1
|
Espinosa-Urgel M. Connecting environmental and evolutionary microbiology for the development of new agrobiotechnological tools. Environ Microbiol 2023; 25:87-90. [PMID: 36519350 PMCID: PMC10087822 DOI: 10.1111/1462-2920.16197] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 08/31/2022] [Indexed: 01/21/2023]
Affiliation(s)
- Manuel Espinosa-Urgel
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, CSIC, Granada, Spain
| |
Collapse
|
2
|
Abstract
Since Jacques Monod's foundational work in the 1940s, investigators studying bacterial physiology have largely (but not exclusively) focused on the exponential phase of bacterial cultures, which is characterized by rapid growth and high biosynthesis activity in the presence of excess nutrients. However, this is not the predominant state of bacterial life. In nature, most bacteria experience nutrient limitation most of the time. In fact, investigators even prior to Monod had identified other aspects of bacterial growth, including what is now known as the stationary phase, when nutrients become limiting. This review will discuss how bacteria transition to growth arrest in response to nutrient limitation through changes in transcription, translation, and metabolism. We will then examine how these changes facilitate survival during potentially extended periods of nutrient limitation, with particular attention to the metabolic strategies that underpin bacterial longevity in this state.
Collapse
Affiliation(s)
- Jonathan Dworkin
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY, USA;
| | - Caroline S Harwood
- Department of Microbiology, University of Washington, Seattle, Washington, USA;
| |
Collapse
|
3
|
Abstract
Bacteria have evolved numerous strategies to use resources efficiently. However, bacterial economies depend on both the physiological context of the organisms as well as their growth state - whether they are growing, non-growing or reinitiating growth. In this essay, we discuss some of the features that make bacteria efficient under these different conditions and during the transitions between them. We also highlight the many outstanding questions regarding the physiology of non-growing bacterial cells. Lastly, we examine how efficiency is apparent in both the mode and tempo of bacterial evolution.
Collapse
Affiliation(s)
- Roberto Kolter
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA.
| | - Nathalie Balaban
- Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Thomas Julou
- Biozentrum and Swiss Institute of Bioinformatics, University of Basel, Basel, CH 4056, Switzerland
| |
Collapse
|
4
|
A Cell Double-Barcoding System for Quantitative Evaluation of Primary Tumors and Metastasis in Animals That Uncovers Clonal-Specific Anti-Cancer Drug Effects. Cancers (Basel) 2022; 14:cancers14061381. [PMID: 35326533 PMCID: PMC8946264 DOI: 10.3390/cancers14061381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/23/2022] [Accepted: 03/01/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The main problem in treating advanced cancers is a metastatic spread when individual cancer cells leave the primary tumor and colonize to distant organs. In drug development, it is important to quantitatively assess effects of novel drug candidates on both primary tumors and metastasis. Unfortunately, current methods of monitoring metastasis in mouse models have low sensitivity and are not quantitative. Here, we developed a methodology to monitor drug effects on metastasis that is quantitative and has a very high sensitivity and resolution. In fact, it allows monitoring effects of drugs on individual cancer cells in animals. Abstract Imaging in monitoring metastasis in mouse models has low sensitivity and is not quantitative. Cell DNA barcoding, demonstrating high sensitivity and resolution, allows monitoring effects of drugs on the number of tumor and metastatic clones. However, this technology is not suitable for comparison of sizes of metastatic clones in different animals, for example, drug treated and untreated, due to high biological and technical variability upon tumor and metastatic growth and isolation of barcodes from tissue DNA. However, both numbers of clones and their sizes are critical parameters for analysis of drug effects. Here we developed a modification of the barcoding approach for monitoring drug effects on tumors and metastasis that is quantitative, highly sensitive and highly reproducible. This novel cell double-barcoding system allows simultaneously following the fate of two or more cell variants or cell lines in xenograft models in vivo, and also following the fates of individual clones within each of these populations. This system allows comparing effects of drugs on different cell populations and thus normalizing drug effects by drug-resistant lines, which corrects for both biological and technical variabilities and significantly increases the reproducibility of results. Using this barcoding system, we uncovered that effects of a novel DYRK1B kinase inhibitor FX9847 on primary tumors and metastasis is clone-dependent, while a distinct drug osimertinib demonstrated clone-independent effects on cancer cell populations. Overall, a cell double-barcoding approach can significantly enrich our understanding of drug effects in basic research and preclinical studies.
Collapse
|
5
|
Smakman F, Hall AR. Exposure to lysed bacteria can promote or inhibit growth of neighbouring live bacteria depending on local abiotic conditions. FEMS Microbiol Ecol 2022; 98:6524834. [PMID: 35138381 PMCID: PMC8902688 DOI: 10.1093/femsec/fiac011] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/17/2022] [Accepted: 02/07/2022] [Indexed: 11/14/2022] Open
Abstract
Microbial death is extremely common in nature, yet the ecological role of dead bacteria is unclear. Dead cells are assumed to provide nutrients to surrounding microbes, but may also affect them in other ways. We found adding lysate prepared from dead bacteria to cultures of E. coli in nutrient-rich conditions suppressed their final population density. This is in stark contrast with the notion that the primary role of dead cells is nutritional, although we also observed this type of effect when we added dead bacteria to cultures that were not supplied with other nutrients. We only observed the growth-suppressive effect of our dead-bacteria treatment after they had undergone significant lysis, suggesting a key role for cellular contents released during lysis. Transcriptomic analysis indicated changes in gene expression in response to dead cells in growing populations, particularly in genes involved in motility. This was supported by experiments with genetic knockouts and copy-number manipulation. Because lysis is commonplace in natural and clinical settings, the growth-suppressive effect of dead cells we describe here may be a widespread and previously unrecognized constraint on bacterial population growth.
Collapse
Affiliation(s)
- Fokko Smakman
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zürich, Universitätstrasse 16 8092 Zürich Switzerland
| | - Alex R Hall
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zürich, Universitätstrasse 16 8092 Zürich Switzerland
| |
Collapse
|
6
|
Mahilkar A, Venkataraman P, Mall A, Saini S. Experimental Evolution of Anticipatory Regulation in Escherichia coli. Front Microbiol 2022; 12:796228. [PMID: 35087497 PMCID: PMC8787300 DOI: 10.3389/fmicb.2021.796228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Environmental cues in an ecological niche are often temporal in nature. For instance, in temperate climates, temperature is higher in daytime compared to during night. In response to these temporal cues, bacteria have been known to exhibit anticipatory regulation, whereby triggering response to a yet to appear cue. Such an anticipatory response in known to enhance Darwinian fitness, and hence, is likely an important feature of regulatory networks in microorganisms. However, the conditions under which an anticipatory response evolves as an adaptive response are not known. In this work, we develop a quantitative model to study response of a population to two temporal environmental cues, and predict variables which are likely important for evolution of anticipatory regulatory response. We follow this with experimental evolution of Escherichia coli in alternating environments of rhamnose and paraquat for ∼850 generations. We demonstrate that growth in this cyclical environment leads to evolution of anticipatory regulation. As a result, pre-exposure to rhamnose leads to a greater fitness in paraquat environment. Genome sequencing reveals that this anticipatory regulation is encoded via mutations in global regulators. Overall, our study contributes to understanding of how environment shapes the topology of regulatory networks in an organism.
Collapse
Affiliation(s)
- Anjali Mahilkar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Pavithra Venkataraman
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Akshat Mall
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Supreet Saini
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
7
|
Shoemaker WR, Polezhaeva E, Givens KB, Lennon JT. Molecular Evolutionary Dynamics of Energy Limited Microorganisms. Mol Biol Evol 2021; 38:4532-4545. [PMID: 34255090 PMCID: PMC8476154 DOI: 10.1093/molbev/msab195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Microorganisms have the unique ability to survive extended periods of time in environments with extremely low levels of exploitable energy. To determine the extent that energy limitation affects microbial evolution, we examined the molecular evolutionary dynamics of a phylogenetically diverse set of taxa over the course of 1,000 days. We found that periodic exposure to energy limitation affected the rate of molecular evolution, the accumulation of genetic diversity, and the rate of extinction. We then determined the degree that energy limitation affected the spectrum of mutations as well as the direction of evolution at the gene level. Our results suggest that the initial depletion of energy altered the direction and rate of molecular evolution within each taxon, though after the initial depletion the rate and direction did not substantially change. However, this consistent pattern became diminished when comparisons were performed across phylogenetically distant taxa, suggesting that while the dynamics of molecular evolution under energy limitation are highly generalizable across the microbial tree of life, the targets of adaptation are specific to a given taxon.
Collapse
Affiliation(s)
- William R Shoemaker
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA.,Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095, USACurrent affiliation
| | | | - Kenzie B Givens
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA.,Luddy School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN, 47408, USACurrent affiliation
| | - Jay T Lennon
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| |
Collapse
|
8
|
Pashang R, Gilbride KA. From individual response to population ecology: Environmental factors restricting survival of vegetative bacteria at solid-air interfaces. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:144982. [PMID: 33592458 DOI: 10.1016/j.scitotenv.2021.144982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/06/2020] [Accepted: 01/02/2021] [Indexed: 06/12/2023]
Abstract
Combating microbial survival on dry surfaces contributes to improving public health in indoor environments (clinical and industrial settings) and extends to the natural environment. For vegetative bacteria at solid-air interfaces, lack of water impacts cellular response, and acclimation depends on community support in response to ecological processes. Gaining insights about important ecological processes leading to inhibition of microbial survival under extreme conditions, such as vicinity of highly radioactive nuclear waste, is key for improving engineering designs. Canada plans to store used nuclear fuel and radioactive waste in a deep geological repository (DGR) with a multiple-barrier system constructed at an approximate depth of 500 m. Microorganisms in highly compacted bentonite surrounding used fuel containers will be challenged by high pressure, temperature, and radiation, as well as limited water and nutrients. Thus, it is difficult to estimate microbial activities, given that the prime concern for a microbial community is survival, and energy expenditure is regulated. To enable preventive measures and for risk evaluation, a deeper understanding of community-based survival strategies of bacterial cells exposed to air (gaseous phase) during prolonged periods of desiccation is required. An in-depth review of collective studies that assess microbial survival and persistence during desiccation is presented here to augment and direct our prior knowledge about tactics used by bacteria for survival at interfaces in hostile natural environments including and similar to a DGR.
Collapse
Affiliation(s)
- Rosha Pashang
- Department of Chemistry and Biology, Ryerson University, Toronto, Canada; Department of Chemical Engineering, University of Bath, Bath, United Kingdom
| | - Kimberley A Gilbride
- Department of Chemistry and Biology, Ryerson University, Toronto, Canada; Ryerson Urban Water Group, Ryerson University, Toronto, Canada.
| |
Collapse
|
9
|
Schellhorn HE. Function, Evolution, and Composition of the RpoS Regulon in Escherichia coli. Front Microbiol 2020; 11:560099. [PMID: 33042067 PMCID: PMC7527412 DOI: 10.3389/fmicb.2020.560099] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/25/2020] [Indexed: 11/13/2022] Open
Abstract
For many bacteria, successful growth and survival depends on efficient adaptation to rapidly changing conditions. In Escherichia coli, the RpoS alternative sigma factor plays a central role in the adaptation to many suboptimal growth conditions by controlling the expression of many genes that protect the cell from stress and help the cell scavenge nutrients. Neither RpoS or the genes it controls are essential for growth and, as a result, the composition of the regulon and the nature of RpoS control in E. coli strains can be variable. RpoS controls many genetic systems, including those affecting pathogenesis, phenotypic traits including metabolic pathways and biofilm formation, and the expression of genes needed to survive nutrient deprivation. In this review, I review the origin of RpoS and assess recent transcriptomic and proteomic studies to identify features of the RpoS regulon in specific clades of E. coli to identify core functions of the regulon and to identify more specialized potential roles for the regulon in E. coli subgroups.
Collapse
|
10
|
Kundu K, Weber N, Griebler C, Elsner M. Phenotypic heterogeneity as key factor for growth and survival under oligotrophic conditions. Environ Microbiol 2020; 22:3339-3356. [PMID: 32500958 DOI: 10.1111/1462-2920.15106] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 04/09/2020] [Accepted: 05/28/2020] [Indexed: 11/26/2022]
Abstract
Productivity-poor oligotrophic environments are plentiful on earth. Yet it is not well understood how organisms maintain population sizes under these extreme conditions. Most scenarios consider the adaptation of a single microorganism (isogenic) at the cellular level, which increases their fitness in such an environment. However, in oligotrophic environments, the adaptation of microorganisms at population level - that is, the ability of living cells to differentiate into subtypes with specialized attributes leading to the coexistence of different phenotypes in isogenic populations - remains a little-explored area of microbiology research. In this study, we performed experiments to demonstrate that an isogenic population differentiated to two subpopulations under low energy-flux in chemostats. Fluorescence cytometry and turnover rates revealed that these subpopulations differ in their nucleic acid content and metabolic activity. A mechanistic modelling framework for the dynamic adaptation of microorganisms with the consideration of their ability to switch between different phenotypes was experimentally calibrated and validated. Simulation of hypothetical scenarios suggests that responsive diversification upon a change in energy availability offers a competitive advantage over homogenous adaptation for maintaining viability and metabolic activity with time.
Collapse
Affiliation(s)
- Kankana Kundu
- Institute of Groundwater Ecology, Helmholtz Zentrum Munchen, Ingolstadter Landstraße 1, 85764 Neuherberg, Bavaria, Germany.,Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, Ghent 9000, Belgium
| | - Nina Weber
- Institute of Groundwater Ecology, Helmholtz Zentrum Munchen, Ingolstadter Landstraße 1, 85764 Neuherberg, Bavaria, Germany
| | - Christian Griebler
- Institute of Groundwater Ecology, Helmholtz Zentrum Munchen, Ingolstadter Landstraße 1, 85764 Neuherberg, Bavaria, Germany.,Division of Limnology, University of Vienna, Department of Functional and Evolutionary Ecology, Althanstrasse 14, Vienna, 1090, Austria
| | - Martin Elsner
- Institute of Groundwater Ecology, Helmholtz Zentrum Munchen, Ingolstadter Landstraße 1, 85764 Neuherberg, Bavaria, Germany.,Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Marchioninistrasse 17, D-81377 Munich, Germany
| |
Collapse
|
11
|
Nitrogen starvation reveals the mitotic potential of mutants in the S/MAPK pathways. Nat Commun 2020; 11:1973. [PMID: 32332728 PMCID: PMC7181643 DOI: 10.1038/s41467-020-15880-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 03/24/2020] [Indexed: 02/08/2023] Open
Abstract
The genetics of quiescence is an emerging field compared to that of growth, yet both states generate spontaneous mutations and genetic diversity fueling evolution. Reconciling mutation rates in dividing conditions and mutation accumulation as a function of time in non-dividing situations remains a challenge. Nitrogen-starved fission yeast cells reversibly arrest proliferation, are metabolically active and highly resistant to a variety of stresses. Here, we show that mutations in stress- and mitogen-activated protein kinase (S/MAPK) signaling pathways are enriched in aging cultures. Targeted resequencing and competition experiments indicate that these mutants arise in the first month of quiescence and expand clonally during the second month at the expense of the parental population. Reconstitution experiments show that S/MAPK modules mediate the sacrifice of many cells for the benefit of some mutants. These findings suggest that non-dividing conditions promote genetic diversity to generate a social cellular environment prone to kin selection. Nitrogen-starved fission yeast cells survive for weeks without dividing. Here, the authors show that some of these surviving cells accumulate mutations in the stress- and mitogen-activated protein kinase pathways and outcompete their parental cells, which provide nutrients for the mutant cells.
Collapse
|
12
|
A Mutant RNA Polymerase Activates the General Stress Response, Enabling Escherichia coli Adaptation to Late Prolonged Stationary Phase. mSphere 2020; 5:5/2/e00092-20. [PMID: 32295870 PMCID: PMC7160681 DOI: 10.1128/msphere.00092-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
An important general mechanism of a bacterium’s adaptation to its environment involves adjusting the balance between growing fast and tolerating stresses. One paradigm where this plays out is in prolonged stationary phase: early studies showed that attenuation, but not complete elimination, of the general stress response enables early adaptation of the bacterium E. coli to the conditions established about 10 days into stationary phase. We show here that this balance is not static and that it is tilted back in favor of the general stress response about 2 weeks later. This can be established by direct mutations in the master regulator of the general stress response or by mutations in the core RNA polymerase enzyme itself. These conditions can support the development of antibiotic tolerance although the bacterium is not exposed to the antibiotic. Further exploration of the growth-stress balance over the course of stationary phase will necessarily require a deeper understanding of the events in the extracellular milieu. Escherichia coli populations undergo repeated replacement of parental genotypes with fitter variants deep in stationary phase. We isolated one such variant, which emerged after 3 weeks of maintaining an E. coli K-12 population in stationary phase. This variant displayed a small colony phenotype and slow growth and was able to outcompete its ancestor over a narrow time window in stationary phase. The variant also shows tolerance to beta-lactam antibiotics, though not previously exposed to the antibiotic. We show that an RpoC(A494V) mutation confers the slow growth and small colony phenotype on this variant. The ability of this mutation to confer a growth advantage in stationary phase depends on the availability of the stationary-phase sigma factor σS. The RpoC(A494V) mutation upregulates the σS regulon. As shown over 20 years ago, early in prolonged stationary phase, σS attenuation, but not complete loss of activity, confers a fitness advantage. Our study shows that later mutations enhance σS activity, either by mutating the gene for σS directly or via mutations such as RpoC(A494V). The balance between the activities of the housekeeping major sigma factor and σS sets up a trade-off between growth and stress tolerance, which is tuned repeatedly during prolonged stationary phase. IMPORTANCE An important general mechanism of a bacterium’s adaptation to its environment involves adjusting the balance between growing fast and tolerating stresses. One paradigm where this plays out is in prolonged stationary phase: early studies showed that attenuation, but not complete elimination, of the general stress response enables early adaptation of the bacterium E. coli to the conditions established about 10 days into stationary phase. We show here that this balance is not static and that it is tilted back in favor of the general stress response about 2 weeks later. This can be established by direct mutations in the master regulator of the general stress response or by mutations in the core RNA polymerase enzyme itself. These conditions can support the development of antibiotic tolerance although the bacterium is not exposed to the antibiotic. Further exploration of the growth-stress balance over the course of stationary phase will necessarily require a deeper understanding of the events in the extracellular milieu.
Collapse
|
13
|
Samuels T, Pybus D, Cockell CS. Casamino acids slow motility and stimulate surface growth in an extreme oligotroph. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:63-69. [PMID: 31769203 DOI: 10.1111/1758-2229.12812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
Environmental cues that regulate motility are poorly understood, but specific carbon and nitrogen sources, such as casamino acids (CAA), are known to stimulate motility in model organisms. However, natural environments are commonly more nutrient-limited than laboratory growth media, and the effect of energy-rich CAA on the motility of oligotrophic microorganisms is unknown. In this study, an extreme oligocarbotroph, Variovorax paradoxus YC1, was isolated from weathered shale rock within a disused mine level in North Yorkshire, UK. The addition of 0.1% CAA to minimal media significantly reduced the motility of YC1 after 72 h and inhibited swimming motility resulting in enhanced surface growth. We propose this response to CAA is a physiological adaptation to oligotrophy, facilitating the colonization of nutrient-rich environments.
Collapse
Affiliation(s)
- Toby Samuels
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - David Pybus
- ICL Boulby, Boulby Mine, Cleveland, TS13 4UZ, UK
| | - Charles S Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
14
|
Yoshida H, Wada A, Shimada T, Maki Y, Ishihama A. Coordinated Regulation of Rsd and RMF for Simultaneous Hibernation of Transcription Apparatus and Translation Machinery in Stationary-Phase Escherichia coli. Front Genet 2019; 10:1153. [PMID: 31867037 PMCID: PMC6904343 DOI: 10.3389/fgene.2019.01153] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 10/22/2019] [Indexed: 02/01/2023] Open
Abstract
Transcription and translation in growing phase of Escherichia coli, the best-studied model prokaryote, are coupled and regulated in coordinate fashion. Accordingly, the growth rate-dependent control of the synthesis of RNA polymerase (RNAP) core enzyme (the core component of transcription apparatus) and ribosomes (the core component of translation machinery) is tightly coordinated to keep the relative level of transcription apparatus and translation machinery constant for effective and efficient utilization of resources and energy. Upon entry into the stationary phase, transcription apparatus is modulated by replacing RNAP core-associated sigma (promoter recognition subunit) from growth-related RpoD to stationary-phase-specific RpoS. The anti-sigma factor Rsd participates for the efficient replacement of sigma, and the unused RpoD is stored silent as Rsd–RpoD complex. On the other hand, functional 70S ribosome is transformed into inactive 100S dimer by two regulators, ribosome modulation factor (RMF) and hibernation promoting factor (HPF). In this review article, we overview how we found these factors and what we know about the molecular mechanisms for silencing transcription apparatus and translation machinery by these factors. In addition, we provide our recent findings of promoter-specific transcription factor (PS-TF) screening of the transcription factors involved in regulation of the rsd and rmf genes. Results altogether indicate the coordinated regulation of Rsd and RMF for simultaneous hibernation of transcription apparatus and translation machinery.
Collapse
Affiliation(s)
- Hideji Yoshida
- Department of Physics, Osaka Medical College, Takatsuki, Japan
| | - Akira Wada
- Yoshida Biological Laboratory, Kyoto, Japan
| | - Tomohiro Shimada
- School of Agriculture, Meiji University, Kawasaki, Japan.,Research Center for Micro-Nano Technology, Hosei University, Koganei, Japan
| | - Yasushi Maki
- Department of Physics, Osaka Medical College, Takatsuki, Japan
| | - Akira Ishihama
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Japan
| |
Collapse
|
15
|
A Bumpy Pathway to Stationary-Phase Survival in Bacillus subtilis. mBio 2019; 10:mBio.02461-19. [PMID: 31662459 PMCID: PMC6819663 DOI: 10.1128/mbio.02461-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus subtilis cells can mount a number of responses to nutritional deprivation but ultimately either form dormant spores or enter a metabolically quiescent state. In a recent article (mBio 10:e01414-19, https://doi.org/10.1128/mBio.01414-19, 2019), R. Hashuel and S. Ben-Yehuda report on a novel means by which nutrient-starved B. subtilis cells escape from aging (days-old) colonies by accumulating mutations enabling them to continue growth under nutrient-limited conditions. They postulate that such a strategy may be a major factor determining the dynamics of bacterial populations in natural environments.
Collapse
|
16
|
Abstract
Gram-negative bacteria in infections, biofilms, and industrial settings often stop growing due to nutrient depletion, immune responses, or environmental stresses. Bacteria in this state tend to be tolerant to antibiotics and are often referred to as dormant. Rhodopseudomonas palustris, a phototrophic alphaproteobacterium, can remain fully viable for more than 4 months when its growth is arrested. Here, we show that protein synthesis, specific proteins involved in translation, and a stringent response are required for this remarkable longevity. Because it can generate ATP from light during growth arrest, R. palustris is an extreme example of a bacterial species that will stay alive for long periods of time as a relatively homogeneous population of cells and it is thus an excellent model organism for studies of bacterial longevity. There is evidence that other Gram-negative species also continue to synthesize proteins during growth arrest and that a stringent response is required for their longevity as well. Our observations challenge the notion that growth-arrested cells are necessarily dormant and metabolically inactive and suggest that such bacteria may have a level of metabolic activity that is higher than many would have assumed. Our results also expand our mechanistic understanding of a crucial but understudied phase of the bacterial life cycle.IMPORTANCE We are surrounded by bacteria, but they do not completely dominate our planet despite the ability of many to grow extremely rapidly in the laboratory. This has been interpreted to mean that bacteria in nature are often in a dormant state. We investigated life in growth arrest of Rhodopseudomonas palustris, a proteobacterium that stays alive for months when it is not growing. We found that cells were metabolically active, and they continued to synthesize proteins and mounted a stringent response, both of which were required for their longevity. Our results suggest that long-lived bacteria are not necessarily inactive but have an active metabolism that is well adjusted to life without growth.
Collapse
|
17
|
Cambon MC, Parthuisot N, Pagès S, Lanois A, Givaudan A, Ferdy JB. Selection of Bacterial Mutants in Late Infections: When Vector Transmission Trades Off against Growth Advantage in Stationary Phase. mBio 2019; 10:e01437-19. [PMID: 31594811 PMCID: PMC6786866 DOI: 10.1128/mbio.01437-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/04/2019] [Indexed: 11/20/2022] Open
Abstract
Bacterial infections are often composed of cells with distinct phenotypes that can be produced by genetic or epigenetic mechanisms. This phenotypic heterogeneity has proved to be important in many pathogens, because it can alter both pathogenicity and transmission. We studied how and why it can emerge during infection in the bacterium Xenorhabdus nematophila, a pathogen that kills insects and multiplies in the cadaver before being transmitted by the soil nematode vector Steinernema carpocapsae We found that phenotypic variants cluster in three groups, one of which is composed of lrp defective mutants. These mutants, together with variants of another group, have in common that they maintain high survival during late stationary phase. This probably explains why they increase in frequency: variants of X. nematophila with a growth advantage in stationary phase (GASP) are under strong positive selection both in prolonged culture and in late infections. We also found that the within-host advantage of these variants seems to trade off against transmission by nematode vectors: the variants that reach the highest load in insects are those that are the least transmitted.IMPORTANCE Pathogens can evolve inside their host, and the importance of this mutation-fueled process is increasingly recognized. A disease outcome may indeed depend in part on pathogen adaptations that emerge during infection. It is therefore important to document these adaptations and the conditions that drive them. In our study, we took advantage of the possibility to monitor within-host evolution in the insect pathogen X. nematophila We demonstrated that selection occurring in aged infection favors lrp defective mutants, because these metabolic mutants benefit from a growth advantage in stationary phase (GASP). We also demonstrated that these mutants have reduced virulence and impaired transmission, modifying the infection outcome. Beyond the specific case of X. nematophila, we propose that metabolic mutants are to be found in other bacterial pathogens that stay for many generations inside their host.
Collapse
Affiliation(s)
- Marine C Cambon
- Évolution et Diversité Biologique, CNRS-Université Paul Sabatier, Toulouse, France
- Diversité, Génome et Interactions Microorganismes Insectes, INRA-Université Montpellier, Montpellier, France
| | - Nathalie Parthuisot
- Évolution et Diversité Biologique, CNRS-Université Paul Sabatier, Toulouse, France
| | - Sylvie Pagès
- Diversité, Génome et Interactions Microorganismes Insectes, INRA-Université Montpellier, Montpellier, France
| | - Anne Lanois
- Diversité, Génome et Interactions Microorganismes Insectes, INRA-Université Montpellier, Montpellier, France
| | - Alain Givaudan
- Diversité, Génome et Interactions Microorganismes Insectes, INRA-Université Montpellier, Montpellier, France
| | - Jean-Baptiste Ferdy
- Évolution et Diversité Biologique, CNRS-Université Paul Sabatier, Toulouse, France
| |
Collapse
|
18
|
Abstract
Longevity reflects the ability to maintain homeostatic conditions necessary for life as an organism ages. A long-lived organism must contend not only with environmental hazards but also with internal entropy and macromolecular damage that result in the loss of fitness during ageing, a phenomenon known as senescence. Although central to many of the core concepts in biology, ageing and longevity have primarily been investigated in sexually reproducing, multicellular organisms. However, growing evidence suggests that microorganisms undergo senescence, and can also exhibit extreme longevity. In this Review, we integrate theoretical and empirical insights to establish a unified perspective on senescence and longevity. We discuss the evolutionary origins, genetic mechanisms and functional consequences of microbial ageing. In addition to having biomedical implications, insights into microbial ageing shed light on the role of ageing in the origin of life and the upper limits to longevity.
Collapse
|
19
|
Abstract
Until now, bacterial cells facing nutrient deprivation were shown to enter dormancy as a strategy to survive prolonged stress, with the most established examples being sporulation, stationary phase, and persistence. Here, we uncovered an opposing strategy for long-term bacterial survival, in which mutant subpopulations cope with a challenging niche by proliferating rather than by stalling division. We show that this feature stems from mutations in genes disturbing the capability of the cells to differentiate into a quiescent state, enabling them to divide under restrictive conditions. Our study challenges the dogma of bacterial aging by highlighting an additional survival strategy resembling that of cancerous cells in animal organs. Bacteria in nature are known to survive for long periods under restricting conditions, mainly by reducing their growth rate and metabolic activity. Here, we uncover a novel strategy utilized by bacterial cells to resist aging by propagating rather than halting division. Bacterial aging was monitored by inspecting colonies of the Gram-positive soil bacterium Bacillus subtilis, which is capable of differentiating into various cell types under nutrient exhaustion. We revealed that after days of incubation, rejuvenating subpopulations, arrayed over the mother colony, emerged. These subpopulations were found to harbor mutations in a variety of genes, restricting the ability of the cells to differentiate. Surprisingly, even mutations that are not classically designated to developmental pathways, concluded in differentiation deficiency, indicating that multiple paths can reach this same outcome. We provide evidence that the evolved mutants continue to divide under conditions that favor entry into quiescence, hence becoming abundant within the aging population. The occurrence of such nondifferentiating mutants could impact bacterial population dynamics in natural niches.
Collapse
|
20
|
Aouizerat T, Gelman D, Szitenberg A, Gutman I, Glazer S, Reich E, Schoemann M, Kaplan R, Saragovi A, Hazan R, Klutstein M. Eukaryotic Adaptation to Years-Long Starvation Resembles that of Bacteria. iScience 2019; 19:545-558. [PMID: 31470363 PMCID: PMC6722386 DOI: 10.1016/j.isci.2019.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 02/12/2019] [Accepted: 08/01/2019] [Indexed: 12/18/2022] Open
Abstract
The Growth Advantage in Stationary Phase (GASP) phenomenon, described in bacteria, reflects the genetic adaptation of bacteria to stress, including starvation, for a long time. Unlike in stationary phase where no cell division occurs, GASP harbors active cell division, concurrent with genetic adaptation. Here we show that GASP occurs also in eukaryotes. Two strains of Saccharomyces cerevisiae (Sc404 and Sc424) have been isolated from 2-year-old sealed bottles of beer. These strains presented advantage in survival and growth over the parent during stress. The differences between the strains are irreversible and therefore genetic in origin rather than epigenetic. Direct competition assays show that Sc404 and Sc424 outcompete the parent in direct competition. DNA sequencing shows changes of the genome: the TOR complexes are mutated, and DNA repair gene mutations confer a mutator phenotype. The differences between the strains are reflected in a difference in taste between beers brewed from them. Yeast genetically adapts to long-term starvation in a similar way to bacteria Adaptation to long-term starvation in yeast includes multi-stress tolerance Adaptation to long-term starvation in yeast includes mutations in TORC Adaptation to long-term starvation in yeast includes a mutator phenotype
Collapse
Affiliation(s)
- Tzemach Aouizerat
- Institute of Dental Sciences, Faculty of Dental Medicine, The Hebrew University of Jerusalem, P.O.B. 12272, Ein Kerem, Jerusalem 9112001, Israel
| | - Daniel Gelman
- Institute of Dental Sciences, Faculty of Dental Medicine, The Hebrew University of Jerusalem, P.O.B. 12272, Ein Kerem, Jerusalem 9112001, Israel
| | - Amir Szitenberg
- Microbial and Metagenomics Division, Dead Sea and Arava Science Center, Masada 8698000, Israel
| | - Itay Gutman
- Institute of Dental Sciences, Faculty of Dental Medicine, The Hebrew University of Jerusalem, P.O.B. 12272, Ein Kerem, Jerusalem 9112001, Israel
| | - Shunit Glazer
- Institute of Dental Sciences, Faculty of Dental Medicine, The Hebrew University of Jerusalem, P.O.B. 12272, Ein Kerem, Jerusalem 9112001, Israel
| | - Eli Reich
- Institute of Dental Sciences, Faculty of Dental Medicine, The Hebrew University of Jerusalem, P.O.B. 12272, Ein Kerem, Jerusalem 9112001, Israel
| | - Miriam Schoemann
- Institute of Dental Sciences, Faculty of Dental Medicine, The Hebrew University of Jerusalem, P.O.B. 12272, Ein Kerem, Jerusalem 9112001, Israel
| | - Rachel Kaplan
- Institute of Dental Sciences, Faculty of Dental Medicine, The Hebrew University of Jerusalem, P.O.B. 12272, Ein Kerem, Jerusalem 9112001, Israel
| | - Amijai Saragovi
- The Lautenberg Center for Immunology and Cancer Research, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Ronen Hazan
- Institute of Dental Sciences, Faculty of Dental Medicine, The Hebrew University of Jerusalem, P.O.B. 12272, Ein Kerem, Jerusalem 9112001, Israel.
| | - Michael Klutstein
- Institute of Dental Sciences, Faculty of Dental Medicine, The Hebrew University of Jerusalem, P.O.B. 12272, Ein Kerem, Jerusalem 9112001, Israel.
| |
Collapse
|
21
|
Robador A, Amend JP, Finkel SE. Nanocalorimetry Reveals the Growth Dynamics of Escherichia coli Cells Undergoing Adaptive Evolution during Long-Term Stationary Phase. Appl Environ Microbiol 2019; 85:e00968-19. [PMID: 31152016 PMCID: PMC6643242 DOI: 10.1128/aem.00968-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 05/24/2019] [Indexed: 11/20/2022] Open
Abstract
Bacterial populations in long-term stationary-phase (LTSP) laboratory cultures can provide insights into physiological and genetic adaptations to low-energy conditions and population dynamics in natural environments. While overall population density remains stable, these communities are very dynamic and are characterized by the rapid emergence and succession of distinct mutants expressing the growth advantage in stationary phase (GASP) phenotype, which can reflect an increased capacity to withstand energy limitations and environmental stress. Here, we characterize the metabolic heat signatures and growth dynamics of GASP mutants within an evolving population using isothermal calorimetry. We aged Escherichia coli in anaerobic batch cultures over 20 days inside an isothermal nanocalorimeter and observed distinct heat events related to the emergence of three mutant populations expressing the GASP phenotype after 1.5, 3, and 7 days. Given the heat produced by each population, the maximum number of GASP mutant cells was calculated, revealing abundances of ∼2.5 × 107, ∼7.5 × 106, and ∼9.9 × 106 cells in the populations, respectively. These data indicate that mutants capable of expressing the GASP phenotype can be acquired during the exponential growth phase and subsequently expressed in LTSP culture.IMPORTANCE The present study is innovative in that we have identified previously unknown growth dynamics related to the temporal expression of the growth advantage in stationary phase (GASP) phenotype that allow mutants in long-term stationary-phase cultures to capitalize on the decrease of energy over prolonged incubation periods. By remaining in an active, but growth-limited, metabolic state similar to that observed in GASP cells grown in vitro, natural microbial communities might be able to prevail over much longer time scales. We believe this report to be a remarkable methodological and conceptual breakthrough in the study of the long-term survival and evolution of bacteria.
Collapse
Affiliation(s)
- Alberto Robador
- Center for Dark Energy Biosphere Investigations (C-DEBI), University of Southern California, Los Angeles, California, USA
- Marine and Environmental Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Jan P Amend
- Center for Dark Energy Biosphere Investigations (C-DEBI), University of Southern California, Los Angeles, California, USA
- Marine and Environmental Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
| | - Steven E Finkel
- Center for Dark Energy Biosphere Investigations (C-DEBI), University of Southern California, Los Angeles, California, USA
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
22
|
Hingston PA, Truelstrup Hansen L, Pombert JF, Wang S. Characterization of Listeria monocytogenes enhanced cold-tolerance variants isolated during prolonged cold storage. Int J Food Microbiol 2019; 306:108262. [PMID: 31362162 DOI: 10.1016/j.ijfoodmicro.2019.108262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/04/2019] [Accepted: 07/07/2019] [Indexed: 11/25/2022]
Abstract
In this study, we show that growth and prolonged storage of Listeria monocytogenes at 4 °C can promote the selection of variants with enhanced cold and heat tolerance. Enhanced cold-tolerance (ECT) variants (n = 12) were successfully isolated from a strain with impaired cold growth abilities following 84 days of storage at 4 °C in brain heart infusion broth (BHIB). Whole genome sequencing, membrane fatty acid analysis, and stress tolerance profiling were performed on the parent strain and two ECT variants: one displaying regular-sized colonies and the other displaying small colonies when grown at 37 °C on BHI agar. Under cold stress conditions, the parent strain exhibited an impaired ability to produce branched-chain fatty acids which are known to be important for cold adaptation in L.monocytogenes. The ECT variants were able to overcome this limitation, a finding which is hypothesized to be associated with the identification of two independent single-nucleotide polymorphisms in genes encoding subunits of acetyl-coA carboxylase, an enzyme critical for fatty acid biosynthesis. While the ECT phenotype was not found to be associated with improved salt (BHIB + 6% NaCl, 25 °C), acid (BHIB pH 5, 25 °C) or desiccation (33% RH, 20 °C) tolerance, the small-colony variant exhibited significantly (p < 0.05) enhanced heat tolerance at 52 °C in buffered peptone water compared to the parent strain and the other variant. The results from this study demonstrate that the continuous use of refrigeration along the food-supply chain has the potential to select for L.monocytogenes variants with enhanced cold and heat tolerance, highlighting the impact that microbial intervention strategies can have on the evolution of bacterial strains and likewise, food safety.
Collapse
Affiliation(s)
- Patricia A Hingston
- Food, Nutrition and Health, The University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | - Siyun Wang
- Food, Nutrition and Health, The University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
23
|
Schink SJ, Biselli E, Ammar C, Gerland U. Death Rate of E. coli during Starvation Is Set by Maintenance Cost and Biomass Recycling. Cell Syst 2019; 9:64-73.e3. [DOI: 10.1016/j.cels.2019.06.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 04/09/2019] [Accepted: 06/06/2019] [Indexed: 11/16/2022]
|
24
|
Boteva E, Mironova R. Maillard reaction and aging: can bacteria shed light on the link? BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1590160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Elitsa Boteva
- Department of Gene Regulation, Institute of Molecular Biology ‘Roumen Tsanev’, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Roumyana Mironova
- Department of Gene Regulation, Institute of Molecular Biology ‘Roumen Tsanev’, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
25
|
Westphal LL, Lau J, Negro Z, Moreno IJ, Ismail Mohammed W, Lee H, Tang H, Finkel SE, Kram KE. Adaptation of Escherichia coli to long-term batch culture in various rich media. Res Microbiol 2018; 169:145-156. [PMID: 29454026 DOI: 10.1016/j.resmic.2018.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 12/22/2017] [Accepted: 01/23/2018] [Indexed: 12/29/2022]
Abstract
Experimental evolution studies have characterized the genetic strategies microbes utilize to adapt to their environments, mainly focusing on how microbes adapt to constant and/or defined environments. Using a system that incubates Escherichia coli in different complex media in long-term batch culture, we have focused on how heterogeneity and environment affects adaptive landscapes. In this system, there is no passaging of cells, and therefore genetic diversity is lost only through negative selection, without the experimentally-imposed bottlenecking common in other platforms. In contrast with other experimental evolution systems, because of cycling of nutrients and waste products, this is a heterogeneous environment, where selective pressures change over time, similar to natural environments. We determined that incubation in each environment leads to different adaptations by observing the growth advantage in stationary phase (GASP) phenotype. Re-sequencing whole genomes of populations identified both mutant alleles in a conserved set of genes and differences in evolutionary trajectories between environments. Reconstructing identified mutations in the parental strain background confirmed the adaptive advantage of some alleles, but also identified a surprising number of neutral or even deleterious mutations. This result indicates that complex epistatic interactions may be under positive selection within these heterogeneous environments.
Collapse
Affiliation(s)
- Lacey L Westphal
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, RRI 303, 1050 Child's Way, Los Angeles, CA, 90089-2910, USA.
| | - Jasmine Lau
- Department of Biology, California State University, Dominguez Hills, NSM A-137, 1000 E. Victoria Street, Carson, CA, 90747, USA.
| | - Zuly Negro
- Department of Biology, California State University, Dominguez Hills, NSM A-137, 1000 E. Victoria Street, Carson, CA, 90747, USA.
| | - Ivan J Moreno
- Department of Biology, California State University, Dominguez Hills, NSM A-137, 1000 E. Victoria Street, Carson, CA, 90747, USA.
| | - Wazim Ismail Mohammed
- School of Informatics and Computing, Indiana University, 150 S. Woodlawn Avenue, Bloomington, IN, 47405, USA.
| | - Heewook Lee
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, GHC 7719, 5000 Forbes Ave., Pittsburgh, PA, 15213, USA.
| | - Haixu Tang
- School of Informatics and Computing, Indiana University, 150 S. Woodlawn Avenue, Bloomington, IN, 47405, USA.
| | - Steven E Finkel
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, RRI 303, 1050 Child's Way, Los Angeles, CA, 90089-2910, USA.
| | - Karin E Kram
- Department of Biology, California State University, Dominguez Hills, NSM A-137, 1000 E. Victoria Street, Carson, CA, 90747, USA.
| |
Collapse
|
26
|
Identification of Fitness Determinants during Energy-Limited Growth Arrest in Pseudomonas aeruginosa. mBio 2017; 8:mBio.01170-17. [PMID: 29184024 PMCID: PMC5705914 DOI: 10.1128/mbio.01170-17] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microbial growth arrest can be triggered by diverse factors, one of which is energy limitation due to scarcity of electron donors or acceptors. Genes that govern fitness during energy-limited growth arrest and the extent to which they overlap between different types of energy limitation are poorly defined. In this study, we exploited the fact that Pseudomonas aeruginosa can remain viable over several weeks when limited for organic carbon (pyruvate) as an electron donor or oxygen as an electron acceptor. ATP values were reduced under both types of limitation, yet more severely in the absence of oxygen. Using transposon-insertion sequencing (Tn-seq), we identified fitness determinants in these two energy-limited states. Multiple genes encoding general functions like transcriptional regulation and energy generation were required for fitness during carbon or oxygen limitation, yet many specific genes, and thus specific activities, differed in their relevance between these states. For instance, the global regulator RpoS was required during both types of energy limitation, while other global regulators such as DksA and LasR were required only during carbon or oxygen limitation, respectively. Similarly, certain ribosomal and tRNA modifications were specifically required during oxygen limitation. We validated fitness defects during energy limitation using independently generated mutants of genes detected in our screen. Mutants in distinct functional categories exhibited different fitness dynamics: regulatory genes generally manifested a phenotype early, whereas genes involved in cell wall metabolism were required later. Together, these results provide a new window into how P. aeruginosa survives growth arrest. Growth-arrested bacteria are ubiquitous in nature and disease yet understudied at the molecular level. For example, growth-arrested cells constitute a major subpopulation of mature biofilms, serving as an antibiotic-tolerant reservoir in chronic infections. Identification of the genes required for survival of growth arrest (encompassing entry, maintenance, and exit) is an important first step toward understanding the physiology of bacteria in this state. Using Tn-seq, we identified and validated genes required for fitness of Pseudomonas aeruginosa when energy limited for organic carbon or oxygen, which represent two common causes of growth arrest for P. aeruginosa in diverse habitats. This unbiased, genome-wide survey is the first to reveal essential activities for a pathogen experiencing different types of energy limitation, finding both shared and divergent activities that are relevant at different survival stages. Future efforts can now be directed toward understanding how the biomolecules responsible for these activities contribute to fitness under these conditions.
Collapse
|
27
|
Abstract
It is well known that many bacteria can survive in a growth-arrested state for long periods of time, on the order of months or even years, without forming dormant structures like spores or cysts. How is such longevity possible? What is the molecular basis of such longevity? Here we used the Gram-negative phototrophic alphaproteobacterium Rhodopseudomonas palustris to identify molecular determinants of bacterial longevity. R. palustris maintained viability for over a month after growth arrest due to nutrient depletion when it was provided with light as a source of energy. In transposon sequencing (Tn-seq) experiments, we identified 117 genes that were required for long-term viability of nongrowing R. palustris cells. Genes in this longevity gene set are annotated to play roles in a number of cellular processes, including DNA repair, tRNA modification, and the fidelity of protein synthesis. These genes are critically important only when cells are not growing. Three genes annotated to affect translation or posttranslational modifications were validated as bona fide longevity genes by mutagenesis and complementation experiments. These genes and others in the longevity gene set are broadly conserved in bacteria. This raises the possibility that it will be possible to define a core set of longevity genes common to many bacterial species. Bacteria in nature and during infections often exist in a nongrowing quiescent state. However, it has been difficult to define experimentally the molecular characteristics of this crucial element of the bacterial life cycle because bacteria that are not growing tend to die under laboratory conditions. Here we present and validate the phototrophic bacterium Rhodopseudomonas palustris as a model system for identification of genes required for the longevity of nongrowing bacteria. Growth-arrested R. palustris maintained almost full viability for weeks using light as an energy source. Such cells were subjected to large-scale mutagenesis to identify genes required for this striking longevity trait. The results define conserved determinants of survival under nongrowing conditions and create a foundation for more extensive studies to elucidate general molecular mechanisms of bacterial longevity.
Collapse
|
28
|
Sinha-Ray S, Ali A. Mutation in flrA and mshA Genes of Vibrio cholerae Inversely Involved in vps-Independent Biofilm Driving Bacterium Toward Nutrients in Lake Water. Front Microbiol 2017; 8:1770. [PMID: 28959249 PMCID: PMC5604084 DOI: 10.3389/fmicb.2017.01770] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/31/2017] [Indexed: 12/25/2022] Open
Abstract
Many bacterial pathogens promote biofilms that confer resistance against stressful survival conditions. Likewise Vibrio cholerae O1, the causative agent of cholera, and ubiquitous in aquatic environments, produces vps-dependent biofilm conferring resistance to environmental stressors and predators. Here we show that a 49-bp deletion mutation in the flrA gene of V. cholerae N16961S strain resulted in promotion of vps-independent biofilm in filter sterilized lake water (FSLW), but not in nutrient-rich L-broth. Complementation of flrA mutant with the wild-type flrA gene inhibited vps-independent biofilm formation. Our data demonstrate that mutation in the flrA gene positively contributed to vps-independent biofilm production in FSLW. Furthermore, inactivation of mshA gene, encoding the main pilin of mannose sensitive hemagglutinin (MSHA pilus) in the background of a ΔflrA mutant, inhibited vps-independent biofilm formation. Complementation of ΔflrAΔmshA double mutant with wild-type mshA gene restored biofilm formation, suggesting that mshA mutation inhibited ΔflrA-driven biofilm. Taken together, our data suggest that V. cholerae flrA and mshA act inversely in promoting vps-independent biofilm formation in FSLW. Using a standard chemotactic assay, we demonstrated that vps-independent biofilm of V. cholerae, in contrast to vps-dependent biofilm, promoted bacterial movement toward chitin and phosphate in FSLW. A ΔflrAΔmshA double mutant inhibited the bacterium from moving toward nutrients; this phenomenon was reversed with reverted mutants (complemented with wild-type mshA gene). Movement to nutrients was blocked by mutation in a key chemotaxis gene, cheY-3, although, cheY-3 had no effect on vps-independent biofilm. We propose that in fresh water reservoirs, V. cholerae, on repression of flagella, enhances vps-independent biofilm that aids the bacterium in acquiring nutrients, including chitin and phosphate; by doing so, the microorganism enhances its ability to persist under nutrient-limited conditions.
Collapse
Affiliation(s)
- Shrestha Sinha-Ray
- Emerging Pathogens Institute, University of Florida, GainesvilleFL, United States.,Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, GainesvilleFL, United States
| | - Afsar Ali
- Emerging Pathogens Institute, University of Florida, GainesvilleFL, United States.,Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, GainesvilleFL, United States
| |
Collapse
|
29
|
Genomewide Mutational Diversity in Escherichia coli Population Evolving in Prolonged Stationary Phase. mSphere 2017; 2:mSphere00059-17. [PMID: 28567442 PMCID: PMC5444009 DOI: 10.1128/msphere.00059-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 05/05/2017] [Indexed: 11/20/2022] Open
Abstract
Prolonged stationary phase in bacteria, contrary to its name, is highly dynamic, with extreme nutrient limitation as a predominant stress. Stationary-phase cultures adapt by rapidly selecting a mutation(s) that confers a growth advantage in stationary phase (GASP). The phenotypic diversity of starving E. coli populations has been studied in detail; however, only a few mutations that accumulate in prolonged stationary phase have been described. This study documented the spectrum of mutations appearing in Escherichia coli during 28 days of prolonged starvation. The genetic diversity of the population increases over time in stationary phase to an extent that cannot be explained by random, neutral drift. This suggests that prolonged stationary phase offers a great model system to study adaptive evolution by natural selection. Prolonged stationary phase is an approximation of natural environments presenting a range of stresses. Survival in prolonged stationary phase requires alternative metabolic pathways for survival. This study describes the repertoire of mutations accumulating in starving Escherichia coli populations in lysogeny broth. A wide range of mutations accumulates over the course of 1 month in stationary phase. Single nucleotide polymorphisms (SNPs) constitute 64% of all mutations. A majority of these mutations are nonsynonymous and are located at conserved loci. There is an increase in genetic diversity in the evolving populations over time. Computer simulations of evolution in stationary phase suggest that the maximum frequency of mutations observed in our experimental populations cannot be explained by neutral drift. Moreover, there is frequent genetic parallelism across populations, suggesting that these mutations are under positive selection. Finally, functional analysis of mutations suggests that regulatory mutations are frequent targets of selection. IMPORTANCE Prolonged stationary phase in bacteria, contrary to its name, is highly dynamic, with extreme nutrient limitation as a predominant stress. Stationary-phase cultures adapt by rapidly selecting a mutation(s) that confers a growth advantage in stationary phase (GASP). The phenotypic diversity of starving E. coli populations has been studied in detail; however, only a few mutations that accumulate in prolonged stationary phase have been described. This study documented the spectrum of mutations appearing in Escherichia coli during 28 days of prolonged starvation. The genetic diversity of the population increases over time in stationary phase to an extent that cannot be explained by random, neutral drift. This suggests that prolonged stationary phase offers a great model system to study adaptive evolution by natural selection.
Collapse
|
30
|
Adaptation of Escherichia coli to Long-Term Serial Passage in Complex Medium: Evidence of Parallel Evolution. mSystems 2017; 2:mSystems00192-16. [PMID: 28289732 PMCID: PMC5340864 DOI: 10.1128/msystems.00192-16] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 02/03/2017] [Indexed: 11/20/2022] Open
Abstract
With a growing body of work directed toward understanding the mechanisms of evolution using experimental systems, it is crucial to decipher what effects the experimental setup has on the outcome. If the goal of experimental laboratory evolution is to elucidate underlying evolutionary mechanisms and trends, these must be demonstrated in a variety of systems and environments. Here, we perform experimental evolution in a complex medium allowing the cells to transition through all five phases of growth, including death phase and long-term stationary phase. We show that the swiftness of selection and the specific targets of adaptive evolution are different in this system compared to others. We also observe parallel evolution where different mutations in the same genes are under positive natural selection. Together, these data show that while some outcomes of microbial evolution experiments may be generalizable, many outcomes will be environment or system specific. Experimental evolution of bacterial populations in the laboratory has led to identification of several themes, including parallel evolution of populations adapting to carbon starvation, heat stress, and pH stress. However, most of these experiments study growth in defined and/or constant environments. We hypothesized that while there would likely continue to be parallelism in more complex and changing environments, there would also be more variation in what types of mutations would benefit the cells. In order to test our hypothesis, we serially passaged Escherichia coli in a complex medium (Luria-Bertani broth) throughout the five phases of bacterial growth. This passaging scheme allowed cells to experience a wide variety of stresses, including nutrient limitation, oxidative stress, and pH variation, and therefore allowed them to adapt to several conditions. After every ~30 generations of growth, for a total of ~300 generations, we compared both the growth phenotypes and genotypes of aged populations to the parent population. After as few as 30 generations, populations exhibit changes in growth phenotype and accumulate potentially adaptive mutations. There were many genes with mutant alleles in different populations, indicating potential parallel evolution. We examined 8 of these alleles by constructing the point mutations in the parental genetic background and competed those cells with the parent population; five of these alleles were found to be adaptive. The variety and swiftness of adaptive mutations arising in the populations indicate that the cells are adapting to a complex set of stresses, while the parallel nature of several of the mutations indicates that this behavior may be generalized to bacterial evolution. IMPORTANCE With a growing body of work directed toward understanding the mechanisms of evolution using experimental systems, it is crucial to decipher what effects the experimental setup has on the outcome. If the goal of experimental laboratory evolution is to elucidate underlying evolutionary mechanisms and trends, these must be demonstrated in a variety of systems and environments. Here, we perform experimental evolution in a complex medium allowing the cells to transition through all five phases of growth, including death phase and long-term stationary phase. We show that the swiftness of selection and the specific targets of adaptive evolution are different in this system compared to others. We also observe parallel evolution where different mutations in the same genes are under positive natural selection. Together, these data show that while some outcomes of microbial evolution experiments may be generalizable, many outcomes will be environment or system specific.
Collapse
|
31
|
Density-Dependent Recycling Promotes the Long-Term Survival of Bacterial Populations during Periods of Starvation. mBio 2017; 8:mBio.02336-16. [PMID: 28174316 PMCID: PMC5296608 DOI: 10.1128/mbio.02336-16] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The amount of natural resources in the Earth’s environment is in flux, which can trigger catastrophic collapses of ecosystems. How populations survive under nutrient-poor conditions is a central question in ecology. Curiously, some bacteria persist for a long time in nutrient-poor environments. Although this survival may be accomplished through cell death and the recycling of dead cells, the importance of these processes and the mechanisms underlying the survival of the populations have not been quantitated. Here, we use microbial laboratory experiments and mathematical models to demonstrate that death and recycling are essential activities for the maintenance of cell survival. We also show that the behavior of the survivors is governed by population density feedback, wherein growth is limited not only by the available resources but also by the population density. The numerical simulations suggest that population density-dependent recycling could be an advantageous behavior under starvation conditions. How organisms survive after exhaustion of resources is a central question in ecology. Starving Escherichia coli constitute a model system to understand survival mechanisms during long-term starvation. Although death and the recycling of dead cells might play a key role in the maintenance of long-term survival, their mechanisms and importance have not been quantitated. Here, we verified the significance of social recycling of dead cells for long-term survival. We also show that the survivors restrained their recycling and did not use all available nutrients released from dead cells, which may be advantageous under starvation conditions. These results indicate that not only the utilization of dead cells but also restrained recycling coordinate the effective utilization of limited resources for long-term survival under starvation.
Collapse
|
32
|
Gagliardi A, Lamboglia E, Bianchi L, Landi C, Armini A, Ciolfi S, Bini L, Marri L. Proteomics analysis of a long-term survival strain of Escherichia coli K-12 exhibiting a growth advantage in stationary-phase (GASP) phenotype. Proteomics 2016; 16:963-72. [PMID: 26711811 DOI: 10.1002/pmic.201500314] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 11/24/2015] [Accepted: 12/23/2015] [Indexed: 01/14/2023]
Abstract
The aim of this work was the functional and proteomic analysis of a mutant, W3110 Bgl(+) /10, isolated from a batch culture of an Escherichia coli K-12 strain maintained at room temperature without addition of nutrients for 10 years. When the mutant was evaluated in competition experiments in co-culture with the wild-type, it exhibited the growth advantage in stationary phase (GASP) phenotype. Proteomes of the GASP mutant and its parental strain were compared by using a 2DE coupled with MS approach. Several differentially expressed proteins were detected and many of them were successful identified by mass spectrometry. Identified expression-changing proteins were grouped into three functional categories: metabolism, protein synthesis, chaperone and stress responsive proteins. Among them, the prevalence was ascribable to the "metabolism" group (72%) for the GASP mutant, and to "chaperones and stress responsive proteins" group for the parental strain (48%).
Collapse
Affiliation(s)
| | | | - Laura Bianchi
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Claudia Landi
- Department of Life Sciences, University of Siena, Siena, Italy
| | | | - Silvia Ciolfi
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Luca Bini
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Laura Marri
- Department of Life Sciences, University of Siena, Siena, Italy
| |
Collapse
|
33
|
Van Hofwegen DJ, Hovde CJ, Minnich SA. Rapid Evolution of Citrate Utilization by Escherichia coli by Direct Selection Requires citT and dctA. J Bacteriol 2016; 198:1022-34. [PMID: 26833416 PMCID: PMC4800869 DOI: 10.1128/jb.00831-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 01/20/2016] [Indexed: 11/20/2022] Open
Abstract
The isolation of aerobic citrate-utilizing Escherichia coli (Cit(+)) in long-term evolution experiments (LTEE) has been termed a rare, innovative, presumptive speciation event. We hypothesized that direct selection would rapidly yield the same class of E. coli Cit(+) mutants and follow the same genetic trajectory: potentiation, actualization, and refinement. This hypothesis was tested with wild-type E. coli strain B and with K-12 and three K-12 derivatives: an E. coli ΔrpoS::kan mutant (impaired for stationary-phase survival), an E. coli ΔcitT::kan mutant (deleted for the anaerobic citrate/succinate antiporter), and an E. coli ΔdctA::kan mutant (deleted for the aerobic succinate transporter). E. coli underwent adaptation to aerobic citrate metabolism that was readily and repeatedly achieved using minimal medium supplemented with citrate (M9C), M9C with 0.005% glycerol, or M9C with 0.0025% glucose. Forty-six independent E. coli Cit(+) mutants were isolated from all E. coli derivatives except the E. coli ΔcitT::kan mutant. Potentiation/actualization mutations occurred within as few as 12 generations, and refinement mutations occurred within 100 generations. Citrate utilization was confirmed using Simmons, Christensen, and LeMaster Richards citrate media and quantified by mass spectrometry. E. coli Cit(+) mutants grew in clumps and in long incompletely divided chains, a phenotype that was reversible in rich media. Genomic DNA sequencing of four E. coli Cit(+) mutants revealed the required sequence of mutational events leading to a refined Cit(+) mutant. These events showed amplified citT and dctA loci followed by DNA rearrangements consistent with promoter capture events for citT. These mutations were equivalent to the amplification and promoter capture CitT-activating mutations identified in the LTEE.IMPORTANCE E. coli cannot use citrate aerobically. Long-term evolution experiments (LTEE) performed by Blount et al. (Z. D. Blount, J. E. Barrick, C. J. Davidson, and R. E. Lenski, Nature 489:513-518, 2012, http://dx.doi.org/10.1038/nature11514 ) found a single aerobic, citrate-utilizing E. coli strain after 33,000 generations (15 years). This was interpreted as a speciation event. Here we show why it probably was not a speciation event. Using similar media, 46 independent citrate-utilizing mutants were isolated in as few as 12 to 100 generations. Genomic DNA sequencing revealed an amplification of the citT and dctA loci and DNA rearrangements to capture a promoter to express CitT, aerobically. These are members of the same class of mutations identified by the LTEE. We conclude that the rarity of the LTEE mutant was an artifact of the experimental conditions and not a unique evolutionary event. No new genetic information (novel gene function) evolved.
Collapse
Affiliation(s)
| | - Carolyn J Hovde
- Bi-State School of Food Science, University of Idaho, Moscow, Idaho, USA
| | - Scott A Minnich
- Bi-State School of Food Science, University of Idaho, Moscow, Idaho, USA
| |
Collapse
|
34
|
Gizdavic-Nikolaidis MR, Pagnon JC, Ali N, Sum R, Davies N, Roddam LF, Ambrose M. Functionalized polyanilines disrupt Pseudomonas aeruginosa and Staphylococcus aureus biofilms. Colloids Surf B Biointerfaces 2015; 136:666-73. [DOI: 10.1016/j.colsurfb.2015.10.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 09/06/2015] [Accepted: 10/10/2015] [Indexed: 10/22/2022]
|
35
|
Ying BW, Honda T, Tsuru S, Seno S, Matsuda H, Kazuta Y, Yomo T. Evolutionary Consequence of a Trade-Off between Growth and Maintenance along with Ribosomal Damages. PLoS One 2015; 10:e0135639. [PMID: 26292224 PMCID: PMC4546238 DOI: 10.1371/journal.pone.0135639] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 07/24/2015] [Indexed: 12/15/2022] Open
Abstract
Microorganisms in nature are constantly subjected to a limited availability of resources and experience repeated starvation and nutrition. Therefore, microbial life may evolve for both growth fitness and sustainability. By contrast, experimental evolution, as a powerful approach to investigate microbial evolutionary strategies, often targets the increased growth fitness in controlled, steady-state conditions. Here, we address evolutionary changes balanced between growth and maintenance while taking nutritional fluctuations into account. We performed a 290-day-long evolution experiment with a histidine-requiring Escherichia coli strain that encountered repeated histidine-rich and histidine-starved conditions. The cells that experienced seven rounds of starvation and re-feed grew more sustainably under prolonged starvation but dramatically lost growth fitness under rich conditions. The improved sustainability arose from the evolved capability to use a trace amount of histidine for cell propagation. The reduced growth rate was attributed to mutations genetically disturbing the translation machinery, that is, the ribosome, ultimately slowing protein translation. This study provides the experimental demonstration of slow growth accompanied by an enhanced affinity to resources as an evolutionary adaptation to oscillated environments and verifies that it is possible to evolve for reduced growth fitness. Growth economics favored for population increase under extreme resource limitations is most likely a common survival strategy adopted by natural microbes.
Collapse
Affiliation(s)
- Bei-Wen Ying
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305–8572, Japan
| | - Tomoya Honda
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, California, 92093, United States of America
| | - Saburo Tsuru
- Graduate School of Information Science and Technology, Osaka University, 1–5 Yamadaoka, Suita, Osaka, 565–0871, Japan
| | - Shigeto Seno
- Graduate School of Information Science and Technology, Osaka University, 1–5 Yamadaoka, Suita, Osaka, 565–0871, Japan
| | - Hideo Matsuda
- Graduate School of Information Science and Technology, Osaka University, 1–5 Yamadaoka, Suita, Osaka, 565–0871, Japan
| | - Yasuaki Kazuta
- ERATO, JST, 1–5 Yamadaoka, Suita, Osaka, 565–0871, Japan
| | - Tetsuya Yomo
- Graduate School of Information Science and Technology, Osaka University, 1–5 Yamadaoka, Suita, Osaka, 565–0871, Japan
- ERATO, JST, 1–5 Yamadaoka, Suita, Osaka, 565–0871, Japan
- Graduate School of Frontier Biosciences, Osaka University, 1–5 Yamadaoka, Suita, Osaka, 565–0871, Japan
- * E-mail:
| |
Collapse
|
36
|
Rich Medium Composition Affects Escherichia coli Survival, Glycation, and Mutation Frequency during Long-Term Batch Culture. Appl Environ Microbiol 2015; 81:4442-50. [PMID: 25911475 DOI: 10.1128/aem.00722-15] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 04/18/2015] [Indexed: 11/20/2022] Open
Abstract
Bacteria such as Escherichia coli are frequently grown to high density to produce biomolecules for study in the laboratory. To achieve this, cells can be incubated in extremely rich media that increase overall cell yield. In these various media, bacteria may have different metabolic profiles, leading to changes in the amounts of toxic metabolites produced. We have previously shown that stresses experienced during short-term growth can affect the survival of cells during the long-term stationary phase (LTSP). Here, we incubated cells in LB, 2× yeast extract-tryptone (YT), Terrific Broth, or Super Broth medium and monitored survival during the LTSP, as well as other reporters of genetic and physiological change. We observe differential cell yield and survival in all media studied. We propose that differences in long-term survival are the result of changes in the metabolism of components of the media that may lead to increased levels of protein and/or DNA damage. We also show that culture pH and levels of protein glycation, a covalent modification that causes protein damage, affect long-term survival. Further, we measured mutation frequency after overnight incubation and observed a correlation between high mutation frequencies at the end of the log phase and loss of viability after 4 days of LTSP incubation, indicating that mutation frequency is potentially predictive of long-term survival. Since glycation and mutation can be caused by oxidative stress, we measured expression of the oxyR oxidative stress regulator during log-phase growth and found that higher levels of oxyR expression during the log phase are consistent with high mutation frequency and lower cell density during the LTSP. Since these complex rich media are often used when producing large quantities of biomolecules in the laboratory, the observed increase in damage resulting in glycation or mutation may lead to production of a heterogeneous population of plasmids or proteins, which could affect the quality of the end products yielded in some laboratory experiments.
Collapse
|
37
|
Carter MQ, Louie JW, Huynh S, Parker CT. Natural rpoS mutations contribute to population heterogeneity in Escherichia coli O157:H7 strains linked to the 2006 US spinach-associated outbreak. Food Microbiol 2014; 44:108-18. [PMID: 25084652 DOI: 10.1016/j.fm.2014.05.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/12/2014] [Accepted: 05/26/2014] [Indexed: 01/14/2023]
Abstract
We previously reported significantly different acid resistance between curli variants derived from the same Escherichia coli O157:H7 strain, although the curli fimbriae were not associated with this phenotypic divergence. Here we investigated the underlying molecular mechanism by examining the genes encoding the common transcriptional regulators of curli biogenesis and acid resistance. rpoS null mutations were detected in all curli-expressing variants of the 2006 spinach-associated outbreak strains, whereas a wild-type rpoS was present in all curli-deficient variants. Consequently curli-expressing variants were much more sensitive to various stress challenges than curli-deficient variants. This loss of general stress fitness appeared solely to be the result of rpoS mutation since the stress resistances could be restored in curli-expressing variants by a functional rpoS. Comparative transcriptomic analyses between the curli variants revealed a large number of differentially expressed genes, characterized by the enhanced expression of metabolic genes in curli-expressing variants, but a marked decrease in transcription of genes related to stress resistances. Unlike the curli-expressing variants of the 1993 US hamburger-associated outbreak strains (Applied Environmental Microbiology 78: 7706-7719), all curli-expressing variants of the 2006 spinach-associated outbreak strains carry a functional rcsB gene, suggesting an alternative mechanism governing intra-strain phenotypic divergence in E. coli O157:H7.
Collapse
Affiliation(s)
- Michelle Qiu Carter
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, US Department of Agriculture, Albany, CA, USA.
| | - Jacqueline W Louie
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, US Department of Agriculture, Albany, CA, USA
| | - Steven Huynh
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, US Department of Agriculture, Albany, CA, USA
| | - Craig T Parker
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, US Department of Agriculture, Albany, CA, USA
| |
Collapse
|
38
|
Arunasri K, Adil M, Khan PAA, Shivaji S. Global gene expression analysis of long-term stationary phase effects in E. coli K12 MG1655. PLoS One 2014; 9:e96701. [PMID: 24858919 PMCID: PMC4032248 DOI: 10.1371/journal.pone.0096701] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 04/11/2014] [Indexed: 12/27/2022] Open
Abstract
Global gene expression was monitored in long-term stationary phase (LSP) cells of E. coli K12 MG1655 and compared with stationary phase (SP) cells that were sub-cultured without prolonged delay to get an insight into the survival strategies of LSP cells. The experiments were carried out using both LB medium and LB supplemented with 10% of glycerol. In both the media the LSP cells showed decreased growth rate compared to SP cells. DNA microarray analysis of LSP cells in both the media resulted in the up- and down-regulation of several genes in LSP cells compared to their respective SP cells in the corresponding media. In LSP cells grown in LB 204 genes whereas cells grown in LB plus glycerol 321 genes were differentially regulated compared to the SP cells. Comparison of these differentially regulated genes indicated that irrespective of the medium used for growth in LSP cells expression of 95 genes (22 genes up-regulated and 73 down-regulated) were differentially regulated. These 95 genes could be associated with LSP status of the cells and are likely to influence survival and growth characteristics of LSP cells. This is indeed so since the up- and down-regulated genes include genes that protect E. coli LSP cells from stationary phase stress and genes that would help to recover from stress when transferred into fresh medium. The growth phenotype in LSP cells could be attributed to up-regulation of genes coding for insertion sequences that confer beneficial effects during starvation, genes coding for putative transposases and simultaneous down-regulation of genes coding for ribosomal protein synthesis, transport-related genes, non-coding RNA genes and metabolic genes. As yet we still do not know the role of several unknown genes and genes coding for hypothetical proteins which are either up- or down-regulated in LSP cells compared to SP cells.
Collapse
Affiliation(s)
| | - Mohammed Adil
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | - Sisinthy Shivaji
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
- * E-mail:
| |
Collapse
|
39
|
Jubair M, Atanasova KR, Rahman M, Klose KE, Yasmin M, Yilmaz Ö, Morris JG, Ali A. Vibrio cholerae persisted in microcosm for 700 days inhibits motility but promotes biofilm formation in nutrient-poor lake water microcosms. PLoS One 2014; 9:e92883. [PMID: 24667909 PMCID: PMC3965490 DOI: 10.1371/journal.pone.0092883] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 02/26/2014] [Indexed: 11/26/2022] Open
Abstract
Toxigenic Vibrio cholerae, ubiquitous in aquatic environments, is responsible for cholera; humans can become infected after consuming food and/or water contaminated with the bacterium. The underlying basis of persistence of V. cholerae in the aquatic environment remains poorly understood despite decades of research. We recently described a “persister” phenotype of V. cholerae that survived in nutrient-poor “filter sterilized” lake water (FSLW) in excess of 700-days. Previous reports suggest that microorganisms can assume a growth advantage in stationary phase (GASP) phenotype in response to long-term survival during stationary phase of growth. Here we report a V. cholerae GASP phenotype (GASP-700D) that appeared to result from 700 day-old persister cells stored in glycerol broth at −80°C. The GASP-700D, compared to its wild-type N16961, was defective in motility, produced increased biofilm that was independent of vps (p<0.005) and resistant to oxidative stress when grown specifically in FSLW (p<0.005). We propose that V. cholerae GASP-700D represents cell populations that may better fit and adapt to stressful survival conditions while serving as a critical link in the cycle of cholera transmission.
Collapse
Affiliation(s)
- Mohammad Jubair
- Department of Environmental and Global Health, School of Public Health and Health Professions, University of Florida at Gainesville, Gainesville, Florida, United States of America
| | - Kalina R. Atanasova
- Department of Periodontology, University of Florida at Gainesville, Gainesville, Florida, United States of America
| | - Mustafizur Rahman
- Department of Environmental and Global Health, School of Public Health and Health Professions, University of Florida at Gainesville, Gainesville, Florida, United States of America
| | - Karl E. Klose
- Department of Biology, The University of Texas at San Antonio, Texas, United States of America
| | - Mahmuda Yasmin
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | - Özlem Yilmaz
- Department of Periodontology, University of Florida at Gainesville, Gainesville, Florida, United States of America
- Emerging Pathogens Institute, University of Florida at Gainesville, Gainesville, Florida, United States of America
| | - J. Glenn Morris
- Emerging Pathogens Institute, University of Florida at Gainesville, Gainesville, Florida, United States of America
| | - Afsar Ali
- Department of Environmental and Global Health, School of Public Health and Health Professions, University of Florida at Gainesville, Gainesville, Florida, United States of America
- Emerging Pathogens Institute, University of Florida at Gainesville, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
40
|
Culture volume and vessel affect long-term survival, mutation frequency, and oxidative stress of Escherichia coli. Appl Environ Microbiol 2013; 80:1732-8. [PMID: 24375138 DOI: 10.1128/aem.03150-13] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Bacteria such as Escherichia coli are frequently studied during exponential- and stationary-phase growth. However, many strains can survive in long-term stationary phase (LTSP), without the addition of nutrients, from days to several years. During LTSP, cells experience a variety of stressors, including reactive oxidative species, nutrient depletion, and metabolic toxin buildup, that lead to physiological responses and changes in genetic stability. In this study, we monitored survival during LTSP, as well as reporters of genetic and physiological change, to determine how the physical environment affects E. coli during long-term batch culture. We demonstrate differences in yield during LTSP in cells incubated in LB medium in test tubes versus Erlenmeyer flasks, as well as growth in different volumes of medium. We determined that these differences are only partially due to differences in oxygen levels by incubating the cells in different volumes of media under anaerobic conditions. Since we hypothesized that differences in long-term survival are the result of changes in physiological outputs during the late log and early stationary phases, we monitored alkalization, mutation frequency, oxidative stress response, and glycation. Although initial cell yields are essentially equivalent under each condition tested, physiological responses vary greatly in response to culture environment. Incubation in lower-volume cultures leads to higher oxyR expression but lower mutation frequency and glycation levels, whereas incubation in high-volume cultures has the opposite effect. We show here that even under commonly used experimental conditions that are frequently treated as equivalent, the stresses experienced by cells can differ greatly, suggesting that culture vessel and incubation conditions should be carefully considered in the planning or analysis of experiments.
Collapse
|
41
|
Reichert B, Dornbusch AJ, Arguello J, Stanley SE, Lang KM, Lostroh CP, Daugherty MA. Acinetobacter baylyi long-term stationary-phase protein StiP is a protease required for normal cell morphology and resistance to tellurite. Can J Microbiol 2013; 59:726-36. [PMID: 24206355 DOI: 10.1139/cjm-2013-0517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the Acinetobacter baylyi gene ACIAD1960, known from previous work to be expressed during long-term stationary phase. The protein encoded by this gene had been annotated as a Conserved Hypothetical Protein, surrounded by putative tellurite resistance ("Ter") proteins. Sequence analysis suggested that the protein belongs to the DUF1796 putative papain-like protease family. Here, we show that the purified protein, subsequently named StiP, has cysteine protease activity. Deletion of stiP causes hypersensitivity to tellurite, altered population dynamics during long-term batch culture, and most strikingly, dramatic alteration of normal cell morphology. StiP and associated Ter proteins (the StiP-Ter cluster) are therefore important for regulating cell morphology, likely in response to oxidative damage or depletion of intracellular thiol pools, triggered artificially by tellurite exposure. Our finding has broad significance because while tellurite is an extremely rare compound in nature, oxidative damage, the need to maintain a particular balance of intracellular thiols, and the need to regulate cell morphology are ubiquitous.
Collapse
Affiliation(s)
- Blake Reichert
- a Department of Chemistry and Biochemistry, Colorado College, 14 East Cache La Poudre Avenue, Colorado Springs, CO 80903, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Oxygen consumption rates of bacteria under nutrient-limited conditions. Appl Environ Microbiol 2013; 79:4921-31. [PMID: 23770901 DOI: 10.1128/aem.00756-13] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many environments on Earth experience nutrient limitation and as a result have nongrowing or very slowly growing bacterial populations. To better understand bacterial respiration under environmentally relevant conditions, the effect of nutrient limitation on respiration rates of heterotrophic bacteria was measured. The oxygen consumption and population density of batch cultures of Escherichia coli K-12, Shewanella oneidensis MR-1, and Marinobacter aquaeolei VT8 were tracked for up to 200 days. The oxygen consumption per CFU (QO2) declined by more than 2 orders of magnitude for all three strains as they transitioned from nutrient-abundant log-phase growth to the nutrient-limited early stationary phase. The large reduction in QO2 from growth to stationary phase suggests that nutrient availability is an important factor in considering environmental respiration rates. Following the death phase, during the long-term stationary phase (LTSP), QO2 values of the surviving population increased with time and more cells were respiring than formed colonies. Within the respiring population, a subpopulation of highly respiring cells increased in abundance with time. Apparently, as cells enter LTSP, there is a viable but not culturable population whose bulk community and per cell respiration rates are dynamic. This result has a bearing on how minimal energy requirements are met, especially in nutrient-limited environments. The minimal QO2 rates support the extension of Kleiber's law to the mass of a bacterium (100-fg range).
Collapse
|
43
|
Nagamitsu H, Murata M, Kosaka T, Kawaguchi J, Mori H, Yamada M. Crucial roles of MicA and RybB as vital factors for σ-dependent cell lysis in Escherichia coli long-term stationary phase. J Mol Microbiol Biotechnol 2013; 23:227-32. [PMID: 23594456 DOI: 10.1159/000350370] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
σ(E)-dependent cell lysis has been proposed to eliminate damaged cells in the stationary phase in Escherichia coli. In order to explore the relationship of this process to long-term stationary phase existence, we considered that micA and rybB could be important small regulatory RNA (sRNA) genes for σ(E)-dependent cell lysis. A long-term stationary phase was observed at temperatures of <37°C, but not >38°C, and was found even in an rpoS knock-out background. Strains with disrupted micA or rybB were incapable of long-term stationary phase existence. Both strains drastically lost survivability accompanied by a dramatic accumulation of mutations. These findings allow us to speculate that σ(E)-dependent cell lysis plays a key role in the establishment of the long-term stationary phase, presumably by eliminating damaged cells and thus preventing the over-accumulation of mutations.
Collapse
Affiliation(s)
- Hiroshi Nagamitsu
- Applied Molecular Bioscience, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
A great number of the bacteria and archaea on Earth are found in subsurface environments in a physiological state that is poorly represented or explained by laboratory cultures. Microbial cells in these very stable and oligotrophic settings catabolize 10⁴- to 10⁶-fold more slowly than model organisms in nutrient-rich cultures, turn over biomass on timescales of centuries to millennia rather than hours to days, and subsist with energy fluxes that are 1,000-fold lower than the typical culture-based estimates of maintenance requirements. To reconcile this disparate state of being with our knowledge of microbial physiology will require a revised understanding of microbial energy requirements, including identifying the factors that comprise true basal maintenance and the adaptations that might serve to minimize these factors.
Collapse
|
45
|
Van Impe J, Vercammen D, Van Derlinden E. Toward a next generation of predictive models: A systems biology primer. Food Control 2013. [DOI: 10.1016/j.foodcont.2012.06.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Involvement of the global regulator H-NS in the survival of Escherichia coli in stationary phase. J Bacteriol 2012; 194:5285-93. [PMID: 22843842 DOI: 10.1128/jb.00840-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Long-term batch cultures of Escherichia coli grown in nutrient-rich medium accumulate mutations that provide a growth advantage in the stationary phase (GASP). We have examined the survivors of prolonged stationary phase to identify loci involved in conferring a growth advantage and show that a mutation in the hns gene causing reduced activity of the global regulator H-NS confers a GASP phenotype under specific conditions. The hns-66 allele bears a point mutation within the termination codon of the H-NS open reading frame, resulting in a longer protein that is partially functional. Although isolated from a long-term stationary-phase culture of the parent carrying the rpoS819 allele that results in reduced RpoS activity, the hns-66 survivor showed a growth disadvantage in the early stationary phase (24 to 48 h) when competed against the parent. The hns-66 mutant is also unstable and reverts at a high frequency in the early stationary phase by accumulating second-site suppressor mutations within the ssrA gene involved in targeting aberrant proteins for proteolysis. The mutant was more stable and showed a moderate growth advantage in combination with the rpoS819 allele when competed against a 21-day-old parent. These studies show that H-NS is a target for mutations conferring fitness gain that depends on the genetic background as well as on the stage of the stationary phase.
Collapse
|
47
|
Helmus RA, Liermann LJ, Brantley SL, Tien M. Growth advantage in stationary-phase (GASP) phenotype in long-term survival strains of Geobacter sulfurreducens. FEMS Microbiol Ecol 2012; 79:218-28. [PMID: 22029575 DOI: 10.1111/j.1574-6941.2011.01211.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Geobacter sulfurreducens exists in the subsurface and has been identified in sites contaminated with radioactive metals, consistent with its ability to reduce metals under anaerobic conditions. The natural state of organisms in the environment is one that lacks access to high concentrations of nutrients, namely electron donors and terminal electron acceptors (TEAs). Most studies have investigated G. sulfurreducens under high-nutrient conditions or have enriched for it in environmental systems via acetate amendments. We replicated the starvation state through long-term batch culture of G. sulfurreducens, where both electron donor and TEA were scarce. The growth curve revealed lag, log, stationary, death, and survival phases using acetate as electron donor and either fumarate or iron(III) citrate as TEA. In survival phase, G. sulfurreducens persisted at a constant cell count for as long as 23 months without replenishment of growth medium. Geobacter sulfurreducens demonstrated an ability to acquire a growth advantage in stationary-phase phenotype (GASP), with strains derived from subpopulations from death- or survival phase being able to out-compete mid-log-phase populations when co-cultured. The molecular basis for GASP was not because of any detectable mutation in the rpoS gene (GSU1525) nor because of a mutation in a putative homolog to Escherichia coli lrp, GSU3370.
Collapse
Affiliation(s)
- Ruth A Helmus
- Center for Environmental Kinetics Analysis, Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | |
Collapse
|
48
|
Cleveland C, Liao D, Austin R. Physics of cancer propagation: A game theory perspective. AIP ADVANCES 2012; 2:11202. [PMID: 22489277 PMCID: PMC3321518 DOI: 10.1063/1.3699043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 01/24/2012] [Indexed: 05/31/2023]
Abstract
This is a theoretical paper which examines at a game theoretical perspective the dynamics of cooperators and cheater cells under metabolic stress conditions and high spatial heterogeneity. Although the ultimate aim of this work is to understand the dynamics of cancer tumor evolution under stress, we use a simple bacterial model to gain fundamental insights into the progression of resistance to drugs under high competition and stress conditions.
Collapse
|
49
|
Abstract
In their stressful natural environments, bacteria often are in stationary phase and use their limited resources for maintenance and stress survival. Underlying this activity is the general stress response, which in Escherichia coli depends on the σS (RpoS) subunit of RNA polymerase. σS is closely related to the vegetative sigma factor σ70 (RpoD), and these two sigmas recognize similar but not identical promoter sequences. During the postexponential phase and entry into stationary phase, σS is induced by a fine-tuned combination of transcriptional, translational, and proteolytic control. In addition, regulatory "short-cuts" to high cellular σS levels, which mainly rely on the rapid inhibition of σS proteolysis, are triggered by sudden starvation for various nutrients and other stressful shift conditons. σS directly or indirectly activates more than 500 genes. Additional signal input is integrated by σS cooperating with various transcription factors in complex cascades and feedforward loops. Target gene products have stress-protective functions, redirect metabolism, affect cell envelope and cell shape, are involved in biofilm formation or pathogenesis, or can increased stationary phase and stress-induced mutagenesis. This review summarizes these diverse functions and the amazingly complex regulation of σS. At the molecular level, these processes are integrated with the partitioning of global transcription space by sigma factor competition for RNA polymerase core enzyme and signaling by nucleotide second messengers that include cAMP, (p)ppGpp, and c-di-GMP. Physiologically, σS is the key player in choosing between a lifestyle associated with postexponential growth based on nutrient scavenging and motility and a lifestyle focused on maintenance, strong stress resistance, and increased adhesiveness. Finally, research with other proteobacteria is beginning to reveal how evolution has further adapted function and regulation of σS to specific environmental niches.
Collapse
|
50
|
Abstract
Bacterial replicases are complex, tripartite replicative machines. They contain a polymerase, polymerase III (Pol III), a β₂ processivity factor, and a DnaX complex ATPase that loads β₂ onto DNA and chaperones Pol III onto the newly loaded β₂. Bacterial replicases are highly processive, yet cycle rapidly during Okazaki fragment synthesis in a regulated way. Many bacteria encode both a full-length τ and a shorter γ form of DnaX by a variety of mechanisms. γ appears to be uniquely placed in a single position relative to two τ protomers in a pentameric ring. The polymerase catalytic subunit of Pol III, α, contains a PHP domain that not only binds to a prototypical ε Mg²⁺-dependent exonuclease, but also contains a second Zn²⁺-dependent proofreading exonuclease, at least in some bacteria. This review focuses on a critical evaluation of recent literature and concepts pertaining to the above issues and suggests specific areas that require further investigation.
Collapse
Affiliation(s)
- Charles S McHenry
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, USA.
| |
Collapse
|