1
|
Chapman FA, Melville V, Godden E, Morrison B, Bruce L, Maguire JJ, Davenport AP, Newby DE, Dhaun N. Cardiovascular and renal effects of apelin in chronic kidney disease: a randomised, double-blind, placebo-controlled, crossover study. Nat Commun 2024; 15:8387. [PMID: 39402039 PMCID: PMC11473822 DOI: 10.1038/s41467-024-52447-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/09/2024] [Indexed: 10/17/2024] Open
Abstract
Chronic kidney disease (CKD) affects ~10% of the population and cardiovascular disease is its commonest complication. Despite treatment, patient outcomes remain poor and newer therapies are urgently needed. Here, we investigated the systemic and renal effects of apelin in CKD. In a randomized, double-blind, placebo-controlled, crossover study, 24 subjects (12 patients with CKD and 12 matched healthy subjects) received pyroglutamated apelin-13 ([Pyr1]apelin-13, 1 nmol/min and 30 nmol/min) or matched placebo on two separate visits. Systemic and renal hemodynamics were monitored throughout. The co-primary endpoints were change in systemic vascular resistance index and renal blood flow. Secondary endpoints were change in blood pressure, cardiac output, pulse wave velocity, glomerular filtration rate, natriuresis, free water clearance and urinary protein excretion. In both health and CKD, 30 nmol/min [Pyr1]apelin-13 reduced mean arterial pressure by ~4%, systemic vascular resistance by ~12%, and increased cardiac index by ~10%, compared to placebo (p < 0.05 for all). Both doses of [Pyr1]apelin-13 increased renal blood flow by ~15%, natriuresis by ~20% and free water clearance by ~10%, compared to placebo (p < 0.05 for all). In patients with chronic kidney disease only, glomerular filtration rate fell by ~10%, effective filtration fraction by ~5% and proteinuria by ~25% (p < 0.01 for all). Apelin has short-term cardiovascular and renal benefits in CKD. If maintained longer-term, these should improve patient outcomes. Clinical trials of long-acting oral apelin agonists are justified in CKD and other conditions with impaired salt and water balance. Registration number at www.clinicalTrials.gov : NCT03956576. Funded by Kidney Research UK.
Collapse
Affiliation(s)
- Fiona A Chapman
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Vanessa Melville
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Emily Godden
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Beth Morrison
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Lorraine Bruce
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Janet J Maguire
- Division of Experimental Medicine and Immunotherapeutics, Addenbrooke's Centre for Clinical Investigation, University of Cambridge, Cambridge, UK
| | - Anthony P Davenport
- Division of Experimental Medicine and Immunotherapeutics, Addenbrooke's Centre for Clinical Investigation, University of Cambridge, Cambridge, UK
| | - David E Newby
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Neeraj Dhaun
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK.
| |
Collapse
|
2
|
Zeng GG, Tang SS, Jiang WL, Yu J, Nie GY, Tang CK. Apelin-13: A Protective Role in Vascular Diseases. Curr Probl Cardiol 2024; 49:102088. [PMID: 37716542 DOI: 10.1016/j.cpcardiol.2023.102088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/18/2023]
Abstract
Vascular disease is a common problem with high mortality all over the world. Apelin-13, a key subtype of apelin, takes part in many physiological and pathological responses via regulating many target genes and target molecules or participating in many signaling pathways. More and more studies have demonstrated that apelin-13 is implicated in the onset and progression of vascular disease in recent years. It has been shown that apelin-13 could ameliorate vascular disease by inhibiting inflammation, restraining apoptosis, suppressing oxidative stress, and facilitating autophagy. In this article, we sum up the progress of apelin-13 in the occurrence and development of vascular disease and offer some insightful views about the treatment and prevention strategies of vascular disease.
Collapse
Affiliation(s)
- Guang-Gui Zeng
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, China; 2020 Grade Excellent Doctor Class of Hengyang Medical College, University of South China, Hengyang, Hunan, China; The Seventh Affiliated Hospital University of South China/ Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan, People's Republic of China
| | - Shang-Shu Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, China; 2020 Grade Excellent Doctor Class of Hengyang Medical College, University of South China, Hengyang, Hunan, China; The Seventh Affiliated Hospital University of South China/ Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan, People's Republic of China
| | - Wan-Li Jiang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, China; 2020 Grade Excellent Doctor Class of Hengyang Medical College, University of South China, Hengyang, Hunan, China; The Seventh Affiliated Hospital University of South China/ Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan, People's Republic of China
| | - Jiang Yu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, China; 2020 Grade Excellent Doctor Class of Hengyang Medical College, University of South China, Hengyang, Hunan, China; The Seventh Affiliated Hospital University of South China/ Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan, People's Republic of China
| | - Gui-Ying Nie
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, China; 2020 Grade Excellent Doctor Class of Hengyang Medical College, University of South China, Hengyang, Hunan, China; The Seventh Affiliated Hospital University of South China/ Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan, People's Republic of China
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, China; 2020 Grade Excellent Doctor Class of Hengyang Medical College, University of South China, Hengyang, Hunan, China; The Seventh Affiliated Hospital University of South China/ Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan, People's Republic of China.
| |
Collapse
|
3
|
Chapman FA, Maguire JJ, Newby DE, Davenport AP, Dhaun N. Targeting the apelin system for the treatment of cardiovascular diseases. Cardiovasc Res 2023; 119:2683-2696. [PMID: 37956047 PMCID: PMC10757586 DOI: 10.1093/cvr/cvad171] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 11/15/2023] Open
Abstract
Cardiovascular disease is the leading cause of death worldwide. Its prevalence is rising due to ageing populations and the increasing incidence of diseases such as chronic kidney disease, obesity, and diabetes that are associated with elevated cardiovascular risk. Despite currently available treatments, there remains a huge burden of cardiovascular disease-associated morbidity for patients and healthcare systems, and newer treatments are needed. The apelin system, comprising the apelin receptor and its two endogenous ligands apelin and elabela, is a broad regulator of physiology that opposes the actions of the renin-angiotensin and vasopressin systems. Activation of the apelin receptor promotes endothelium-dependent vasodilatation and inotropy, lowers blood pressure, and promotes angiogenesis. The apelin system appears to protect against arrhythmias, inhibits thrombosis, and has broad anti-inflammatory and anti-fibrotic actions. It also promotes aqueous diuresis through direct and indirect (central) effects in the kidney. Thus, the apelin system offers therapeutic promise for a range of cardiovascular, kidney, and metabolic diseases. This review will discuss current cardiovascular disease targets of the apelin system and future clinical utility of apelin receptor agonism.
Collapse
Affiliation(s)
- Fiona A Chapman
- BHF/University of Edinburgh Centre for Cardiovascular Science, Queen's Medical Research Institute, Edinburgh, UK
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Janet J Maguire
- Division of Experimental Medicine and Immunotherapeutics, Addenbrooke's Centre for Clinical Investigation, University of Cambridge, Cambridge, UK
| | - David E Newby
- BHF/University of Edinburgh Centre for Cardiovascular Science, Queen's Medical Research Institute, Edinburgh, UK
| | | | - Neeraj Dhaun
- BHF/University of Edinburgh Centre for Cardiovascular Science, Queen's Medical Research Institute, Edinburgh, UK
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| |
Collapse
|
4
|
Abdelwahab AH, Negm AM, Mahmoud ES, Salama RM, Schaalan MF, El-Sheikh AAK, Ramadan BK. The cardioprotective effects of secoisolariciresinol diglucoside (flaxseed lignan) against cafeteria diet-induced cardiac fibrosis and vascular injury in rats: an insight into apelin/AMPK/FOXO3a signaling pathways. Front Pharmacol 2023; 14:1199294. [PMID: 37497114 PMCID: PMC10367100 DOI: 10.3389/fphar.2023.1199294] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/30/2023] [Indexed: 07/28/2023] Open
Abstract
Introduction: Fast food is a major risk factor for atherosclerosis, a leading cause of morbidity and mortality in the Western world. Apelin, the endogenous adipokine, can protect against cardiovascular disease via activating its receptor, APJ. Concurrently, secoisolariciresinol diglucoside (SDG), a flaxseed lignan extract (FLE), showed a therapeutic impact on atherosclerosis. The current study aimed to examine the effect of SDG on cafeteria diet (CAFD)-induced vascular injury and cardiac fibrosis via tracking the involvement of the apelin/APJ pathway. Methods: Thirty male rats were allocated into control, FLE-, CAFD-, CAFD/FLE-, and CAFD/FLE/F13A-treated rats, where F13A is an APJ blocker. All treatments lasted for 12 weeks. Results and discussion: The CAFD-induced cardiovascular injury was evidenced by histological distortions, dyslipidemia, elevated atherogenic indices, cardiac troponin I, collagen percentage, glycogen content, and apoptotic markers. CAFD increased both the gene and protein expression levels of cardiac APJ, apelin, and FOXO3a, in addition to increasing endothelin-1, VCAM1, and plasminogen activator inhibitor-1 serum levels and upregulating cardiac MMP-9 gene expression. Moreover, CAFD reduced serum paraoxonase 1 and nitric oxide levels, cardiac AMPK, and nuclear Nrf2 expression. FLE attenuated CAFD-induced cardiovascular injury. Such effect was reduced in rats receiving the APJ blocker, implicating the involvement of apelin/APJ in FLE protective mechanisms. Conclusion: FLE supplementation abrogated CAFD-induced cardiac injury and endothelial dysfunction in an apelin/APJ-dependent manner.
Collapse
Affiliation(s)
- Azza H. Abdelwahab
- Physiology Department, Faculty of Medicine (Girls), Al-Azhar University, Cairo, Egypt
| | - Amira M. Negm
- Physiology Department, Faculty of Medicine (Girls), Al-Azhar University, Cairo, Egypt
| | - Eman S. Mahmoud
- Histology Department, Faculty of Medicine (Girls), Al-Azhar University, Cairo, Egypt
| | - Rania M. Salama
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Mona F. Schaalan
- Clinical Pharmacy Department, Clinical and Translational Research Unit, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Azza A. K. El-Sheikh
- Basic Health Sciences Department, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Basma K. Ramadan
- Physiology Department, Faculty of Medicine (Girls), Al-Azhar University, Cairo, Egypt
- Medical Sciences Department, Faculty of Oral and Dental Medicine, Misr International University, Cairo, Egypt
| |
Collapse
|
5
|
The Effect of SGLT2 Inhibitor Dapagliflozin on Serum Levels of Apelin in T2DM Patients with Heart Failure. Biomedicines 2022; 10:biomedicines10071751. [PMID: 35885056 PMCID: PMC9313111 DOI: 10.3390/biomedicines10071751] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
Abstract
Apelin is a multifunctional peptide that plays a pivotal role in cardiac remodeling and HF manifestation because of counteracting angiotensin-II. We hypothesized that positive influence of sodium-glucose co-transporter-2 (SGLT2) inhibitor on cardiac function in T2DM patients with HF might be mediated by apelin and that its levels seem to be a target of management. A total of 153 type 2 diabetes mellitus (T2DM) patients with II/III HF NYHA class and average left ventricular (LV) ejection fraction (EF) of 46% have been enrolled and treated with dapagliflosin. The serum levels of apelin and N-terminal brain natriuretic pro-peptide (NT-proBNP) were measured at baseline and over a 6-month period of dapagliflosin administration. We noticed that administration of dapagliflozin was associated with a significant increase in apelin levels of up to 18.3% and a decrease in NT-proBNP of up to 41.0%. Multivariate logistic regression showed that relative changes of LVEF, LA volume index, and early diastolic blood filling to longitudinal strain ratio were strongly associated with the levels of apelin, whereas NT-proBNP exhibited a borderline significance in this matter. In conclusion, dapagiflosin exerted a positive impact on echocardiographic parameters in close association with an increase in serum apelin levels, which could be a surrogate target for HF management.
Collapse
|
6
|
Targeting the elabela/apelin-apelin receptor axis as a novel therapeutic approach for hypertension. Chin Med J (Engl) 2021; 135:1019-1026. [PMID: 34608073 PMCID: PMC9276310 DOI: 10.1097/cm9.0000000000001766] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
ABSTRACT Hypertension is the leading risk factor for global mortality and morbidity and those with hypertension are more likely to develop severe symptoms in cardiovascular and cerebrovascular system, which is closely related to abnormal renin-angiotensin system and elabela/apelin-apelin receptor (APJ) axis. The elabela/apelin-APJ axis exerts essential roles in regulating blood pressure levels, vascular tone, and cardiovascular dysfunction in hypertension by counterbalancing the action of the angiotensin II/angiotensin II type 1 receptor axis and enhancing the endothelial nitric oxide (NO) synthase/NO signaling. Furthermore, the elabela/apelin-APJ axis demonstrates beneficial effects in cardiovascular physiology and pathophysiology, including angiogenesis, cellular proliferation, fibrosis, apoptosis, oxidative stress, and cardiovascular remodeling and dysfunction during hypertension. More importantly, effects of the elabela/apelin-APJ axis on vascular tone may depend upon blood vessel type or various pathological conditions. Intriguingly, the broad distribution of elabela/apelin and alternative isoforms implicated its distinct functions in diverse cardiac and vascular cells and tissue types. Finally, both loss-of-function and gain-of-function approaches have defined critical roles of the elabela/apelin-APJ axis in reducing the development and severity of hypertensive diseases. Thus, targeting the elabela/apelin-APJ axis has emerged as a pre-warning biomarker and a novel therapeutic approach against progression of hypertension, and an increased understanding of cardiovascular actions of the elabela/apelin-APJ axis will help to develop effective interventions for hypertension. In this review, we focus on the physiology and biochemistry, diverse actions, and underlying mechanisms of the elabela/apelin-APJ axis, highlighting its role in hypertension and hypertensive cardiovascular injury and dysfunction, with a view to provide a prospective strategy for hypertensive disease therapy.
Collapse
|
7
|
Zhou JX, Shuai NN, Wang B, Jin X, Kuang X, Tian SW. Neuroprotective gain of Apelin/APJ system. Neuropeptides 2021; 87:102131. [PMID: 33640616 DOI: 10.1016/j.npep.2021.102131] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/04/2021] [Accepted: 02/11/2021] [Indexed: 12/12/2022]
Abstract
Apelin is an endogenous ligand of G protein-coupled receptor APJ. In recent years, many studies have shown that the apelin/APJ system has neuroprotective properties, such as anti-inflammatory, anti-oxidative stress, anti-apoptosis, and regulating autophagy, blocking excitatory toxicity. Apelin/APJ system has been proven to play a role in various neurological diseases and may be a promising therapeutic target for nervous system diseases. In this paper, the neuroprotective properties of the apelin/APJ system and its role in neurologic disorders are reviewed. Further understanding of the pathophysiological effect and mechanism of the apelin/APJ system in the nervous system will help develop new therapeutic interventions for various neurological diseases.
Collapse
Affiliation(s)
- Jia-Xiu Zhou
- Department of Anesthesiology, Affiliated Longhua People's Hospital, Southern Medical University, Shenzhen, Guangdong 518109, PR China; Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Faculty of Basic Medical Sciences, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin, Guangxi 541199, PR China
| | - Nian-Nian Shuai
- Department of Anesthesiology, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, PR China
| | - Bo Wang
- Department of Anesthesiology, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, PR China
| | - Xin Jin
- Department of Anesthesiology, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan 421001, PR China
| | - Xin Kuang
- Department of Anesthesiology, Affiliated Longhua People's Hospital, Southern Medical University, Shenzhen, Guangdong 518109, PR China.
| | - Shao-Wen Tian
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Faculty of Basic Medical Sciences, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin, Guangxi 541199, PR China.
| |
Collapse
|
8
|
Abstract
Elabela, also known as Toddler or Apela, is a recently discovered hormonal peptide containing 32 amino acids. Elabela is a ligand of the apelin receptor (APJ). APJ is a G protein-coupled receptor widely expressed throughout body, and together with its cognate ligand, apelin, it plays an important role in various physiological processes including cardiovascular functions, angiogenesis and fluid homeostasis. Elabela also participates in embryonic development and pathophysiological processes in adulthood. Elabela is highly expressed in undifferentiated embryonic stem cells and regulates endoderm differentiation and cardiovascular system development. During differentiation, Elabela is highly expressed in pluripotent stem cells and in adult renal collecting ducts and loops, where it functions to maintain water and sodium homeostasis. Other studies have also shown that Elabela plays a crucial role in the pathogenesis of kidney diseases. This review addresses the role of Elabela in kidney diseases including renal ischemia/reperfusion injury, hypertensive nephropathy, diabetic nephropathy, and cardiorenal syndrome.
Collapse
|
9
|
Trojanowicz B, Ulrich C, Girndt M. Uremic Apelin and Leucocytic Angiotensin-Converting Enzyme 2 in CKD Patients. Toxins (Basel) 2020; 12:toxins12120742. [PMID: 33255902 PMCID: PMC7760850 DOI: 10.3390/toxins12120742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 11/16/2022] Open
Abstract
Apelin peptides (APLN) serve as second substrates for angiotensin-converting enzyme 2 (ACE2) and, in contrast to angiotensin II (AngII), exert blood-pressure lowering and vasodilatation effects through binding to G-coupled APLN receptor (APLNR). ACE2-mediated cleavage of the APLN may reduce its vasodilatory effects, but decreased ACE2 may potentiate the hypotensive properties of APLN. The role of APLN in uremia is unclear. We investigated the correlations between serum-APLN, leucocytic APLNR, and ACE2 in 32 healthy controls (NP), 66 HD, and 24 CKD3-5 patients, and the impact of APLN peptides on monocytic behavior and ACE2 expression under uremic conditions in vitro. We observed that serum APLN and leucocytic APLNR or SLCO2B1 were significantly elevated in uremic patients and correlated with decreased ACE2 on uremic leucocytes. APLN-treated THP-1 monocytes revealed significantly increased APLNR and ACE2, and reduced TNFa, IL-6, and MCSF. Uremic toxins induced a dramatic increase of miR-421 followed by significant reduction of ACE2 transcripts, partially counteracted with APLN-13 and -36. APLN-36 triggered the most potent transmigration and reduction of endothelial adhesion. These results suggest that although APLN peptides may partly protect against the decay of monocytic ACE2 transcripts, uremic milieu is the most dominant modulator of local ACE2, and likely to contribute to the progression of atherosclerosis.
Collapse
|
10
|
Gholamzadeh R, Aboutaleb N, Nazarinia D. Intravenous injection of apelin-13 improves sensory-motor balance deficits caused by cerebral ischemic reperfusion injury in male wistar rats via restoration of nitric oxide. J Chem Neuroanat 2020; 112:101886. [PMID: 33189869 DOI: 10.1016/j.jchemneu.2020.101886] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 12/14/2022]
Abstract
It has been reported that apelin-13 possesses neuroprotective effects against cerebral ischemia/reperfusion injury (IRI). Disabilities in sense, movement and balance are the major stroke complications which, result in a high rate of mortality. Here, effects of intravenous (IV) injection of apelin-13 on the severity of neural death, infarct volume, neurological defects and its association with nitric oxide (NO) were investigated. A rat model of cerebral IRI was created by middle cerebral artery occlusion (MCAO) for 60 min and restoration of blood flow for 23 h. Animals were randomly assigned into six groups: sham, ischemia (MCAO), vehicle (MCAO + PBS) and three treatment groups (MCAO + apelin-13 in 10, 20, 40 μg/kg doses, IV). All injections were carried out via tail vein injection 5 min before reperfusion. Neural loss and infarct volume were evaluated by Nissl and 2,3,5-triphenyltetrazolium chloride (TTC) staining, respectively. Neurological defects were scored by standard modified criteria. Serum NO was measured by colorimetric method. Apelin-13 in doses of 20 and 40 μg/kg significantly reduced neural death, infarct volume and disturbance of sensory-motor balance compared to control and vehicle groups (p < 0.05). Serum NO levels reduced in MCAO groups compared to sham. Apelin-13 restored serum NO levels at 20 μg/kg dose (p < 0.05). Our data showed beneficial effect of IV injection of apelin-13 on sensory-motor balance defects by reducing neural death and restoration of serum NO levels. The present study shows the validity of apelin-13 in treatment of ischemic stroke in different administration methods.
Collapse
Affiliation(s)
- Raheleh Gholamzadeh
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nahid Aboutaleb
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Donya Nazarinia
- Department of Physiology, School of Paramedical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| |
Collapse
|
11
|
Chen Y, Xu C. The interaction partners of (pro)renin receptor in the distal nephron. FASEB J 2020; 34:14136-14149. [PMID: 32975331 DOI: 10.1096/fj.202001711r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 11/11/2022]
Abstract
The (pro)renin receptor (PRR), a key regulator of intrarenal renin-angiotensin system (RAS), is predominantly presented in podocytes, proximal tubules, distal convoluted tubules, and the apical membrane of collecting duct A-type intercalated cells, and plays a crucial role in hypertension, cardiovascular disease, kidney disease, and fluid homeostasis. In addition to its well-known renin-regulatory function, increasing evidence suggests PRR can also act in a variety of intracellular signaling cascades independently of RAS in the renal medulla, including Wnt/β-catenin signaling, cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2 ) signaling, and the apelinergic system, and work as a component of the vacuolar H+ -ATPase. PRR and these pathways regulate the expression/activity of each other that controlling blood pressure and renal functions. In this review, we highlight recent findings regarding the antagonistic interaction between PRR and ELABELA/apelin, the mutually stimulatory relationship between PRR and COX-2/PGE2 or Wnt/β-catenin signaling in the renal medulla, and their involvement in the regulation of intrarenal RAS thereby control blood pressure, renal injury, and urine concentrating ability in health and patho-physiological conditions. We also highlight the latest progress in the involvement of PRR for the vacuolar H+ -ATPase activity.
Collapse
Affiliation(s)
- Yanting Chen
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China.,Internal Medicine, Division of Nephrology and Hypertension, University of Utah and Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Chuanming Xu
- Internal Medicine, Division of Nephrology and Hypertension, University of Utah and Veterans Affairs Medical Center, Salt Lake City, UT, USA.,Center for Translational Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| |
Collapse
|
12
|
Yan J, Wang A, Cao J, Chen L. Apelin/APJ system: an emerging therapeutic target for respiratory diseases. Cell Mol Life Sci 2020; 77:2919-2930. [PMID: 32128601 PMCID: PMC11105096 DOI: 10.1007/s00018-020-03461-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 12/20/2019] [Accepted: 01/10/2020] [Indexed: 12/14/2022]
Abstract
Apelin is an endogenous ligand of G protein-coupled receptor APJ. It is extensively expressed in many tissues such as heart, liver, and kidney, especially in lung tissue. A growing body of evidence suggests that apelin/APJ system is closely related to the development of respiratory diseases. Therefore, in this review, we focus on the role of apelin/APJ system in respiratory diseases, including pulmonary arterial hypertension (PAH), pulmonary embolism (PE), acute lung injury (ALI)/acute respiratory distress syndrome (ARDS), obstructive sleep apnoea syndrome (OSAS), non-small cell lung cancer (NSCLC), pulmonary edema, asthma, and chronic obstructive pulmonary diseases. In detail, apelin/APJ system attenuates PAH by activating AMPK-KLF2-eNOS-NO signaling and miR424/503-FGF axis. Also, apelin protects against ALI/ARDS by reducing mitochondrial ROS-triggered oxidative damage, mitochondria apoptosis, and inflammatory responses induced by the activation of NF-κB and NLRP3 inflammasome. Apelin/APJ system also prevents the occurrence of pulmonary edema via activating AKT-NOS3-NO pathway. Moreover, apelin/APJ system accelerates NSCLC cells' proliferation and migration via triggering ERK1/2-cyclin D1 and PAK1-cofilin signaling, respectively. Additionally, apelin/APJ system may act as a predictor in the development of OSAS and PE. Considering the pleiotropic actions of apelin/APJ system, targeting apelin/APJ system may be a potent therapeutic avenue for respiratory diseases.
Collapse
Affiliation(s)
- Jialong Yan
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, People's Republic of China
| | - Aiping Wang
- Institute of Clinical Research, Affiliated Nanhua Hospital, University of South China, Hengyang, 421002, Hunan, People's Republic of China
| | - Jiangang Cao
- Institute of Clinical Research, Affiliated Nanhua Hospital, University of South China, Hengyang, 421002, Hunan, People's Republic of China.
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, People's Republic of China.
| |
Collapse
|
13
|
Griffiths PR, Lolait SJ, Bijabhai A, O’Carroll-Lolait A, Paton JFR, O’Carroll AM. Increased apelin receptor gene expression in the subfornical organ of spontaneously hypertensive rats. PLoS One 2020; 15:e0231844. [PMID: 32315363 PMCID: PMC7173921 DOI: 10.1371/journal.pone.0231844] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023] Open
Abstract
The vascular organ of the lamina terminalis, subfornical organ (SFO), and area postrema comprise the sensory circumventricular organs (CVO) which are central structures that lie outside the blood brain barrier and are thought to provide an interface between peripherally circulating signals and the brain through their projections to central autonomic structures. The SFO expresses mRNA for the G protein-coupled apelin receptor (APJ, gene name aplnr) and exogenous microinjection of the neuropeptide apelin (apln) to the SFO elicits a depressor effect. Here we investigated the expression and cellular distribution of aplnr, apln and the recently described ligand apela (apela) in the CVOs and investigated whether differences in the levels of expression of apelinergic gene transcripts in these regions might underlie the chronic elevated blood pressure seen in hypertension. We carried out multiplex in situ hybridization histochemistry on CVO tissue sections from spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto (WKY) controls. Confocal immunofluorescent images indicated strong aplnr expression, with lower levels of apln and modest apela expression, in the CVOs of both WKY rats and SHRs, in both neurons and glia. The expression level of aplnr transcripts was increased in the SFO of SHRs compared to WKY rats. Our data may highlight a potential dysfunction in the communication between CVOs and downstream signalling pathways in SHRs, which may contribute to its different phenotype/s.
Collapse
Affiliation(s)
- Philip R. Griffiths
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Stephen J. Lolait
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Aarifah Bijabhai
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Aoife O’Carroll-Lolait
- School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Julian F. R. Paton
- Department of Physiology, Faculty of Medical & Health Sciences, University of Auckland, Auckland, New Zealand
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol, United Kingdom
| | - Anne-Marie O’Carroll
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
14
|
Zhang Y, Wang Y, Luo M, Xu F, Lu Y, Zhou X, Cui W, Miao L. Elabela protects against podocyte injury in mice with streptozocin-induced diabetes by associating with the PI3K/Akt/mTOR pathway. Peptides 2019; 114:29-37. [PMID: 30959144 DOI: 10.1016/j.peptides.2019.04.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/27/2019] [Accepted: 04/04/2019] [Indexed: 01/25/2023]
Abstract
Diabetic nephropathy is a common complication of diabetes characterized by an increased rate of protein excretion in urine and kidney function loss. Elabela is a newly discovered peptide whose role in the regulation of diabetes is the major focus of this research. We established an in vivo model of Type 1 diabetes mellitus by injecting mice intraperitoneally with streptozotocin. The treatment group was administered Elabela for 6 months. In the present study, Elabela administration under diabetic conditions was found to reduce renal inflammation and fibrosis markers, leading to improvement in renal pathology and kidney dysfunction. Furthermore, Elabela acts through the phosphoinositide 3-kinase /Akt/mammalian target of rapamycin signaling pathway and decreases podocyte apoptosis, thereby exhibiting a nephroprotective effect against diabetic nephropathy. Our findings provide the first evidence that Elabela has a potential renoprotective effect in patients of diabetes.
Collapse
Affiliation(s)
- Yixian Zhang
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
| | - Yangwei Wang
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
| | - Manyu Luo
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
| | - Feng Xu
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
| | - Yue Lu
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
| | - Xiaoxi Zhou
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
| | - Wenpeng Cui
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China.
| | - Lining Miao
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China.
| |
Collapse
|
15
|
Huang Z, Luo X, Liu M, Chen L. Function and regulation of apelin/APJ system in digestive physiology and pathology. J Cell Physiol 2018; 234:7796-7810. [PMID: 30390294 DOI: 10.1002/jcp.27720] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/16/2018] [Indexed: 12/11/2022]
Abstract
Apelin is an endogenous ligand of seven-transmembrane G-protein-coupled receptor APJ. Apelin and APJ are distributed in various tissues, including the heart, lung, liver, kidney, and gastrointestinal tract and even in tumor tissues. Studies show that apelin messenger RNA is widely expressed in gastrointestinal (GI) tissues, including stomach and small intestine, which is closely correlated with GI function. Thus, the apelin/APJ system may exert a broad range of activities in the digestive system. In this paper, we review the role of the apelin/APJ system in the digestive system in physiological conditions, such as gastric acid secretion, control of appetite and food intake, cell proliferation, cholecystokinin secretion and histamine release, gut-brain axis, GI motility, and others. In pathological conditions, the apelin/APJ system plays an important role in the healing process of stress gastric injury, the clinical features and prognosis of patients with gastric cancers, the reduction of inflammatory response to enteritis and pancreatitis, the mediation of liver fibrogenesis, the promotion of liver damage, the inhibition of liver regeneration, the contribution of splanchnic neovascularization in portal hypertension, the treatment of colon cancer, and GI oxidative damage. Overall, the apelin/APJ system plays diversified functions and regulatory roles in digestive physiology and pathology. Further exploration of the relationship between the apelin/APJ system and the digestive system will help to find new and effective drugs for treating and alleviating the pain of digestive diseases.
Collapse
Affiliation(s)
- Zhen Huang
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang, China.,Department of Pharmacy, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Xuling Luo
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang, China
| | - Meiqing Liu
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang, China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang, China
| |
Collapse
|
16
|
Zhang Y, Wang Y, Lou Y, Luo M, Lu Y, Li Z, Wang Y, Miao L. Elabela, a newly discovered APJ ligand: Similarities and differences with Apelin. Peptides 2018; 109:23-32. [PMID: 30267732 DOI: 10.1016/j.peptides.2018.09.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 08/24/2018] [Accepted: 09/20/2018] [Indexed: 02/06/2023]
Abstract
The Apelin/APJ system is involved in a wide range of biological functions. For a long time, Apelin was thought to be the only ligand for APJ. Recently, a new peptide that acts via APJ and has similar functions, called Elabela, was identified. Elabela has beneficial effects on body fluid homeostasis, cardiovascular health, and renal insufficiency, as well as potential benefits for metabolism and diabetes. In this review, the properties and biological functions of this new peptide are discussed in comparison with those of Apelin. Important areas for future study are also discussed, with the consideration that research on Apelin could guide future research on Elabela.
Collapse
Affiliation(s)
- Yixian Zhang
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China; Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, 40202, USA
| | - Yonggang Wang
- Cardiovascular Center, First Hospital of Jilin University, Changchun 130021, China
| | - Yan Lou
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
| | - Manyu Luo
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
| | - Yue Lu
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
| | - Zhuo Li
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
| | - Yangwei Wang
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China.
| | - Lining Miao
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China.
| |
Collapse
|
17
|
Abstract
Apelin is a vasoactive peptide and is an endogenous ligand for APJ receptors, which are widely expressed in blood vessels, heart, and cardiovascular regulatory regions of the brain. A growing body of evidence now demonstrates a regulatory role for the apelin/APJ receptor system in cardiovascular physiology and pathophysiology, thus making it a potential target for cardiovascular drug discovery and development. Indeed, ongoing studies are investigating the potential benefits of apelin and apelin-mimetics for disorders such as heart failure and pulmonary arterial hypertension. Apelin causes relaxation of isolated arteries, and systemic administration of apelin typically results in a reduction in systolic and diastolic blood pressure and an increase in blood flow. Nonetheless, vasopressor responses and contraction of vascular smooth muscle in response to apelin have also been observed under certain conditions. The goal of the current review is to summarize major findings regarding the apelin/APJ receptor system in blood vessels, with an emphasis on regulation of vascular tone, and to identify areas of investigation that may provide guidance for the development of novel therapeutic agents that target this system.
Collapse
Affiliation(s)
- Amreen Mughal
- Department of Pharmaceutical Sciences, North Dakota State University Fargo, ND, USA
| | - Stephen T O'Rourke
- Department of Pharmaceutical Sciences, North Dakota State University Fargo, ND, USA.
| |
Collapse
|
18
|
Sekerci R, Acar N, Tepekoy F, Ustunel I, Keles-Celik N. Apelin/APJ expression in the heart and kidneys of hypertensive rats. Acta Histochem 2018; 120:196-204. [PMID: 29395316 DOI: 10.1016/j.acthis.2018.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/14/2017] [Accepted: 01/22/2018] [Indexed: 12/11/2022]
Abstract
Hypertension is an important health problem that is manifested by systemic arterial blood pressure being permanently elevated and leading to serious complications. Hypertension is the basis for coronary heart diseases, heart failure, kidney damage, cerebrovascular diseases. Due to ethical concerns, there is no detailed study of the mechanism, side effects and treatment of hypertension in humans. For this reason, specific studies related to the organ of hypertension are performed in experimental animals. The heart and kidney tissue, which are the most important organs that hypertension has damaged, have formed specific organs of our work. In our experimental study, a total of 35 (hypertensive group: 20, control group: 15) Rattus Norvegicus Wistar albino rats were used. In order to obtain our hypertension model, our experimental animals were given L-NAME together with drinking water for six weeks. After six weeks, the experimental procedures were terminated. Heart and kidney tissues of the hypertensive and control group were obtained. Expression of apelin and apelin receptor (APJ) was demonstrated by immunohistochemical and Western Blot protocols. Hypertrophic cardiac atrium of the hearts of the large cavities, interventricular septum and myocardium to the disintegration, as well as an increase in the diameter of the coronary artery has been observed. In general, kidney tissues of the hypertensive group showed narrowing in cortical renal structures and enlargement in structures in the renal medulla. As a result, in hypertensive cases, there was an increase in expression of Apelin and APJ receptor in heart tissue, and a decrease in expression of Apelin and APJ receptor in kidney tissue. We think that our findings may contribute to experimental or clinical studies related to hypertension and apelin.
Collapse
Affiliation(s)
- Rahime Sekerci
- Department of Anatomy, Akdeniz University, Faculty of Medicine Antalya, Turkey
| | - Nuray Acar
- Department of Histology and Embryology, Akdeniz University, Faculty of Medicine, Antalya, Turkey
| | - Filiz Tepekoy
- Department of Histology and Embryology, Istinye University, Faculty of Medicine, Istanbul, Turkey
| | - Ismail Ustunel
- Department of Histology and Embryology, Akdeniz University, Faculty of Medicine, Antalya, Turkey
| | - Nigar Keles-Celik
- Department of Anatomy, Akdeniz University, Faculty of Medicine Antalya, Turkey.
| |
Collapse
|
19
|
Abstract
Apelin and apela (ELABELA/ELA/Toddler) are two peptide ligands for a class A G-protein-coupled receptor named the apelin receptor (AR/APJ/APLNR). Ligand-AR interactions have been implicated in regulation of the adipoinsular axis, cardiovascular system, and central nervous system alongside pathological processes. Each ligand may be processed into a variety of bioactive isoforms endogenously, with apelin ranging from 13 to 55 amino acids and apela from 11 to 32, typically being cleaved C-terminal to dibasic proprotein convertase cleavage sites. The C-terminal region of the respective precursor protein is retained and is responsible for receptor binding and subsequent activation. Interestingly, both apelin and apela exhibit isoform-dependent variability in potency and efficacy under various physiological and pathological conditions, but most studies focus on a single isoform. Biophysical behavior and structural properties of apelin and apela isoforms show strong correlations with functional studies, with key motifs now well determined for apelin. Unlike its ligands, the AR has been relatively difficult to characterize by biophysical techniques, with most characterization to date being focused on effects of mutagenesis. This situation may improve following a recently reported AR crystal structure, but there are still barriers to overcome in terms of comprehensive biophysical study. In this review, we summarize the three components of the apelinergic system in terms of structure-function correlation, with a particular focus on isoform-dependent properties, underlining the potential for regulation of the system through multiple endogenous ligands and isoforms, isoform-dependent pharmacological properties, and biological membrane-mediated receptor interaction. © 2018 American Physiological Society. Compr Physiol 8:407-450, 2018.
Collapse
Affiliation(s)
- Kyungsoo Shin
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Calem Kenward
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jan K Rainey
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
20
|
Rostamzadeh F, Najafipour H, Yeganeh-Hajahmadi M, Joukar S. Opioid receptors mediate inotropic and depressor effects of apelin in rats with 2K1C-induced chronic renovascular hypertension. Clin Exp Pharmacol Physiol 2017; 45:187-197. [PMID: 28945940 DOI: 10.1111/1440-1681.12860] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 09/16/2017] [Accepted: 09/19/2017] [Indexed: 12/20/2022]
Abstract
Apelin receptors (APJ) cross-talk with other G-protein-coupled receptors. However, the role of APJ interaction with opioid receptors (OPR) on the cardiovascular effects of apelin in hypertension is not clear. Renovascular hypertension was induced by placing a Plexiglas clip on the left kidney of rats. After 16 weeks, F13A (an APJ antagonist), naloxone (a general OPR inhibitor), and nor-binaltorphimine dihydrochloride (nor-BNI; a selective inhibitor of KOR) were given prior to injections of apelin at doses of 40 and 60 μg/kg. The arterial systolic/diastolic blood pressure and left ventricular contractility responses were then evaluated. The arterial systolic/diastolic blood pressure in sham and 2K1C rats was 110/71 mm Hg and 171/124 mm Hg, respectively. The hypotensive effects of apelin at both doses were inhibited by F13A and naloxone. Nor-BNI completely inhibited the effects of apelin 40 on arterial pressure, and decreased the effects of 60 μg/kg. KOR inhibition also prevented the compensation for the decrease in the left ventricle +dp/dt max and -dp/dt max caused by apelin 60. The simultaneous inhibition of OPR and APJ reduced arterial pressure and increased cardiac contractility. Findings showed that the OPR, particularly KOR, mediate the inotropic, lusitropic, and depressor effects of apelin. The interaction of the OPR and APJ augments the inotropic and vasodepressor effects of apelin. This interaction may have potential clinical applications in cardiac failure since opioids are currently used in the treatment of myocardial infarction and stroke, and apelin has been introduced as a potential therapeutic agent in cardiovascular complications.
Collapse
Affiliation(s)
- Farzaneh Rostamzadeh
- Neuroscience Research Center, Institute of Neuropharmacology and Department of Physiology and Pharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Najafipour
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences and Department of Physiology and Pharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahboobeh Yeganeh-Hajahmadi
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences and Department of Physiology and pharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Siyavash Joukar
- Physiology Research Center, Institute of Neuropharmacology and Department of Physiology and pharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
21
|
Rostamzadeh F, Najafipour H, Yeganeh-Hajahmadi M, Esmaeili-Mahani S, Joukar S, Iranpour M. Heterodimerization of apelin and opioid receptors and cardiac inotropic and lusitropic effects of apelin in 2K1C hypertension: Role of pERK1/2 and PKC. Life Sci 2017; 191:24-33. [PMID: 28987634 DOI: 10.1016/j.lfs.2017.09.044] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/21/2017] [Accepted: 09/30/2017] [Indexed: 11/17/2022]
Abstract
AIMS Kappa Opioid receptors (KORs) change the impact of apelin on the phosphorylated ERK1/2 (pERK1/2). However, the role of interaction between KOR and apelin receptors (APJ) on the cardiac contractility effects of apelin and in regulation of pERK1/2 and PKC in the heart of renovascular hypertensive (2K1C) rats is unknown. MAIN METHODS Hemodynamic factors, the heterodimerization of KOR and APJ, the expression of KOR mRNA and protein and pERK1/2 in the left ventricle of 2K1C rats were measured following APJ, KOR, PKC and Gi path inhibition by F13A, nor-BNI, chelerythrine and PTX respectively. KEY FINDINGS Apelin in 40 and 60μg/kg doses increased cardiac contractility, and reduced mean arterial pressure. The cardiac impacts in both doses were reduced by F13A, nor-BNI and chelerytrine and blocked by PTX. Hypertension increased the expression of KORs and heterodimerization of APJ and KOR, and reduced pERK1/2 in the left ventricle. Apelin, in both doses reduced (normalized) heterodimerization and recovered the reduction in pERK1/2. The recovery of ERK1/2 phosphorylation was accompanied by reduction of KOR and APJ heterodimerization. SIGNIFICANCE 2K1C hypertension increased the expression of KORs and heterodimerization of APJ and KORs. The heterodimerization was associated by reduction of ERK phosphorylation and altered the cardiac inotropic and lusitropic effects of apelin. These changes may participate in pathophysiology of cardiac dysfunction in renovascular hypertension that is associated with subnormal level of serum apelin. Apelin- induced recovery of ERK1/2 phosphorylation and KOR-APJ dimerization may nominate apelin as a therapeutic goal in treatment of this kind of hypertension.
Collapse
Affiliation(s)
- Farzaneh Rostamzadeh
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Department of Physiology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Najafipour
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran; Department of Physiology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mahboobeh Yeganeh-Hajahmadi
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran; Department of Physiology, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Siyavash Joukar
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran; Department of Physiology, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Iranpour
- Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
22
|
Huang Z, Wu L, Chen L. Apelin/APJ system: A novel potential therapy target for kidney disease. J Cell Physiol 2017; 233:3892-3900. [PMID: 28796300 DOI: 10.1002/jcp.26144] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/08/2017] [Indexed: 12/24/2022]
Abstract
Apelin is an endogenous ligand of seven-transmembrane G protein-coupled receptor APJ. Apelin and APJ are distributed in various tissues, including the heart, lung, kidney, and even in tumor tissues. Studies show that apelin mRNA is highly expressed in the inner stripe of kidney outer medulla, which plays an important role in process of water and sodium balance. Additionally, more studies also indicate that apelin/APJ system exerts a broad range of activities in kidney. Therefore, we review the role of apelin/APJ system in kidney diseases such as renal fibrosis, renal ischemia/reperfusion injury, diabetic nephropathy, polycystic kidney disease, and hemodialysis (HD). Apelin/APJ system can improve renal interstitial fibrosis by reducing the deposition of extracellular matrix. Apelin/APJ system significantly reduces renal ischemia/reperfusion injury by inhibiting renal cell death. Apelin/APJ system involves the progression of diabetic nephropathy (DN). Apelin/APJ system also predicts the process of polycystic kidney disease. Besides, apelin/APJ system prevents some dialysis complications in HD patients. And apelin/APJ system alleviates chronic kidney disease (CKD) by inhibiting vascular calcification (VC). Overall, apelin/APJ system plays diversified roles in kidney disease and may be a potential target for the treatment of kidney disease.
Collapse
Affiliation(s)
- Zhen Huang
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang, P.R. China.,Department of Pharmacy, The First Affiliated Hospital, University Of South China, Hengyang, P.R. China
| | - Lele Wu
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang, P.R. China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang, P.R. China
| |
Collapse
|
23
|
Targeting the apelin pathway as a novel therapeutic approach for cardiovascular diseases. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1942-1950. [DOI: 10.1016/j.bbadis.2016.11.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/14/2016] [Accepted: 11/01/2016] [Indexed: 01/01/2023]
|
24
|
The differential effects of low and high doses of apelin through opioid receptors on the blood pressure of rats with renovascular hypertension. Hypertens Res 2017; 40:732-737. [PMID: 28275232 DOI: 10.1038/hr.2017.28] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/28/2016] [Accepted: 01/05/2017] [Indexed: 01/25/2023]
Abstract
The apelin/APJ system has an important role in the regulation of vascular tone and blood pressure. Opioid receptors (OPRs) are also important cardiovascular regulators and exert many of their effects by modulating the function of other G-protein-coupled receptors. The aim of this study was to analyze the interaction of apelin and the opioid system with respect to vascular responses to apelin in rats with renovascular hypertension (two-kidney, one clip (2K1C)). Homodynamic studies were carried out in 2K1C rats. Naloxone (a nonselective OPR inhibitor) or nor-binaltorphimine dihydrochloride (norBNI, a kappa OPR inhibitor) and signaling pathway inhibitors PTX (a Gi path inhibitor) and chelerythrine (a protein kinase C (PKC) inhibitor) were administered before apelin at 20 and 40 μg kg-1. Apelin at 20 and 40 μg kg-1 decreased the systolic blood pressure by 15% and 20%, respectively (P<0.05). The pressure drop caused by apelin 20 was inhibited by naloxone, norBNI and PTX, but it was not affected by chelerythrine. The pressure drop caused by apelin 40 was augmented by naloxone and chelerythrine, and it was not affected by norBNI or PTX. The lowering effect of apelin 20 on blood pressure is exerted through OPRs and stimulation of Gi and PKC pathways. However, apelin 40 functions independently of OPRs, Gi and PKC. This dose-dependent differential effect of apelin may have potential clinical applications as opioids are currently used, and apelin has been introduced as a potential therapeutic agent in cardiovascular complications.
Collapse
|
25
|
Abbasloo E, Najafipour H, Esmaeili-Mahani S. Induction of antinociceptive tolerance to the chronic intrathecal administration of apelin-13 in rat. Neuropeptides 2016; 60:7-12. [PMID: 27542441 DOI: 10.1016/j.npep.2016.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 07/07/2016] [Accepted: 08/04/2016] [Indexed: 01/07/2023]
Abstract
Pain represents a major contributing factor to the individual's quality of life. Although pain killers as opioids, endogenous or exogenous peptides can decrease pain perception, the chronic use of them leads to antinociceptive tolerance. It has been demonstrated that neuropeptide apelin has potent antinoceptive effect. However, the possibility of the induction of its antinociceptive tolerance has not yet been clarified. The tail-flick test was used to assess the nociceptive threshold. All experiments were carried out on male Wistar rats which received intrathecal apelin for 7days. To determine the role of apelin and opioid receptors on the development of apelin analgesic tolerance, their receptor antagonists (F-13 A and naloxone, respectively) were injected simultaneously with apelin. The lumbar spinal cord was assayed to determine apelin receptor levels by the western blotting method. Plasma corticosterone levels were assayed using ELISA. Results showed that apelin (3μg/rat) induced strong thermal antinociception. In addition, chronic apelin produced tolerance to its antinociceptive effect and down regulated spinal apelin receptor. F-13 A and naloxone could inhibit apelin tolerance development. The corticosterone levels did not change following drug administration. Taken together, the data indicated that apelin like other analgesic drugs leads to the induction of side effects such as analgesic tolerance which is mediated partly via the apelin and opioid receptors activation.
Collapse
Affiliation(s)
- Elham Abbasloo
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Hamid Najafipour
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeed Esmaeili-Mahani
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
26
|
|
27
|
Apelin: A novel inhibitor of vascular calcification in chronic kidney disease. Atherosclerosis 2015; 244:1-8. [PMID: 26581047 DOI: 10.1016/j.atherosclerosis.2015.10.102] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 10/24/2015] [Accepted: 10/26/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND Vascular calcification (VC) is closely related to cardiovascular events in chronic kidney disease (CKD). Apelin has emerged as a potent regulator of cardiovascular function, but its role in VC during CKD remains unknown. We determined whether apelin plays a role in phosphate-induced mineralization of human aortic smooth muscle cells (HASMCs) and in adenine-induced CKD rats with aortic calcification. METHODS AND RESULTS In vitro, apelin-13 was found to inhibit calcium deposition in HASMCs (Pi(+) Apelin(+) group vs Pi(+) Apelin(-) group: 50.1 ± 6.21 ug/mg vs 146.67 ± 10.02 ug/mg protein, p = 0.012) and to suppress the induction of the osteoblastic transformation genes BMP-2, osteoprotegerin (OPG) and Cbfa1. This effect was mediated by interference of the sodium-dependent phosphate cotransporter (Pit-1) expression and phosphate uptake. In vivo, decreased plasma apelin levels (adenine(+) apelin(-) vs vehicle: 0.37 ± 0.09 ng/ml vs 0.68 ± 0.16 ng/ml, p = 0.003) and downregulation of APJ in the aorta were found in adenine-induced CKD rats with hyperphosphatemia (adenine(+) apelin(-) vs vehicle: 6.91 ± 0.23 mmoL/L vs 2.3 ± 0.07 mmoL/L, p = 0.001) and aortic calcification. Exogenous supplementation of apelin-13 normalized the level of the apelin/APJ system and significantly ameliorated aortic calcification, as well as the suppression of Runx2, OPG and Pit-1 expression. CONCLUSIONS Apelin ameliorates VC by suppressing osteoblastic differentiation of VSMCs through downregulation of Pit-1. These results suggest apelin may have potential therapeutic value for treatment of VC in CKD.
Collapse
|
28
|
EXP CLIN TRANSPLANTExp Clin Transplant 2015; 13. [DOI: 10.6002/ect.2014.0276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
29
|
Deng C, Chen H, Yang N, Feng Y, Hsueh AJW. Apela Regulates Fluid Homeostasis by Binding to the APJ Receptor to Activate Gi Signaling. J Biol Chem 2015; 290:18261-8. [PMID: 25995451 DOI: 10.1074/jbc.m115.648238] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Indexed: 01/06/2023] Open
Abstract
Apela (APJ early endogenous ligand, also known as elabela or toddler) is a recently discovered peptide hormone. Based on genetic studies in zebrafish, apela was found to be important for endoderm differentiation and heart development during embryogenesis. Although common phenotypes of apela and APJ-null zebrafish during embryonic development suggested that apela interacts with the APJ receptor, kinetics of apela binding to APJ and intracellular signaling pathways for apela remain unknown. The role of apela in adults is also uncertain. Using a chimeric apela ligand, we showed direct binding of apela to APJ with high affinity (Kd = 0.51 nm) and the ability of apelin, the known peptide ligand for APJ, to compete for apela binding. Apela, similar to apelin, acts through the inhibitory G protein pathway by inhibiting forskolin-stimulated cAMP production and by inducing ERK1/2 phosphorylation. In adult rats, apela is expressed exclusively in the kidney, unlike the wide tissue distribution of apelin. In vivo studies demonstrated the ability of apela to regulate fluid homeostasis by increasing diuresis and water intake. Dose-response studies further indicated that apela induces 2- and 5-fold higher maximal responses than apelin in ERK1/2 phosphorylation and diuresis/water intake, respectively. After designing an apela antagonist, we further demonstrated the role of endogenous ligand(s) in regulating APJ-mediated fluid homeostasis. Our results identified apela as a potent peptide hormone capable of regulating fluid homeostasis in adult kidney through coupling to the APJ-mediated Gi signaling pathway.
Collapse
Affiliation(s)
- Cheng Deng
- From the Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China and Program of Reproductive and Stem Cell Biology, Department of Ob/Gyn, Stanford University School of Medicine, Stanford, California 94305-5317
| | - Haidi Chen
- From the Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China and
| | - Na Yang
- From the Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China and
| | - Yi Feng
- Program of Reproductive and Stem Cell Biology, Department of Ob/Gyn, Stanford University School of Medicine, Stanford, California 94305-5317
| | - Aaron J W Hsueh
- Program of Reproductive and Stem Cell Biology, Department of Ob/Gyn, Stanford University School of Medicine, Stanford, California 94305-5317
| |
Collapse
|
30
|
Chen H, Wan D, Wang L, Peng A, Xiao H, Petersen RB, Liu C, Zheng L, Huang K. Apelin protects against acute renal injury by inhibiting TGF-β1. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1278-87. [PMID: 25748499 DOI: 10.1016/j.bbadis.2015.02.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 02/12/2015] [Accepted: 02/27/2015] [Indexed: 12/29/2022]
Abstract
Renal ischemia/reperfusion (I/R) injury is the most common cause of acute kidney injury, having a high rate of mortality and no effective therapy currently available. Apelin-13, a bioactive peptide, has been shown to inhibit the early lesions of diabetic nephropathy in several mouse models by us and others. To test whether apelin-13 protects against renal I/R induced injury, male rats were exposed to renal I/R injury with or without apelin-13 treatment for 3 days. Apelin-13 treatment markedly reduced the injury-induced tubular lesions, renal cell apoptosis, and normalized the injury induced renal dysfunction. Apelin-13 treatment inhibited the injury-induced elevation of inflammatory factors and Tgf-β1, as well as apoptosis. Apelin-13 treatment also inhibited the injury-induced elevation of histone methylation and Kmt2d, a histone methyltransferase of H3K4me2, following renal I/R injury. Furthermore, in cultured renal mesangial and tubular cells, apelin-13 suppressed the injury-induced elevation of Tgf-β1, apoptosis, H3K4me2 and Kmt2d under the in vitro hypoxia/reperfusion (H/R) conditions. Consistently, over-expression of apelin significantly inhibited H/R-induced elevation of TGF-β1, apoptosis, H3K4me2 and Kmt2d. The present study therefore suggests apelin-13 may be a therapeutic candidate for treating acute kidney injury.
Collapse
Affiliation(s)
- Hong Chen
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, China, 430030; Centre for Biomedicine Research, Wuhan Institute of Biotechnology, Wuhan, China, 430074
| | - Danyang Wan
- College of Life Sciences, Wuhan University, Wuhan, China, 430072
| | - Lin Wang
- College of Life Sciences, Wuhan University, Wuhan, China, 430072
| | - Anlin Peng
- Wuhan the Third Hospital, Wuhan, China, 430060
| | - Hongdou Xiao
- College of Life Sciences, Wuhan University, Wuhan, China, 430072
| | - Robert B Petersen
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA, 44106; Department of Neuroscience, Case Western Reserve University, Cleveland, OH, USA, 44106; Department of Neurology, Case Western Reserve University, Cleveland, OH, USA, 44106
| | - Chengyu Liu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, China, 430030; Centre for Biomedicine Research, Wuhan Institute of Biotechnology, Wuhan, China, 430074
| | - Ling Zheng
- College of Life Sciences, Wuhan University, Wuhan, China, 430072.
| | - Kun Huang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, China, 430030; Centre for Biomedicine Research, Wuhan Institute of Biotechnology, Wuhan, China, 430074.
| |
Collapse
|
31
|
The ACE2/Apelin Signaling, MicroRNAs, and Hypertension. Int J Hypertens 2015; 2015:896861. [PMID: 25815211 PMCID: PMC4359877 DOI: 10.1155/2015/896861] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 02/23/2015] [Indexed: 01/13/2023] Open
Abstract
The renin-angiotensin aldosterone system (RAAS) plays a pivotal role in the development of hypertension. Angiotensin converting enzyme 2 (ACE2), which primarily metabolises angiotensin (Ang) II to generate the beneficial heptapeptide Ang-(1-7), serves as a negative regulator of the RAAS. Apelin is a second catalytic substrate for ACE2 and functions as an inotropic and cardiovascular protective peptide. The physiological effects of Apelin are exerted through binding to its receptor APJ, a seven-transmembrane G protein-coupled receptor that shares significant homology with the Ang II type 1 receptor (AT1R). The deregulation of microRNAs, a class of short and small noncoding RNAs, has been shown to involve cardiovascular remodeling and pathogenesis of hypertension via the activation of the Ang II/AT1R pathway. MicroRNAs are linked with modulation of the ACE2/Apelin signaling, which exhibits beneficial effects in the cardiovascular system and hypertension. The ACE2-coupled crosstalk among the RAAS, the Apelin system, and microRNAs provides an important mechanistic insight into hypertension. This paper focuses on what is known about the ACE2/Apelin signaling and its biological roles, paying particular attention to interactions and crosstalk among the ACE2/Apelin signaling, microRNAs, and hypertension, aiming to facilitate the exploitation of new therapeutic medicine to control hypertension.
Collapse
|
32
|
Najafipour H, Vakili A, Shahouzehi B, Soltani Hekmat A, Masoomi Y, Yeganeh Hajahmadi M, Esmaeli-Mahani S. Investigation of changes in apelin receptor mRNA and protein expression in the myocardium and aorta of rats with two-kidney, one-clip (2K1C) Goldblatt hypertension. J Physiol Biochem 2015; 71:165-75. [PMID: 25708823 DOI: 10.1007/s13105-015-0394-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 02/12/2015] [Indexed: 12/18/2022]
Abstract
Experimental and clinical evidences suggest that apelin and its receptor APJ are involved in the pathogenesis of cardiovascular complications. However, the role of apelin/APJ in hypertension is not sufficiently understood. Because chronic kidney diseases lead to hypertension and cardiac failure, we investigated the changes in apelin receptor gene expression in the myocardium and aorta of rat models of kidney disease hypertension. Two-kidney, one-clip (2K1C) hypertension was produced by placing a clip around the renal artery. Four and 16 weeks later, blood pressure, left ventricular end-diastolic pressure (LVEDP), serum apelin, and angiotensin II were measured. The messenger RNA (mRNA) and protein of APJ were determined by reverse transcription polymerase chain reaction (RT-PCR) and Western blotting. Chronic hypertensive rats had approximately 10 times higher LVEDP (P < 0.001). 2K1C decreased serum apelin from 220 ± 11 to 170 ± 10 pg/mL in 16 weeks (P < 0.05). The mRNA expression of APJ significantly decreased in the heart and aorta at 4 weeks. At 16 weeks, the reduction was not significant in the heart but was significant in the aorta. At 4 weeks, the expression of the APJ protein significantly decreased in the heart but not in the aorta. At 16 weeks, APJ protein was significantly decreased only in the aorta. Reduction of serum apelin and downregulation of apelin receptors in both the heart and aorta may play a role in the pathophysiology of hypertension and cardiac failure in 2K1C hypertensive rats.
Collapse
Affiliation(s)
- Hamid Najafipour
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran,
| | | | | | | | | | | | | |
Collapse
|
33
|
Wang LY, Diao ZL, Zhang DL, Zheng JF, Zhang QD, Ding JX, Liu WH. The regulatory peptide apelin: a novel inhibitor of renal interstitial fibrosis. Amino Acids 2014; 46:2693-704. [DOI: 10.1007/s00726-014-1826-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 08/14/2014] [Indexed: 02/06/2023]
|
34
|
Zhou WT, Abdurahman A, Abdusalam E, Yiming W, Abliz P, Aji Q, Issak M, Iskandar G, Moore N, Umar A. Effect of Cydonia oblonga Mill. leaf extracts or captopril on blood pressure and related biomarkers in renal hypertensive rats. JOURNAL OF ETHNOPHARMACOLOGY 2014; 153:635-40. [PMID: 24661965 DOI: 10.1016/j.jep.2014.03.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 03/02/2014] [Accepted: 03/06/2014] [Indexed: 05/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cydonia oblonga Mill. (COM) is used in traditional Uyghur medicine to treat or prevent cardiovascular disease. In a previous study COM leaf extracts were found to be active in renal hypertensive rats (RHR). The present study tests the dose-dependence of the effect of ethanol leaf extracts on hypertension and on biomarkers associated with blood pressure control, such as angiotensin-II (AII), plasma renin activity (PRA), apelin-12 (A), endothelin (ET) and nitric oxide (NO), compared to captopril. METHODS Two-kidney one-clip (2K1C) Goldblatt model rats were divided randomly into six groups: sham, model, captopril 25 mg/kg, COM leaf extract 80, 160 and 320 mg/kg (n=10 each). Drugs were administered orally daily for eight weeks. Systolic blood pressure (SBP) and diastolic blood pressure (DBP) were measured before treatment and every 2 weeks. Blood and kidney samples were collected after the last treatment to measure AII, PRA, A, ET and NO. RESULTS RHR had increased blood pressure, AII, A, PRA, ET and decreased NO. Treatment with captopril reduced blood pressure, AII, A, PRA, and ET, though not quite to normal values. COM leaf extracts significantly and dose-dependently reduced blood pressure, AII, A, RA and ET, whereas NO was increased. The highest dose of COM had the same effects as captopril. CONCLUSION The effects of COM extracts on blood pressure and biomarkers were dose-dependent and at the highest dose similar to those of captopril. This suggests an action of COM on the renin-angiotensin system, which could explain its antihypertensive effect.
Collapse
Affiliation(s)
- Wen-ting Zhou
- Department of Pharmacology, Xinjiang Medical University, Urumqi 830011, PR China
| | - Adil Abdurahman
- Department of Pharmacology, Xinjiang Medical University, Urumqi 830011, PR China
| | - Elzira Abdusalam
- Department of Pharmacology, Xinjiang Medical University, Urumqi 830011, PR China
| | - Wuliya Yiming
- Department of Pharmacology, Xinjiang Medical University, Urumqi 830011, PR China
| | - Parida Abliz
- Department of Pharmacognosy, Xinjiang Medical University, 830011 Urumqi, PR China
| | - Qimangul Aji
- Department of Pharmacology, Xinjiang Medical University, Urumqi 830011, PR China
| | - Mehray Issak
- Department of Pharmacology, Xinjiang Medical University, Urumqi 830011, PR China
| | - Guldiyar Iskandar
- Department of Pharmacology, Xinjiang Medical University, Urumqi 830011, PR China
| | - Nicholas Moore
- Department of Pharmacology, Xinjiang Medical University, Urumqi 830011, PR China; Department of Pharmacology, Universite de Bordeaux Segalen, F-33076 Bordeaux, France.
| | - Anwar Umar
- Department of Pharmacology, Xinjiang Medical University, Urumqi 830011, PR China; Department of Pharmacology, Universite de Bordeaux Segalen, F-33076 Bordeaux, France.
| |
Collapse
|
35
|
Zhou W, Abdusalam E, Abliz P, Reyim N, Tian S, Aji Q, Issak M, Iskandar G, Moore N, Umar A. Effect of Cydonia oblonga Mill. fruit and leaf extracts on blood pressure and blood rheology in renal hypertensive rats. JOURNAL OF ETHNOPHARMACOLOGY 2014; 152:464-469. [PMID: 24472663 DOI: 10.1016/j.jep.2014.01.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 01/16/2014] [Accepted: 01/17/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Quince, Cydonia oblonga Mill. (COM), is used in traditional Uyghur medicine to treat or prevent cardiovascular diseases. Uyghur people have greater longevity and lower blood pressure than other central Asian populations. We therefore tested COM fruit and leaf extracts on blood pressure and rheology in renal hypertensive rats (RHR). MATERIALS AND METHODS Two-kidney, one-clip (2K1C) renal hypertensive rats were divided randomly into eleven groups: sham, model, and model treated with daily doses of 80 and 160mg/kg aqueous or ethanol extracts of COM fruit or leaves, or 25mg/kg captopril (n=10 per group), given orally once daily for 8 weeks. Blood pressure was measured before treatment and every 2 weeks thereafter. Blood rheology was tested after 8 weeks. RESULTS Model rats had higher blood pressure than sham 8 weeks after the procedure (systolic blood pressure 193±7 vs. 138±8mmHg, p<0.05). Those treated with captopril had decreased blood pressure within 2 weeks but that did not return to the level found in the sham group at 8 weeks (167±7, p<0.05 vs. model). With the COM extracts, the effect on blood pressure was notable after 4 weeks. At 8 weeks blood pressure was similar with captopril and with 160mg ethanol leaf extract (166±4, p<0.05 vs. model), the most effective of the extracts. Model rats had higher blood viscosity and lower erythrocyte deformability than sham. Captopril had little effect on blood rheology; whereas COM extracts reduced whole blood viscosity and improved erythrocyte deformability to levels approaching those found in sham. CONCLUSIONS COM extracts have antihypertensive activity in renal hypertensive rats. The additional effect on rheology, compared to captopril, may convey added interest. Further studies of these effects in man appear warranted.
Collapse
Affiliation(s)
- Wenting Zhou
- Department of Pharmacology, Xinjiang Medical University, 393 Xinyi Road, 830011 Urumqi, Xinjiang, People׳s Republic of China
| | - Elzira Abdusalam
- Department of Pharmacology, Xinjiang Medical University, 393 Xinyi Road, 830011 Urumqi, Xinjiang, People׳s Republic of China
| | - Parida Abliz
- Department of Pharmacognosy, Faculty of Pharmacy, Xinjiang Medical University, 393 Xinyi Road, 830011 Urumqi, Xinjiang, People׳s Republic of China
| | - Nadira Reyim
- Department of Cardiovascular Internal Medicine, the Second Affiliated Hospital of Xinjiang Medical University, 38 Nanhu Road, Urumqi City, Shuimogou District, 830063 Urumqi, Xinjiang, People׳s Republic of China
| | - Shuge Tian
- Faculty of traditional Chinese Medicine, Xinjiang Medical University, 393 Xinyi Road, 830011 Urumqi, Xinjiang, People׳s Republic of China
| | - Qimangul Aji
- Department of Pharmacology, Xinjiang Medical University, 393 Xinyi Road, 830011 Urumqi, Xinjiang, People׳s Republic of China
| | - Mehray Issak
- Department of Pharmacology, Xinjiang Medical University, 393 Xinyi Road, 830011 Urumqi, Xinjiang, People׳s Republic of China
| | - Guldiyar Iskandar
- Department of Pharmacology, Xinjiang Medical University, 393 Xinyi Road, 830011 Urumqi, Xinjiang, People׳s Republic of China
| | - Nicholas Moore
- Department of Pharmacology, Xinjiang Medical University, 393 Xinyi Road, 830011 Urumqi, Xinjiang, People׳s Republic of China; Department of Pharmacology, University Bordeaux Segalen, 33076 Bordeaux, France.
| | - Anwar Umar
- Department of Pharmacology, Xinjiang Medical University, 393 Xinyi Road, 830011 Urumqi, Xinjiang, People׳s Republic of China; Department of Pharmacology, University Bordeaux Segalen, 33076 Bordeaux, France.
| |
Collapse
|
36
|
Yu XH, Tang ZB, Liu LJ, Qian H, Tang SL, Zhang DW, Tian GP, Tang CK. Apelin and its receptor APJ in cardiovascular diseases. Clin Chim Acta 2014; 428:1-8. [DOI: 10.1016/j.cca.2013.09.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 08/31/2013] [Accepted: 09/01/2013] [Indexed: 12/29/2022]
|
37
|
Chen H, Li J, Jiao L, Petersen RB, Li J, Peng A, Zheng L, Huang K. Apelin inhibits the development of diabetic nephropathy by regulating histone acetylation in Akita mouse. J Physiol 2013; 592:505-21. [PMID: 24247978 DOI: 10.1113/jphysiol.2013.266411] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Diabetic nephropathy is the primary cause of end-stage renal disease. Increasing numbers of patients are suffering from this disease and therefore novel medications and therapeutic approaches are urgently needed. Here, we investigated whether apelin-13, the most active member of the adipokine apelin group, could effectively suppress the development of nephropathy in Akita mouse, a spontaneous type 1 diabetic model. Apelin-13 treatment decreased diabetes-induced glomerular filtration rate, proteinuria, glomerular hypertrophy, mesangial expansion and renal inflammation. The inflammatory factors, activation of NF-κB, histone acetylation and the enzymes involved in histone acetylation were further examined in diabetic kidneys and high glucose- or sodium butyrate-treated mesangial cells in the presence or absence of apelin-13. Apelin-13 treatment inhibited diabetes-, high glucose- and NaB-induced elevation of inflammatory factors, and histone hyperacetylation by upregulation of histone deacetylase 1. Furthermore, overexpression of apelin in mesangial cells induced histone deacetylation under high glucose condition. Thus, apelin-13 may be a novel therapeutic candidate for treatment of diabetic nephropathy via regulation of histone acetylation.
Collapse
Affiliation(s)
- Hong Chen
- College of Life Sciences, Wuhan University, Wuhan 430072, China. ; Kun Huang: Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China.
| | | | | | | | | | | | | | | |
Collapse
|