1
|
Ellers O, Gordon CM, Hukill MT, Kukaj A, Cannell A, Nel A. Induced Power Scaling Alone Cannot Explain Griffenfly Gigantism. Integr Comp Biol 2024; 64:598-610. [PMID: 38834534 DOI: 10.1093/icb/icae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/02/2024] [Accepted: 06/03/2024] [Indexed: 06/06/2024] Open
Abstract
Paleozoic skies were ruled by extinct odonatopteran insects called "griffenflies," some with wingspans 3 times that of the largest extant dragonflies and 10 times that of common extant dragonflies. Previous studies suggested that flight was possible for larger fliers because of higher atmospheric oxygen levels, which would have increased air density. We use actuator disk theory to evaluate this hypothesis. Actuator disk theory gives similar estimates of induced power as have been estimated for micro-air vehicles based on insect flight. We calculate that for a given mass of griffenfly, and assuming isometry, a higher density atmosphere would only have reduced the induced power required to hover by 11%, which would have supported a flyer 3% larger in linear dimensions. Steady-level forward flight would have further reduced induced power but could only account for a flier 5% larger in linear dimensions. Further accounting for the higher power available due to high-oxygen air and assuming isometry, we calculate that the largest flyer hovering would have been only 1.19 times longer than extant dragonflies. We also consider known allometry in dragonflies and estimated allometry in extinct griffenflies. But such allometry only increases flyer size to 1.22 times longer while hovering. We also consider profile and parasite power, but both would have been higher in denser air and thus would not have enhanced the flyability of larger griffenflies. The largest meganeurid griffenflies might have adjusted flight behaviors to reduce power required. Alternatively, the scaling of flight muscle power may have been sufficient to support the power demands of large griffenflies. In literature estimates, mass-specific power output scales as mass0.24 in extant dragonflies. We need only more conservatively assume that mass-specific muscle power scales with mass0, when combined with higher oxygen concentrations and induced power reductions in higher-density air to explain griffenflies 3.4 times larger than extant odonates. Experimental measurement of flight muscle power scaling in odonates is necessary to test this hypothesis.
Collapse
Affiliation(s)
- Olaf Ellers
- Department of Biology, Bowdoin College, Brunswick, ME 04011, USA
| | - Caleb M Gordon
- Department of Biology, Bowdoin College, Brunswick, ME 04011, USA
- Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut 06511, USA
| | - Max T Hukill
- Department of Biology, Bowdoin College, Brunswick, ME 04011, USA
| | - Ardit Kukaj
- Department of Biology, Bowdoin College, Brunswick, ME 04011, USA
| | - Alan Cannell
- Institute of Advanced Studies (Human Evolution), University of São Paulo, São Paulo, SP 05508-050, Brazil
| | - André Nel
- Institut de Systématique, Evolution, Biodiversité, Muséum National d'Histoire Naturelle, Paris F-75005, France
| |
Collapse
|
2
|
Li J, Tang YE, Lv B, Wang J, Wang Z, Song Q. Integrated transcriptome and metabolome analysis reveals the molecular responses of Pardosa pseudoannulata to hypoxic environments. BMC ZOOL 2024; 9:15. [PMID: 38965564 PMCID: PMC11225295 DOI: 10.1186/s40850-024-00206-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/20/2024] [Indexed: 07/06/2024] Open
Abstract
Terrestrial organisms are likely to face hypoxic stress during natural disasters such as floods or landslides, which can lead to inevitable hypoxic conditions for those commonly residing within soil. Pardosa pseudoannulata often inhabits soil crevices and has been extensively studied, yet research on its response to hypoxic stress remains unclear. Therefore, we investigated the adaptive strategies of Pardosa pseudoannulata under hypoxic stress using metabolomics and transcriptomics approaches. The results indicated that under hypoxic stress, metabolites related to energy and antioxidants such as ATP, D-glucose 6-phosphate, flavin adenine dinucleotide (FAD), and reduced L-glutathione were significantly differentially expressed. Pathways such as the citric acid (TCA) cycle and oxidative phosphorylation were significantly enriched. Transcriptome analysis and related assessments also revealed a significant enrichment of pathways associated with energy metabolism, suggesting that Pardosa pseudoannulata primarily copes with hypoxic environments by modulating energy metabolism and antioxidant-related substances.
Collapse
Affiliation(s)
- Jinjin Li
- College of Life Science, Hunan Normal University, Changsha, Hunan, 410006, China
| | - Yun-E Tang
- College of Life Science, Hunan Normal University, Changsha, Hunan, 410006, China
| | - Bo Lv
- Division of Plant Sciences and Technology, University of Missouri, Columbia, MO, 65211, USA
| | - Juan Wang
- College of Life Science, Hunan Normal University, Changsha, Hunan, 410006, China
| | - Zhi Wang
- College of Life Science, Hunan Normal University, Changsha, Hunan, 410006, China.
| | - Qisheng Song
- Division of Plant Sciences and Technology, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
3
|
Wilmsen SM, Dzialowski EM. Chronic changes in developmental oxygen have little effect on mitochondria and tracheal density in the endothermic moth Manduca sexta. J Exp Biol 2024; 227:jeb247882. [PMID: 38873706 DOI: 10.1242/jeb.247882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
Oxygen availability during development is known to impact the development of insect respiratory and metabolic systems. Drosophila adult tracheal density exhibits developmental plasticity in response to hypoxic or hyperoxic oxygen levels during larval development. Respiratory systems of insects with higher aerobic demands, such as those that are facultative endotherms, may be even more responsive to oxygen levels above or below normoxia during development. The moth Manduca sexta is a large endothermic flying insect that serves as a good study system to start answering questions about developmental plasticity. In this study, we examined the effect of developmental oxygen levels (hypoxia: 10% oxygen, and hyperoxia: 30% oxygen) on the respiratory and metabolic phenotype of adult moths, focusing on morphological and physiological cellular and intercellular changes in phenotype. Mitochondrial respiration rate in permeabilized and isolated flight muscle was measured in adults. We found that permeabilized flight muscle fibers from the hypoxic group had increased mitochondrial oxygen consumption, but this was not replicated in isolated flight muscle mitochondria. Morphological changes in the trachea were examined using confocal imaging. We used transmission electron microscopy to quantify muscle and mitochondrial density in the flight muscle. The respiratory morphology was not significantly different between developmental oxygen groups. These results suggest that the developing M. sexta trachea and mitochondrial respiration have limited developmental plasticity when faced with rearing at 10% or 30% oxygen.
Collapse
Affiliation(s)
- Sara M Wilmsen
- Department of Biological Sciences, Advanced Environmental Research Institute, University of North Texas, Denton, TX 76201, USA
| | - Edward M Dzialowski
- Department of Biological Sciences, Advanced Environmental Research Institute, University of North Texas, Denton, TX 76201, USA
| |
Collapse
|
4
|
Wilmsen SM, Dzialowski EM. Altering developmental oxygen exposure influences thermoregulation and flight performance of Manduca sexta. J Exp Biol 2024; 227:jeb247373. [PMID: 38873724 DOI: 10.1242/jeb.247373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/08/2024] [Indexed: 06/15/2024]
Abstract
Endothermic, flying insects are capable of some of the highest recorded metabolic rates. This high aerobic demand is made possible by the insect's tracheal system, which supplies the flight muscles with oxygen. Many studies focus on metabolic responses to acute changes in oxygen to test the limits of the insect flight metabolic system, with some flying insects exhibiting oxygen limitation in flight metabolism. These acute studies do not account for possible changes induced by developmental phenotypic plasticity in response to chronic changes in oxygen levels. The endothermic moth Manduca sexta is a model organism that is easy to raise and exhibits a high thorax temperature during flight (∼40°C). In this study, we examined the effects of developmental oxygen exposure during the larval, pupal and adult stages on the adult moth's aerobic performance. We measured flight critical oxygen partial pressure (Pcrit-), thorax temperature and thermoregulating metabolic rate to understand the extent of developmental plasticity as well as effects of developmental oxygen levels on endothermic capacity. We found that developing in hypoxia (10% oxygen) decreased thermoregulating thorax temperature when compared with moths raised in normoxia or hyperoxia (30% oxygen), when moths were warming up in atmospheres with 21-30% oxygen. In addition, moths raised in hypoxia had lower critical oxygen levels when flying. These results suggest that chronic developmental exposure to hypoxia affects the adult metabolic phenotype and potentially has implications for thermoregulatory and flight behavior.
Collapse
Affiliation(s)
- Sara M Wilmsen
- Department of Biological Sciences, Advanced Environmental Research Institute, University of North Texas, Denton, TX 76201, USA
| | - Edward M Dzialowski
- Department of Biological Sciences, Advanced Environmental Research Institute, University of North Texas, Denton, TX 76201, USA
| |
Collapse
|
5
|
Rondeau S, Raine NE. Unveiling the submerged secrets: bumblebee queens' resilience to flooding. Biol Lett 2024; 20:20230609. [PMID: 38626803 PMCID: PMC11022157 DOI: 10.1098/rsbl.2023.0609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/07/2024] [Accepted: 03/11/2024] [Indexed: 04/19/2024] Open
Abstract
In a previous study, an experimental oversight led to the accumulation of water filling a container housing diapausing bumblebee queens. Surprisingly, after draining the water, queens were found to be alive. This observation raises a compelling question: can bumblebee queens endure periods of inundation while overwintering underground? To address this question, we conducted an experiment using 143 common eastern bumblebee (Bombus impatiens) queens placed in soil-filled tubes and subjected to artificially induced diapause in a refrigerated unit for 7 days. Tap water was then added to the tubes and queens (n = 21 per treatment) were either maintained underwater using a plunger-like apparatus or left to float naturally on the water's surface for varying durations (8 h, 24 h or 7 days) while remaining in overwintering conditions. Seventeen queens served as controls. After the submersion period, queens were removed from water, transferred to new tubes with soil and kept in cold storage for eight weeks. Overall, queen survival remained consistently high (89.5 ± 6.4%) across all treatments and did not differ among submersion regimes and durations. These results demonstrate the remarkable ability of diapausing B. impatiens queens to withstand submersion under water for up to one week, indicating their adaptations to survive periods of flooding in the wild.
Collapse
Affiliation(s)
- Sabrina Rondeau
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Nigel E. Raine
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
6
|
Huang Y, Wang D, Jian F. Survival of Plodia interpunctella (Hübner) larvae treated with 98% N2 and the life history of their next generation. BULLETIN OF ENTOMOLOGICAL RESEARCH 2023; 113:389-395. [PMID: 36798975 DOI: 10.1017/s0007485323000044] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Understanding the development and reproduction of insects surviving controlled atmosphere treatment may help in developing sound pest management strategies. The developmental duration, survival percentage, and oviposition of Plodia interpunctella and its F1 generation were determined after the fifth instar larvae (the last-stage larvae) were exposed to 98% N2 for different exposure times. The survival percentage of the last-stage larvae treated with 98% N2 for 6, 4, 1.5, and 0 day was 70, 80, 91, and 100%, respectively when measured 24 h after treatment. The survival percentage of the last-stage larvae that developed to pupae was 37, 55, 73, and 96%, corresponding to the different exposure times. The developmental time needed to pass from pupa to adult emergence of specimens treated as the last-stage larvae were 8, 7, 6, and 6 days corresponding respectively to high N2 treatment after 6, 4, 1.5, and 0 day of exposure. The mean number of eggs laid by the subsequent females developed from the treated last-stage larvae was 35, 66, 81, and 123, respectively. The oviposition inhibition ratio of the F1 generation decreased by more than 33% compared with that of the parental generation. When the last-stage larvae were exposed to 98% N2 for longer than 4 days, the immature developmental time of surviving individuals in the F1 generation was delayed more than 6 days due to slower egg hatching and longer development of the first and second instar larvae stages. The population trend index of the F1 generation was lower when raised from the treated last-stage larvae than those from untreated controls.
Collapse
Affiliation(s)
- Yilin Huang
- Henan University of Technology, National Grain Industry (Storage Insect Pest Control) Technology Innovation Center, Grain Storage and Logistics National Engineering Research Center, Zhengzhou, 450001, China
| | - Dianxuan Wang
- Henan University of Technology, National Grain Industry (Storage Insect Pest Control) Technology Innovation Center, Grain Storage and Logistics National Engineering Research Center, Zhengzhou, 450001, China
| | - Fuji Jian
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
| |
Collapse
|
7
|
De La Torre AM, López-Martínez G. Anoxia hormesis improves performance and longevity at the expense of fitness in a classic life history trade-off. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159629. [PMID: 36280058 DOI: 10.1016/j.scitotenv.2022.159629] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/04/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Hormesis occurs as a result of biphasic dose relationship resulting in stimulatory responses at low doses and inhibitory ones at high doses. In this framework, environmental factors are often studied to understand how this exposure benefits the animal. In the current study we used anoxia, the total absence of oxygen, as the most extreme version of low oxygen hormesis. Our goal was to determine the dose, the extent of the effect, and the cost of that response in Tenebrio molitor. We identified that the hormetic range (1 to 3 h of anoxia) was similar to that of other insects. Individuals that were exposed to 3 h had high emergence, increased activity throughout life, and lived longer. Beetles that experienced 1 h of anoxia performed better than the controls while the 6-h group had compromised performance. These boosts in performance at 3 h were accompanied by significant costs. Treated individuals had a delay in development and once matured they had decreased fitness. There were also transgenerational effects of hormesis and F1 beetles also experienced a delay in development. Additionally, the F1 generation had decreased developmental completion (i.e., stress-induced developmental halt). Our data suggests that anoxia hormesis triggers a trade-off where individuals benefiting from improved performance and living longer experience a decrease in reproduction.
Collapse
Affiliation(s)
- Alyssa M De La Torre
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, United States of America; College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, United States of America
| | - Giancarlo López-Martínez
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, United States of America; Department of Biological Sciences, North Dakota State University, Fargo, ND 58102, United States of America.
| |
Collapse
|
8
|
Liu YB. Effects of Long-Term Low Oxygen Storage Treatment on Survival of Rice Weevil (Sitophilus oryzae) and Confused Flour Beetle (Tribolium confusum). JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:1712-1718. [PMID: 35849003 DOI: 10.1093/jee/toac106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Indexed: 06/15/2023]
Abstract
There is a need for alternative treatments for postharvest pests on stored products. In this study, 45-d long-term controlled atmosphere (CA) treatments with 3, 5, 6.5, and 8% O2 were studied to determine effects on survival and development of rice weevil (Sitophilus oryzae) and confused flour beetle (Tribolium confusum) eggs and susceptibility of different life stages to a 14-d 5% O2 treatment. Low oxygen treatments were effective against S. oryzae and T. confusum. The 45-d CA treatments with 6.5, 5, and 3% O2 resulted in 0.26, 0.004, and 0% survival rates from egg to adult respectively for S. oryzae and 6.51, 0.14, and 0% survival rates from egg to later stages respectively for T. confusum. For both species, eggs were more susceptible to low oxygen treatment than larvae or pupae. A 14-d CA treatment with 5% O2 resulted in 4.9 and 3.3% survival of eggs of S. oryzae and T. confusum, respectively, as compared with over 50% survival of larvae and pupae for both species. S. oryzae adults, however, were very susceptible to low oxygen treatment and 14-d exposure to 5% O2 atmosphere resulted in zero survival. In contrast, the 14-d exposure to 5% O2 atmosphere resulted in over 94% survival for T. confusum adults. This study suggested there were considerable differences between stored product insects in susceptibility to low oxygen treatment and that long-term CA storage treatments with a low oxygen level of ≤6.5 and ≤5% have potential in controlling S. oryzae and T. confusum, respectively.
Collapse
Affiliation(s)
- Yong-Biao Liu
- USDA-ARS, Crop Improvement and Protection Unit, Salinas, CA 93905, USA
| |
Collapse
|
9
|
Agrafioti P, Kaloudis E, Athanassiou CG. Utilizing low oxygen to mitigate resistance of stored product insects to phosphine. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6080-6087. [PMID: 35474454 DOI: 10.1002/jsfa.11960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Data are provided on the utilization of modified atmospheres, at a commercial scale, against stored product insect populations that are resistant to phosphine. The method is evaluated on different populations of two major stored-product beetle species, Rhyzopertha dominica and Oryzaephilus surinamensis. The trials were carried out in commercial facilities, in which nitrogen was introduced through an embedded nitrogen generator. Each chamber contained three or four pallets of either currants or herbs. A computational model was developed to evaluate the nitrogen concentration. RESULTS In most trials, 100% mortality was recorded for both beetle species and all populations, regardless of the temperature and exposure intervals tested. Control progeny production ranged between 20 and 45 adults per vial for R. dominica, and 29 and 27 adults per vial for O. surinamensis. Simulation results reveal that nitrogen can easily penetrate the currants, and its concentration is uniform (differences are below 1.5%) across the pallet. Additionally, the simulation model revealed that lower temperatures do not have an impact on the nitrogen concentration profiles. CONCLUSIONS The modified atmosphere applications evaluated here were proved to be effective for all populations, regardless of the level of resistance to phosphine, and any survival could be attributed to the short exposure intervals. Modified atmosphere applications can be effective at a considerably short exposure interval, even at 2.5 days, which is an incontestable advantage for the use of this method against insects, at exposures comparable with those of commercial fumigations. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Paraskevi Agrafioti
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| | - Efstathios Kaloudis
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Lemnos, Greece
| | - Christos G Athanassiou
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| |
Collapse
|
10
|
Malison RL, Frakes JI, Andreas AL, Keller PR, Hamant E, Shah AA, Woods HA. Plasticity of salmonfly (Pteronarcys californica) respiratory phenotypes in response to changes in temperature and oxygen. J Exp Biol 2022; 225:276432. [PMID: 36004671 DOI: 10.1242/jeb.244253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 08/19/2022] [Indexed: 11/20/2022]
Abstract
Like all taxa, populations of aquatic insects may respond to climate change by evolving new physiologies or behaviors, shifting their ranges, exhibiting physiological and behavioral plasticity, or by going extinct. We evaluated the importance of plasticity by measuring changes in growth, survival, and respiratory phenotypes of salmonfly nymphs (the stonefly Pteronarcys californica) in response to experimental combinations of dissolved oxygen and temperature. Overall, smaller individuals grew more rapidly during the six-week experimental period, and oxygen and temperature interacted to affect growth in complex ways. Survival was lower for the warm treatment, though only four mortalities occurred (91.6 vs 100%). Nymphs acclimated to warmer temperatures did not have higher critical thermal maxima (CTMAX), but those acclimated to hypoxia had CTMAX values (in normoxia) higher by approximately 1 °C. These results suggest possible adaptive plasticity of systems for taking up or delivering oxygen. We examined these possibilities by measuring the oxygen-sensitivity of metabolic rates and the morphologies of tracheal gill tufts located ventrally on thoracic and abdominal segments. Mass-specific metabolic rates of individuals acclimated to warmer temperatures were higher in acute hypoxia but lower in normoxia, regardless of their recent history of oxygen exposure during acclimation. The morphology of gill filaments, however, changed in ways that appeared to depress rates of oxygen delivery in functional hypoxia. Our combined results from multiple performance metrics indicate that rising temperatures and hypoxia may interact to magnify the risks to aquatic insects, but that physiological plasticity in respiratory phenotypes may offset some of these risks.
Collapse
Affiliation(s)
- Rachel L Malison
- The University of Montana, Division of Biological Sciences, Flathead Lake Biological Station, 32125 Bio Station Lane, Polson, MT 59801, USA
| | - James I Frakes
- The University of Montana, 32 Campus Drive, Missoula, MT 59812, USA
| | - Amanda L Andreas
- The University of Montana, 32 Campus Drive, Missoula, MT 59812, USA
| | - Priya R Keller
- The University of Montana, 32 Campus Drive, Missoula, MT 59812, USA
| | - Emily Hamant
- The University of Montana, 32 Campus Drive, Missoula, MT 59812, USA
| | - Alisha A Shah
- The University of Montana, 32 Campus Drive, Missoula, MT 59812, USA
| | - H Arthur Woods
- The University of Montana, 32 Campus Drive, Missoula, MT 59812, USA
| |
Collapse
|
11
|
Rauf A, Wilkins RM. Malathion-resistant Tribolium castaneum has enhanced response to oxidative stress, immunity, and fitness. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 184:105128. [PMID: 35715066 DOI: 10.1016/j.pestbp.2022.105128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 05/03/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Many cases of insecticide resistance in insect pests give resulting no-cost strains that retain the resistance genes even in the absence of the toxic stressor. Malathion (rac-diethyl 2-[(dimethoxyphosphorothioyl)sulfanyl]succinate) has been widely used against the red flour beetle, Tribolium castaneum Herbst. in stored products although no longer used. Malathion specific resistance in this pest is long lasting and widely distributed. A malathion resistant strain was challenged with a range of stressors including starvation, hyperoxia, malathion and a pathogen to determine the antioxidant responses and changes to some lifecycle parameters. Adult life span of the malathion-specific resistant strain of T. castaneum was significantly shorter than that of the susceptible. Starvation and/or high oxygen reduced adult life span of both strains. Starving, with and without 100% oxygen, gave longer lifespan for the resistant strain, but for oxygen alone there was a small extension. Under oxygen the proportional survival of the resistant strain to the adult stage was significantly higher, for both larvae and pupae, than the susceptible. The resistant strain when stressed with malathion and oxygen significantly increased catalase activity, but the susceptible did not. The resistant strain stressed with Paranosema whitei infection had significantly higher survival compared to the susceptible, and with low mortality. The malathion resistant strain of T. castaneum showed greater vigour than the susceptible in oxidative stress situations and especially where stressors were combined. The induction of the antioxidant enzyme catalase could have helped the resistant strain to withstand oxidative stresses, including insecticidal and importantly those from pathogens. These adaptations, in the absence of insecticide, seem to support the increased immunity of the insecticide resistant host to pathogens seen in other insect species, such as mosquitoes. By increasing the responses to a range of stressors the resistant strain could be considered as having enhanced fitness, compared to the susceptible.
Collapse
Affiliation(s)
| | - Richard M Wilkins
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.
| |
Collapse
|
12
|
Rowe TTC, Gutbrod MS, Matthews PGD. Discontinuous gas exchange in Madagascan hissing cockroaches is not a consequence of hysteresis around a fixed PCO2 threshold. J Exp Biol 2022; 225:273911. [PMID: 34989396 DOI: 10.1242/jeb.242860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 12/26/2021] [Indexed: 11/20/2022]
Abstract
It has been hypothesised that insects display discontinuous gas-exchange cycles (DGCs) due to hysteresis in their ventilatory control, where CO2-sensitive respiratory chemoreceptors respond to changes in hemolymph PCO2 only after some delay. If correct, DGCs would be a manifestation of an unstable feedback loop between chemoreceptors and ventilation causing PCO2 to oscillate around some fixed threshold value: PCO2 above this ventilatory threshold would stimulate excessive hyperventilation, driving PCO2 below the threshold and causing a subsequent apnoea. This hypothesis was tested by implanting micro-optodes into the hemocoel of Madagascar hissing cockroaches and measuring hemolymph PO2 and PCO2 simultaneously during continuous and discontinuous gas exchange. The mean hemolymph PCO2 of 1.9 kPa measured during continuous gas exchange was assumed to represent the threshold level stimulating ventilation, and this was compared with PCO2 levels recorded during DGCs elicited by decapitation. Cockroaches were also exposed to hypoxic (PO2 10 kPa) and hypercapnic (PCO2 2 kPa) gas mixtures to manipulate hemolymph PO2 and PCO2. Decapitated cockroaches maintained DGCs even when their hemolymph PCO2 was forced above or below the putative ∼2 kPa ventilation threshold, demonstrating that the characteristic oscillation between apnoea and gas exchange is not driven by a lag between changing hemolymph PCO2 and a PCO2 chemoreceptor with a fixed ventilatory threshold. However, it was observed that the gas exchange periods within the DGC were altered to enhance O2 uptake and CO2 release during hypoxia and hypercapnia exposure. This indicates that while respiratory chemoreceptors do modulate ventilatory activity in response to hemolymph gas levels, their role in initiating or terminating the gas exchange periods within the DGC remains unclear.
Collapse
Affiliation(s)
- Tormod T C Rowe
- Department of Zoology, University of British Columbia, Vancouver, B.C., V6T 1Z4, Canada
| | | | - Philip G D Matthews
- Department of Zoology, University of British Columbia, Vancouver, B.C., V6T 1Z4, Canada
| |
Collapse
|
13
|
Cervantes L, López-Martínez G. Anoxia hormesis following overwintering diapause boosts bee survivorship and adult performance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149934. [PMID: 34525715 DOI: 10.1016/j.scitotenv.2021.149934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/13/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Insect pollination is a crucial component of our ecosystems and biodiversity, but our reliance on this ecosystem service has much broader implications. We depend on these pollination services to produce materials and food. But insect pollinators, especially bees, are in strong decline due to a plethora of factors, least of which are environmental abiotic stressors like climate change. The alfalfa leafcutting bee, Megachile rotundata, is the world's most managed solitary bee and is particularly vulnerable to changes in temperature. This species spends up to ten months overwintering while being exposed to the lowest temperatures of winters and the hottest temperatures of late summer. This results in usage of energy reserves prematurely and asynchronous spring emergence with their food resource. To understand the stress response of these bees and potentially boost their performance, we applied a hormetic framework where bees were exposure to different doses of anoxia (the absence of oxygen) to trigger hormesis; a low-dose stimulatory response known to lower damage and improve performance. We used hormesis on immature bees as a post-winter treatment with the goal of improving springtime performance in adults. One hour of anoxia had no negative effect on adult springtime emergence and bees were quick to recover. These bees were more active than untreated bees, as resistant to starvation, and as long-lived. Higher exposure to anoxia (3 h) was found to be mildly hormetic and 6-h exposures were detrimental. Anoxia hormesis did not represent a significant cost on the energy reserve of overwintering bees but we found that the age at which anoxia is applied will affect the effectiveness of treatment. Our data suggest that anoxia hormesis is a viable intervention to improve springtime performance in overwintering bees.
Collapse
Affiliation(s)
- Lidia Cervantes
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, United States of America
| | - Giancarlo López-Martínez
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58102, United States of America.
| |
Collapse
|
14
|
Walter RM, Rinehart JP, Dillon ME, Greenlee KJ. Size constrains oxygen delivery capacity within but not between bumble bee castes. JOURNAL OF INSECT PHYSIOLOGY 2021; 134:104297. [PMID: 34403656 DOI: 10.1016/j.jinsphys.2021.104297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 08/08/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Bumble bees are eusocial, with distinct worker and queen castes that vary strikingly in size and life-history. The smaller workers rely on energetically-demanding foraging flights to collect resources for rearing brood. Queens can be 3 to 4 times larger than workers, flying only for short periods in fall and again in spring after overwintering underground. These differences between castes in size and life history may be reflected in hypoxia tolerance. When oxygen demand exceeds supply, oxygen delivery to the tissues can be compromised. Previous work revealed hypermetric scaling of tracheal system volume of worker bumble bees (Bombus impatiens); larger workers had much larger tracheal volumes, likely to facilitate oxygen delivery over longer distances. Despite their much larger size, queens had relatively small tracheal volumes, potentially limiting their ability to deliver oxygen and reducing their ability to respond to hypoxia. However, these morphological measurements only indirectly point to differences in respiratory capacity. To directly assess size- and caste-related differences in tolerance to low oxygen, we measured critical PO2 (Pcrit; the ambient oxygen level below which metabolism cannot be maintained) during both rest and flight of worker and queen bumble bees. Queens and workers had similar Pcrit values during both rest and flight. However, during flight in oxygen levels near the Pcrit, mass-specific metabolic rates declined precipitously with mass both across and within castes, suggesting strong size limitations on oxygen delivery, but only during extreme conditions, when demand is high and supply is low. Together, these data suggest that the comparatively small tracheal systems of queen bumble bees do not limit their ability to deliver oxygen except in extreme conditions; they pay little cost for filling body space with eggs rather than tracheal structures.
Collapse
Affiliation(s)
- Rikki M Walter
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58108-6050, USA
| | - Joseph P Rinehart
- Agricultural Research Service, Insect Genetics and Biochemistry, United States Department of Agriculture, Fargo, ND 58102-2765, USA
| | - Michael E Dillon
- Department of Zoology and Physiology and Program in Ecology, University of Wyoming, Laramie, WY 82071, USA
| | - Kendra J Greenlee
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58108-6050, USA.
| |
Collapse
|
15
|
Thermal and Oxygen Flight Sensitivity in Ageing Drosophila melanogaster Flies: Links to Rapamycin-Induced Cell Size Changes. BIOLOGY 2021; 10:biology10090861. [PMID: 34571738 PMCID: PMC8464818 DOI: 10.3390/biology10090861] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 12/03/2022]
Abstract
Simple Summary Cold-blooded organisms can become physiologically challenged when performing highly oxygen-demanding activities (e.g., flight) across different thermal and oxygen environmental conditions. We explored whether this challenge decreases if an organism is built of smaller cells. This is because small cells create a large cell surface, which is costly, but can ease the delivery of oxygen to cells’ power plants, called mitochondria. We developed fruit flies in either standard food or food with rapamycin (a human drug altering the cell cycle and ageing), which produced flies with either large cells (no supplementation) or small cells (rapamycin supplementation). We measured the maximum speed at which flies were flapping their wings in warm and hot conditions, combined with either normal or reduced air oxygen concentrations. Flight intensity increased with temperature, and it was reduced by poor oxygen conditions, indicating limitations of flying insects by oxygen supply. Nevertheless, flies with small cells showed lower limitations, only slowing down their wing flapping in low oxygen in the hot environment. Our study suggests that small cells in a body can help cold-blooded organisms maintain demanding activities (e.g., flight), even in poor oxygen conditions, but this advantage can depend on body temperature. Abstract Ectotherms can become physiologically challenged when performing oxygen-demanding activities (e.g., flight) across differing environmental conditions, specifically temperature and oxygen levels. Achieving a balance between oxygen supply and demand can also depend on the cellular composition of organs, which either evolves or changes plastically in nature; however, this hypothesis has rarely been examined, especially in tracheated flying insects. The relatively large cell membrane area of small cells should increase the rates of oxygen and nutrient fluxes in cells; however, it does also increase the costs of cell membrane maintenance. To address the effects of cell size on flying insects, we measured the wing-beat frequency in two cell-size phenotypes of Drosophila melanogaster when flies were exposed to two temperatures (warm/hot) combined with two oxygen conditions (normoxia/hypoxia). The cell-size phenotypes were induced by rearing 15 isolines on either standard food (large cells) or rapamycin-enriched food (small cells). Rapamycin supplementation (downregulation of TOR activity) produced smaller flies with smaller wing epidermal cells. Flies generally flapped their wings at a slower rate in cooler (warm treatment) and less-oxygenated (hypoxia) conditions, but the small-cell-phenotype flies were less prone to oxygen limitation than the large-cell-phenotype flies and did not respond to the different oxygen conditions under the warm treatment. We suggest that ectotherms with small-cell life strategies can maintain physiologically demanding activities (e.g., flight) when challenged by oxygen-poor conditions, but this advantage may depend on the correspondence among body temperatures, acclimation temperatures and physiological thermal limits.
Collapse
|
16
|
Privalova V, Szlachcic E, Sobczyk Ł, Szabla N, Czarnoleski M. Oxygen Dependence of Flight Performance in Ageing Drosophila melanogaster. BIOLOGY 2021; 10:327. [PMID: 33919761 PMCID: PMC8070683 DOI: 10.3390/biology10040327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/14/2022]
Abstract
Similar to humans, insects lose their physical and physiological capacities with age, which makes them a convenient study system for human ageing. Although insects have an efficient oxygen-transport system, we know little about how their flight capacity changes with age and environmental oxygen conditions. We measured two types of locomotor performance in ageing Drosophila melanogaster flies: the frequency of wing beats and the capacity to climb vertical surfaces. Flight performance was measured under normoxia and hypoxia. As anticipated, ageing flies showed systematic deterioration of climbing performance, and low oxygen impeded flight performance. Against predictions, flight performance did not deteriorate with age, and younger and older flies showed similar levels of tolerance to low oxygen during flight. We suggest that among different insect locomotory activities, flight performance deteriorates slowly with age, which is surprising, given that insect flight is one of the most energy-demanding activities in animals. Apparently, the superior capacity of insects to rapidly deliver oxygen to flight muscles remains little altered by ageing, but we showed that insects can become oxygen limited in habitats with a poor oxygen supply (e.g., those at high elevations) during highly oxygen-demanding activities such as flight.
Collapse
Affiliation(s)
| | | | | | | | - Marcin Czarnoleski
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (V.P.); (E.S.); (Ł.S.); (N.S.)
| |
Collapse
|
17
|
VandenBrooks JM, Ford CF, Harrison JF. Responses to Alteration of Atmospheric Oxygen and Social Environment Suggest Trade-Offs among Growth Rate, Life Span, and Stress Susceptibility in Giant Mealworms ( Zophobas morio). Physiol Biochem Zool 2021; 93:358-368. [PMID: 32758057 DOI: 10.1086/710726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Growth rate, development time, and response to environmental stressors vary tremendously across organisms, suggesting trade-offs that are affected by evolutionary or ecological factors, but such trade-offs are poorly understood. Prior studies using artificially selected lines of Manduca sexta suggest that insects with high growth rates, long development time, and large body size are more sensitive to hypoxic or hyperoxic stresses, such as reactive oxygen species (ROS) production, but the mechanisms and specific life-history associations remain unclear. Here, we manipulated the social environment to differentiate the effects of size, growth rate, and development time on oxygen sensitivity of the giant mealworm, Zophobas morio. Crowding reduced growth rates but yielded larger adults as a result of supernumerary molts and longer development times. The juvenile performance (growth rate, development time, adult mass) of crowd-reared mealworms was less sensitive to variation in atmospheric oxygen than it was for individually reared animals, consistent with the hypothesis that high growth rates are associated with increased sensitivity to ROS. Life span in normoxia was extended by crowd rearing, perhaps due to the larger size and/or increased resources of the larger adults. Life spans of crowd-reared animals were more negatively affected by hypoxia or hyperoxia than life spans of individually reared animals, possibly due to the longer total stress exposure of crowd-reared animals. These data suggest that animals with high growth rates experience a negative trade-off of performance with greater sensitivity to stress during the juvenile phase, while animals with long development times or life spans experience a negative trade-off of greater susceptibility of life span to environmental stress.
Collapse
|
18
|
Funk DH, Sweeney BW, Jackson JK. Oxygen limitation fails to explain upper chronic thermal limits and the temperature size rule in mayflies. J Exp Biol 2021; 224:jeb233338. [PMID: 33288530 DOI: 10.1242/jeb.233338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/03/2020] [Indexed: 11/20/2022]
Abstract
An inability to adequately meet tissue oxygen demands has been proposed as an important factor setting upper thermal limits in ectothermic invertebrates (especially aquatic species) as well as explaining the observed decline in adult size with increased rearing temperature during the immature stages (a phenomenon known as the temperature size rule, or TSR). We tested this by rearing three aquatic insects (the mayflies Neocloeon triangulifer and two species of the Cloeon dipterum complex) through their entire larval life under a range of temperature and oxygen concentrations. Hyperoxia did not extend upper thermal limits, nor did it prevent the loss of size or fertility experienced near upper chronic thermal limits. At moderate temperatures, the TSR pattern was observed under conditions of hyperoxia, normoxia and hypoxia, suggesting little or no influence of oxygen on this trend. However, for a given rearing temperature, adults were smaller and less fecund under hypoxia as a result of a lowering of growth rates. These mayflies greatly increased the size of their gills in response to lower dissolved oxygen concentrations but not under oxygen-saturated conditions over a temperature range yielding the classic TSR response. Using ommatidium diameter as a proxy for cell size, we found the classic TSR pattern observed under moderate temperature conditions was due primarily to a change in the number of cells rather than cell size. We conclude overall that a failure to meet tissue oxygen demands is not a viable hypothesis for explaining either the chronic thermal limit or TSR pattern in these species.
Collapse
Affiliation(s)
- David H Funk
- Stroud Water Research Center, Avondale, PA 19311, USA
| | | | | |
Collapse
|
19
|
Birrell JH, Shah AA, Hotaling S, Giersch JJ, Williamson CE, Jacobsen D, Woods HA. Insects in high-elevation streams: Life in extreme environments imperiled by climate change. GLOBAL CHANGE BIOLOGY 2020; 26:6667-6684. [PMID: 32931053 DOI: 10.1111/gcb.15356] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
Climate change is altering conditions in high-elevation streams worldwide, with largely unknown effects on resident communities of aquatic insects. Here, we review the challenges of climate change for high-elevation aquatic insects and how they may respond, focusing on current gaps in knowledge. Understanding current effects and predicting future impacts will depend on progress in three areas. First, we need better descriptions of the multivariate physical challenges and interactions among challenges in high-elevation streams, which include low but rising temperatures, low oxygen supply and increasing oxygen demand, high and rising exposure to ultraviolet radiation, low ionic strength, and variable but shifting flow regimes. These factors are often studied in isolation even though they covary in nature and interact in space and time. Second, we need a better mechanistic understanding of how physical conditions in streams drive the performance of individual insects. Environment-performance links are mediated by physiology and behavior, which are poorly known in high-elevation taxa. Third, we need to define the scope and importance of potential responses across levels of biological organization. Short-term responses are defined by the tolerances of individuals, their capacities to perform adequately across a range of conditions, and behaviors used to exploit local, fine-scale variation in abiotic factors. Longer term responses to climate change, however, may include individual plasticity and evolution of populations. Whether high-elevation aquatic insects can mitigate climatic risks via these pathways is largely unknown.
Collapse
Affiliation(s)
- Jackson H Birrell
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Alisha A Shah
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Scott Hotaling
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - J Joseph Giersch
- U.S. Geological Survey, Northern Rocky Mountain Science Center, West Glacier, MT, USA
| | | | - Dean Jacobsen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - H Arthur Woods
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| |
Collapse
|
20
|
Youngblood JP, VandenBrooks JM, Babarinde O, Donnay ME, Elliott DB, Fredette-Roman J, Angilletta MJ. Oxygen supply limits the chronic heat tolerance of locusts during the first instar only. JOURNAL OF INSECT PHYSIOLOGY 2020; 127:104157. [PMID: 33098860 DOI: 10.1016/j.jinsphys.2020.104157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
Although scientists know that overheating kills many organisms, they do not agree on the mechanism. According to one theory, referred to as oxygen- and capacity-limitation of thermal tolerance, overheating occurs when a warming organism's demand for oxygen exceeds its supply, reducing the organism's supply of ATP. This model predicts that an organism's heat tolerance should decrease under hypoxia, yet most terrestrial organisms tolerate the same amount of warming across a wide range of oxygen concentrations. This point is especially true for adult insects, who deliver oxygen through highly efficient respiratory systems. However, oxygen limitation at high temperatures may be more common during immature life stages, which have less developed respiratory systems. To test this hypothesis, we measured the effects of heat and hypoxia on the survival of South American locusts (Schistocerca cancellata) throughout development and during specific instars. We demonstrate that the heat tolerance of locusts depends on oxygen supply during the first instar but not during later instars. This finding provides further support for the idea that oxygen limitation of thermal tolerance depends on respiratory performance, especially during immature life stages.
Collapse
Affiliation(s)
- Jacob P Youngblood
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA.
| | | | | | - Megan E Donnay
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Deanna B Elliott
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | | | | |
Collapse
|
21
|
Malison RL, DelVecchia AG, Woods HA, Hand BK, Luikart G, Stanford JA. Tolerance of aquifer stoneflies to repeated hypoxia exposure and oxygen dynamics in an alluvial aquifer. J Exp Biol 2020; 223:jeb225623. [PMID: 32616547 DOI: 10.1242/jeb.225623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/29/2020] [Indexed: 11/20/2022]
Abstract
Aquatic insects cope with hypoxia and anoxia using a variety of behavioral and physiological responses. Most stoneflies (Plecoptera) occur in highly oxygenated surface waters, but some species live underground in alluvial aquifers containing heterogeneous oxygen concentrations. Aquifer stoneflies appear to be supported by methane-derived food resources, which they may exploit using anoxia-resistant behaviors. We documented dissolved oxygen dynamics and collected stoneflies over 5 years in floodplain wells of the Flathead River, Montana. Hypoxia regularly occurred in two wells, and nymphs of Paraperla frontalis were collected during hypoxic periods. We measured mass-specific metabolic rates (MSMRs) at different oxygen concentrations (12, 8, 6, 4, 2, 0.5 mg l-1, and during recovery) for 111 stonefly nymphs to determine whether aquifer and benthic taxa differed in hypoxia tolerance. Metabolic rates of aquifer taxa were similar across oxygen concentrations spanning 2 to 12 mg l-1 (P>0.437), but the MSMRs of benthic taxa dropped significantly with declining oxygen (P<0.0001; 2.9-times lower at 2 vs. 12 mg l-1). Aquifer taxa tolerated short-term repeated exposure to extreme hypoxia surprisingly well (100% survival), but repeated longer-term (>12 h) exposures resulted in lower survival (38-91%) and lower MSMRs during recovery. Our work suggests that aquifer stoneflies have evolved a remarkable set of behavioral and physiological adaptations that allow them to exploit the unique food resources available in hypoxic zones. These adaptations help to explain how large-bodied consumers might thrive in the underground aquifers of diverse and productive river floodplains.
Collapse
Affiliation(s)
- Rachel L Malison
- The University of Montana, Division of Biological Sciences, Flathead Lake Biological Station, 32125 Bio Station Lane, Polson, MT 59801, USA
| | - Amanda G DelVecchia
- The University of Montana, Division of Biological Sciences, Flathead Lake Biological Station, 32125 Bio Station Lane, Polson, MT 59801, USA
| | - H Arthur Woods
- The University of Montana, Division of Biological Sciences, 32 Campus Drive, Missoula, MT 59812, USA
| | - Brian K Hand
- The University of Montana, Division of Biological Sciences, Flathead Lake Biological Station, 32125 Bio Station Lane, Polson, MT 59801, USA
| | - Gordon Luikart
- The University of Montana, Division of Biological Sciences, Flathead Lake Biological Station, 32125 Bio Station Lane, Polson, MT 59801, USA
| | - Jack A Stanford
- The University of Montana, Division of Biological Sciences, Flathead Lake Biological Station, 32125 Bio Station Lane, Polson, MT 59801, USA
| |
Collapse
|
22
|
Lombardi EJ, Bywater CL, White CR. The effect of ambient oxygen on the thermal performance of a cockroach, Nauphoeta cinerea. J Exp Biol 2020; 223:jeb208306. [PMID: 32366686 DOI: 10.1242/jeb.208306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 04/17/2020] [Indexed: 11/20/2022]
Abstract
The oxygen and capacity-limited thermal tolerance (OCLTT) hypothesis proposes that the thermal tolerance of an animal is shaped by its capacity to deliver oxygen in relation to oxygen demand. Studies testing this hypothesis have largely focused on measuring short-term performance responses in animals under acute exposure to critical thermal maximums. The OCLTT hypothesis, however, emphasises the importance of sustained animal performance over acute tolerance. The present study tested the effect of chronic hypoxia and hyperoxia during development on moderate to long-term performance indicators at temperatures spanning the optimal temperature for growth in the speckled cockroach, Nauphoeta cinerea In contrast to the predictions of the OCLTT hypothesis, development under hypoxia did not significantly reduce growth rate or running performance, and development under hyperoxia did not significantly increase growth rate or running performance. The effects of developmental temperature and oxygen on tracheal morphology and metabolic rate were also not consistent with OCLTT predictions, suggesting that oxygen delivery capacity is not the primary driver shaping thermal tolerance in this species. Collectively, these findings suggest that the OCLTT hypothesis does not explain moderate to long-term thermal performance in N.cinerea, which raises further questions about the generality of the hypothesis.
Collapse
Affiliation(s)
- Emily J Lombardi
- Centre for Geometric Biology, School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Candice L Bywater
- Centre for Geometric Biology, School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Craig R White
- Centre for Geometric Biology, School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
23
|
Berry R, López-Martínez G. A dose of experimental hormesis: When mild stress protects and improves animal performance. Comp Biochem Physiol A Mol Integr Physiol 2020; 242:110658. [PMID: 31954863 PMCID: PMC7066548 DOI: 10.1016/j.cbpa.2020.110658] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 01/22/2023]
Abstract
The adaptive response characterized by a biphasic curve is known as hormesis. In a hormesis framework, exposure to low doses leads to protective and beneficial responses while exposures to high doses are damaging and detrimental. Comparative physiologists have studied hormesis for over a century, but our understanding of hormesis is fragmented due to rifts in consensus and taxonomic-specific terminology. Hormesis has been and is currently known by multiple names; preconditioning, conditioning, pretreatment, cross tolerance, adaptive homeostasis, and rapid stress hardening (mostly low temperature: rapid cold hardening). These are the most common names used to describe adaptive stress responses in animals. These responses are mechanistically similar, while having stress-specific responses, but they all can fall under the umbrella of hormesis. Here we review how hormesis studies have revealed animal performance benefits in response to changes in oxygen, temperature, ionizing radiation, heavy metals, pesticides, dehydration, gravity, and crowding. And how almost universally, hormetic responses are characterized by increases in performance that include either increases in reproduction, longevity, or both. And while the field can benefit from additional mechanistic work, we know that many of these responses are rooted in increases of antioxidants and oxidative stress protective mechanisms; including heat shock proteins. There is a clear, yet not fully elucidated, overlap between hormesis and the preparation for oxidative stress theory; which predicts part of the responses associated with hormesis. We discuss this, and the need for additional work into animal hormetic effects particularly focusing on the cost of hormesis.
Collapse
Affiliation(s)
- Raymond Berry
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, United States of America
| | - Giancarlo López-Martínez
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58102, United States of America.
| |
Collapse
|
24
|
Sang W, Ji R, Lei C, Zhu-Salzman K. Parental hypoxic exposure influences performance of offspring in Callosobruchus maculatus. PEST MANAGEMENT SCIENCE 2019; 75:2810-2819. [PMID: 30843346 DOI: 10.1002/ps.5396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/21/2018] [Accepted: 03/01/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Modified atmosphere based on lack of O2 can protect stored grains from insect pest damage. Although population expansion of cowpea bruchid (Callosobruchus maculatus (Fabricius)) could be temporarily arrested when exposed to 2% O2 , this insect could survive extended periods of hypoxia and continue its normal development if normoxic conditions resumed. It is not clear whether parental hypoxic treatment has any effects on offspring performance and response to hypoxia. RESULTS Hypoxia postponed development of treated parental bruchids at all stages. Its negative effects on oviposition and hatch rate of these eggs were significant only when hypoxia was administered at the parental fourth instar larval stage or later. When the F1 generation was exposed to hypoxia at the fourth instar larval stage, they exhibited comparable developmental delay and reduction in adult emergence and fecundity whether the parents experienced hypoxia or not. Interestingly, eggs laid by hypoxia-treated F1s had increased hatch rates if their parents had also been exposed to hypoxia. Stronger suppression of the digestive protease gene CatL and elevated basal expression of the stress responsive gene Hsp27 were observed in F1 larvae with parental hypoxic experience. CONCLUSION Parental hypoxic experience appeared to better prepare the F1 progenies for further hypoxic challenge. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wen Sang
- Key Laboratory of Bio-Pesticide Innovation and Application, Department of Entomology, South China Agricultural University, Guangzhou, Guangdong, China
- Department of Entomology, Texas A&M University, College Station, TX, USA
- Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX, USA
| | - Rui Ji
- Department of Entomology, Texas A&M University, College Station, TX, USA
- Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX, USA
| | - Chaoliang Lei
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Department of Entomology, Huazhong Agricultural University, Hubei, Wuhan, China
| | - Keyan Zhu-Salzman
- Department of Entomology, Texas A&M University, College Station, TX, USA
- Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
25
|
Ebner JN, Ritz D, von Fumetti S. Comparative proteomics of stenotopic caddisfly Crunoecia irrorata identifies acclimation strategies to warming. Mol Ecol 2019; 28:4453-4469. [PMID: 31478292 PMCID: PMC6856850 DOI: 10.1111/mec.15225] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/28/2019] [Accepted: 07/29/2019] [Indexed: 12/23/2022]
Abstract
Species' ecological preferences are often deduced from habitat characteristics thought to represent more or less optimal conditions for physiological functioning. Evolution has led to stenotopic and eurytopic species, the former having decreased niche breadths and lower tolerances to environmental variability. Species inhabiting freshwater springs are often described as being stenotopic specialists, adapted to the stable thermal conditions found in these habitats. Whether due to past local adaptation these species have evolved or have lost intra-generational adaptive mechanisms to cope with increasing thermal variability has, to our knowledge, never been investigated. By studying how the proteome of a stenotopic species changes as a result of increasing temperatures, we investigate if the absence or attenuation of molecular mechanisms is indicative of local adaptation to freshwater springs. An understanding of compensatory mechanisms is especially relevant as spring specialists will experience thermal conditions beyond their physiological limits due to climate change. In this study, the stenotopic species Crunoecia irrorata (Trichoptera: Lepidostomatidae, Curtis 1834) was acclimated to 10, 15 and 20°C for 168 hr. We constructed a homology-based database and via liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based shotgun proteomics identified 1,358 proteins. Differentially abundant proteins and protein norms of reaction revealed candidate proteins and molecular mechanisms facilitating compensatory responses such as trehalose metabolism, tracheal system alteration and heat-shock protein regulation. A species-specific understanding of compensatory physiologies challenges the characterization of species as having narrow tolerances to environmental variability if that characterization is based on occurrences and habitat characteristics alone.
Collapse
Affiliation(s)
- Joshua N. Ebner
- Geoecology Research GroupDepartment of Environmental SciencesUniversity of BaselBaselSwitzerland
| | - Danilo Ritz
- Proteomics Core FacilityBiozentrumUniversity of BaselBaselSwitzerland
| | - Stefanie von Fumetti
- Geoecology Research GroupDepartment of Environmental SciencesUniversity of BaselBaselSwitzerland
| |
Collapse
|
26
|
Streinzer M, Chakravorty J, Neumayer J, Megu K, Narah J, Schmitt T, Bharti H, Spaethe J, Brockmann A. Species composition and elevational distribution of bumble bees (Hymenoptera, Apidae, Bombus Latreille) in the East Himalaya, Arunachal Pradesh, India. Zookeys 2019; 851:71-89. [PMID: 31205443 PMCID: PMC6557907 DOI: 10.3897/zookeys.851.32956] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/09/2019] [Indexed: 11/12/2022] Open
Abstract
The East Himalaya is one of the world’s most biodiverse ecosystems. However, very little is known about the abundance and distribution of many plant and animal taxa in this region. Bumble bees are a group of cold-adapted and high elevation insects that fulfil an important ecological and economical function as pollinators of wild and agricultural flowering plants and crops. The Himalayan mountain range provides ample suitable habitats for bumble bees. Systematic study of Himalayan bumble bees began a few decades ago and the main focus has centred on the western region, while the eastern part of the mountain range has received little attention and only a few species have been verified. During a three-year survey, more than 700 bumble bee specimens of 21 species were collected in Arunachal Pradesh, the largest of the north-eastern states of India. The material included a range of species that were previously known from a limited number of collected specimens, which highlights the unique character of the East Himalayan ecosystem. Our results are an important first step towards a future assessment of species distribution, threat, and conservation. Clear elevation patterns of species diversity were observed, which raise important questions about the functional adaptations that allow bumble bees to thrive in this particularly moist region in the East Himalaya.
Collapse
Affiliation(s)
- Martin Streinzer
- Department of Neurobiology, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria University of Vienna Vienna Austria
| | - Jharna Chakravorty
- Department of Zoology, Rajiv Gandhi University, Rono Hills, Doimukh, Papum Pare, Arunachal Pradesh 791112, India Rajiv Gandhi University Papum Pare India
| | - Johann Neumayer
- Obergrubstraße 18, 5161 Elixhausen, Austria Unaffiliated Elixhausen Austria
| | - Karsing Megu
- Department of Zoology, Rajiv Gandhi University, Rono Hills, Doimukh, Papum Pare, Arunachal Pradesh 791112, India Rajiv Gandhi University Papum Pare India.,National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bengaluru 560065, Karnataka, India Tata Institute of Fundamental Research Bangalore India
| | - Jaya Narah
- Department of Zoology, Rajiv Gandhi University, Rono Hills, Doimukh, Papum Pare, Arunachal Pradesh 791112, India Rajiv Gandhi University Papum Pare India
| | - Thomas Schmitt
- Department of Animal Ecology and Tropical Biology (Zoology III), Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany University of Würzburg Würzburg Germany
| | - Himender Bharti
- Department of Zoology and Environmental Sciences, Punjabi University, Patiala, Punjab 147002, India Punjabi University Patiala India
| | - Johannes Spaethe
- Department of Behavioral Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany National Centre for Biological Sciences, Tata Institute of Fundamental Research Bangalore India
| | - Axel Brockmann
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bengaluru 560065, Karnataka, India Tata Institute of Fundamental Research Bangalore India
| |
Collapse
|
27
|
Rao Z, Cao L, Qiu X, Han R. Comparative transcriptome analysis reveals molecular strategies of ghost moth Thitarodes armoricanus in response to hypoxia and anoxia. JOURNAL OF INSECT PHYSIOLOGY 2019; 112:23-34. [PMID: 30399366 DOI: 10.1016/j.jinsphys.2018.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 11/02/2018] [Accepted: 11/02/2018] [Indexed: 06/08/2023]
Abstract
Hypoxia or anoxia greatly impact the survival of many animal species. The ghost moth Thitarodes armoricanus is distributed in the Tibetan Plateau at an average elevation of approximate 4 km above sea level and has probably evolved a superior capacity to tolerate low oxygen levels. In this study, transcriptome analysis using high-throughput RNA-seq revealed common and different adaptation strategies of T. armoricanus in response to hypoxia (11% O2) or anoxia. T. armoricanus adopted three common strategies for adaptation to hypoxia or anoxia: Up-regulated signal transduction pathways essential for cellular survival, strengthened cell and organelle structure and activity, and activated immune system. Under hypoxia, T. armoricanus might develop a strategy to adapt to hypoxia by suppressing TCA, oxidative phosphorylation pathways, and hypoxanthine catabolism. T. armoricanus larvae kept active under hypoxia but became coma under anoxia, probably relating to up-regulated or suppressed dopamine synthesis pathway. Furthermore, the HIF system seemed not to be essential for regulating the hypoxic and anoxic responses of this insect in Tibetan Plateau. This study provides a global view of gene expression profiles and suggests common and different adaptation strategies of T. armoricanus under hypoxic and anoxic conditions. The results are helpful for understanding the mechanism responsible for the low oxygen level tolerance of this insect species.
Collapse
Affiliation(s)
- Zhongchen Rao
- Guangdong Key Laboratory of Animal Protection and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China
| | - Li Cao
- Guangdong Key Laboratory of Animal Protection and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China
| | - Xuehong Qiu
- Guangdong Key Laboratory of Animal Protection and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China.
| | - Richou Han
- Guangdong Key Laboratory of Animal Protection and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China.
| |
Collapse
|
28
|
Ding D, Liu G, Hou L, Gui W, Chen B, Kang L. Genetic variation in PTPN1 contributes to metabolic adaptation to high-altitude hypoxia in Tibetan migratory locusts. Nat Commun 2018; 9:4991. [PMID: 30478313 PMCID: PMC6255802 DOI: 10.1038/s41467-018-07529-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 11/01/2018] [Indexed: 12/21/2022] Open
Abstract
Animal and human highlanders have evolved distinct traits to enhance tissue oxygen delivery and utilization. Unlike vertebrates, insects use their tracheal system for efficient oxygen delivery. However, the genetic basis of insect adaptation to high-altitude hypoxia remains unexplored. Here, we report a potential mechanism of metabolic adaptation of migratory locusts in the Tibetan Plateau, through whole-genome resequencing and functional investigation. A genome-wide scan revealed that the positively selected genes in Tibetan locusts are predominantly involved in carbon and energy metabolism. We observed a notable signal of natural selection in the gene PTPN1, which encodes PTP1B, an inhibitor of insulin signaling pathway. We show that a PTPN1 coding mutation regulates the metabolism of Tibetan locusts by mediating insulin signaling activity in response to hypoxia. Overall, our findings provide evidence for the high-altitude hypoxia adaptation of insects at the genomic level and explore a potential regulatory mechanism underlying the evolved metabolic homeostasis. Vertebrate adaptation to high-altitude life has been extensively investigated, while invertebrates are less well-studied. Here, the authors find signals of adaptive evolution in genomes of migratory locusts from the Tibetan Plateau, and implicate a PTPN1 coding mutation in their hypoxia response.
Collapse
Affiliation(s)
- Ding Ding
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangjian Liu
- Novogene Bioinformatics Institute, 100083, Beijing, China
| | - Li Hou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Wanying Gui
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bing Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.
| |
Collapse
|
29
|
Snelling EP, Duncker R, Jones KK, Fagan-Jeffries EP, Seymour RS. Flight metabolic rate of Locusta migratoria in relation to oxygen partial pressure in atmospheres of varying diffusivity and density. ACTA ACUST UNITED AC 2018; 220:4432-4439. [PMID: 29187621 DOI: 10.1242/jeb.168187] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 09/28/2017] [Indexed: 11/20/2022]
Abstract
Flying insects have the highest mass-specific metabolic rate of all animals. Oxygen is supplied to the flight muscles by a combination of diffusion and convection along the internal air-filled tubes of the tracheal system. This study measured maximum flight metabolic rate (FMR) during tethered flight in the migratory locust Locusta migratoria under varying oxygen partial pressure (PO2 ) in background gas mixtures of nitrogen (N2), sulfur hexafluoride (SF6) and helium (He), to vary O2 diffusivity and gas mixture density independently. With N2 as the sole background gas (normodiffusive-normodense), mass-independent FMR averaged 132±19 mW g-0.75 at normoxia (PO2 =21 kPa), and was not limited by tracheal system conductance, because FMR did not increase in hyperoxia. However, FMR declined immediately with hypoxia, oxy-conforming nearly completely. Thus, the locust respiratory system is matched to maximum functional requirements, with little reserve capacity. With SF6 as the sole background gas (hypodiffusive-hyperdense), the shape of the relationship between FMR and PO2 was similar to that in N2, except that FMR was generally lower (e.g. 24% lower at normoxia). This appeared to be due to increased density of the gas mixture rather than decreased O2 diffusivity, because hyperoxia did not reverse it. Normoxic FMR was not significantly different in He-SF6 (hyperdiffusive-normodense) compared with the N2 background gas, and likewise there was no significant difference between FMR in SF6-He (normodiffusive-hyperdense) compared with the SF6 background gas. The results indicate that convection, not diffusion, is the main mechanism of O2 delivery to the flight muscle of the locust when demand is high.
Collapse
Affiliation(s)
- Edward P Snelling
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, Gauteng 2193, South Africa .,Department of Ecology and Environmental Science, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Rebecca Duncker
- Department of Ecology and Environmental Science, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Karl K Jones
- Department of Ecology and Environmental Science, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Erinn P Fagan-Jeffries
- Department of Ecology and Environmental Science, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Roger S Seymour
- Department of Ecology and Environmental Science, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
30
|
Wang L, Cui S, Liu Z, Ping Y, Qiu J, Geng X. Inhibition of mitochondrial respiration under hypoxia and increased antioxidant activity after reoxygenation of Tribolium castaneum. PLoS One 2018; 13:e0199056. [PMID: 29902250 PMCID: PMC6002095 DOI: 10.1371/journal.pone.0199056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/30/2018] [Indexed: 12/25/2022] Open
Abstract
Regulating the air in low-oxygen environments protects hermetically stored grains from storage pests damage. However, pests that can tolerate hypoxic stress pose a huge challenge in terms of grain storage. We used various biological approaches to determine the fundamental mechanisms of Tribolium castaneum to cope with hypoxia. Our results indicated that limiting the available oxygen to T. castaneum increased glycolysis and inhibited the Krebs cycle, and that accumulated pyruvic acid was preferentially converted to lactic acid via anaerobic metabolism. Mitochondrial aerobic respiration was markedly suppressed for beetles under hypoxia, which also might have led to mitochondrial autophagy. The enzymatic activity of citrate synthase decreased in insects under hypoxia but recovered within 12 h, which suggested that the beetles recovered from the hypoxia. Moreover, hypoxia-reperfusion resulted in severe oxidative damage to insects, and antioxidant levels increased to defend against the high level of reactive oxygen species. In conclusion, our findings show that mitochondria were the main target in T. castaneum in response to low oxygen. The beetles under hypoxia inhibited mitochondrial respiration and increased antioxidant activity after reoxygenation. Our research advances the field of pest control and makes it possible to develop more efficient strategies for hermetic storage.
Collapse
Affiliation(s)
- Lei Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Sufen Cui
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Zhicheng Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Yong Ping
- Bio-X institutes, Shanghai Jiao Tong University, Shanghai, PR China
| | - Jiangping Qiu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Xueqing Geng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
- * E-mail:
| |
Collapse
|
31
|
Gudowska A, Bauchinger U. Food consumption in ground beetles is limited under hypoxic conditions in response to ad libitum feeding, but not restricted feeding. JOURNAL OF INSECT PHYSIOLOGY 2018; 107:7-13. [PMID: 29432765 DOI: 10.1016/j.jinsphys.2018.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/23/2018] [Accepted: 02/08/2018] [Indexed: 06/08/2023]
Abstract
Habitats on land with low oxygen availability provide unique niches inhabited by numerous species. The occupation of such hypoxic niches by animals is hypothesized to come at a cost linked to the limitations of aerobic metabolism and thus energy budget but may also provide benefits through physical protection from predators and parasitoids or reduced competition for food. We investigated the effects of hypoxic conditions on standard metabolic rate (SMR) and specific dynamic action (SDA) in male Carabus nemoralis. SMR and SDA were determined under three manipulated oxygen availabilities: 7, 14 and 21% O2 and two feeding regimes: limited or ad libitum food consumption. In both hypoxic conditions, C. nemoralis was able to maintain SMR at levels similar to those in normoxia. When the meal size was limited, SDA duration did not differ among the oxygen availability conditions, but SDA was smaller under hypoxic conditions than at normoxic levels. The relative cost of digestion was significantly higher in normoxia than in hypoxia, but it did not affect net energy intake. In contrast, when offered a large meal to simulate ad libitum food conditions, beetles reduced their food consumption and net energy gain by 30% under hypoxia. Oxygen availability may influence the consumed prey size: the hypoxic condition did not limit net energy gain when the beetles fed on a small meal but did when they fed on a large meal. The results indicate that meal size is an important variable in determining differences in physiological costs and whole animal energy budgets at different concentrations of environmental oxygen levels.
Collapse
Affiliation(s)
- Agnieszka Gudowska
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Ulf Bauchinger
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|
32
|
Deng Y, Hu F, Ren L, Gao X, Wang Y. Effects of anoxia on survival and gene expression in Bactrocera dorsalis. JOURNAL OF INSECT PHYSIOLOGY 2018; 107:186-196. [PMID: 29630918 DOI: 10.1016/j.jinsphys.2018.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 03/28/2018] [Accepted: 04/05/2018] [Indexed: 06/08/2023]
Abstract
The oriental fruit fly (Bactrocera dorsalis) larvae may commonly experience a hypoxia microenvironment and have evolved the ability to survive in the low oxygen condition with some physiological and biochemical mechanisms. However, little is known about the response of B. dorsalis to hypoxia or anoxia. In this study, the effect of anoxia on the survival of B. dorsalis was investigated. The results showed that the B. dorsalis larvae were quite tolerant to anoxia conditions and can tolerate up to 24 h of anoxia exposure without a significant reduction in survival, 100% mortality was reached after 84 h of anoxia exposure. The cDNA of hypoxia inducible factor (HIF) 1α and HIF-1β is 2912 and 3618 bp in length, encoding 766 and 648 amino acid residues, respectively. Both HIF-1α and HIF-1β contain conserved basic helix-loop-helix (bHLH) domain and Per-Arnt-Sim (PAS) domain. HIF-1α can be induced by hypoxia, whereas HIF-1β expression was not significantly changed with the oxygen concentration. Three major heat shock proteins (Hsps) expression increased significantly during anoxia and recovery and Hsp70 was the most responsive to anoxia. Four superoxide dismutase (SOD) genes expression were also up-regulated during anoxia exposure. These data suggest that B. dorsalis has a strategy to induce HIF-1α and HIF-1-responsive genes to survive in the low oxygen condition.
Collapse
Affiliation(s)
- Yufang Deng
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Fan Hu
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Lili Ren
- Chinese Academy of Inspection and Quarantine, Beijing 100029, China
| | - Xiwu Gao
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yuejin Wang
- College of Plant Protection, China Agricultural University, Beijing 100193, China; Chinese Academy of Inspection and Quarantine, Beijing 100029, China.
| |
Collapse
|
33
|
Harrison JF, Waters JS, Biddulph TA, Kovacevic A, Klok CJ, Socha JJ. Developmental plasticity and stability in the tracheal networks supplying Drosophila flight muscle in response to rearing oxygen level. JOURNAL OF INSECT PHYSIOLOGY 2018; 106:189-198. [PMID: 28927826 DOI: 10.1016/j.jinsphys.2017.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/16/2017] [Accepted: 09/09/2017] [Indexed: 06/07/2023]
Abstract
While it is clear that the insect tracheal system can respond in a compensatory manner to both hypoxia and hyperoxia, there is substantial variation in how different parts of the system respond. However, the response of tracheal structures, from the tracheoles to the largest tracheal trunks, have not been studied within one species. In this study, we examined the effect of larval/pupal rearing in hypoxia, normoxia, and hyperoxia (10, 21 or 40kPa oxygen) on body size and the tracheal supply to the flight muscles of Drosophila melanogaster, using synchrotron radiation micro-computed tomography (SR-µCT) to assess flight muscle volumes and the major tracheal trunks, and confocal microscopy to assess the tracheoles. Hypoxic rearing decreased thorax length whereas hyperoxic-rearing decreased flight muscle volumes, suggestive of negative effects of both extremes. Tomography at the broad organismal scale revealed no evidence for enlargement of the major tracheae in response to lower rearing oxygen levels, although tracheal size scaled with muscle volume. However, using confocal imaging, we found a strong inverse relationship between tracheole density within the flight muscles and rearing oxygen level, and shorter tracheolar branch lengths in hypoxic-reared animals. Although prior studies of larger tracheae in other insects indicate that axial diffusing capacity should be constant with sequential generations of branching, this pattern was not found in the fine tracheolar networks, perhaps due to the increasing importance of radial diffusion in this regime. Overall, D. melanogaster responded to rearing oxygen level with compensatory morphological changes in the small tracheae and tracheoles, but retained stability in most of the other structural components of the tracheal supply to the flight muscles.
Collapse
Affiliation(s)
- Jon F Harrison
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287-4501, USA.
| | - James S Waters
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287-4501, USA; Department of Biology, Providence College, Providence, RI 02918, USA
| | - Taylor A Biddulph
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287-4501, USA
| | - Aleksandra Kovacevic
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287-4501, USA; School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - C Jaco Klok
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287-4501, USA; Sable Systems International, 3840 N. Commerce St., North Las Vegas, NV 89032, USA
| | - John J Socha
- Department of Biomedical Engineering and Mechanics, Virginia Tech, 332 Norris Hall, Blacksburg, VA 24061, USA
| |
Collapse
|
34
|
Jones KK, Hetz SK, Seymour RS. The effects of temperature, activity and convection on the plastron PO 2 of the aquatic bug Aphelocheirus aestivalis (Hemiptera; Aphelocheiridae). JOURNAL OF INSECT PHYSIOLOGY 2018; 106:155-162. [PMID: 28688893 DOI: 10.1016/j.jinsphys.2017.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/22/2017] [Accepted: 07/04/2017] [Indexed: 06/07/2023]
Abstract
The aquatic bug Aphelocheirus aestivalis (Fabricius 1794) utilises a plastron, a thin bubble layer on the surface of its body to extract O2 from the water. Millions of tiny hairs keep the bubble from collapsing, enabling the bug to remain submerged indefinitely. The development of fibre optic O2-probes has allowed measurements of O2 pressure (PO2) surrounding the plastron, and within the plastron although only for short periods. Here we developed methods to continuously measure plastron PO2, and investigate how it is affected by temperature (15, 20, 25°C), activity, and water circulation. We also made measurements of water PO2, temperature and velocity in the field and swimming velocity at the treatment temperatures. Results show that plastron PO2 is inversely related to temperature, associated with differences in metabolic demand, and that small bouts of activity or changes in water convection result in rapid changes in plastron PO2. A model was developed to calculate the conditions under which Aphelocheirus would exist without becoming O2-limited in relation to water temperature, PO2 and boundary layer thickness. This suggests that Aphelocheirus at one of two field sites may have a reduced metabolic scope even in well convected water in association with low PO2 and moderate temperature, and that in well convected, air-saturated water, bugs may have a reduced metabolic scope where water temperatures are between 20 and 25°C. If exposed to 5kPa PO2, Aphelocheirus cannot sustain resting metabolic rate even in well-convected water and would die at temperatures above approximately 25°C.
Collapse
Affiliation(s)
- Karl K Jones
- School of Biological Sciences, University of Adelaide, Adelaide 5005, SA, Australia.
| | - Stefan K Hetz
- Humboldt-Universität zu Berlin, Department of Animal Physiology, Systems Neurobiology and Neural Computation, Philippstrasse 13, 10115 Berlin, Germany.
| | - Roger S Seymour
- School of Biological Sciences, University of Adelaide, Adelaide 5005, SA, Australia.
| |
Collapse
|
35
|
Ubhi R, Matthews PGD. The transition from water to air in aeshnid dragonflies is associated with a change in ventilatory responses to hypoxia and hypercapnia. JOURNAL OF INSECT PHYSIOLOGY 2018; 106:172-178. [PMID: 28965969 DOI: 10.1016/j.jinsphys.2017.09.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 09/05/2017] [Accepted: 09/27/2017] [Indexed: 06/07/2023]
Abstract
Dragonflies are amphibiotic, spending most of their lives as aquatic nymphs before metamorphosing into terrestrial, winged imagoes. Both the nymph and the adult use rhythmic abdominal pumping movements to ventilate their gas exchange systems: the nymph tidally ventilates its rectal gill with water, while the imago pumps air into its tracheal system through its abdominal spiracles. The transition from water to air is known to be associated with changes in both respiratory chemosensitivity and ventilatory control in vertebrates and crustaceans, but the changes experienced by amphibiotic insects have been poorly explored. In this study, dragonfly nymphs (Anax junius) and imagoes (Anax junius and Aeshna multicolor) were exposed to hypoxia and hypercapnia while their abdominal ventilation frequency and amplitude was recorded. Water-breathing nymphs showed a significant increase in abdominal pumping frequency when breathing hypoxic water (<10 kPa O2), but no strong response to CO2, even in severe hypercapnia (up to 10 kPa CO2). In contrast, both species of air-breathing imago increased their abdominal pumping amplitude when exposed to either hypoxia or hypercapnia, but did not show any significant increase in frequency. These results demonstrate that aquatic dragonfly nymphs possess a respiratory sensitivity that is more like other water breathing animals, being sensitive to hypoxia but not hypercapnia, while their air-breathing adult form responds to both respiratory challenges, like other terrestrial insects. Shifting from ventilating a rectal gill with water to ventilating a tracheal system with air is also associated with a change in how abdominal ventilation is controlled; nymphs regulate gas exchange by varying frequency while imagoes respond by varying amplitude.
Collapse
Affiliation(s)
- Ramandeep Ubhi
- Department of Zoology, University of British Columbia, Vancouver, B.C. V6T 1Z4, Canada
| | - Philip G D Matthews
- Department of Zoology, University of British Columbia, Vancouver, B.C. V6T 1Z4, Canada.
| |
Collapse
|
36
|
VandenBrooks JM, Gstrein G, Harmon J, Friedman J, Olsen M, Ward A, Parker G. Supply and demand: How does variation in atmospheric oxygen during development affect insect tracheal and mitochondrial networks? JOURNAL OF INSECT PHYSIOLOGY 2018; 106:217-223. [PMID: 29122550 DOI: 10.1016/j.jinsphys.2017.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 10/24/2017] [Accepted: 11/06/2017] [Indexed: 06/07/2023]
Abstract
Atmospheric oxygen is one of the most important atmospheric component for all terrestrial organisms. Variation in atmospheric oxygen has wide ranging effects on animal physiology, development, and evolution. This variation in oxygen has the potential to affect both respiratory systems (the supply side) and mitochondrial networks (the demand side) in animals. Insect respiratory systems supplying oxygen to tissues in the gas phase through blind ended tracheal systems are particularly susceptible to this variation. While the large conducting tracheae have previously been shown to respond developmentally to changes in rearing oxygen, the effect of oxygen on the tracheolar network has been relatively unexplored, especially in adult insects. Similarly, mitochondrial networks that meet energy demand in insects and other animals are dynamic and their enzyme activities have been shown to vary in the presence of oxygen. These two systems together should be under selective pressure to meet the aerobic metabolic requirements of insects. To test this hypothesis, we reared Mito-YFP Drosophila under three different oxygen concentrations hypoxia (12%), normoxia (21%), and hyperoxia (31%) and imaged their tracheolar and mitochondrial networks within their flight muscle using confocal microscopy. In terms of oxygen supply, hypoxia increased mean (mid-length) tracheolar diameters, tracheolar tip diameters, the number of tracheoles per main branch and affected tracheal branching patterns, while the opposite was observed in hyperoxia. In terms of oxygen demand, hypoxia increased mitochondrial investment and mitochondrial to tracheolar volume ratios; while the opposite was observed in hyperoxia. Generally, hypoxia had a stronger effect on both systems than hyperoxia. These results show that insects are capable of developmentally changing investment in both their supply and demand networks to increase overall fitness.
Collapse
Affiliation(s)
| | - Gregory Gstrein
- College of Veterinary Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Jason Harmon
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Jessica Friedman
- College of Veterinary Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Matthew Olsen
- College of Veterinary Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Anna Ward
- College of Veterinary Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Gregory Parker
- Department of Physiology, Midwestern University, Glendale, AZ 85308, USA
| |
Collapse
|
37
|
Boardman L, Mitchell KA, Terblanche JS, Sørensen JG. A transcriptomics assessment of oxygen-temperature interactions reveals novel candidate genes underlying variation in thermal tolerance and survival. JOURNAL OF INSECT PHYSIOLOGY 2018; 106:179-188. [PMID: 29038013 DOI: 10.1016/j.jinsphys.2017.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 09/17/2017] [Accepted: 10/12/2017] [Indexed: 06/07/2023]
Abstract
While single stress responses are fairly well researched, multiple, interactive stress responses are not-despite the obvious importance thereof. Here, using D. melanogaster, we investigated the effects of simultaneous exposures to low O2 (hypoxia) and varying thermal conditions on mortality rates, estimates of thermal tolerance and the transcriptome. We used combinations of 21 (normoxia), 10 or 5kPa O2 with control (23°C), cold (4°C) or hot (31°C) temperature exposures before assaying chill coma recovery time (CCRT) and heat knock down time (HKDT) as measures of cold and heat tolerance respectively. We found that mortality was significantly affected by temperature, oxygen partial pressure (PO2) and the interaction between the two. Cold treatments resulted in low mortality (<5%), regardless of PO2 treatment; while hot treatments resulted in higher mortality (∼20%), especially at 5kPa O2 which was lethal for most flies (∼80%). Both CCRT and HKDT were significantly affected by temperature, but not PO2, of the treatments, and the interaction of temperature and PO2 was non-significant. Hot treatments led to significantly longer CCRT, and shorter HKDT in comparison to cold treatments. Global gene expression profiling provided the first transcriptome level response to the combined stress of PO2 and temperature, showing that stressful treatments resulted in higher mortality and induced transcripts that were associated with protein kinases, catabolic processes (proteases, hydrolases, peptidases) and membrane function. Several genes and pathways that may be responsible for the protective effects of combined PO2 and cold treatments were identified. We found that urate oxidase was upregulated in all three cold treatments, regardless of the PO2. Small heat shock proteins Hsp22 and Hsp23 were upregulated after both 10 and 21kPa O2-hot treatments. Collectively, the data from PO2-hot treatments suggests that hypoxia does exacerbate heat stress, through an as yet unidentified mechanism. Hsp70B and an unannotated transcript (CG6733) were significantly differentially expressed after 5kPa O2-cold and 10kPa O2-hot treatments relative to their controls. Downregulation of these transcripts was correlated with reduced thermal tolerance (longer CCRT and shorter HKDT), suggesting that these genes may be important candidates for future research.
Collapse
Affiliation(s)
- Leigh Boardman
- Centre for Invasion Biology, Department of Conservation Ecology and Entomology, Stellenbosch University, South Africa.
| | - Katherine A Mitchell
- Centre for Invasion Biology, Department of Conservation Ecology and Entomology, Stellenbosch University, South Africa
| | - John S Terblanche
- Centre for Invasion Biology, Department of Conservation Ecology and Entomology, Stellenbosch University, South Africa
| | - Jesper G Sørensen
- Section for Genetics, Ecology & Evolution, Department of Bioscience, Aarhus University, Ny Munkegade 116, DK-8000 Aarhus C, Denmark
| |
Collapse
|
38
|
Visser B, Williams CM, Hahn DA, Short CA, López-Martínez G. Hormetic benefits of prior anoxia exposure in buffering anoxia stress in a soil-pupating insect. ACTA ACUST UNITED AC 2018; 221:jeb.167825. [PMID: 29367272 DOI: 10.1242/jeb.167825] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/17/2018] [Indexed: 12/17/2022]
Abstract
Oxygen is essential for most animals, and exposure to a complete lack of oxygen, i.e. anoxia, can result in irreparable damage to cells that can extend up to the organismal level to negatively affect performance. Although it is known that brief anoxia exposure may confer cross-tolerance to other stressors, few data exist on the biochemical and organismal consequences of repeated intermittent bouts of anoxia exposure. In nature, the Caribbean fruit fly, Anastrepha suspensa (Diptera: Tephritidae), is frequently exposed to heavy tropical rainfall while pupating in the soil, equating to multiple exposures to hypoxia or anoxia during development. Here, we tested whether prior anoxia exposures during pupal development can induce a beneficial acclimation response, and we explored the consequences of prior exposure for both whole-organism performance and correlated biochemical metrics. Pharate adults (the last developmental stage in the pupal case) were most sensitive to anoxia exposure, showing decreased survival and fertility compared with controls. These negative impacts were ameliorated by exposure to anoxia in earlier pupal developmental stages, indicating a hormetic effect of prior anoxia exposure. Anoxia exposure early in pupal development reduced the oxygen debt repaid after anoxia exposure relative to pharate adults experiencing anoxia for the first time. Lipid levels were highest in all pupal stages when exposed to prior anoxia. Prior anoxia thus benefits organismal performance and relocates resources towards lipid storage throughout pupal-adult development.
Collapse
Affiliation(s)
- Bertanne Visser
- Evolutionary Ecology and Genetics Group, Biodiversity Research Centre, Earth and Life Institute, Université catholique de Louvain, Croix du Sud 4-5, 1348 Louvain-la-Neuve, Belgium.,Department of Entomology and Nematology, College of Agriculture and Life Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Caroline M Williams
- Department of Entomology and Nematology, College of Agriculture and Life Sciences, University of Florida, Gainesville, FL 32611, USA.,Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Daniel A Hahn
- Department of Entomology and Nematology, College of Agriculture and Life Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Clancy A Short
- Department of Entomology and Nematology, College of Agriculture and Life Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Giancarlo López-Martínez
- Department of Entomology and Nematology, College of Agriculture and Life Sciences, University of Florida, Gainesville, FL 32611, USA .,Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| |
Collapse
|
39
|
Kivelä SM, Viinamäki S, Keret N, Gotthard K, Hohtola E, Välimäki P. Elucidating mechanisms for insect body size: partial support for the oxygen-dependent induction of moulting hypothesis. ACTA ACUST UNITED AC 2018; 221:jeb.166157. [PMID: 29150451 DOI: 10.1242/jeb.166157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/14/2017] [Indexed: 11/20/2022]
Abstract
Body size is a key life history trait, and knowledge of its mechanistic basis is crucial in life history biology. Such knowledge is accumulating for holometabolous insects, whose growth is characterised and body size affected by moulting. According to the oxygen-dependent induction of moulting (ODIM) hypothesis, moult is induced at a critical mass at which oxygen demand of growing tissues overrides the supply from the tracheal respiratory system, which principally grows only at moults. Support for the ODIM hypothesis is controversial, partly because of a lack of proper data to explicitly test the hypothesis. The ODIM hypothesis predicts that the critical mass is positively correlated with oxygen partial pressure (PO2 ) and negatively with temperature. To resolve the controversy that surrounds the ODIM hypothesis, we rigorously test these predictions by exposing penultimate-instar Orthosia gothica (Lepidoptera: Noctuidae) larvae to temperature and moderate PO2 manipulations in a factorial experiment. The relative mass increment in the focal instar increased along with increasing PO2 , as predicted, but there was only weak suggestive evidence of the temperature effect. Probably owing to a high measurement error in the trait, the effect of PO2 on the critical mass was sex specific; high PO2 had a positive effect only in females, whereas low PO2 had a negative effect only in males. Critical mass was independent of temperature. Support for the ODIM hypothesis is partial because of only suggestive evidence of a temperature effect on moulting, but the role of oxygen in moult induction seems unambiguous. The ODIM mechanism thus seems worth considering in body size analyses.
Collapse
Affiliation(s)
- Sami M Kivelä
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, EE-51014 Tartu, Estonia
| | - Sonja Viinamäki
- Department of Ecology and Genetics, University of Oulu, PO Box 3000, 90014 University of Oulu, Oulu, Finland
| | - Netta Keret
- Department of Ecology and Genetics, University of Oulu, PO Box 3000, 90014 University of Oulu, Oulu, Finland
| | - Karl Gotthard
- Department of Zoology, Stockholm University, SE-10691 Stockholm, Sweden
| | - Esa Hohtola
- Department of Ecology and Genetics, University of Oulu, PO Box 3000, 90014 University of Oulu, Oulu, Finland
| | - Panu Välimäki
- Department of Ecology and Genetics, University of Oulu, PO Box 3000, 90014 University of Oulu, Oulu, Finland
| |
Collapse
|
40
|
Refined control of cell stemness allowed animal evolution in the oxic realm. Nat Ecol Evol 2018; 2:220-228. [DOI: 10.1038/s41559-017-0410-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/10/2017] [Indexed: 12/26/2022]
|
41
|
Khatun S, Rajak P, Dutta M, Roy S. Sodium fluoride adversely affects ovarian development and reproduction in Drosophila melanogaster. CHEMOSPHERE 2017; 186:51-61. [PMID: 28763637 DOI: 10.1016/j.chemosphere.2017.07.123] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/18/2017] [Accepted: 07/25/2017] [Indexed: 06/07/2023]
Abstract
The study demonstrates the effects of chronic sub-lethal exposure of sodium fluoride (NaF) on reproductive structure and function of female Drosophila melanogaster. As a part of treatment, flies were maintained in food supplemented with sub-lethal concentrations of NaF (10-100 μg/mL). Fecundity, ovarian morphology, presence and profusion of viable cells from ovary and fat body were taken into consideration for evaluating changes in reproductive homeostasis. Wing length (a factor demonstrating body size and reproductive fitness) was also monitored after NaF exposure. Significant reduction in fecundity, alteration in ovarian morphology along with an increase in apoptosis was observed in treated females. Simultaneous decline in viable cell number and larval weight validates the result of MTT assay. Furthermore, altered ovarian Glucose-6-phosphate dehydrogenase and catalase activities together with increased rate of lipid peroxidation after 20 and 40 μg/mL NaF exposure confirmed the changes in reproduction related metabolism. Enhanced lipid peroxidation known for ROS generation might have induced genotoxicity which is confirmed through Comet assay. The enzyme activities were not dose dependent, rather manifested a bimodal response, which suggests a well-knit interaction among the players inducing stress and the ones that help establish physiological homeostasis.
Collapse
Affiliation(s)
- Salma Khatun
- Toxicology Research Unit, Cytogenetics Laboratory, Department of Zoology, The University of Burdwan, Burdwan, 713104, West Bengal, India.
| | - Prem Rajak
- Post-Graduate Department of Zoology, A.B.N. Seal College, Cooch Behar, India
| | - Moumita Dutta
- Toxicology Research Unit, Cytogenetics Laboratory, Department of Zoology, The University of Burdwan, Burdwan, 713104, West Bengal, India
| | - Sumedha Roy
- Toxicology Research Unit, Cytogenetics Laboratory, Department of Zoology, The University of Burdwan, Burdwan, 713104, West Bengal, India.
| |
Collapse
|
42
|
Wang Z, Oppegard SC, Eddington DT, Cheng J. Effect of localized hypoxia on Drosophila embryo development. PLoS One 2017; 12:e0185267. [PMID: 28934338 PMCID: PMC5608372 DOI: 10.1371/journal.pone.0185267] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 09/08/2017] [Indexed: 01/09/2023] Open
Abstract
Environmental stress, such as oxygen deprivation, affects various cellular activities and developmental processes. In this study, we directly investigated Drosophila embryo development in vivo while cultured on a microfluidic device, which imposed an oxygen gradient on the developing embryos. The designed microfluidic device enabled both temporal and spatial control of the local oxygen gradient applied to the live embryos. Time-lapse live cell imaging was used to monitor the morphology and cellular migration patterns as embryos were placed in various geometries relative to the oxygen gradient. Results show that pole cell movement and tail retraction during Drosophila embryogenesis are highly sensitive to oxygen concentrations. Through modeling, we also estimated the oxygen permeability across the Drosophila embryonic layers for the first time using parameters measured on our oxygen control device.
Collapse
Affiliation(s)
- Zhinan Wang
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Shawn C. Oppegard
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - David T. Eddington
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Jun Cheng
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
43
|
Chen B, Ma R, Ding D, Wei L, Kang L. Aerobic respiration by haemocyanin in the embryo of the migratory locust. INSECT MOLECULAR BIOLOGY 2017; 26:461-468. [PMID: 28452426 DOI: 10.1111/imb.12310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
It remains unresolved how insect embryos acquire sufficient oxygen to sustain high rates of respiratory metabolism during embryogenesis in the absence of a fully developed tracheal system. Our previous work showed that the two distinct subunits (Hc1 and Hc2) of haemocyanin (Hc), a copper-containing protein, display embryo-specific high expression that is essential for embryonic development and survival in the migratory locust Locusta migratoria. Here we investigated the role of haemocyanins in oxygen sensing and supply in the embryo of this locust. Putative binding sites for hypoxia-regulated transcription factors were identified in the promoter region of all of the Hc1 and Hc2 genes. Embryonic expression of haemocyanins was highly upregulated by ambient O2 deprivation, up to 10-fold at 13% O2 content. The degree of upregulation of haemocyanins increased with increasing levels of hypoxia. Compared with low-altitude locusts, embryonic expression of haemocyanins in high-altitude locusts from Tibetan plateau was constitutively higher and more robust to oxygen deprivation. These findings strongly suggest an active involvement of haemocyanins in oxygen exchange in embryos. We thus propose a mechanistic model for embryo respiration in which haemocyanin plays a key role by complementing the tracheal system for oxygen transport during embryogenesis.
Collapse
Affiliation(s)
- B Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - R Ma
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - D Ding
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - L Wei
- College of Life Sciences, Hebei University, Baoding, China
| | - L Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
44
|
Klok CJ, Kaiser A, Socha JJ, Lee WK, Harrison JF. Multigenerational Effects of Rearing Atmospheric Oxygen Level on the Tracheal Dimensions and Diffusing Capacities of Pupal and Adult Drosophila melanogaster. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 903:285-300. [PMID: 27343104 DOI: 10.1007/978-1-4899-7678-9_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Insects are small relative to vertebrates, and were larger in the Paleozoic when atmospheric oxygen levels were higher. The safety margin for oxygen delivery does not increase in larger insects, due to an increased mass-specific investment in the tracheal system and a greater use of convection in larger insects. Prior studies have shown that the dimensions and number of tracheal system branches varies inversely with rearing oxygen in embryonic and larval insects. Here we tested whether rearing in 10, 21, or 40 kPa atmospheric oxygen atmospheres for 5-7 generations affected the tracheal dimensions and diffusing capacities of pupal and adult Drosophila. Abdominal tracheae and pupal snorkel tracheae showed weak responses to oxygen, while leg tracheae showed strong, but imperfect compensatory changes. The diffusing capacity of leg tracheae appears closely matched to predicted oxygen transport needs by diffusion, perhaps explaining the consistent and significant responses of these tracheae to rearing oxygen. The reduced investment in tracheal structure in insects reared in higher oxygen levels may be important for conserving tissue PO2 and may provide an important mechanism for insects to invest only the space and materials necessary into respiratory structure.
Collapse
Affiliation(s)
- C Jaco Klok
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Alexander Kaiser
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.,Department of Basic Sciences, Midwestern University, Glendale, AZ, USA
| | - John J Socha
- Engineering Science and Mechanics, Virginia Tech, Blacksburg, VI, USA.,X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL, USA
| | - Wah-Keat Lee
- X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL, USA
| | - Jon F Harrison
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
45
|
Burggren W, Souder BM, Ho DH. Metabolic rate and hypoxia tolerance are affected by group interactions and sex in the fruit fly ( Drosophila melanogaster): new data and a literature survey. Biol Open 2017; 6:471-480. [PMID: 28202465 PMCID: PMC5399560 DOI: 10.1242/bio.023994] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Population density and associated behavioral adjustments are potentially important in regulating physiological performance in many animals. In r-selected species like the fruit fly (Drosophila), where population density rapidly shifts in unpredictable and unstable environments, density-dependent physiological adjustments may aid survival of individuals living in a social environment. Yet, how population density (and associated social behaviors) affects physiological functions like metabolism is poorly understood in insects. Additionally, insects often show marked sexual dimorphism (larger females). Thus, in this study on D. melanogaster, we characterized the effects of fly density and sex on both mass-specific routine oxygen consumption (V̇O2) and hypoxia tolerance (PCrit). Females had significantly lower routine V̇O2 (∼4 µl O2 mg−1 h−1) than males (∼6 µl O2 mg−1 h−1) at an average fly density of 28 flies·respirometer chamber−1. However, V̇O2 was inversely related to fly density in males, with V̇O2 ranging from 4 to 11 µl O2 mg−1 h−1 at a density of 10 and 40 flies·chamber−1, respectively (r2=0.58, P<0.001). Female flies showed a similar but less pronounced effect, with a V̇O2 of 4 and 7 µl O2 mg−1 h−1 at a density of 10 and 40 flies·chamber−1, respectively (r2=0.43, P<0.001). PCrit (∼5.5 to 7.5 kPa) varied significantly with density in male (r2=0.50, P<0.01) but not female (r2=0.02, P>0.5) flies, with higher fly densities having a lower PCrit. An extensive survey of the literature on metabolism in fruit flies indicates that not all studies control for, or even report on, fly density and gender, both of which may affect metabolic measurements. Summary: Technical advances allowing oxygen consumption measurement in individual fruit flies actually take them out of their normal highly social context, resulting in higher oxygen consumption rates than in natural groups.
Collapse
Affiliation(s)
- Warren Burggren
- Developmental Integrative Biology Group, Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - BriAnna M Souder
- Developmental Integrative Biology Group, Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Dao H Ho
- Department of Clinical Investigation, Tripler Army Medical Center, Honolulu, HI 96859, USA
| |
Collapse
|
46
|
Critical appraisal of some factors pertinent to the functional designs of the gas exchangers. Cell Tissue Res 2016; 367:747-767. [PMID: 27988805 DOI: 10.1007/s00441-016-2549-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 11/26/2016] [Indexed: 10/20/2022]
Abstract
Respiration acquires O2 from the external fluid milieu and eliminates CO2 back into the same. Gas exchangers evolved under certain immutable physicochemical laws upon which their elemental functional design is hardwired. Adaptive changes have occurred within the constraints set by such laws to satisfy metabolic needs for O2, environmental conditions, respiratory medium utilized, lifestyle pursued and phylogenetic level of development: correlation between structure and function exists. After the inaugural simple cell membrane, as body size and structural complexity increased, respiratory organs formed by evagination or invagination: the gills developed by the former process and the lungs by the latter. Conservation of water on land was the main driver for invagination of the lungs. In gills, respiratory surface area increases by stratified arrangement of the structural components while in lungs it occurs by internal subdivision. The minuscule terminal respiratory units of lungs are stabilized by surfactant. In gas exchangers, respiratory fluid media are transported by convection over long distances, a process that requires energy. However, movement of respiratory gases across tissue barriers occurs by simple passive diffusion. Short distances and large surface areas are needed for diffusion to occur efficiently. Certain properties, e.g., diffusion of gases through the tissue barrier, stabilization of the respiratory units by surfactant and a thin tripartite tissue barrier, have been conserved during the evolution of the gas exchangers. In biology, such rare features are called Bauplans, blueprints or frozen cores. That several of them (Bauplans) exist in gas exchangers almost certainly indicates the importance of respiration to life.
Collapse
|
47
|
Woods HA, Lane SJ. Metabolic recovery from drowning by insect pupae. J Exp Biol 2016; 219:3126-3136. [DOI: 10.1242/jeb.144105] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 07/28/2016] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Many terrestrial insects live in environments that flood intermittently, and some life stages may spend days underwater without access to oxygen. We tested the hypothesis that terrestrial insects with underground pupae show respiratory adaptations for surviving anoxia and subsequently reestablishing normal patterns of respiration. Pupae of Manduca sexta were experimentally immersed in water for between 0 and 13 days. All pupae survived up to 5 days of immersion regardless of whether the water was aerated or anoxic. By contrast, fifth-instar larvae survived a maximum of 4 h of immersion. There were no effects of immersion during the pupal period on adult size and morphology. After immersion, pupae initially emitted large pulses of CO2. After a subsequent trough in CO2 emission, spiracular activity resumed and average levels of CO2 emission were then elevated for approximately 1 day in the group immersed for 1 day and for at least 2 days in the 3- and 5-day immersion treatments. Although patterns of CO2 emission were diverse, most pupae went through a period during which they emitted CO2 in a cyclic pattern with periods of 0.78–2.2 min. These high-frequency cycles are not predicted by the recent models of Förster and Hetz (2010) and Grieshaber and Terblanche (2015), and we suggest several potential ways to reconcile the models with our observations. During immersion, pupae accumulated lactate, which then declined to low levels over 12–48 h. Pupae in the 3- and 5-day immersion groups still had elevated rates of CO2 emission after 48 h, suggesting that they continued to spend energy on reestablishing homeostasis even after lactate had returned to low levels. Despite their status as terrestrial insects, pupae of M. sexta can withstand long periods of immersion and anoxia and can reestablish homeostasis subsequently.
Collapse
Affiliation(s)
- H. Arthur Woods
- Division of Biological Sciences, University of Montana, 32 Campus Drive, Missoula, MT 59812, USA
| | - Steven J. Lane
- Division of Biological Sciences, University of Montana, 32 Campus Drive, Missoula, MT 59812, USA
| |
Collapse
|
48
|
Boardman L, Sørensen JG, Koštál V, Šimek P, Terblanche JS. Cold tolerance is unaffected by oxygen availability despite changes in anaerobic metabolism. Sci Rep 2016; 6:32856. [PMID: 27619175 PMCID: PMC5020647 DOI: 10.1038/srep32856] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 08/10/2016] [Indexed: 12/18/2022] Open
Abstract
Insect cold tolerance depends on their ability to withstand or repair perturbations in cellular homeostasis caused by low temperature stress. Decreased oxygen availability (hypoxia) can interact with low temperature tolerance, often improving insect survival. One mechanism proposed for such responses is that whole-animal cold tolerance is set by a transition to anaerobic metabolism. Here, we provide a test of this hypothesis in an insect model system (Thaumatotibia leucotreta) by experimental manipulation of oxygen availability while measuring metabolic rate, critical thermal minimum (CTmin), supercooling point and changes in 43 metabolites in moth larvae at three key timepoints (before, during and after chill coma). Furthermore, we determined the critical oxygen partial pressure below which metabolic rate was suppressed (c. 4.5 kPa). Results showed that altering oxygen availability did not affect (non-lethal) CTmin nor (lethal) supercooling point. Metabolomic profiling revealed the upregulation of anaerobic metabolites and alterations in concentrations of citric acid cycle intermediates during and after chill coma exposure. Hypoxia exacerbated the anaerobic metabolite responses induced by low temperatures. These results suggest that cold tolerance of T. leucotreta larvae is not set by oxygen limitation, and that anaerobic metabolism in these larvae may contribute to their ability to survive in necrotic fruit.
Collapse
Affiliation(s)
- Leigh Boardman
- Department of Conservation Ecology and Entomology, Centre for Invasion Biology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Jesper G Sørensen
- Section for Genetics, Ecology &Evolution, Department of Bioscience, Aarhus University, Ny Munkegade 116, DK-8000 Aarhus C, Denmark
| | - Vladimír Koštál
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Petr Šimek
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - John S Terblanche
- Department of Conservation Ecology and Entomology, Centre for Invasion Biology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| |
Collapse
|
49
|
Robalino J, Wilkins B, Bracken-Grissom HD, Chan TY, O’Leary MA. The Origin of Large-Bodied Shrimp that Dominate Modern Global Aquaculture. PLoS One 2016; 11:e0158840. [PMID: 27415002 PMCID: PMC4945062 DOI: 10.1371/journal.pone.0158840] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 06/22/2016] [Indexed: 11/18/2022] Open
Abstract
Several shrimp species from the clade Penaeidae are farmed industrially for human consumption, and this farming has turned shrimp into the largest seafood commodity in the world. The species that are in demand for farming are an anomaly within their clade because they grow to much larger sizes than other members of Penaeidae. Here we trace the evolutionary history of the anomalous farmed shrimp using combined data phylogenetic analysis of living and fossil species. We show that exquisitely preserved fossils of †Antrimpos speciosus from the Late Jurassic Solnhofen limestone belong to the same clade as the species that dominate modern farming, dating the origin of this clade to at least 145 mya. This finding contradicts a much younger Late Cretaceous age (ca. 95 mya) previously estimated for this clade using molecular clocks. The species in the farmed shrimp clade defy a widespread tendency, by reaching relatively large body sizes despite their warm water lifestyles. Small body sizes have been shown to be physiologically favored in warm aquatic environments because satisfying oxygen demands is difficult for large organisms breathing in warm water. Our analysis shows that large-bodied, farmed shrimp have more gills than their smaller-bodied shallow-water relatives, suggesting that extra gills may have been key to the clade's ability to meet oxygen demands at a large size. Our combined data phylogenetic tree also suggests that, during penaeid evolution, the adoption of mangrove forests as habitats for young shrimp occurred multiple times independently.
Collapse
Affiliation(s)
- Javier Robalino
- Department of Anatomical Sciences, HSC T-8 (040), Stony Brook University, Stony Brook, New York, United States of America
| | - Blake Wilkins
- Department of Biology, Florida International University, Biscayne Bay Campus, North Miami, Florida, United States of America
| | - Heather D. Bracken-Grissom
- Department of Biology, Florida International University, Biscayne Bay Campus, North Miami, Florida, United States of America
| | - Tin-Yam Chan
- Institute of Marine Biology and Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan, Republic of China
| | - Maureen A. O’Leary
- Department of Anatomical Sciences, HSC T-8 (040), Stony Brook University, Stony Brook, New York, United States of America
| |
Collapse
|
50
|
Yan Y, Williams SB, Baributsa D, Murdock LL. Hypoxia Treatment of Callosobruchus maculatus Females and Its Effects on Reproductive Output and Development of Progeny Following Exposure. INSECTS 2016; 7:insects7020026. [PMID: 27322332 PMCID: PMC4931438 DOI: 10.3390/insects7020026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/08/2016] [Accepted: 06/13/2016] [Indexed: 12/31/2022]
Abstract
Modified atmospheres present a residue-free alternative to fumigants for controlling postharvest pests of grain during storage. How sub-lethal applications of this method affects the reproductive fitness of target pests, however, is still not fully understood. We examined how low levels of ambient oxygen influence the reproduction of the female cowpea bruchid (Callosobruchus maculatus), a pest of cowpea. We used three low-oxygen atmospheres—2%, 5% and 10% (v/v) oxygen—and observed their effects on: (1) the number of eggs laid by bruchids compared to insects held in normoxic (~20% oxygen) conditions; (2) the total number of eggs laid; and (3) the number of progeny that reached maturity. Low oxygen did not significantly affect the number of eggs laid during 48 or 72 h of exposure, but 2% and 5% oxygen did negatively affected total egg production. Increasing the exposure time from 48 to 72 h further depressed lifetime reproductive output. Maternal and egg exposure to hypoxia reduced the number of progeny that reached adulthood. Lower adult emergence was observed from eggs laid under low oxygen and longer exposure times. These data demonstrate that hermetic conditions depress the egg-laying behavior of cowpea bruchids and the successful development of their progeny.
Collapse
Affiliation(s)
- Yan Yan
- Department of Entomology, China Agricultural University, Beijing 100193, China.
- Department of Entomology, Purdue University, West Lafayette, IN 47907, USA.
| | - Scott B Williams
- Department of Entomology, Purdue University, West Lafayette, IN 47907, USA.
| | | | - Larry L Murdock
- Department of Entomology, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|