1
|
Siopi M, Skliros D, Paranos P, Koumasi N, Flemetakis E, Pournaras S, Meletiadis J. Pharmacokinetics and pharmacodynamics of bacteriophage therapy: a review with a focus on multidrug-resistant Gram-negative bacterial infections. Clin Microbiol Rev 2024; 37:e0004424. [PMID: 39072666 PMCID: PMC11391690 DOI: 10.1128/cmr.00044-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024] Open
Abstract
SUMMARYDespite the early recognition of their therapeutic potential and the current escalation of multidrug-resistant (MDR) pathogens, the adoption of bacteriophages into mainstream clinical practice is hindered by unfamiliarity with their basic pharmacokinetic (PK) and pharmacodynamic (PD) properties, among others. Given the self-replicative nature of bacteriophages in the presence of host bacteria, the adsorption rate, and the clearance by the host's immunity, their PK/PD characteristics cannot be estimated by conventional approaches, and thus, the introduction of new considerations is required. Furthermore, the multitude of different bacteriophage types, preparations, and treatment schedules impedes drawing general conclusions on their in vivo PK/PD features. Additionally, the drawback of acquired bacteriophage resistance of MDR pathogens with clinical and environmental implications should be taken into consideration. Here, we provide an overview of the current state of the field of PK and PD of bacteriophage therapy with a focus on its application against MDR Gram-negative infections, highlighting the potential knowledge gaps and the challenges in translation from the bench to the bedside. After reviewing the in vitro PKs and PDs of bacteriophages against the four major MDR Gram-negative pathogens, Klebsiella pneumoniae, Acinetobacter baumannii complex, Pseudomonas aeruginosa, and Escherichia coli, specific data on in vivo PKs (tissue distribution, route of administration, and basic PK parameters in animals and humans) and PDs (survival and reduction of bacterial burden in relation to the route of administration, timing of therapy, dosing regimens, and resistance) are summarized. Currently available data merit close scrutiny, and optimization of bacteriophage therapy in the context of a better understanding of the underlying PK/PD principles is urgent to improve its therapeutic effect and to minimize the occurrence of bacteriophage resistance.
Collapse
Affiliation(s)
- Maria Siopi
- Clinical Microbiology Laboratory, Attikon University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Skliros
- Laboratory of Molecular Biology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Paschalis Paranos
- Clinical Microbiology Laboratory, Attikon University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikoletta Koumasi
- Clinical Microbiology Laboratory, Attikon University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Emmanouil Flemetakis
- Laboratory of Molecular Biology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Spyros Pournaras
- Clinical Microbiology Laboratory, Attikon University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Joseph Meletiadis
- Clinical Microbiology Laboratory, Attikon University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
2
|
Zheng K, Liang Y, Paez-Espino D, Zou X, Gao C, Shao H, Sung YY, Mok WJ, Wong LL, Zhang YZ, Tian J, Chen F, Jiao N, Suttle CA, He J, McMinn A, Wang M. Identification of hidden N4-like viruses and their interactions with hosts. mSystems 2023; 8:e0019723. [PMID: 37702511 PMCID: PMC10654107 DOI: 10.1128/msystems.00197-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/19/2023] [Indexed: 09/14/2023] Open
Abstract
IMPORTANCE The findings of this study are significant, as N4-like viruses represent a unique viral lineage with a distinct replication mechanism and a conserved core genome. This work has resulted in a comprehensive global map of the entire N4-like viral lineage, including information on their distribution in different biomes, evolutionary divergence, genomic diversity, and the potential for viral-mediated host metabolic reprogramming. As such, this work significantly contributes to our understanding of the ecological function and viral-host interactions of bacteriophages.
Collapse
Affiliation(s)
- Kaiyang Zheng
- Key Laboratory of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
| | - Yantao Liang
- Key Laboratory of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
| | - David Paez-Espino
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Mammoth Biosciences Inc., South San Francisco, California, USA
| | - Xiao Zou
- Qingdao Central Hospital, Qingdao, China
| | - Chen Gao
- Key Laboratory of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
| | - Hongbing Shao
- Key Laboratory of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
| | - Yeong Yik Sung
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu (UMT), Kuala Terengganu, Malaysia
| | - Wen Jye Mok
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu (UMT), Kuala Terengganu, Malaysia
| | - Li Lian Wong
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu (UMT), Kuala Terengganu, Malaysia
| | - Yu-Zhong Zhang
- Key Laboratory of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Jiwei Tian
- Key Laboratory of Physical Oceanography, Ministry of Education, Ocean University of China, Qingdao, China
| | - Feng Chen
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, Maryland, USA
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China
| | - Curtis A. Suttle
- Department of Earth, Ocean and Atmospheric Sciences, Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Botany, Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Jianfeng He
- SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, China
| | - Andrew McMinn
- Key Laboratory of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Min Wang
- Key Laboratory of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
3
|
Tsai YC, Lee YP, Lin NT, Yang HH, Teh SH, Lin LC. Therapeutic effect and anti-biofilm ability assessment of a novel phage, phiPA1-3, against carbapenem-resistant Pseudomonas aeruginosa. Virus Res 2023; 335:199178. [PMID: 37490958 PMCID: PMC10430585 DOI: 10.1016/j.virusres.2023.199178] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/27/2023]
Abstract
Multiple drug-resistant (MDR) Pseudomonas aeruginosa commonly causes severe hospital-acquired infections. The gradual emergence of carbapenem-resistant P. aeruginosa has recently gained attention. A wide array of P. aeruginosa-mediated pathogenic mechanisms, including its biofilm-forming ability, limits the use of effective antimicrobial treatments against it. In the present study, we isolated and characterized the phenotypic, biological, and genomic characteristics of a bacteriophage, vB_PaP_phiPA1-3 (phiPA1-3). Biofilm eradication and phage rescue from bacterial infections were assessed to demonstrate the efficacy of the application potential. Host range spectrum analysis revealed that phiPA1-3 is a moderate host range phage that infects 20% of the clinically isolated strains of P. aeruginosa tested, including carbapenem-resistant P. aeruginosa (CRPA). The phage exhibited stability at pH 7.0 and 9.0, with significantly reduced viability below pH 5.0 and beyond pH 9.0. phiPA1-3 is a lytic phage with a burst size of 619 plaque-forming units/infected cell at 37 °C and can effectively lyse bacteria in a multiplicity of infection-dependent manner. The genome size of phiPA1-3 was found to be 73,402 bp, with a G+C content of 54.7%, containing 93 open reading frames, of which 62 were annotated as hypothetical proteins and the remaining 31 had known functions. The phage possesses several proteins similar to those found in N4-like phages, including three types of RNA polymerases. This study concluded that phiPA1-3 belongs to the N4-like Schitoviridae family, can potentially eradicate P. aeruginosa biofilms, and thus, serve as a valuable tool for controlling CRPA infections.
Collapse
Affiliation(s)
- Yu-Chuan Tsai
- Institute of Medical Sciences, Tzu Chi University, No. 701, Sec. 3, Zhongyang Rd., Hualien 97004, Taiwan, ROC
| | - Yi-Pang Lee
- Department of Dentistry, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 707, Sec. 3, Zhongyang Rd., Hualien 97004, Taiwan, ROC
| | - Nien-Tsung Lin
- Master Program in Biomedical Science, School of Medicine, Tzu Chi University, No. 701, Sec. 3, Zhongyang Rd., Hualien 97004, Taiwan, ROC
| | - Hsueh-Hui Yang
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 707, Sec. 3, Zhongyang Rd., Hualien 97004, Taiwan, ROC
| | - Soon-Hian Teh
- Division of Infectious Diseases, Department of Internal Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 707, Sec. 3, Zhongyang Rd., Hualien 97004, Taiwan, ROC.
| | - Ling-Chun Lin
- Institute of Medical Sciences, Tzu Chi University, No. 701, Sec. 3, Zhongyang Rd., Hualien 97004, Taiwan, ROC; Master Program in Biomedical Science, School of Medicine, Tzu Chi University, No. 701, Sec. 3, Zhongyang Rd., Hualien 97004, Taiwan, ROC.
| |
Collapse
|
4
|
Tang Z, Tang N, Wang X, Ren H, Zhang C, Zou L, Han L, Guo L, Liu W. Characterization of a lytic Escherichia coli phage CE1 and its potential use in therapy against avian pathogenic Escherichia coli infections. Front Microbiol 2023; 14:1091442. [PMID: 36876110 PMCID: PMC9978775 DOI: 10.3389/fmicb.2023.1091442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/26/2023] [Indexed: 02/18/2023] Open
Abstract
The high incidence of Avian pathogenic Escherichia coli (APEC) in poultry has resulted in significant economic losses. It has become necessary to find alternatives to antibiotics due to the alarming rise in antibiotic resistance. Phage therapy has shown promising results in numerous studies. In the current study, a lytic phage vB_EcoM_CE1 (short for CE1) against Escherichia coli (E. coli) was isolated from broiler feces, showing a relatively wide host range and lysing 56.9% (33/58) of high pathogenic strains of APEC. According to morphological observations and phylogenetic analysis, phage CE1 belongs to the Tequatrovirus genus, Straboviridae family, containing an icosahedral capsid (80 ~ 100 nm in diameter) and a retractable tail (120 nm in length). This phage was stable below 60°C for 1 h over the pH range of 4 to 10. Whole-genome sequencing revealed that phage CE1 contained a linear double-stranded DNA genome spanning 167,955 bp with a GC content of 35.4%. A total of 271 ORFs and 8 tRNAs were identified. There was no evidence of virulence genes, drug-resistance genes, or lysogeny genes in the genome. The in vitro test showed high bactericidal activity of phage CE1 against E. coli at a wide range of MOIs, and good air and water disinfectant properties. Phage CE1 showed perfect protection against broilers challenged with APEC strain in vivo. This study provides some basic information for further research into treating colibacillosis, or killing E. coli in breeding environments.
Collapse
Affiliation(s)
- Zhaohui Tang
- College of Veterinary medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Ning Tang
- College of Veterinary medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Xinwei Wang
- College of Veterinary medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Huiying Ren
- College of Veterinary medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Can Zhang
- College of Veterinary medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Ling Zou
- College of Veterinary medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Lei Han
- College of Chemistry and Pharmaceutical Science, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Longzong Guo
- Shandong Yisheng Livestock & Poultry Breeding Co., Ltd., Yantai, Shandong, China
| | - Wenhua Liu
- College of Veterinary medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| |
Collapse
|
5
|
Lerdsittikul V, Thongdee M, Chaiwattanarungruengpaisan S, Atithep T, Apiratwarrasakul S, Withatanung P, Clokie MRJ, Korbsrisate S. A novel virulent Litunavirus phage possesses therapeutic value against multidrug resistant Pseudomonas aeruginosa. Sci Rep 2022; 12:21193. [PMID: 36476652 PMCID: PMC9729221 DOI: 10.1038/s41598-022-25576-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas aeruginosa is a notable nosocomial pathogen that can cause severe infections in humans and animals. The emergence of multidrug resistant (MDR) P. aeruginosa has motivated the development of phages to treat the infections. In this study, a novel Pseudomonas phage, vB_PaeS_VL1 (VL1), was isolated from urban sewage. Phylogenetic analyses revealed that VL1 is a novel species in the genus Litunavirus of subfamily Migulavirinae. The VL1 is a virulent phage as no genes encoding lysogeny, toxins or antibiotic resistance were identified. The therapeutic potential of phage VL1 was investigated and revealed that approximately 56% (34/60 strains) of MDR P. aeruginosa strains, isolated from companion animal diseases, could be lysed by VL1. In contrast, VL1 did not lyse other Gram-negative and Gram-positive bacteria suggesting its specificity of infection. Phage VL1 demonstrated high efficiency to reduce bacterial load (~ 6 log cell number reduction) and ~ 75% reduction of biofilm in pre-formed biofilms of MDR P. aeruginosa. The result of two of the three MDR P. aeruginosa infected Galleria mellonella larvae showed that VL1 could significantly increase the survival rate of infected larvae. Taken together, phage VL1 has genetic and biological properties that make it a potential candidate for phage therapy against P. aeruginosa infections.
Collapse
Affiliation(s)
- Varintip Lerdsittikul
- grid.10223.320000 0004 1937 0490Veterinary Diagnostic Center, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Metawee Thongdee
- grid.10223.320000 0004 1937 0490The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Somjit Chaiwattanarungruengpaisan
- grid.10223.320000 0004 1937 0490The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Thassanant Atithep
- grid.494627.a0000 0004 4684 9800Frontier Research Center, Vidyasirimedhi Institute of Science and Technology, Rayong, Thailand
| | - Sukanya Apiratwarrasakul
- grid.10223.320000 0004 1937 0490Veterinary Diagnostic Center, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Patoo Withatanung
- grid.10223.320000 0004 1937 0490Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Martha R. J. Clokie
- grid.9918.90000 0004 1936 8411Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Sunee Korbsrisate
- grid.10223.320000 0004 1937 0490Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
6
|
Górniak M, Zalewska A, Jurczak-Kurek A. Recombination Events in Putative Tail Fibre Gene in Litunavirus Phages Infecting Pseudomonas aeruginosa and Their Phylogenetic Consequences. Viruses 2022; 14:v14122669. [PMID: 36560673 PMCID: PMC9786124 DOI: 10.3390/v14122669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/20/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Recombination is the main driver of bacteriophage evolution. It may serve as a tool for extending the phage host spectrum, which is significant not only for phages' ecology but also for their utilisation as therapeutic agents of bacterial infections. The aim of this study was to detect the recombination events in the genomes of Litunavirus phages infecting Pseudomonas aeruginosa, and present their impact on phylogenetic relations within this phage group. The phylogenetic analyses involved: the whole-genome, core-genome (Schitoviridae conserved genes), variable genome region, and the whole-genome minus variable region. Interestingly, the recombination events taking place in the putative host recognition region (tail fibre protein gene and the adjacent downstream gene) significantly influenced tree topology, suggesting a strong phylogenetic signal. Our results indicate the recombination between phages from two genera Litunavirus and Luzeptimavirus and demonstrate its influence on phage phylogeny.
Collapse
|
7
|
Shahin K, Zhang L, Mehraban MH, Collard JM, Hedayatkhah A, Mansoorianfar M, Soleimani-Delfan A, Wang R. Clinical and experimental bacteriophage studies: Recommendations for possible approaches for standing against SARS-CoV-2. Microb Pathog 2022; 164:105442. [PMID: 35151823 PMCID: PMC8830156 DOI: 10.1016/j.micpath.2022.105442] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 12/23/2022]
Abstract
In 2019, the world faced a serious health challenge, the rapid spreading of a life-threatening viral pneumonia, coronavirus disease 2019 (COVID-19) caused by a betacoronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As of January 2022 WHO statistics shows more than 5.6 million death and about 350 million infection by SARS-CoV-2. One of the life threatening aspects of COVID-19 is secondary infections and reduced efficacy of antibiotics against them. Since the beginning of COVID-19 many researches have been done on identification, treatment, and vaccine development. Bacterial viruses (bacteriophages) could offer novel approaches to detect, treat and control COVID-19. Phage therapy and in particular using phage cocktails can be used to control or eliminate the bacterial pathogen as an alternative or complementary therapeutic agent. At the same time, phage interaction with the host immune system can regulate the inflammatory response. In addition, phage display and engineered synthetic phages can be utilized to develop new vaccines and antibodies, stimulate the immune system, and elicit a rapid and well-appropriate defense response. The emergence of SARS-CoV-2 new variants like delta and omicron has proved the urgent need for precise, efficient and novel approaches for vaccine development and virus detection techniques in which bacteriophages may be one of the plausible solutions. Therefore, phages with similar morphology and/or genetic content to that of coronaviruses can be used for ecological and epidemiological modeling of SARS-CoV-2 behavior and future generations of coronavirus, and in general new viral pathogens. This article is a comprehensive review/perspective of potential applications of bacteriophages in the fight against the present pandemic and the post-COVID era.
Collapse
Affiliation(s)
- Khashayar Shahin
- Center for Microbes, Development, and Health (CMDH), Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200025, China; Key Laboratory of Phage Research, International Phage Research Center, Jiangsu Academy of Agricultural, China; Institute of Food Safety and Nutrition, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Lili Zhang
- Key Laboratory of Phage Research, International Phage Research Center, Jiangsu Academy of Agricultural, China; Institute of Food Safety and Nutrition, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Mohammad Hossein Mehraban
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jean-Marc Collard
- Center for Microbes, Development, and Health (CMDH), Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200025, China
| | | | | | - Abbas Soleimani-Delfan
- Key Laboratory of Phage Research, International Phage Research Center, Jiangsu Academy of Agricultural, China; Institute of Food Safety and Nutrition, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Ran Wang
- Key Laboratory of Phage Research, International Phage Research Center, Jiangsu Academy of Agricultural, China; Institute of Food Safety and Nutrition, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| |
Collapse
|
8
|
A phage cocktail in controlling phage resistance development in multidrug resistant Aeromonas hydrophila with great therapeutic potential. Microb Pathog 2021; 162:105374. [PMID: 34968644 DOI: 10.1016/j.micpath.2021.105374] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/19/2021] [Accepted: 12/24/2021] [Indexed: 10/19/2022]
Abstract
Aeromonas hydrophila (A. hydrophila) is an opportunistic pathogen of fish-human-livestock, which poses a threat to the development of aquaculture. Lytic phage has long been considered as an effective bactericidal agent. However, the rapid development of phage resistance seriously hinders the continuous application of lytic phages. In our study, a new bacteriophage vB_ AhaP_PZL-Ah8 was isolated from sewage and its characteristics and genome were investigated. Phage vB_ AhaP_PZL-Ah8 has been classified as the member of the Podoviridae family, which exhibited the latent period was about 30 min. As revealed from the genomic sequence analysis, vB_ AhaP_PZL-Ah8 covered a double-stranded genome of 40,855 bp (exhibiting 51.89% G + C content), with encoding 52 predicted open reading frames (ORFs). The results suggested that the combination of vB_ AhaP_PZL-Ah8 and another A. hydrophila phage vB_ AhaP_PZL-Ah1 could improve the therapeutic efficacy both in vitro and in vivo. The resistance mutation frequency of A. hydrophila cells infected with the mixture phage (vB_ AhaP_PZL-Ah8+ vB_ AhaP_PZL-Ah1) was significantly lower than cells treated with single phage (P <0.01). Phage therapy in vivo showed that the survival rate in the mixture phage treatment group was significantly higher than that in single phage treatment group.
Collapse
|
9
|
Xu J, Zhang R, Yu X, Zhang X, Liu G, Liu X. Molecular Characteristics of Novel Phage vB_ShiP-A7 Infecting Multidrug-Resistant Shigella flexneri and Escherichia coli, and Its Bactericidal Effect in vitro and in vivo. Front Microbiol 2021; 12:698962. [PMID: 34512574 PMCID: PMC8427288 DOI: 10.3389/fmicb.2021.698962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/19/2021] [Indexed: 01/21/2023] Open
Abstract
In recent years, increasing evidence has shown that bacteriophages (phages) can inhibit infection caused by multidrug-resistant (MDR) bacteria. Here, we isolated a new phage, named vB_ShiP-A7, using MDR Shigella flexneri as the host. vB_ShiP-A7 is a novel member of Podoviridae, with a latency period of approximately 35 min and a burst size of approximately 100 phage particles/cell. The adsorption rate constant of phage vB_ShiP-A7 to its host S. flexneri was 1.405 × 10–8 mL/min. The vB_ShiP-A7 genome is a linear double-stranded DNA composed of 40,058 bp with 177 bp terminal repeats, encoding 43 putative open reading frames. Comparative genomic analysis demonstrated that the genome sequence of vB_ShiP-A7 is closely related to 15 different phages, which can infect different strains. Mass spectrometry analysis revealed that 12 known proteins and 6 hypothetical proteins exist in the particles of phage vB_ShiP-A7. Our results confirmed that the genome of vB_ShiP-A7 is free of lysogen-related genes, bacterial virulence genes, and antibiotic resistance genes. vB_ShiP-A7 can significantly disrupt the growth of some MDR clinical strains of S. flexneri and Escherichia coli in liquid culture and biofilms in vitro. In addition, vB_ShiP-A7 can reduce the load of S. flexneri by approximately 3–10 folds in an infection model of mice. Therefore, vB_ShiP-A7 is a stable novel phage with the potential to treat infections caused by MDR strains of S. flexneri and E. coli.
Collapse
Affiliation(s)
- Jing Xu
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, China.,Department of Microbiology, Nanjing Medical University, Nanjing, China
| | - Ruiyang Zhang
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, China.,Department of Microbiology, Nanjing Medical University, Nanjing, China
| | - Xinyan Yu
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, China.,Department of Microbiology, Nanjing Medical University, Nanjing, China
| | - Xuesen Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Genyan Liu
- Department of Laboratory Medicine, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Xiaoqiu Liu
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, China.,Department of Microbiology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
10
|
Abstract
With the fast emergence of serious antibiotic resistance and the lagged discovery of novel antibacterial drugs, phage therapy for pathogenic bacterial infections has acquired great attention in the clinics. However, development of therapeutic phages also faces tough challenges, such as laborious screening and time to generate effective phage drugs since each phage may only lyse a narrow scope of bacterial strains. Identifying highly effective phages with broad host ranges is crucial for improving phage therapy. Here, we isolated and characterized several lytic phages from various environments specific for Pseudomonas aeruginosa by testing their growth, invasion, host ranges, and potential for killing targeted bacteria. Importantly, we identified several therapeutic phages (HX1, PPY9, and TH15) with broad host ranges to lyse laboratory strains and clinical isolates of P. aeruginosa with multi-drug resistance (MDR) both in vitro and in mouse models. In addition, we analyzed critical genetic traits related to the high-level broad host coverages by genome sequencing and subsequent computational analysis against known phages. Collectively, our findings establish that these novel phages may have potential for further development as therapeutic options for patients who fail to respond to conventional treatments.IMPORTANCE Novel lytic phages isolated from various environmental settings were systematically characterized for their critical genetic traits, morphology structures, host ranges against laboratory strains and clinical multi-drug resistant (MDR) Pseudomonas aeruginosa, and antibacterial capacity both in vitro and in mouse models. First, we characterized the genetic traits and compared with other existing phages. Furthermore, we utilized acute pneumonia induced by laboratorial strain PAO1, and W19, an MDR clinical isolate and chronic pneumonia by agar beads laden with FDR1, a mucoid phenotype strain isolated from the sputum of a cystic fibrosis (CF) patient. Consequently, we found that these phages not only suppress bacteria in vitro but also significantly reduce the infection symptom and disease progression in vivo, including lowered bug burdens, inflammatory responses and lung injury in mice, suggesting that they may be further developed as therapeutic agents against MDR P. aeruginosa.
Collapse
|
11
|
Speck PG, Warner MS, Bihari S, Bersten AD, Mitchell JG, Tucci J, Gordon DL. Potential for bacteriophage therapy for Staphylococcus aureus pneumonia with influenza A coinfection. Future Microbiol 2021; 16:135-142. [PMID: 33538181 DOI: 10.2217/fmb-2020-0163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The ability of influenza A virus to evolve, coupled with increasing antimicrobial resistance, could trigger an influenza pandemic with great morbidity and mortality. Much of the 1918 influenza pandemic mortality was likely due to bacterial coinfection, including Staphylococcus aureus pneumonia. S. aureus resists many antibiotics. The lack of new antibiotics suggests alternative antimicrobials, such as bacteriophages, are needed. Potential delivery routes for bacteriophage therapy (BT) include inhalation and intravenous injection. BT has recently been used successfully in compassionate access pulmonary infection cases. Phage lysins, enzymes that hydrolyze bacterial cell walls and which are bactericidal, are efficacious in animal pneumonia models. Clinical trials will be needed to determine whether BT can ameliorate disease in influenza and S. aureus coinfection.
Collapse
Affiliation(s)
- Peter G Speck
- Flinders University of South Australia, College of Science and Engineering, Bedford Park, SA, 5042, Australia
| | - Morgyn S Warner
- The Queen Elizabeth Hospital, Infectious Diseases Unit, Woodville, SA, 5011, Australia.,Microbiology & Infectious Diseases Directorate, SA Pathology, Adelaide, SA, 5000, Australia.,University of Adelaide, Faculty of Health & Medical Sciences, Adelaide, SA, 5006, Australia
| | - Shailesh Bihari
- Flinders Medical Centre, Intensive & Critical Care Unit, Bedford Park, SA, 5042, Australia.,Flinders University of South Australia, College of Medicine and Public Health, Bedford Park, SA, 5042, Australia
| | - Andrew D Bersten
- Flinders Medical Centre, Intensive & Critical Care Unit, Bedford Park, SA, 5042, Australia.,Flinders University of South Australia, College of Medicine and Public Health, Bedford Park, SA, 5042, Australia
| | - James G Mitchell
- Flinders University of South Australia, College of Science and Engineering, Bedford Park, SA, 5042, Australia
| | - Joseph Tucci
- Department of Pharmacy & Biomedical Science, LaTrobe University, La Trobe Institute for Molecular Science, Bendigo, Victoria, 3552, Australia
| | - David L Gordon
- Flinders University of South Australia, College of Medicine and Public Health, Bedford Park, SA, 5042, Australia.,Department of Microbiology and Infectious Diseases, Flinders Medical Centre, Bedford Park, SA, 5042, Australia
| |
Collapse
|
12
|
Penziner S, Schooley RT, Pride DT. Animal Models of Phage Therapy. Front Microbiol 2021; 12:631794. [PMID: 33584632 PMCID: PMC7876411 DOI: 10.3389/fmicb.2021.631794] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/11/2021] [Indexed: 01/21/2023] Open
Abstract
Amidst the rising tide of antibiotic resistance, phage therapy holds promise as an alternative to antibiotics. Most well-designed studies on phage therapy exist in animal models. In order to progress to human clinical trials, it is important to understand what these models have accomplished and determine how to improve upon them. Here we provide a review of the animal models of phage therapy in Western literature and outline what can be learned from them in order to bring phage therapy closer to becoming a feasible alternative to antibiotics in clinical practice.
Collapse
Affiliation(s)
- Samuel Penziner
- Department of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Robert T Schooley
- Department of Medicine, University of California, San Diego, San Diego, CA, United States
| | - David T Pride
- Department of Medicine, University of California, San Diego, San Diego, CA, United States.,Department of Pathology, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
13
|
Jia K, Yang N, Zhang X, Cai R, Zhang Y, Tian J, Raza SHA, Kang Y, Qian A, Li Y, Sun W, Shen J, Yao J, Shan X, Zhang L, Wang G. Genomic, Morphological and Functional Characterization of Virulent Bacteriophage IME-JL8 Targeting Citrobacter freundii. Front Microbiol 2020; 11:585261. [PMID: 33329451 PMCID: PMC7717962 DOI: 10.3389/fmicb.2020.585261] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/30/2020] [Indexed: 01/01/2023] Open
Abstract
Citrobacter freundii refers to a fish pathogen extensively reported to be able to cause injury and high mortality. Phage therapy is considered a process to alternatively control bacterial infections and contaminations. In the present study, the isolation of a virulent bacteriophage IME-JL8 isolated from sewage was presented, and such bacteriophage was characterized to be able to infect Citrobacter freundii specifically. Phage IME-JL8 has been classified as the member of the Siphoviridae family, which exhibits the latent period of 30–40 min. The pH and thermal stability of phage IME-JL8 demonstrated that this bacteriophage achieved a pH range of 4–10 as well as a temperature range of 4, 25, and 37°C. As revealed from the results of whole genomic sequence analysis, IME-JL8 covers a double-stranded genome of 49,838 bp (exhibiting 47.96% G+C content), with 80 putative coding sequences contained. No bacterial virulence- or lysogenesis-related ORF was identified in the IME-JL8 genome, so it could be applicable to phage therapy. As indicated by the in vitro experiments, phage IME-JL8 is capable of effectively removing bacteria (the colony count decreased by 6.8 log units at 20 min), and biofilm can be formed in 24 h. According to the in vivo experiments, administrating IME-JL8 (1 × 107 PFU) was demonstrated to effectively protect the fish exhibiting a double median lethal dose (2 × 109 CFU/carp). Moreover, the phage treatment led to the decline of pro-inflammatory cytokines in carp with lethal infections. IME-JL8 was reported to induce efficient lysis of Citrobacter freundii both in vitro and in vivo, thereby demonstrating its potential as an alternative treatment strategy for infections attributed to Citrobacter freundii.
Collapse
Affiliation(s)
- Kaixiang Jia
- College of Animal Science and Technology, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Nuo Yang
- Department of Pediatric Neurology, The First Hospital of Jilin University, Changchun, China
| | - Xiuwen Zhang
- Research Management Office, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Ruopeng Cai
- College of Animal Science and Technology, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yang Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jiaxin Tian
- College of Animal Science and Technology, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | | | - Yuanhuan Kang
- College of Animal Science and Technology, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Aidong Qian
- College of Animal Science and Technology, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Ying Li
- College of Animal Science and Technology, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Wuwen Sun
- College of Animal Science and Technology, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jinyu Shen
- Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Jiayun Yao
- Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Xiaofeng Shan
- College of Animal Science and Technology, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Lei Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Guiqin Wang
- College of Animal Science and Technology, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| |
Collapse
|
14
|
Wittmann J, Turner D, Millard AD, Mahadevan P, Kropinski AM, Adriaenssens EM. From Orphan Phage to a Proposed New Family-the Diversity of N4-Like Viruses. Antibiotics (Basel) 2020; 9:E663. [PMID: 33008130 PMCID: PMC7650795 DOI: 10.3390/antibiotics9100663] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 01/29/2023] Open
Abstract
Escherichia phage N4 was isolated in 1966 in Italy and has remained a genomic orphan for a long time. It encodes an extremely large virion-associated RNA polymerase unique for bacterial viruses that became characteristic for this group. In recent years, due to new and relatively inexpensive sequencing techniques the number of publicly available phage genome sequences expanded rapidly. This revealed new members of the N4-like phage group, from 33 members in 2015 to 115 N4-like viruses in 2020. Using new technologies and methods for classification, the Bacterial and Archaeal Viruses Subcommittee of the International Committee on Taxonomy of Viruses (ICTV) has moved the classification and taxonomy of bacterial viruses from mere morphological approaches to genomic and proteomic methods. The analysis of 115 N4-like genomes resulted in a huge reassessment of this group and the proposal of a new family "Schitoviridae", including eight subfamilies and numerous new genera.
Collapse
Affiliation(s)
- Johannes Wittmann
- Leibniz Institute DSMZ–German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany
| | - Dann Turner
- Department of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK;
| | - Andrew D. Millard
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH UK;
| | | | - Andrew M. Kropinski
- Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada;
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | |
Collapse
|
15
|
Yuan Y, Li X, Wang L, Li G, Cong C, Li R, Cui H, Murtaza B, Xu Y. The endolysin of the Acinetobacter baumannii phage vB_AbaP_D2 shows broad antibacterial activity. Microb Biotechnol 2020; 14:403-418. [PMID: 32519416 PMCID: PMC7936296 DOI: 10.1111/1751-7915.13594] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 12/16/2022] Open
Abstract
The emergence and rapid spread of multidrug‐resistant bacteria has induced intense research for novel therapeutic approaches. In this study, the Acinetobacter baumannii bacteriophage D2 (vB_AbaP_D2) was isolated, characterized and sequenced. The endolysin of bacteriophage D2, namely Abtn‐4, contains an amphipathic helix and was found to have activity against multidrug‐resistant Gram‐negative strains. By more than 3 log units, A. baumannii were killed by Abtn‐4 (5 µM) in 2 h. In absence of outer membrane permeabilizers, Abtn‐4 exhibited broad antimicrobial activity against several Gram‐positive and Gram‐negative bacteria, such as Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumonia, Enterococcus and Salmonella. Furthermore, Abtn‐4 had the ability to reduce biofilm formation. Interestingly, Abtn‐4 showed antimicrobial activity against phage‐resistant bacterial mutants. Based on these results, endolysin Abtn‐4 may be a promising candidate therapeutic agent for multidrug‐resistant bacterial infections.
Collapse
Affiliation(s)
- Yuyu Yuan
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Xiaoyu Li
- School of Bioengineering, Dalian University of Technology, Dalian, China.,Ministry of Education Center for Food Safety of Animal Origin, Dalian, China
| | - Lili Wang
- School of Bioengineering, Dalian University of Technology, Dalian, China.,Ministry of Education Center for Food Safety of Animal Origin, Dalian, China
| | - Gen Li
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Cong Cong
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Ruihua Li
- The Second Hospital of Dalian Medical University, Dalian, China
| | - Huijing Cui
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Bilal Murtaza
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Yongping Xu
- School of Bioengineering, Dalian University of Technology, Dalian, China.,Ministry of Education Center for Food Safety of Animal Origin, Dalian, China
| |
Collapse
|
16
|
Shi X, Zhao F, Sun H, Yu X, Zhang C, Liu W, Pan Q, Ren H. Characterization and Complete Genome Analysis of Pseudomonas aeruginosa Bacteriophage vB_PaeP_LP14 Belonging to Genus Litunavirus. Curr Microbiol 2020; 77:2465-2474. [PMID: 32367280 DOI: 10.1007/s00284-020-02011-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 04/24/2020] [Indexed: 12/17/2022]
Abstract
A lytic Pseudomonas aeruginosa phage vB_PaeP_LP14 belonging to the family Podoviridae was isolated from infected mink. The microbiological characterization revealed that LP14 was stable at 40 to 50 °C and stable over a broad range of pH (5 to 12). The latent period was 5 min, and the burst size was 785 pfu/infected cell. The whole-genome sequencing showed that LP14 was a dsDNA virus and has a genome of 73,080 bp. The genome contained 93 predicted open reading frames (ORFs), 17 of which have known functions including DNA replication and modification, transcriptional regulation, structural and packaging proteins, and host cell lysis. No tRNA genes were identified. BLASTn analysis revealed that phage LP14 had a high-sequence identity (96%) with P. aeruginosa phage YH6. Both morphological characterization and genome annotation indicate that phage LP14 is a memberof the family Podoviridae genus Litunavirus. The study of phage LP14 will provide basic information for further research on treatment of P. aeruginosa infections.
Collapse
Affiliation(s)
- Xiaojie Shi
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Feiyang Zhao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Huzhi Sun
- Qingdao Phagepharm Bio-tech Co, Ltd, Qingdao, Shandong, China
| | - Xiaoyan Yu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Can Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Wenhua Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Qiang Pan
- Qingdao Phagepharm Bio-tech Co, Ltd, Qingdao, Shandong, China
| | - Huiying Ren
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China.
| |
Collapse
|
17
|
Affiliation(s)
- Juliet Roshini Mohan Raj
- Nitte University Centre for Science Education and Research, Nitte (Deemed to be University), Mangaluru, India
| | - Indrani Karunasagar
- Nitte University Centre for Science Education and Research, Nitte (Deemed to be University), Mangaluru, India
| |
Collapse
|
18
|
Cai R, Wang Z, Wang G, Zhang H, Cheng M, Guo Z, Ji Y, Xi H, Wang X, Xue Y, Ur Rahman S, Sun C, Feng X, Lei L, Tong Y, Han W, Gu J. Biological properties and genomics analysis of vB_KpnS_GH-K3, a Klebsiella phage with a putative depolymerase-like protein. Virus Genes 2019; 55:696-706. [PMID: 31254238 DOI: 10.1007/s11262-019-01681-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 06/20/2019] [Indexed: 01/21/2023]
Abstract
Bacteriophages have been recently revisited as an alternative biocontrol tool due to the limitations of antibiotic treatment. In this study, we reported on the biological characteristics and genomic information of vB_KpnS_GH-K3 (abbreviated as GH-K3), a Klebsiella phage of the Siphoviridae family, which was previously isolated from a hospital sewage system. One-step growth curve analysis indicated that the burst size of GH-K3 was 291 PFU/cell. GH-K3 maintained a stable titer in a broad range of pH values (6-10) and temperature (up to 50 °C). Based on bioinformatics analysis, GH-K3 comprises of 49,427 bp containing a total of 77 open reading frames (ORFs), which share high degree of nucleotide similarity and close evolutionary relationships with at least 12 other Klebsiella phages. Of note, GH-K3 gp32 was identified as a unique ORF. The major segment of gp32 sequence at the C-terminus (residues 351-907) was found highly variable as determined by its mismatch with the nucleotide and protein sequences available at NCBI database. Furthermore, HHpred analysis indicated that GH-K3 gp32 contains three domains (PDB ID: 5W6S_A, 3GQ8_A and 1BHE_A) similar to depolymerase (depoKP36) of Klebsiella phage KP36 suggestive of a potential depolymerase activity during host receptor-binding in the processes of phage infection. Altogether, the current data revealed a novel putative depolymerase-like protein which is most likely to play an important role in phage-host interaction.
Collapse
Affiliation(s)
- Ruopeng Cai
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Xi'an Road 5333#, Changchun, 130062, People's Republic of China
| | - Zijing Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Xi'an Road 5333#, Changchun, 130062, People's Republic of China
| | - Gang Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Xi'an Road 5333#, Changchun, 130062, People's Republic of China
| | - Hao Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Xi'an Road 5333#, Changchun, 130062, People's Republic of China
| | - Mengjun Cheng
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Xi'an Road 5333#, Changchun, 130062, People's Republic of China
| | - Zhimin Guo
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Yalu Ji
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Xi'an Road 5333#, Changchun, 130062, People's Republic of China
| | - Hengyu Xi
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Xi'an Road 5333#, Changchun, 130062, People's Republic of China
| | - Xinwu Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Xi'an Road 5333#, Changchun, 130062, People's Republic of China
| | - Yibing Xue
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Xi'an Road 5333#, Changchun, 130062, People's Republic of China
| | - Sadeeq Ur Rahman
- College of Veterinary Sciences & Animal Husbandry, Abdul Wali Khan University, Mardan, 23200, Pakistan
| | - Changjiang Sun
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Xi'an Road 5333#, Changchun, 130062, People's Republic of China
| | - Xin Feng
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Xi'an Road 5333#, Changchun, 130062, People's Republic of China
| | - Liancheng Lei
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Xi'an Road 5333#, Changchun, 130062, People's Republic of China
| | - Yigang Tong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da Street, Fengtai District, Beijing, 100071, People's Republic of China
| | - Wenyu Han
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Xi'an Road 5333#, Changchun, 130062, People's Republic of China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Jingmin Gu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Xi'an Road 5333#, Changchun, 130062, People's Republic of China.
| |
Collapse
|
19
|
Two Novel Bacteriophages Improve Survival in Galleria mellonella Infection and Mouse Acute Pneumonia Models Infected with Extensively Drug-Resistant Pseudomonas aeruginosa. Appl Environ Microbiol 2019; 85:AEM.02900-18. [PMID: 30824445 PMCID: PMC6495756 DOI: 10.1128/aem.02900-18] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/15/2019] [Indexed: 01/19/2023] Open
Abstract
In this study, two novel P. aeruginosa phages, Bϕ-R656 and Bϕ-R1836, were evaluated in vitro, in silico, and in vivo for therapeutic efficacy and safety as an alternative antibacterial agent to control XDR-PA strains collected from pneumonia patients. Both phages exhibited potent bacteriolytic activity and greatly improved survival in G. mellonella larva infection and a mouse acute pneumonia model. Based on these results, we strongly predict that these two new phages could be used as fast-acting and safe alternative biological weapons against XDR-PA infections. Extensively drug-resistant Pseudomonas aeruginosa (XDR-PA) is a life-threatening pathogen that causes serious global problems. Here, we investigated two novel P. aeruginosa bacteriophages (phages), Bϕ-R656 and Bϕ-R1836, in vitro, in silico, and in vivo to evaluate the potential of phage therapy to control XDR-PA clinical strains. Bϕ-R656 and Bϕ-R1836 belong to the Siphoviridae family and exhibited broad host ranges which could lyse 18 (64%) and 14 (50%) of the 28 XDR-PA strains. In addition, the two phages showed strong bacteriolytic activity against XDR-PA host strains from pneumonia patients. The whole genomes of Bϕ-R656 and Bϕ-R1836 have linear double-stranded DNA of 60,919 and 37,714 bp, respectively. The complete sequence of Bϕ-R656 had very low similarity to the previously discovered P. aeruginosa phages in GenBank, but phage Bϕ-R1836 exhibited 98% and 91% nucleotide similarity to Pseudomonas phages YMC12/01/R24 and PA1/KOR/2010, respectively. In the two in vivo infection models, treatment with Bϕ-R656 and Bϕ-R1836 enhanced the survival of Galleria mellonella larvae (50% and 60%, respectively) at 72 h postinfection and pneumonia-model mice (66% and 83%, respectively) at 12 days postinfection compared with untreated controls. Treatment with Bϕ-R656 or Bϕ-R1836 also significantly decreased the bacterial load in the lungs of the mouse pneumonia model (>6 log10 CFU and >4 log10 CFU, respectively) on day 5. IMPORTANCE In this study, two novel P. aeruginosa phages, Bϕ-R656 and Bϕ-R1836, were evaluated in vitro, in silico, and in vivo for therapeutic efficacy and safety as an alternative antibacterial agent to control XDR-PA strains collected from pneumonia patients. Both phages exhibited potent bacteriolytic activity and greatly improved survival in G. mellonella larva infection and a mouse acute pneumonia model. Based on these results, we strongly predict that these two new phages could be used as fast-acting and safe alternative biological weapons against XDR-PA infections.
Collapse
|
20
|
Ji Y, Cheng M, Zhai S, Xi H, Cai R, Wang Z, Zhang H, Wang X, Xue Y, Li X, Sun C, Feng X, Lei L, Ur Rahman S, Han W, Gu J. Preventive effect of the phage VB-SavM-JYL01 on rabbit necrotizing pneumonia caused by Staphylococcus aureus. Vet Microbiol 2018; 229:72-80. [PMID: 30642601 DOI: 10.1016/j.vetmic.2018.12.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 10/27/2022]
Abstract
Staphylococcus aureus is one of the most important pathogens causing rabbit necrotizing pneumonia and brings huge economic losses to rabbit production. This study investigated the preventive effect of a phage on rabbit necrotizing pneumonia caused by S. aureus. S. aureus S6 was isolated from the lungs of rabbits suffering necrotizing pneumonia and identified. A novel phage named VB-SavM-JYL01 was isolated by using S. aureus S6 as a host and showed a broader host range than the phages GH15 and K. The genome of VB-SavM-JYL01 lacked bacterial virulence-, antibiotic resistance- and lysogenesis-related genes. A single intranasal administration of VB-SavM-JYL01 (3 × 109 PFU) could effectively improve the survival rate at 48 h to 90% (9/10) compared with the survival rate of 10% and 80% observed with the PBS or linezolid treatment, respectively. The bacterial count in the lungs of rabbits treated with the phage VB-SavM-JYL01 was 4.18 × 104 CFU/g at 24 h, which was significantly decreased compared to that of rabbits treated with PBS (7.38 × 107 CFU/g) or linezolid (3.12 × 105 CFU/g). The phage treatment significantly alleviated lung tissue damage. The levels of total proteins, Panton-Valentine leukocidin (PVL), alpha-toxin (Hla) and cytokines in the lungs of the rabbits treated with the phage were significantly lower than those of the rabbits treated with PBS and similar to those of the rabbits treated with linezolid. These data demonstrate the potential utility of phage as an alternative for preventing rabbit necrotizing pneumonia caused by S. aureus.
Collapse
Affiliation(s)
- Yalu Ji
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Mengjun Cheng
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Shengjie Zhai
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Hengyu Xi
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Ruopeng Cai
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Zijing Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Hao Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Xinwu Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Yibing Xue
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Xinwei Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Changjiang Sun
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Xin Feng
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Liancheng Lei
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Sadeeq Ur Rahman
- College of Veterinary Sciences & Animal Husbandry, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Wenyu Han
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou 225009, PR China.
| | - Jingmin Gu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China.
| |
Collapse
|
21
|
Agarwal R, Johnson CT, Imhoff BR, Donlan RM, McCarty NA, García AJ. Inhaled bacteriophage-loaded polymeric microparticles ameliorate acute lung infections. Nat Biomed Eng 2018; 2:841-849. [PMID: 30854250 PMCID: PMC6408147 DOI: 10.1038/s41551-018-0263-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Rachit Agarwal
- Woodruff School of Mechanical Engineering , Georgia Institute of Technology, Atlanta, GA, USA.,Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.,Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Christopher T Johnson
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.,Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Barry R Imhoff
- Department of Pediatrics , Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA.,Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Rodney M Donlan
- Biofilm Laboratory, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Nael A McCarty
- Department of Pediatrics , Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA.,Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Andrés J García
- Woodruff School of Mechanical Engineering , Georgia Institute of Technology, Atlanta, GA, USA. .,Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
22
|
Xu Y, Yu X, Gu Y, Huang X, Liu G, Liu X. Characterization and Genomic Study of Phage vB_EcoS-B2 Infecting Multidrug-Resistant Escherichia coli. Front Microbiol 2018; 9:793. [PMID: 29780362 PMCID: PMC5945888 DOI: 10.3389/fmicb.2018.00793] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 04/09/2018] [Indexed: 01/21/2023] Open
Abstract
The potential of bacteriophage as an alternative antibacterial agent has been reconsidered for control of pathogenic bacteria due to the widespread occurrence of multi-drug resistance bacteria. More and more lytic phages have been isolated recently. In the present study, we isolated a lytic phage named vB_EcoS-B2 from waste water. VB_EcoS-B2 has an icosahedral symmetry head and a long tail without a contractile sheath, indicating that it belongs to the family Siphoviridae. The complete genome of vB_EcoS-B2 is composed of a circular double stranded DNA of 44,283 bp in length, with 54.77% GC content. vB_EcoS-B2 is homologous to 14 relative phages (such as Escherichia phage SSL-2009a, Escherichia phage JL1, and Shigella phage EP23), but most of these phages exhibit different gene arrangement. Our results serve to extend our understanding toward phage evolution of family Siphoviridae of coliphages. Sixty-five putative open reading frames were predicted in the complete genome of vB_EcoS-B2. Twenty-one of proteins encoded by vB_EcoS-B2 were determined in phage particles by Mass Spectrometry. Bacteriophage genome and proteome analysis confirmed the lytic nature of vB_EcoS-B2, namely, the absence of toxin-coding genes, islands of pathogenicity, or genes through lysogeny or transduction. Furthermore, vB_EcoS-B2 significantly reduced the growth of E. coli MG1655 and also inhibited the growth of several multi-drug resistant clinical stains of E. coli. Phage vB_EcoS-B2 can kill some of the MRD E. coli entirely, strongly indicating us that it could be one of the components of phage cocktails to treat multi-drug resistant E. coli. This phage could be used to interrupt or reduce the spread of multi-drug resistant E. coli.
Collapse
Affiliation(s)
- Yue Xu
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, China.,Department of Microbiology, Nanjing Medical University, Nanjing, China
| | - Xinyan Yu
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, China.,Department of Microbiology, Nanjing Medical University, Nanjing, China
| | - Yu Gu
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, China.,Department of Microbiology, Nanjing Medical University, Nanjing, China
| | - Xu Huang
- Department of Laboratory Medicine, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, Nanjing, China
| | - Genyan Liu
- Department of Laboratory Medicine, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, Nanjing, China
| | - Xiaoqiu Liu
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, China.,Department of Microbiology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
23
|
Curran CS, Bolig T, Torabi-Parizi P. Mechanisms and Targeted Therapies for Pseudomonas aeruginosa Lung Infection. Am J Respir Crit Care Med 2018; 197:708-727. [PMID: 29087211 PMCID: PMC5855068 DOI: 10.1164/rccm.201705-1043so] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 10/26/2017] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas aeruginosa is a complex gram-negative facultative anaerobe replete with a variety of arsenals to activate, modify, and destroy host defense mechanisms. The microbe is a common cause of nosocomial infections and an antibiotic-resistant priority pathogen. In the lung, P. aeruginosa disrupts upper and lower airway homeostasis by damaging the epithelium and evading innate and adaptive immune responses. The biology of these interactions is essential to understand P. aeruginosa pathogenesis. P. aeruginosa interacts directly with host cells via flagella, pili, lipoproteins, lipopolysaccharides, and the type III secretion system localized in the outer membrane. P. aeruginosa quorum-sensing molecules regulate the release of soluble factors that enhance the spread of infection. These characteristics of P. aeruginosa differentially affect lung epithelial, innate, and adaptive immune cells involved in the production of mediators and the recruitment of additional immune cell subsets. Pathogen interactions with individual host cells and in the context of host acute lung infection are discussed to reveal pathways that may be targeted therapeutically.
Collapse
Affiliation(s)
- Colleen S Curran
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Thomas Bolig
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Parizad Torabi-Parizi
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
24
|
Yu X, Xu Y, Gu Y, Zhu Y, Liu X. Characterization and genomic study of "phiKMV-Like" phage PAXYB1 infecting Pseudomonas aeruginosa. Sci Rep 2017; 7:13068. [PMID: 29026171 PMCID: PMC5638911 DOI: 10.1038/s41598-017-13363-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/21/2017] [Indexed: 12/13/2022] Open
Abstract
Bacteriophage PAXYB1 was recently isolated from wastewater samples. This phage was chosen based on its lytic properties against clinical isolates of Pseudomonas aeruginosa (P. aeruginosa). In the present study, characterized PAXYB1, clarified its morphological and lytic properties, and analyzed its complete genome sequence. Based on the morphology of PAXYB1, it is a Podoviridae. The linear GC-rich (62.29%) double-stranded DNA genome of PAXYB1 is 43,337 bp including direct terminal repeats (DTRs) of 468 bp. It contains 60 open reading frames (ORFs) that are all encoded within the same strand. We also showed that PAXYB1 is a virulent phage and a new member of the phiKMV-like phages genus. Twenty-eight out of sixty predicted gene products (gps) showed significant homology to proteins of known function, which were confirmed by analyzing the structural proteome. Altogether, our work identified a novel lytic bacteriophage that lyses P. aeruginosa PAO1 and efficiently infects and kills several clinical isolates of P. aeruginosa. This phage has potential for development as a biological disinfectant to control P. aeruginosa infections.
Collapse
Affiliation(s)
- Xinyan Yu
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Microbiology, Nanjing Medical University, Nanjing, 211166, China
| | - Yue Xu
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Microbiology, Nanjing Medical University, Nanjing, 211166, China
| | - Yu Gu
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Microbiology, Nanjing Medical University, Nanjing, 211166, China
| | - Yefei Zhu
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoqiu Liu
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Microbiology, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
25
|
Cheng M, Liang J, Zhang Y, Hu L, Gong P, Cai R, Zhang L, Zhang H, Ge J, Ji Y, Guo Z, Feng X, Sun C, Yang Y, Lei L, Han W, Gu J. The Bacteriophage EF-P29 Efficiently Protects against Lethal Vancomycin-Resistant Enterococcus faecalis and Alleviates Gut Microbiota Imbalance in a Murine Bacteremia Model. Front Microbiol 2017; 8:837. [PMID: 28536572 PMCID: PMC5423268 DOI: 10.3389/fmicb.2017.00837] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/24/2017] [Indexed: 01/21/2023] Open
Abstract
Enterococcus faecalis is becoming an increasingly important opportunistic pathogen worldwide, especially because it can cause life-threatening nosocomial infections. Treating E. faecalis infections has become increasingly difficult because of the prevalence of multidrug-resistant E. faecalis strains. Because bacteriophages show specificity for their bacterial hosts, there has been a growth in interest in using phage therapies to combat the rising incidence of multidrug-resistant bacterial infections. In this study, we isolated a new lytic phage, EF-P29, which showed high efficiency and a broad host range against E. faecalis strains, including vancomycin-resistant strains. The EF-P29 genome contains 58,984 bp (39.97% G+C), including 101 open reading frames, and lacks known putative virulence factors, integration-related proteins or antibiotic resistance determinants. In murine experiments, the administration of a single intraperitoneal injection of EF-P29 (4 × 105 PFU) at 1 h after challenge was sufficient to protect all mice against bacteremia caused by infection with a vancomycin-resistant E. faecalis strain (2 × 109 CFU/mouse). E. faecalis colony counts were more quickly eliminated in the blood of EF-P29-protected mice than in unprotected mice. We also found that exogenous E. faecalis challenge resulted in enrichment of members of the genus Enterococcus (family Enterococcaceae) in the guts of the mice, suggesting that it can enter the gut and colonize there. The phage EF-P29 reduced the number of colonies of genus Enterococcus and alleviated the gut microbiota imbalance that was caused by E. faecalis challenge. These data indicate that the phage EF-P29 shows great potential as a therapeutic treatment for systemic VREF infection. Thus, phage therapies that are aimed at treating opportunistic pathogens are also feasible. The dose of phage should be controlled and used at the appropriate level to avoid causing imbalance in the gut microbiota.
Collapse
Affiliation(s)
- Mengjun Cheng
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Jiaming Liang
- College of Clinical Medicine, Jilin UniversityChangchun, China
| | - Yufeng Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Liyuan Hu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Pengjuan Gong
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Ruopeng Cai
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Lei Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Hao Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Jinli Ge
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Yalu Ji
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Zhimin Guo
- First Hospital of Jilin University, Jilin UniversityChangchun, China
| | - Xin Feng
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Changjiang Sun
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Yongjun Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Liancheng Lei
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Wenyu Han
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChangchun, China.,Jiangsu Co-innovation Center for the Prevention and Control of important Animal Infectious Disease and ZoonosesYangzhou, China
| | - Jingmin Gu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChangchun, China
| |
Collapse
|
26
|
Bodier-Montagutelli E, Morello E, L’Hostis G, Guillon A, Dalloneau E, Respaud R, Pallaoro N, Blois H, Vecellio L, Gabard J, Heuzé-Vourc’h N. Inhaled phage therapy: a promising and challenging approach to treat bacterial respiratory infections. Expert Opin Drug Deliv 2016; 14:959-972. [DOI: 10.1080/17425247.2017.1252329] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Elsa Bodier-Montagutelli
- Université François Rabelais, UMR 1100, Tours, France
- INSERM, Centre d’Etude des Pathologies Respiratoires, UMR 1100, Tours, France
- CHRU de Tours, Service de Pharmacie, Tours, France
| | - Eric Morello
- Université François Rabelais, UMR 1100, Tours, France
- INSERM, Centre d’Etude des Pathologies Respiratoires, UMR 1100, Tours, France
| | | | - Antoine Guillon
- Université François Rabelais, UMR 1100, Tours, France
- INSERM, Centre d’Etude des Pathologies Respiratoires, UMR 1100, Tours, France
- CHRU de Tours, Service de Réanimation Polyvalente, Tours, France
| | - Emilie Dalloneau
- Université François Rabelais, UMR 1100, Tours, France
- INSERM, Centre d’Etude des Pathologies Respiratoires, UMR 1100, Tours, France
| | - Renaud Respaud
- Université François Rabelais, UMR 1100, Tours, France
- INSERM, Centre d’Etude des Pathologies Respiratoires, UMR 1100, Tours, France
- CHRU de Tours, Service de Pharmacie, Tours, France
| | - Nikita Pallaoro
- Université François Rabelais, UMR 1100, Tours, France
- INSERM, Centre d’Etude des Pathologies Respiratoires, UMR 1100, Tours, France
| | - Hélène Blois
- CHRU de Tours, Service de Pharmacie, Tours, France
| | - Laurent Vecellio
- Université François Rabelais, UMR 1100, Tours, France
- INSERM, Centre d’Etude des Pathologies Respiratoires, UMR 1100, Tours, France
- DTF-Aerodrug, St Etienne, France
| | | | - Nathalie Heuzé-Vourc’h
- Université François Rabelais, UMR 1100, Tours, France
- INSERM, Centre d’Etude des Pathologies Respiratoires, UMR 1100, Tours, France
| |
Collapse
|
27
|
Gu J, Li X, Yang M, Du C, Cui Z, Gong P, Xia F, Song J, Zhang L, Li J, Yu C, Sun C, Feng X, Lei L, Han W. Therapeutic effect of Pseudomonas aeruginosa phage YH30 on mink hemorrhagic pneumonia. Vet Microbiol 2016; 190:5-11. [PMID: 27283850 DOI: 10.1016/j.vetmic.2016.03.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 03/11/2016] [Accepted: 03/25/2016] [Indexed: 10/22/2022]
Abstract
Hemorrhagic pneumonia caused by Pseudomonas aeruginosa remains one of the most costly infectious diseases among farmed mink and commonly leads to large economic losses during mink production. The objective of this study was to investigate the potential of using phages as a therapy against hemorrhagic pneumonia in mink. A broad-host-range phage from the Podoviridae family, YH30, was isolated using the mink-originating P. aeruginosa (serotype G) D7 strain as a host. The genome of YH30 was 72,192bp (54.92% G+C), contained 86 open reading frames and lacked regions encoding known virulence factors, integration-related proteins or antibiotic resistance determinants. These characteristics make YH30 eligible for use in phage therapy. The results of a curative treatment experiment demonstrated that a single intranasal administration of YH30 was sufficient to cure hemorrhagic pneumonia in mink. The mean colony count of P. aeruginosa in the blood and lung of YH30-protected mink was less than 10(3) CFU/mL (g) within 24h of bacterial challenge and ultimately became undetectable, whereas that in unprotected mink reached more than 10(8) CFU/mL (g). Additionally, YH30 dramatically improved the pathological manifestations of lung injury in mink with hemorrhagic pneumonia. Our work demonstrates the potential of phages to treat P. aeruginosa-caused hemorrhagic pneumonia in mink.
Collapse
Affiliation(s)
- Jingmin Gu
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Xinwei Li
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Mei Yang
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Chongtao Du
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Ziyin Cui
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Pengjuan Gong
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Feifei Xia
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Jun Song
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Lei Zhang
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Juecheng Li
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Chuang Yu
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Changjiang Sun
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Xin Feng
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Liancheng Lei
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Wenyu Han
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China; Jiangsu Co-innovation Center for the Prevention and Control of important Animal Infectious Disease and Zoonoses, Yangzhou 225009, PR China.
| |
Collapse
|
28
|
Gong P, Cheng M, Li X, Jiang H, Yu C, Kahaer N, Li J, Zhang L, Xia F, Hu L, Sun C, Feng X, Lei L, Han W, Gu J. Characterization of Enterococcus faecium bacteriophage IME-EFm5 and its endolysin LysEFm5. Virology 2016; 492:11-20. [PMID: 26896930 DOI: 10.1016/j.virol.2016.02.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 02/08/2016] [Accepted: 02/11/2016] [Indexed: 01/21/2023]
Abstract
Due to the worldwide prevalence of antibiotic resistant strains, phages therapy has been revitalized recently. In this study, an Enterococcus faecium phage named IME-EFm5 was isolated from hospital sewage. Whole genomic sequence analysis demonstrated that IME-EFm5 belong to the Siphoviridae family, and has a double-stranded genome of 42,265bp (with a 35.51% G+C content) which contains 70 putative coding sequences. LysEFm5, the endolysin of IME-EFm5, contains an amidase domain in its N-terminal and has a wider bactericidal spectrum than its parental phage IME-EFm5, including 7 strains of vancomycin-resistant E. faecium. The mutagenesis analysis revealed that the zinc ion binding residues (H27, H132, and C140), E90, and T138 are required for the catalysis of LysEFm5. However, the antibacterial activity of LysEFm5 is zinc ion independent, which is inconsistent with most of other amidase members. The phage lysin LysEFm5 might be an alternative treatment strategy for infections caused by multidrug-resistant E. faecium.
Collapse
Affiliation(s)
- Pengjuan Gong
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Mengjun Cheng
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Xinwei Li
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Haiyan Jiang
- The first affiliated hospital to Changchun University of Chinese Medicine, Changchun 130021, PR China
| | - Chuang Yu
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Nadire Kahaer
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Juecheng Li
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Lei Zhang
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Feifei Xia
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Liyuan Hu
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Changjiang Sun
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Xin Feng
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Liancheng Lei
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Wenyu Han
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou 225009, PR China
| | - Jingmin Gu
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China.
| |
Collapse
|