1
|
Duan C, Zhao Y, Xiao Y, Hou Y, Gong W, Zhang H, Wang Y, Nie X. Lithium with environmentally relevant concentrations interferes with mitochondrial function, antioxidant response, and autophagy processes in Daphnia magna, leading to changes in life-history traits and behavior. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137420. [PMID: 39893979 DOI: 10.1016/j.jhazmat.2025.137420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/09/2025] [Accepted: 01/25/2025] [Indexed: 02/04/2025]
Abstract
With the increasing production and use of lithium-based products, concerns over lithium pollution in aquatic ecosystems are increasing, whereas research on its toxicity mechanisms in aquatic organisms remains limited. The main objective of the present study was to explore the effects of environmentally relevant concentrations of lithium exposure on the life-history strategy, behavior, antioxidant system, and autophagy process of Daphnia magna. Acute (24-96 h) and chronic (21 days) exposure experiments under three lithium treatments (low: 8.34 μg/L, medium: 83.44 μg/L, and high: 834.41 μg/L) were conducted. The results indicated that exposure to medium and high lithium concentrations led to eye and tail deformities in D. magna. Furthermore, developmental and reproductive parameters such as body length, total neonates per female, and average neonates per time were negatively influenced. Lithium also interfered with energy metabolism to cause the decreasing swimming speed and the reduction in the swimming range. In addition, lithium exposure affected the expression of gsk-3β, further disrupting the dynamic balance of mitochondrial fission, fusion, and regeneration, which caused ROS accumulation and induced oxidative stress. D. magna attenuated the stress by activating the FoxO/SESN and Nrf2/Keap1 pathways, synergistically enhancing downstream antioxidant enzymes expression. Concurrently, D. magna also mitigated oxidative stress and mitochondrial damage by promoting autophagy and inhibiting apoptosis. In summary, lithium harmed the physiological and biochemical functions of D. magna through multiple mechanisms, suggesting that environmental lithium pollution may pose a potential threat to aquatic organisms.
Collapse
Affiliation(s)
- Chunni Duan
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Yufei Zhao
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Yuanyuan Xiao
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Yingshi Hou
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Weibo Gong
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Huiyu Zhang
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Yimeng Wang
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Xiangping Nie
- Department of Ecology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
2
|
Wei Y, Miao Z, Ye H, Wu M, Wei X, Zhang Y, Cai L. The Effect of Caffeine Exposure on Sleep Patterns in Zebrafish Larvae and Its Underlying Mechanism. Clocks Sleep 2024; 6:749-763. [PMID: 39584977 PMCID: PMC11586999 DOI: 10.3390/clockssleep6040048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/26/2024] Open
Abstract
The effect of caffeine on the behavior and sleep patterns of zebrafish larvae, as well as its underlying mechanisms, has been a topic of great interest. This study aimed to investigate the impact of caffeine on zebrafish larval sleep/wake behavior and the expression of key regulatory genes such as cAMP-response element binding protein (CREB) and adenosine (ADA) in the sleep pathway. To begin, the study determined the optimal dose and duration of caffeine exposure, with the optimal doses found to be 31.25 μM, 62.5 μM, and 120 μM. Similarly, the optimal exposure time was established as no more than 120 h, ensuring a mortality rate of less than 10%. The confirmation of these conditions was achieved through the assessment of angiogenesis and the inflammatory reaction. As a result, the treatment time point of 24 h post-fertilization (hpf) was selected to examine the effects of caffeine on zebrafish larval sleep rhythm (48 h, with a light cycle of 14:10). Furthermore, the study analyzed the expression of clock genes (bmal1a, per1b, per2, per3, cry2), adenosine receptor genes (adora1a, adora1b, adora2aa, adora2ab, adora2b), and key regulatory factors (CREB and ADA). The research confirmed that caffeine could induce sleep pattern disorders, significantly upregulate adenosine receptor genes (adora1a, adora1b, adora2a, adora2ab, adora2b) (p < 0.05), and markedly decrease the total sleep time and sleep efficiency of the larvae. Additionally, the activity of ADA significantly increased during the exposure (p < 0.001), and the tissue-specific expression of CREB was also significantly increased, as assessed by immunofluorescence. Caffeine may regulate circadian clock genes through the ADA/ADORA/CREB pathway. These findings not only enhance our understanding of the effects of caffeine on zebrafish larvae but also provide valuable insights into the potential impact of caffeine on human behavior and sleep.
Collapse
Affiliation(s)
- Yuanzheng Wei
- Guangdong Provincial Biotechnology Research Institute (Guangdong Provincial Laboratory Animals Monitoring Center), Guangzhou 510663, China; (Y.W.); (Z.M.); (H.Y.); (M.W.)
| | - Zongyu Miao
- Guangdong Provincial Biotechnology Research Institute (Guangdong Provincial Laboratory Animals Monitoring Center), Guangzhou 510663, China; (Y.W.); (Z.M.); (H.Y.); (M.W.)
| | - Huixin Ye
- Guangdong Provincial Biotechnology Research Institute (Guangdong Provincial Laboratory Animals Monitoring Center), Guangzhou 510663, China; (Y.W.); (Z.M.); (H.Y.); (M.W.)
| | - Meihui Wu
- Guangdong Provincial Biotechnology Research Institute (Guangdong Provincial Laboratory Animals Monitoring Center), Guangzhou 510663, China; (Y.W.); (Z.M.); (H.Y.); (M.W.)
| | - Xinru Wei
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China;
| | - Yu Zhang
- Guangdong Provincial Biotechnology Research Institute (Guangdong Provincial Laboratory Animals Monitoring Center), Guangzhou 510663, China; (Y.W.); (Z.M.); (H.Y.); (M.W.)
| | - Lei Cai
- Guangdong Provincial Biotechnology Research Institute (Guangdong Provincial Laboratory Animals Monitoring Center), Guangzhou 510663, China; (Y.W.); (Z.M.); (H.Y.); (M.W.)
| |
Collapse
|
3
|
Lovin LM, Langan LM, Scarlett KR, Taylor RB, Kim S, Kevin Chambliss C, Chatterjee S, Thad Scott J, Brooks BW. (+) Anatoxin-a elicits differential survival, photolocomotor behavior, and gene expression in two alternative vertebrate models. ENVIRONMENT INTERNATIONAL 2024; 193:109045. [PMID: 39442322 DOI: 10.1016/j.envint.2024.109045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/25/2024]
Abstract
Anatoxin-a is a globally occurring, yet understudied, chiral cyanobacterial toxin that threatens public health and the environment. It has led to numerous dog. livestock and bird poisonings and although it has been studied in rodent models, comparatively little research has occurred in aquatic species. To advance a comparative toxicology understanding of this toxin in alternative vertebrate models, developing zebrafish and fathead minnow were exposed to environmentally relevant and elevated levels (13-4400 μg/L) of (+) anatoxin-a to examine potential mortality and sublethal effects, including photolocomotor behavior and gene expression responses. We observed significantly higher mortality (p < 0.05) in fathead minnows exposed to ≥ 1400 μg/L (65 - 83 % survival versus 97 % in controls). Locomotor response profiles for zebrafish typically displayed hypoactivity after exposure to (+) anatoxin-a in both light and dark periods, while hyperactivity of fathead minnows was observed at the lowest treatment level, but only in light conditions. Gene expression in zebrafish was significantly (p < 0.05) downregulated for mbp, which is associated with myelin sheath formation, and elavl3, which is involved in neurogenesis, along with cyp3a65 and gst, two genes related to phase I and II metabolism. However, no significant (p > 0.05) transcriptional changes were observed in the fathead minnow model. These differential responses between commonly employed species employed as alternative vertebrate models in toxicology research and chemicals risk assessments highlight the need for more comparative studies to understand sensitivities and variations in organismal response. Furthermore, we identified higher mortality, refractory behavioral effects, and gene expression in (+) anatoxin-a exposed fish when compared to previously reported (±) anatoxin-a (racemic 50:50 enantiomer mixture) studies, which is frequently used as a surrogate chemical for experimental work. Our findings identify the importance of understanding species and enantiomer specific effects of natural toxins.
Collapse
Affiliation(s)
- Lea M Lovin
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798 USA
| | - Laura M Langan
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798 USA
| | - Kendall R Scarlett
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798 USA
| | - Raegyn B Taylor
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798 USA; Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA
| | - Sujin Kim
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798 USA
| | - C Kevin Chambliss
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798 USA; Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA
| | - Saurabh Chatterjee
- Department of Medicine, University of California Irvine, Irvine, CA 92617, USA
| | - J Thad Scott
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798 USA; Department of Biology, Baylor University, Waco, TX 76798, USA
| | - Bryan W Brooks
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798 USA.
| |
Collapse
|
4
|
Hoyberghs J, Ball J, Trznadel M, Beekhuijzen M, Burbank M, Wilhelmi P, Muriana A, Powles-Glover N, Letamendia A, Van Cruchten S. Biological variability hampers the use of skeletal staining methods in zebrafish embryo developmental toxicity assays. Reprod Toxicol 2024; 127:108615. [PMID: 38815770 DOI: 10.1016/j.reprotox.2024.108615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/18/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024]
Abstract
Zebrafish embryo assays are used by pharmaceutical and chemical companies as new approach methodologies (NAMs) in developmental toxicity screening. Despite an overall high concordance of zebrafish embryo assays with in vivo mammalian studies, false negative and false positive results have been reported. False negative results in risk assessment models are of particular concern for human safety, as developmental anomalies may be missed. Interestingly, for several chemicals and drugs that were reported to be false negative in zebrafish, skeletal findings were noted in the in vivo studies. As the number of skeletal endpoints assessed in zebrafish is very limited compared to the in vivo mammalian studies, the aim of this study was to investigate whether the sensitivity could be increased by including a skeletal staining method. Three staining methods were tested on zebrafish embryos that were exposed to four teratogens that caused skeletal anomalies in rats and/or rabbits and were false negative in zebrafish embryo assays. These methods included a fixed alizarin red-alcian blue staining, a calcein staining, and a live alizarin red staining. The results showed a high variability in staining intensity of larvae exposed to mammalian skeletal teratogens, as well as variability between control larvae originating from the same clutch of zebrafish. Hence, biological variability in (onset of) bone development in zebrafish hampers the detection of (subtle) treatment-related bone effects that are not picked-up by gross morphology. In conclusion, the used skeletal staining methods did not increase the sensitivity of zebrafish embryo developmental toxicity assays.
Collapse
|
5
|
Yang W, Bu Q, Shi Q, Zhao R, Huang H, Yang L, Tang J, Ma Y. Emerging Contaminants in the Effluent of Wastewater Should Be Regulated: Which and to What Extent? TOXICS 2024; 12:309. [PMID: 38787088 PMCID: PMC11125804 DOI: 10.3390/toxics12050309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024]
Abstract
Effluent discharged from urban wastewater treatment plants (WWTPs) is a major source of emerging contaminants (ECs) requiring effective regulation. To this end, we collected discharge datasets of pharmaceuticals (PHACs) and endocrine-disrupting chemicals (EDCs), representing two primary categories of ECs, from Chinese WWTP effluent from 2012 to 2022 to establish an exposure database. Moreover, high-risk ECs' long-term water quality criteria (LWQC) were derived using the species sensitivity distribution (SSD) method. A total of 140 ECs (124 PHACs and 16 EDCs) were identified, with concentrations ranging from N.D. (not detected) to 706 μg/L. Most data were concentrated in coastal regions and Gansu, with high ecological risk observed in Gansu, Hebei, Shandong, Guangdong, and Hong Kong. Using the assessment factor (AF) method, 18 high-risk ECs requiring regulation were identified. However, only three of them, namely carbamazepine, ibuprofen, and bisphenol-A, met the derivation requirements of the SSD method. The LWQC for these three ECs were determined as 96.4, 1010, and 288 ng/L, respectively. Exposure data for carbamazepine and bisphenol-A surpassed their derived LWQC, indicating a need for heightened attention to these contaminants. This study elucidates the occurrence and risks of ECs in Chinese WWTPs and provides theoretical and data foundations for EC management in urban sewage facilities.
Collapse
Affiliation(s)
- Weiwei Yang
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, China (Q.S.)
| | - Qingwei Bu
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, China (Q.S.)
| | - Qianhui Shi
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, China (Q.S.)
| | - Ruiqing Zhao
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, China (Q.S.)
| | - Haitao Huang
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, China (Q.S.)
| | - Lei Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jianfeng Tang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yuning Ma
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
6
|
Verma SK, Nandi A, Sinha A, Patel P, Mohanty S, Jha E, Jena S, Kumari P, Ghosh A, Jerman I, Chouhan RS, Dutt A, Samal SK, Mishra YK, Varma RS, Panda PK, Kaushik NK, Singh D, Suar M. The posterity of Zebrafish in paradigm of in vivo molecular toxicological profiling. Biomed Pharmacother 2024; 171:116160. [PMID: 38237351 DOI: 10.1016/j.biopha.2024.116160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 02/08/2024] Open
Abstract
The aggrandised advancement in utility of advanced day-to-day materials and nanomaterials has raised serious concern on their biocompatibility with human and other biotic members. In last few decades, understanding of toxicity of these materials has been given the centre stage of research using many in vitro and in vivo models. Zebrafish (Danio rerio), a freshwater fish and a member of the minnow family has garnered much attention due to its distinct features, which make it an important and frequently used animal model in various fields of embryology and toxicological studies. Given that fertilization and development of zebrafish eggs take place externally, they serve as an excellent model organism for studying early developmental stages. Moreover, zebrafish possess a comparable genetic composition to humans and share almost 70% of their genes with mammals. This particular model organism has become increasingly popular, especially for developmental research. Moreover, it serves as a link between in vitro studies and in vivo analysis in mammals. It is an appealing choice for vertebrate research, when employing high-throughput methods, due to their small size, swift development, and relatively affordable laboratory setup. This small vertebrate has enhanced comprehension of pathobiology and drug toxicity. This review emphasizes on the recent developments in toxicity screening and assays, and the new insights gained about the toxicity of drugs through these assays. Specifically, the cardio, neural, and, hepatic toxicology studies inferred by applications of nanoparticles have been highlighted.
Collapse
Affiliation(s)
- Suresh K Verma
- School of Biotechnology, KIIT University, Bhubaneswar, India.
| | - Aditya Nandi
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Adrija Sinha
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Paritosh Patel
- School of Biotechnology, KIIT University, Bhubaneswar, India; Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897, Seoul, South Korea
| | | | - Ealisha Jha
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Snehasmita Jena
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Puja Kumari
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno 61137, Czech Republic
| | - Aishee Ghosh
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Ivan Jerman
- National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Raghuraj Singh Chouhan
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Ateet Dutt
- Instituto de Investigaciones en Materiales, UNAM, CDMX, Mexico
| | - Shailesh Kumar Samal
- Unit of Immunology and Chronic Disease, Institute of Environmental Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, Sønderborg DK-6400, Denmark
| | - Rajender S Varma
- Institute for Nanomaterials, Advanced Technologies and Innovation (CxI), Technical University of Liberec (TUL), Studentská 1402/2, Liberec 1 461 17, Czech Republic
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897, Seoul, South Korea.
| | - Deobrat Singh
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden.
| | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, Bhubaneswar, India.
| |
Collapse
|
7
|
Santos N, Oliveira M, Domingues I. Influence of exposure scenario on the sensitivity to caffeine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:122808-122821. [PMID: 37978123 PMCID: PMC10724325 DOI: 10.1007/s11356-023-30945-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
The chorion acts as a protective barrier, restricting some chemical absorption into the embryo and the surrounding fluids. In this sense, larvae may only have direct contact with some chemicals after dechorionation. This study aimed to evaluate the effects of caffeine (CAF) (0, 13, 20, 44, 67, and 100 mg.L-1) under different exposure scenarios (embryos with chorion or embryos/larvae already hatched) and rank the stage sensitivity. Thus, three scenarios were investigated: from 2 to 120 hours post fertilization (hpf) (5 days of exposure- 5dE), from 72 to 120 hpf (2dE), and from 96 to 120 hpf (1dE). Heart rate (48 hpf) and energy reserves (120 hpf) were measured in the 5dE scenario, and behavior and acetylcholinesterase (AChE) activity were evaluated at 120 hpf in all scenarios (5dE, 2dE, and 1dE). At 120 hpf, some of the fish was transferred to clean medium for a 10 days depuration period (10dPE). Behavior and AChE activity were assessed after this period. In the 5dE scenario, CAF increased heartbeat (13, 20, and 30 mg.L-1) and reduced carbohydrates (67, and 100 mg.L-1), while inhibiting AChE activity (100 mg.L-1) in the 5dE, 2dE, and 1dE scenarios. CAF reduced the total distance moved in the 5dE (67, and 100 mg.L-1), 2dE (20, 30, 44, 67, and 100 mg.L-1), and 1dE fish (67, and 100 mg.L-1) and increased erratic movements. Based on the lowest observed effect concentration (LOEC) for total distance moved (20 mg.L-1) and higher inhibition of AChE activity (100 mg.L-1) (65%), 2dE fish appear to be more sensitive to CAF. After 10dPE, a recovery in behavior was detected in all scenarios (5dE, 2dE, and 1dE). AChE activity remained inhibited in the 2dE scenario while increasing in the 1dE scenario. This study demonstrated that the presence of the chorion is an important factor for the analysis of CAF toxicity. After the loss of the chorion, organisms show greater sensitivity to CAF and can be used to evaluate the toxicity of various substances, including nanomaterials or chemicals with low capacity to cross the chorion. Therefore, the use of hatched embryos in toxicity tests is suggested, as they allow a shorter and less expensive exposure scenario that provides similar outcome as the conventional scenario.
Collapse
Affiliation(s)
- Niedja Santos
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Miguel Oliveira
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Inês Domingues
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
8
|
Shakoor N, Adeel M, Ahmad MA, Zain M, Waheed U, Javaid RA, Haider FU, Azeem I, Zhou P, Li Y, Jilani G, Xu M, Rinklebe J, Rui Y. Reimagining safe lithium applications in the living environment and its impacts on human, animal, and plant system. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2023; 15:100252. [PMID: 36891261 PMCID: PMC9988428 DOI: 10.1016/j.ese.2023.100252] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Lithium's (Li) ubiquitous distribution in the environment is a rising concern due to its rapid proliferation in the modern electronic industry. Li enigmatic entry into the terrestrial food chain raises many questions and uncertainties that may pose a grave threat to living biota. We examined the leverage existing published articles regarding advances in global Li resources, interplay with plants, and possible involvement with living organisms, especially humans and animals. Globally, Li concentration (<10-300 mg kg-1) is detected in agricultural soil, and their pollutant levels vary with space and time. High mobility of Li results in higher accumulation in plants, but the clear mechanisms and specific functions remain unknown. Our assessment reveals the causal relationship between Li level and biota health. For example, lower Li intake (<0.6 mM in serum) leads to mental disorders, while higher intake (>1.5 mM in serum) induces thyroid, stomach, kidney, and reproductive system dysfunctions in humans and animals. However, there is a serious knowledge gap regarding Li regulatory standards in environmental compartments, and mechanistic approaches to unveil its consequences are needed. Furthermore, aggressive efforts are required to define optimum levels of Li for the normal functioning of animals, plants, and humans. This review is designed to revitalize the current status of Li research and identify the key knowledge gaps to fight back against the mountainous challenges of Li during the recent digital revolution. Additionally, we propose pathways to overcome Li problems and develop a strategy for effective, safe, and acceptable applications.
Collapse
Affiliation(s)
- Noman Shakoor
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Muhammad Adeel
- BNU-HKUST Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, 18 Jinfeng Road, Tangjiawan, Zhuhai, Guangdong, China
| | - Muhammad Arslan Ahmad
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Muhammad Zain
- Department of Botany, University of Lakki Marwat, KP, 28420, Pakistan
| | - Usman Waheed
- Department of Pathobiology, University of Veterinary & Animal Sciences, Jhang-campus, Lahore, 54000, Pakistan
| | - Rana Arsalan Javaid
- Crop Science Institute, National Agriculture Research Center, Islamabad, Pakistan
| | - Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Imran Azeem
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Pingfan Zhou
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Yuanbo Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Ghulam Jilani
- Institute of Soil Science, PMAS Arid Agriculture University, Rawalpindi, 46300, Pakistan
| | - Ming Xu
- BNU-HKUST Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, 18 Jinfeng Road, Tangjiawan, Zhuhai, Guangdong, China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Germany
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
9
|
Santos N, Picolo V, Domingues I, Perillo V, Villacis RAR, Grisolia CK, Oliveira M. Effects of environmental concentrations of caffeine on adult zebrafish behaviour: a short-term exposure scenario. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:63776-63787. [PMID: 37058238 PMCID: PMC10172215 DOI: 10.1007/s11356-023-26799-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 03/30/2023] [Indexed: 04/15/2023]
Abstract
Caffeine (CAF) has been considered an emerging environmental contaminant and its presence indicator of anthropogenic contamination. This study evaluated the effects of environmental concentrations of CAF (0, 0.5, 1.5, and 300 μg. L-1) on the behaviour of adult zebrafish (Danio rerio) after 7 days of exposure. The components of feeding, locomotion, boldness (new tank test), sociability (schooling test), and aggression (mirror test) were analysed. Growth rate and weight were investigated as complementary measures. CAF (0.5, 1.5, and 300 μg. L-1) reduced exploratory behaviour in zebrafish, increased feeding latency time (1.5, and 300 μg. L-1), and decreased growth rate and fish weight (300 μg. L-1). CAF also induced aggressive behaviour (0.5, 1.5, and 300 μg. L-1) and decreased appetence to the shoal (sociability) (0.5, and 1.5 μg. L-1). This study showed that low doses of CAF can induce behavioural effects in zebrafish that may have significant long-term impacts on vital ecological functions.
Collapse
Affiliation(s)
- Niedja Santos
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Victor Picolo
- Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, University Campus Darcy Ribeiro, Brasilia, DF, 70910-900, Brazil
- Graduate Program in Molecular Pathology, Faculty of Health Sciences, University of Brasilia, University Campus Darcy Ribeiro, Brasilia, DF, 70910-900, Brazil
| | - Inês Domingues
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Vitória Perillo
- Laboratory of Toxicological Genetics, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília, Distrito Federal, 70910-900, Brazil
| | - Rolando A R Villacis
- Laboratory of Toxicological Genetics, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília, Distrito Federal, 70910-900, Brazil
| | - Cesar Koppe Grisolia
- Laboratory of Toxicological Genetics, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília, Distrito Federal, 70910-900, Brazil
| | - Miguel Oliveira
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
10
|
Guerrero-Limón G, Nivelle R, Bich-Ngoc N, Duy-Thanh D, Muller M. A Realistic Mixture of Persistent Organic Pollutants Affects Zebrafish Development, Behavior, and Specifically Eye Formation by Inhibiting the Condensin I Complex. TOXICS 2023; 11:357. [PMID: 37112584 PMCID: PMC10146850 DOI: 10.3390/toxics11040357] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/07/2023] [Accepted: 04/07/2023] [Indexed: 06/19/2023]
Abstract
Persistent organic pollutants (POPs) are posing major environmental and health threats due to their stability, ubiquity, and bioaccumulation. Most of the numerous studies of these compounds deal with single chemicals, although real exposures always consist of mixtures. Thus, using different tests, we screened the effects on zebrafish larvae caused by exposure to an environmentally relevant POP mixture. Our mixture consisted of 29 chemicals as found in the blood of a Scandinavian human population. Larvae exposed to this POP mix at realistic concentrations, or sub-mixtures thereof, presented growth retardation, edemas, retarded swim bladder inflation, hyperactive swimming behavior, and other striking malformations such as microphthalmia. The most deleterious compounds in the mixture belong to the per- and polyfluorinated acids class, although chlorinated and brominated compounds modulated the effects. Analyzing the changes in transcriptome caused by POP exposure, we observed an increase of insulin signaling and identified genes involved in brain and eye development, leading us to propose that the impaired function of the condensin I complex caused the observed eye defect. Our findings contribute to the understanding of POP mixtures, their consequences, and potential threats to human and animal populations, indicating that more mechanistic, monitoring, and long-term studies are imperative.
Collapse
Affiliation(s)
- Gustavo Guerrero-Limón
- Laboratory for Organogenesis and Regeneration, GIGA Institute, University of Liège, 4000 Liège, Belgium; (G.G.-L.); (R.N.); (D.D.-T.)
| | - Renaud Nivelle
- Laboratory for Organogenesis and Regeneration, GIGA Institute, University of Liège, 4000 Liège, Belgium; (G.G.-L.); (R.N.); (D.D.-T.)
| | - Nguyen Bich-Ngoc
- VNU School of Interdisciplinary Studies, Vietnam National University (VNU), Hanoi 10000, Vietnam;
| | - Dinh Duy-Thanh
- Laboratory for Organogenesis and Regeneration, GIGA Institute, University of Liège, 4000 Liège, Belgium; (G.G.-L.); (R.N.); (D.D.-T.)
| | - Marc Muller
- Laboratory for Organogenesis and Regeneration, GIGA Institute, University of Liège, 4000 Liège, Belgium; (G.G.-L.); (R.N.); (D.D.-T.)
| |
Collapse
|
11
|
Jarema KA, Hunter DL, Hill BN, Olin JK, Britton KN, Waalkes MR, Padilla S. Developmental Neurotoxicity and Behavioral Screening in Larval Zebrafish with a Comparison to Other Published Results. TOXICS 2022; 10:256. [PMID: 35622669 PMCID: PMC9145655 DOI: 10.3390/toxics10050256] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/29/2022] [Accepted: 05/07/2022] [Indexed: 02/04/2023]
Abstract
With the abundance of chemicals in the environment that could potentially cause neurodevelopmental deficits, there is a need for rapid testing and chemical screening assays. This study evaluated the developmental toxicity and behavioral effects of 61 chemicals in zebrafish (Danio rerio) larvae using a behavioral Light/Dark assay. Larvae (n = 16-24 per concentration) were exposed to each chemical (0.0001-120 μM) during development and locomotor activity was assessed. Approximately half of the chemicals (n = 30) did not show any gross developmental toxicity (i.e., mortality, dysmorphology or non-hatching) at the highest concentration tested. Twelve of the 31 chemicals that did elicit developmental toxicity were toxic at the highest concentration only, and thirteen chemicals were developmentally toxic at concentrations of 10 µM or lower. Eleven chemicals caused behavioral effects; four chemicals (6-aminonicotinamide, cyclophosphamide, paraquat, phenobarbital) altered behavior in the absence of developmental toxicity. In addition to screening a library of chemicals for developmental neurotoxicity, we also compared our findings with previously published results for those chemicals. Our comparison revealed a general lack of standardized reporting of experimental details, and it also helped identify some chemicals that appear to be consistent positives and negatives across multiple laboratories.
Collapse
Affiliation(s)
- Kimberly A. Jarema
- Center for Public Health and Environmental Assessment, Immediate Office, Program Operations Staff, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Deborah L. Hunter
- Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA; (D.L.H.); (J.K.O.)
| | - Bridgett N. Hill
- ORISE Research Participation Program Hosted by EPA, Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA;
| | - Jeanene K. Olin
- Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA; (D.L.H.); (J.K.O.)
| | - Katy N. Britton
- ORAU Research Participation Program Hosted by EPA, Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA;
| | - Matthew R. Waalkes
- ORISE Research Participation Program Hosted by EPA, National Health and Environmental Effects Research Laboratory, Integrated Systems Toxicology Division, Genetic and Cellular Toxicology Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA;
| | - Stephanie Padilla
- Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA; (D.L.H.); (J.K.O.)
| |
Collapse
|
12
|
Malafaia G, Nóbrega RH, Luz TMD, Araújo APDC. Shedding light on the impacts of gestational exposure to polystyrene nanoplastics on the reproductive performance of Poecilia reticulata female and on the biochemical response of embryos. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:127873. [PMID: 34863562 DOI: 10.1016/j.jhazmat.2021.127873] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
Although the toxicity of nanoplastics (NPs) has already been reported in experimental aquatic models, their possible effects on the reproductive performance of viviparous freshwater fish and their consequences for embryos, so far, are unknown. Thus, we aimed to evaluate whether the gestational exposure of Poecilia reticulata to polystyrene NPs (PS NPs) impacts the reproductive performance of females, induces teratogenic effects and/or predictive alterations of redox unbalance and cholinesterasic effect. Our results demonstrate that gestational exposure of P. reticulata females (for 30 days) to PS NPs (50 µg/L) affected reproductive aspects of the animals, inferred by the lower percentage of pregnancy and reduced offspring quantity. Although we did not observe teratogenic effect, we observed that the accumulation of PS NPs in embryos was significantly correlated with a redox unbalance, without, however, having a cholinesterasic effect (via evaluation of AChE and BChE activity) in embryos. Thus, by evidencing the accumulation of PS NPs in embryos of P. reticulata females exposed to the pollutant during the gestational period, we confirm not only the plausibility of the maternal transfer of these nanomaterials, but also their consequent physiological impacts on the offspring, which has not yet been demonstrated in live-bearing freshwater fish.
Collapse
Affiliation(s)
- Guilherme Malafaia
- Programa de Pós-Graduação em Conservação de Recursos Naturais do Cerrado, Instituto Federal Goiano - Campus Urutaí (GO/Brasil), Brazil; Programa de Pós-Graduação em Ecologia e Conservação de Recursos Naturais, Universidade Federal de Uberlândia (MG/Brasil), Brazil; Programa de Pós-Graduação em Biotecnologia e Biodiversidade, Universidade Federal de Goiás and Instituto Federal Goiano (GO/Brasil), Brazil; Departamento de Biologia Estrutural e Funcional, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (SP/Brasil), Brazil.
| | - Rafael Henrique Nóbrega
- Departamento de Biologia Estrutural e Funcional, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (SP/Brasil), Brazil
| | - Thiarlen Marinho da Luz
- Laboratório de Pesquisas Biológicas, Instituto Federal Goiano - Campus Urutaí (GO/Brasil), Brazil
| | - Amanda Pereira da Costa Araújo
- Laboratório de Pesquisas Biológicas, Instituto Federal Goiano - Campus Urutaí (GO/Brasil), Brazil; Programa de Pós-Graduação em Ciências Ambientais, Universidade Federal de Goias - Campus Samambaia (GO/Brasil), Brazil
| |
Collapse
|
13
|
Hoyberghs J, Bars C, Ayuso M, Van Ginneken C, Foubert K, Van Cruchten S. DMSO Concentrations up to 1% are Safe to be Used in the Zebrafish Embryo Developmental Toxicity Assay. FRONTIERS IN TOXICOLOGY 2022; 3:804033. [PMID: 35295145 PMCID: PMC8915880 DOI: 10.3389/ftox.2021.804033] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/02/2021] [Indexed: 12/03/2022] Open
Abstract
Dimethyl sulfoxide (DMSO) is a popular solvent for developmental toxicity testing of chemicals and pharmaceuticals in zebrafish embryos. In general, it is recommended to keep the final DMSO concentration as low as possible for zebrafish embryos, preferably not exceeding 100 μL/L (0.01%). However, higher concentrations of DMSO are often required to dissolve compounds in an aqueous medium. The aim of this study was to determine the highest concentration of DMSO that can be safely used in our standardized Zebrafish Embryo Developmental Toxicity Assay (ZEDTA). In the first part of this study, zebrafish embryos were exposed to different concentrations (0–2%) of DMSO. No increase in lethality or malformations was observed when using DMSO concentrations up to 1%. In a follow-up experiment, we assessed whether compounds that cause no developmental toxicity in the ZEDTA remain negative when dissolved in 1% DMSO, as false positive results due to physiological disturbances by DMSO should be avoided. To this end, zebrafish embryos were exposed to ascorbic acid and hydrochlorothiazide dissolved in 1% DMSO. Negative control groups were also included. No significant increase in malformations or lethality was observed in any of the groups. In conclusion, DMSO concentrations up to 1% can be safely used to dissolve compounds in the ZEDTA.
Collapse
Affiliation(s)
- Jente Hoyberghs
- Department of Veterinary Sciences, Comparative Perinatal Development, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Chloé Bars
- Department of Veterinary Sciences, Comparative Perinatal Development, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Miriam Ayuso
- Department of Veterinary Sciences, Comparative Perinatal Development, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Chris Van Ginneken
- Department of Veterinary Sciences, Comparative Perinatal Development, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Kenn Foubert
- Department of Pharmaceutical Sciences, Natural Products and Food Research and Analysis (NatuRA), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Steven Van Cruchten
- Department of Veterinary Sciences, Comparative Perinatal Development, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
14
|
Bars C, Hoyberghs J, Valenzuela A, Buyssens L, Ayuso M, Van Ginneken C, Labro AJ, Foubert K, Van Cruchten SJ. Developmental Toxicity and Biotransformation of Two Anti-Epileptics in Zebrafish Embryos and Early Larvae. Int J Mol Sci 2021; 22:12696. [PMID: 34884510 PMCID: PMC8657848 DOI: 10.3390/ijms222312696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 12/12/2022] Open
Abstract
The zebrafish (Danio rerio) embryo is gaining interest as a bridging tool between in-vitro and in-vivo developmental toxicity studies. However, cytochrome P450 (CYP)-mediated drug metabolism in this model is still under debate. Therefore, we investigated the potential of zebrafish embryos and larvae to bioactivate two known anti-epileptics, carbamazepine (CBZ) and phenytoin (PHE), to carbamazepine-10,11-epoxide (E-CBZ) and 5-(4-hydroxyphenyl)-5-phenylhydantoin (HPPH), respectively. First, zebrafish were exposed to CBZ, PHE, E-CBZ and HPPH from 5¼- to 120-h post fertilization (hpf) and morphologically evaluated. Second, the formations of E-CBZ and HPPH were assessed in culture medium and in whole-embryo extracts at different time points by targeted LC-MS. Finally, E-CBZ and HPPH formation was also assessed in adult zebrafish liver microsomes and compared with those of human, rat, and rabbit. The present study showed teratogenic effects for CBZ and PHE, but not for E-CBZ and HPPH. No HPPH was detected during organogenesis and E-CBZ was only formed at the end of organogenesis. E-CBZ and HPPH formation was also very low-to-negligible in adult zebrafish compared with the mammalian species. As such, other metabolic pathways than those of mammals are involved in the bioactivation of CBZ and PHE, or, these anti-epileptics are teratogens and do not require bioactivation in the zebrafish.
Collapse
Affiliation(s)
- Chloé Bars
- Comparative Perinatal Development, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; (C.B.); (J.H.); (A.V.); (L.B.); (M.A.); (C.V.G.)
| | - Jente Hoyberghs
- Comparative Perinatal Development, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; (C.B.); (J.H.); (A.V.); (L.B.); (M.A.); (C.V.G.)
| | - Allan Valenzuela
- Comparative Perinatal Development, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; (C.B.); (J.H.); (A.V.); (L.B.); (M.A.); (C.V.G.)
| | - Laura Buyssens
- Comparative Perinatal Development, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; (C.B.); (J.H.); (A.V.); (L.B.); (M.A.); (C.V.G.)
| | - Miriam Ayuso
- Comparative Perinatal Development, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; (C.B.); (J.H.); (A.V.); (L.B.); (M.A.); (C.V.G.)
| | - Chris Van Ginneken
- Comparative Perinatal Development, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; (C.B.); (J.H.); (A.V.); (L.B.); (M.A.); (C.V.G.)
| | - Alain J. Labro
- Laboratory of Molecular, Cellular and Network Excitability, Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium;
- Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Kenn Foubert
- Natural Products and Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium;
| | - Steven J. Van Cruchten
- Comparative Perinatal Development, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; (C.B.); (J.H.); (A.V.); (L.B.); (M.A.); (C.V.G.)
| |
Collapse
|
15
|
Félix L, Lobato-Freitas C, Monteiro SM, Venâncio C. 24-Epibrassinolide modulates the neurodevelopmental outcomes of high caffeine exposure in zebrafish (Danio rerio) embryos. Comp Biochem Physiol C Toxicol Pharmacol 2021; 249:109143. [PMID: 34284067 DOI: 10.1016/j.cbpc.2021.109143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 10/20/2022]
Abstract
Previous embryonic fish data have shown caffeine to induce potential teratogenic and long-term neurodevelopmental outcomes through oxidative stress-mediated apoptosis. In this context, antioxidants may have the potential to counteract the caffeine-induced effects. Therefore, the present study aimed to investigate the potential protective role of 24-epibrassinolide (24-EPI), a natural brassinosteroid with proven antioxidant properties, against caffeine-induced teratogenic effects during early zebrafish development. Embryos (~2 h post-fertilization - hpf) were exposed to 0.5 mM caffeine, co-exposed to 24-EPI (0.01, 0.1 and 1 μM) and to 24-EPI alone (1 μM) for 96 h. During exposure, lethal and sublethal developmental parameters were evaluated. At the end of the exposure, biochemical evaluations were made, and 24 h after, different behavioural paradigms were assessed. An increased number of animals showing oedema and malformations were observed after caffeine exposure, while these were reduced after co-exposure to 24-EPI concentration, namely the tail curvature. The results showed oxidative stress and related parameters similar among treatments. Yet, caffeine exposure resulted in locomotor deficits (decreased speed and distance) and disrupted anxiety-like and avoidance responses. The co-exposure to caffeine and to the highest 24-EPI concentrations resulted in less pronounced behavioural deficits. Overall, there was an absence of effects in the embryo/larvae exposed solely to 24-EPI, while caffeine caused developmental and neurotoxic effects. Although further studies are needed, the results showed promising protective effects of the highest 24-EPI concentration tested against the toxicity induced by caffeine in zebrafish.
Collapse
Affiliation(s)
- Luís Félix
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production. University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Institute for Research and Innovation in Health (i3s), Laboratory Animal Science (LAS), Institute of Molecular and Cell Biology (IBMC), University of Porto (UP), Porto, Portugal.
| | - Carolina Lobato-Freitas
- Life Sciences and Environment School (ECVA), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Sandra M Monteiro
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production. University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Life Sciences and Environment School (ECVA), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Carlos Venâncio
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production. University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Veterinary and Animal Science Research Center (CECAV), University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; Department of Animal Science, School of Agrarian and Veterinary Sciences (ECAV), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| |
Collapse
|
16
|
Valdiglesias V, Fernández-Bertólez N, Lema-Arranz C, Rodríguez-Fernández R, Pásaro E, Reis AT, Teixeira JP, Costa C, Laffon B. Salivary Leucocytes as In Vitro Model to Evaluate Nanoparticle-Induced DNA Damage. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1930. [PMID: 34443762 PMCID: PMC8400528 DOI: 10.3390/nano11081930] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/11/2021] [Accepted: 07/21/2021] [Indexed: 02/07/2023]
Abstract
Metal oxide nanoparticles (NPs) have a wide variety of applications in many consumer products and biomedical practices. As a result, human exposure to these nanomaterials is highly frequent, becoming an issue of concern to public health. Recently, human salivary leucocytes have been proposed as an adequate non-invasive alternative to peripheral blood leucocytes to evaluate genotoxicity in vitro. The present study focused on proving the suitability of salivary leucocytes as a biomatrix in the comet assay for in vitro nanogenotoxicity studies, by testing some of the metal oxide NPs most frequently present in consumer products, namely, titanium dioxide (TiO2), zinc oxide (ZnO), and cerium dioxide (CeO2) NPs. Primary and oxidative DNA damage were evaluated by alkaline and hOGG1-modified comet assay, respectively. Any possible interference of the NPs with the methodological procedure or the hOGG1 activity was addressed before performing genotoxicity evaluation. Results obtained showed an increase of both primary and oxidative damage after NPs treatments. These data support the use of salivary leucocytes as a proper and sensitive biological sample for in vitro nanogenotoxicity studies, and contribute to increase the knowledge on the impact of metal oxide NPs on human health, reinforcing the need for a specific regulation of the nanomaterials use.
Collapse
Affiliation(s)
- Vanessa Valdiglesias
- Universidade da Coruña, Grupo DICOMOSA, Centro de Investigaciones Científicas Avanzadas (CICA), Departamento de Biología, Facultad de Ciencias, Campus A Zapateira s/n, 15071 A Coruña, Spain;
- Instituto de Investigación Biomédica de A Coruña (INIBIC), AE CICA-INIBIC, Oza, 15071 A Coruña, Spain; (N.F.-B.); (R.R.-F.); (E.P.); (B.L.)
| | - Natalia Fernández-Bertólez
- Instituto de Investigación Biomédica de A Coruña (INIBIC), AE CICA-INIBIC, Oza, 15071 A Coruña, Spain; (N.F.-B.); (R.R.-F.); (E.P.); (B.L.)
- Universidade da Coruña, Grupo DICOMOSA, Centro de Investigaciones Científicas Avanzadas (CICA), Departamento de Psicología, Facultad de Ciencias de la Educación, Campus Elviña s/n, 15071 A Coruña, Spain
| | - Carlota Lema-Arranz
- Universidade da Coruña, Grupo DICOMOSA, Centro de Investigaciones Científicas Avanzadas (CICA), Departamento de Biología, Facultad de Ciencias, Campus A Zapateira s/n, 15071 A Coruña, Spain;
- Instituto de Investigación Biomédica de A Coruña (INIBIC), AE CICA-INIBIC, Oza, 15071 A Coruña, Spain; (N.F.-B.); (R.R.-F.); (E.P.); (B.L.)
| | - Raquel Rodríguez-Fernández
- Instituto de Investigación Biomédica de A Coruña (INIBIC), AE CICA-INIBIC, Oza, 15071 A Coruña, Spain; (N.F.-B.); (R.R.-F.); (E.P.); (B.L.)
- Universidade da Coruña, Grupo DICOMOSA, Centro de Investigaciones Científicas Avanzadas (CICA), Departamento de Psicología, Facultad de Ciencias de la Educación, Campus Elviña s/n, 15071 A Coruña, Spain
| | - Eduardo Pásaro
- Instituto de Investigación Biomédica de A Coruña (INIBIC), AE CICA-INIBIC, Oza, 15071 A Coruña, Spain; (N.F.-B.); (R.R.-F.); (E.P.); (B.L.)
- Universidade da Coruña, Grupo DICOMOSA, Centro de Investigaciones Científicas Avanzadas (CICA), Departamento de Psicología, Facultad de Ciencias de la Educación, Campus Elviña s/n, 15071 A Coruña, Spain
| | - Ana Teresa Reis
- Environmental Health Department, National Institute of Health, 4000-055 Porto, Portugal; (A.T.R.); (J.P.T.); (C.C.)
- EPIUnit-Instituto de Saúde Pública, Universidade do Porto, 4050-600 Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600 Porto, Portugal
| | - João Paulo Teixeira
- Environmental Health Department, National Institute of Health, 4000-055 Porto, Portugal; (A.T.R.); (J.P.T.); (C.C.)
- EPIUnit-Instituto de Saúde Pública, Universidade do Porto, 4050-600 Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600 Porto, Portugal
| | - Carla Costa
- Environmental Health Department, National Institute of Health, 4000-055 Porto, Portugal; (A.T.R.); (J.P.T.); (C.C.)
- EPIUnit-Instituto de Saúde Pública, Universidade do Porto, 4050-600 Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600 Porto, Portugal
| | - Blanca Laffon
- Instituto de Investigación Biomédica de A Coruña (INIBIC), AE CICA-INIBIC, Oza, 15071 A Coruña, Spain; (N.F.-B.); (R.R.-F.); (E.P.); (B.L.)
- Universidade da Coruña, Grupo DICOMOSA, Centro de Investigaciones Científicas Avanzadas (CICA), Departamento de Psicología, Facultad de Ciencias de la Educación, Campus Elviña s/n, 15071 A Coruña, Spain
| |
Collapse
|
17
|
Torres T, Ruivo R, Santos MM. Epigenetic biomarkers as tools for chemical hazard assessment: Gene expression profiling using the model Danio rerio. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:144830. [PMID: 33592472 DOI: 10.1016/j.scitotenv.2020.144830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/26/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Recent reports raise the concern that exposure to several environmental chemicals may induce persistent changes that go beyond the exposed organisms, being transferred to subsequent generations even in the absence of the original chemical insult. These changes in subsequent non-exposed generations have been related to epigenetic changes. Although highly relevant for hazard and risk assessment, biomarkers of epigenetic modifications that can be associated with adversity, are still not integrated into hazard assessment frameworks. Here, in order to validate new biomarkers of epigenetic modifications in a popular animal model, zebrafish embryos were exposed to different concentrations of Bisphenol A (0.01, 0.1, 1 and 10 mg/L) and Valproic Acid (0.8, 4, 20 and 100 mg/L), two chemicals reported to alter the modulation of the epigenome. Morphological abnormalities and epigenetic changes were assessed at 80 hours-post fertilization, including DNA global methylation and gene expression of both DNA and histone epigenetic modifications. Gene expression changes were detected at concentrations below those inducing morphological abnormalities. These results further support the importance of combining epigenetic biomarkers with apical endpoints to improve guidelines for chemical testing and hazard assessment, and favour the integration of new biomarkers of epigenetic modifications into the standardized OECD test guideline 236 with zebrafish embryos.
Collapse
Affiliation(s)
- Tiago Torres
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Group of Endocrine Disruptors and Emerging Contaminants, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Raquel Ruivo
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Group of Endocrine Disruptors and Emerging Contaminants, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Miguel Machado Santos
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Group of Endocrine Disruptors and Emerging Contaminants, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| |
Collapse
|
18
|
Martini GDA, Montagner CC, Viveiros W, Quinaglia GA, França DD, Munin NCG, Lopes-Ferreira M, Rogero SO, Rogero JR. Emerging contaminant occurrence and toxic effects on zebrafish embryos to assess the adverse effects caused by mixtures of substances in the environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:20313-20329. [PMID: 33405144 DOI: 10.1007/s11356-020-11963-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
The contaminants of emerging concern (CECs) have been receiving global attention due to their worldwide presence in water bodies. The CECs could be originated from synthetic or natural sources, and they are not commonly monitored, although these substances are continuously reaching the aquatic environment. The main goal of this study was to determine the occurrence of some target CECs in São Paulo state surface water, once there is practically no information on the presence and concentration range of these substances at the studied sites. In addition, the present study aimed to assess adverse effects in the non-target fish embryo of Danio rerio (zebrafish) after exposure to surface water organic extract samples during 96 h using FET test. The CECs in surface water samples were determined by solid-phase extraction and liquid chromatography coupled by mass spectrometry. A 2-year study was assessed in 7 rivers and 3 reservoirs at São Paulo state, where 25 of the 30 analyzed substances were quantified, being caffeine the substance with the highest concentration range (5.5 ng L-1 to 69 μg L-1) and detected in 95% of analyzed samples, followed by bisphenol A (6.5-1300 ng L-1) and carbendazim (4.7-285 ng L-1), found in 50% and 85% of the analyzed samples, respectively. The chemical analysis and biological test were not performed in order to show a direct relationship between concentrations and observed effects on embryos; however, the combined approach can provide a better understanding of the adverse effects caused by mixtures of substances at relevant environmental concentrations. Regarding the adverse effects, it was observed that in the samples from sites with higher anthropogenic activity in the surroundings, there was also a higher mortality rate in organisms. At the Ribeirão Pires River and Sapucaí-Guaçu River, the mortality rate during the 2-year study was 21.6% and 9.3%, respectively. The morphological abnormality rates were higher at Ribeirão Grande (21.4%) and Ribeirão Pires (29.5%) Rivers. The obtained results aim to show that even in low concentrations (ng-μg L-1) the CECs can cause adverse effects on non-target species, and because of that, new chemical indicators would be important to monitor the water quality and protect the aquatic biota.
Collapse
Affiliation(s)
- Gisela de Assis Martini
- Centro de Química e Meio Ambiente, Instituto de Pesquisas Energéticas e Nucleares, São Paulo, Brazil.
| | | | | | | | | | - Nívea Cristina Guedes Munin
- Instituto de Química, Universidade Estadual de Campinas, São Paulo, Brazil
- Universidade Federal do Amazonas, Manaus, Brazil
| | | | - Sizue Ota Rogero
- Centro de Química e Meio Ambiente, Instituto de Pesquisas Energéticas e Nucleares, São Paulo, Brazil
| | - José Roberto Rogero
- Centro de Química e Meio Ambiente, Instituto de Pesquisas Energéticas e Nucleares, São Paulo, Brazil
| |
Collapse
|
19
|
Erhunmwunse NO, Tongo I, Ezemonye LI. Acute effects of acetaminophen on the developmental, swimming performance and cardiovascular activities of the African catfish embryos/larvae (Clarias gariepinus). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111482. [PMID: 33120276 DOI: 10.1016/j.ecoenv.2020.111482] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
Acetaminophen is a widely used analgesic that has been detected in many water bodies with few reports concerning its potential toxicity to fish. This study sought to assess the developmental, swimming performance and cardiovascular activities of embryo/larvae catfish (Clarias gariepinus) exposed to acetaminophen. The Organization for Economic Development (OECD) Fish Embryo Acute Toxicity Test (OECD 236) was employed. Fertilized embryo were exposed to different concentrations of acetaminophen (0, 0.5, 1, 10 µg/L) for 96 h. Hatching rates of the embryo were observed to decrease with increasing concentrations of acetaminophen. Fish embryo exposed to acetaminophen displayed varying levels of teratogenic effects at different levels of development in a dose-dependent manner. The results also showed a significant (p < 0.05) dose-dependent increase in swimming speed and movement patterns in fish larvae exposed to acetaminophen, with distance travelled in larvae exposed to the highest concentration of acetaminophen (10 µg/L) about eight (8) times the distance travelled by the control larvae, indicating that acetaminophen-induced erratic swimming behaviour in the catfish species. Cardiotoxicity was evident, with a significant reduction in heartbeat rate with increasing concentrations of acetaminophen. The results showed that exposure to acetaminophen resulted in teratogenic, neurotoxic and cardiotoxic effects in embryo/larvae of Clarias gariepinus. The findings suggest that acetaminophen which has recently been detected in many water bodies could potentially impact on survival of aquatic life, especially catfish.
Collapse
Affiliation(s)
| | - Isioma Tongo
- Laboratory for Ecotoxicology and Environmental Forensics, University of Benin, PMB 1154, Benin City, Nigeria; Igbinedion University Okada, Benin City, Edo State, Nigeria
| | - Lawrence Ikechukwu Ezemonye
- Laboratory for Ecotoxicology and Environmental Forensics, University of Benin, PMB 1154, Benin City, Nigeria; Igbinedion University Okada, Benin City, Edo State, Nigeria
| |
Collapse
|
20
|
Rajasekar M. Synthesis and characterization of hesperetin derivatives and toxicity level of the zebrafish model. Heliyon 2021; 7:e06066. [PMID: 33537489 PMCID: PMC7841361 DOI: 10.1016/j.heliyon.2021.e06066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/10/2020] [Accepted: 01/19/2021] [Indexed: 11/06/2022] Open
Abstract
Hesperetin derivatives were synthesized through the esterification of acid chlorides with hesperetin under ambient reaction conditions with good yields. The product was confirmed using different spectral techniques. It was treated on zebrafish embryos to study the lethality, phenotypic deformities, and toxicity level of the compound. In that assessment, embryos showed lethality towards 3e at the minimal concentration. It assesses slow heartbeat since the compound loaded, the curvature on the back, upcurved fish, Cardiac chamber bulging, and poor survival rate in 72 h. 3a shows less toxicity more than other compounds. It shows only pericardial edema at higher concentration and 3c induced pericardial edema and upcurved tail at a medium range of the concentration. But both compounds were shown a good survival ratio at the minimal concentration.
Collapse
Affiliation(s)
- Mani Rajasekar
- Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology (Deemed to be University), Chennai 600 119, India
| |
Collapse
|
21
|
Cassar S, Adatto I, Freeman JL, Gamse JT, Iturria I, Lawrence C, Muriana A, Peterson RT, Van Cruchten S, Zon LI. Use of Zebrafish in Drug Discovery Toxicology. Chem Res Toxicol 2019; 33:95-118. [PMID: 31625720 DOI: 10.1021/acs.chemrestox.9b00335] [Citation(s) in RCA: 318] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Unpredicted human safety events in clinical trials for new drugs are costly in terms of human health and money. The drug discovery industry attempts to minimize those events with diligent preclinical safety testing. Current standard practices are good at preventing toxic compounds from being tested in the clinic; however, false negative preclinical toxicity results are still a reality. Continual improvement must be pursued in the preclinical realm. Higher-quality therapies can be brought forward with more information about potential toxicities and associated mechanisms. The zebrafish model is a bridge between in vitro assays and mammalian in vivo studies. This model is powerful in its breadth of application and tractability for research. In the past two decades, our understanding of disease biology and drug toxicity has grown significantly owing to thousands of studies on this tiny vertebrate. This Review summarizes challenges and strengths of the model, discusses the 3Rs value that it can deliver, highlights translatable and untranslatable biology, and brings together reports from recent studies with zebrafish focusing on new drug discovery toxicology.
Collapse
Affiliation(s)
- Steven Cassar
- Preclinical Safety , AbbVie , North Chicago , Illinois 60064 , United States
| | - Isaac Adatto
- Stem Cell and Regenerative Biology , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Jennifer L Freeman
- School of Health Sciences , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Joshua T Gamse
- Drug Safety Evaluation , Bristol-Myers Squibb , New Brunswick , New Jersey 08901 , United States
| | | | - Christian Lawrence
- Aquatic Resources Program , Boston Children's Hospital , Boston , Massachusetts 02115 , United States
| | | | - Randall T Peterson
- Pharmacology and Toxicology, College of Pharmacy , University of Utah , Salt Lake City , Utah 84112 , United States
| | | | - Leonard I Zon
- Stem Cell Program and Division of Hematology/Oncology, Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department , Harvard University , Boston , Massachusetts 02138 , United States
| |
Collapse
|
22
|
Jalil AS, Reddy SB, Plautz CZ. Cellular effects of diquat dibromide exposure: Interference with Wnt signaling and cytoskeletal development. TOXICOLOGY RESEARCH AND APPLICATION 2019. [DOI: 10.1177/2397847319858563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The herbicidal action of diquat dibromide (DD) on plant cells is due primarily to the initiation of reactive oxygen species (ROS) formation, lipoperoxidation, and apoptotic cell death. It has been demonstrated that oxidative stress also occurs in animal cells exposed to high concentrations of DD; however, observations of DD’s effects on animal cells at concentrations below the reported ROS-initiation threshold suggest that some of these effects may not be attributable to ROS-induced cell death. Our results suggest that DD causes disruption of the Wnt pathway, calcium dysregulation, and cytoskeletal damage during development. Using embryos of the pond snail Lymnaea palustris as our model organism, we observed increased mortality, developmental delay and abnormality, altered motility, calcium dysregulation, decreased heart rate, and arrhythmia in embryos exposed to DD. Sperm extracted from adult snails that were exposed to DD exhibit altered motility, increased abundance, and high mortality. Effects were quantified via real-time imaging, heart rate assessment, flow cytometry, and mortality scoring. We propose that there are two models for the mechanism of DD’s action in animal cells: at low concentrations (≤28 µg/L), apoptotic cell death does not occur, but cytoskeletal elements, calcium regulation, and Wnt signaling are compromised, causing irreversible damage in L. palustris embryos; such damage is partially remediated with antioxidants or lithium chloride. At high concentrations of DD (≥44.4 µg/L), calcium dysregulation may be triggered, leading to the establishment of an intracellular positive feedback loop of ROS formation in the mitochondria, calcium release from the endoplasmic reticulum, calcium efflux, and apoptotic cell death. Permanent cellular damage occurring from exposure to sublethal concentrations of this widespread herbicide underscores the importance of research that elucidates the mechanism of DD on nontarget organisms.
Collapse
Affiliation(s)
- Amaris S Jalil
- Department of Biology, Shepherd University, Shepherdstown, WV, USA
| | - Sneha B Reddy
- Department of Biology, Shepherd University, Shepherdstown, WV, USA
| | | |
Collapse
|
23
|
Mazzitelli JY, Budzinski H, Cachot J, Geffard O, Marty P, Chiffre A, François A, Bonnafe E, Geret F. Evaluation of psychiatric hospital wastewater toxicity: what is its impact on aquatic organisms? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:26090-26102. [PMID: 29971740 DOI: 10.1007/s11356-018-2501-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 06/04/2018] [Indexed: 06/08/2023]
Abstract
The primary source of pharmaceuticals to the aquatic environment is the discharge of wastewater effluents. Pharmaceuticals are a large and diverse group of compounds. Among them, psychotropic substances are particularly interesting to study due to their specific known mode of action. The present study was performed to investigate the effects of wastewater effluents from a psychiatric hospital wastewater treatment plant (WWTP) on several aquatic organisms. All the analyzed pharmaceuticals (10 compounds) were detected in WWTP effluents as well as in the receiving river. Although the environmental concentrations were generally at trace levels (ng L-1 to μg L-1), induce toxic effects were observed. This study showed the effects of the WWTP effluents on the oogenesis and/or embryogenesis of amphipod crustacean Gammarus fossarum, Japanese fish medaka Oryzias latipes, mollusk Radix peregra, and planarian Schmidtea polychroa. A decrease of the number of oocytes and produced embryos was observed for G. fossarum and S. polychroa. Similarly, the hatching rate of R. peregra was affected by effluents. In the receiving river, the macroinvertebrate community was affected by the wastewater effluents discharge.
Collapse
Affiliation(s)
- Jean-Yves Mazzitelli
- Laboratoire Biochimie et Toxicologie des Substances Bioactives (EA BTSB 7417), University of Toulouse, INU Champollion, Albi, France
| | | | - Jérôme Cachot
- EPOC UMR 5805, University of Bordeaux, Pessac, France
| | - Olivier Geffard
- Irstea, UR MALY (Freshwater Systems, Ecology and Pollution), Villeurbanne, France
| | - Pierre Marty
- Laboratoire Biochimie et Toxicologie des Substances Bioactives (EA BTSB 7417), University of Toulouse, INU Champollion, Albi, France
| | | | - Adeline François
- Irstea, UR MALY (Freshwater Systems, Ecology and Pollution), Villeurbanne, France
| | - Elsa Bonnafe
- Laboratoire Biochimie et Toxicologie des Substances Bioactives (EA BTSB 7417), University of Toulouse, INU Champollion, Albi, France
| | - Florence Geret
- Laboratoire Biochimie et Toxicologie des Substances Bioactives (EA BTSB 7417), University of Toulouse, INU Champollion, Albi, France.
| |
Collapse
|
24
|
Li X, Zhou S, Qian Y, Xu Z, Yu Y, Xu Y, He Y, Zhang Y. The assessment of the eco-toxicological effect of gabapentin on early development of zebrafish and its antioxidant system. RSC Adv 2018; 8:22777-22784. [PMID: 35539713 PMCID: PMC9081491 DOI: 10.1039/c8ra04250k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 06/02/2018] [Indexed: 12/11/2022] Open
Abstract
Gabapentin (GAB) is an emerging contaminant that is frequently detected in water bodies across the globe. The present study used zebrafish as a model organism to investigate the effects of GAB on the early development of zebrafish and on its antioxidant system. Acute toxicity tests indicated that the 96 h LC50 value of GAB for zebrafish embryos was 59.9 g L-1. Further, it was observed that GAB causes malformation of embryos such as hemagglutination and pericardial edema. Compared to the control group, a significant enhancement (p < 0.05) of heartbeat rates was found at GAB concentrations exceeding 50 mg L-1, while the swimming frequency was clearly increased upon exposure to GAB at a concentration of 100 mg L-1 (p < 0.05). Additionally, the development of the zebrafish embryo was also negatively impacted after exposure to GAB as demonstrated by significantly decreased body lengths. Exposure to GAB at concentrations exceeding 50 mg L-1 significantly influenced the development of zebrafish, leading to malformation of organs and abnormal movements. Although no significant developmental effects of GAB were observed at environmentally relevant concentrations (0.1 and 10 μg L-1), further research about the antioxidant system confirmed that severe oxidant injury happened inside the organisms. catalase (CAT), lactate dehydrogenase (LDH), glutathione S-transferase (GST), glutathione (GSH) and the ability of inhibition of hydroxyl radicals (IHR) were used as biomarkers in the present study to illustrate GAB toxicity at environmentally relevant concentrations. The results showed that activities of CAT, LDH and GST as well as IHR were all elevated after GAB exposure, which proved that ROS were formed in the body as derived from GAB exposure. Among all of these biomarkers, CAT was the most sensitive one to evaluate the influence of GAB, and showed a significant increase even at a very low exposure concentration (0.1 μg L-1).
Collapse
Affiliation(s)
- Xiuwen Li
- School of Environmental Sciences and Engineering, Nanjing Tech University Jiangsu 211816 P. R. China +86-25-58139656
| | - Shuangxi Zhou
- School of Environmental Sciences and Engineering, Nanjing Tech University Jiangsu 211816 P. R. China +86-25-58139656
| | - Yuting Qian
- School of Environmental Sciences and Engineering, Nanjing Tech University Jiangsu 211816 P. R. China +86-25-58139656
| | - Zhuoran Xu
- School of Environmental Sciences and Engineering, Nanjing Tech University Jiangsu 211816 P. R. China +86-25-58139656
| | - Yang Yu
- School of Environmental Sciences and Engineering, Nanjing Tech University Jiangsu 211816 P. R. China +86-25-58139656
| | - Yanhua Xu
- School of Environmental Sciences and Engineering, Nanjing Tech University Jiangsu 211816 P. R. China +86-25-58139656
| | - Yide He
- School of Environmental Sciences and Engineering, Nanjing Tech University Jiangsu 211816 P. R. China +86-25-58139656
- Hunan Provincial Key Laboratory of Renewable Energy Electric-Technology Changsha Hunan 410076 P. R. China
| | - Yongjun Zhang
- School of Environmental Sciences and Engineering, Nanjing Tech University Jiangsu 211816 P. R. China +86-25-58139656
| |
Collapse
|
25
|
Andriamisaina N, Mitaine-Offer AC, Pruvot B, Chluba J, Miyamoto T, Tanaka C, Lacaille-Dubois MA. Phytochemistry of Weigela x “kosteriana variegata” (Caprifoliaceae). Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801300406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
One new triterpene glycoside 3- O-β-D-xylopyranosyl-(1→4)-[β-D-glucopyranosyl-(1→3)]-β-D-xylopyranosyl-(1→4)-β-D-xylopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranosyloleanolic acid, was isolated from Weigela x “kosteriana variegata” (Caprifoliaceae), with three known ones. Their structures were characterized by a combination of mass spectrometry and 1D and 2D NMR spectrocopic techniques including 1H- and 13C NMR, COSY, TOCSY, NOESY, HSQC, and HMBC experiments. The toxicological properties of some glycosides were determined with a zebrafish-based assay. The results show that the most active compounds were toxic to the larvae in the range of 1 μM.
Collapse
Affiliation(s)
- Nampoina Andriamisaina
- PEPITE EA 4267, Laboratoire de Pharmacognosie, UFR des Sciences de Santé, Université de Bourgogne Franche-Comté, Dijon, France
| | - Anne-Claire Mitaine-Offer
- PEPITE EA 4267, Laboratoire de Pharmacognosie, UFR des Sciences de Santé, Université de Bourgogne Franche-Comté, Dijon, France
| | - Benoist Pruvot
- UMR INSERM 1231 ‘Lipides, Nutrition, Cancer-LNC', Dijon, France
| | - Johanna Chluba
- UFR SVTE - UFR Sciences de la Vie, de la Terre et de l'Environnement, Université de Bourgogne Franche-Comté, Dijon, France
- UMR INSERM 1231 ‘Lipides, Nutrition, Cancer-LNC', Dijon, France
| | - Tomofumi Miyamoto
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Chiaki Tanaka
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Marie-Aleth Lacaille-Dubois
- PEPITE EA 4267, Laboratoire de Pharmacognosie, UFR des Sciences de Santé, Université de Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
26
|
Rah YC, Yoo MH, Choi J, Park S, Park HC, Oh KH, Lee SH, Kwon SY. In vivo assessment of hair cell damage and developmental toxicity caused by gestational caffeine exposure using zebrafish (Danio rerio) models. Neurotoxicol Teratol 2017; 64:1-7. [DOI: 10.1016/j.ntt.2017.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 05/17/2017] [Accepted: 08/24/2017] [Indexed: 12/12/2022]
|
27
|
Pype C, Verbueken E, Saad MA, Bars C, Van Ginneken CJ, Knapen D, Van Cruchten SJ. Antioxidants reduce reactive oxygen species but not embryotoxicity in the metabolic Danio rerio test (mDarT). Reprod Toxicol 2017; 72:62-73. [PMID: 28663077 DOI: 10.1016/j.reprotox.2017.06.132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/06/2017] [Accepted: 06/20/2017] [Indexed: 11/18/2022]
Abstract
Mammalian liver microsomes are occasionally used as a metabolic activation system (MAS) to compensate for the low CYP-mediated bioactivation of drugs in zebrafish embryos, in the so-called mDarT. However, this MAS is embryotoxic and consequently zebrafish embryos are only exposed during a very limited developmental window. The main aim of this study was to try to reduce the embryotoxic properties of MAS in order to extend the exposure window in the mDarT. Removing the microsomes from the incubation medium prior to exposure of the zebrafish embryos did not reduce embryotoxicity. Free radicals (ROS) in the incubation medium were successfully reduced by antioxidants, but the medium remained embryotoxic. Single dosing of NADPH or omitting toxic components from the MAS preparation did also not reduce embryotoxicity. In conclusion, the exposure window in the mDarT could not be extended by reducing ROS levels, single dosing of NADPH or modifications of the MAS preparation.
Collapse
Affiliation(s)
- Casper Pype
- University of Antwerp, Applied Veterinary Morphology, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Evy Verbueken
- University of Antwerp, Applied Veterinary Morphology, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Moayad A Saad
- University of Antwerp, Applied Veterinary Morphology, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Chloé Bars
- University of Antwerp, Applied Veterinary Morphology, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Chris J Van Ginneken
- University of Antwerp, Applied Veterinary Morphology, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Dries Knapen
- University of Antwerp, Veterinary Physiology and Biochemistry, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Steven J Van Cruchten
- University of Antwerp, Applied Veterinary Morphology, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| |
Collapse
|
28
|
Thanh DTH, Thanh NL, Thang ND. Toxicological and melanin synthesis effects of Polygonum multiflorum root extracts on zebrafish embryos and human melanocytes. BIOMEDICAL RESEARCH AND THERAPY 2016. [DOI: 10.7603/s40730-016-0042-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
29
|
Yoo MH, Rah YC, Choi J, Park S, Park HC, Oh KH, Lee SH, Kwon SY. Embryotoxicity and hair cell toxicity of silver nanoparticles in zebrafish embryos. Int J Pediatr Otorhinolaryngol 2016; 83:168-74. [PMID: 26968072 DOI: 10.1016/j.ijporl.2016.02.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/07/2016] [Accepted: 02/11/2016] [Indexed: 02/04/2023]
Abstract
OBJECTIVES The purpose of the present study was to evaluate silver nanoparticles (AgNP)-induced embryotoxicity and hair cell toxicity during zebrafish development. METHODS We exposed zebrafish embryos to various AgNP concentrations (30, 60, 120, and 240nM) and evaluated embryotoxicity at 72h and ototoxicity at 120h. Embryotoxicity parameters including abnormal morphology, mortality, hatching rate, and heart rate were investigated. Hair cells within four neuromasts were evaluated. In the present study, the average number of hair cells of zebrafish exposed to AgNP was compared with that of an unexposed control group. RESULTS The hatching rate was not significantly different between groups (control: 90%; AgNP 240nM: 89%). The control group showed 2% mortality and 0% teratogenicity, while the AgNP 240nM group showed increased mortality (11%) and teratogenicity (15%) at 72h (n=100). The heart rate of AgNP-exposed embryos tended to be lower than that of the control group (n=38). Furthermore, AgNP induced apoptotic hair cell damage in the neuromasts (control: 50.7±7.4 cells; 240nM AgNP: 41.1±6.3 cells, n=23). TUNEL positive cell counts increased significantly as AgNP concentration increases (p<0.001, n=20 in each group). CONCLUSIONS The results of this study indicate that AgNP exposure causes embryotoxicity and hair cell toxicity in zebrafish embryos.
Collapse
Affiliation(s)
- Myung Hoon Yoo
- Department of Otorhinolaryngology - Head and Neck Surgery, Korea University Ansan Hospital, Korea University, College of Medicine, Seoul, Republic of Korea
| | - Yoon Chan Rah
- Department of Otorhinolaryngology - Head and Neck Surgery, Korea University Ansan Hospital, Korea University, College of Medicine, Seoul, Republic of Korea
| | - June Choi
- Department of Otorhinolaryngology - Head and Neck Surgery, Korea University Ansan Hospital, Korea University, College of Medicine, Seoul, Republic of Korea.
| | - Saemi Park
- Department of Otorhinolaryngology - Head and Neck Surgery, Korea University Ansan Hospital, Korea University, College of Medicine, Seoul, Republic of Korea
| | - Hae-Chul Park
- Laboratory of Neurodevelopmental Genetics, Graduate School of Medicine, Korea University, Seoul, Republic of Korea
| | - Kyoung Ho Oh
- Department of Otorhinolaryngology - Head and Neck Surgery, Korea University Ansan Hospital, Korea University, College of Medicine, Seoul, Republic of Korea
| | - Seung Hoon Lee
- Department of Otorhinolaryngology - Head and Neck Surgery, Korea University Ansan Hospital, Korea University, College of Medicine, Seoul, Republic of Korea
| | - Soon-Young Kwon
- Department of Otorhinolaryngology - Head and Neck Surgery, Korea University Ansan Hospital, Korea University, College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
30
|
Nishimura Y, Inoue A, Sasagawa S, Koiwa J, Kawaguchi K, Kawase R, Maruyama T, Kim S, Tanaka T. Using zebrafish in systems toxicology for developmental toxicity testing. Congenit Anom (Kyoto) 2016; 56:18-27. [PMID: 26537640 DOI: 10.1111/cga.12142] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 10/27/2015] [Indexed: 12/20/2022]
Abstract
With the high cost and the long-term assessment of developmental toxicity testing in mammals, the vertebrate zebrafish has become a useful alternative model organism for high-throughput developmental toxicity testing. Zebrafish is also very favorable for the 3R perspective in toxicology; however, the methodologies used by research groups vary greatly, posing considerable challenges to integrative analysis. In this review, we discuss zebrafish developmental toxicity testing, focusing on the methods of chemical exposure, the assessment of morphological abnormalities, housing conditions and their effects on the production of healthy embryos, and future directions. Zebrafish as a systems toxicology model has the potential to elucidate developmental toxicity pathways, and to provide a sound basis for human health risk assessments.
Collapse
Affiliation(s)
- Yuhei Nishimura
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, Tsu, Mie.,Mie University Medical Zebrafish Research Center, Tsu, Mie.,Department of Systems Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie.,Department of Omics Medicine, Mie University Industrial Technology Innovation Institute, Tsu, Mie.,Department of Bioinformatics, Mie University Life Science Research Center, Tsu, Mie
| | | | - Shota Sasagawa
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, Tsu, Mie
| | - Junko Koiwa
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, Tsu, Mie
| | - Koki Kawaguchi
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, Tsu, Mie
| | - Reiko Kawase
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, Tsu, Mie
| | | | - Soonih Kim
- Ono Pharmaceutical Co, Ltd, Osaka, Japan
| | - Toshio Tanaka
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, Tsu, Mie.,Mie University Medical Zebrafish Research Center, Tsu, Mie.,Department of Systems Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie.,Department of Omics Medicine, Mie University Industrial Technology Innovation Institute, Tsu, Mie.,Department of Bioinformatics, Mie University Life Science Research Center, Tsu, Mie
| |
Collapse
|
31
|
Jeanray N, Marée R, Pruvot B, Stern O, Geurts P, Wehenkel L, Muller M. Phenotype classification of zebrafish embryos by supervised learning. PLoS One 2015; 10:e0116989. [PMID: 25574849 PMCID: PMC4289190 DOI: 10.1371/journal.pone.0116989] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 12/18/2014] [Indexed: 11/18/2022] Open
Abstract
Zebrafish is increasingly used to assess biological properties of chemical substances and thus is becoming a specific tool for toxicological and pharmacological studies. The effects of chemical substances on embryo survival and development are generally evaluated manually through microscopic observation by an expert and documented by several typical photographs. Here, we present a methodology to automatically classify brightfield images of wildtype zebrafish embryos according to their defects by using an image analysis approach based on supervised machine learning. We show that, compared to manual classification, automatic classification results in 90 to 100% agreement with consensus voting of biological experts in nine out of eleven considered defects in 3 days old zebrafish larvae. Automation of the analysis and classification of zebrafish embryo pictures reduces the workload and time required for the biological expert and increases the reproducibility and objectivity of this classification.
Collapse
Affiliation(s)
- Nathalie Jeanray
- GIGA-Development, Stem Cells and Regenerative Medicine, Organogenesis and Regeneration, University of Liège, Liège, Belgium
- GIGA-Systems Biology and Chemical Biology, Dept. EE & CS, University of Liège, Liège, Belgium
| | - Raphaël Marée
- GIGA Bioinformatics Core Facility, University of Liège, Liège, Belgium
| | - Benoist Pruvot
- GIGA-Development, Stem Cells and Regenerative Medicine, Organogenesis and Regeneration, University of Liège, Liège, Belgium
| | - Olivier Stern
- GIGA-Systems Biology and Chemical Biology, Dept. EE & CS, University of Liège, Liège, Belgium
| | - Pierre Geurts
- GIGA-Systems Biology and Chemical Biology, Dept. EE & CS, University of Liège, Liège, Belgium
| | - Louis Wehenkel
- GIGA-Systems Biology and Chemical Biology, Dept. EE & CS, University of Liège, Liège, Belgium
- GIGA Bioinformatics Core Facility, University of Liège, Liège, Belgium
| | - Marc Muller
- GIGA-Development, Stem Cells and Regenerative Medicine, Organogenesis and Regeneration, University of Liège, Liège, Belgium
- * E-mail:
| |
Collapse
|
32
|
Ellis LD, Soo EC, Achenbach JC, Morash MG, Soanes KH. Use of the zebrafish larvae as a model to study cigarette smoke condensate toxicity. PLoS One 2014; 9:e115305. [PMID: 25526262 PMCID: PMC4272283 DOI: 10.1371/journal.pone.0115305] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 11/21/2014] [Indexed: 11/19/2022] Open
Abstract
The smoking of tobacco continues to be the leading cause of premature death worldwide and is linked to the development of a number of serious illnesses including heart disease, respiratory diseases, stroke and cancer. Currently, cell line based toxicity assays are typically used to gain information on the general toxicity of cigarettes and other tobacco products. However, they provide little information regarding the complex disease-related changes that have been linked to smoking. The ethical concerns and high cost associated with mammalian studies have limited their widespread use for in vivo toxicological studies of tobacco. The zebrafish has emerged as a low-cost, high-throughput, in vivo model in the study of toxicology. In this study, smoke condensates from 2 reference cigarettes and 6 Canadian brands of cigarettes with different design features were assessed for acute, developmental, cardiac, and behavioural toxicity (neurotoxicity) in zebrafish larvae. By making use of this multifaceted approach we have developed an in vivo model with which to compare the toxicity profiles of smoke condensates from cigarettes with different design features. This model system may provide insights into the development of smoking related disease and could provide a cost-effective, high-throughput platform for the future evaluation of tobacco products.
Collapse
Affiliation(s)
- Lee D. Ellis
- National Research Council of Canada, Aquatic and Crop Resource Development, 1411 Oxford Street, Halifax, Nova Scotia, B3H 3Z1, Canada
| | - Evelyn C. Soo
- Science Division, Office of Research and Surveillance, Controlled Substances and Tobacco Directorate, Health Canada, 150 Tunney's Pasture Driveway, Ottawa, Ontario, K1A 0K9, Canada, Locator: A.L. 0301A
- * E-mail:
| | - John C. Achenbach
- National Research Council of Canada, Aquatic and Crop Resource Development, 1411 Oxford Street, Halifax, Nova Scotia, B3H 3Z1, Canada
| | - Michael G. Morash
- National Research Council of Canada, Aquatic and Crop Resource Development, 1411 Oxford Street, Halifax, Nova Scotia, B3H 3Z1, Canada
| | - Kelly H. Soanes
- National Research Council of Canada, Aquatic and Crop Resource Development, 1411 Oxford Street, Halifax, Nova Scotia, B3H 3Z1, Canada
| |
Collapse
|
33
|
Siebel AM, Vianna MR, Bonan CD. Pharmacological and toxicological effects of lithium in zebrafish. ACS Chem Neurosci 2014; 5:468-76. [PMID: 24798681 DOI: 10.1021/cn500046h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Lithium is the paradigmatic treatment for bipolar disorder and has been widely used as a mood stabilizer due to its ability to reduce manic and depressive episodes, efficiency in long-term mood stabilization, and effectiveness in reducing suicide risks. Despite many decades of clinical use, the molecular targets of lithium are not completely understood. However, they are credited at least partially to glycogen synthase kinase 3 (GSK3) inhibition, mimicking and exacerbating Wnt signaling pathway activation. There has been a great effort to characterize lithium cellular and system actions, aiming to improve treatment effectiveness and reduce side effects. There is also a growing concern about lithium's impact as an environmental contaminant and its effects on development. In this scenario, zebrafish is a helpful model organism to gather more information on lithium's effects in different systems and developmental stages. The rapid external development, initial transparency, capacity to easily absorb substances, and little space required for maintenance and experimentation, among other advantages, make zebrafish a suitable model. In addition, zebrafish has been established as an effective model organism in behavioral and neuropharmacological studies, reacting to a wide range of psychoactive drugs, including lithium. So far only a limited number of studies evaluated the toxicological impact of lithium on zebrafish development and demonstrated morphological, physiological, and behavioral effects that may be informative regarding human findings. Further studies dedicated to characterize and evaluate the underlying mechanisms of the toxic effects and the potential impact of exposure on developing and adult individuals are necessary to establish safe clinical management guidelines for women with bipolar disorder of childbearing age and safety disposal guidelines for pharmaceutical neuroactive compounds.
Collapse
Affiliation(s)
- Anna M. Siebel
- Laboratório
de Neuroquímica e Psicofarmacologia, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Av.
Ipiranga 6681, 90619-900, Porto Alegre, RS Brazil
- ZebLab,
Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6681, 90619-900, Porto Alegre, RS Brazil
| | - Monica R. Vianna
- ZebLab,
Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6681, 90619-900, Porto Alegre, RS Brazil
- Laboratório
de Biologia e Desenvolvimento do Sistema Nervoso, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Av.
Ipiranga 6681, Prédio 12 D, sala 301, 90619-900, Porto Alegre, RS Brazil
| | - Carla D. Bonan
- Laboratório
de Neuroquímica e Psicofarmacologia, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Av.
Ipiranga 6681, 90619-900, Porto Alegre, RS Brazil
- ZebLab,
Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6681, 90619-900, Porto Alegre, RS Brazil
| |
Collapse
|
34
|
Lantz-McPeak S, Guo X, Cuevas E, Dumas M, Newport GD, Ali SF, Paule MG, Kanungo J. Developmental toxicity assay using high content screening of zebrafish embryos. J Appl Toxicol 2014; 35:261-72. [PMID: 24871937 DOI: 10.1002/jat.3029] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 04/18/2014] [Accepted: 04/18/2014] [Indexed: 01/06/2023]
Abstract
Typically, time-consuming standard toxicological assays using the zebrafish (Danio rerio) embryo model evaluate mortality and teratogenicity after exposure during the first 2 days post-fertilization. Here we describe an automated image-based high content screening (HCS) assay to identify the teratogenic/embryotoxic potential of compounds in zebrafish embryos in vivo. Automated image acquisition was performed using a high content microscope system. Further automated analysis of embryo length, as a statistically quantifiable endpoint of toxicity, was performed on images post-acquisition. The biological effects of ethanol, nicotine, ketamine, caffeine, dimethyl sulfoxide and temperature on zebrafish embryos were assessed. This automated developmental toxicity assay, based on a growth-retardation endpoint should be suitable for evaluating the effects of potential teratogens and developmental toxicants in a high throughput manner. This approach can significantly expedite the screening of potential teratogens and developmental toxicants, thereby improving the current risk assessment process by decreasing analysis time and required resources.
Collapse
Affiliation(s)
- Susan Lantz-McPeak
- Division of Neurotoxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, 72079, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Zebrafish (Danio rerio) are an excellent vertebrate model for studying heart development, regeneration and cardiotoxicity. Zebrafish embryos exposed during the temporal window of epicardium development to the aryl hydrocarbon receptor (AHR) agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exhibit severe heart malformations. TCDD exposure prevents both proepicardial organ (PE) and epicardium development. Exposure later in development, after the epicardium has formed, does not produce cardiac toxicity. It is not until the adult zebrafish heart is stimulated to regenerate does TCDD again cause detrimental effects. TCDD exposure prior to ventricular resection prevents cardiac regeneration. It is likely that TCDD-induced inhibition of epicardium development and cardiac regeneration occur via a common mechanism. Here, we describe experiments that focus on the epicardium as a target and sensor of zebrafish heart toxicity.
Collapse
Affiliation(s)
- Peter Hofsteen
- Department of Pharmaceutical Sciences, University of Wisconsin, 777 Highland Ave, Madison, WI 53705, USA
| | - Jessica Plavicki
- Department of Pharmaceutical Sciences, University of Wisconsin, 777 Highland Ave, Madison, WI 53705, USA
| | - Richard E. Peterson
- Department of Pharmaceutical Sciences, University of Wisconsin, 777 Highland Ave, Madison, WI 53705, USA
| | - Warren Heideman
- Department of Pharmaceutical Sciences, University of Wisconsin, 777 Highland Ave, Madison, WI 53705, USA
| |
Collapse
|