1
|
Wu H, Gao J, Xie Z, Xie M, Song R, Yuan X, Wu Y, Ou D. Effect of chronic deltamethrin exposure on brain transcriptome and metabolome of juvenile crucian carp. ENVIRONMENTAL TOXICOLOGY 2024; 39:1544-1555. [PMID: 38009670 DOI: 10.1002/tox.24022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/05/2023] [Accepted: 10/31/2023] [Indexed: 11/29/2023]
Abstract
Deltamethrin (Del), a widely administered pyrethroid insecticide, has been established as a common contaminant of the freshwater environment and detected in many freshwater ecosystems. In this study, we investigated the changes in brain transcriptome and metabolome of crucian carp after exposure to 0.6 μg/L Del for 28 days. Elevated MDA levels and inhibition of SOD activity indicate damage to the antioxidant system. Moreover, a total of 70 differential metabolites (DMs) were identified using the liquid chromatography-mass spectrometry, including 32 upregulated and 38 downregulated DMs in the Del-exposed group. The DMs associated with chronic Del exposure were enriched in steroid hormone biosynthesis, fatty acid metabolism, and glycerophospholipid metabolism for prostaglandin G2, 5-oxoeicosatetraenoic acid, progesterone, androsterone, etiocholanolone, and hydrocortisone. Transcriptomics analysis revealed that chronic Del exposure caused lipid metabolism disorder, endocrine disruption, and proinflammatory immune response by upregulating the pla2g4, cox2, log5, ptgis, lcn, and cbr expression. Importantly, the integrative analysis of transcriptomics and metabolomics indicated that the arachidonic acid metabolism pathway and steroid hormone biosynthesis were decisive processes in the brain tissue of crucian carp after Del exposure. Furthermore, Del exposure perturbed the tight junction, HIF-1 signaling pathway, and thyroid hormone signaling pathway. Overall, transcriptome and metabolome data of our study offer a new insight to assess the risk of chronic Del exposure in fish brains.
Collapse
Affiliation(s)
- Hao Wu
- Hunan Fisheries Science Institute, Changsha, China
| | - Jinwei Gao
- Hunan Fisheries Science Institute, Changsha, China
| | - Zhonggui Xie
- Hunan Fisheries Science Institute, Changsha, China
| | - Min Xie
- Hunan Fisheries Science Institute, Changsha, China
| | - Rui Song
- Hunan Fisheries Science Institute, Changsha, China
| | - Xiping Yuan
- Hunan Fisheries Science Institute, Changsha, China
| | - Yuanan Wu
- Hunan Fisheries Science Institute, Changsha, China
| | - Dongsheng Ou
- Hunan Fisheries Science Institute, Changsha, China
| |
Collapse
|
2
|
Goh M, Fu L, Seetoh WG, Koay A, Hua H, Tan SM, Tay SH, Jinfeng EC, Abdullah N, Ng SY, Lakshmanan M, Arumugam P. Mono-2-ethylhexylphthalate (MEHP) is a potent agonist of human TRPA1 channel. CHEMOSPHERE 2024; 349:140740. [PMID: 38006918 DOI: 10.1016/j.chemosphere.2023.140740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/27/2023]
Abstract
Phthalates are extensively used as plasticizers in diverse consumer care products but have been reported to cause adverse health effects in humans. A commonly used phthalate, di-2-ethylhexylphthalate (DEHP) causes developmental and reproductive toxicities in humans, but the associated molecular mechanisms are not fully understood. Mono-2-ethylhexylphthalate (MEHP), a hydrolytic product of DEHP generated by cellular esterases, is proposed to be the active toxicant. We conducted a screen for sensory irritants among compounds used in consumer care using an assay for human Transient Receptor Potential A1 (hTRPA1). We have identified MEHP as a potent agonist of hTRPA1. MEHP-induced hTRPA1 activation was blocked by the TRPA1 inhibitor A-967079. Patch clamp assays revealed that MEHP induced inward currents in cells expressing hTRPA1. In addition, the N855S mutation in hTRPA1 associated with familial episodic pain syndrome decreased MEHP-induced hTRPA1 activation. In summary, we report that MEHP is a potent agonist of hTRPA1 which generates new possible mechanisms for toxic effects of phthalates in humans.
Collapse
Affiliation(s)
- Megan Goh
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Singapore, 138669
| | - Lin Fu
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Singapore, 138669; Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, Singapore, 138671
| | - Wei-Guang Seetoh
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Singapore, 138669
| | - Ann Koay
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Singapore, 138669
| | - Huang Hua
- National University of Singapore, Department of Physiology, 4 Science Drive 2, Wet Science Building Level 11, Singapore, 117544
| | - Shi Min Tan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Singapore, 138669
| | - Shermaine Huiping Tay
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673
| | - Elaine Chin Jinfeng
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Singapore, 138669
| | - Nimo Abdullah
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Singapore, 138669; Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Shi Yan Ng
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673
| | - Manikandan Lakshmanan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673
| | - Prakash Arumugam
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Singapore, 138669; Nanyang Technological University, School of Biological Sciences, Singapore, 637551.
| |
Collapse
|
3
|
Swift LM, Roberts A, Pressman J, Guerrelli D, Allen S, Haq KT, Reisz JA, D’Alessandro A, Posnack NG. Evidence for the cardiodepressive effects of the plasticizer di-2-ethylhexyl phthalate. Toxicol Sci 2023; 197:79-94. [PMID: 37812252 PMCID: PMC10734602 DOI: 10.1093/toxsci/kfad105] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023] Open
Abstract
Di-2-ethylhexyl phthalate (DEHP) is commonly used in the manufacturing of plastic materials, including intravenous bags, blood storage bags, and medical-grade tubing. DEHP can leach from plastic medical products, which can result in inadvertent patient exposure. DEHP concentrations were measured in red blood cell units stored between 7 and 42 days (17-119 μg/ml). Using these concentrations as a guide, Langendorff-perfused rat heart preparations were acutely exposed to DEHP. Sinus activity remained stable with lower doses of DEHP (25-50 μg/ml), but sinus rate declined by 43% and sinus node recovery time (SNRT) prolonged by 56.5% following 30-min exposure to 100 μg/ml DEHP. DEHP exposure also exerted a negative dromotropic response, as indicated by a 69.4% longer PR interval, 108.5% longer Wenckebach cycle length (WBCL), and increased incidence of atrioventricular (AV) uncoupling (60-min exposure). Pretreatment with doxycycline partially rescued the effects of DEHP on sinus activity, but did not ameliorate the effects on AV conduction. DEHP exposure also prolonged the ventricular action potential and effective refractory period, but had no measurable effect on intracellular calcium transient duration. Follow-up studies using human-induced pluripotent stem cell-derived cardiomyocytes confirmed that DEHP slows electrical conduction in a time (15 min-3 h) and dose-dependent manner (10-100 μg/ml). Previous studies have suggested that phthalate toxicity is specifically attributed to metabolites of DEHP, including mono-2-ethylhexylphthalate. This study demonstrates that DEHP exposure also contributes to cardiac dysfunction in a dose- and time-dependent manner. Future work is warranted to investigate the impact of DEHP (and its metabolites) on human health, with special consideration for clinical procedures that employ plastic materials.
Collapse
Affiliation(s)
- Luther M Swift
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, District of Columbia 20010, USA
- Children’s National Heart Institute, Children’s National Hospital, Washington, District of Columbia 20010, USA
| | - Anysja Roberts
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, District of Columbia 20010, USA
- Children’s National Heart Institute, Children’s National Hospital, Washington, District of Columbia 20010, USA
| | - Jenna Pressman
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, District of Columbia 20010, USA
- Children’s National Heart Institute, Children’s National Hospital, Washington, District of Columbia 20010, USA
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, The George Washington University, Washington, District of Columbia 20037, USA
| | - Devon Guerrelli
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, District of Columbia 20010, USA
- Children’s National Heart Institute, Children’s National Hospital, Washington, District of Columbia 20010, USA
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, The George Washington University, Washington, District of Columbia 20037, USA
| | - Samuel Allen
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, District of Columbia 20010, USA
- Children’s National Heart Institute, Children’s National Hospital, Washington, District of Columbia 20010, USA
| | - Kazi T Haq
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, District of Columbia 20010, USA
- Children’s National Heart Institute, Children’s National Hospital, Washington, District of Columbia 20010, USA
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Nikki Gillum Posnack
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, District of Columbia 20010, USA
- Children’s National Heart Institute, Children’s National Hospital, Washington, District of Columbia 20010, USA
- Department of Pediatrics, School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia 20037, USA
- Department of Pharmacology & Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia 20037, USA
| |
Collapse
|
4
|
Tiwary R, Richburg JH. Mono-(2-ethylhexyl) phthalate (MEHP) reversibly disrupts the blood-testis barrier (BTB) in pubertal rats. Toxicol Sci 2023; 197:kfad116. [PMID: 37941498 PMCID: PMC10823777 DOI: 10.1093/toxsci/kfad116] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023] Open
Abstract
The blood-testis barrier (BTB) is constituted by tight junctions between adjacent Sertoli cells (SC) that create a specialized adluminal microenvironment to foster the development of spermatocytes and spermatids. The BTB is a well-studied target of numerous environmental toxicants, including di-(2-ethylhexyl) phthalate (DEHP), a compound widely used in various consumer products. MEHP is the active toxic metabolite of DEHP that has long been recognized in postnatal rodents to disrupt SC function. This study evaluates the impact of MEHP on the integrity of the BTB in both pubertal and adult rats and the signal transduction pathways known to be involved in the disruption of the BTB. Treatment of prepubertal rats with 700 mg/kg MEHP for 24 hours functionally disrupted the BTB integrity. A similar treatment of adult rats with MEHP did not disrupt the integrity of the BTB. The observed disruption of the BTB integrity in the MEHP-treated prepubertal rats occurred concomitantly with a decreased expression and mislocalization of both the ZO1 and occludin tight junction-associated proteins, as well as sloughing of spermatocytes and spermatids. At this same time, MEHP treatment induced a transient surge of p44/42 mitogen-activated protein kinase (MAPK) pathway. Interestingly, after a recovery period of 5 weeks, the BTB recovered and was functionally intact. This is the first report to indicate that acute MEHP exposure of prepubertal rats, but not adult rats, disrupts the functional integrity of the BTB and that this effect on the BTB is reversible.
Collapse
Affiliation(s)
- Richa Tiwary
- Division of Pharmacology and Toxicology, Center for Molecular and Cellular Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - John H Richburg
- Division of Pharmacology and Toxicology, Center for Molecular and Cellular Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
5
|
Liu Y, Huo WB, Deng JY, Tang QP, Wang JX, Liao YL, Gou D, Pei DS. Neurotoxicity and the potential molecular mechanisms of mono-2-ethylhexyl phthalic acid (MEHP) in zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 265:115516. [PMID: 37757626 DOI: 10.1016/j.ecoenv.2023.115516] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
Mono-2-ethylhexyl phthalic acid (MEHP) is the most toxic metabolite of plasticizer di-2-ethylhexyl phthalic acid (DEHP), and there is limited information available on the effects of MEHP on neurotoxicity. This study aims to examine the neurotoxicity of MEHP and preliminarily explore its potential molecular mechanisms. We found that MEHP impeded the growth of zebrafish embryos and the neurodevelopmental-related gene expression at environmentally relevant concentrations. MEHP exposure also induces oxidative stress response and brain cell apoptosis accompanied by a decrease in acetylcholinesterase (AChE) activity in zebrafish larvae. RNA-Seq and bioinformatics analysis showed that MEHP treatment altered the nervous system, neurogenic diseases, and visual perception pathways. The locomotor activity in dark-to-light cycles and phototaxis test confirmed the abnormal neural behavior of zebrafish larvae. Besides, the immune system has produced a large number of differentially expressed genes related to neural regulation. Inflammatory factor IL1β and IL-17 signaling pathways highly respond to MEHP, indicating that inflammation caused by immune system imbalance is a potential mechanism of MEHP-induced neurotoxicity. This study expands the understanding of the toxicity and molecular mechanisms of MEHP, providing a new perspective for in-depth neurotoxicity exploration of similar compounds.
Collapse
Affiliation(s)
- Yiyun Liu
- School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Wen-Bo Huo
- School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Jiao-Yun Deng
- School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Qi-Ping Tang
- School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Jin-Xia Wang
- School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Yan-Ling Liao
- School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Dongzhi Gou
- School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - De-Sheng Pei
- School of Public Health, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
6
|
Mileo A, Chianese T, Fasciolo G, Venditti P, Capaldo A, Rosati L, De Falco M. Effects of Dibutylphthalate and Steroid Hormone Mixture on Human Prostate Cells. Int J Mol Sci 2023; 24:14341. [PMID: 37762641 PMCID: PMC10531810 DOI: 10.3390/ijms241814341] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Phthalates are a family of aromatic chemical compounds mainly used as plasticizers. Among phthalates, di-n-butyl phthalate (DBP) is a low-molecular-weight phthalate used as a component of many cosmetic products, such as nail polish, and other perfumed personal care products. DBP has toxic effects on reproductive health, inducing testicular damage and developmental malformations. Inside the male reproductive system, the prostate gland reacts to both male and female sex steroids. For this reason, it represents an important target of endocrine-disrupting chemicals (EDCs), compounds that are able to affect the estrogen and androgen signaling pathways, thus interfering with prostate homeostasis and inducing several prostate pathologies. The aim of this project was to investigate the effects of DBP, alone and in combination with testosterone (T), 17β-estradiol (E2), and both, on the normal PNT1A human prostate cell-derived cell line, to mimic environmental contamination. We showed that DBP and all of the tested mixtures increase cell viability through activation of both estrogen receptor α (ERα) and androgen receptor (AR). DBP modulated steroid receptor levels in a nonmonotonic way, and differently to endogenous hormones. In addition, DBP translocated ERα to the nucleus over different durations and for a more prolonged time than E2, altering the normal responsiveness of prostate cells. However, DBP alone seemed not to influence AR localization, but AR was continuously and persistently activated when DBP was used in combination. Our results show that DBP alone, and in mixture, alters redox homeostasis in prostate cells, leading to a greater increase in cell oxidative susceptibility. In addition, we also demonstrate that DBP increases the migratory potential of PNT1A cells. In conclusion, our findings demonstrate that DBP, alone and in mixtures with endogenous steroid hormones, acts as an EDC, resulting in an altered prostate cell physiology and making these cells more prone to cancer transformation.
Collapse
Affiliation(s)
- Aldo Mileo
- Department of Biology, University Federico II of Naples, Via Cinthia 26, 80126 Naples, Italy; (A.M.); (T.C.); (G.F.); (P.V.); (A.C.); (L.R.)
| | - Teresa Chianese
- Department of Biology, University Federico II of Naples, Via Cinthia 26, 80126 Naples, Italy; (A.M.); (T.C.); (G.F.); (P.V.); (A.C.); (L.R.)
| | - Gianluca Fasciolo
- Department of Biology, University Federico II of Naples, Via Cinthia 26, 80126 Naples, Italy; (A.M.); (T.C.); (G.F.); (P.V.); (A.C.); (L.R.)
| | - Paola Venditti
- Department of Biology, University Federico II of Naples, Via Cinthia 26, 80126 Naples, Italy; (A.M.); (T.C.); (G.F.); (P.V.); (A.C.); (L.R.)
| | - Anna Capaldo
- Department of Biology, University Federico II of Naples, Via Cinthia 26, 80126 Naples, Italy; (A.M.); (T.C.); (G.F.); (P.V.); (A.C.); (L.R.)
| | - Luigi Rosati
- Department of Biology, University Federico II of Naples, Via Cinthia 26, 80126 Naples, Italy; (A.M.); (T.C.); (G.F.); (P.V.); (A.C.); (L.R.)
- CIRAM, Centro Interdipartimentale di Ricerca “Ambiente”, University Federico II of Naples, Via Mezzocannone 16, 80134 Naples, Italy
| | - Maria De Falco
- Department of Biology, University Federico II of Naples, Via Cinthia 26, 80126 Naples, Italy; (A.M.); (T.C.); (G.F.); (P.V.); (A.C.); (L.R.)
- National Institute of Biostructures and Biosystems (INBB), Viale delle Medaglie d’Oro 305, 00136 Rome, Italy
| |
Collapse
|
7
|
Swift LM, Roberts A, Pressman J, Guerrelli D, Allen S, Haq KT, Reisz JA, D'Alessandro A, Posnack NG. Evidence for the cardiodepressive effects of the plasticizer di-2-ethylhexylphthalate (DEHP). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541729. [PMID: 37293060 PMCID: PMC10245927 DOI: 10.1101/2023.05.22.541729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Di-2-ethylhexylphthalate (DEHP) is commonly used in the manufacturing of plastic materials, including intravenous bags, blood storage bags, and medical-grade tubing. DEHP can leach from plastic medical products, which can result in inadvertent patient exposure. DEHP concentrations were measured in red blood cell (RBC) units stored between 7-42 days (23-119 μg/mL). Using these concentrations as a guide, Langendorff-perfused rat heart preparations were acutely exposed to DEHP. Sinus activity remained stable with lower doses of DEHP (25-50 μg/mL), but sinus rate declined by 43% and sinus node recovery time prolonged by 56.5% following 30-minute exposure to 100 μg/ml DEHP. DEHP exposure also exerted a negative dromotropic response, as indicated by a 69.4% longer PR interval, 108.5% longer Wenckebach cycle length, and increased incidence of atrioventricular uncoupling. Pretreatment with doxycycline partially rescued the effects of DEHP on sinus activity, but did not ameliorate the effects on atrioventricular conduction. DEHP exposure also prolonged the ventricular action potential and effective refractory period, but had no measurable effect on intracellular calcium transient duration. Follow-up studies using hiPSC-CM confirmed that DEHP slows electrical conduction in a time (15 min - 3 hours) and dose-dependent manner (10-100 μg/mL). Previous studies have suggested that phthalate toxicity is specifically attributed to metabolites of DEHP, including mono-2-ethylhexyl phthalate (MEHP). This study demonstrates that DEHP exposure also contributes to cardiac dysfunction in a dose- and time-dependent manner. Future work is warranted to investigate the impact of DEHP (and its metabolites) on human health, with special consideration for clinical procedures that employ plastic materials.
Collapse
|
8
|
Peivasteh-roudsari L, Barzegar-bafrouei R, Sharifi KA, Azimisalim S, Karami M, Abedinzadeh S, Asadinezhad S, Tajdar-oranj B, Mahdavi V, Alizadeh AM, Sadighara P, Ferrante M, Conti GO, Aliyeva A, Mousavi Khaneghah A. Origin, dietary exposure, and toxicity of endocrine-disrupting food chemical contaminants: A comprehensive review. Heliyon 2023; 9:e18140. [PMID: 37539203 PMCID: PMC10395372 DOI: 10.1016/j.heliyon.2023.e18140] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/03/2023] [Accepted: 07/09/2023] [Indexed: 08/05/2023] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are a growing public health concern worldwide. Consumption of foodstuffs is currently thought to be one of the principal exposure routes to EDCs. However, alternative ways of human exposure are through inhalation of chemicals and dermal contact. These compounds in food products such as canned food, bottled water, dairy products, fish, meat, egg, and vegetables are a ubiquitous concern to the general population. Therefore, understanding EDCs' properties, such as origin, exposure, toxicological impact, and legal aspects are vital to control their release to the environment and food. The present paper provides an overview of the EDCs and their possible disrupting impact on the endocrine system and other organs.
Collapse
Affiliation(s)
| | - Raziyeh Barzegar-bafrouei
- Department of Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Kurush Aghbolagh Sharifi
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Shamimeh Azimisalim
- Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Marziyeh Karami
- Food Safety and Hygiene Division, Department of Environmental Health Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Solmaz Abedinzadeh
- Department of Food Science and Technology, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shabnam Asadinezhad
- Department of Food Science and Engineering, Faculty of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Behrouz Tajdar-oranj
- Food and Drug Administration of Iran, Ministry of Health and Medical Education, Tehran, Iran
| | - Vahideh Mahdavi
- Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 1475744741, Tehran, Iran
| | - Adel Mirza Alizadeh
- Social Determinants of Health Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Parisa Sadighara
- Food Safety and Hygiene Division, Department of Environmental Health Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Margherita Ferrante
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia,” Hygiene and Public Health, University of Catania, Via Santa Sofia 87, 95123, Catania, Italy
| | - Gea Oliveri Conti
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia,” Hygiene and Public Health, University of Catania, Via Santa Sofia 87, 95123, Catania, Italy
| | - Aynura Aliyeva
- Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan
| | - Amin Mousavi Khaneghah
- Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology – State Research Institute, 36 Rakowiecka St., 02-532, Warsaw, Poland
| |
Collapse
|
9
|
Lapehn S, Houghtaling S, Ahuna K, Kadam L, MacDonald JW, Bammler TK, LeWinn KZ, Myatt L, Sathyanarayana S, Paquette AG. Mono(2-ethylhexyl) phthalate induces transcriptomic changes in placental cells based on concentration, fetal sex, and trophoblast cell type. Arch Toxicol 2023; 97:831-847. [PMID: 36695872 PMCID: PMC9968694 DOI: 10.1007/s00204-023-03444-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 01/17/2023] [Indexed: 01/26/2023]
Abstract
Phthalates are ubiquitous plasticizer chemicals found in consumer products. Exposure to phthalates during pregnancy has been associated with adverse pregnancy and birth outcomes and differences in placental gene expression in human studies. The objective of this research was to evaluate global changes in placental gene expression via RNA sequencing in two placental cell models following exposure to the phthalate metabolite mono(2-ethylhexyl) phthalate (MEHP). HTR-8/SVneo and primary syncytiotrophoblast cells were exposed to three concentrations (1, 90, 180 µM) of MEHP for 24 h with DMSO (0.1%) as a vehicle control. mRNA and lncRNAs were quantified using paired-end RNA sequencing, followed by identification of differentially expressed genes (DEGs), significant KEGG pathways, and enriched transcription factors (TFs). MEHP caused gene expression changes across all concentrations for HTR-8/SVneo and primary syncytiotrophoblast cells. Sex-stratified analysis of primary cells identified different patterns of sensitivity in response to MEHP dose by sex, with male placentas being more responsive to MEHP exposure. Pathway analysis identified 11 KEGG pathways significantly associated with at least one concentration in both cell types. Four ligand-inducible nuclear hormone TFs (PPARG, PPARD, ESR1, AR) were enriched in at least three treatment groups. Overall, we demonstrated that MEHP differentially affects placental gene expression based on concentration, fetal sex, and trophoblast cell type. This study confirms prior studies, as enrichment of nuclear hormone receptor TFs were concordant with previously published mechanisms of phthalate disruption, and generates new hypotheses, as we identified many pathways and genes not previously linked to phthalate exposure.
Collapse
Affiliation(s)
- Samantha Lapehn
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, 1900 9th Ave, Jack R. MacDonald Building, Seattle, WA 98101 USA
| | - Scott Houghtaling
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, 1900 9th Ave, Jack R. MacDonald Building, Seattle, WA 98101 USA
| | - Kylia Ahuna
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR 97239 USA
| | - Leena Kadam
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR 97239 USA
| | - James W. MacDonald
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195 USA
| | - Theo K. Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195 USA
| | - Kaja Z. LeWinn
- Department of Psychiatry, University of California-San Francisco, San Francisco, CA 94143 USA
| | - Leslie Myatt
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR 97239 USA
| | - Sheela Sathyanarayana
- Department of Pediatrics, University of Washington, Seattle, WA 98195 USA
- Center for Child Health, Behavior and Development, Seattle Children’s Research Institute, Seattle, WA 98101 USA
| | - Alison G. Paquette
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, 1900 9th Ave, Jack R. MacDonald Building, Seattle, WA 98101 USA
- Department of Pediatrics, University of Washington, Seattle, WA 98195 USA
| |
Collapse
|
10
|
Ozkemahli G, Erkekoglu P, Ercan A, Zeybek ND, Yersal N, Kocer-Gumusel B. Effects of single or combined exposure to bisphenol A and mono(2-ethylhexyl)phthalate on oxidant/antioxidant status, endoplasmic reticulum stress, and apoptosis in HepG2 cell line. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:12189-12206. [PMID: 36104651 DOI: 10.1007/s11356-022-22937-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
Endocrine disrupting chemicals (EDCs) may affect many biological processes like growth and stress response. Bisphenol A (BPA) is a plasticizer that is used to harden plastics and polycarbonates. Phthalates are used to add flexibility to polyvinyl chloride containing plastics. The main metabolite of di(2-ethylhexyl) phthalate (DEHP) is mono(2-ethylhexyl) phthalate (MEHP) and it is even more toxic than the parent compound. Humans are usually exposed to these chemicals in mixtures by different routes starting from fetal period. However, there are not many studies in literature that investigate the combined effects of these chemicals. The aim of this study is to investigate toxic effects of BPA and/or MEHP on HepG2 cell line. We have evaluated cytotoxicity, cytomorphological, apoptotic changes, oxidative stress, oxidant/antioxidant status alterations, and endoplasmic reticulum (ER) stress. Combined exposure to BPA and MEHP caused alterations in oxidant/antioxidant status and ER stress marker proteins in both cytoplasmic and nuclear cellular fractions. We can suggest that combined exposure to EDCs may cause serious toxicological outcomes and more mechanistic studies are needed to determine the combined toxic effects.
Collapse
Affiliation(s)
- Gizem Ozkemahli
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Pinar Erkekoglu
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Ayse Ercan
- Department of Biochemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Naciye Dilara Zeybek
- Department of Histology and Embryology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Nilgun Yersal
- Department of Histology and Embryology, Faculty of Medicine, Gaziosmanpasa University, Tokat, Turkey
| | - Belma Kocer-Gumusel
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Lokman Hekim University, 06510, Ankara, Turkey.
| |
Collapse
|
11
|
Arcanjo RB, Vieira MC, Sivaguru M, Nowak RA. Impact of mono(2-ethylhexyl) phthalate (MEHP) on the development of mouse embryo in vitro. Reprod Toxicol 2023; 115:111-123. [PMID: 36535558 PMCID: PMC10195034 DOI: 10.1016/j.reprotox.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/19/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Mono(2-ethylhexyl) phthalate (MEHP) is the most studied metabolite of di(2-ethylhexyl) phthalate (DEHP), a phthalate found in cosmetics, flooring, paints, and plastics products, including toys and medical tubing. Humans are frequently exposed to this compound due to its ubiquitous presence in our environment. DEHP and MEHP are known to be endocrine-disrupting chemicals and exposure levels have been associated to decreased reproductive success. However, few studies have focused on the direct effects of MEHP on embryos. The present study investigated effects of MEHP (0.1, 1, 10, 100 and 1000 µM) on mice preimplantation embryonic development, evaluating percentage of blastocyst formation, hatching from zona pellucida, methylation-related genes, cell lineage commitment, micronucleation, and adherens junction marker at different stages of development during in vitro culture for 6 days. We show MEHP negatively impacts embryo competence by reducing blastocyst formation and hatching at 100 and 1000 µM. In addition, 100 µM MEHP increases the expression of Tet3 gene in blastocysts, which is related to a reduction of DNA methylation, an important mechanism regulating gene expression. Exposed embryos that completed the hatching process in groups 0.1, 1 and 10 µM MEHP had similar number of inner cell mass and trophectoderm cells compared to the control, while micronucleation occurrence and E-cadherin expression was not affected in exposed morulae by MEHP at 10 or 100 µM. Our results showed that high concentrations of MEHP can negatively impact embryo development. New studies unveiling the mechanism of toxicity involved and encompassing further developmental stages are warranted for further understanding.
Collapse
Affiliation(s)
- Rachel Braz Arcanjo
- Department of Animal Sciences, University of Illinois Urbana-Champaign, 1207 West Gregory Drive, Urbana, IL 61801, United States.
| | - Marcos Costa Vieira
- Department of Ecology and Evolution, University of Chicago, 1107 East 57th street, Chicago, IL 60637, United States.
| | - Mayandi Sivaguru
- Cytometry and Microscopy to Omics Facility, 231 Edward R. Madigan Laboratory, Roy. J. Carver Biotechnology Center, University of Illinois Urbana-Champaign, 1201 West Gregory Drive, Urbana, IL 61801, United States.
| | - Romana A Nowak
- Department of Animal Sciences, University of Illinois Urbana-Champaign, 1207 West Gregory Drive, Urbana, IL 61801, United States.
| |
Collapse
|
12
|
Peng BX, Li F, Mortimer M, Xiao X, Ni Y, Lei Y, Li M, Guo LH. Perfluorooctanoic acid alternatives hexafluoropropylene oxides exert male reproductive toxicity by disrupting blood-testis barrier. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157313. [PMID: 35842142 DOI: 10.1016/j.scitotenv.2022.157313] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/27/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
As alternatives to perfluorooctanoic acid (PFOA), hexafluoropropylene oxide (HFPO) homologues, including hexafluoropropylene oxide dimer acid (HFPO-DA), hexafluoropropylene oxide trimer acid (HFPO-TA), and hexafluoropropylene oxide tetramer acid (HFPO-TeA), have attracted widespread attention recently due to their environmental ubiquity and high potential for bioaccumulation and toxicity. In the present study, a set of in vivo mouse and in vitro mouse testicular Sertoli TM4 cell experiments were employed to explore the male reproductive toxicity and underlying mechanisms of HFPO homologues on blood-testis barrier. Tissue and permeability analyses of mice testes after 28-day treatment with 5 mg/kg/day HFPO-DA or PFOA, or 0.05 mg/kg/day HFPO-TA or HFPO-TeA indicated that there was an increase in the degradation of TJ protein occludin in mice with a disrupted blood-testis barrier (BTB). Following exposure to 100 μM HFPO-DA, HFPO-TA or 10 μM PFOA, HFPO-TeA, transepithelial electrical resistance measurements of TM4 cells also indicated BTB disruption. Additionally, as a result of the exposure, matrix metalloproteinase-9 expression was enhanced through activation of p38 MAPK, which promoted the degradation of occludin. On the whole, the results indicated HFPO homologues and PFOA induced BTB disruption through upregulation of p-p38/p38 MAPK/MMP-9 pathway, which promoted the degradation of TJ protein occludin and caused the disruption of TJ.
Collapse
Affiliation(s)
- Bi-Xia Peng
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| | - Fangfang Li
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China; College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| | - Monika Mortimer
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China; College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| | - Xiang Xiao
- Center for Reproductive Health, School of Pharmaceutical Sciences, Hangzhou Medical College, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310063, China.
| | - Ya Ni
- Center for Reproductive Health, School of Pharmaceutical Sciences, Hangzhou Medical College, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310063, China
| | - Yuyang Lei
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| | - Minjie Li
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| | - Liang-Hong Guo
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China; College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
13
|
Li D, Sun W, Jiang X, Yu Z, Xia Y, Cheng S, Mao L, Luo S, Tang S, Xu S, Zou Z, Chen C, Qiu J, Zhou L. Polystyrene nanoparticles enhance the adverse effects of di-(2-ethylhexyl) phthalate on male reproductive system in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 245:114104. [PMID: 36174316 DOI: 10.1016/j.ecoenv.2022.114104] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Coexposure of nanoplastics (NPs) with other pollutants adsorbed from the surroundings has received extensive attention. Currently, the combined effects of NPs and plasticizers remain unclear. Di-(2-ethylhexyl) phthalate (DEHP) is a commonly used plasticizer that has raised much concern owing to its ubiquitous pollution and endocrine-disrupting potential. This study aimed to investigate the toxic effects on the male reproductive system upon coexposure to NPs and DEHP. The C57BL/6J mice were orally administrated with polystyrene nanoparticles (PSNPs), DEHP or both for 35 days to evaluate their effects on sperm quality, histology of testes and epididymides, testicular transcriptomic characteristics as well as expression of some important genes in the epididymides. The low-dose PSNPs used here did not induce significant changes in sperm quality, while DEHP alone or cotreatment with DEHP and PSNPs caused notable impairment, mainly manifesting as decreased sperm quality and aberrant structure of the testis and epididymis. Moreover, enhanced toxic effects were found in the cotreatment group when compared with the individual DEHP treatment group, as manifested by more obvious alterations in the sperm parameters as well as histological changes in the testis and epididymis. Testicular transcriptomic analysis revealed differential regulation of genes involved in immune response, cytoplasmic pattern recognition receptor signaling pathways, protein ubiquitination, oxidative stress, necrotic cell death, ATP synthesis and the cellular respiratory chain. RT-qPCR verified that the expression patterns of Cenpb, Crisp1 and Mars were changed in testes, and genes relevant to epididymal function including Aqp9 and Octn2 were downregulated in epididymides, particularly in the cotreatment group. Collectively, our results emphasize that DEHP at an environmentally relevant dose can induce male reproductive toxicity, and PSNPs may aggravate the toxic effects.
Collapse
Affiliation(s)
- Danyang Li
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Wei Sun
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Xuejun Jiang
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China; Center of Experimental Teaching for Public Health, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Ziying Yu
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Yinyin Xia
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China; Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Shuqun Cheng
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China; Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Lejiao Mao
- Molecular Biology Laboratory of Respiratory Diseases, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Shiyue Luo
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Shixin Tang
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Shangcheng Xu
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, People's Republic of China; Chongqing Key lab of Prevention and Treatment for Occupational Diseases and Poisoning, People's Republic of China
| | - Zhen Zou
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China; Molecular Biology Laboratory of Respiratory Diseases, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Chengzhi Chen
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China; Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| | - Jingfu Qiu
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China; Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| | - Lixiao Zhou
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China; Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| |
Collapse
|
14
|
Wu H, Gao J, Xie M, Wu J, Song R, Yuan X, Wu Y, Ou D. Chronic exposure to deltamethrin disrupts intestinal health and intestinal microbiota in juvenile crucian carp. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113732. [PMID: 35679730 DOI: 10.1016/j.ecoenv.2022.113732] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/24/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
The indiscriminate use of deltamethrin in agriculture and aquaculture can lead to residues increased in many regions, which poses negative impacts on intestinal health of aquatic organisms. Although the potential toxicity of deltamethrin have recently attracted attention, the comprehensive studies on intestinal injuries after chronic deltamethrin exposure remain poorly understood. Herein, in a 28-day chronic toxicity test, crucian carp expose to different concentrations of deltamethrin (0, 0.3, and 0.6 μg/L) were used as the research object. We found that the morphology changes and increased goblet cells in intestinal tissue, and the extent of tissue injury increased along with the increasing exposure dose of deltamethrin. Additionally, the genes expression of antioxidant activity (Cu/Zn superoxide dismutase (Cu-Zn SOD), glutathione peroxidase 1 (GPX1), and catalase (CAT)), inflammatory response (tumor necrosis factor alpha (TNFα), interferon gamma (IFNγ), and interleukin 1 beta (IL-1β)), and tight junctions (Claudin 12 (CLDN12), and tight junction protein 1 (ZO-1)) dramatically increased. Meanwhile, the apoptosis and autophagy process were triggered through caspase-9 cascade and autophagy related 5 (ATG5)- autophagy related 12 (ATG12) conjugate. Besides, chronic deltamethrin exposure increased the amount of Proteobacteria and Verrucomicrobiota, while decreased Fusobacteriota abundance, resulting in intestinal microbiota function disorders. In summary, our results highlight that chronic exposure to deltamethrin cause serious intestinal toxicity and results in physiological changes and intestinal flora disturbances.
Collapse
Affiliation(s)
- Hao Wu
- Hunan Fisheries Science Institute, Changsha 410153, China.
| | - Jinwei Gao
- Hunan Fisheries Science Institute, Changsha 410153, China.
| | - Min Xie
- Hunan Fisheries Science Institute, Changsha 410153, China.
| | - Jiayu Wu
- Hunan Fisheries Science Institute, Changsha 410153, China.
| | - Rui Song
- Hunan Fisheries Science Institute, Changsha 410153, China.
| | - Xiping Yuan
- Hunan Fisheries Science Institute, Changsha 410153, China.
| | - Yuanan Wu
- Hunan Fisheries Science Institute, Changsha 410153, China.
| | - Dongsheng Ou
- Hunan Fisheries Science Institute, Changsha 410153, China.
| |
Collapse
|
15
|
Yuan YZ, Ye C, Sun JH, Hu MY, Huo SJ, Zhu YT, Xiang SY, Yu SQ. Toxicokinetics of mono-(2-ethylhexyl) phthalate with low-dose exposure applying fluorescence tracing technique. Toxicol Appl Pharmacol 2022; 434:115814. [PMID: 34843800 DOI: 10.1016/j.taap.2021.115814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 11/19/2022]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) belongs to environmental endocrine disrupting chemicals (EEDCs) and can be rapidly hydrolyzed into the ultimate toxicant mono-2-ethylhexyl phthalate (MEHP). In this study, we used 5-aminofluorescein modified MEHP (MEHP-AF) as a fluorescence tracer to explore the toxicokinetics, including toxicokinetic parameters, absorption and transport across the intestinal mucosal barrier, distribution and pathological changes of organs. While the dose was as lower than 10 mg/kg by intragastric administration, the toxicokinetic parameters obtained by fluorescence microplate method were similar to those with the literatures by chromatography. MEHP-AF can be rapidly absorbed through the intestinal mucosal barrier in rats. In situ organ distribution in mice showed that MEHP-AF was mainly concentrated in the liver, kidney and testis. Our results suggested that the fluorescence tracing technique had the advantages with easy processing, less time-consuming, higher sensitivity for the quantitative determination, In addition, this technology also avoids the interference of exogenous or endogenous DEHP and MEHP in the experimental system. It also can be utilized to the visualization detection of MEHP in situ localization in the absorption organ and the toxic target organ. The results show that this may be a more feasible MEHP toxicological research method.
Collapse
Affiliation(s)
- Yi-Zhen Yuan
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, People's Republic of China
| | - Chong Ye
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, People's Republic of China
| | - Jia-Hui Sun
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, People's Republic of China
| | - Meng-Yuan Hu
- College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, People's Republic of China
| | - Shao-Jie Huo
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, People's Republic of China
| | - Yu-Ting Zhu
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, People's Republic of China
| | - Su-Yun Xiang
- College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, People's Republic of China.
| | - Shu-Qin Yu
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, People's Republic of China.
| |
Collapse
|
16
|
Tanoren B, Parlatan U, Parlak M, Selcuk B, Ates Alkan F, Pastaci Ozsobaci N, Albeniz G, Turker Sener L, Albeniz I, Unlu MB. Determination of modifications in rat liver due to phthalate uptake by SAM, RS, and ICP-OES. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2926-2935. [PMID: 34109334 DOI: 10.1039/d1ay00650a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The use of phthalates as plasticizers has been omnipresent, especially in cosmetics and food packaging, despite the proven effects on some organs of humans and animals. Therefore, alterations in living organisms due to phthalate exposure attract the attention of many scientists. Here, we demonstrate a mechanical and chemical investigation of the mentioned effects of di(2-ethylhexyl)phthalate (DEHP) and dibutyl phthalate (DBP) on rat liver by utilizing scanning acoustic microscopy (SAM), Raman spectroscopy (RS) and inductively coupled plasma optical emission spectrometry (ICP-OES) for the first time in the literature, as far as we know. The combined analysis gives insights into the degree of modification in the tissue components and which chemicals lead to these modifications. Our study shows that the acoustic impedance values of tissues of DEHP and DBP delivered mother rats are higher than those of tissues of the control mother rat, while the acoustic impedance values of tissues of offspring rats of DEHP and DBP delivered mother rats do not differ significantly from those of tissues of the control offspring rats of the control mother rat. Besides, RS analysis shows how the incorporation of DEHP into liver tissues changes the configuration and conformation of lipids and fatty acids. ICP-OES results show increased element levels within the tissues of DEHP and DBP delivered rats. Therefore, we can say that phthalates cause modifications within the liver. This study is a preliminary effort to investigate tissues with a mechano-chemical probe.
Collapse
Affiliation(s)
| | - Ugur Parlatan
- Bogazici Universitesi Fen-Edebiyat Fakultesi, Turkey
| | - Melita Parlak
- Bogazici Universitesi Fen-Edebiyat Fakultesi, Turkey
| | - Berzem Selcuk
- Bogazici Universitesi Fen-Edebiyat Fakultesi, Turkey
| | | | | | | | | | | | | |
Collapse
|
17
|
Wang B, Qin X, Xiao N, Yao Y, Duan Y, Cui X, Zhang S, Luo H, Sun H. Phthalate exposure and semen quality in infertile male population from Tianjin, China: Associations and potential mediation by reproductive hormones. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 744:140673. [PMID: 32702538 DOI: 10.1016/j.scitotenv.2020.140673] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 06/03/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Global decline in male fertility and their associations with ubiquitous exposure of phthalates (PAEs) have raised public concerns. However, the current epidemiological data are limited and controversial. Hence, we investigated possible associations between PAE exposure and male infertility. Eleven phthalate metabolites (mPAEs) were determined in urine and serum samples collected from eighty-eight males diagnosed with infertility from Tianjin, China. The median serum levels of mPAE were n.d. -3.63 ng/mL, which were 1-2 orders of magnitude lower than the urinary levels of n.d. -192 ng/mL. Negative associations were identified between urinary follicle-stimulating hormone (FSH) and MiBP and serum MCMHP, as well as testosterone (T) and luteinizing hormone (LH) and the molar concentrations of ∑mPAE, while positive association was found between T and the serum molar concentrations of ∑mDEHP. Positive associations were found between the molar concentrations of serum ∑mPAE and sperm concentration, sperm motility rate, and progressive motility, between mono (2-ethyl-5-carboxypentyl) phthalate (MECPP) and semen volume and total sperm number, and between MCMHP and progressive motility, while negative association was found between mono(2-ethyl-5-oxohexyl) phthalate (MEOHP) and progressive motility. Moreover, FSH was found to mediate the association between serum concentrations of MCMHP and progressive motility (mediation ratio = 41.6%), and LH to mediate the associations between serum concentrations of ∑mPAE and sperm concentration (mediation ratio = 45.7%) and sperm motility rate (mediation ratio = 29.0%). These results also suggested that serum levels of mPAE are a good predictor for male infertility. Further efforts need to be made on toxicological studies to systematically elaborate the internal mechanisms.
Collapse
Affiliation(s)
- Bin Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiaolei Qin
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Nan Xiao
- Center for Reproductive Medicine, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin 300100, China
| | - Yiming Yao
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Yishuang Duan
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Institute of Environment and Health, Jianghan University, Wuhan, China
| | - Xianfeng Cui
- Center for Reproductive Medicine, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin 300100, China
| | - Shuai Zhang
- Center for Reproductive Medicine, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin 300100, China
| | - Haining Luo
- Center for Reproductive Medicine, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin 300100, China
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
18
|
Alyahya AAI, Asad M. Repeated 28-DAY oral dose study on Boswellia sacra oleo gum resin extract for testicular toxicity in rats. JOURNAL OF ETHNOPHARMACOLOGY 2020; 258:112890. [PMID: 32330512 DOI: 10.1016/j.jep.2020.112890] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Frankincense (Boswellia sacra Fluck.,) is a widely used herbal drug and household medicine for treatment of several diseases. Earlier toxicological studies revealed its proulcerogenic effect and no significant hepatotoxic or nephrotoxic effects in rats. However, some other members of Boswellia species such as Boswellia papyrifera (Caill. ex Delile) Hochst and Boswellia carterii have been reported for testicular toxicity in rats. AIM OF THE STUDY Testicular toxicity of standardized methanolic extract of B. sacra oleo gum resin was determined through repeated oral dose administration for 28 days. Biochemical, histological and genetic changes in rat testes were evaluated. MATERIALS AND METHODS B. sacra extract was analyzed for its boswellic acid content by high performance liquid chromatography (HPLC) method. The extract was administered at three different doses to rats. Effect on behavior, weight, food and water consumption along with changes in serum testosterone levels and cytoarchitecture of testis, epididymis and adrenal gland were determined. Gene expression of GSTPi, IGFBP3 and HSP70 in testis was also studied. RESULTS Boswellic acids (α and β) were present in highest concentration whereas acetyl-11-keto beta boswellic acid was present in relatively smaller amounts. The extract did not produce any significant change in the behavior of the animals, food/water consumption or weight gain. Serum testosterone levels were significantly decreased only by highest tested dose of Boswellia extract (1000 mg/kg, p.o). Histological examination did not reveal any variation in the structure of testis, adrenal gland and epididymis after administration of the extract while the expression of all three studied genes was significantly decreased. CONCLUSION The results indicate that B. sacra extract does not possess any toxic effect on testis. On the contrary, decrease in gene expression of GSTPi, IGFBP3 and HSP70 revealed its antioxidant potential that may protect testes against effect of toxicants. However, a significant reduction in serum testosterone levels point to mechanisms other than direct testicular toxicity.
Collapse
Affiliation(s)
| | - Mohammed Asad
- College of Applied Medical Sciences, Shaqra University, Saudi Arabia.
| |
Collapse
|
19
|
Giuliani A, Zuccarini M, Cichelli A, Khan H, Reale M. Critical Review on the Presence of Phthalates in Food and Evidence of Their Biological Impact. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E5655. [PMID: 32764471 PMCID: PMC7460375 DOI: 10.3390/ijerph17165655] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 12/14/2022]
Abstract
Phthalates are a huge class of chemicals with a wide spectrum of industrial uses, from the manufacture of plastics to food contact applications, children's toys, and medical devices. People and animals can be exposed through different routes (i.e., ingestion, inhalation, dermal, or iatrogenic exposure), as these compounds can be easily released from plastics to water, food, soil, air, making them ubiquitous environmental contaminants. In the last decades, phthalates and their metabolites have proven to be of concern, particularly in products for pregnant women or children. Moreover, many authors reported high concentrations of phthalates in soft drinks, mineral waters, wine, oil, ready-to-eat meals, and other products, as a possible consequence of their accumulation along the food production chain and their accidental release from packaging materials. However, due to their different physical and chemical properties, phthalates do not have the same human and environmental impacts and their association to several human diseases is still under debate. In this review we provide an overview of phthalate toxicity, pointing out the health and legal issues related to their occurrence in several types of food and beverage.
Collapse
Affiliation(s)
- Angela Giuliani
- "G.d'Annunzio" School of Advanced Studies, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Mariachiara Zuccarini
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Aging Research Center, Ce.S.I., "G. d'Annunzio" University Foundation, 66100 Chieti, Italy
| | - Angelo Cichelli
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Marcella Reale
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Interuniversity Center on Interactions between Electromagnetic Fields and Biosystems, National Research Council-Institute for Electromagnetic Detection of The Environment, (ICEMB-CNR-IREA), 80124 Naples, Italy
| |
Collapse
|
20
|
Mechanisms of Testicular Disruption from Exposure to Bisphenol A and Phtalates. J Clin Med 2020; 9:jcm9020471. [PMID: 32046352 PMCID: PMC7074154 DOI: 10.3390/jcm9020471] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 12/20/2022] Open
Abstract
Great attention has been paid in recent years to the harmful effects of various chemicals that interfere with our natural hormone balance, collectively known as endocrine-disrupting chemicals (EDCs) or endocrine disruptors. The effects on the reproductive system of bisphenol A (BPA) and phthalates have received particular attention: while they have a short half-life, they are so widespread that human exposure can be considered as continuous. Evidence is often limited to the animal model, disregarding the likelihood of human exposure to a mixture of contaminants. Data from animal models show that maternal exposure probably has harmful effects on the male fetus, with an increased risk of urogenital developmental abnormalities. After birth, exposure is associated with changes in the hypothalamic-pituitary-testicular axis, hindering the development and function of the male genital pathways through the mediation of inflammatory mechanisms and oxidative stress. The epidemiological and clinical evidence, while generally confirming the association between reproductive abnormalities and some phthalate esters and BPA, is more contradictory, with wildly different findings. The aim of this review is therefore to provide an update of the potential mechanisms of the damage caused by BPA and phthalates to reproductive function and a review of the clinical evidence currently available in the literature.
Collapse
|
21
|
Alfatah M, Wong JH, Kong KW, Utama F, Hoon S, Arumugam P. Chemical-genetic interaction landscape of mono-(2-ethylhexyl)-phthalate using chemogenomic profiling in yeast. CHEMOSPHERE 2019; 228:219-231. [PMID: 31029968 DOI: 10.1016/j.chemosphere.2019.04.100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 03/07/2019] [Accepted: 04/13/2019] [Indexed: 06/09/2023]
Abstract
Integration of chemical-genetic interaction data with biological functions provides a mechanistic understanding of how toxic compounds affect cells. Mono-(2-ethylhexyl)-phthalate (MEHP) is an active metabolite of di-(2-ethylhexyl)-phthalate (DEHP), a commonly used plasticizer. MEHP adversely affects human health causing hepatotoxicity and reproductive toxicity. How MEHP affects cellular physiology is not fully understood. We utilized a genome-wide competitive fitness-based assay called 'chemogenomic profiling' to determine the genetic interaction map of MEHP in Saccharomyces cerevisiae. Gene Ontology enrichment analysis of 218 genes that provide resistance to MEHP indicated that MEHP affects seven cellular processes namely: (1) cellular amino acid biosynthetic process, (2) sterol biosynthetic process, (3) cellular transport, (4) transcriptional and translational regulation, (5) protein glycosylation, (6) cytokinesis and cell morphogenesis and (7) ionic homeostasis. We show that MEHP protects yeast cells from membrane perturbing agents such as amphotericin B, dihydrosphingosine and phytosphingosine. Moreover, we also demonstrate that MEHP compromises the integrity of the yeast plasma membrane and cell wall. Our work provides a basis for further investigation of MEHP toxicity in humans.
Collapse
Affiliation(s)
- Mohammad Alfatah
- Bioinformatics Institute, 30 Biopolis Street, #07-01, Matrix, Singapore 138671, Singapore.
| | - Jin Huei Wong
- Bioinformatics Institute, 30 Biopolis Street, #07-01, Matrix, Singapore 138671, Singapore
| | - Kiat Whye Kong
- Molecular Engineering Laboratory, 61 Biopolis Drive, #03-12 Proteos, Singapore 13867, Singapore
| | - Felix Utama
- School of Chemical and Life Sciences, Singapore Polytechnic, 500 Dover Road, Singapore 139651, Singapore
| | - Shawn Hoon
- Molecular Engineering Laboratory, 61 Biopolis Drive, #03-12 Proteos, Singapore 13867, Singapore
| | - Prakash Arumugam
- Bioinformatics Institute, 30 Biopolis Street, #07-01, Matrix, Singapore 138671, Singapore.
| |
Collapse
|
22
|
Sweeney MR, O’Leary KG, Jeney Z, Braunlin MC, Gibb HJ. Systematic review and quality ranking of studies of two phthalate metabolites and anogenital distance, bone health, inflammation, and oxidative stress. Crit Rev Toxicol 2019; 49:281-301. [DOI: 10.1080/10408444.2019.1605332] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
23
|
Chang WH, Tsai YS, Wang JY, Chen HL, Yang WH, Lee CC. Sex hormones and oxidative stress mediated phthalate-induced effects in prostatic enlargement. ENVIRONMENT INTERNATIONAL 2019; 126:184-192. [PMID: 30798199 DOI: 10.1016/j.envint.2019.02.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 02/01/2019] [Accepted: 02/01/2019] [Indexed: 06/09/2023]
Abstract
Prostatic enlargement might affect up to 30% of men and can cause signs and symptoms in the lower urinary tract in the elderly. Imbalanced estrogen and androgen secretions are important in prostatic physiopathology. Phthalates-environmental endocrine disruptors-affect androgen secretion and disrupt sexual organs, including testes and the prostate, but the underlying mechanisms are unclear. Using European Association of Urology (EAU) guidelines, we recruited from urology clinics in southern Taiwan 207 elderly men diagnosed with benign prostatic hyperplasia (BPH) and prostatic enlargement between 2015 and 2017. We took blood and urine samples from all patients on the same day. We used multivariate linear regression, associations, and potential interactions after we had measured and analyzed oxidative stress (OS) markers, steroidal hormones, and 11 urinary phthalate metabolites, and then we adjusted for confounders. Di(2-ethylhexyl) phthalate (DEHP) metabolite levels, particularly urinary mono-(2-ethylhexyl) phthalate, were positively associated with androgen, estrogen, hormone ratios, inducible nitric oxide synthetase (iNOS), 8-hydroxy-2'-deoxyguanosine (8-OHdG), prostate specific antigen (PSA), and prostate volume (PV) (p < 0.05). PV and PSA were positively associated with androgen, estrogen, hormone ratios and OS markers (p < 0.05). The estimated percentages of exposure to phthalates in prostatic enlargement mediated by androgen, estrogen, and OS markers ranged from 3.5% to 63.1%. Exposure to DEHP promoted the progress of BPH by increasing dihydrotestosterone (DHT), estradiol (E2), the converted enzymes aromatase and 5α reductase, and reactive oxygen species (ROS) (8-OHdG and iNOS) production. Sex hormones and OS might be important hyperplasia-promoters after a patient has been exposed to phthalates, especially to DEHP.
Collapse
Affiliation(s)
- Wei-Hsiang Chang
- Research Center of Environmental Trace Toxic Substance, National Cheng Kung University, Tainan, Taiwan
| | - Yuh-Shyan Tsai
- Department of Urology, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Jia-Yu Wang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hsiu-Ling Chen
- Research Center of Environmental Trace Toxic Substance, National Cheng Kung University, Tainan, Taiwan; Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Horng Yang
- Department of Urology, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Ching-Chang Lee
- Research Center of Environmental Trace Toxic Substance, National Cheng Kung University, Tainan, Taiwan; Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
24
|
Jiang WD, Zhou XQ, Zhang L, Liu Y, Wu P, Jiang J, Kuang SY, Tang L, Tang WN, Zhang YA, Shi HQ, Feng L. Vitamin A deficiency impairs intestinal physical barrier function of fish. FISH & SHELLFISH IMMUNOLOGY 2019; 87:546-558. [PMID: 30716522 DOI: 10.1016/j.fsi.2019.01.056] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 01/28/2019] [Accepted: 01/31/2019] [Indexed: 06/09/2023]
Abstract
The present study was the first to investigate the effects of dietary vitamin A (VA) on the intestinal physical barrier function associated with oxidation, antioxidant system, apoptosis and cell-cellular tight junction (TJ) in the proximal (PI), mid (MI) and distal (DI) intestines of young grass carp (Ctenopharyngodon idella). Fish were fed graded levels of dietary VA for 10 weeks, and then a challenge test using an injection of Aeromonas hydrophila was conducted for 14 days. Results indicated that dietary VA deficiency caused oxidative damage to fish intestine partly by the reduced non-enzymatic antioxidant components glutathione (GSH) and VA contents as well as reduced antioxidant enzyme activities [not including manganese superoxide dismutase (MnSOD)]. Further results observed that the decreased antioxidant enzyme activities by VA deficiency were partly related to the down-regulation of their corresponding mRNA levels which were regulated by the down-regulation of NF-E2-related factor 2 (Nrf2) mRNA levels and up-regulation of kelch-like-ECH-associated protein (Keap1a) (rather than Keap1b) mRNA levels in three intestinal segments of fish. Meanwhile, VA deficiency up-regulated the mRNA levels of the apoptosis signalling [caspase-3, caspase-8, caspase-9 (rather than caspase-7)] associated with the inhibition of the target of rapamycin (TOR) signalling pathway in three intestinal segments of fish. Additionally, VA deficiency decreased the mRNA levels of TJ complexes [claudin-b, claudin-c, claudin-3, claudin-12, claudin-15a, occludin and zonula occludens-1 (ZO-1) in the PI, MI and DI, as well as claudin-7 and claudin-11a in the MI and DI] linked to the up-regulation of myosin light chain kinase (MLCK) signalling. These results suggested that VA deficiency impaired structural integrity in three intestinal segments of fish. Meanwhile, excessive VA also showed similar negative effects on these indexes. Taken together, the current study firstly demonstrated that VA deficiency impaired physical barrier functions associated with impaired antioxidant capacity, aggravated cell apoptosis and disrupted TJ complexes in the PI, MI and DI, but different segments performed different actions in fish. Based on protecting fish against protein oxidation, the optimal VA levels for grass carp were estimated to be 2622 IU/kg diet.
Collapse
Affiliation(s)
- Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Li Zhang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - He-Qun Shi
- Guangzhou Cohoo Bio-tech Research & Development Centre, Guangzhou, 510663, Guangdong, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
25
|
Tian M, Liu L, Zhang J, Huang Q, Shen H. Positive association of low-level environmental phthalate exposure with sperm motility was mediated by DNA methylation: A pilot study. CHEMOSPHERE 2019; 220:459-467. [PMID: 30594797 DOI: 10.1016/j.chemosphere.2018.12.155] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/21/2018] [Accepted: 12/21/2018] [Indexed: 06/09/2023]
Abstract
Accumulating evidence indicates that phthalate exposures may affect human semen quality. Epigenetic modifications such as DNA methylation might be linked chemical exposure and spermatogenesis epigenetic reprogramming. In the present study, we investigated associations between phthalate exposures, DNA methylation and sperm quality in undergoing fertility assessment male population. Urine was used for phthalate exposures monitoring, six selected metabolites (i.e., monomethyl phthalate (MMP), monoethyl phthalate (MEP), mono-n-butyl phthalate (MBP), monobenzyl phthalate (MBzP), mono-(2-ethylhexyl) phthalate (MEHP) and mono (2-ethyl-5-oxohexyl) phthalate (MEOHP)) were measured by using HPLC-MS/MS. Sperm quality parameters were determined by computer-assisted semen analysis (CASA). Sperm DNA methylation patterns (long interspersed nuclear element-1(LINE-1), H19 and LIT1) were analysed employing high-melting resolution (HRM) PCR. Urinary MMP, MEHP, MEOHP, sum of DEHP metabolites (∑DEHP) and sum of selected phthalates metabolites (∑PAEs) were significantly positively associated with sperm motility. Sperm LINE-1 DNA methylation were found to be negatively associated with ∑DEHP exposure and sperm quality (ejaculate volume, total sperm number and motility). Epigenetic modification LINE-1 DNA methylation demonstrated mediating effects in association between DEHP exposure and sperm motility, and 20.7% of the association was mediated by serum LIEN-1 DNA methylation. These results extend the previous studies in association between phthalate exposures and classical semen parameters, mainly of inverse association, and sperm DNA methylation may be linked phthalate exposures and male reproductive health outcome.
Collapse
Affiliation(s)
- Meiping Tian
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liangpo Liu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Jie Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Qingyu Huang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Heqing Shen
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| |
Collapse
|
26
|
Ortega-Olvera JM, Winkler R, Quintanilla-Vega B, Shibayama M, Chávez-Munguía B, Martín-Tapia D, Alarcón L, González-Mariscal L. The organophosphate pesticide methamidophos opens the blood-testis barrier and covalently binds to ZO-2 in mice. Toxicol Appl Pharmacol 2018; 360:257-272. [PMID: 30291936 DOI: 10.1016/j.taap.2018.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 09/21/2018] [Accepted: 10/01/2018] [Indexed: 12/12/2022]
Abstract
Methamidophos (MET) is an organophosphate (OP) pesticide widely used in agriculture in developing countries. MET causes adverse effects in male reproductive function in humans and experimental animals, but the underlying mechanisms remain largely unknown. We explored the effect of MET on mice testes (5 mg/kg/day/4 days), finding that this pesticide opens the blood-testis barrier and perturbs spermatogenesis, generating the appearance of immature germ cells in the epididymis. In the seminiferous tubules, MET treatment changed the level of expression or modified the stage-specific localization of tight junction (TJ) proteins ZO-1, ZO-2, occludin, and claudin-3. In contrast, claudin-11 was barely altered. MET also modified the shape of claudin-11, and ZO-2 at the cell border, from a zigzag to a more linear pattern. In addition, MET diminished the expression of ZO-2 in spermatids present in seminiferous tubules, induced the phosphorylation of ZO-2 and occludin in testes and reduced the interaction between these proteins assessed by co-immunoprecipitation. MET formed covalent bonds with ZO-2 in serine, tyrosine and lysine residues. The covalent modifications formed on ZO-2 at putative phosphorylation sites might interfere with ZO-2 interaction with regulatory molecules and other TJ proteins. MET bonds formed at ZO-2 ubiquitination sites likely interfere with ZO-2 degradation and TJ sealing, based on results obtained in cultured epithelial cells transfected with ZO-2 mutated at a MET target lysine residue. Our results shed light on MET male reproductive toxicity and are important to improve regulations regarding the use of OP pesticides and to protect the health of agricultural workers.
Collapse
Affiliation(s)
| | - Robert Winkler
- Department of Biotechnology and Biochemistry, Cinvestav, Irapuato 36824, Mexico; Max Planck Institute for Chemical Ecology, Jena 07745, Germany
| | | | - Mineko Shibayama
- Department of Infectomics and Molecular Pathogenesis, Cinvestav, Mexico City 07360, Mexico
| | - Bibiana Chávez-Munguía
- Department of Infectomics and Molecular Pathogenesis, Cinvestav, Mexico City 07360, Mexico
| | - Dolores Martín-Tapia
- Department of Physiology, Biophysics and Neuroscience, Cinvestav, Mexico City 07360, Mexico
| | - Lourdes Alarcón
- Department of Physiology, Biophysics and Neuroscience, Cinvestav, Mexico City 07360, Mexico
| | | |
Collapse
|
27
|
Kamińska A, Pardyak L, Marek S, Górowska-Wójtowicz E, Kotula-Balak M, Bilińska B, Hejmej A. Bisphenol A and dibutyl phthalate affect the expression of juxtacrine signaling factors in rat testis. CHEMOSPHERE 2018; 199:182-190. [PMID: 29438945 DOI: 10.1016/j.chemosphere.2018.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/28/2017] [Accepted: 02/03/2018] [Indexed: 06/08/2023]
Abstract
The study was designed to examine the effects of model plastic derived compounds, bisphenol A (BPA) and dibutyl phthalate (DBP), on juxtacrine communication in adult rat testis, by evaluating the expression of Notch pathway components. Testicular explant were exposed in vitro to BPA (5 × 10-6 M, 2.5 × 10-5 M, 5 × 10-5 M) or DBP (10-6 M, 10-5 M, 10-4 M) for 24 h. To determine the expression of Notch1, Dll4, Hey1, Hes1 and Hey5 real-time RT-PCR was used. Protein levels and localization of NOTCH1 receptor, its ligand DLL4 as well as HEY1, HES1 and HEY5 factors were detected by western blot analysis and immunohistochemistry, respectively. Upregulation of Notch1, Dll4 and Hey1 at the mRNA and protein level was demonstrated in testis explants after BPA and DBP treatment (p < 0.05; p < 0.01; p < 0.001). Hes5 expression decreased after BPA (p < 0.05; p < 0.01; p < 0.001), whereas Hes1 expression was not altered by either BPA or DBP. Tested chemicals altered immunoexpression of activated NOTCH1, DLL4, HEY1 and HES5 both in seminiferous epithelium and interstitial tissue, exerting differential effects on particular cell types. In conclusion, BPA and DBP affect Notch signaling pathway in rat testis, which indicates that juxtacrine communication is a potential target for the action of plastic derived compounds in male gonad.
Collapse
Affiliation(s)
- Alicja Kamińska
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Laura Pardyak
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Sylwia Marek
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Ewelina Górowska-Wójtowicz
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Małgorzata Kotula-Balak
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Barbara Bilińska
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Anna Hejmej
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
28
|
In vitro study of doxorubicin-induced oxidative stress in spermatogonia and immature Sertoli cells. Toxicol Appl Pharmacol 2018; 348:32-42. [PMID: 29660436 DOI: 10.1016/j.taap.2018.04.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 02/02/2023]
Abstract
Pediatric chemotherapy treatments can impair long-term male fertility. Unfortunately, no fertility preservation solution is available for pre-pubertal boys. Studies suggest that doxorubicin, used against pediatric cancers, induces oxidative stress in the testis. However, the targeted testicular cell types remain unknown. The goal of this study was to determine whether doxorubicin can induce oxidative stress in rat spermatogonia (GC-6Spg) and immature Sertoli (Ser-W3) cell lines, and to assess their protection by antioxidants. Using the MTT assay, we have shown that doxorubicin induces a time- and dose-dependent cytotoxicity in these two cell lines, Ser-W3 being more sensitive than GC-6Spg. After 3 h of treatment, reactive oxygen species and nuclear 8-oxo-deoxyguanosine increase in Ser-W3, but not in GC-6Spg. Moreover, after 6 h of treatment, intracellular reduced glutathione levels decrease significantly in Ser-W3 cells. These results show that doxorubicin induces oxidative stress in the Ser-W3 cell line. However, a depletion in glutathione does not affect their survival, and supplementation only offers a weak protection after exposure to doxorubicin, suggesting that the glutathione system is not essential for Ser-W3 cell line's defense against doxorubicin. On the other hand, among four antioxidants selected from the literature, none reduces the cytotoxicity of doxorubicin in Ser-W3 cells. Together, our data suggest that oxidative stress may not be a major pathway for doxorubicin's cytotoxicity in GC-6Spg and Ser-W3 lines. This study provides new insights in the mechanisms by which chemotherapies affect the pre-pubertal testis, with the long-term goal to help improve the quality of life of pediatric cancer survivors.
Collapse
|
29
|
Protective Effects of Genistein against Mono-(2-ethylhexyl) Phthalate-Induced Oxidative Damage in Prepubertal Sertoli Cells. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2032697. [PMID: 29259978 PMCID: PMC5702931 DOI: 10.1155/2017/2032697] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/13/2017] [Accepted: 08/21/2017] [Indexed: 12/18/2022]
Abstract
Mono-(2-ethylhexyl) phthalate (MEHP) and genistein are two of the most prevalent endocrine-disrupting chemicals (EDCs) that present in the environment and food. However, how these two EDCs would affect prepubertal Sertoli cells development was rarely studied. In this study, primary prepubertal Sertoli cells were isolated from 22-day-old Sprague Dawley rats and exposed to MEHP at 1 μmol/L, 10 μmol/L, and 100 μmol/L (M1, M10, and M100), genistein at 10 μmol/L (G), and their combination (G + M1, G + M10, and G + M100). Cell proliferation inhibition rate, apoptosis and necrosis rate, and cellular redox state were evaluated. Our results revealed that MEHP could significantly increase cell proliferation inhibition rate, apoptosis rate, necrosis rate, and intracellular reactive oxidative species level. However, coadministration of genistein could partially alleviate MEHP-induced prepubertal Sertoli cells oxidative injuries via enhancement of testicular antioxidative enzymes activities and upregulation of Nrf2 and HO-1, indicating that genistein could partially attenuate MEHP-induced prepubertal Sertoli cells damage through antioxidative action and may have promising future on its curative role for attenuating other EDCs-induced reproductive disorders.
Collapse
|
30
|
Wu S, Li Y, Chen S, Liang S, Ren X, Guo W, Sun Q, Yang X. Effect of dietary Astragalus Polysaccharide supplements on testicular piRNA expression profiles of breeding cocks. Int J Biol Macromol 2017; 103:957-964. [DOI: 10.1016/j.ijbiomac.2017.05.122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 05/08/2017] [Accepted: 05/19/2017] [Indexed: 01/04/2023]
|
31
|
Watkins DJ, Sánchez BN, Téllez-Rojo MM, Lee JM, Mercado-García A, Blank-Goldenberg C, Peterson KE, Meeker JD. Impact of phthalate and BPA exposure during in utero windows of susceptibility on reproductive hormones and sexual maturation in peripubertal males. Environ Health 2017. [PMID: 28637469 PMCID: PMC5480112 DOI: 10.1186/s12940-017-0278-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
BACKGROUND Phthalates and BPA are endocrine disrupting chemicals (EDCs) widely used in consumer products. Evidence suggests that phthalate and BPA exposure alters steroid hormone levels in adults, while in utero exposure has been associated with altered fetal reproductive development in boys. However, the impact of exposure during distinct critical windows of in utero development on hormone concentrations and sexual maturation during the pubertal transition has not been examined. The objective of this study was to assess trimester-specific in utero phthalate and BPA exposure in relation to measures of reproductive development among peripubertal boys in a Mexico City birth cohort. METHODS We measured maternal urinary phthalate metabolites and BPA during the first, second, and third trimesters of pregnancy. We measured serum levels of testosterone, estradiol, dehydroepiandrosterone sulfate (DHEA-S), inhibin B, and sex hormone-binding globulin (SHBG), and assessed sexual maturation (Tanner staging and testicular volume) among male children at age 8-14 years (n = 109). Linear and logistic regression were used to investigate trimester-specific in utero exposure as predictors of peripubertal hormone levels and sexual maturation, respectively. In sensitivity analyses we evaluated estimated exposure at 7 weeks gestation and rates of change in exposure across pregnancy in relation to outcomes. RESULTS Exposure to phthalates during the third trimester was associated with reduced odds of having a Tanner stage >1 for pubic hair development (e.g. MBzP OR = 0.18 per interquartile range (IQR) increase; 95% CI:0.03-0.97) and higher peripubertal SHBG levels (e.g. MBzP 15.2%/IQR; 95% CI:3.2-28%), while first and second trimester phthalates were not. In contrast, exposure to DEHP during the first trimester was associated with higher estradiol (11%/IQR; 95% CI:1.5-22%), while second or third trimester DEHP exposure was not. Sensitivity analyses yielded similar findings. CONCLUSIONS Associations between in utero phthalate and BPA exposure and peripubertal measures of male reproductive development are dependent on the timing of that exposure during gestation. These findings suggest that future epidemiological studies relating in utero EDC exposure to pubertal outcomes should consider windows of susceptibility.
Collapse
Affiliation(s)
- Deborah J. Watkins
- Department of Environmental Health Sciences, University of Michigan School of Public Health, 6611C SPH I, 1415 Washington Heights, Ann Arbor, MI 48109 USA
| | - Brisa N. Sánchez
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI USA
| | - Martha Maria Téllez-Rojo
- Center for Nutrition and Health Research, Instituto Nacional de Salud Pública, MOR, Cuernavaca, Mexico
| | - Joyce M. Lee
- Department of Environmental Health Sciences, University of Michigan School of Public Health, 6611C SPH I, 1415 Washington Heights, Ann Arbor, MI 48109 USA
- Pediatric Endocrinology, Child Health Evaluation and Research Unit (CHEAR), University of Michigan, Ann Arbor, MI USA
| | - Adriana Mercado-García
- Center for Nutrition and Health Research, Instituto Nacional de Salud Pública, MOR, Cuernavaca, Mexico
| | | | - Karen E. Peterson
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI USA
- Center for Human Growth and Development, University of Michigan, Ann Arbor, MI USA
| | - John D. Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, 6611C SPH I, 1415 Washington Heights, Ann Arbor, MI 48109 USA
| |
Collapse
|
32
|
Chang WH, Wu MH, Pan HA, Guo PL, Lee CC. Semen quality and insulin-like factor 3: Associations with urinary and seminal levels of phthalate metabolites in adult males. CHEMOSPHERE 2017; 173:594-602. [PMID: 28152410 DOI: 10.1016/j.chemosphere.2017.01.056] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/15/2016] [Accepted: 01/11/2017] [Indexed: 05/24/2023]
Abstract
Certain phthalates have adverse effects on male reproductive functions in animals, and potentially affect human testicular function and spermatogenesis, but little is known about the active mechanisms. We measured the urinary and seminal phthalate metabolites and explored their associations on insulin-like factor 3 (INSL3) and semen quality. Urine, blood, and semen samples were collected from the male partners of subfertile (n = 253) and fertile (n = 37) couples in a reproductive center in southern Taiwan. INSL3, reproductive hormones, semen-quality, and 11 phthalate metabolites in urine and semen were measured. There were significant correlations in the distribution pattern of metabolites, such as the relative contribution of low or high molecular weight phthalate metabolites. The significantly monotonic trends in semen volume, sperm concentration and motility were associated with increasing quartiles of INSL3 (all p-trend < 0.001). In adjusted regression models, increases in urinary phthalate metabolites levels were adversely associated with sperm concentration (monobenzyl phthalate [MBzP], mono-2-ethylhexyl phthalate [MEHP] and MEHP%), motility (MBzP and MEHP) and INSL3 (MBzP, MEHP and MEHP%) (all p < 0.01). Higher seminal phthalate metabolite levels were associated with decreases in sperm concentration (MEHP and mono-2-ethyl-5-hydroxyhexyl phthalate), motility (mono-ethyl phthalate [MEP] and di-(2-ethylhexyl) phthalate [DEHP] metabolites), normal morphology (MEP), and INSL3 (monomethyl phthalate and MEP) (all p < 0.05). Our data suggest that INSL3 secretion, reproductive hormone balance, and sperm production and quality might be simultaneously adversely affected for individuals excreting increasing levels of phthalates metabolites (especially di-ethyl phthalate, butylbenzyl phthalate, and DEHP) in urine and semen samples.
Collapse
Affiliation(s)
- Wei-Hsiang Chang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan 70403, Taiwan.
| | - Meng-Hsing Wu
- Department of Obstetrics and Gynecology, Hospital of National Cheng Kung University, 138 Sheng-Li Road, Tainan 70403, Taiwan.
| | - Hsien-An Pan
- An-An Women and Children Clinic, 286 Kaiyuan Road, Tainan 70403, Taiwan.
| | - Pao-Lin Guo
- Department of Obstetrics and Gynecology, Hospital of National Cheng Kung University, 138 Sheng-Li Road, Tainan 70403, Taiwan.
| | - Ching-Chang Lee
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan 70403, Taiwan; Research Center of Environmental Trace Toxic Substance, National Cheng Kung University, 138 Sheng-Li Road, Tainan 70403, Taiwan.
| |
Collapse
|
33
|
Chang L, Wang J, She R, Ma L, Wu Q. In vitro toxicity evaluation of melamine on mouse TM4 Sertoli cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 50:111-118. [PMID: 28171822 DOI: 10.1016/j.etap.2017.01.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 01/12/2017] [Accepted: 01/14/2017] [Indexed: 06/06/2023]
Abstract
The male reproductive toxicity of melamine (MA) has been recognized in recent years excepted for its renal toxicity. Our previous in vivo studies revealed that the damages of Sertoli cell barrier played a critical role in MA-induced testicular toxicity in mice. Herein, we performed an in vitro study to comprehensively evaluate the toxicity of MA on Sertoli cell by examining the influences of MA on the viability, morphology, mortality and intercellular junctions of mouse TM4 Sertoli cells (TM4 cells). The results showed that MA suppressed cell viability, induced obvious ultrastructural changes and cell apoptosis in concentration-dependent manner. Moreover, MA down-regulated the expressions of junction-associated proteins including occludin, N-cadherin, and vimentin, suggesting that MA disrupted the integrity of Sertoli cell barrier. Thus, these results indicated that Sertoli cell might be an important cellular target for MA-induced male reproductive toxicity.
Collapse
Affiliation(s)
- Lingling Chang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China; Laboratory of Animal Pathology and Public Health, Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agriculture University, Beijing, PR China
| | - Jingyuan Wang
- Laboratory of Animal Pathology and Public Health, Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agriculture University, Beijing, PR China
| | - Ruiping She
- Laboratory of Animal Pathology and Public Health, Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agriculture University, Beijing, PR China.
| | - Longhuan Ma
- Laboratory of Animal Pathology and Public Health, Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agriculture University, Beijing, PR China
| | - Qiaoxing Wu
- Laboratory of Animal Pathology and Public Health, Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agriculture University, Beijing, PR China
| |
Collapse
|
34
|
Qiu L, Qian Y, Liu Z, Wang C, Qu J, Wang X, Wang S. Perfluorooctane sulfonate (PFOS) disrupts blood-testis barrier by down-regulating junction proteins via p38 MAPK/ATF2/MMP9 signaling pathway. Toxicology 2016; 373:1-12. [DOI: 10.1016/j.tox.2016.11.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 10/21/2016] [Accepted: 11/02/2016] [Indexed: 01/08/2023]
|
35
|
Sathyanarayana S, Grady R, Barrett ES, Redmon B, Nguyen RHN, Barthold JS, Bush NR, Swan SH. First trimester phthalate exposure and male newborn genital anomalies. ENVIRONMENTAL RESEARCH 2016; 151:777-782. [PMID: 27567446 DOI: 10.1016/j.envres.2016.07.043] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/29/2016] [Accepted: 07/30/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Anti-androgenic phthalates are environmental chemicals that affect male genital development in rodents leading to genitourinary birth defects. We examined whether first trimester phthalate exposure may exert similar effects in humans leading to an increased incidence of newborn male genital anomalies in a multi-center cohort study. METHODS We recruited first trimester pregnant women within The Infant Development and the Environment Study (TIDES) from 2010 to 2012 from four study centers and limited analyses to all mother/male infant dyads who had complete urinary phthalate and birth exam data (N=371). We used multivariate logistic regression to determine the odds of having a genital anomaly in relation to phthalate exposure. RESULTS Hydrocele was the primary abnormality observed in the cohort (N=30) followed by undescended testes (N=5) and hypospadias (N=3). We observed a statistically significant 2.5 fold increased risk (95% CI 1.1, 5.9) of having any anomaly and 3.0 fold increased risk (95% CI 1.2, 7.6) of isolated hydrocele in relation to a one log unit increase in the sum of di-ethylhexyl phthalate (DEHP) metabolites. CONCLUSIONS First trimester urinary DEHP metabolite concentrations were associated with increased odds of any newborn genital anomaly, and this association was primarily driven by isolated hydrocele which made up the majority of anomalies in newborn males. The association with hydrocele has not been previously reported and suggests that it may be an endpoint affected by prenatal phthalate exposures in the first trimester of development. Future human studies should include hydrocele assessment in order to confirm findings.
Collapse
Affiliation(s)
- Sheela Sathyanarayana
- Seattle Children's Research Institute, Seattle, WA, USA; Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA.
| | - Richard Grady
- Seattle Children's Research Institute, Seattle, WA, USA
| | - Emily S Barrett
- Department of Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Bruce Redmon
- Department of Endocrinology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Ruby H N Nguyen
- Division of Epidemiology & Community Health, University of Minnesota, Minneapolis, MN, USA
| | - Julia S Barthold
- Division of Urology, Department of Surgery, Nemours/Alfred I DuPont Hospital for Children, DE, USA
| | - Nicole R Bush
- Departments of Psychiatry and Pediatrics, University of California, San Francisco, USA
| | - Shanna H Swan
- Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai , New York City, NY, USA
| |
Collapse
|