1
|
Xie Y, Xu F, Dong H, Mao J, Zhang C. The prevalence of optrA-carrying Enterococci in the vaginal micro-ecology of pregnant women in late pregnancy. Microbiol Spectr 2025; 13:e0213524. [PMID: 39611831 PMCID: PMC11705934 DOI: 10.1128/spectrum.02135-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/02/2024] [Indexed: 11/30/2024] Open
Abstract
The colonization of Enterococcus in the female vagina leads to neonatal and pediatric enterococcal septicemia. Linezolid (LZD) is a kind of mainstream drug for treating multidrug-resistant Gram-positive infections. OptrA is the main LZD-resistance gene at Enterococci in human isolates. It is essential to explore the prevalence of optrA-carrying Enterococcus in vaginal secretions of late pregnant women and the drug resistance of optrA. From May to June 2023, this study recruited 340 volunteers in late pregnancy (35-40 weeks of pregnancy) to provide non-repetitive vaginal discharge samples. Luria-Bertani broth and florfenicol (10 µg/mL) were used to enrich bacteria. Enterococci was identified through time-of-flight mass spectrometry. Additionally, antimicrobial susceptibility, polymerase chain reaction, and next-generation sequencing assays were applied to this study. Fifty-four optrA-carrying Enterococcus strains were obtained, the proportion of the whole vagina of late pregnant women was 15.88% (54 out of 340), and Enterococcus faecalis account the highest proportion. All optrA-carrying Enterococcus were resistant to at least three drugs. Tetracycline, chloramphenicol, erythromycin, and LZD have higher bacterial resistance rates. Genetic environment analysis revealed that IS1216E, fexA, and erm(A) may synergistically exert multidrug resistance with optrA. It is necessary to strengthen the surveillance of optrA-carrying Enterococcus in pregnant women. This study provides scientific support for controlling hospital infections and managing antibiotic-resistant bacteria, and provides a scientific basis for rational clinical medication.IMPORTANCEThe disruption of cervicovaginal microbiota homeostasis is considered a key factor in causing imbalance in the microenvironment, leading to inflammation, transmission of infections, and illness. Enterococcus is considered a major cause of healthcare-related infections globally. It has resistance to multiple antimicrobial drugs, which pose significant challenges for clinical treatment. Therefore, it is crucial to assess the prevalence of optrA-carrying Enterococcus in vaginal secretions of late pregnant women and the drug resistance of optrA. This study detected 15.88% of optrA-carried Enterococci in 340 pregnant women. Furthermore, we found that optrA-carrying Enterococcus strains are highly resistant to tetracycline, chloramphenicol, erythromycin, and Linezolid. Additionally, genetic environment analysis revealed that IS1216E, fexA, and erm(A) may synergistically exert multidrug resistance with optrA. This study provides scientific support for controlling hospital infections and managing antibiotic-resistant bacteria and provides a scientific basis for rational clinical medication.
Collapse
Affiliation(s)
- Yanjun Xie
- Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, China
| | - Fangyi Xu
- Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, China
| | - Huali Dong
- Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, China
| | - Jianfeng Mao
- Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, China
| | - Chuanling Zhang
- Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
2
|
Yang W, Chen T, Zhou Q, Xu J. Resistance to linezolid in Staphylococcus aureus by mutation, modification, and acquisition of genes. J Antibiot (Tokyo) 2025; 78:4-13. [PMID: 39420155 DOI: 10.1038/s41429-024-00778-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024]
Abstract
Linezolid binds to the 50S subunit of the bacterial ribosome, inhibiting bacterial protein synthesis by preventing the formation of the initiation complex. Oxazolidinone antimicrobial drugs represent the last line of defense in treating Staphylococcus aureus infections; thus, resistance to linezolid in S. aureus warrants high priority. This article examines the major mechanisms of resistance to linezolid in S. aureus, which include: mutations in the domain V of 23S rRNA (primarily G2576); chromosomal mutations in the rplC, rplD, and rplV genes (encoding the ribosomal uL3, uL4, and uL22 proteins, respectively); the exogenous acquisition of the methylase encoded by the chloramphenicol-florfenicol resistance (cfr) gene; the endogenous methylation or demethylation of 23S rRNA; the acquisition of optrA and poxtA resistance genes; and the existence of the LmrS multidrug efflux pump. In conclusion, these mechanisms mediate resistance through mutations or modifications to the bacterial target, thereby reducing the affinity of linezolid for the peptidyl transferase center (PTC) binding site or by preventing the binding of linezolid to the PTC through a ribosomal protective effect. The existence of additional, unexplained resistance mechanisms requires further investigation and verification.
Collapse
Affiliation(s)
- Wenjing Yang
- Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - Taoran Chen
- Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - Qi Zhou
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, China
| | - Jiancheng Xu
- Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China.
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
3
|
Delgado-Tejedor A, Medina R, Begik O, Cozzuto L, López J, Blanco S, Ponomarenko J, Novoa EM. Native RNA nanopore sequencing reveals antibiotic-induced loss of rRNA modifications in the A- and P-sites. Nat Commun 2024; 15:10054. [PMID: 39613750 PMCID: PMC11607429 DOI: 10.1038/s41467-024-54368-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 11/05/2024] [Indexed: 12/01/2024] Open
Abstract
The biological relevance and dynamics of mRNA modifications have been extensively studied; however, whether rRNA modifications are dynamically regulated, and under which conditions, remains unclear. Here, we systematically characterize bacterial rRNA modifications upon exposure to diverse antibiotics using native RNA nanopore sequencing. To identify significant rRNA modification changes, we develop NanoConsensus, a novel pipeline that is robust across RNA modification types, stoichiometries and coverage, with very low false positive rates, outperforming all individual algorithms tested. We then apply NanoConsensus to characterize the rRNA modification landscape upon antibiotic exposure, finding that rRNA modification profiles are altered in the vicinity of A and P-sites of the ribosome, in an antibiotic-specific manner, possibly contributing to antibiotic resistance. Our work demonstrates that rRNA modification profiles can be rapidly altered in response to environmental exposures, and provides a robust workflow to study rRNA modification dynamics in any species, in a scalable and reproducible manner.
Collapse
Affiliation(s)
- Anna Delgado-Tejedor
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Rebeca Medina
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Oguzhan Begik
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Luca Cozzuto
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Judith López
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
| | - Sandra Blanco
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
| | - Julia Ponomarenko
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Eva Maria Novoa
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Universitat Pompeu Fabra, Barcelona, Spain.
- ICREA, Pg. Lluís Companys 23, Barcelona, Spain.
| |
Collapse
|
4
|
Jafari Jozani R, Khallawi MFHA, Trott D, Petrovski K, Low WY, Hemmatzadeh F. Unravelling Antimicrobial Resistance in Mycoplasma hyopneumoniae: Genetic Mechanisms and Future Directions. Vet Sci 2024; 11:542. [PMID: 39591316 PMCID: PMC11598952 DOI: 10.3390/vetsci11110542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/15/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Antimicrobial resistance (AMR) in Mycoplasma hyopneumoniae, the causative agent of Enzootic Pneumonia in swine, poses a significant challenge to the swine industry. This review focuses on the genetic foundations of AMR in M. hyopneumoniae, highlighting the complexity of resistance mechanisms, including mutations, horizontal gene transfer, and adaptive evolutionary processes. Techniques such as Whole Genome Sequencing (WGS) and multiple-locus variable number tandem repeats analysis (MLVA) have provided insights into the genetic diversity and resistance mechanisms of M. hyopneumoniae. The study underscores the role of selective pressures from antimicrobial use in driving genomic variations that enhance resistance. Additionally, bioinformatic tools utilizing machine learning algorithms, such as CARD and PATRIC, can predict resistance traits, with PATRIC predicting 7 to 12 AMR genes and CARD predicting 0 to 3 AMR genes in 24 whole genome sequences available on NCBI. The review advocates for a multidisciplinary approach integrating genomic, phenotypic, and bioinformatics data to combat AMR effectively. It also elaborates on the need for refining genotyping methods, enhancing resistance prediction accuracy, and developing standardized antimicrobial susceptibility testing procedures specific to M. hyopneumoniae as a fastidious microorganism. By leveraging contemporary genomic technologies and bioinformatics resources, the scientific community can better manage AMR in M. hyopneumoniae, ultimately safeguarding animal health and agricultural productivity. This comprehensive understanding of AMR mechanisms will be beneficial in the adaptation of more effective treatment and management strategies for Enzootic Pneumonia in swine.
Collapse
Affiliation(s)
- Raziallah Jafari Jozani
- Australian Centre for Antimicrobial Resistance Ecology, Faculty of Sciences, Engineering and Technology, School of Animal and Veterinary Science, The University of Adelaide, Adelaide, SA 5005, Australia; (M.F.H.A.K.); (D.T.); (K.P.); (F.H.)
| | - Mauida F. Hasoon Al Khallawi
- Australian Centre for Antimicrobial Resistance Ecology, Faculty of Sciences, Engineering and Technology, School of Animal and Veterinary Science, The University of Adelaide, Adelaide, SA 5005, Australia; (M.F.H.A.K.); (D.T.); (K.P.); (F.H.)
| | - Darren Trott
- Australian Centre for Antimicrobial Resistance Ecology, Faculty of Sciences, Engineering and Technology, School of Animal and Veterinary Science, The University of Adelaide, Adelaide, SA 5005, Australia; (M.F.H.A.K.); (D.T.); (K.P.); (F.H.)
| | - Kiro Petrovski
- Australian Centre for Antimicrobial Resistance Ecology, Faculty of Sciences, Engineering and Technology, School of Animal and Veterinary Science, The University of Adelaide, Adelaide, SA 5005, Australia; (M.F.H.A.K.); (D.T.); (K.P.); (F.H.)
| | - Wai Yee Low
- The Davies Livestock Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, SA 5005, Australia;
| | - Farhid Hemmatzadeh
- Australian Centre for Antimicrobial Resistance Ecology, Faculty of Sciences, Engineering and Technology, School of Animal and Veterinary Science, The University of Adelaide, Adelaide, SA 5005, Australia; (M.F.H.A.K.); (D.T.); (K.P.); (F.H.)
| |
Collapse
|
5
|
Fujii A, Kawada-Matsuo M, Nguyen-Tra Le M, Masuda K, Tadera K, Suzuki Y, Nishihama S, Hisatsune J, Sugawara Y, Kashiyama S, Shiba H, Aikawa T, Ohge H, Sugai M, Komatsuzawa H. Antibiotic susceptibility and genome analysis of Enterococcus species isolated from inpatients in one hospital with no apparent outbreak of vancomycin-resistant Enterococcus in Japan. Microbiol Immunol 2024; 68:254-266. [PMID: 38873884 DOI: 10.1111/1348-0421.13155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 06/15/2024]
Abstract
To prevent nosocomial infection, it is important to screen for potential vancomycin-resistant Enterococcus (VRE) among patients. In this study, we analyzed enterococcal isolates from inpatients in one hospital without any apparent outbreak of VRE. Enterococcal isolates were collected from inpatients at Hiroshima University Hospital from April 1 to June 30, 2021 using selective medium for Enterococci. Multilocus sequence typing, antimicrobial susceptibility testing, and whole-genome sequencing were performed. A total of 164 isolates, including Enterococcus faecium (41 isolates), Enterococcus faecalis (80 isolates), Enterococcus raffinosus (11 isolates), Enterococcus casseliflavus (nine isolates), Enterococcus avium (12 isolates), Enterococcus lactis (eight isolates), Enterococcus gallinarum (two isolates), and Enterococcus malodoratus (one isolate), were analyzed. We found one vanA-positive E. faecium, which was already informed when the patient was transferred to the hospital, nine vanC-positive E. casseliflavus, and two vanC-positive E. gallinarum. E. faecium isolates showed resistance to ampicillin (95.1%), imipenem (95.1%), and levofloxacin (87.8%), and E. faecalis isolates showed resistance to minocycline (49.4%). Ampicillin- and levofloxacin-resistant E. faecium had multiple mutations in penicillin-binding protein 5 (PBP5) (39/39 isolates) and ParC/GyrA (21/36 isolates), respectively. E. raffinosus showed resistance to ampicillin (81.8%), imipenem (45.5%), and levofloxacin (45.5%), and E. lactis showed resistance to ampicillin (37.5%) and imipenem (50.0%). The linezolid resistance genes optrA and cfr(B) were found only in one isolate of E. faecalis and E. raffinosus, respectively. This study, showing the status of enterococci infection in hospitalized patients, is one of the important information when considering nosocomial infection control of VRE.
Collapse
Affiliation(s)
- Ayumi Fujii
- Department of Oral and Maxillofacial Surgery, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
- Department of Bacteriology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Miki Kawada-Matsuo
- Department of Bacteriology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
- Project Research Center for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan
| | - Mi Nguyen-Tra Le
- Department of Bacteriology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
- Project Research Center for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan
| | - Kanako Masuda
- Department of Bacteriology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
- Project Research Center for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan
| | - Kayoko Tadera
- Section of Clinical Laboratory, Division of Clinical Support, Hiroshima University Hospital, Hiroshima, Japan
| | - Yujin Suzuki
- Department of Bacteriology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Saki Nishihama
- Department of Bacteriology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
- Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Junzo Hisatsune
- Project Research Center for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashi Murayama, Japan
| | - Yo Sugawara
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashi Murayama, Japan
| | - Seiya Kashiyama
- Section of Clinical Laboratory, Division of Clinical Support, Hiroshima University Hospital, Hiroshima, Japan
| | - Hideki Shiba
- Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomonao Aikawa
- Department of Oral and Maxillofacial Surgery, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Hiroki Ohge
- Project Research Center for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan
- Department of Infectious Diseases, Hiroshima University Hospital, Hiroshima, Japan
| | - Motoyuki Sugai
- Project Research Center for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashi Murayama, Japan
| | - Hitoshi Komatsuzawa
- Department of Bacteriology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
- Project Research Center for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
6
|
Aleksandrova EV, Wu KJY, Tresco BIC, Syroegin EA, Killeavy EE, Balasanyants SM, Svetlov MS, Gregory ST, Atkinson GC, Myers AG, Polikanov YS. Structural basis of Cfr-mediated antimicrobial resistance and mechanisms to evade it. Nat Chem Biol 2024; 20:867-876. [PMID: 38238495 PMCID: PMC11325235 DOI: 10.1038/s41589-023-01525-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 12/11/2023] [Indexed: 01/30/2024]
Abstract
The bacterial ribosome is an essential drug target as many clinically important antibiotics bind and inhibit its functional centers. The catalytic peptidyl transferase center (PTC) is targeted by the broadest array of inhibitors belonging to several chemical classes. One of the most abundant and clinically prevalent resistance mechanisms to PTC-acting drugs in Gram-positive bacteria is C8-methylation of the universally conserved A2503 nucleobase by Cfr methylase in 23S ribosomal RNA. Despite its clinical importance, a sufficient understanding of the molecular mechanisms underlying Cfr-mediated resistance is currently lacking. Here, we report a set of high-resolution structures of the Cfr-modified 70S ribosome containing aminoacyl- and peptidyl-transfer RNAs. These structures reveal an allosteric rearrangement of nucleotide A2062 upon Cfr-mediated methylation of A2503 that likely contributes to the reduced potency of some PTC inhibitors. Additionally, we provide the structural bases behind two distinct mechanisms of engaging the Cfr-methylated ribosome by the antibiotics iboxamycin and tylosin.
Collapse
Affiliation(s)
- Elena V Aleksandrova
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Kelvin J Y Wu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Ben I C Tresco
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Egor A Syroegin
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Erin E Killeavy
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI, USA
| | - Samson M Balasanyants
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Maxim S Svetlov
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Steven T Gregory
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI, USA
| | - Gemma C Atkinson
- Department of Experimental Medicine, Lund University, Lund, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Andrew G Myers
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
| | - Yury S Polikanov
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA.
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA.
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
7
|
Paredes-Amaya CC, Ulloa MT, García-Angulo VA. Fierce poison to others: the phenomenon of bacterial dependence on antibiotics. J Biomed Sci 2023; 30:67. [PMID: 37574554 PMCID: PMC10424368 DOI: 10.1186/s12929-023-00963-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023] Open
Abstract
Beyond the development of resistance, the effects of antibiotics on bacteria and microbial communities are complex and far from exhaustively studied. In the context of the current global antimicrobial resistance crisis, understanding the adaptive and physiological responses of bacteria to antimicrobials is of paramount importance along with the development of new therapies. Bacterial dependence on antibiotics is a phenomenon in which antimicrobials instead of eliminating the pathogens actually provide a boost for their growth. This trait comprises an extreme example of the complexities of responses elicited by microorganisms to these drugs. This compelling evolutionary trait was readily described along with the first wave of antibiotics use and dependence to various antimicrobials has been reported. Nevertheless, current molecular characterizations have been focused on dependence on vancomycin, linezolid and colistin, three critically important antibiotics frequently used as last resource therapy for multi resistant pathogens. Outstanding advances have been made in understanding the molecular basis for the dependence to vancomycin, including specific mutations involved. Regarding linezolid and colistin, the general physiological components affected by the dependence, namely ribosomes and membrane function respectively, have been established. Nonetheless the implications of antibiotic dependence in clinically relevant features, such as virulence, epidemics, relationship with development of resistance, diagnostics and therapy effectiveness require clarification. This review presents a brief introduction of the phenomenon of bacterial dependence to antibiotics and a summary on early and current research concerning the basis for this trait. Furthermore, the available information on the effect of dependence in key clinical aspects is discussed. The studies performed so far underline the need to fully disclose the biological and clinical significance of this trait in pathogens to successfully assess its role in resistance and to design adjusted therapies.
Collapse
Affiliation(s)
- Claudia C Paredes-Amaya
- Microbiology Department, Escuela de Ciencias Básicas, Facultad de Salud, Universidad del Valle, Cali, Colombia
| | - María Teresa Ulloa
- Microbiology and Micology Program, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Independencia 1027, Independencia, RM, Santiago, Chile
- Vertebral I+D+i - Corporation for Assistance for Burned Children (Coaniquem), Santiago, Chile
| | - Víctor Antonio García-Angulo
- Microbiology and Micology Program, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Independencia 1027, Independencia, RM, Santiago, Chile.
| |
Collapse
|
8
|
Loyola-Cruz MÁ, Gonzalez-Avila LU, Martínez-Trejo A, Saldaña-Padilla A, Hernández-Cortez C, Bello-López JM, Castro-Escarpulli G. ESKAPE and Beyond: The Burden of Coinfections in the COVID-19 Pandemic. Pathogens 2023; 12:pathogens12050743. [PMID: 37242413 DOI: 10.3390/pathogens12050743] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
The ESKAPE group constitute a threat to public health, since these microorganisms are associated with severe infections in hospitals and have a direct relationship with high mortality rates. The presence of these bacteria in hospitals had a direct impact on the incidence of healthcare-associated coinfections in the SARS-CoV-2 pandemic. In recent years, these pathogens have shown resistance to multiple antibiotic families. The presence of high-risk clones within this group of bacteria contributes to the spread of resistance mechanisms worldwide. In the pandemic, these pathogens were implicated in coinfections in severely ill COVID-19 patients. The aim of this review is to describe the main microorganisms of the ESKAPE group involved in coinfections in COVID-19 patients, addressing mainly antimicrobial resistance mechanisms, epidemiology, and high-risk clones.
Collapse
Affiliation(s)
- Miguel Ángel Loyola-Cruz
- Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Col. Casco de Santo Tomás, Ciudad de México 11340, Mexico
- División de Investigación, Hospital Juárez de México, Av. Instituto Politécnico Nacional 5160, Magdalena de las Salinas, Gustavo A. Madero, Ciudad de México 07760, Mexico
| | - Luis Uriel Gonzalez-Avila
- Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Col. Casco de Santo Tomás, Ciudad de México 11340, Mexico
| | - Arturo Martínez-Trejo
- Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Col. Casco de Santo Tomás, Ciudad de México 11340, Mexico
| | - Andres Saldaña-Padilla
- Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Col. Casco de Santo Tomás, Ciudad de México 11340, Mexico
- Laboratorio de Bioquímica Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Col. Casco de Santo Tomás, Mexico City 11340, Mexico
| | - Cecilia Hernández-Cortez
- Laboratorio de Bioquímica Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Col. Casco de Santo Tomás, Mexico City 11340, Mexico
| | - Juan Manuel Bello-López
- División de Investigación, Hospital Juárez de México, Av. Instituto Politécnico Nacional 5160, Magdalena de las Salinas, Gustavo A. Madero, Ciudad de México 07760, Mexico
| | - Graciela Castro-Escarpulli
- Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Col. Casco de Santo Tomás, Ciudad de México 11340, Mexico
| |
Collapse
|
9
|
Herrera-Hidalgo L, Fernández-Rubio B, Luque-Márquez R, López-Cortés LE, Gil-Navarro MV, de Alarcón A. Treatment of Enterococcus faecalis Infective Endocarditis: A Continuing Challenge. Antibiotics (Basel) 2023; 12:antibiotics12040704. [PMID: 37107066 PMCID: PMC10135260 DOI: 10.3390/antibiotics12040704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 04/07/2023] Open
Abstract
Today, Enterococcus faecalis is one of the main causes of infective endocarditis in the world, generally affecting an elderly and fragile population, with a high mortality rate. Enterococci are partially resistant to many commonly used antimicrobial agents such as penicillin and ampicillin, as well as high-level resistance to most cephalosporins and sometimes carbapenems, because of low-affinity penicillin-binding proteins, that lead to an unacceptable number of therapeutic failures with monotherapy. For many years, the synergistic combination of penicillins and aminoglycosides has been the cornerstone of treatment, but the emergence of strains with high resistance to aminoglycosides led to the search for new alternatives, like dual beta-lactam therapy. The development of multi-drug resistant strains of Enterococcus faecium is a matter of considerable concern due to its probable spread to E. faecalis and have necessitated the search of new guidelines with the combination of daptomycin, fosfomycin or tigecycline. Some of them have scarce clinical experience and others are still under investigation and will be analyzed in this review. In addition, the need for prolonged treatment (6–8 weeks) to avoid relapses has forced to the consideration of other viable options as outpatient parenteral strategies, long-acting administrations with the new lipoglycopeptides (dalbavancin or oritavancin), and sequential oral treatments, which will also be discussed.
Collapse
Affiliation(s)
- Laura Herrera-Hidalgo
- Unidad de Gestión Clínica de Farmacia, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, 41013 Seville, Spain
- Unidad Clínica de Enfermedades Infecciosas, Microbiología y Parasitología (UCEIMP) Grupo de Resistencias Bacterianas y Antimicrobianos (CIBERINFEC), Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
| | - Beatriz Fernández-Rubio
- Unidad de Gestión Clínica de Farmacia, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, 41013 Seville, Spain
| | - Rafael Luque-Márquez
- Unidad Clínica de Enfermedades Infecciosas, Microbiología y Parasitología (UCEIMP) Grupo de Resistencias Bacterianas y Antimicrobianos (CIBERINFEC), Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
| | - Luis E. López-Cortés
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Grupo de Resistencias Bacterianas y Antimicrobianos (CIBERINFEC), Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen Macarena/SCIC/Universidad de Sevilla, 41009 Seville, Spain
| | - Maria V. Gil-Navarro
- Unidad de Gestión Clínica de Farmacia, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, 41013 Seville, Spain
| | - Arístides de Alarcón
- Unidad Clínica de Enfermedades Infecciosas, Microbiología y Parasitología (UCEIMP) Grupo de Resistencias Bacterianas y Antimicrobianos (CIBERINFEC), Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
| |
Collapse
|
10
|
Abstract
The multidrug resistance gene cfr mediates resistance to multiple antimicrobial agents, including linezolid. Plasmids are the preferred vector for the dissemination of cfr. However, the presence and transmission of cfr-carrying plasmids among staphylococci from humans and animals have rarely been studied. Here, we investigated the presence of the cfr gene in 2,250 staphylococci of human clinical origin collected in Zhejiang, China, in 1998 to 2021 and in 3,329 porcine staphylococci preserved in our laboratories. The cfr gene was detected in 38 human isolates; its presence in Staphylococcus haemolyticus and Staphylococcus cohnii in 2003 was earlier than that identified in 2005, and Staphylococcus capitis (n = 30) was the predominant species. The cfr-carrying fragment in 38 isolates exhibited >99% nucleotide sequence similarity to plasmid pLRSA417 (39,504 bp), which was identified in 2015 and originated from a human clinical methicillin-resistant Staphylococcus aureus isolate from Zhejiang, China. The cfr-carrying plasmids in 18 MinION-sequenced staphylococci ranged in size from 32,697 bp to 43,457 bp. Fifteen plasmids were identical to pLRSA417, except for the inversion of an 8.4-kb segment comprising IS256-aacA/aphD-ISEnfa4_1-cfr-ISEnfa4_2, while the remaining 3 plasmids exhibited slightly different structures. Among the 114 cfr-positive staphylococci from pigs, pLRSA417-like plasmids were detected in 3 isolates. Intraspecies and interspecies conjugation occurred in human-derived pLRSA417-like plasmids. The presence of pLRSA417-like plasmids in staphylococci from multiple geographic regions and different hosts implied the possible transmission of the respective isolates between humans and animals. IMPORTANCE The therapeutic efficacy of the oxazolidinone antimicrobial linezolid is reduced by the emergence and dissemination of the multidrug resistance gene cfr. The cfr-carrying plasmid pLRSA417 was first identified in a clinical methicillin-resistant Staphylococcus aureus isolate, but its presence in staphylococci of human and animal origin has not been reported previously. This study showed that conjugative plasmids similar to pLRSA417 were detected mainly in Staphylococcus capitis and existed in different staphylococci in 2003 to 2021 in various clinical departments in the same hospital. pLRSA417-like plasmids were also present in staphylococci of food animal sources from different geographic regions, which suggested possible transmission among humans and animals.
Collapse
|
11
|
Brenciani A, Morroni G, Schwarz S, Giovanetti E. Oxazolidinones: mechanisms of resistance and mobile genetic elements involved. J Antimicrob Chemother 2022; 77:2596-2621. [PMID: 35989417 DOI: 10.1093/jac/dkac263] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The oxazolidinones (linezolid and tedizolid) are last-resort antimicrobial agents used for the treatment of severe infections in humans caused by MDR Gram-positive bacteria. They bind to the peptidyl transferase centre of the bacterial ribosome inhibiting protein synthesis. Even if the majority of Gram-positive bacteria remain susceptible to oxazolidinones, resistant isolates have been reported worldwide. Apart from mutations, affecting mostly the 23S rDNA genes and selected ribosomal proteins, acquisition of resistance genes (cfr and cfr-like, optrA and poxtA), often associated with mobile genetic elements [such as non-conjugative and conjugative plasmids, transposons, integrative and conjugative elements (ICEs), prophages and translocatable units], plays a critical role in oxazolidinone resistance. In this review, we briefly summarize the current knowledge on oxazolidinone resistance mechanisms and provide an overview on the diversity of the mobile genetic elements carrying oxazolidinone resistance genes in Gram-positive and Gram-negative bacteria.
Collapse
Affiliation(s)
- Andrea Brenciani
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School, Ancona, Italy
| | - Gianluca Morroni
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School, Ancona, Italy
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany.,Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China.,Veterinary Centre for Resistance Research (TZR), Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Eleonora Giovanetti
- Unit of Microbiology, Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
12
|
Colon VA, Lugsomya K, Lam HK, Wahl LC, Parkes RSV, Cormack CA, Horlbog JA, Stevens M, Stephan R, Magouras I. Serotype Diversity and Antimicrobial Resistance Profile of Salmonella enterica Isolates From Freshwater Turtles Sold for Human Consumption in Wet Markets in Hong Kong. Front Vet Sci 2022; 9:912693. [PMID: 35937281 PMCID: PMC9353134 DOI: 10.3389/fvets.2022.912693] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Chelonians are recognized as a source of human salmonellosis through direct contact or consumption of their meat. Freshwater turtles sold for food are widely available in wet markets in Asia. In this pilot study, 50 turtles belonging to three species were randomly sampled from wet markets throughout Hong Kong. The turtles were humanely euthanised and their feces or the colon were sampled for Salmonella culture. The Salmonella isolates obtained were serotyped and examined for phenotypic antimicrobial resistance and the presence of antimicrobial resistance genes. The study reports a high prevalence (42%, 95% CI: 29.4–55.8) and considerable serotype diversity of Salmonella among turtles sold in wet markets. The most common among the 11 serotypes isolated were S. Oranienburg and S. Thompson, which have been reported in turtles previously. The serotype S. Manhattan is reported in chelonians for the first time. Resistance to streptomycin and chloramphenicol was common, despite the latter being banned from aquaculture in mainland China since 2002. Resistance against fluoroquinolones and third-generation cephalosporins which represent first-line treatment options for salmonellosis was also observed. The multidrug-resistance gene cfr is identified for the first time in Salmonella. This is a worrying finding as it indicates an expansion of the cfr reservoir and potential horizontal spread to other bacteria. The results of this study emphasize the need for close surveillance of Salmonella from turtles sold as food and better regulation of turtle farming to safeguard public health and improve animal welfare.
Collapse
Affiliation(s)
- Violaine Albane Colon
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Kittitat Lugsomya
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Hoi Kiu Lam
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Lloyd Christian Wahl
- Centre for Applied One Health Research and Policy Advice, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Rebecca Sarah Victoria Parkes
- Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Centre for Animal Health and Welfare, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Catherine Anne Cormack
- Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Jule Anna Horlbog
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zürich, Switzerland
- Vetsuisse Faculty, National Reference Center for Enteropathogenic Bacteria and Listeria (NENT), Institute for Food Safety and Hygiene, University of Zurich, Zürich, Switzerland
| | - Marc Stevens
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zürich, Switzerland
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zürich, Switzerland
| | - Ioannis Magouras
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Centre for Applied One Health Research and Policy Advice, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- *Correspondence: Ioannis Magouras
| |
Collapse
|
13
|
Sionov RV, Steinberg D. Targeting the Holy Triangle of Quorum Sensing, Biofilm Formation, and Antibiotic Resistance in Pathogenic Bacteria. Microorganisms 2022; 10:1239. [PMID: 35744757 PMCID: PMC9228545 DOI: 10.3390/microorganisms10061239] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic and recurrent bacterial infections are frequently associated with the formation of biofilms on biotic or abiotic materials that are composed of mono- or multi-species cultures of bacteria/fungi embedded in an extracellular matrix produced by the microorganisms. Biofilm formation is, among others, regulated by quorum sensing (QS) which is an interbacterial communication system usually composed of two-component systems (TCSs) of secreted autoinducer compounds that activate signal transduction pathways through interaction with their respective receptors. Embedded in the biofilms, the bacteria are protected from environmental stress stimuli, and they often show reduced responses to antibiotics, making it difficult to eradicate the bacterial infection. Besides reduced penetration of antibiotics through the intricate structure of the biofilms, the sessile biofilm-embedded bacteria show reduced metabolic activity making them intrinsically less sensitive to antibiotics. Moreover, they frequently express elevated levels of efflux pumps that extrude antibiotics, thereby reducing their intracellular levels. Some efflux pumps are involved in the secretion of QS compounds and biofilm-related materials, besides being important for removing toxic substances from the bacteria. Some efflux pump inhibitors (EPIs) have been shown to both prevent biofilm formation and sensitize the bacteria to antibiotics, suggesting a relationship between these processes. Additionally, QS inhibitors or quenchers may affect antibiotic susceptibility. Thus, targeting elements that regulate QS and biofilm formation might be a promising approach to combat antibiotic-resistant biofilm-related bacterial infections.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- The Biofilm Research Laboratory, The Institute of Biomedical and Oral Research, The Faculty of Dental Medicine, Hadassah Medical School, The Hebrew University, Jerusalem 9112102, Israel;
| | | |
Collapse
|
14
|
Laughlin ZT, Nandi S, Dey D, Zelinskaya N, Witek MA, Srinivas P, Nguyen HA, Kuiper EG, Comstock LR, Dunham CM, Conn GL. 50S subunit recognition and modification by the Mycobacterium tuberculosis ribosomal RNA methyltransferase TlyA. Proc Natl Acad Sci U S A 2022; 119:e2120352119. [PMID: 35357969 PMCID: PMC9168844 DOI: 10.1073/pnas.2120352119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/22/2022] [Indexed: 11/18/2022] Open
Abstract
Changes in bacterial ribosomal RNA (rRNA) methylation status can alter the activity of diverse groups of ribosome-targeting antibiotics. These modifications are typically incorporated by a single methyltransferase that acts on one nucleotide target and rRNA methylation directly prevents drug binding, thereby conferring drug resistance. Loss of intrinsic methylation can also result in antibiotic resistance. For example, Mycobacterium tuberculosis becomes sensitized to tuberactinomycin antibiotics, such as capreomycin and viomycin, due to the action of the intrinsic methyltransferase TlyA. TlyA is unique among antibiotic resistance-associated methyltransferases as it has dual 16S and 23S rRNA substrate specificity and can incorporate cytidine-2′-O-methylations within two structurally distinct contexts. Here, we report the structure of a mycobacterial 50S subunit-TlyA complex trapped in a postcatalytic state with a S-adenosyl-L-methionine analog using single-particle cryogenic electron microscopy. Together with complementary functional analyses, this structure reveals critical roles in 23S rRNA substrate recognition for conserved residues across an interaction surface that spans both TlyA domains. These interactions position the TlyA active site over the target nucleotide C2144, which is flipped from 23S Helix 69 in a process stabilized by stacking of TlyA residue Phe157 on the adjacent A2143. Base flipping may thus be a common strategy among rRNA methyltransferase enzymes, even in cases where the target site is accessible without such structural reorganization. Finally, functional studies with 30S subunit suggest that the same TlyA interaction surface is employed to recognize this second substrate, but with distinct dependencies on essential conserved residues.
Collapse
Affiliation(s)
- Zane T. Laughlin
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
- Graduate Program in Biochemistry, Cell and Developmental Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322
| | - Suparno Nandi
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
| | - Debayan Dey
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
| | - Natalia Zelinskaya
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
| | - Marta A. Witek
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
| | - Pooja Srinivas
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
- Graduate Program in Molecular and Systems Pharmacology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322
| | - Ha An Nguyen
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
- Department of Chemistry Graduate Program, Emory University, Atlanta, GA 30322
| | - Emily G. Kuiper
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
| | | | - Christine M. Dunham
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
- Emory Antibiotic Resistance Center, Emory University, Atlanta, GA 30322
| | - Graeme L. Conn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
- Emory Antibiotic Resistance Center, Emory University, Atlanta, GA 30322
| |
Collapse
|
15
|
Tsai K, Stojković V, Noda-Garcia L, Young ID, Myasnikov AG, Kleinman J, Palla A, Floor SN, Frost A, Fraser JS, Tawfik DS, Fujimori DG. Directed evolution of the rRNA methylating enzyme Cfr reveals molecular basis of antibiotic resistance. eLife 2022; 11:e70017. [PMID: 35015630 PMCID: PMC8752094 DOI: 10.7554/elife.70017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 11/25/2021] [Indexed: 12/11/2022] Open
Abstract
Alteration of antibiotic binding sites through modification of ribosomal RNA (rRNA) is a common form of resistance to ribosome-targeting antibiotics. The rRNA-modifying enzyme Cfr methylates an adenosine nucleotide within the peptidyl transferase center, resulting in the C-8 methylation of A2503 (m8A2503). Acquisition of cfr results in resistance to eight classes of ribosome-targeting antibiotics. Despite the prevalence of this resistance mechanism, it is poorly understood whether and how bacteria modulate Cfr methylation to adapt to antibiotic pressure. Moreover, direct evidence for how m8A2503 alters antibiotic binding sites within the ribosome is lacking. In this study, we performed directed evolution of Cfr under antibiotic selection to generate Cfr variants that confer increased resistance by enhancing methylation of A2503 in cells. Increased rRNA methylation is achieved by improved expression and stability of Cfr through transcriptional and post-transcriptional mechanisms, which may be exploited by pathogens under antibiotic stress as suggested by natural isolates. Using a variant that achieves near-stoichiometric methylation of rRNA, we determined a 2.2 Å cryo-electron microscopy structure of the Cfr-modified ribosome. Our structure reveals the molecular basis for broad resistance to antibiotics and will inform the design of new antibiotics that overcome resistance mediated by Cfr.
Collapse
Affiliation(s)
- Kaitlyn Tsai
- Department of Cellular and Molecular Pharmacology, University of California San FranciscoSan FranciscoUnited States
| | - Vanja Stojković
- Department of Cellular and Molecular Pharmacology, University of California San FranciscoSan FranciscoUnited States
| | - Lianet Noda-Garcia
- Department of Biomolecular Sciences, Weizmann Institute of ScienceRehovotIsrael
| | - Iris D Young
- Department of Bioengineering and Therapeutic Sciences, University of California San FranciscoSan FranciscoUnited States
| | - Alexander G Myasnikov
- Department of Biochemistry and Biophysics, University of California San FranciscoSan FranciscoUnited States
| | - Jordan Kleinman
- Department of Cellular and Molecular Pharmacology, University of California San FranciscoSan FranciscoUnited States
| | - Ali Palla
- Department of Cellular and Molecular Pharmacology, University of California San FranciscoSan FranciscoUnited States
| | - Stephen N Floor
- Helen Diller Family Comprehensive Cancer Center, University of California San FranciscoSan FranciscoUnited States
- Department of Cell and Tissue Biology, University of California San FranciscoSan FranciscoUnited States
| | - Adam Frost
- Department of Biochemistry and Biophysics, University of California San FranciscoSan FranciscoUnited States
- Quantitative Biosciences Institute, University of California San FranciscoSan FranciscoUnited States
| | - James S Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California San FranciscoSan FranciscoUnited States
- Quantitative Biosciences Institute, University of California San FranciscoSan FranciscoUnited States
| | - Dan S Tawfik
- Department of Biomolecular Sciences, Weizmann Institute of ScienceRehovotIsrael
| | - Danica Galonić Fujimori
- Department of Cellular and Molecular Pharmacology, University of California San FranciscoSan FranciscoUnited States
- Quantitative Biosciences Institute, University of California San FranciscoSan FranciscoUnited States
- Department of Pharmaceutical Chemistry, University of California San FranciscoSan FranciscoUnited States
| |
Collapse
|
16
|
Wu L, Bao H, Yang Z, He T, Tian Y, Zhou Y, Pang M, Wang R, Zhang H. Antimicrobial susceptibility, multilocus sequence typing, and virulence of listeria isolated from a slaughterhouse in Jiangsu, China. BMC Microbiol 2021; 21:327. [PMID: 34823476 PMCID: PMC8613961 DOI: 10.1186/s12866-021-02335-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/30/2021] [Indexed: 11/19/2022] Open
Abstract
Background Listeria monocytogenes is one of the deadliest foodborne pathogens. The bacterium can tolerate severe environments through biofilm formation and antimicrobial resistance. This study aimed to investigate the antimicrobial susceptibility, resistance genes, virulence, and molecular epidemiology about Listeria from meat processing environments. Methods This study evaluated the antibiotic resistance and virulence of Listeria isolates from slaughtering and processing plants. All isolates were subjected to antimicrobial susceptibility testing using a standard microbroth dilution method. The harboring of resistant genes was identified by polymerase chain reaction. The multilocus sequence typing was used to determine the subtyping of the isolates and characterize possible routes of contamination from meat processing environments. The virulence of different STs of L. monocytogenes isolates was evaluated using a Caco-2 cell invasion assay. Results A total of 59 Listeria isolates were identified from 320 samples, including 37 L. monocytogenes isolates (62.71%). This study evaluated the virulence of L. monocytogenes and the antibiotic resistance of Listeria isolates from slaughtering and processing plants. The susceptibility of these 59 isolates against 8 antibiotics was analyzed, and the resistance levels to ceftazidime, ciprofloxacin, and lincomycin were as high as 98.31% (L. m 37; L. innocua 7; L. welshimeri 14), 96.61% (L. m 36; L. innocua 7; L. welshimeri 14), and 93.22% (L. m 35; L. innocua 7; L. welshimeri 13), respectively. More than 90% of the isolates were resistant to three to six antibiotics, indicating that Listeria isolated from meat processing environments had high antimicrobial resistance. Up to 60% of the isolates harbored the tetracycline-resistance genes tetA and tetM. The frequency of ermA, ermB, ermC, and aac(6′)-Ib was 16.95, 13.56, 15.25, and 6.78%, respectively. Notably, the resistant phenotype and genotype did not match exactly, suggesting that the mechanisms of antibiotic resistance of these isolates were likely related to the processing environment. Multilocus sequence typing (MLST) revealed that 59 Listeria isolates were grouped into 10 sequence types (STs). The dominant L. monocytogenes STs were ST5, ST9, and ST121 in the slaughtering and processing plant of Jiangsu province. Moreover, ST5 subtypes exhibited high invasion in Caco-2 cells compared with ST9 and ST121 cells. Conclusion The dominant L. monocytogenes ST5 persisted in the slaughtering and processing plant and had high antimicrobial resistance and invasion characteristics, illustrating a potential risk in food safety and human health.
Collapse
Affiliation(s)
- Liting Wu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of MOST, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, No 50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Hongduo Bao
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of MOST, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, No 50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Zhengquan Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Tao He
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of MOST, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, No 50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Yuan Tian
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of MOST, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, No 50 Zhongling Street, Nanjing, 210014, Jiangsu, China.,Jiangsu University - School of Food and Biological Engineering, Zhenjiang, 212013, China
| | - Yan Zhou
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of MOST, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, No 50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Maoda Pang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of MOST, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, No 50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Ran Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of MOST, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, No 50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Hui Zhang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of MOST, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, No 50 Zhongling Street, Nanjing, 210014, Jiangsu, China.
| |
Collapse
|
17
|
Koutsoumanis K, Allende A, Alvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Ru G, Simmons M, Skandamis P, Suffredini E, Andersson DI, Bampidis V, Bengtsson‐Palme J, Bouchard D, Ferran A, Kouba M, López Puente S, López‐Alonso M, Nielsen SS, Pechová A, Petkova M, Girault S, Broglia A, Guerra B, Innocenti ML, Liébana E, López‐Gálvez G, Manini P, Stella P, Peixe L. Maximum levels of cross-contamination for 24 antimicrobial active substances in non-target feed. Part 8: Pleuromutilins: tiamulin and valnemulin. EFSA J 2021; 19:e06860. [PMID: 34729088 PMCID: PMC8546795 DOI: 10.2903/j.efsa.2021.6860] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The specific concentrations of tiamulin and valnemulin in non-target feed for food-producing animals, below which there would not be an effect on the emergence of, and/or selection for, resistance in bacteria relevant for human and animal health, as well as the specific antimicrobial concentrations in feed which have an effect in terms of growth promotion/increased yield were assessed by EFSA in collaboration with EMA. Details of the methodology used for this assessment, associated data gaps and uncertainties, are presented in a separate document. To address antimicrobial resistance, the Feed Antimicrobial Resistance Selection Concentration (FARSC) model developed specifically for the assessment was applied. However, due to the lack of data on the parameters required to calculate the FARSC, it was not possible to conclude the assessment until further experimental data become available. To address growth promotion, data from scientific publications obtained from an extensive literature review were used. Levels in feed that showed to have an effect on growth promotion/increased yield were reported for tiamulin, while for valnemulin no suitable data for the assessment were available. It was recommended to carry out studies to generate the data that are required to fill the gaps which prevented the calculation of the FARSC for these two antimicrobials.
Collapse
|
18
|
Zhang S, Liu P, Wang Y, Shen Z, Wang S. Multiresistance gene cfr(C) in Clostridium perfringens of cattle origin from China. J Antimicrob Chemother 2021; 76:3310-3312. [PMID: 34510186 DOI: 10.1093/jac/dkab339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/23/2021] [Indexed: 01/03/2023] Open
Affiliation(s)
- Shihong Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Peng Liu
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yang Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhangqi Shen
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shaolin Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
19
|
O’Grady K, Knight DR, Riley TV. Antimicrobial resistance in Clostridioides difficile. Eur J Clin Microbiol Infect Dis 2021; 40:2459-2478. [DOI: 10.1007/s10096-021-04311-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/08/2021] [Indexed: 02/08/2023]
|
20
|
Kaze M, Brooks L, Sistrom M. Antimicrobial resistance in Bacillus-based biopesticide products. MICROBIOLOGY-SGM 2021; 167. [PMID: 34351257 DOI: 10.1099/mic.0.001074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The crisis of antimicrobial resistant bacterial infections is one of the most pressing public health issues. Common agricultural practices have been implicated in the generation of antimicrobial resistant bacteria. Biopesticides, live bacteria used for pest control, are non-pathogenic and considered safe for consumption. Application of bacteria-based pesticides to crops in high concentrations raises the possibility of unintentional contributions to the movement and generation of antimicrobial resistance genes in the environment. However, the presence of clinically relevant antimicrobial resistance genes and their resistance phenotypes are currently unknown. Here we use a combination of multiple bioinformatic and microbiological techniques to define resistomes of widely used biopesticides and determine how the presence of suspected antimicrobial resistance genes translates to observable resistance phenotypes in several biopesticide products. Our results demonstrate that biopesticide products are reservoirs of clinically relevant antimicrobial resistance genes and bear resistance to multiple drug classes.
Collapse
Affiliation(s)
- Mo Kaze
- Department of Quantitative and Systems Biology, School of Natural Sciences, University of California Merced, Merced, USA
| | - Lauren Brooks
- Department of Biology, Utah Valley University, Orem, USA
| | - Mark Sistrom
- Department of Quantitative and Systems Biology, School of Natural Sciences, University of California Merced, Merced, USA
| |
Collapse
|
21
|
Kartalidis P, Skoulakis A, Tsilipounidaki K, Florou Z, Petinaki E, Fthenakis GC. Clostridioides difficile as a Dynamic Vehicle for the Dissemination of Antimicrobial-Resistance Determinants: Review and In Silico Analysis. Microorganisms 2021; 9:microorganisms9071383. [PMID: 34202117 PMCID: PMC8307371 DOI: 10.3390/microorganisms9071383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 01/11/2023] Open
Abstract
The present paper is divided into two parts. The first part focuses on the role of Clostridioides difficile in the accumulation of genes associated with antimicrobial resistance and then the transmission of them to other pathogenic bacteria occupying the same human intestinal niche. The second part describes an in silico analysis of the genomes of C. difficile available in GenBank, with regard to the presence of mobile genetic elements and antimicrobial resistance genes. The diversity of the C. difficile genome is discussed, and the current status of resistance of the organisms to various antimicrobial agents is reviewed. The role of transposons associated with antimicrobial resistance is appraised; the importance of plasmids associated with antimicrobial resistance is discussed, and the significance of bacteriophages as a potential shuttle for antimicrobial resistance genes is presented. In the in silico study, 1101 C. difficile genomes were found to harbor mobile genetic elements; Tn6009, Tn6105, CTn7 and Tn6192, Tn6194 and IS256 were the ones more frequently identified. The genes most commonly harbored therein were: ermB, blaCDD, vanT, vanR, vanG and vanS. Tn6194 was likely associated with resistance to erythromycin, Tn6192 and CTn7 with resistance to the β-lactams and vancomycin, IS256 with resistance to aminoglycoside and Tn6105 to vancomycin.
Collapse
Affiliation(s)
- Philip Kartalidis
- Department of Clinical and Laboratory Research, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (P.K.); (A.S.); (K.T.); (Z.F.); (E.P.)
| | - Anargyros Skoulakis
- Department of Clinical and Laboratory Research, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (P.K.); (A.S.); (K.T.); (Z.F.); (E.P.)
| | - Katerina Tsilipounidaki
- Department of Clinical and Laboratory Research, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (P.K.); (A.S.); (K.T.); (Z.F.); (E.P.)
| | - Zoi Florou
- Department of Clinical and Laboratory Research, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (P.K.); (A.S.); (K.T.); (Z.F.); (E.P.)
| | - Efthymia Petinaki
- Department of Clinical and Laboratory Research, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (P.K.); (A.S.); (K.T.); (Z.F.); (E.P.)
| | - George C. Fthenakis
- Veterinary Faculty, University of Thessaly, 43100 Karditsa, Greece
- Correspondence:
| |
Collapse
|
22
|
Mei CY, Wu H, Wang Y, Wang ZY, Ma QC, Shen PC, Zhou YY, Wang J, Jiao X. First detection of the multiresistance gene cfr in Escherichia coli from retail vegetables, China. Int J Antimicrob Agents 2021; 57:106348. [PMID: 33892106 DOI: 10.1016/j.ijantimicag.2021.106348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/25/2021] [Accepted: 04/10/2021] [Indexed: 11/25/2022]
Affiliation(s)
- Cai-Yue Mei
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Han Wu
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China
| | - Yan Wang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China
| | - Zhen-Yu Wang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China
| | - Qin-Chun Ma
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Peng-Cheng Shen
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China
| | - Yan-Yang Zhou
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jing Wang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China.
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
23
|
Liu Y, Tong Z, Shi J, Li R, Upton M, Wang Z. Drug repurposing for next-generation combination therapies against multidrug-resistant bacteria. Theranostics 2021; 11:4910-4928. [PMID: 33754035 PMCID: PMC7978324 DOI: 10.7150/thno.56205] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/29/2021] [Indexed: 12/12/2022] Open
Abstract
Antimicrobial resistance has been a global health challenge that threatens our ability to control and treat life-threatening bacterial infections. Despite ongoing efforts to identify new drugs or alternatives to antibiotics, no new classes of antibiotic or their alternatives have been clinically approved in the last three decades. A combination of antibiotics and non-antibiotic compounds that could inhibit bacterial resistance determinants or enhance antibiotic activity offers a sustainable and effective strategy to confront multidrug-resistant bacteria. In this review, we provide a brief overview of the co-evolution of antibiotic discovery and the development of bacterial resistance. We summarize drug-drug interactions and uncover the art of repurposing non-antibiotic drugs as potential antibiotic adjuvants, including discussing classification and mechanisms of action, as well as reporting novel screening platforms. A pathogen-by-pathogen approach is then proposed to highlight the critical value of drug repurposing and its therapeutic potential. Finally, general advantages, challenges and development trends of drug combination strategy are discussed.
Collapse
Affiliation(s)
- Yuan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ziwen Tong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jingru Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ruichao Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Mathew Upton
- School of Biomedical Sciences, University of Plymouth, Drake Circus, Plymouth, UK
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
24
|
Ali SS, Moawad MS, Hussein MA, Azab M, Abdelkarim EA, Badr A, Sun J, Khalil M. Efficacy of metal oxide nanoparticles as novel antimicrobial agents against multi-drug and multi-virulent Staphylococcus aureus isolates from retail raw chicken meat and giblets. Int J Food Microbiol 2021; 344:109116. [PMID: 33676332 DOI: 10.1016/j.ijfoodmicro.2021.109116] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 01/15/2021] [Accepted: 02/11/2021] [Indexed: 12/11/2022]
Abstract
Staphylococcus aureus is among the most common zoonotic pathogens originating from animals consumed as food, especially raw chicken meat (RCM). As far as we know, this might be the first report that explores the efficacy of metal oxide nanoparticles (MONPs), such as zinc peroxide nanoparticles (ZnO2-NPs), zinc oxide nanoparticles (ZnO-NPs), and titanium dioxide nanoparticles (TiO2-NPs) against multidrug resistant (MDR) and/or pandrug resistant (PDR) S. aureus strains with a strong biofilm-producing ability isolated from RCM and giblets. The overall prevalence of coagulase-positive staphylococci was 21%, with a contamination level range between 102 and 104 CFU/g. The incidence of virulence genes See (21/36), pvl (16/36), clfA (15/36), sec (12/36), tst (12/36), and sea (11/36) among S. aureus strains were relatively higher those of seb, sed, fnbA, and fnbB. For antimicrobial resistance gene distribution, most strains harbored the blaZ gene (25/36), aacA-aphD gene (24/36), mecA gene (22/36), vanA gene (20/36), and apmA gene (20/36) confirmed the prevalence of MDR among S. aureus of RCM products. However, cfr (11/36), spc (9/36), and aadE (7/36) showed a relatively lower existence. The data of antibiogram resistance profiles was noticeably heterogeneous (25 patterns) with 32 MDR and four PDR S. aureus strains. All tested strains had a very high MAR index value (>0.2) except the P11 pattern (GEN, MXF, PMB), which showed a MAR index of 0.19. Among the strong biofilm-producing ability (BPA), 14 (70%) strains were isolated from wet markets, while only six strong BPA strains were isolated from supermarkets. The mean values of BPA ranged from 2.613 ± 0.04 to 11.013 ± 0.05. Clearly, ZnO2-NPs show significant inhibitory activity against S. aureus strains compared with those produced by the action of ZnO-NPs and TiO2-NPs. The results of anti-inflammatory activity suggest ZnO2-NPs as a lead compound for designing an alternative antimicrobial agent against drug-resistant and strong biofilm-producing S. aureus isolates from retail RCM and giblets.
Collapse
Affiliation(s)
- Sameh S Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| | - Mohamed S Moawad
- Department of Toxicology and Forensic Sciences, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mohamed A Hussein
- Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Maha Azab
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Esraa A Abdelkarim
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Abdelfattah Badr
- Botany and Microbiology Department, Faculty of Science, Helwan University, Ain Helwan, Cairo, Egypt
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Maha Khalil
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
25
|
Mencía-Ares O, Cabrera-Rubio R, Cobo-Díaz JF, Álvarez-Ordóñez A, Gómez-García M, Puente H, Cotter PD, Crispie F, Carvajal A, Rubio P, Argüello H. Antimicrobial use and production system shape the fecal, environmental, and slurry resistomes of pig farms. MICROBIOME 2020; 8:164. [PMID: 33213522 PMCID: PMC7678069 DOI: 10.1186/s40168-020-00941-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/17/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND The global threat of antimicrobial resistance (AMR) is a One Health problem impacted by antimicrobial use (AMU) for human and livestock applications. Extensive Iberian swine production is based on a more sustainable and eco-friendly management system, providing an excellent opportunity to evaluate how sustained differences in AMU impact the resistome, not only in the animals but also on the farm environment. Here, we evaluate the resistome footprint of an extensive pig farming system, maintained for decades, as compared to that of industrialized intensive pig farming by analyzing 105 fecal, environmental and slurry metagenomes from 38 farms. RESULTS Our results evidence a significantly higher abundance of antimicrobial resistance genes (ARGs) on intensive farms and a link between AMU and AMR to certain antimicrobial classes. We observed differences in the resistome across sample types, with a higher richness and dispersion of ARGs within environmental samples than on those from feces or slurry. Indeed, a deeper analysis revealed that differences among the three sample types were defined by taxa-ARGs associations. Interestingly, mobilome analyses revealed that the observed AMR differences between intensive and extensive farms could be linked to differences in the abundance of mobile genetic elements (MGEs). Thus, while there were no differences in the abundance of chromosomal-associated ARGs between intensive and extensive herds, a significantly higher abundance of integrons in the environment and plasmids, regardless of the sample type, was detected on intensive farms. CONCLUSIONS Overall, this study shows how AMU, production system, and sample type influence, mainly through MGEs, the profile and dispersion of ARGs in pig production. Video Abstract.
Collapse
Affiliation(s)
- Oscar Mencía-Ares
- Department of Animal Health, Faculty of Veterinary, Universidad de León, León, Spain
| | - Raúl Cabrera-Rubio
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
- APC Microbiome Institute, University College Cork, Co. Cork, Ireland
| | - José Francisco Cobo-Díaz
- Department of Food Hygiene and Technology, Faculty of Veterinary, Universidad de León, León, Spain
- Institute of Food Science and Technology, Universidad de León, León, Spain
| | - Avelino Álvarez-Ordóñez
- Department of Food Hygiene and Technology, Faculty of Veterinary, Universidad de León, León, Spain
- Institute of Food Science and Technology, Universidad de León, León, Spain
| | - Manuel Gómez-García
- Department of Animal Health, Faculty of Veterinary, Universidad de León, León, Spain
| | - Héctor Puente
- Department of Animal Health, Faculty of Veterinary, Universidad de León, León, Spain
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
- APC Microbiome Institute, University College Cork, Co. Cork, Ireland
- VistaMilk SFI Research Centre, Fermoy, Co. Cork, Ireland
| | - Fiona Crispie
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
- APC Microbiome Institute, University College Cork, Co. Cork, Ireland
| | - Ana Carvajal
- Department of Animal Health, Faculty of Veterinary, Universidad de León, León, Spain.
| | - Pedro Rubio
- Department of Animal Health, Faculty of Veterinary, Universidad de León, León, Spain
| | - Héctor Argüello
- Department of Animal Health, Faculty of Veterinary, Universidad de León, León, Spain
| |
Collapse
|
26
|
Chen Q, Yin D, Li P, Guo Y, Ming D, Lin Y, Yan X, Zhang Z, Hu F. First Report Cfr and Optr A Co-harboring Linezolid-Resistant Enterococcus faecalis in China. Infect Drug Resist 2020; 13:3919-3922. [PMID: 33173316 PMCID: PMC7646505 DOI: 10.2147/idr.s270701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/22/2020] [Indexed: 12/19/2022] Open
Abstract
A linezolid-resistant E.faecalis strain harboring optrA and cfr resistance genes were isolated from a patient in china, which had no mutations in rplC, rplD, rplV, and 23S rRNA gene. Transformation indicated that optrA and cfr were located on two different plasmids and both could be transferred to recipient strain, resulting in the increase of MICs of linezolid and chloramphenicol. Cfr, carried by an 11,872-bp plasmid, was enclosed with an IS110 transposase in upstream and an IS3-like transposase in downstream, while optrA was on an 8357-bp plasmid. As far as we know, this is the first report of an E.faecalis clinical strain co-harboring optrA and cfr in China.
Collapse
Affiliation(s)
- Qingqing Chen
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.,The Affiliated Quanzhou First Hospital of Fujian Medical University, Quanzhou, People's Republic of China
| | - Dandan Yin
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, People's Republic of China
| | - Pei Li
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, People's Republic of China
| | - Yan Guo
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, People's Republic of China
| | - Desong Ming
- The Affiliated Quanzhou First Hospital of Fujian Medical University, Quanzhou, People's Republic of China
| | - Yuling Lin
- The Affiliated Quanzhou First Hospital of Fujian Medical University, Quanzhou, People's Republic of China
| | - Xiaoli Yan
- The Affiliated Quanzhou First Hospital of Fujian Medical University, Quanzhou, People's Republic of China
| | - Zhishan Zhang
- The Affiliated Quanzhou First Hospital of Fujian Medical University, Quanzhou, People's Republic of China
| | - Fupin Hu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, People's Republic of China
| |
Collapse
|
27
|
Chen H, Deng H, Cheng L, Liu R, Fu G, Shi S, Wan C, Fu Q, Huang Y, Huang X. First report of the multiresistance gene cfr in Pasteurella multocida strains of avian origin from China. J Glob Antimicrob Resist 2020; 23:251-255. [PMID: 33045440 DOI: 10.1016/j.jgar.2020.09.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 09/21/2020] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES The aim of this study was to investigate the presence and genetic environment of the multiresistance gene cfr gene in Pasteurella multocida of avian origin from China. METHODS A total of 113 P. multocida isolates were collected from sick poultries (ducks, chickens and geese) from 2003 to 2016 in Southern China and were screened for the presence of the cfr gene by PCR. The cfr-carrying P. multocida strains were subjected to antimicrobial susceptibility testing, S1 nuclease PFGE and Southern blot hybridisation, conjugative transfer and analysis of genetic environment of the cfr gene. RESULTS Among 113 P. multocida isolates, strains FJ6671 and FJ6683 from Muscovy duck harboured the cfr gene and presented a multiresistant phenotype. The cfr gene in the two strains was located on an ∼40-kb conjugative plasmid in different genetic environments, including ISApl12-cfr-IS26 and IS26-cfr-IS256. CONCLUSIONS These results demonstrate plasmid-carried cfr in P. multocida and suggest that transposition and homologous recombination mediated by IS26, ISApl1 and IS256 might have played an important role in transfer of the cfr gene in P. multocida. To the best of our knowledge, this is the first report of the cfr gene in P. multocida. Active and ongoing surveillance of cfr in P. multocida is urgently warranted.
Collapse
Affiliation(s)
- Hongmei Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; Fujian Animal Diseases Control Technology Center, Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention, Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, PR China
| | - Hui Deng
- Fujian Provincial Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Sciences (College of Bee Sciences), Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Longfei Cheng
- Fujian Animal Diseases Control Technology Center, Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention, Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, PR China
| | - Rongchang Liu
- Fujian Animal Diseases Control Technology Center, Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention, Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, PR China
| | - Guanghua Fu
- Fujian Animal Diseases Control Technology Center, Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention, Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, PR China
| | - Shaohua Shi
- Fujian Animal Diseases Control Technology Center, Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention, Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, PR China
| | - Chunhe Wan
- Fujian Animal Diseases Control Technology Center, Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention, Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, PR China
| | - Qiuling Fu
- Fujian Animal Diseases Control Technology Center, Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention, Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, PR China
| | - Yu Huang
- Fujian Animal Diseases Control Technology Center, Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention, Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, PR China.
| | - Xiaohong Huang
- Fujian Provincial Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Sciences (College of Bee Sciences), Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| |
Collapse
|
28
|
Hao W, Shan X, Li D, Schwarz S, Zhang SM, Li XS, Du XD. Analysis of a poxtA- and optrA-co-carrying conjugative multiresistance plasmid from Enterococcus faecalis. J Antimicrob Chemother 2020; 74:1771-1775. [PMID: 30891598 DOI: 10.1093/jac/dkz109] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/18/2019] [Accepted: 02/25/2019] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES To investigate the presence and transferability of the poxtA gene and identify the genetic context of poxtA in two enterococcal plasmids from swine. METHODS MICs were determined by broth microdilution. A total of 114 porcine enterococci with florfenicol MICs of ≥16 mg/L were screened for the presence of the poxtA gene by PCR. Transferability of poxtA was investigated by conjugation and transformation. The poxtA-carrying plasmids were completely sequenced using the Illumina Miseq and PacBio RSII platform. The presence of circular intermediates was examined by inverse PCR. RESULTS The poxtA gene was present in 57.9% (66/114) of the florfenicol-resistant porcine enterococci. Two poxtA-carrying plasmids, pE035 and pE076, were identified. The conjugative 121524 bp plasmid pE035 carried poxtA and optrA along with the resistance genes erm(A), erm(B), aac(A)-aph(D), lnu(G), fexB, dfrG and bcrABDR. Three mobile elements, comprising a mobile dfrG locus, a mobile bcrABDR locus and an unconventional circularizable structure containing aac(A)-aph(D), were located on this plasmid and all proved to be active by inverse PCR. The non-conjugative 19832 bp plasmid pE076 only carried poxtA and fexB. After transfer, both the transconjugant and the transformant displayed elevated MICs of the respective antimicrobial agents. CONCLUSIONS To the best of our knowledge, this is the first report of the co-location of the oxazolidinone resistance genes poxtA and optrA on a conjugative multiresistance plasmid from a porcine enterococcal strain. In addition, the presence of three mobile elements in such a plasmid will aid in the persistence and dissemination of poxtA and optrA among enterococci.
Collapse
Affiliation(s)
- Wenbo Hao
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, PR China
| | - Xinxin Shan
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, PR China
| | - Dexi Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, PR China
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Su-Mei Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, PR China
| | - Xin-Sheng Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, PR China
| | - Xiang-Dang Du
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, PR China
| |
Collapse
|
29
|
Rodríguez-Noriega E, Hernández-Morfin N, Garza-Gonzalez E, Bocanegra-Ibarias P, Flores-Treviño S, Esparza-Ahumada S, González-Díaz E, Pérez-Gómez HR, Mendoza-Mujica C, León-Garnica G, Morfín-Otero R. Risk factors and outcome associated with the acquisition of linezolid-resistant Enterococcus faecalis. J Glob Antimicrob Resist 2020; 21:405-409. [DOI: 10.1016/j.jgar.2020.01.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/25/2019] [Accepted: 01/13/2020] [Indexed: 01/13/2023] Open
|
30
|
Zhu T, Liu S, Ying Y, Xu L, Liu Y, Jin J, Ying J, Lu J, Lin X, Li K, Xu T, Bao Q, Li P. Genomic and functional characterization of fecal sample strains of Proteus cibarius carrying two floR antibiotic resistance genes and a multiresistance plasmid-encoded cfr gene. Comp Immunol Microbiol Infect Dis 2020; 69:101427. [PMID: 32058867 DOI: 10.1016/j.cimid.2020.101427] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/24/2020] [Accepted: 01/24/2020] [Indexed: 11/26/2022]
Abstract
The objective of this study was to investigate the molecular characteristics and horizontal transfer of florfenicol resistance gene-related sequences in Proteus strains isolated from animals. A total of six Proteus strains isolated from three farms between 2015 and 2016 were screened by polymerase chain reaction (PCR) for known florfenicol resistance genes. Proteus cibarius G11, isolated from the fecal material of a goose, was found to harbor both cfr and floR genes. Whole genome sequencing revealed that the strain harbored two copies of the floR gene: one was located on the chromosome and the other was located on a plasmid named pG11-152. Two floR-containing fragments 4028 bp in length were identical and showed transposon-like structures. The cfr gene was found on a plasmid named pG11-51 and flanked by a pair of IS26s. Thus, mobile genetic elements played an important role in floR replication and horizontal resistance gene transfer. Therefore, increasing attention should be paid to monitoring the spread of resistance genes and resistance in real time.
Collapse
Affiliation(s)
- Tingyuan Zhu
- Institute of Biomedical Informatics, Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Suzhen Liu
- Wenzhou Vocational College of Science and Technology, Wenzhou, 325000, China
| | - Yuanyuan Ying
- Institute of Biomedical Informatics, Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Lei Xu
- Institute of Biomedical Informatics, Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yabo Liu
- Institute of Biomedical Informatics, Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Junjie Jin
- Wenzhou Vocational College of Science and Technology, Wenzhou, 325000, China
| | - Jun Ying
- Institute of Biomedical Informatics, Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Junwan Lu
- Institute of Biomedical Informatics, Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xi Lin
- Institute of Biomedical Informatics, Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Kewei Li
- Institute of Biomedical Informatics, Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Teng Xu
- Institute of Translational Medicine, Baotou Central Hospital, Baotou, 014040, China.
| | - Qiyu Bao
- Institute of Biomedical Informatics, Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Peizhen Li
- Institute of Biomedical Informatics, Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
31
|
cfr(B), cfr(C), and a New cfr-Like Gene, cfr(E), in Clostridium difficile Strains Recovered across Latin America. Antimicrob Agents Chemother 2019; 64:AAC.01074-19. [PMID: 31685464 DOI: 10.1128/aac.01074-19] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 10/08/2019] [Indexed: 12/18/2022] Open
Abstract
Cfr is a radical S-adenosyl-l-methionine (SAM) enzyme that confers cross-resistance to antibiotics targeting the 23S rRNA through hypermethylation of nucleotide A2503. Three cfr-like genes implicated in antibiotic resistance have been described, two of which, cfr(B) and cfr(C), have been sporadically detected in Clostridium difficile However, the methylase activity of Cfr(C) has not been confirmed. We found cfr(B), cfr(C), and a cfr-like gene that shows only 51 to 58% protein sequence identity to Cfr and Cfr-like enzymes in clinical C. difficile isolates recovered across nearly a decade in Mexico, Honduras, Costa Rica, and Chile. This new resistance gene was termed cfr(E). In agreement with the anticipated function of the cfr-like genes detected, all isolates exhibited high MIC values for several ribosome-targeting antibiotics. In addition, in vitro assays confirmed that Cfr(C) and Cfr(E) methylate Escherichia coli and, to a lesser extent, C. difficile 23S rRNA fragments at the expected positions. The analyzed isolates do not have mutations in 23S rRNA genes or genes encoding the ribosomal proteins L3 and L4 and lack poxtA, optrA, and pleuromutilin resistance genes. Moreover, these cfr-like genes were found in Tn6218-like transposons or integrative and conjugative elements (ICE) that could facilitate their transfer. These results indicate selection of potentially mobile cfr-like genes in C. difficile from Latin America and provide the first assessment of the methylation activity of Cfr(C) and Cfr(E), which belong to a cluster of Cfr-like proteins that does not include the functionally characterized enzymes Cfr, Cfr(B), and Cfr(D).
Collapse
|
32
|
Wardenburg KE, Potter RF, D’Souza AW, Hussain T, Wallace MA, Andleeb S, Burnham CAD, Dantas G. Phenotypic and genotypic characterization of linezolid-resistant Enterococcus faecium from the USA and Pakistan. J Antimicrob Chemother 2019; 74:3445-3452. [PMID: 31504566 PMCID: PMC6857194 DOI: 10.1093/jac/dkz367] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/16/2019] [Accepted: 07/22/2019] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVES Linezolid is an important therapeutic option for the treatment of infections caused by VRE. Linezolid is a synthetic antimicrobial and resistance to this antimicrobial agent remains relatively rare. As a result, data on the comparative genomics of linezolid resistance determinants in Enterococcus faecium are relatively sparse. METHODS To address this knowledge gap in E. faecium, we deployed phenotypic antibiotic susceptibility testing and Illumina WGS on hospital surface (environmental) and clinical isolates from the USA and Pakistan. RESULTS We found complete concordance between isolate source country and mechanism of linezolid resistance, with all the US isolates possessing a 23S rRNA gene mutation and the Pakistan isolates harbouring two to three acquired antibiotic resistance genes. These resistance genes include the recently elucidated efflux-pump genes optrA and poxtA and a novel cfr-like variant. Although there was no difference in the linezolid MIC between the US and Pakistan isolates, there was a significant difference in the geometric mean of the MIC between the Pakistan isolates that had two versus three of the acquired antibiotic resistance genes. In five of the Pakistan E. faecium that possessed all three of the resistance genes, we found no difference in the local genetic context of poxtA and the cfr-like gene, but we identified different genetic contexts surrounding optrA. CONCLUSIONS These results demonstrate that E. faecium from different geographical regions employ alternative strategies to counter selective pressure of increasing clinical linezolid use.
Collapse
Affiliation(s)
- Kate E Wardenburg
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University in St Louis School of Medicine, St Louis, MO, USA
| | - Robert F Potter
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University in St Louis School of Medicine, St Louis, MO, USA
| | - Alaric W D’Souza
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University in St Louis School of Medicine, St Louis, MO, USA
| | - Tahir Hussain
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University in St Louis School of Medicine, St Louis, MO, USA
- Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Meghan A Wallace
- Department of Pathology and Immunology, Washington University in St Louis School of Medicine, St Louis, MO, USA
| | - Saadia Andleeb
- Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Carey-Ann D Burnham
- Department of Pathology and Immunology, Washington University in St Louis School of Medicine, St Louis, MO, USA
- Departments of Pediatrics and Medicine, Washington University in St Louis School of Medicine, St Louis, MO, USA
- Department of Molecular Microbiology, Washington University in St Louis School of Medicine, St Louis, MO, USA
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University in St Louis School of Medicine, St Louis, MO, USA
- Department of Pathology and Immunology, Washington University in St Louis School of Medicine, St Louis, MO, USA
- Department of Molecular Microbiology, Washington University in St Louis School of Medicine, St Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St Louis, St Louis, MO, USA
| |
Collapse
|
33
|
Abstract
The genus Enterococcus comprises a ubiquitous group of Gram-positive bacteria that are of great relevance to human health for their role as major causative agents of health care-associated infections. The enterococci are resilient and versatile species able to survive under harsh conditions, making them well adapted to the health care environment. Two species cause the majority of enterococcal infections: Enterococcus faecalis and Enterococcus faecium Both species demonstrate intrinsic resistance to common antibiotics, such as virtually all cephalosporins, aminoglycosides, clindamycin, and trimethoprim-sulfamethoxazole. Additionally, a remarkably plastic genome allows these two species to readily acquire resistance to further antibiotics, such as high-level aminoglycoside resistance, high-level ampicillin resistance, and vancomycin resistance, either through mutation or by horizontal transfer of genetic elements conferring resistance determinants.
Collapse
Affiliation(s)
- Mónica García-Solache
- Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Louis B Rice
- Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| |
Collapse
|