatobiliary OncologySun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerGuangzhouPeople’s Republic of China
| |
Collapse
|
22
|
Sun Y, Li Q, Huang Y, Yang Z, Li G, Sun X, Gu X, Qiao Y, Wu Q, Xie T, Sui X. Natural products for enhancing the sensitivity or decreasing the adverse effects of anticancer drugs through regulating the redox balance. Chin Med 2024; 19:110. [PMID: 39164783 PMCID: PMC11334420 DOI: 10.1186/s13020-024-00982-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/11/2024] [Indexed: 08/22/2024] Open
Abstract
Redox imbalance is reported to play a pivotal role in tumorigenesis, cancer development, and drug resistance. Severe oxidative damage is a general consequence of cancer cell responses to treatment and may cause cancer cell death or severe adverse effects. To maintain their longevity, cancer cells can rescue redox balance and enter a state of resistance to anticancer drugs. Therefore, targeting redox signalling pathways has emerged as an attractive and prospective strategy for enhancing the efficacy of anticancer drugs and decreasing their adverse effects. Over the past few decades, natural products (NPs) have become an invaluable source for developing new anticancer drugs due to their high efficacy and low toxicity. Increasing evidence has demonstrated that many NPs exhibit remarkable antitumour effects, whether used alone or as adjuvants, and are emerging as effective approaches to enhance sensitivity and decrease the adverse effects of conventional cancer therapies by regulating redox balance. Among them are several novel anticancer drugs based on NPs that have entered clinical trials. In this review, we summarize the synergistic anticancer effects and related redox mechanisms of the combination of NPs with conventional anticancer drugs. We believe that NPs targeting redox regulation will represent promising novel candidates and provide prospects for cancer treatment in the future.
Collapse
Affiliation(s)
- Yitian Sun
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Qinyi Li
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Yufei Huang
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Zijing Yang
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Guohua Li
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Xiaoyu Sun
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Xiaoqing Gu
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Yunhao Qiao
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China.
| | - Tian Xie
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China.
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| | - Xinbing Sui
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China.
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| |
Collapse
|
23
|
Erdman V, Tuktarova I, Nasibullin T, Timasheva Y, Petintseva A, Korytina G. Polygenic markers of survival and longevity in the antioxidant genes PON1, PON2, MTHFR, MSRA, SOD1, NQO1, and CAT in a 20-year follow-up study in the population from the Volga-Ural region. Gene 2024; 919:148510. [PMID: 38679184 DOI: 10.1016/j.gene.2024.148510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Genetic background of healthy or pathological styles of aging and human lifespan is determined by joint gene interactions. Lucky combinations of antioxidant gene polymorphisms can result in a highly adaptive phenotype, providing a successful way to interact with external triggers. Our purpose was to identify the polygenic markers of survival and longevity in the antioxidant genes among elderly people with physiological and pathological aging. METHODS In a 20-year follow-up study of 2350 individuals aged 18-114 years residing in the Volga-Ural region of Russia, sex-adjusted association analyses of MTHFR rs1801133, MSRA rs10098474, PON1 rs662, PON2 rs7493, SOD1 rs2070424, NQO1 rs1131341 and CAT rs1001179 polymorphic loci with longevity were carried out. Survival analysis was subsequently performed using the established single genes and gene-gene combinations as cofactors. RESULTS The PON1 rs662*G allele was defined as the main longevity marker in women (OR = 1.44, p = 3E-04 in the log-additive model; HR = 0.77, p = 1.9E-04 in the Cox-survival model). The polymorphisms in the MTHFR, MSRA, PON2, SOD1, and CAT genes had an additive effect on longevity. A strong protective effect of combined MTHFR rs1801133*C, MSRA rs10098474*T, PON1 rs662*G, and PON2 rs7493*C alleles against mortality was obtained in women (HR = 0.81, p = 5E-03). The PON1 rs662*A allele had a meaningful impact on mortality for both long-lived men with cerebrovascular accidents (HR = 1.76, p = 0.027 for the PON1 rs662*AG genotype) and women with cardiovascular diseases (HR = 1.43, p = 0.002 for PON1 rs662*AA genotype). The MTHFR rs1801133*TT (HR = 1.91, p = 0.036), CAT rs1001179*TT (HR = 2.83, p = 0.031) and SOD1 rs2070424*AG (HR = 1.58, p = 0.018) genotypes were associated with the cancer mortality. CONCLUSION In our longitudinal 20-year study, we found the combinations of functional polymorphisms in antioxidant genes involved in longevity and survival in certain clinical phenotypes in the advanced age.
Collapse
Affiliation(s)
- Vera Erdman
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa 450054, Russia.
| | - Ilsia Tuktarova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa 450054, Russia
| | - Timur Nasibullin
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa 450054, Russia
| | - Yanina Timasheva
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa 450054, Russia; Bashkir State Medical University, Ufa 450008, Russia
| | - Anna Petintseva
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa 450054, Russia
| | - Gulnaz Korytina
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa 450054, Russia; Bashkir State Medical University, Ufa 450008, Russia
| |
Collapse
|
24
|
Wei J, Zhu Y, Zhuo L, Liu Y, Fu X, Li F. Efficient Deep Model Ensemble Framework for Drug-Target Interaction Prediction. J Phys Chem Lett 2024; 15:7681-7693. [PMID: 39038219 DOI: 10.1021/acs.jpclett.4c01509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Accurate prediction of Drug-Target Interactions (DTI) is crucial for drug development. Current state-of-the-art deep learning methods have significantly advanced the field; however, these methods exhibit limitations in predictive performance and the propensity for false negatives. Therefore, we propose EADTN, a simple and efficient ensemble model. We have designed an innovative feature adaptation technique to automatically extract local weights of drugs and targets, and we utilize clustering-enhanced parameter fine-tuning to overcome the issue of false negatives, thereby enhancing its reliability in drug discovery. Based on EADTN, we also propose a Shapley value-based method for identifying key drug substructures, effectively enhancing the model's interpretability. Additionally, we utilized EADTN to reveal potential interactions between NQO1 targets and the drugs SIRT-IN-1 and LY2183240, which were subsequently validated through wet-lab experiments. Experimental evidence demonstrates that EADTN consistently outperforms existing best-performing models across various data sets, promising significant benefits in fields such as drug repositioning.
Collapse
Affiliation(s)
- Jinhang Wei
- School of Data Science and Artificial Intelligence, Wenzhou University of Technology, Wenzhou 325000, China
| | - Yangbin Zhu
- School of Data Science and Artificial Intelligence, Wenzhou University of Technology, Wenzhou 325000, China
| | - Linlin Zhuo
- School of Data Science and Artificial Intelligence, Wenzhou University of Technology, Wenzhou 325000, China
| | - Yang Liu
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou 350002, China
| | - Xiangzheng Fu
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China
| | - Fushan Li
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350116, China
| |
Collapse
|
25
|
Ozgencil F, Gunindi HB, Eren G. Dual-targeted NAMPT inhibitors as a progressive strategy for cancer therapy. Bioorg Chem 2024; 149:107509. [PMID: 38824699 DOI: 10.1016/j.bioorg.2024.107509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/29/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024]
Abstract
In mammals, nicotinamide phosphoribosyltransferase (NAMPT) is a crucial enzyme in the nicotinamide adenine dinucleotide (NAD+) synthesis pathway catalyzing the condensation of nicotinamide (NAM) with 5-phosphoribosyl-1-pyrophosphate (PRPP) to produce nicotinamide mononucleotide (NMN). Given the pivotal role of NAD+ in a range of cellular functions, including DNA synthesis, redox reactions, cytokine generation, metabolism, and aging, NAMPT has become a promising target for many diseases, notably cancer. Therefore, various NAMPT inhibitors have been reported and classified as first and second-generation based on their chemical structures and design strategies, dual-targeted being one. However, most NAMPT inhibitors suffer from several limitations, such as dose-dependent toxicity and poor pharmacokinetic properties. Consequently, there is no clinically approved NAMPT inhibitor. Hence, research on discovering more effective and less toxic dual-targeted NAMPT inhibitors with desirable pharmacokinetic properties has drawn attention recently. This review summarizes the previously reported dual-targeted NAMPT inhibitors, focusing on their design strategies and advantages over the single-targeted therapies.
Collapse
Affiliation(s)
- Fikriye Ozgencil
- SIRTeam Group, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330 Ankara, Türkiye
| | - Habibe Beyza Gunindi
- SIRTeam Group, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330 Ankara, Türkiye
| | - Gokcen Eren
- SIRTeam Group, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330 Ankara, Türkiye.
| |
Collapse
|
26
|
Marolt N, Pavlič R, Kreft T, Gjogorska M, Rižner TL. Targeting estrogen metabolism in high-grade serous ovarian cancer shows promise to overcome platinum resistance. Biomed Pharmacother 2024; 177:117069. [PMID: 38968802 DOI: 10.1016/j.biopha.2024.117069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024] Open
Abstract
The high mortality rate due to chemoresistance in patients with high-grade ovarian cancer (HGSOC) emphasizes the urgent need to determine optimal treatment strategies for advanced and recurrent cases. Our study investigates the interplay between estrogens and chemoresistance in HGSOC and shows clear differences between platinum-sensitive and -resistant tumors. Through comprehensive transcriptome analyzes, we uncover differences in the expression of genes of estrogen biosynthesis, metabolism, transport and action underlying platinum resistance in different tissues of HGSOC subtypes and in six HGSOC cell lines. Furthermore, we identify genes involved in estrogen biosynthesis and metabolism as prognostic biomarkers for HGSOC. Additionally, our study elucidates different patterns of estrogen formation/metabolism and their effects on cell proliferation between six HGSOC cell lines with different platinum sensitivity. These results emphasize the dynamic interplay between estrogens and HGSOC chemoresistance. In particular, targeting the activity of steroid sulfatase (STS) proves to be a promising therapeutic approach with potential efficacy in limiting estrogen-driven cell proliferation. Our study reveals potential prognostic markers as well as identifies novel therapeutic targets that show promise for overcoming resistance and improving treatment outcomes in HGSOC.
Collapse
Affiliation(s)
- Nika Marolt
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Renata Pavlič
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Tinkara Kreft
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Marija Gjogorska
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Tea Lanišnik Rižner
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana 1000, Slovenia.
| |
Collapse
|
27
|
Mathys H, Boix CA, Akay LA, Xia Z, Davila-Velderrain J, Ng AP, Jiang X, Abdelhady G, Galani K, Mantero J, Band N, James BT, Babu S, Galiana-Melendez F, Louderback K, Prokopenko D, Tanzi RE, Bennett DA, Tsai LH, Kellis M. Single-cell multiregion dissection of Alzheimer's disease. Nature 2024; 632:858-868. [PMID: 39048816 PMCID: PMC11338834 DOI: 10.1038/s41586-024-07606-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 05/24/2024] [Indexed: 07/27/2024]
Abstract
Alzheimer's disease is the leading cause of dementia worldwide, but the cellular pathways that underlie its pathological progression across brain regions remain poorly understood1-3. Here we report a single-cell transcriptomic atlas of six different brain regions in the aged human brain, covering 1.3 million cells from 283 post-mortem human brain samples across 48 individuals with and without Alzheimer's disease. We identify 76 cell types, including region-specific subtypes of astrocytes and excitatory neurons and an inhibitory interneuron population unique to the thalamus and distinct from canonical inhibitory subclasses. We identify vulnerable populations of excitatory and inhibitory neurons that are depleted in specific brain regions in Alzheimer's disease, and provide evidence that the Reelin signalling pathway is involved in modulating the vulnerability of these neurons. We develop a scalable method for discovering gene modules, which we use to identify cell-type-specific and region-specific modules that are altered in Alzheimer's disease and to annotate transcriptomic differences associated with diverse pathological variables. We identify an astrocyte program that is associated with cognitive resilience to Alzheimer's disease pathology, tying choline metabolism and polyamine biosynthesis in astrocytes to preserved cognitive function late in life. Together, our study develops a regional atlas of the ageing human brain and provides insights into cellular vulnerability, response and resilience to Alzheimer's disease pathology.
Collapse
Affiliation(s)
- Hansruedi Mathys
- Picower Institute for Learning and Memory, MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- University of Pittsburgh Brain Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Carles A Boix
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Computational and Systems Biology Program, MIT, Cambridge, MA, USA
| | - Leyla Anne Akay
- Picower Institute for Learning and Memory, MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
| | - Ziting Xia
- Picower Institute for Learning and Memory, MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- Harvard-MIT Health Sciences and Technology Program, MIT, Cambridge, MA, USA
| | | | - Ayesha P Ng
- Picower Institute for Learning and Memory, MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
| | - Xueqiao Jiang
- Picower Institute for Learning and Memory, MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
| | - Ghada Abdelhady
- University of Pittsburgh Brain Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kyriaki Galani
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Julio Mantero
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Neil Band
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Benjamin T James
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sudhagar Babu
- University of Pittsburgh Brain Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Fabiola Galiana-Melendez
- Picower Institute for Learning and Memory, MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
| | - Kate Louderback
- Picower Institute for Learning and Memory, MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
| | - Dmitry Prokopenko
- Genetics and Aging Research Unit, McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Li-Huei Tsai
- Picower Institute for Learning and Memory, MIT, Cambridge, MA, USA.
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Manolis Kellis
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
28
|
Castiglione Morelli MA, Iuliano A, Viggiani L, Matera I, Pistone A, Schettini SCA, Colucci P, Ostuni A. Redox Balance and Inflammatory Response in Follicular Fluids of Women Recovered by SARS-CoV-2 Infection or Anti-COVID-19 Vaccinated: A Combined Metabolomics and Biochemical Study. Int J Mol Sci 2024; 25:8400. [PMID: 39125969 PMCID: PMC11313332 DOI: 10.3390/ijms25158400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
To date, not many studies have presented evidence of SARS-CoV-2 infecting the female reproductive system. Furthermore, so far, no effect of the administration of anti-COVID 19 vaccines has been reported to affect the quality of oocytes retrieved from women who resorted to assisted reproduction technology (ART). The FF metabolic profiles of women who had been infected by SARS-CoV-2 before IVF treatments or after COVID-19 vaccination were examined by 1H NMR. Immunochemical characterization of proteins and cytokines involved in the redox and inflammatory pathways was performed. The increased expression of SOD2 and NQO1, the lack of alteration of IL-6 and CXCL10 levels, as well as the increased expression of CD39, suggested that, both sharing similar molecular mechanisms or proceeding along different routes, the redox balance is controlled in the FF of both vaccinated and recovered women compared to controls. The lower amount of metabolites known to have proinflammatory activity, i.e., TMAO and lipids, further supported the biochemical results, suggesting that the FF microenvironment is controlled so as to guarantee oocyte quality and does not compromise the outcome of ART. In terms of the number of blastocysts obtained after ICSI and the pregnancy rate, the results are also comforting.
Collapse
Affiliation(s)
| | - Assunta Iuliano
- Center for Reproductive Medicine of “San Carlo” Hospital, 85100 Potenza, Italy; (A.I.); (S.C.A.S.); (P.C.)
| | - Licia Viggiani
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (M.A.C.M.); (L.V.); (I.M.); (A.P.)
| | - Ilenia Matera
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (M.A.C.M.); (L.V.); (I.M.); (A.P.)
| | - Alessandro Pistone
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (M.A.C.M.); (L.V.); (I.M.); (A.P.)
| | - Sergio C. A. Schettini
- Center for Reproductive Medicine of “San Carlo” Hospital, 85100 Potenza, Italy; (A.I.); (S.C.A.S.); (P.C.)
| | - Paola Colucci
- Center for Reproductive Medicine of “San Carlo” Hospital, 85100 Potenza, Italy; (A.I.); (S.C.A.S.); (P.C.)
| | - Angela Ostuni
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (M.A.C.M.); (L.V.); (I.M.); (A.P.)
| |
Collapse
|
29
|
Song B, Wang X, Qin L, Hussain S, Liang W. Brain gliomas: Diagnostic and therapeutic issues and the prospects of drug-targeted nano-delivery technology. Pharmacol Res 2024; 206:107308. [PMID: 39019336 DOI: 10.1016/j.phrs.2024.107308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Glioma is the most common intracranial malignant tumor, with severe difficulty in treatment and a low patient survival rate. Due to the heterogeneity and invasiveness of tumors, lack of personalized clinical treatment design, and physiological barriers, it is often difficult to accurately distinguish gliomas, which dramatically affects the subsequent diagnosis, imaging treatment, and prognosis. Fortunately, nano-delivery systems have demonstrated unprecedented capabilities in diagnosing and treating gliomas in recent years. They have been modified and surface modified to efficiently traverse BBB/BBTB, target lesion sites, and intelligently release therapeutic or contrast agents, thereby achieving precise imaging and treatment. In this review, we focus on nano-delivery systems. Firstly, we provide an overview of the standard and emerging diagnostic and treatment technologies for glioma in clinical practice. After induction and analysis, we focus on summarizing the delivery methods of drug delivery systems, the design of nanoparticles, and their new advances in glioma imaging and treatment in recent years. Finally, we discussed the prospects and potential challenges of drug-delivery systems in diagnosing and treating glioma.
Collapse
Affiliation(s)
- Baoqin Song
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong 250117, China
| | - Xiu Wang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong 250117, China.
| | - Lijing Qin
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong 250117, China
| | - Shehbaz Hussain
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong 250117, China
| | - Wanjun Liang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong 250117, China.
| |
Collapse
|
30
|
Khan AEMA, Arutla V, Srivenugopal KS. Human NQO1 as a Selective Target for Anticancer Therapeutics and Tumor Imaging. Cells 2024; 13:1272. [PMID: 39120303 PMCID: PMC11311714 DOI: 10.3390/cells13151272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
Human NAD(P)H-quinone oxidoreductase1 (HNQO1) is a two-electron reductase antioxidant enzyme whose expression is driven by the NRF2 transcription factor highly active in the prooxidant milieu found in human malignancies. The resulting abundance of NQO1 expression (up to 200-fold) in cancers and a barely detectable expression in body tissues makes it a selective marker of neoplasms. NQO1 can catalyze the repeated futile redox cycling of certain natural and synthetic quinones to their hydroxyquinones, consuming NADPH and generating rapid bursts of cytotoxic reactive oxygen species (ROS) and H2O2. A greater level of this quinone bioactivation due to elevated NQO1 content has been recognized as a tumor-specific therapeutic strategy, which, however, has not been clinically exploited. We review here the natural and new quinones activated by NQO1, the catalytic inhibitors, and the ensuing cell death mechanisms. Further, the cancer-selective expression of NQO1 has opened excellent opportunities for distinguishing cancer cells/tissues from their normal counterparts. Given this diagnostic, prognostic, and therapeutic importance, we and others have engineered a large number of specific NQO1 turn-on small molecule probes that remain latent but release intense fluorescence groups at near-infrared and other wavelengths, following enzymatic cleavage in cancer cells and tumor masses. This sensitive visualization/quantitation and powerful imaging technology based on NQO1 expression offers promise for guided cancer surgery, and the reagents suggest a theranostic potential for NQO1-targeted chemotherapy.
Collapse
Affiliation(s)
| | | | - Kalkunte S. Srivenugopal
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1406 Amarillo Research Bldg., Rm. 1102, Amarillo, TX 79106, USA; (A.E.M.A.K.); (V.A.)
| |
Collapse
|
31
|
Mayer C, Riera-Ponsati L, Kauppinen S, Klitgaard H, Erler JT, Hansen SN. Targeting the NRF2 pathway for disease modification in neurodegenerative diseases: mechanisms and therapeutic implications. Front Pharmacol 2024; 15:1437939. [PMID: 39119604 PMCID: PMC11306042 DOI: 10.3389/fphar.2024.1437939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/03/2024] [Indexed: 08/10/2024] Open
Abstract
Neurodegenerative diseases constitute a global health issue and a major economic burden. They significantly impair both cognitive and motor functions, and their prevalence is expected to rise due to ageing societies and continuous population growth. Conventional therapies provide symptomatic relief, nevertheless, disease-modifying treatments that reduce or halt neuron death and malfunction are still largely unavailable. Amongst the common hallmarks of neurodegenerative diseases are protein aggregation, oxidative stress, neuroinflammation and mitochondrial dysfunction. Transcription factor nuclear factor-erythroid 2-related factor 2 (NRF2) constitutes a central regulator of cellular defense mechanisms, including the regulation of antioxidant, anti-inflammatory and mitochondrial pathways, making it a highly attractive therapeutic target for disease modification in neurodegenerative disorders. Here, we describe the role of NRF2 in the common hallmarks of neurodegeneration, review the current pharmacological interventions and their challenges in activating the NRF2 pathway, and present alternative therapeutic approaches for disease modification.
Collapse
Affiliation(s)
| | - Lluís Riera-Ponsati
- NEUmiRNA Therapeutics, Copenhagen, Denmark
- Center for RNA Medicine, Aalborg University, Copenhagen, Denmark
| | - Sakari Kauppinen
- NEUmiRNA Therapeutics, Copenhagen, Denmark
- Center for RNA Medicine, Aalborg University, Copenhagen, Denmark
| | | | | | | |
Collapse
|
32
|
Wang K, Han C, Yang J, Xu W, Wang L, Li H, Wang Y. Benfotiamine protects MPTP-induced Parkinson's disease mouse model via activating Nrf2 signaling pathway. PLoS One 2024; 19:e0307012. [PMID: 39042624 PMCID: PMC11265681 DOI: 10.1371/journal.pone.0307012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/28/2024] [Indexed: 07/25/2024] Open
Abstract
The pursuit of drugs and methods to safeguard dopaminergic neurons holds paramount importance in Parkinson's disease (PD) research. Benfotiamine (BFT) has demonstrated neuroprotective properties, yet its precise mechanisms in PD remain elusive. This study investigated BFT's potential protective effects against dopamine neuron damage in a PD animal model and the underlying mechanisms. The PD mouse model was induced by 5 consecutive MPTP injections, followed by BFT intervention for 28 days. Motor deficits were assessed via pole test, hang test, gait analysis, and open field test, while dopaminergic neuron damage was evaluated through Immunofluorescence, Nissl staining, and Western blot analysis of Tyrosine Hydroxylase (TH) in the substantia nigra and striatum. High Performance Liquid Chromatography quantified dopamine (DA) levels and its metabolites. Genetic pathways were explored using RNA-seq and bioinformatics analysis on substantia nigra tissues, confirmed by qPCR. Activation of the Nrf2 pathway was examined through nuclear translocation and expression of downstream antioxidant enzymes HO-1, GCLM, and NQO1 at mRNA and protein levels. Additionally, measurements of MDA content, GSH activity, and SOD activity were taken in the substantia nigra and striatum. BFT administration improved motor function and protected against dopaminergic neuron degeneration in MPTP mice, with partial recovery in TH expression and DA levels. RNA-seq analysis revealed distinct effects of BFT and the NLRP3 inhibitor MCC950 on Parkinson-related pathways and genes. Control of Nrf2 proved crucial for BFT, as it facilitated Nrf2 movement to the nucleus, upregulating antioxidant genes and enzymes while mitigating oxidative damage. This study elucidates BFT's neuroprotective effects in a PD mouse model via Nrf2-mediated antioxidant mechanisms and gene expression modulation, underscoring its potential as a therapeutic agent for PD.
Collapse
Affiliation(s)
- Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Shushan District, Hefei, Anhui Province, People’s Republic of China
- Department of Neurology, The Third Affiliated Hospital of Anhui Medical University, Luyang District, Hefei, Anhui Province, People’s Republic of China
| | - Chao Han
- Division of Life Sciences and Medicine, Department of Neurology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Luyang District, Hefei, Anhui Province, People’s Republic of China
| | - Jinwei Yang
- Department of Critical Care Medicine, The Affiliated Fuyang People’s Hospital of Anhui Medical University, Chengnanxin District, Fuyang, Anhui Province, People’s Republic of China
| | - Wenhao Xu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Shushan District, Hefei, Anhui Province, People’s Republic of China
| | - Lei Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Shushan District, Hefei, Anhui Province, People’s Republic of China
| | - Huaiyu Li
- Division of Life Sciences and Medicine, Department of Neurology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Luyang District, Hefei, Anhui Province, People’s Republic of China
| | - Yu Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Shushan District, Hefei, Anhui Province, People’s Republic of China
| |
Collapse
|
33
|
Guan L, Viswanathan V, Jiang Y, Vijayakumar S, Cao H, Zhao J, Colburg DRC, Neuhöfer P, Zhang Y, Wang J, Xu Y, Laseinde EE, Hildebrand R, Rahman M, Frock R, Kong C, Beachy PA, Artandi S, Le QT. Tert-expressing cells contribute to salivary gland homeostasis and tissue regeneration after radiation therapy. Genes Dev 2024; 38:569-582. [PMID: 38997156 PMCID: PMC11293384 DOI: 10.1101/gad.351577.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024]
Abstract
Salivary gland homeostasis and regeneration after radiotherapy depend significantly on progenitor cells. However, the lineage of submandibular gland (SMG) progenitor cells remains less defined compared with other normal organs. Here, using a mouse strain expressing regulated CreERT2 recombinase from the endogenous Tert locus, we identify a distinct telomerase-expressing (TertHigh) cell population located in the ductal region of the adult SMG. These TertHigh cells contribute to ductal cell generation during SMG homeostasis and to both ductal and acinar cell renewal 1 year after radiotherapy. TertHigh cells maintain self-renewal capacity during in vitro culture, exhibit resistance to radiation damage, and demonstrate enhanced proliferative activity after radiation exposure. Similarly, primary human SMG cells with high Tert expression display enhanced cell survival after radiotherapy, and CRISPR-activated Tert in human SMG spheres increases proliferation after radiation. RNA sequencing reveals upregulation of "cell cycling" and "oxidative stress response" pathways in TertHigh cells following radiation. Mechanistically, Tert appears to modulate cell survival through ROS levels in SMG spheres following radiation damage. Our findings highlight the significance of TertHigh cells in salivary gland biology, providing insights into their response to radiotherapy and into their use as a potential target for enhancing salivary gland regeneration after radiotherapy.
Collapse
Affiliation(s)
- Li Guan
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Vignesh Viswanathan
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Yuyan Jiang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Sivakamasundari Vijayakumar
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Hongbin Cao
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Junfei Zhao
- Department of Pathology and Cell Biology, Columbia University, New York, New York 10032, USA
| | | | - Patrick Neuhöfer
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Yiru Zhang
- Department of Radiology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Jinglong Wang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Yu Xu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Eyiwunmi E Laseinde
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Rachel Hildebrand
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Mobeen Rahman
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Richard Frock
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Christina Kong
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Philip A Beachy
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Steven Artandi
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Quynh-Thu Le
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305, USA;
| |
Collapse
|
34
|
Wu H, Zhang Q, Dong C, Zheng G, Tan Z, Gu H. Coordination regulation of enhanced performance reveals the tolerance mechanism of Chlamys farreri to azaspiracid toxicity. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135247. [PMID: 39029196 DOI: 10.1016/j.jhazmat.2024.135247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Azaspiracids (AZAs) are lipid biotoxins produced by the marine dinoflagellates Azadinium and Amphidoma spp. that can accumulate in shellfish and cause food poisoning in humans. However, the mechanisms underlying the tolerance of shellfish to high levels of such toxins remain poorly understood. This study investigated the combined effects of detoxification metabolism and stress-related responses in scallops Chlamys farreri exposed to AZA. Scallops accumulated a maximum of 361.81 μg AZA1 eq/kg and 41.6 % AZA residue remained after 21 days of exposure. A range of AZA2 metabolites, including AZA19, AZA11, and AZA23, and trace levels of AZA2-GST, were detected. Total hemocyte counts significantly increased and ROS levels remained consistently high until gradually decreasing. Immune system activation mediated mitochondrial dysfunction and severe energy deficiency. DEGs increased over time, with key genes CYP2J6 and GPX6 contributing to AZA metabolism. These transcriptome and metabolic results identify the regulation of energy metabolism pathways, including inhibition of the TCA cycle and activation of carbohydrates, amino acids, and lipids. AZA also induced autophagy through the MAPK-AMPK signaling pathways, and primary inhibited PI3K/AKT to decrease mTOR pathway expression. Our results provide additional insights into the resistance of C. farreri to AZA, characterized by re-establishing redox homeostasis toward a more oxidative state.
Collapse
Affiliation(s)
- Haiyan Wu
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Qianru Zhang
- Jiangsu Ocean University, Lianyungang 222005, China
| | - Chenfan Dong
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Guanchao Zheng
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Zhijun Tan
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| | - Haifeng Gu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China
| |
Collapse
|
35
|
Xu X, Li M, Xu W, Wang M, Wu Y, Cheng L, Li J, Qin Y, Liu S, Yang G, Sun K, Zhang P. A Combination of Biocatalysis and Fenton-Like Reaction Induced OH • Burst for Cascade Amplification of Cancer Chemodynamic Therapy. Mol Pharm 2024; 21:3434-3446. [PMID: 38781419 DOI: 10.1021/acs.molpharmaceut.4c00143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Chemodynamic therapy (CDT) is a novel antitumor strategy that employs Fenton or Fenton-like reactions to generate highly toxic hydroxyl radical (OH•) from hydrogen peroxide (H2O2) for inducing tumor cell death. However, the antitumor efficacy of the CDT strategy is harshly limited by the redox homeostasis of tumor cells; especially the OH • is easily scavenged by glutathione (GSH) and the intracellular H2O2 level is insufficient in the tumor cells. Herein, we propose the Mn2+-menadione (also known as vitamin K3, MK3) cascade biocatalysis strategy to disrupt the redox homeostasis of tumor cells and induce a OH• storm, resulting in enhanced CDT effect. A nanoliposome encapsulating Mn-MK3 (Mn-MK3@LP) was prepared for the treatment of hepatic tumors in this study. After Mn-MK3@LPs were taken up by tumor cells, menadione could facilitate the production of intracellular H2O2 via redox cycling, and further the cytotoxic OH • burst was induced by Mn2+-mediated Fenton-like reaction. Moreover, high-valent manganese ions were reduced by GSH and the depletion of GSH further disrupted the redox homeostasis of tumor cells, thus achieving synergistically enhanced CDT. Overall, both cellular and animal experiments confirmed that the Mn-MK3@LP cascade biocatalysis nanoliposome exhibited excellent biosafety and tumor suppression efficacy. This study may provide deep insights for developing novel CDT-based strategies for tumor therapy.
Collapse
Affiliation(s)
- Xiaopeng Xu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P.R. China
| | - Minghui Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P.R. China
| | - Wenjia Xu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P.R. China
| | - Min Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P.R. China
| | - Yan Wu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P.R. China
| | - Liying Cheng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P.R. China
| | - Jinyang Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P.R. China
| | - Yang Qin
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P.R. China
| | - Sha Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P.R. China
| | - Gangqiang Yang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P.R. China
| | - Kaoxiang Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P.R. China
| | - Peng Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P.R. China
| |
Collapse
|
36
|
Wang C, Li M, Li S, Wei X, Dong N, Liu S, Yuan Z, Li B, Pierro A, Tang X, Bai Y. Rack1-mediated ferroptosis affects hindgut development in rats with anorectal malformations: Spatial transcriptome insights. Cell Prolif 2024; 57:e13618. [PMID: 38523594 PMCID: PMC11216944 DOI: 10.1111/cpr.13618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 03/26/2024] Open
Abstract
Anorectal malformation (ARM), a common congenital anomaly of the digestive tract, is a result of insufficient elongation of the urorectal septum. The cytoplasmic protein Receptor of Activated C-Kinase 1 (Rack1) is involved in embryonic neural development; however, its role in embryonic digestive tract development and ARM formation is unexplored. Our study explored the hindgut development and cell death mechanisms in ARM-affected rats using spatial transcriptome analysis. We induced ARM in rats by administering ethylenethiourea via gavage on gestational day (GD) 10. On GDs 14-16, embryos from both normal and ARM groups underwent spatial transcriptome sequencing, which identified key genes and signalling pathways. Rack1 exhibited significant interactions among differentially expressed genes on GDs 15 and 16. Reduced Rack1 expression in the ARM-affected hindgut, verified by Rack1 silencing in intestinal epithelial cells, led to increased P38 phosphorylation and activation of the MAPK signalling pathway. The suppression of this pathway downregulated Nqo1 and Gpx4 expression, resulting in elevated intracellular levels of ferrous ions, reactive oxygen species (ROS) and lipid peroxides. Downregulation of Gpx4 expression in the ARM hindgut, coupled with Rack1 co-localisation and consistent mitochondrial morphology, indicated ferroptosis. In summary, Rack1, acting as a hub gene, modulates ferrous ions, lipid peroxides, and ROS via the P38-MAPK/Nqo1/Gpx4 axis. This modulation induces ferroptosis in intestinal epithelial cells, potentially influencing hindgut development during ARM onset.
Collapse
Affiliation(s)
- Chen‐Yi Wang
- Department of Pediatric SurgeryShengjing Hospital of China Medical UniversityShenyangChina
| | - Mu‐Yu Li
- Department of Pediatric SurgeryShengjing Hospital of China Medical UniversityShenyangChina
| | - Si‐Ying Li
- Department of Pediatric SurgeryShengjing Hospital of China Medical UniversityShenyangChina
| | - Xiao‐Gao Wei
- Department of Pediatric SurgeryShengjing Hospital of China Medical UniversityShenyangChina
| | - Nai‐Xuan Dong
- Department of Pediatric SurgeryShengjing Hospital of China Medical UniversityShenyangChina
| | - Shu‐Ting Liu
- Department of Pediatric SurgeryShengjing Hospital of China Medical UniversityShenyangChina
| | - Zheng‐Wei Yuan
- Key Laboratory of Health Ministry for Congenital MalformationShengjing Hospital of China Medical UniversityShenyangChina
| | - Bo Li
- Division of General and Thoracic SurgeryThe Hospital for Sick ChildrenTorontoCanada
| | - Agostino Pierro
- Division of General and Thoracic SurgeryThe Hospital for Sick ChildrenTorontoCanada
| | - Xiao‐Bing Tang
- Department of Pediatric SurgeryShengjing Hospital of China Medical UniversityShenyangChina
| | - Yu‐Zuo Bai
- Department of Pediatric SurgeryShengjing Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
37
|
Serikbaeva A, Li Y, Ma S, Yi D, Kazlauskas A. Resilience to diabetic retinopathy. Prog Retin Eye Res 2024; 101:101271. [PMID: 38740254 PMCID: PMC11262066 DOI: 10.1016/j.preteyeres.2024.101271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Chronic elevation of blood glucose at first causes relatively minor changes to the neural and vascular components of the retina. As the duration of hyperglycemia persists, the nature and extent of damage increases and becomes readily detectable. While this second, overt manifestation of diabetic retinopathy (DR) has been studied extensively, what prevents maximal damage from the very start of hyperglycemia remains largely unexplored. Recent studies indicate that diabetes (DM) engages mitochondria-based defense during the retinopathy-resistant phase, and thereby enables the retina to remain healthy in the face of hyperglycemia. Such resilience is transient, and its deterioration results in progressive accumulation of retinal damage. The concepts that co-emerge with these discoveries set the stage for novel intellectual and therapeutic opportunities within the DR field. Identification of biomarkers and mediators of protection from DM-mediated damage will enable development of resilience-based therapies that will indefinitely delay the onset of DR.
Collapse
Affiliation(s)
- Anara Serikbaeva
- Department of Physiology and Biophysics, University of Illinois at Chicago, 1905 W Taylor St, Chicago, IL 60612, USA
| | - Yanliang Li
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1905 W Taylor St, Chicago, IL 60612, USA
| | - Simon Ma
- Department of Bioengineering, University of Illinois at Chicago, 1905 W Taylor St, Chicago, IL 60612, USA
| | - Darvin Yi
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1905 W Taylor St, Chicago, IL 60612, USA; Department of Bioengineering, University of Illinois at Chicago, 1905 W Taylor St, Chicago, IL 60612, USA
| | - Andrius Kazlauskas
- Department of Physiology and Biophysics, University of Illinois at Chicago, 1905 W Taylor St, Chicago, IL 60612, USA; Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1905 W Taylor St, Chicago, IL 60612, USA.
| |
Collapse
|
38
|
Balogun O, Shao D, Carson M, King T, Kosar K, Zhang R, Zeng G, Cornuet P, Goel C, Lee E, Patel G, Brooks E, Monga SP, Liu S, Nejak-Bowen K. Loss of β-catenin reveals a role for glutathione in regulating oxidative stress during cholestatic liver disease. Hepatol Commun 2024; 8:e0485. [PMID: 38967587 PMCID: PMC11227358 DOI: 10.1097/hc9.0000000000000485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/22/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Cholestasis is an intractable liver disorder that results from impaired bile flow. We have previously shown that the Wnt/β-catenin signaling pathway regulates the progression of cholestatic liver disease through multiple mechanisms, including bile acid metabolism and hepatocyte proliferation. To further explore the impact of these functions during intrahepatic cholestasis, we exposed mice to a xenobiotic that causes selective biliary injury. METHODS α-naphthylisothiocyanate (ANIT) was administered to liver-specific knockout (KO) of β-catenin and wild-type mice in the diet. Mice were killed at 6 or 14 days to assess the severity of cholestatic liver disease, measure the expression of target genes, and perform biochemical analyses. RESULTS We found that the presence of β-catenin was protective against ANIT, as KO mice had a significantly lower survival rate than wild-type mice. Although serum markers of liver damage and total bile acid levels were similar between KO and wild-type mice, the KO had minor histological abnormalities, such as sinusoidal dilatation, concentric fibrosis around ducts, and decreased inflammation. Notably, both total glutathione levels and expression of glutathione-S-transferases, which catalyze the conjugation of ANIT to glutathione, were significantly decreased in KO after ANIT. Nuclear factor erythroid-derived 2-like 2, a master regulator of the antioxidant response, was activated in KO after ANIT as well as in a subset of patients with primary sclerosing cholangitis lacking activated β-catenin. Despite the activation of nuclear factor erythroid-derived 2-like 2, KO livers had increased lipid peroxidation and cell death, which likely contributed to mortality. CONCLUSIONS Loss of β-catenin leads to increased cellular injury and cell death during cholestasis through failure to neutralize oxidative stress, which may contribute to the pathology of this disease.
Collapse
Affiliation(s)
- Oluwashanu Balogun
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Daniel Shao
- Case-Western Reserve University, Departments of Biochemistry and Computer Science, Cleveland, Ohio, USA
| | - Matthew Carson
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Thalia King
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Karis Kosar
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rong Zhang
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Gang Zeng
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Pamela Cornuet
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Chhavi Goel
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Elizabeth Lee
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Garima Patel
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Eva Brooks
- Duquesne University, School of Science and Engineering, Department of Biotechnology, Pittsburgh, Pennsylvania, USA
| | - Satdarshan P. Monga
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Medicine, Hepatology and Nutrition, Division of Gastroenterology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Silvia Liu
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kari Nejak-Bowen
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
39
|
Chen Y, Wu R, Li X, Cao M, Yang M, Fu B, Xuan C, Chen C, Zhou Y, Hu R. β-Lapachone, an NQO1 bioactivatable drug, prevents lung tumorigenesis in mice. Eur J Pharmacol 2024; 973:176511. [PMID: 38604545 DOI: 10.1016/j.ejphar.2024.176511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/27/2024] [Accepted: 03/14/2024] [Indexed: 04/13/2024]
Abstract
Lung cancer is one of the most lethal cancers with high incidence worldwide. The prevention of lung cancer is of great significance to reducing the social harm caused by this disease. An in-depth understanding of the molecular changes underlying precancerous lesions is essential for the targeted chemoprevention against lung cancer. Here, we discovered an increased NQO1 level over time within pulmonary premalignant lesions in both the KrasG12D-driven and nicotine-derived nitrosamine ketone (NNK)-induced mouse models of lung cancer, as well as in KrasG12D-driven and NNK-induced malignant transformed human bronchial epithelial cells (BEAS-2B and 16HBE). This suggests a potential correlation between the NQO1 expression and lung carcinogenesis. Based on this finding, we utilized β-Lapachone (β-Lap), an NQO1 bioactivatable drug, to suppress lung tumorigenesis. In this study, the efficacy and safety of low-dose β-Lap were demonstrated in preventing lung tumorigenesis in vivo. In conclusion, our study suggests that long-term consumption of low-dose β-Lap could potentially be an effective therapeutic strategy for the prevention of lung premalignant lesions. However, further studies and clinical trials are necessary to validate our findings, determine the safety of long-term β-Lap usage in humans, and promote the use of β-Lap in high-risk populations.
Collapse
Affiliation(s)
- Yaxin Chen
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 210009, Nanjing, China
| | - Ruoyu Wu
- Jinling High School, 210005, Nanjing, China
| | - Xingyan Li
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 210009, Nanjing, China
| | - Mengran Cao
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 210009, Nanjing, China
| | - Mengdi Yang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 210009, Nanjing, China
| | - Bin Fu
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 210009, Nanjing, China
| | - Chenyuan Xuan
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 210009, Nanjing, China
| | - Chi Chen
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 210009, Nanjing, China
| | - Yang Zhou
- Henan Provincial Clinical Research Center for Pediatric Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou University, 450018, Zhengzhou, China.
| | - Rong Hu
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 210009, Nanjing, China.
| |
Collapse
|
40
|
Peng J, Song X, Yu W, Pan Y, Zhang Y, Jian H, He B. The role and mechanism of cinnamaldehyde in cancer. J Food Drug Anal 2024; 32:140-154. [PMID: 38934689 PMCID: PMC11210466 DOI: 10.38212/2224-6614.3502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/15/2024] [Indexed: 06/28/2024] Open
Abstract
As cancer continues to rise globally, there is growing interest in discovering novel methods for prevention and treatment. Due to the limitations of traditional cancer therapies, there has been a growing emphasis on investigating herbal remedies and exploring their potential synergistic effects when combined with chemotherapy drugs. Cinnamaldehyde, derived from cinnamon, has gained significant attention for its potential role in cancer prevention and treatment. Extensive research has demonstrated that cinnamaldehyde exhibits promising anticancer properties by modulating various cellular processes involved in tumor growth and progression. However, challenges and unanswered questions remain regarding the precise mechanisms for its effective use as an anticancer agent. This article aims to explore the multifaceted effects of cinnamaldehyde on cancer cells and shed light on these existing issues. Cinnamaldehyde has diverse anti-cancer mechanisms, including inducing apoptosis by activating caspases and damaging mitochondrial function, inhibiting tumor angiogenesis, anti-proliferation, anti-inflammatory and antioxidant. In addition, cinnamaldehyde also acts as a reactive oxygen species scavenger, reducing oxidative stress and preventing DNA damage and genomic instability. This article emphasizes the promising therapeutic potential of cinnamaldehyde in cancer treatment and underscores the need for future research to unlock novel mechanisms and strategies for combating cancer. By providing valuable insights into the role and mechanism of cinnamaldehyde in cancer, this comprehensive understanding paves the way for its potential as a novel therapeutic agent. Overall, cinnamaldehyde holds great promise as an anticancer agent, and its comprehensive exploration in this article highlights its potential as a valuable addition to cancer treatment options.
Collapse
Affiliation(s)
- Jiahua Peng
- Department of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Institute of Obstetrics and Gynecology, Nanchang, Jiangxi,
China
| | - Xin Song
- Department of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Institute of Obstetrics and Gynecology, Nanchang, Jiangxi,
China
| | - Wenbin Yu
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi,
China
| | - Yuhan Pan
- School of Finance, Shanghai University of Finance and Economics, Shanghai,
China
| | - Yufei Zhang
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi,
China
| | - Hui Jian
- Department of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Institute of Obstetrics and Gynecology, Nanchang, Jiangxi,
China
| | - Bin He
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi,
China
| |
Collapse
|
41
|
Hari A, AbdulHameed MDM, Balik-Meisner MR, Mav D, Phadke DP, Scholl EH, Shah RR, Casey W, Auerbach SS, Wallqvist A, Pannala VR. Exposure to PFAS chemicals induces sex-dependent alterations in key rate-limiting steps of lipid metabolism in liver steatosis. FRONTIERS IN TOXICOLOGY 2024; 6:1390196. [PMID: 38903859 PMCID: PMC11188372 DOI: 10.3389/ftox.2024.1390196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/10/2024] [Indexed: 06/22/2024] Open
Abstract
Toxicants with the potential to bioaccumulate in humans and animals have long been a cause for concern, particularly due to their association with multiple diseases and organ injuries. Per- and polyfluoro alkyl substances (PFAS) and polycyclic aromatic hydrocarbons (PAH) are two such classes of chemicals that bioaccumulate and have been associated with steatosis in the liver. Although PFAS and PAH are classified as chemicals of concern, their molecular mechanisms of toxicity remain to be explored in detail. In this study, we aimed to identify potential mechanisms by which an acute exposure to PFAS and PAH chemicals can induce lipid accumulation and whether the responses depend on chemical class, dose, and sex. To this end, we analyzed mechanisms beginning with the binding of the chemical to a molecular initiating event (MIE) and the consequent transcriptomic alterations. We collated potential MIEs using predictions from our previously developed ToxProfiler tool and from published steatosis adverse outcome pathways. Most of the MIEs are transcription factors, and we collected their target genes by mining the TRRUST database. To analyze the effects of PFAS and PAH on the steatosis mechanisms, we performed a computational MIE-target gene analysis on high-throughput transcriptomic measurements of liver tissue from male and female rats exposed to either a PFAS or PAH. The results showed peroxisome proliferator-activated receptor (PPAR)-α targets to be the most dysregulated, with most of the genes being upregulated. Furthermore, PFAS exposure disrupted several lipid metabolism genes, including upregulation of fatty acid oxidation genes (Acadm, Acox1, Cpt2, Cyp4a1-3) and downregulation of lipid transport genes (Apoa1, Apoa5, Pltp). We also identified multiple genes with sex-specific behavior. Notably, the rate-limiting genes of gluconeogenesis (Pck1) and bile acid synthesis (Cyp7a1) were specifically downregulated in male rats compared to female rats, while the rate-limiting gene of lipid synthesis (Scd) showed a PFAS-specific upregulation. The results suggest that the PPAR signaling pathway plays a major role in PFAS-induced lipid accumulation in rats. Together, these results show that PFAS exposure induces a sex-specific multi-factorial mechanism involving rate-limiting genes of gluconeogenesis and bile acid synthesis that could lead to activation of an adverse outcome pathway for steatosis.
Collapse
Affiliation(s)
- Archana Hari
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Mohamed Diwan M. AbdulHameed
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | | | - Deepak Mav
- Sciome LLC, Research Triangle Park, NC, United States
| | | | | | | | - Warren Casey
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Scott S. Auerbach
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Anders Wallqvist
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, United States
| | - Venkat R. Pannala
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| |
Collapse
|
42
|
Al-Hayali MZ, Nge CE, Lim KH, Collins HM, Kam TS, Bradshaw TD. Conofolidine: A Natural Plant Alkaloid That Causes Apoptosis and Senescence in Cancer Cells. Molecules 2024; 29:2654. [PMID: 38893527 PMCID: PMC11173856 DOI: 10.3390/molecules29112654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Natural products contribute substantially to anticancer therapy; the plant kingdom provides an important source of molecules. Conofolidine is a novel Aspidosperma-Aspidosperma bisindole alkaloid isolated from the Malayan plant Tabernaemontana corymbosa. Herein, we report conofolidine's broad-spectrum anticancer activity together with that of three other bisindoles-conophylline, leucophyllidine, and bipleiophylline-against human-derived breast, colorectal, pancreatic, and lung carcinoma cell lines. Remarkably, conofolidine was able to induce apoptosis (e.g., in MDA-MB-468 breast) or senescence (e.g., in HT-29 colorectal) in cancer cells. Annexin V-FITC/PI, caspase activation, and PARP cleavage confirmed the former while positive β-gal staining corroborated the latter. Cell cycle perturbations were evident, comprising S-phase depletion, accompanied by downregulated CDK2, and cyclins (A2, D1) with p21 upregulation. Confocal imaging of HCT-116 cells revealed an induction of aberrant mitotic phenotypes-membrane blebbing, DNA-fragmentation with occasional multi-nucleation. DNA integrity assessment in HCT-116, MDA-MB-468, MIAPaCa-2, and HT-29 cells showed increased fluorescent γ-H2AX during the G1 cell cycle phase; γ-H2AX foci were validated in HCT-116 and MDA-MB-468 cells by confocal microscopy. Conofolidine increased oxidative stress, preceding apoptosis- and senescence-induction in most carcinoma cell lines as seen by enhanced ROS levels accompanied by increased NQO1 expression. Collectively, we present conofolidine as a putative potent anticancer agent capable of inducing heterogeneous modes of cancerous cell death in vitro, encouraging further preclinical evaluations of this natural product.
Collapse
Affiliation(s)
- Mohammed Zuhair Al-Hayali
- School of Pharmacy, Al-Kitab University, Kirkuk 36015, Iraq
- School of Pharmacy, Biodiscovery Institute, University of Nottingham, University Park, Nottingham NG7 2RD, UK;
| | - Choy-Eng Nge
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; (C.-E.N.); (T.-S.K.)
| | - Kuan Hon Lim
- School of Pharmacy, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Malaysia;
| | - Hilary M. Collins
- School of Pharmacy, Biodiscovery Institute, University of Nottingham, University Park, Nottingham NG7 2RD, UK;
| | - Toh-Seok Kam
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; (C.-E.N.); (T.-S.K.)
| | - Tracey D. Bradshaw
- School of Pharmacy, Biodiscovery Institute, University of Nottingham, University Park, Nottingham NG7 2RD, UK;
| |
Collapse
|
43
|
Wang Q, Ye X, Tan S, Jiang Q, Su G, Pan S, Li H, Cao Q, Yang P. 4-Octyl Itaconate Inhibits Proinflammatory Cytokine Production in Behcet's Uveitis and Experimental Autoimmune Uveitis. Inflammation 2024; 47:909-920. [PMID: 38183531 DOI: 10.1007/s10753-023-01950-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 01/08/2024]
Abstract
4-octyl itaconate (4-OI) is an anti-inflammatory metabolite that activates the nuclear-factor-E2-related factor 2 (NRF2) signaling. In the current work, we investigated whether 4-OI could affect the production of proinflammatory cytokines in Behcet's uveitis (BU) and experimental autoimmune uveitis (EAU). Peripheral blood mononuclear cells (PBMCs) of active BU patients and healthy individuals with in vitro 4-OI treatment were performed to assess the influence of 4-OI on the proinflammatory cytokine production. EAU was induced and used for investigating the influence of 4-OI on the proinflammatory cytokine production in vivo. The flow cytometry, qPCR, and ELISA were performed to detect proinflammatory cytokine expression. NRF2 signaling activation was evaluated by qPCR and western blotting (WB). Splenic lymphocyte transcriptome was performed by RNA sequencing. The NRF2 expression by BU patients-derived PBMCs was lower than that by healthy individuals. After treatment with 4-OI, the proportion of Th17 cells, along with the expression of proinflammatory cytokines (IL-17, TNF-α, MCP-1, and IL-6) by PBMCs, were downregulated, and anti-inflammatory cytokine (IL-10) expression was upregulated, although IFN-γ expression was unaffected. The EAU severity was ameliorated by 4-OI in association with a lower splenic Th1/Th17 cell proportion and increased nuclear NRF2 expression. Additionally, 4-OI downregulated a set of 248 genes, which were enriched in pathways of positive regulation of immune responses. The present study shows an inhibitory effect of 4-OI on the proinflammatory cytokine production in active BU patients and EAU mice, possibly mediated through activating NRF2 signaling. These findings suggest that 4-OI could act as a potential therapeutic drug for the treatment and prevention of BU in the future study.
Collapse
Affiliation(s)
- Qingfeng Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Xingsheng Ye
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Shiyao Tan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Qingyan Jiang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Guannan Su
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Su Pan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Hongxi Li
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Qingfeng Cao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Peizeng Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China.
| |
Collapse
|
44
|
Matsumoto H, Sasai H, Kawamoto N, Katsuyama M, Minamiyama M, Kuru S, Fukao T, Ohnishi H. Loss-of-function polymorphisms in NQO1 are not associated with the development of subacute myelo-optico-neuropathy. Mol Genet Genomic Med 2024; 12:e2470. [PMID: 38860482 PMCID: PMC11165339 DOI: 10.1002/mgg3.2470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/17/2024] [Accepted: 05/14/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Subacute myelo-optico-neuropathy (SMON) is a neurological disorder associated with the administration of clioquinol, particularly at very high doses. Although clioquinol has been used worldwide, there was an outbreak of SMON in the 1950s-1970s in which the majority of cases were in Japan, prompting speculation that the unique genetic background of the Japanese population may have contributed to the development of SMON. Recently, a possible association between loss-of-function polymorphisms in NQO1 and the development of SMON has been reported. In this study, we analyzed the relationship between NQO1 polymorphisms and SMON in Japan. METHODS We analyzed 125 Japanese patients with SMON. NQO1 loss-of-function polymorphisms (rs1800566, rs10517, rs689452, and rs689456) were evaluated. The allele frequency distribution of each polymorphism was compared between the patients and the healthy Japanese individuals (Human Genomic Variation Database and Integrative Japanese Genome Variation Database), as well as our in-house healthy controls. RESULTS The frequencies of the loss-of-function NQO1 alleles in patients with SMON and the normal control group did not differ significantly. CONCLUSION We conclude that known NQO1 polymorphisms are not associated with the development of SMON.
Collapse
Grants
- H28-Intractable etc.(Intractable)-Designated-110 Health and Labour Sciences Research Grant for Research on Intractable Diseases from The Ministry of Health, Labour and Welfare, Japan
- H29-Intractable etc.(Intractable)-Designated-001 Health and Labour Sciences Research Grant for Research on Intractable Diseases from The Ministry of Health, Labour and Welfare, Japan
- H30-Intractable etc.(Intractable)-Designated-003 Health and Labour Sciences Research Grant for Research on Intractable Diseases from The Ministry of Health, Labour and Welfare, Japan
- 2019-Intractable etc.(Intractable)-Designated-001 Health and Labour Sciences Research Grant for Research on Intractable Diseases from The Ministry of Health, Labour and Welfare, Japan
- 2020-Intractable etc.(Intractable)-20FC2004 Health and Labour Sciences Research Grant for Research on Intractable Diseases from The Ministry of Health, Labour and Welfare, Japan
- 2021-Intractable etc.(Intractable)-20FC2004 Health and Labour Sciences Research Grant for Research on Intractable Diseases from The Ministry of Health, Labour and Welfare, Japan
- 2022-Intractable etc.(Intractable)-20FC2004 Health and Labour Sciences Research Grant for Research on Intractable Diseases from The Ministry of Health, Labour and Welfare, Japan
Collapse
Affiliation(s)
- Hideki Matsumoto
- Department of PediatricsGifu University Graduate School of Medicine, Gifu UniversityGifuJapan
| | - Hideo Sasai
- Department of PediatricsGifu University Graduate School of Medicine, Gifu UniversityGifuJapan
- Clinical Genetics CenterGifu University HospitalGifuJapan
| | - Norio Kawamoto
- Department of PediatricsGifu University Graduate School of Medicine, Gifu UniversityGifuJapan
| | - Masato Katsuyama
- Radioisotope CenterKyoto Prefectural University of MedicineKyotoJapan
| | | | - Satoshi Kuru
- Department of NeurologyNHO Suzuka National HospitalSuzukaJapan
| | - Toshiyuki Fukao
- Department of PediatricsGifu University Graduate School of Medicine, Gifu UniversityGifuJapan
- Clinical Genetics CenterGifu University HospitalGifuJapan
| | - Hidenori Ohnishi
- Department of PediatricsGifu University Graduate School of Medicine, Gifu UniversityGifuJapan
- Clinical Genetics CenterGifu University HospitalGifuJapan
- Center for one Medicine Innovative Translational ResearchGifu UniversityGifuJapan
| | | |
Collapse
|
45
|
Xu BX, Hu TY, Du JB, Xie T, Xu YW, Jin X, Xu ST, Jin HW, Wang G, Wang J, Zhen L. In pursuit of feedback activation: New insights into redox-responsive hydropersulfide prodrug combating oxidative stress. Redox Biol 2024; 72:103130. [PMID: 38522110 PMCID: PMC10973683 DOI: 10.1016/j.redox.2024.103130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024] Open
Abstract
Redox-responsive hydropersulfide prodrugs are designed to enable a more controllable and efficient hydropersulfide (RSSH) supply and to thoroughly explore their biological and therapeutic applications in oxidative damage. To obtain novel activation patterns triggered by redox signaling, we focused on NAD(P)H: quinone acceptor oxidoreductase 1 (NQO1), a canonical antioxidant enzyme, and designed NQO1-activated RSSH prodrugs. We also performed a head-to-head comparison of two mainstream structural scaffolds with solid quantitative analysis of prodrugs, RSSH, and metabolic by-products by LC-MS/MS, confirming that the perthiocarbamate scaffold was more effective in intracellular prodrug uptake and RSSH production. The prodrug was highly potent in oxidative stress management against cisplatin-induced nephrotoxicity. Strikingly, this prodrug possessed potential feedback activation properties by which the delivered RSSH can further escalate the prodrug activation via NQO1 upregulation. Our strategy pushed RSSH prodrugs one step further in the pursuit of efficient release in biological matrices and improved druggability against oxidative stress.
Collapse
Affiliation(s)
- Bi-Xin Xu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, Jiangsu, China
| | - Tian-Yu Hu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, Jiangsu, China
| | - Jin-Biao Du
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, Jiangsu, China
| | - Tao Xie
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, Jiangsu, China
| | - Ya-Wen Xu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, Jiangsu, China
| | - Xin Jin
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, Jiangsu, China
| | - Si-Tao Xu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, Jiangsu, China
| | - Hao-Wen Jin
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, Jiangsu, China
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, Jiangsu, China.
| | - Jiankun Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, Jiangsu, China.
| | - Le Zhen
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
46
|
Lou Y, Zou L, Shen Z, Zheng J, Lin Y, Zhang Z, Chen X, Pan J, Zhang X. Protective effect of dexmedetomidine against delayed bone healing caused by morphine via PI3K/Akt mediated Nrf2 antioxidant defense system. Front Pharmacol 2024; 15:1396713. [PMID: 38863982 PMCID: PMC11165180 DOI: 10.3389/fphar.2024.1396713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/13/2024] [Indexed: 06/13/2024] Open
Abstract
Background As a class of analgesics, opioids are frequently used to treat both acute and chronic moderate to severe pain. Patients frequently receive opioid painkillers after orthopedic accidents or surgeries. Evidence suggests that opioid drug users have a 55.1% higher risk of fracture and poor bone repair than non-users of opioid drugs. The key pathogenic alterations in the incidence and progression of poor bone repair are over apoptosis and aging of osteoblasts due to the stress caused by oxidation. Dexmedetomidine (Dex) has been proven to protect against a variety of degenerative illnesses by reducing oxidative stress. However, nothing is known about how it affects bone repair. Methods PI3K/Akt/Nrf2 pathway was detected by immunofluorescence and Western blot. SOD, CAT, JC-1, dihydroethidium and mitosox were used in the Oxidative Stress. Micro-CT, H&E and Masson's staining, immunohistochemically were performed to evaluate the therapeutic effects of DEX on calvarial defects in the morphine-induced rat model. Results We found that morphine-induced an imbalance in the metabolism and catabolism of primary rat Osteoblasts. However, these conditions could be inhibited by DEX treatment. In the meantime, DEX induced the expression of Nrf2-regulated antioxidant enzymes such as NQO1, HO-1, GCLm, GCLc, and TrxR1. DEX-mediated Nrf2 activation is linked to the PI3K/Akt signaling system. Furthermore, it has been established that intravenous DEX enhanced the growth of bone healing in a model of a surgically produced rat cranial lesion. Conclusion This is the first description of the unique DEX mechanism acting as a Nrf2 activator against morphine-mediated oxidative harm, raising the possibility that the substance may be used to prevent bone defects.
Collapse
Affiliation(s)
- Yani Lou
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, China
| | - Linfang Zou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhenyu Shen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianwei Zheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuanqu Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhe Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - XuanKuai Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jun Pan
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xutong Zhang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
47
|
Zhou Y, Zhang X, Baker JS, Davison GW, Yan X. Redox signaling and skeletal muscle adaptation during aerobic exercise. iScience 2024; 27:109643. [PMID: 38650987 PMCID: PMC11033207 DOI: 10.1016/j.isci.2024.109643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Redox regulation is a fundamental physiological phenomenon related to oxygen-dependent metabolism, and skeletal muscle is mainly regarded as a primary site for oxidative phosphorylation. Several studies have revealed the importance of reactive oxygen and nitrogen species (RONS) in the signaling process relating to muscle adaptation during exercise. To date, improving knowledge of redox signaling in modulating exercise adaptation has been the subject of comprehensive work and scientific inquiry. The primary aim of this review is to elucidate the molecular and biochemical pathways aligned to RONS as activators of skeletal muscle adaptation and to further identify the interconnecting mechanisms controlling redox balance. We also discuss the RONS-mediated pathways during the muscle adaptive process, including mitochondrial biogenesis, muscle remodeling, vascular angiogenesis, neuron regeneration, and the role of exogenous antioxidants.
Collapse
Affiliation(s)
- Yingsong Zhou
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Xuan Zhang
- School of Wealth Management, Ningbo University of Finance and Economics, Ningbo, China
| | - Julien S. Baker
- Centre for Health and Exercise Science Research, Hong Kong Baptist University, Kowloon Tong 999077, Hong Kong
| | - Gareth W. Davison
- Sport and Exercise Sciences Research Institute, Ulster University, Belfast BT15 IED, UK
| | - Xiaojun Yan
- School of Marine Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
48
|
Mo X, Zhang Z, Song J, Wang Y, Yu Z. Self-assembly of peptides in living cells for disease theranostics. J Mater Chem B 2024; 12:4289-4306. [PMID: 38595070 DOI: 10.1039/d4tb00365a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
The past few decades have witnessed substantial progress in biomedical materials for addressing health concerns and improving disease therapeutic and diagnostic efficacy. Conventional biomedical materials are typically created through an ex vivo approach and are usually utilized under physiological environments via transfer from preparative media. This transfer potentially gives rise to challenges for the efficient preservation of the bioactivity and implementation of theranostic goals on site. To overcome these issues, the in situ synthesis of biomedical materials on site has attracted great attention in the past few years. Peptides, which exhibit remarkable biocompability and reliable noncovalent interactions, can be tailored via tunable assembly to precisely create biomedical materials. In this review, we summarize the progress in the self-assembly of peptides in living cells for disease diagnosis and therapy. After a brief introduction to the basic design principles of peptide assembly systems in living cells, the applications of peptide assemblies for bioimaging and disease treatment are highlighted. The challenges in the field of peptide self-assembly in living cells and the prospects for novel peptide assembly systems towards next-generation biomaterials are also discussed, which will hopefully help elucidate the great potential of peptide assembly in living cells for future healthcare applications.
Collapse
Affiliation(s)
- Xiaowei Mo
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| | - Zeyu Zhang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| | - Jinyan Song
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| | - Yushi Wang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| | - Zhilin Yu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China.
- Haihe Laboratory of Synthetic Biology, 21 West 15th Avenue, Tianjin 300308, China
| |
Collapse
|
49
|
Lu Y, Chen H. Deuterium-Depleted Water in Cancer Therapy: A Systematic Review of Clinical and Experimental Trials. Nutrients 2024; 16:1397. [PMID: 38732643 PMCID: PMC11085166 DOI: 10.3390/nu16091397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
Chemotherapy exhibits numerous side effects in anti-tumour therapy. The clinical experiments indicated that deuterium-depleted water (DDW) monotherapy or in combination with chemotherapy was beneficial in inhibiting cancer development. To further understand the potential mechanism of DDW in cancer therapy, we performed a systematic review. The data from experiments published over the past 15 years were included. PubMed, Cochrane and Web of Science (January 2008 to November 2023) were systemically searched. Fifteen studies qualified for review, including fourteen in vivo and in vitro trials and one interventional trial. The results showed that DDW alone or in combination with chemotherapy effectively inhibited cancer progression in most experiments. The combination treatment enhances the therapeutic effect on cancer compared with chemotherapeutic monotherapy. The inhibitory role of DDW in tumours is through regulating the reactive oxygen species (ROS)-related genes in Kelch-like ECH-associated protein 1 (Keap 1) and Nuclear erythroid 2-related factor 2 (Nrf2) signalling pathways, further controlling ROS production. An abnormal amount of ROS can inhibit the tumour progression. More extensive randomized controlled trials should be conducted to evaluate the accurate effect of DDW in Keap1-Nrf2 signalling pathways.
Collapse
Affiliation(s)
- Yutong Lu
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330031, China;
| | - Hongping Chen
- Department of Histology and Embryology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Bayi Road 461, Nanchang 330006, China
| |
Collapse
|
50
|
Xu L, Jia J, Yu J, Miao S, Zhang Y. The impact of aerobic exercise timing on BMAL1 protein expression and antioxidant responses in skeletal muscle of mice. Free Radic Res 2024; 58:311-322. [PMID: 38946540 DOI: 10.1080/10715762.2024.2348789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/04/2024] [Indexed: 07/02/2024]
Abstract
It is well known that the adaptations of muscular antioxidant system to aerobic exercise depend on the frequency, intensity, duration, type of the exercise. Nonetheless, the timing of aerobic exercise, related to circadian rhythms or biological clock, may also affect the antioxidant defense system, but its impact remains uncertain. Bain and muscle ARNT-like 1 (BMAL1) is the core orchestrator of molecular clock, which can maintain cellular redox homeostasis by directly controlling the transcriptional activity of nuclear factor erythroid 2-related factor 2 (NRF2). So, our research objective was to evaluate the impacts of aerobic exercise training at various time points of the day on BMAL1 and NRF2-mediated antioxidant system in skeletal muscle. C57BL/6J mice were assigned to the control group, the group exercising at Zeitgeber Time 12 (ZT12), and the group exercising at ZT24. Control mice were not intervened, while ZT12 and ZT24 mice were trained for four weeks at the early and late time point of their active phase, respectively. We observed that the skeletal muscle of ZT12 mice exhibited higher total antioxidant capacity and lower reactive oxygen species compared to ZT24 mice. Furthermore, ZT12 mice improved the colocalization of BMAL1 with nucleus, the protein expression of BMAL1, NRF2, NAD(P)H quinone oxidoreductase 1, heme oxygenase 1, glutamate-cysteine ligase modifier subunit and glutathione reductase in comparison to those of ZT24 mice. In conclusion, the 4-week aerobic training performed at ZT12 is more effective for enhancing NRF2-mediated antioxidant responses of skeletal muscle, which may be attributed to the specific activation of BMAL1.
Collapse
Affiliation(s)
- Lei Xu
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China
- School of Sport Science, Beijing Sport University, Beijing, China
| | - Jie Jia
- School of Sport Science, Beijing Sport University, Beijing, China
| | - Jingjing Yu
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China
| | - Shudan Miao
- School of Sport Science, Beijing Sport University, Beijing, China
| | - Ying Zhang
- School of Sport Science, Beijing Sport University, Beijing, China
| |
Collapse
|