1
|
Allu PKR, Kiranmayi M, Mukherjee SD, Chirasani VR, Garg R, Vishnuprabu D, Ravi S, Subramanian L, Sahu BS, Iyer DR, Maghajothi S, Sharma S, Ravi MS, Khullar M, Munirajan AK, Gayen JR, Senapati S, Mullasari AS, Mohan V, Radha V, Naga Prasad SV, Mahapatra NR. Functional Gly297Ser Variant of the Physiological Dysglycemic Peptide Pancreastatin Is a Novel Risk Factor for Cardiometabolic Disorders. Diabetes 2022; 71:538-553. [PMID: 34862200 DOI: 10.2337/db21-0289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 11/24/2021] [Indexed: 11/13/2022]
Abstract
Pancreastatin (PST), a chromogranin A-derived potent physiological dysglycemic peptide, regulates glucose/insulin homeostasis. We have identified a nonsynonymous functional PST variant (p.Gly297Ser; rs9658664) that occurs in a large section of human populations. Association analysis of this single nucleotide polymorphism with cardiovascular/metabolic disease states in Indian populations (n = 4,300 subjects) displays elevated plasma glucose, glycosylated hemoglobin, diastolic blood pressure, and catecholamines in Gly/Ser subjects as compared with wild-type individuals (Gly/Gly). Consistently, the 297Ser allele confers an increased risk (∼1.3-1.6-fold) for type 2 diabetes/hypertension/coronary artery disease/metabolic syndrome. In corroboration, the variant peptide (PST-297S) displays gain-of-potency in several cellular events relevant for cardiometabolic disorders (e.g., increased expression of gluconeogenic genes, increased catecholamine secretion, and greater inhibition of insulin-stimulated glucose uptake) than the wild-type peptide. Computational docking analysis and molecular dynamics simulations show higher affinity binding of PST-297S peptide with glucose-regulated protein 78 (GRP78) and insulin receptor than the wild-type peptide, providing a mechanistic basis for the enhanced activity of the variant peptide. In vitro binding assays validate these in silico predictions of PST peptides binding to GRP78 and insulin receptor. In conclusion, the PST 297Ser allele influences cardiovascular/metabolic phenotypes and emerges as a novel risk factor for type 2 diabetes/hypertension/coronary artery disease in human populations.
Collapse
Affiliation(s)
- Prasanna K R Allu
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Malapaka Kiranmayi
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Sromona D Mukherjee
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Venkat R Chirasani
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Richa Garg
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Durairajpandian Vishnuprabu
- Department of Genetics, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai, India
| | - Sudesh Ravi
- Department of Genetics, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai, India
| | - Lakshmi Subramanian
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Bhavani S Sahu
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Dhanya R Iyer
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Sakthisree Maghajothi
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Saurabh Sharma
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Marimuthu S Ravi
- Department of Cardiology, Madras Medical College and Government General Hospital, Chennai, India
| | - Madhu Khullar
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Arasambattu K Munirajan
- Department of Genetics, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai, India
| | - Jiaur R Gayen
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sanjib Senapati
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Ajit S Mullasari
- Institute of Cardiovascular Diseases, Madras Medical Mission, Chennai, India
| | - Viswanathan Mohan
- Department of Molecular Genetics, Madras Diabetes Research Foundation, Chennai, India
| | - Venkatesan Radha
- Department of Molecular Genetics, Madras Diabetes Research Foundation, Chennai, India
| | - Sathyamangala V Naga Prasad
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Nitish R Mahapatra
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
2
|
Jelinkova S, Fojtik P, Kohutova A, Vilotic A, Marková L, Pesl M, Jurakova T, Kruta M, Vrbsky J, Gaillyova R, Valášková I, Frák I, Lacampagne A, Forte G, Dvorak P, Meli AC, Rotrekl V. Dystrophin Deficiency Leads to Genomic Instability in Human Pluripotent Stem Cells via NO Synthase-Induced Oxidative Stress. Cells 2019; 8:cells8010053. [PMID: 30650618 PMCID: PMC6356905 DOI: 10.3390/cells8010053] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/29/2018] [Accepted: 01/11/2019] [Indexed: 11/16/2022] Open
Abstract
Recent data on Duchenne muscular dystrophy (DMD) show myocyte progenitor's involvement in the disease pathology often leading to the DMD patient's death. The molecular mechanism underlying stem cell impairment in DMD has not been described. We created dystrophin-deficient human pluripotent stem cell (hPSC) lines by reprogramming cells from two DMD patients, and also by introducing dystrophin mutation into human embryonic stem cells via CRISPR/Cas9. While dystrophin is expressed in healthy hPSC, its deficiency in DMD hPSC lines induces the release of reactive oxygen species (ROS) through dysregulated activity of all three isoforms of nitric oxide synthase (further abrev. as, NOS). NOS-induced ROS release leads to DNA damage and genomic instability in DMD hPSC. We were able to reduce both the ROS release as well as DNA damage to the level of wild-type hPSC by inhibiting NOS activity.
Collapse
Affiliation(s)
- Sarka Jelinkova
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.
- International Clinical Research Center ICRC, St. Anne's University Hospital Brno, 602 00 Brno, Czech Republic.
| | - Petr Fojtik
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.
| | - Aneta Kohutova
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.
- International Clinical Research Center ICRC, St. Anne's University Hospital Brno, 602 00 Brno, Czech Republic.
| | - Aleksandra Vilotic
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.
| | - Lenka Marková
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.
| | - Martin Pesl
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.
- International Clinical Research Center ICRC, St. Anne's University Hospital Brno, 602 00 Brno, Czech Republic.
- 1st department of Internal Medicine-Cardioangiology, Faculty of Medicine, Masaryk University, 602 00 Brno, Czech Republic.
| | - Tereza Jurakova
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.
| | - Miriama Kruta
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.
| | - Jan Vrbsky
- International Clinical Research Center ICRC, St. Anne's University Hospital Brno, 602 00 Brno, Czech Republic.
| | - Renata Gaillyova
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.
- Department of Clinical Genetics, University hospital Brno, 613 00 Brno, Czech Republic.
| | - Iveta Valášková
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.
- Department of Clinical Genetics, University hospital Brno, 613 00 Brno, Czech Republic.
| | - Ivan Frák
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.
| | - Alain Lacampagne
- PhyMedExp, INSERM, University of Montpellier, CNRS, 342 95 Montpellier CEDEX 5, France.
| | - Giancarlo Forte
- International Clinical Research Center ICRC, St. Anne's University Hospital Brno, 602 00 Brno, Czech Republic.
| | - Petr Dvorak
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.
- International Clinical Research Center ICRC, St. Anne's University Hospital Brno, 602 00 Brno, Czech Republic.
| | - Albano C Meli
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.
- PhyMedExp, INSERM, University of Montpellier, CNRS, 342 95 Montpellier CEDEX 5, France.
| | - Vladimir Rotrekl
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.
- International Clinical Research Center ICRC, St. Anne's University Hospital Brno, 602 00 Brno, Czech Republic.
| |
Collapse
|
3
|
Ricciuti B, Foglietta J, Bianconi V, Sahebkar A, Pirro M. Enzymes involved in tumor-driven angiogenesis: A valuable target for anticancer therapy. Semin Cancer Biol 2017; 56:87-99. [PMID: 29128510 DOI: 10.1016/j.semcancer.2017.11.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 11/01/2017] [Accepted: 11/04/2017] [Indexed: 02/07/2023]
Abstract
Angiogenesis plays a pivotal role in cancer progression and is required for tissue invasion and metastasis. Starting with Folkman's initial observations in 1971, basic research continued to shed new molecular insight into this multifaceted process, leading to the development of several anti-angiogenic drugs. To date, anti-vascular endothelial growth factor monoclonal antibodies, such as bevacizumab and ramucirumab, and receptor tyrosine kinase inhibitors (e.g., sorafenib, sunitinib, regorafenib and axitinib) have had a profound impact on the way we treat patients with advanced cancer, providing in some cases unprecedented clinical benefit. The molecular mechanisms underlying tumor-driven angiogenesis have been explored extensively and have unveiled a number of potential clinically relevant targets, including several novel enzymes. In this review, we summarized the current strategies to target tumor-driven angiogenesis through the inhibition of relevant and selected classes of enzymes involved in this process.
Collapse
Affiliation(s)
- Biagio Ricciuti
- Department of Medical Oncology, Santa Maria della Misericordia Hospital, Piazzale L. Severi n. 1, 06132, Perugia, Italy
| | - Jennifer Foglietta
- Department of Medical Oncology, Santa Maria della Misericordia Hospital, Piazzale L. Severi n. 1, 06132, Perugia, Italy
| | - Vanessa Bianconi
- Department of Medicine, University of Perugia, Piazzale L. Severi n. 1, 06132, Perugia, Italy
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Matteo Pirro
- Department of Medicine, University of Perugia, Piazzale L. Severi n. 1, 06132, Perugia, Italy.
| |
Collapse
|
4
|
Troger J, Theurl M, Kirchmair R, Pasqua T, Tota B, Angelone T, Cerra MC, Nowosielski Y, Mätzler R, Troger J, Gayen JR, Trudeau V, Corti A, Helle KB. Granin-derived peptides. Prog Neurobiol 2017; 154:37-61. [PMID: 28442394 DOI: 10.1016/j.pneurobio.2017.04.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 04/10/2017] [Accepted: 04/16/2017] [Indexed: 12/14/2022]
Abstract
The granin family comprises altogether 7 different proteins originating from the diffuse neuroendocrine system and elements of the central and peripheral nervous systems. The family is dominated by three uniquely acidic members, namely chromogranin A (CgA), chromogranin B (CgB) and secretogranin II (SgII). Since the late 1980s it has become evident that these proteins are proteolytically processed, intragranularly and/or extracellularly into a range of biologically active peptides; a number of them with regulatory properties of physiological and/or pathophysiological significance. The aim of this comprehensive overview is to provide an up-to-date insight into the distribution and properties of the well established granin-derived peptides and their putative roles in homeostatic regulations. Hence, focus is directed to peptides derived from the three main granins, e.g. to the chromogranin A derived vasostatins, betagranins, pancreastatin and catestatins, the chromogranin B-derived secretolytin and the secretogranin II-derived secretoneurin (SN). In addition, the distribution and properties of the chromogranin A-derived peptides prochromacin, chromofungin, WE14, parastatin, GE-25 and serpinins, the CgB-peptide PE-11 and the SgII-peptides EM66 and manserin will also be commented on. Finally, the opposing effects of the CgA-derived vasostatin-I and catestatin and the SgII-derived peptide SN on the integrity of the vasculature, myocardial contractility, angiogenesis in wound healing, inflammatory conditions and tumors will be discussed.
Collapse
Affiliation(s)
- Josef Troger
- Department of Ophthalmology, Medical University of Innsbruck, Innsbruck, Austria.
| | - Markus Theurl
- Department of Internal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Rudolf Kirchmair
- Department of Internal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Teresa Pasqua
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Bruno Tota
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Tommaso Angelone
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Maria C Cerra
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Yvonne Nowosielski
- Department of Ophthalmology, Medical University of Innsbruck, Innsbruck, Austria
| | - Raphaela Mätzler
- Department of Ophthalmology, Medical University of Innsbruck, Innsbruck, Austria
| | - Jasmin Troger
- Department of Ophthalmology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Vance Trudeau
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Angelo Corti
- Vita-Salute San Raffaele University and Division of Experimental Oncology, San Raffaele Scientific Institute, Milan, Italy
| | - Karen B Helle
- Department of Biomedicine, University of Bergen, Norway
| |
Collapse
|
5
|
Linares CI, Ferrín G, Aguilar-Melero P, González-Rubio S, Rodríguez-Perálvarez M, Sánchez-Aragó M, Chicano-Gálvez E, Cuezva JM, Montero-Álvarez JL, Muntané J, de la Mata M. Sensitivity to anti-Fas is independent of increased cathepsin D activity and adrenodoxin reductase expression occurring in NOS-3 overexpressing HepG2 cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1182-94. [PMID: 25712867 DOI: 10.1016/j.bbamcr.2015.02.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 02/13/2015] [Accepted: 02/15/2015] [Indexed: 01/24/2023]
Abstract
Stable overexpression of endothelial nitric oxide synthase (NOS-3) in HepG2 cells (4TO-NOS) leads to increased nitro-oxidative stress and upregulation of the cell death mediators p53 and Fas. Thus, NOS-3 overexpression has been suggested as a useful antiproliferative mechanism in hepatocarcinoma cells. We aimed to identify the underlying mechanism of cell death induced by NOS-3 overexpression at basal conditions and with anti-Fas treatment. The intracellular localization of NOS-3, the nitro-oxidative stress and the mitochondrial activity were analysed. In addition, the protein expression profile in 4TO-NOS was screened for differentially expressed proteins potentially involved in the induction of apoptosis. NOS-3 localization in the mitochondrial outer membrane was not associated with changes in the respiratory cellular capacity, but was related to the mitochondrial biogenesis increase and with a higher protein expression of mitochondrial complex IV. Nitro-oxidative stress and cell death in NOS-3 overexpressing cells occurred with the expression increase of pro-apoptotic genes and a higher expression/activity of the enzymes adrenodoxin reductase mitochondrial (AR) and cathepsin D (CatD). CatD overexpression in 4TO-NOS was related to the apoptosis induction independently of its catalytic activity. In addition, CatD activity inhibition by pepstatin A was not effective in blocking apoptosis induced by anti-Fas. In summary, NOS-3 overexpression resulted in an increased sensitivity to anti-Fas induced cell death, independently of AR expression and CatD activity.
Collapse
Affiliation(s)
- Clara I Linares
- Unidad de Gestión Clínica de Aparato Digestivo, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital Universitario Reina Sofía/Universidad de Córdoba, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Córdoba, Spain
| | - Gustavo Ferrín
- Unidad de Gestión Clínica de Aparato Digestivo, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital Universitario Reina Sofía/Universidad de Córdoba, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Córdoba, Spain.
| | - Patricia Aguilar-Melero
- Unidad de Gestión Clínica de Aparato Digestivo, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital Universitario Reina Sofía/Universidad de Córdoba, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Córdoba, Spain
| | - Sandra González-Rubio
- Unidad de Gestión Clínica de Aparato Digestivo, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital Universitario Reina Sofía/Universidad de Córdoba, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Córdoba, Spain
| | - Manuel Rodríguez-Perálvarez
- Unidad de Gestión Clínica de Aparato Digestivo, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital Universitario Reina Sofía/Universidad de Córdoba, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Córdoba, Spain
| | - María Sánchez-Aragó
- Departamento de Biología Molecular, Centro de Biología Molecular Servero Ochoa, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Centro de Investigación Hospital 12 de Octubre, ISCIII, Universidad Autónoma, Madrid, Spain
| | - Eduardo Chicano-Gálvez
- Unidad de Gestión Clínica de Aparato Digestivo, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital Universitario Reina Sofía/Universidad de Córdoba, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Córdoba, Spain
| | - José M Cuezva
- Departamento de Biología Molecular, Centro de Biología Molecular Servero Ochoa, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Centro de Investigación Hospital 12 de Octubre, ISCIII, Universidad Autónoma, Madrid, Spain
| | - José L Montero-Álvarez
- Unidad de Gestión Clínica de Aparato Digestivo, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital Universitario Reina Sofía/Universidad de Córdoba, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Córdoba, Spain
| | - Jordi Muntané
- Unidad de Gestión Clínica de Aparato Digestivo, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital Universitario Reina Sofía/Universidad de Córdoba, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Córdoba, Spain
| | - Manuel de la Mata
- Unidad de Gestión Clínica de Aparato Digestivo, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital Universitario Reina Sofía/Universidad de Córdoba, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Córdoba, Spain
| |
Collapse
|
6
|
Ren J, Li XR, Liu PC, Cai MJ, Liu W, Wang JX, Zhao XF. G-protein αq participates in the steroid hormone 20-hydroxyecdysone nongenomic signal transduction. J Steroid Biochem Mol Biol 2014; 144 Pt B:313-23. [PMID: 25125388 DOI: 10.1016/j.jsbmb.2014.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 08/02/2014] [Accepted: 08/08/2014] [Indexed: 11/22/2022]
Abstract
The nuclear receptor-mediated genomic pathways of the animal steroid hormones are well known. However, the cell membrane receptor-mediated nongenomic pathways of the animal steroid hormones are little understood. In this study, we report the participation of a G-protein alpha q (Gαq)(1) subunit in the 20E nongenomic pathway in the cell membrane and regulating gene expression during molting and metamorphosis in a lepidopteran insect, Helicoverpa armigera. 20E-induced phosphorylation of Gαq was detected using two-dimensional electrophoresis techniques. Knockdown of Gαq by injecting double-stranded RNA suppressed the development of larvae, delayed metamorphosis, and inhibited 20E-induced gene expression. Gαq was distributed throughout the cell, and migrated toward the plasma membrane upon 20E induction. Gαq was necessary in the 20E-induced intracellular Ca(2+) release and extracellular Ca(2+) influx. The protein kinase C (PKC) inhibitor could repress 20E-induced phosphorylation of cyclin-dependent kinase 10 (CDK10) and transcription factor ultraspiracle (USP1). PKC inhibitor could repress the Gαq phosphorylation and membrane trafficking. These results suggest that Gαq participates in 20E signaling in the cell membrane at the pre-genomic stage by modulating the increase of the intracellular Ca(2+) and phosphorylation of CDK10 and USP1 in 20E transcription complex to regulate gene transcription.
Collapse
Affiliation(s)
- Jing Ren
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
| | - Xiang-Ru Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
| | - Peng-Cheng Liu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
| | - Mei-Juan Cai
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
| | - Wen Liu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China.
| |
Collapse
|
7
|
Altun A, Temiz TK, Balcı E, Polat ZA, Turan M. Effects of tyrosine kinase inhibitor E7080 and eNOS inhibitor L-NIO on colorectal cancer alone and in combination. Chin J Cancer Res 2013; 25:572-84. [PMID: 24255582 DOI: 10.3978/j.issn.1000-9604.2013.10.10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 11/21/2012] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE To investigate the effects of E7080 and N (5)-(1-iminoethyl)-L-ornithine dihydrochloride (L-NIO) on colorectal cancer alone and in combination. METHODS HT29 colorectal cancer cell line from Sap Institute was used. Real-time cell analysis (xCELLigence system) was performed to determine the effects of E7080 and L-NIO on colorectal cell proliferation. While apoptosis was determined with Annexin V staining, and the effect of agents on angiogenesis was determined with chorioallantoic membrane (CAM) model. RESULTS We found that E7080 has a strong antiproliferative effect with an half maximum inhibition of concentration (IC50) value of 5.60×10(-8) mol/L. Also it has been observed that E7080 showed antiangiogenic and apoptotic effects on HT29 colorectal cancer cells. Antiangiogenic scores of E7080 were 1.2, 1.0 and 0.6 for 100, 10 and 1 nmol/L E7080 concentrations, respectively. Furthermore, apoptosis has been detected in 71% of HT29 colorectal cancer cells after administration of 100 nmol/L E7080 which may indicate strong apoptotic effect. Meanwhile administration of L-NIO alone did not show any effect, but the combination of E7080 with L-NIO increased the antiproliferative, antiangiogenic and apoptotic effects of E7080. CONCLUSIONS Results of this study indicate that E7080 may be a good choice in treatment of colorectal tumors. Furthermore the increased effects of E7080 when combined with L-NIO raise the possibility to use a lower dose of E7080 and therefore avoid/minimize the side effects observed with E7080.
Collapse
Affiliation(s)
- Ahmet Altun
- Department of Pharmacology, Cumhuriyet University School of Medicine, Sivas 58140, Turkey
| | | | | | | | | |
Collapse
|
8
|
Valicherla GR, Hossain Z, Mahata SK, Gayen JR. Pancreastatin is an endogenous peptide that regulates glucose homeostasis. Physiol Genomics 2013; 45:1060-71. [PMID: 24064537 DOI: 10.1152/physiolgenomics.00131.2013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pancreastatin (PST) is a regulatory peptide containing 49 amino acids, first isolated from porcine pancreas. Intracellular and extracellular processing of the prohormone Chromogranin A (Chga) results various bioactive peptides of which PST has dysglycemic activity. PST regulates glucose, lipid, and protein metabolism in liver and adipose tissues. It also regulates the secretion of leptin and expression of leptin and uncoupling protein 2 in adipose tissue. In Chga knockout mice, PST induces gluconeogenesis in the liver. PST reduces glucose uptake in mice hepatocytes and adipocytes. In rat hepatocytes, PST induces glycogenolysis and glycolysis and inhibits glycogen synthesis. In rat adipocytes, PST inhibits lactate production and lipogenesis. These metabolic effects are confirmed in humans. In the dual signaling mechanism of PST receptor, mostly PST activates Gαq/11 protein leads to the activation of phospholipase C β3-isoform, therefore increasing cytoplasmic free calcium and stimulating protein kinase C. PST inhibits the cell growth in rat HTC hepatoma cells, mediated by nitric oxide and cyclic GMP production. Elevated levels of PST correlating with catecholamines have been found in gestational diabetes and essential hypertension. Rise in the blood PST level in Type 2 diabetes suggests that PST is a negative regulator of insulin sensitivity and glucose homeostasis.
Collapse
Affiliation(s)
- Guru Raghavendra Valicherla
- Pharmacokinetics and Metabolism Division, Council of Scientific and Industrial Research-Central Drug Research Institute, Lucknow, India
| | | | | | | |
Collapse
|
9
|
Aguilar-Melero P, Ferrín G, Muntané J. Effects of nitric oxide synthase-3 overexpression on post-translational modifications and cell survival in HepG2 cells. J Proteomics 2011; 75:740-55. [PMID: 21968428 DOI: 10.1016/j.jprot.2011.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 09/01/2011] [Accepted: 09/17/2011] [Indexed: 12/01/2022]
Abstract
Hepatocarcinoma is the fifth most common neoplasm and the third cause of cancer-related death. The development of genetic- and/or molecular-based therapies is urgently required. The administration of high doses of nitric oxide (NO) promotes cell death in hepatocytes. NO contributes to cell signaling by inducing oxidative/nitrosative-dependent post-translational modifications. The aim of the present study was to investigate protein modifications and its relation with alteration of cell proliferation and death in hepatoma cells. Increased intracellular NO production was achieved by stable nitric oxide synthase-3 (NOS-3) overexpression in HepG2 cells. We assessed the pattern of nitration, nitrosylation and carbonylation of proteins by proteomic analysis. The results showed that NOS-3 cell overexpression increased oxidative stress, which affected proteins mainly involved in cell protein folding. Carbonylation also altered metabolism, as well as immune and antioxidant responses. The interaction of nitrosative and oxidative stress generated tyrosine nitration, which affected the tumor marker Serpin B3, ATP synthesis and cytoskeleton. All these effects were associated with a decrease in chaperone activity, a reduction in cell proliferation and an increased cell death. Our study showed that alteration of nitration, nitrosylation and carbonylation pattern of proteins by NO-dependent oxidative/nitrosative stress was related to a reduction of cell survival in a hepatoma cell line.
Collapse
Affiliation(s)
- P Aguilar-Melero
- Liver Research Unit, IMIBIC (Instituto Maimónides para la Investigación Biomédica de Córdoba), Reina Sofia University Hospital, Córdoba, Spain.
| | | | | |
Collapse
|
10
|
Zhao E, Zhang D, Basak A, Trudeau VL. New insights into granin-derived peptides: evolution and endocrine roles. Gen Comp Endocrinol 2009; 164:161-74. [PMID: 19523383 DOI: 10.1016/j.ygcen.2009.01.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 12/31/2008] [Accepted: 01/20/2009] [Indexed: 11/22/2022]
Abstract
The granin protein family is composed of two chromogranin and five secretogranin members that are acidic, heat-stable proteins in secretory granules in cells of the nervous and endocrine systems. We report that there is little evidence for evolutionary relationships among the granins except for the chromogranin group. The main granin members, including chromogranin A and B, and secretogranin II are moderately conserved in the vertebrates. Several small bioactive peptides can be generated by proteolysis from those homologous domains existing within the granin precursors, reflecting the conservation of biological activities in different vertebrates. In this context, we focus on reviewing the distribution and function of the major granin-derived peptides, including vasostatin, bovine CgB(1-41) and secretoneurin in vertebrate endocrine systems, especially those associated with growth, glucose metabolism and reproduction.
Collapse
Affiliation(s)
- E Zhao
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, Canada
| | | | | | | |
Collapse
|
11
|
Zhang K, Rao F, Wen G, Salem RM, Vaingankar S, Mahata M, Mahapatra NR, Lillie EO, Cadman PE, Friese RS, Hamilton BA, Hook VY, Mahata SK, Taupenot L, O'Connor DT. Catecholamine storage vesicles and the metabolic syndrome: The role of the chromogranin A fragment pancreastatin. Diabetes Obes Metab 2006; 8:621-33. [PMID: 17026486 PMCID: PMC10843892 DOI: 10.1111/j.1463-1326.2006.00575.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chromogranins or secretogranins (granins), present in secretory granules of virtually all neuroendocrine cells and neurones, are structurally related proteins encoded by different genetic loci: chromogranins A and B, and secretogranins II through VI. Compelling evidence supports both intracellular and extracellular functions for this protein family. Within the cells of origin, a granulogenic or sorting role in the regulated pathway of hormone or neurotransmitter secretion has been documented, especially for chromogranin A (CHGA). Granins also function as pro-hormones, giving rise by proteolytic processing to an array of peptide fragments for which diverse autocrine, paracrine, and endocrine activities have been demonstrated. CHGA measurements yield insight into the pathogenesis of such human diseases as essential hypertension, in which deficiency of the catecholamine release-inhibitory CHGA fragment catestatin may trigger sympathoadrenal overactivity as an aetiologic culprit in the syndrome. The CHGA dysglycaemic fragment pancreastatin is functional in humans in vivo, affecting both carbohydrate (glucose) and lipid (fatty acid) metabolism. Pancreastatin is cleaved from CHGA in hormone storage granules in vivo, and its plasma concentration varies in human disease. The pancreastatin region of CHGA gives rise to three naturally occurring human variants, one of which (Gly297Ser) occurs in the functionally important carboxy-terminus of the peptide, and substantially increases the peptide's potency to inhibit cellular glucose uptake. These observations establish a role for pancreastatin in human intermediary metabolism and disease, and suggest that qualitative hereditary alterations in pancreastatin's primary structure may give rise to interindividual differences in glucose disposition.
Collapse
Affiliation(s)
- Kuixing Zhang
- Department of Medicine, University of California at San Diego, San Diego, California 92093-0838, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|