1
|
Conde SV, Martins FO, Sacramento JF. Carotid body interoception in health and disease. Auton Neurosci 2024; 255:103207. [PMID: 39121687 DOI: 10.1016/j.autneu.2024.103207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/15/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024]
Abstract
Interoception entails perceiving or being aware of the internal state of the body, playing a pivotal role in regulating processes such as heartbeat, digestion, glucose metabolism, and respiration. The carotid body (CB) serves as an interoceptive organ, transmitting information to the brain via its sensitive nerve, the carotid sinus nerve, to maintain homeostasis. While traditionally known for sensing oxygen, carbon dioxide, and pH levels, the CB is now recognized to possess additional interoceptive properties, detecting various mediators involved in blood pressure regulation, inflammation, and glucose homeostasis, among other physiological functions. Furthermore, in the last decades CB dysfunction has been linked to diseases like sleep apnea, essential hypertension, and diabetes. In this review manuscript, we make a concise overview of the traditional interoceptive functions of the CB, acting as a sensor for oxygen levels, carbon dioxide levels, and pH, and introduce the novel interoceptive properties of the CB related to vascular, glucose and energy regulation. Additionally, we revise the contribution of the CB to the onset and progression of metabolic diseases, delving into the potential dysfunction of its interoceptive metabolic functions as a contributing factor to pathophysiology. Finally, we postulate the use of therapeutic interventions targeting the metabolic interoceptive properties of the CB as a potential avenue for addressing metabolic diseases.
Collapse
Affiliation(s)
- Silvia V Conde
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal.
| | - Fatima O Martins
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Joana F Sacramento
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| |
Collapse
|
2
|
Baedorf-Kassis E, Murn M, Dzierba AL, Serra AL, Garcia I, Minus E, Padilla C, Sarge T, Goodspeed VM, Matthay MA, Gong MN, Cook D, Loring SH, Talmor D, Beitler JR. Respiratory drive heterogeneity associated with systemic inflammation and vascular permeability in acute respiratory distress syndrome. Crit Care 2024; 28:136. [PMID: 38654391 PMCID: PMC11036740 DOI: 10.1186/s13054-024-04920-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/17/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND In acute respiratory distress syndrome (ARDS), respiratory drive often differs among patients with similar clinical characteristics. Readily observable factors like acid-base state, oxygenation, mechanics, and sedation depth do not fully explain drive heterogeneity. This study evaluated the relationship of systemic inflammation and vascular permeability markers with respiratory drive and clinical outcomes in ARDS. METHODS ARDS patients enrolled in the multicenter EPVent-2 trial with requisite data and plasma biomarkers were included. Neuromuscular blockade recipients were excluded. Respiratory drive was measured as PES0.1, the change in esophageal pressure during the first 0.1 s of inspiratory effort. Plasma angiopoietin-2, interleukin-6, and interleukin-8 were measured concomitantly, and 60-day clinical outcomes evaluated. RESULTS 54.8% of 124 included patients had detectable respiratory drive (PES0.1 range of 0-5.1 cm H2O). Angiopoietin-2 and interleukin-8, but not interleukin-6, were associated with respiratory drive independently of acid-base, oxygenation, respiratory mechanics, and sedation depth. Sedation depth was not significantly associated with PES0.1 in an unadjusted model, or after adjusting for mechanics and chemoreceptor input. However, upon adding angiopoietin-2, interleukin-6, or interleukin-8 to models, lighter sedation was significantly associated with higher PES0.1. Risk of death was less with moderate drive (PES0.1 of 0.5-2.9 cm H2O) compared to either lower drive (hazard ratio 1.58, 95% CI 0.82-3.05) or higher drive (2.63, 95% CI 1.21-5.70) (p = 0.049). CONCLUSIONS Among patients with ARDS, systemic inflammatory and vascular permeability markers were independently associated with higher respiratory drive. The heterogeneous response of respiratory drive to varying sedation depth may be explained in part by differences in inflammation and vascular permeability.
Collapse
Affiliation(s)
- Elias Baedorf-Kassis
- Division of Pulmonary and Critical Care Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Michael Murn
- Columbia Respiratory Critical Care Trials Group, Columbia University College of Physicians and Surgeons, and New York-Presbyterian Hospital, 622 West 168th Street, New York, NY, 10032, USA
- Center for Acute Respiratory Failure, New York-Presbyterian Hospital, New York, NY, USA
| | - Amy L Dzierba
- Columbia Respiratory Critical Care Trials Group, Columbia University College of Physicians and Surgeons, and New York-Presbyterian Hospital, 622 West 168th Street, New York, NY, 10032, USA
- Center for Acute Respiratory Failure, New York-Presbyterian Hospital, New York, NY, USA
- Department of Pharmacy, New York-Presbyterian Hospital, New York, NY, USA
| | - Alexis L Serra
- Columbia Respiratory Critical Care Trials Group, Columbia University College of Physicians and Surgeons, and New York-Presbyterian Hospital, 622 West 168th Street, New York, NY, 10032, USA
- Center for Acute Respiratory Failure, New York-Presbyterian Hospital, New York, NY, USA
| | - Ivan Garcia
- Columbia Respiratory Critical Care Trials Group, Columbia University College of Physicians and Surgeons, and New York-Presbyterian Hospital, 622 West 168th Street, New York, NY, 10032, USA
- Center for Acute Respiratory Failure, New York-Presbyterian Hospital, New York, NY, USA
| | - Emily Minus
- Departments of Medicine and Anesthesia, University of California San Francisco, San Francisco, CA, USA
| | - Clarissa Padilla
- Columbia Respiratory Critical Care Trials Group, Columbia University College of Physicians and Surgeons, and New York-Presbyterian Hospital, 622 West 168th Street, New York, NY, 10032, USA
- Center for Acute Respiratory Failure, New York-Presbyterian Hospital, New York, NY, USA
| | - Todd Sarge
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Valerie M Goodspeed
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Michael A Matthay
- Departments of Medicine and Anesthesia, University of California San Francisco, San Francisco, CA, USA
| | - Michelle N Gong
- Department of Critical Care Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, USA
| | - Deborah Cook
- St. Joseph's Hospital and McMaster University, Hamilton, ON, Canada
| | - Stephen H Loring
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Daniel Talmor
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jeremy R Beitler
- Columbia Respiratory Critical Care Trials Group, Columbia University College of Physicians and Surgeons, and New York-Presbyterian Hospital, 622 West 168th Street, New York, NY, 10032, USA.
- Center for Acute Respiratory Failure, New York-Presbyterian Hospital, New York, NY, USA.
| |
Collapse
|
3
|
Lataro RM, Brognara F, Iturriaga R, Paton JFR. Inflammation of some visceral sensory systems and autonomic dysfunction in cardiovascular disease. Auton Neurosci 2024; 251:103137. [PMID: 38104365 DOI: 10.1016/j.autneu.2023.103137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/15/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
The sensitization and hypertonicity of visceral afferents are highly relevant to the development and progression of cardiovascular and respiratory disease states. In this review, we described the evidence that the inflammatory process regulates visceral afferent sensitivity and tonicity, affecting the control of the cardiovascular and respiratory system. Some inflammatory mediators like nitric oxide, angiotensin II, endothelin-1, and arginine vasopressin may inhibit baroreceptor afferents and contribute to the baroreflex impairment observed in cardiovascular diseases. Cytokines may act directly on peripheral afferent terminals that transmit information to the central nervous system (CNS). TLR-4 receptors, which recognize lipopolysaccharide, were identified in the nodose and petrosal ganglion and have been implicated in disrupting the blood-brain barrier, which can potentiate the inflammatory process. For example, cytokines may cross the blood-brain barrier to access the CNS. Additionally, pro-inflammatory cytokines such as IL-1β, IL-6, TNF-α and some of their receptors have been identified in the nodose ganglion and carotid body. These pro-inflammatory cytokines also sensitize the dorsal root ganglion or are released in the nucleus of the solitary tract. In cardiovascular disease, pro-inflammatory mediators increase in the brain, heart, vessels, and plasma and may act locally or systemically to activate/sensitize afferent nervous terminals. Recent evidence demonstrated that the carotid body chemoreceptor cells might sense systemic pro-inflammatory molecules, supporting the novel proposal that the carotid body is part of the afferent pathway in the central anti-inflammatory reflexes. The exact mechanisms of how pro-inflammatory mediators affects visceral afferent signals and contribute to the pathophysiology of cardiovascular diseases awaits future research.
Collapse
Affiliation(s)
- R M Lataro
- Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| | - F Brognara
- Department of Nursing, General and Specialized, Nursing School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - R Iturriaga
- Facultad de Ciencias Biológicas, Pontificia Universidad Catolica de Chile, Santiago, Chile; Centro de Investigación en Fisiología y Medicina en Altura - FIMEDALT, Universidad de Antofagasta, Antofagasta, Chile
| | - J F R Paton
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical & Health Sciences, University of Auckland, Grafton, Auckland, New Zealand
| |
Collapse
|
4
|
Iturriaga R. Carotid body contribution to the physio-pathological consequences of intermittent hypoxia: role of nitro-oxidative stress and inflammation. J Physiol 2023; 601:5495-5507. [PMID: 37119020 DOI: 10.1113/jp284112] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/24/2023] [Indexed: 04/30/2023] Open
Abstract
Obstructive sleep apnoea (OSA), characterized by chronic intermittent hypoxia (CIH), is considered to be an independent risk for hypertension. The pathological cardiorespiratory consequences of OSA have been attributed to systemic oxidative stress, inflammation and sympathetic overflow induced by CIH, but an emerging body of evidence indicates that a nitro-oxidative and pro-inflammatory milieu within the carotid body (CB) is involved in the potentiation of CB chemosensory responses to hypoxia, which contribute to enhance the sympathetic activity. Accordingly, autonomic and cardiovascular alterations induced by CIH are critically dependent on an abnormally heightened CB chemosensory input to the nucleus of tractus solitarius (NTS), where second-order neurons project onto the rostral ventrolateral medulla (RVLM), activating pre-sympathetic neurons that control pre-ganglionic sympathetic neurons. CIH produces oxidative stress and neuroinflammation in the NTS and RVLM, which may contribute to the long-term irreversibility of the CIH-induced alterations. This brief review is mainly focused on the contribution of nitro-oxidative stress and pro-inflammatory molecules on the hyperactivation of the hypoxic chemoreflex pathway including the CB and the brainstem centres, and whether the persistence of autonomic and cardiorespiratory alterations may depend on the glial-related neuroinflammation induced by the enhanced CB chemosensory afferent input.
Collapse
Affiliation(s)
- Rodrigo Iturriaga
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Investigación en Fisiología y Medicina de Altura, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| |
Collapse
|
5
|
Lataro RM, Moraes DJA, Gava FN, Omoto ACM, Silva CAA, Brognara F, Alflen L, Brazão V, Colato RP, do Prado JC, Ford AP, Salgado HC, Paton JFR. P2X3 receptor antagonism attenuates the progression of heart failure. Nat Commun 2023; 14:1725. [PMID: 36977675 PMCID: PMC10050083 DOI: 10.1038/s41467-023-37077-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/02/2023] [Indexed: 03/30/2023] Open
Abstract
Despite advances in the treatment of heart failure, prognosis is poor, mortality high and there remains no cure. Heart failure is associated with reduced cardiac pump function, autonomic dysregulation, systemic inflammation and sleep-disordered breathing; these morbidities are exacerbated by peripheral chemoreceptor dysfunction. We reveal that in heart failure the carotid body generates spontaneous, episodic burst discharges coincident with the onset of disordered breathing in male rats. Purinergic (P2X3) receptors were upregulated two-fold in peripheral chemosensory afferents in heart failure, and when antagonized abolished these episodic discharges, normalized both peripheral chemoreceptor sensitivity and the breathing pattern, reinstated autonomic balance, improved cardiac function, and reduced both inflammation and biomarkers of cardiac failure. Aberrant ATP transmission in the carotid body triggers episodic discharges that via P2X3 receptors play a crucial role in the progression of heart failure and as such offer a distinct therapeutic angle to reverse multiple components of its pathogenesis.
Collapse
Affiliation(s)
- Renata M Lataro
- Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Davi J A Moraes
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Fabio N Gava
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Department of Clinical Veterinary, Agrarian Sciences Center, Londrina State University, Londrina, Brazil
| | - Ana C M Omoto
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Carlos A A Silva
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Fernanda Brognara
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Lais Alflen
- Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Vânia Brazão
- College of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Rafaela Pravato Colato
- College of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - José Clóvis do Prado
- College of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Helio C Salgado
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Julian F R Paton
- Manaaki Manawa-The Centre for Heart Research, Department of Physiology, Faculty of Medical & Health Sciences, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
6
|
Lazarov NE, Atanasova DY. Carotid Body Dysfunction and Mechanisms of Disease. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2023; 237:123-138. [PMID: 37946080 DOI: 10.1007/978-3-031-44757-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Emerging evidence shows that the carotid body (CB) dysfunction is implicated in various physiological and pathophysiological conditions. It has been revealed that the CB structure and neurochemical profile alter in certain human sympathetic-related and cardiometabolic diseases. Specifically, a tiny CB with a decrease of glomus cells and their dense-cored vesicles has been seen in subjects with sleep disordered breathing such as sudden infant death syndrome and obstructive sleep apnea patients and people with congenital central hypoventilation syndrome. Moreover, the CB degranulation is accompanied by significantly elevated levels of catecholamines and proinflammatory cytokines in such patients. The intermittent hypoxia stimulates the CB, eliciting augmented chemoreflex drive and enhanced cardiorespiratory and sympathetic responses. High CB excitability due to blood flow restrictions, oxidative stress, alterations in neurotransmitter gases and disruptions of local mediators is also observed in congestive heart failure conditions. On the other hand, the morpho-chemical changes in hypertension include an increase in the CB volume due to vasodilation, altered transmitter phenotype of chemoreceptor cells and elevated production of neurotrophic factors. Accordingly, in both humans and animal models CB denervation prevents the breathing instability and lowers blood pressure. Knowledge of the morphofunctional aspects of the CB, a better understanding of its role in disease and recent advances in human CB translational research would contribute to the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Nikolai E Lazarov
- Department of Anatomy and Histology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria.
| | | |
Collapse
|
7
|
Abstract
The carotid body (CB) is a bilateral arterial chemoreceptor located in the carotid artery bifurcation with an essential role in cardiorespiratory homeostasis. It is composed of highly perfused cell clusters, or glomeruli, innervated by sensory fibers. Glomus cells, the most abundant in each glomerulus, are neuron-like multimodal sensory elements able to detect and integrate changes in several physical and chemical parameters of the blood, in particular O2 tension, CO2 and pH, as well as glucose, lactate, or blood flow. Activation of glomus cells (e.g., during hypoxia or hypercapnia) stimulates the afferent fibers which impinge on brainstem neurons to elicit rapid compensatory responses (hyperventilation and sympathetic activation). This chapter presents an updated view of the structural organization of the CB and the mechanisms underlying the chemosensory responses of glomus cells, with special emphasis on the molecular processes responsible for acute O2 sensing. The properties of the glomus cell-sensory fiber synapse as well as the organization of CB output are discussed. The chapter includes the description of recently discovered CB stem cells and progenitor cells, and their role in CB growth during acclimatization to hypoxemia. Finally, the participation of the CB in the mechanisms of disease is briefly discussed.
Collapse
Affiliation(s)
- José López-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Sevilla, Seville, Spain; Biomedical Research Center for Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| |
Collapse
|
8
|
Klinnikova AA, Danilova GA, Aleksandrova NP. Role of Nitric Oxide Synthase Pathways in the Effects of Proinflammatory Cytokines on the Respiratory Pattern and Hypoxic Ventilatory Response. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021060168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Iturriaga R, Del Rio R, Alcayaga J. Carotid Body Inflammation: Role in Hypoxia and in the Anti-inflammatory Reflex. Physiology (Bethesda) 2021; 37:128-140. [PMID: 34866399 DOI: 10.1152/physiol.00031.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Emergent evidence indicates that the carotid body (CB) chemoreceptors may sense systemic inflammatory molecules, and is an afferent-arm of the anti-inflammatory reflex. Moreover, a pro-inflammatory milieu within the CB is involved in the enhanced CB chemosensory responsiveness to oxygen following sustained and intermittent hypoxia. In this review, we focus on the physio-pathological participation of CBs in inflammatory diseases, such as sepsis and intermittent hypoxia.
Collapse
Affiliation(s)
- Rodrigo Iturriaga
- Laboratorio de Neurobiologia. Departamento de Fisiologia. Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Pontificia Universidad Catolica de Chile, Santiago-1, Región, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Santiago, Chile
| | - Rodrigo Del Rio
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Santiago, Chile.,Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Julio Alcayaga
- Laboratorio de Fisiología Celular, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
10
|
Quigley KS, Kanoski S, Grill WM, Barrett LF, Tsakiris M. Functions of Interoception: From Energy Regulation to Experience of the Self. Trends Neurosci 2021; 44:29-38. [PMID: 33378654 PMCID: PMC7780233 DOI: 10.1016/j.tins.2020.09.008] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/19/2020] [Accepted: 09/25/2020] [Indexed: 02/08/2023]
Abstract
We review recent work on the functions of interoceptive processing, by which the nervous system anticipates, senses, and integrates signals originating from the body. We focus on several exemplar functions of interoception, including energy regulation (ingestion and excretion), memory, affective and emotional experience, and the psychological sense of self. We emphasize two themes across these functions. First, the anatomy of interoceptive afferents makes it difficult to manipulate or directly measure interoceptive signaling in humans. Second, recent evidence shows that multimodal integration occurs across interoceptive modalities and between interoceptive and exteroceptive modalities. Whereas exteroceptive multimodal integration has been studied relatively extensively, fundamental questions remain regarding multimodal integration that involves interoceptive modalities. Future empirical work is required to better understand how and where multimodal interoceptive integration occurs.
Collapse
Affiliation(s)
- Karen S Quigley
- Department of Psychology, Northeastern University, Boston, MA, USA; Edith Nourse Rogers Memorial VA Hospital, Bedford, MA, USA.
| | - Scott Kanoski
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Warren M Grill
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Lisa Feldman Barrett
- Department of Psychology, Northeastern University, Boston, MA, USA; Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Manos Tsakiris
- Department of Psychology, Royal Holloway, University of London, London, UK; Department of Behavioural and Cognitive Sciences, Faculty of Humanities, Education and Social Sciences, University of Luxembourg, Luxembourg
| |
Collapse
|
11
|
Aleksandrova NP, Klinnikova AA, Danilova GA. Cyclooxygenase and nitric oxide synthase pathways mediate the respiratory effects of TNF-α in rats. Respir Physiol Neurobiol 2020; 284:103567. [PMID: 33161117 DOI: 10.1016/j.resp.2020.103567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/23/2020] [Accepted: 10/25/2020] [Indexed: 01/22/2023]
Abstract
TNF-α is the key inflammatory cytokine. TNF-α receptors are expressed in brain stem regions involved in respiratory control and also in the carotid bodies, which are the sensory organs monitoring arterial blood O2. We hypothesised that the circulating tumour necrosis factor (TNF)-α may affect the lung ventilation and modulate the hypoxic ventilatory response via activation of cyclooxygenase (COX) and nitric oxide synthase (NOS) pathways. The aim of the current study was to compare the respiratory effects of TNF-α before and after pretreatment with diclofenac or L-NG-nitro arginine methyl ester (L-NAME) nonspecific inhibitors of COX and NOS, respectively. The hypoxic ventilatory response was measured in anaesthetised rats using rebreathing techniques. We found that TNF-α increased the lung ventilation in normoxia but decreased the ventilatory response to hypoxia. Pretreatment with each of these inhibitors reduced respiratory effects of TNF-α. We believe that activation of COX and NOS-related pathways and also "cross-talk" between them mediates the TNF-α respiratory effects and underlies the impact of inflammation on the respiratory function.
Collapse
Affiliation(s)
- Nina Pavlovna Aleksandrova
- Head of Laboratory of Respiratory Physiology, Pavlov Institute of Physiology of RAS, nab Makarova6, St.-Petersburg, Russian Federation.
| | - Anna Andreevna Klinnikova
- Researcher of Laboratory of Respiratory Physiology, Pavlov Institute of Physiology of RAS, nab Makarova6, St.-Petersburg, Russian Federation.
| | - Galina Anatolevna Danilova
- Researcher of Laboratory of Respiratory Physiology, Pavlov Institute of Physiology of RAS, nab Makarova6, St.-Petersburg, Russian Federation.
| |
Collapse
|
12
|
Exploring the Mediators that Promote Carotid Body Dysfunction in Type 2 Diabetes and Obesity Related Syndromes. Int J Mol Sci 2020; 21:ijms21155545. [PMID: 32756352 PMCID: PMC7432672 DOI: 10.3390/ijms21155545] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/26/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022] Open
Abstract
Carotid bodies (CBs) are peripheral chemoreceptors that sense changes in blood O2, CO2, and pH levels. Apart from ventilatory control, these organs are deeply involved in the homeostatic regulation of carbohydrates and lipid metabolism and inflammation. It has been described that CB dysfunction is involved in the genesis of metabolic diseases and that CB overactivation is present in animal models of metabolic disease and in prediabetes patients. Additionally, resection of the CB-sensitive nerve, the carotid sinus nerve (CSN), or CB ablation in animals prevents and reverses diet-induced insulin resistance and glucose intolerance as well as sympathoadrenal overactivity, meaning that the beneficial effects of decreasing CB activity on glucose homeostasis are modulated by target-related efferent sympathetic nerves, through a reflex initiated in the CBs. In agreement with our pre-clinical data, hyperbaric oxygen therapy, which reduces CB activity, improves glucose homeostasis in type 2 diabetes patients. Insulin, leptin, and pro-inflammatory cytokines activate the CB. In this manuscript, we review in a concise manner the putative pathways linking CB chemoreceptor deregulation with the pathogenesis of metabolic diseases and discuss and present new data that highlight the roles of hyperinsulinemia, hyperleptinemia, and chronic inflammation as major factors contributing to CB dysfunction in metabolic disorders.
Collapse
|
13
|
Mkrtchian S, Kåhlin J, Gómez-Galán M, Ebberyd A, Yoshitake T, Schmidt S, Kehr J, Hildenborg M, Jonsson Fagerlund M, Erlandsson Harris H, Eriksson LI. The impact of damage-associated molecular patterns on the neurotransmitter release and gene expression in the ex vivo rat carotid body. Exp Physiol 2020; 105:1634-1647. [PMID: 32652583 DOI: 10.1113/ep088705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/08/2020] [Indexed: 12/21/2022]
Abstract
NEW FINDINGS What is the central question of this study? Are carotid bodies (CBs) modulated by the damage-associated molecular patterns (DAMPs) and humoral factors of aseptic tissue injury? What are the main findings and their importance? DAMPs (HMGB1, S100 A8/A9) and blood plasma from rats subjected to tibia surgery, a model of aseptic injury, stimulate the release of neurotransmitters (ATP, dopamine) and TNF-α from ex vivo rat CBs. All-thiol HMGB1 mediates upregulation of immune-related biological pathways. These data suggest regulation of CB function by endogenous mediators of innate immunity. ABSTRACT The glomus cells of carotid bodies (CBs) are the primary sensors of arterial partial O2 and CO2 tensions and moreover serve as multimodal receptors responding also to other stimuli, such as pathogen-associated molecular patterns (PAMPs) produced by acute infection. Modulation of CB function by excessive amounts of these immunomodulators is suggested to be associated with a detrimental hyperinflammatory state. We have hypothesized that yet another class of immunomodulators, endogenous danger-associated molecular patterns (DAMPs), released upon aseptic tissue injury and recognized by the same pathogen recognition receptors as PAMPs, might modulate the CB activity in a fashion similar to PAMPs. We have tested this hypothesis by exposing rat CBs to various DAMPs, such as HMGB1 (all-thiol and disulfide forms) and S100 A8/A9 in a series of ex vivo experiments that demonstrated the release of dopamine and ATP, neurotransmitters known to mediate CB homeostatic responses. We observed a similar response after incubating CBs with conditioned blood plasma obtained from the rats subjected to tibia surgery, a model of aseptic injury. In addition, we have investigated global gene expression in the rat CB using an RNA sequencing approach. Differential gene expression analysis showed all-thiol HMGB1-driven upregulation of a number of prominent pro-inflammatory markers including Il1α and Il1β. Interestingly, conditioned plasma had a more profound effect on the CB transcriptome resulting in inhibition rather than activation of the immune-related pathways. These data are the first to suggest potential modulation of CB function by endogenous mediators of innate immunity.
Collapse
Affiliation(s)
- Souren Mkrtchian
- Department of Physiology and Pharmacology, Section for Anesthesiology and Intensive Care Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jessica Kåhlin
- Department of Physiology and Pharmacology, Section for Anesthesiology and Intensive Care Medicine, Karolinska Institutet, Stockholm, Sweden.,Function Perioperative Medicine and Intensive Care, Karolinska University Hospital and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Marta Gómez-Galán
- Department of Physiology and Pharmacology, Section for Anesthesiology and Intensive Care Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anette Ebberyd
- Department of Physiology and Pharmacology, Section for Anesthesiology and Intensive Care Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Takashi Yoshitake
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | - Jan Kehr
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Pronexus Analytical AB, Bromma, Sweden
| | - Malin Hildenborg
- Department of Physiology and Pharmacology, Section for Anesthesiology and Intensive Care Medicine, Karolinska Institutet, Stockholm, Sweden.,Function Perioperative Medicine and Intensive Care, Karolinska University Hospital and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Malin Jonsson Fagerlund
- Department of Physiology and Pharmacology, Section for Anesthesiology and Intensive Care Medicine, Karolinska Institutet, Stockholm, Sweden.,Function Perioperative Medicine and Intensive Care, Karolinska University Hospital and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Helena Erlandsson Harris
- Department of Medicine Solna, Section for Rheumatology, Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lars I Eriksson
- Department of Physiology and Pharmacology, Section for Anesthesiology and Intensive Care Medicine, Karolinska Institutet, Stockholm, Sweden.,Function Perioperative Medicine and Intensive Care, Karolinska University Hospital and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
14
|
Gauda EB, McLemore GL. Premature birth, homeostatic plasticity and respiratory consequences of inflammation. Respir Physiol Neurobiol 2019; 274:103337. [PMID: 31733340 DOI: 10.1016/j.resp.2019.103337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/11/2019] [Accepted: 11/10/2019] [Indexed: 12/23/2022]
Abstract
Infants who are born premature can have persistent apnea beyond term gestation, reemergence of apnea associated with inflammation during infancy, increased risk of sudden unexplained death, and sleep disorder breathing during infancy and childhood. The autonomic nervous system, particularly the central neural networks that control breathing and peripheral and central chemoreceptors and mechanoreceptors that modulate the activity of the central respiratory network, are rapidly developing during the last trimester (22-37 weeks gestation) of fetal life. With advances in neonatology, in well-resourced, developed countries, infants born as young as 23 weeks gestation can survive. Thus, a substantial part of maturation of central and peripheral systems that control breathing occurs ex-utero in infants born at the limit of viability. The balance of excitatory and inhibitory influences dictates the ultimate output from the central respiratory network. We propose in this review that simply being born early in the last trimester can trigger homeostatic plasticity within the respiratory network tipping the balance toward inhibition that persists in infancy. We discuss the intersection of premature birth, homeostatic plasticity and biological mechanisms leading to respiratory depression during inflammation in former premature infants.
Collapse
Affiliation(s)
- Estelle B Gauda
- The Hospital for Sick Children, Division of Neonatology, Department of Pediatrics, University of Toronto, Toronto, Ontario, M5G 1X8, Canada.
| | - Gabrielle L McLemore
- Department of Biology, School of Computer, Mathematics and Natural Sciences (SCMNS), Morgan State University, Baltimore, MD, 21251, United States
| |
Collapse
|
15
|
Abstract
Surgery and other invasive procedures, which are routinely performed during general anesthesia, may induce an inflammatory response in the patient. This inflammatory response is an inherent answer of the body to the intervention and can be both beneficial and potentially harmful. The immune system represents a unique evolutionary achievement equipping higher organisms with an effective defense mechanism against exogenous pathogens. However, not only bacteria might evoke an immune response but also other noninfectious stimuli like the surgical trauma or mechanical ventilation may induce an inflammatory response of varying degree. In these cases, the immune system activation is not always beneficial for the patients and might carry the risk of concomitant, harmful effects on host cells, tissues, or even whole organ systems. Research over the past decades has contributed substantial information in which ways surgical patients may be affected by inflammatory reactions. Modulations of the patient's immune system may be evoked by the use of anesthetic agents, the nature of surgical trauma and the use of any supportive therapy during the perioperative period. The effects on the patient may be manifold, including various proinflammatory effects. This review focuses on the causes and effects of inflammation in the perioperative period. In addition, we also highlight possible approaches by which inflammation in the perioperative may be modulated in the future.
Collapse
Affiliation(s)
- Jan Rossaint
- From the Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | | |
Collapse
|
16
|
Peña-Ortega F. Clinical and experimental aspects of breathing modulation by inflammation. Auton Neurosci 2018; 216:72-86. [PMID: 30503161 DOI: 10.1016/j.autneu.2018.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 11/06/2018] [Accepted: 11/07/2018] [Indexed: 12/19/2022]
Abstract
Neuroinflammation is produced by local or systemic alterations and mediated mainly by glia, affecting the activity of various neural circuits including those involved in breathing rhythm generation and control. Several pathological conditions, such as sudden infant death syndrome, obstructive sleep apnea and asthma exert an inflammatory influence on breathing-related circuits. Consequently breathing (both resting and ventilatory responses to physiological challenges), is affected; e.g., responses to hypoxia and hypercapnia are compromised. Moreover, inflammation can induce long-lasting changes in breathing and affect adaptive plasticity; e.g., hypoxic acclimatization or long-term facilitation. Mediators of the influences of inflammation on breathing are most likely proinflammatory molecules such as cytokines and prostaglandins. The focus of this review is to summarize the available information concerning the modulation of the breathing function by inflammation and the cellular and molecular aspects of this process. I will consider: 1) some clinical and experimental conditions in which inflammation influences breathing; 2) the variety of experimental approaches used to understand this inflammatory modulation; 3) the likely cellular and molecular mechanisms.
Collapse
Affiliation(s)
- Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, QRO 76230, México.
| |
Collapse
|
17
|
Di Giulio C. Ageing of the carotid body. J Physiol 2018; 596:3021-3027. [PMID: 29319194 DOI: 10.1113/jp275300] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/05/2018] [Indexed: 02/03/2023] Open
Abstract
The ageing process is characterized by a decline in several physiological functions resulting in a reduced capability to maintain homeostasis. The lowered homeostatic capacity seems to involve the carotid body (CB), whose role is to modulate ventilation and tissue oxygen supply. It thus plays a prime role in all ageing processes. Ageing causes marked changes in CB morphology. In older animals, it is enlarged and shows a concomitant decrease in the percentage of chemoreceptor tissue, as well as a proliferation of type II cells. The carotid glomitis is present with aggregates of lymphocytes and fibrosis of the lobules. Type I cells are dehydrated, with a profound vacuolization, a shrinking nucleus, and lipofuscin accumulation. With increased age, human CB shows a reduction in the number and volume of mitochondria, fewer synaptic junctions between glomi, along with a reduction in CB content of neurotransmitters, leading to a sort of 'physiological denervation'. Ageing could be interpreted as a cumulative result of oxidative damage to cells, which derives from aerobic metabolism. Moreover, metabolic rate is tightly correlated with life duration; thus a loss in mitochondrial function is one of the prime factors affecting CB ageing processes. The age-related reduction in synaptic junctions might be a self-protective mechanism through which cells buffer themselves against an accumulation of reactive oxygen species. The correlation between hypoxia and the life duration of CB cells remains an open question until how and why cells sense oxygen is understood.
Collapse
Affiliation(s)
- Camillo Di Giulio
- Department of Neurosciences Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Italy
| |
Collapse
|
18
|
Tackling Pain Associated with Rheumatoid Arthritis: Proton-Sensing Receptors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1099:49-64. [PMID: 30306514 DOI: 10.1007/978-981-13-1756-9_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Rheumatoid arthritis (RA), characterized by chronic inflammation of synovial joints, is often associated with ongoing pain and increased pain sensitivity. Chronic pain that comes with RA turns independent, essentially becoming its own disease. It could partly explain that a significant number (50%) of RA patients fail to respond to current RA therapies that focus mainly on suppression of joint inflammation. The acute phase of pain seems to associate with joint inflammation in early RA. In established RA, the chronic phase of pain could be linked to inflammatory components of neuron-immune interactions and noninflammatory components. Accumulating evidence suggests that the initial inflammation and autoimmunity in RA (preclinical RA) begin outside of the joint and may originate at mucosal sites and alterations in the composition of microbiota located at mucosal sites could be essential for mucosal inflammation, triggering joint inflammation. Fibroblast-like synoviocytes in the inflamed joint respond to cytokines to release acidic components, lowering pH in synovial fluid. Extracellular proton binds to proton-sensing ion channels, and G-protein-coupled receptors in joint nociceptive fibers may contribute to sensory transduction and release of neurotransmitters, leading to pain and hyperalgesia. Activation of peripheral sensory neurons or nociceptors further modulates inflammation, resulting in neuroinflammation or neurogenic inflammation. Peripheral and central nerves work with non-neuronal cells (such as immune cells, glial cells) in concert to contribute to the chronic phase of RA-associated pain. This review will discuss actions of proton-sensing receptors on neurons or non-neuronal cells that modulate RA pathology and associated chronic pain, and it will be beneficial for the development of future therapeutic treatments.
Collapse
|
19
|
Aleksandrova NP, Danilova GA, Aleksandrov VG. Interleukin-1beta suppresses the ventilatory hypoxic response in rats via prostaglandin-dependent pathways. Can J Physiol Pharmacol 2017; 95:681-685. [DOI: 10.1139/cjpp-2016-0419] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the effect of the major inflammatory cytokine interleukin-1beta (IL-1β) on the ventilatory response to hypoxia. The goal was to test the hypothesis that IL-1β impairs the hypoxic ventilatory response in vivo by indirectly inhibiting respiratory neurons in the brainstem via prostaglandins. Thus, IL-1β was delivered by cerebroventricular injection, and the ventilatory hypoxic response was assessed in anesthetized, spontaneously breathing rats pretreated with or without diclofenac, a nonspecific inhibitor of prostaglandin synthesis. We found that the slope of the ventilatory response to hypoxia decreased almost 2-fold from 10.4 ± 3.02 to 4.06 ± 0.86 mL·min−1·(mm Hg)−1 (–61%) 90 min after administration of IL-1β (p < 0.05). The slope of tidal volume and mean inspiratory flow also decreased from 0.074 ± 0.02 to 0.039 ± 0.01 mL·(mm Hg)−1 (–45%, p < 0.05), and from 0.36 ± 0.07 to 0.2 ± 0.04 mL·s−1·(mm Hg)−1 (–46%, p < 0.05), respectively. Pretreatment with diclofenac blocked these effects. Thus, the data indicate that IL-1β degrades the ventilatory hypoxic response by stimulating production of prostaglandin. The increase of cerebral levels of IL-1β, which is induced by the activation of immune cells in the brain, may impair respiratory chemoreflexes.
Collapse
Affiliation(s)
- Nina P. Aleksandrova
- Respiratory Physiology Lab, Pavlov Institute of Physiology RAS, nab. Makarova, 6, Saint-Petersburg, 199034, Russian Federation
- Respiratory Physiology Lab, Pavlov Institute of Physiology RAS, nab. Makarova, 6, Saint-Petersburg, 199034, Russian Federation
| | - Galina A. Danilova
- Respiratory Physiology Lab, Pavlov Institute of Physiology RAS, nab. Makarova, 6, Saint-Petersburg, 199034, Russian Federation
- Respiratory Physiology Lab, Pavlov Institute of Physiology RAS, nab. Makarova, 6, Saint-Petersburg, 199034, Russian Federation
| | - Viacheslav G. Aleksandrov
- Respiratory Physiology Lab, Pavlov Institute of Physiology RAS, nab. Makarova, 6, Saint-Petersburg, 199034, Russian Federation
- Respiratory Physiology Lab, Pavlov Institute of Physiology RAS, nab. Makarova, 6, Saint-Petersburg, 199034, Russian Federation
| |
Collapse
|
20
|
Stokes JA, Arbogast TE, Moya EA, Fu Z, Powell FL. Minocycline blocks glial cell activation and ventilatory acclimatization to hypoxia. J Neurophysiol 2017; 117:1625-1635. [PMID: 28100653 DOI: 10.1152/jn.00525.2016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 01/11/2017] [Accepted: 01/11/2017] [Indexed: 01/14/2023] Open
Abstract
Ventilatory acclimatization to hypoxia (VAH) is the time-dependent increase in ventilation, which persists upon return to normoxia and involves plasticity in both central nervous system respiratory centers and peripheral chemoreceptors. We investigated the role of glial cells in VAH in male Sprague-Dawley rats using minocycline, an antibiotic that inhibits microglia activation and has anti-inflammatory properties, and barometric pressure plethysmography to measure ventilation. Rats received either minocycline (45mg/kg ip daily) or saline beginning 1 day before and during 7 days of chronic hypoxia (CH, PiO2 = 70 Torr). Minocycline had no effect on normoxic control rats or the hypercapnic ventilatory response in CH rats, but minocycline significantly (P < 0.001) decreased ventilation during acute hypoxia in CH rats. However, minocycline administration during only the last 3 days of CH did not reverse VAH. Microglia and astrocyte activation in the nucleus tractus solitarius was quantified from 30 min to 7 days of CH. Microglia showed an active morphology (shorter and fewer branches) after 1 h of hypoxia and returned to the control state (longer filaments and extensive branching) after 4 h of CH. Astrocytes increased glial fibrillary acidic protein antibody immunofluorescent intensity, indicating activation, at both 4 and 24 h of CH. Minocycline had no effect on glia in normoxia but significantly decreased microglia activation at 1 h of CH and astrocyte activation at 24 h of CH. These results support a role for glial cells, providing an early signal for the induction but not maintenance of neural plasticity underlying ventilatory acclimatization to hypoxia.NEW & NOTEWORTHY The signals for neural plasticity in medullary respiratory centers underlying ventilatory acclimatization to chronic hypoxia are unknown. We show that chronic hypoxia activates microglia and subsequently astrocytes. Minocycline, an antibiotic that blocks microglial activation and has anti-inflammatory properties, also blocks astrocyte activation in respiratory centers during chronic hypoxia and ventilatory acclimatization. However, minocycline cannot reverse ventilatory acclimatization after it is established. Hence, glial cells may provide signals that initiate but do not sustain ventilatory acclimatization.
Collapse
Affiliation(s)
- Jennifer A Stokes
- Division of Physiology, Department of Medicine; University of California, San Diego, La Jolla, California
| | - Tara E Arbogast
- Division of Physiology, Department of Medicine; University of California, San Diego, La Jolla, California
| | - Esteban A Moya
- Division of Physiology, Department of Medicine; University of California, San Diego, La Jolla, California
| | - Zhenxing Fu
- Division of Physiology, Department of Medicine; University of California, San Diego, La Jolla, California
| | - Frank L Powell
- Division of Physiology, Department of Medicine; University of California, San Diego, La Jolla, California
| |
Collapse
|
21
|
Abstract
Inflammation and immunity are regulated by neural reflexes. Recent basic science research has demonstrated that a neural reflex, termed the inflammatory reflex, modulates systemic and regional inflammation in a multiplicity of clinical conditions encountered in perioperative medicine and critical care. In this review, the authors describe the anatomic and physiologic basis of the inflammatory reflex and review the evidence implicating this pathway in the modulation of sepsis, ventilator-induced lung injury, postoperative cognitive dysfunction, myocardial ischemia-reperfusion injury, and traumatic hemorrhage. The authors conclude with a discussion of how these new insights might spawn novel therapeutic strategies for the treatment of inflammatory diseases in the context of perioperative and critical care medicine.
Collapse
|
22
|
Master ZR, Porzionato A, Kesavan K, Mason A, Chavez-Valdez R, Shirahata M, Gauda EB. Lipopolysaccharide exposure during the early postnatal period adversely affects the structure and function of the developing rat carotid body. J Appl Physiol (1985) 2016; 121:816-827. [PMID: 27418689 DOI: 10.1152/japplphysiol.01094.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 07/12/2016] [Indexed: 12/15/2022] Open
Abstract
The carotid body (CB) substantially influences breathing in premature infants by affecting the frequency of apnea and periodic breathing. In adult animals, inflammation alters the structure and chemosensitivity of the CB, yet it is not known if this pertains to neonates. We hypothesized that early postnatal inflammation leads to morphological and functional changes in the developing rat CB, which persists for 1 wk after the initial provoking insult. To test our hypothesis, we exposed rat pups at postnatal day 2 (P2) to lipopolysaccharide (LPS; 100 μg/kg) or saline (SAL) intraperitoneally. At P9-10 (1 wk after treatment), LPS-exposed animals had significantly more spontaneous intermittent hypoxic (IH) events, attenuated ventilatory responses to changes in oxygen tension (measured by whole body plethysmography), and attenuated hypoxic chemosensitivity of the carotid sinus nerve (measured in vitro), compared with SAL-exposed controls. These functional changes were associated with the following: 1) increased inflammatory cytokine mRNA levels; 2) decreased volume of supportive type II cells; and 3) elevated dopamine levels (a major inhibitory neuromodulator) within the CB. These findings suggest that early postnatal inflammation in newborn rats adversely affects the structure and function of the CB and is associated with increased frequency of intermittent desaturations, similar to the phenomenon observed in premature infants. Furthermore, this is the first newborn model of spontaneous intermittent desaturations that may be used to understand the mechanisms contributing to IH events in newborns.
Collapse
Affiliation(s)
- Zankhana R Master
- Department of Pediatrics, Division of Neonatology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Andrea Porzionato
- Department of Molecular Medicine, University of Padova, Padova, Italy; and
| | - Kalpashri Kesavan
- Department of Pediatrics, Division of Neonatology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ariel Mason
- Department of Pediatrics, Division of Neonatology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Raul Chavez-Valdez
- Department of Pediatrics, Division of Neonatology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Machiko Shirahata
- Department of Environmental Health Sciences, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Estelle B Gauda
- Department of Pediatrics, Division of Neonatology, The Johns Hopkins University School of Medicine, Baltimore, Maryland;
| |
Collapse
|
23
|
Cyclooxygenase pathway in modulation of the ventilatory response to hypercapnia by interleukin-1β in rats. Respir Physiol Neurobiol 2015; 209:85-90. [DOI: 10.1016/j.resp.2014.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 12/07/2014] [Accepted: 12/07/2014] [Indexed: 01/08/2023]
|
24
|
Expressions of angiotensin and cytokine receptors in the paracrine signaling of the carotid body in hypoxia and sleep apnea. Respir Physiol Neurobiol 2015; 209:6-12. [DOI: 10.1016/j.resp.2014.09.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 09/18/2014] [Accepted: 09/22/2014] [Indexed: 01/27/2023]
|
25
|
Iturriaga R, Moya EA, Del Rio R. Inflammation and oxidative stress during intermittent hypoxia: the impact on chemoreception. Exp Physiol 2015; 100:149-55. [DOI: 10.1113/expphysiol.2014.079525] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 12/12/2014] [Indexed: 12/13/2022]
Affiliation(s)
- Rodrigo Iturriaga
- Laboratorio de Neurobiología; Facultad de Ciencias Biológicas; Pontificia Universidad Católica de Chile; Santiago Chile
| | - Esteban A. Moya
- Laboratorio de Neurobiología; Facultad de Ciencias Biológicas; Pontificia Universidad Católica de Chile; Santiago Chile
| | - Rodrigo Del Rio
- Laboratorio de Neurobiología; Facultad de Ciencias Biológicas; Pontificia Universidad Católica de Chile; Santiago Chile
- Centro de Investigación Biomédica; Universidad Autónoma de Chile; Santiago Chile
| |
Collapse
|
26
|
Fernández R, Cortés P, Del Rio R, Acuña-Castillo C, Reyes EP. Lipopolysaccharide-Induced Ionized Hypocalcemia and Acute Kidney Injury in Carotid Chemo/Baro-Denervated Rats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 860:161-6. [PMID: 26303478 DOI: 10.1007/978-3-319-18440-1_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The acute kidney injury (AKI) observed during sepsis is due to an uncontrolled release of inflammatory mediators. Septic patients develop electrolytic disturbances and one of the most important is ionized hypocalcemia. AKI adversely affects the function of other organs and hypocalcemia is associated with cardiovascular and respiratory dysfunctions. Since carotid body chemoreceptors modulate the systemic inflammatory response during sepsis syndromes, we used pentobarbitone-anesthetized male Sprague-Dawley rats in control condition (SHAM surgery) and after bilateral carotid neurotomy (carotid chemo/baro-denervated, BCN). We evaluate serum creatinine (CRE), serum neutrophil gelatinase-associated lipocaline (NGAL), ionized calcium (iCa) and cardiac Troponin I (cTnI) 90 min after the IP administration of 15 mg/kg lipopolysaccharide (LPS) or saline. In the SHAM group, LPS failed to induce significant changes CRE, NGAL, or iCa, and increased cTnI. Conversely, in the BCN group LPS increased CRE and NGAL, decreased iCa, and enhanced the increase of cTnI. Our results suggest that carotid chemo/baro-receptors might contribute to the regulation of both renal function and calcemia during sepsis. In addition, results imply that the carotid chemo-baroreceptors serve as an immunosensory organ.
Collapse
Affiliation(s)
- R Fernández
- Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello, Santiago, Chile,
| | | | | | | | | |
Collapse
|
27
|
Fernandez R, Nardocci G, Navarro C, Reyes EP, Acuña-Castillo C, Cortes PP. Neural reflex regulation of systemic inflammation: potential new targets for sepsis therapy. Front Physiol 2014; 5:489. [PMID: 25566088 PMCID: PMC4266021 DOI: 10.3389/fphys.2014.00489] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 11/27/2014] [Indexed: 01/02/2023] Open
Abstract
Sepsis progresses to multiple organ dysfunction due to the uncontrolled release of inflammatory mediators, and a growing body of evidence shows that neural signals play a significant role in modulating the immune response. Thus, similar toall other physiological systems, the immune system is both connected to and regulated by the central nervous system. The efferent arc consists of the activation of the hypothalamic–pituitary–adrenal axis, sympathetic activation, the cholinergic anti-inflammatory reflex, and the local release of physiological neuromodulators. Immunosensory activity is centered on the production of pro-inflammatory cytokines, signals that are conveyed to the brain through different pathways. The activation of peripheral sensory nerves, i.e., vagal paraganglia by the vagus nerve, and carotid body (CB) chemoreceptors by the carotid/sinus nerve are broadly discussed here. Despite cytokine receptor expression in vagal afferent fibers, pro-inflammatory cytokines have no significant effect on vagus nerve activity. Thus, the CB may be the source of immunosensory inputs and incoming neural signals and, in fact, sense inflammatory mediators, playing a protective role during sepsis. Considering that CB stimulation increases sympathetic activity and adrenal glucocorticoids release, the electrical stimulation of arterial chemoreceptors may be suitable therapeutic approach for regulating systemic inflammation.
Collapse
Affiliation(s)
- Ricardo Fernandez
- Laboratorio de Fisiología, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello Santiago, Chile
| | - Gino Nardocci
- Laboratorio de Fisiología, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello Santiago, Chile
| | - Cristina Navarro
- Laboratorio de Fisiología, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello Santiago, Chile
| | - Edison P Reyes
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana - Universidad del Desarrollo Santiago, Chile ; Dirección de Investigación, Universidad Autónoma de Chile Santiago, Chile
| | - Claudio Acuña-Castillo
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile Santiago, Chile
| | - Paula P Cortes
- Laboratorio de Fisiología, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello Santiago, Chile ; BioAdvising Santiago, Chile
| |
Collapse
|
28
|
Sepsis progression to multiple organ dysfunction in carotid chemo/baro-denervated rats treated with lipopolysaccharide. J Neuroimmunol 2014; 278:44-52. [PMID: 25595251 DOI: 10.1016/j.jneuroim.2014.12.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 11/29/2014] [Accepted: 12/01/2014] [Indexed: 01/26/2023]
Abstract
Sepsis progresses to multiple organ dysfunction (MOD) due to the uncontrolled release of inflammatory mediators. Carotid chemo/baro-receptors could play a protective role during sepsis. In anesthetized male rats, we measured cardiorespiratory variables and plasma TNF-α, glucocorticoids, epinephrine, and MOD marker levels 90min after lipopolysaccharide (LPS) administration in control (SHAM surgery) and bilateral carotid chemo/baro-denervated (BCN) rats. BCN prior to LPS blunted the tachypneic response and enhanced tachycardia and hypotension. BCN-LPS rats also showed blunted plasma glucocorticoid responses, boosted epinephrine and TNF-α responses, and earlier MOD onset with a lower survival time compared with SHAM-LPS rats. Consequently, the complete absence of carotid chemo/baro-sensory function modified the neural, endocrine and inflammatory responses to sepsis. Thus, carotid chemo/baro-receptors play a protective role in sepsis.
Collapse
|
29
|
Pathogenic roles of the carotid body inflammation in sleep apnea. Mediators Inflamm 2014; 2014:354279. [PMID: 25276055 PMCID: PMC4170702 DOI: 10.1155/2014/354279] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/15/2014] [Accepted: 08/27/2014] [Indexed: 11/30/2022] Open
Abstract
Breathing difficulties in sleep are a hallmark of sleep-disordered breathing commonly observed in patients with sleep disorders. The pathophysiology of sleep apnea is in part due to an augmented activity of the carotid body chemoreflex. Arterial chemoreceptors in the carotid body are sensitive to inflammatory cytokines and immunogenic molecules in the circulation, because cytokine receptors are expressed in the carotid body in experimental animals and human. Intriguingly, proinflammatory cytokines are also locally produced and released in the carotid body. Also, there are significant increases in the expression of proinflammatory cytokines, cytokine receptors, and inflammatory mediators in the carotid body under hypoxic conditions, suggesting an inflammatory response of the carotid body. These upregulated cytokine signaling pathways could enhance the carotid chemoreceptor activity, leading to an overactivity of the chemoreflex adversely effecting breathing instability and autonomic imbalance. This review aims to summarize findings of the literature relevant to inflammation in the carotid body, with highlights on the pathophysiological impact in sleep apnea. It is concluded that local inflammation in the carotid body plays a pathogenic role in sleep apnea, which could potentially be a therapeutic target for the treatment of the pathophysiological consequence of sleep apnea.
Collapse
|
30
|
Kåhlin J, Mkrtchian S, Ebberyd A, Hammarstedt-Nordenvall L, Nordlander B, Yoshitake T, Kehr J, Prabhakar N, Poellinger L, Fagerlund MJ, Eriksson LI. The human carotid body releases acetylcholine, ATP and cytokines during hypoxia. Exp Physiol 2014; 99:1089-98. [PMID: 24887113 DOI: 10.1113/expphysiol.2014.078873] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Studies on experimental animals established that the carotid bodies are sensory organs for detecting arterial blood O2 levels and that the ensuing chemosensory reflex is a major regulator of cardiorespiratory functions during hypoxia. However, little information is available on the human carotid body responses to hypoxia. The present study was performed on human carotid bodies obtained from surgical patients undergoing elective head and neck cancer surgery. Our results show that exposing carotid body slices to hypoxia for a period as brief as 5 min markedly facilitates the release of ACh and ATP. Furthermore, prolonged hypoxia for 1 h induces an increased release of interleukin (IL)-1β, IL-4, IL-6, IL-8 and IL-10. Immunohistochemical analysis revealed that type 1 cells of the human carotid body express an array of cytokine receptors as well as hypoxia-inducible factor-1α and hypoxia-inducible factor-2α. Taken together, these results demonstrate that ACh and ATP are released from the human carotid body in response to hypoxia, suggesting that these neurotransmitters, as in several experimental animal models, play a role in hypoxic signalling also in the human carotid body. The finding that the human carotid body releases cytokines in response to hypoxia adds to the growing body of information suggesting that the carotid body may play a role in detecting inflammation, providing a link between the immune system and the nervous system.
Collapse
Affiliation(s)
- Jessica Kåhlin
- Section for Anesthesiology and Intensive Care Medicine, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden Department of Anesthesiology, Surgical Services and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| | - Souren Mkrtchian
- Section for Anesthesiology and Intensive Care Medicine, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Anette Ebberyd
- Section for Anesthesiology and Intensive Care Medicine, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | - Britt Nordlander
- Department of Otorhinolaryngology (ENT), Karolinska University Hospital, Stockholm, Sweden
| | - Takashi Yoshitake
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jan Kehr
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Nanduri Prabhakar
- Institute for Integrative Physiology & Center for Systems Biology of O2 Sensing, Biological Sciences Division, University of Chicago, Chicago, IL, USA
| | - Lorenz Poellinger
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Malin Jonsson Fagerlund
- Section for Anesthesiology and Intensive Care Medicine, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden Department of Anesthesiology, Surgical Services and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| | - Lars I Eriksson
- Section for Anesthesiology and Intensive Care Medicine, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden Department of Anesthesiology, Surgical Services and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
31
|
Abstract
Objective: Bidirectional links between the nervous and immune systems modulate inflammation. The cellular mechanisms underlying the detection of danger-associated molecular patterns and pathogen-associated molecular patterns by the nervous system are not well understood. We hypothesized that the carotid body, a tissue of neural crest origin, detect pathogen associated molecular patterns and danger associated molecular patterns via an inflammasome-dependent mechanism similar to that described in immune cells. Design: Randomized, controlled laboratory investigation. Setting: University laboratory. Subjects: C57Bl/6J mice; juvenile Sprague-Dawley rats, primary human neutrophils. Interventions: Rat carotid body chemosensitive cells, and human neutrophils, were treated with TLR agonists to activate inflammasome-dependent pathways. In mice, systemic inflammation was induced by the pathogen associated molecular pattern zymosan (intraperitoneal injection; 500 mg/kg). Isolated carotid body/carotid sinus nerve preparations were used to assess peripheral chemoafferent activity. Ventilation was measured by whole-body plethysmography. Measurements and Main Results: Chemosensitive carotid body glomus cells exhibited toll-like receptor (TLR-2 and TLR-4), NLRP1, and NLRP3 inflammasome immunoreactivities. Zymosan increased NLRP3 inflammasome and interleukin-1β expression in glomus cells (p < 0.01). Human neutrophils demonstrated similar LPS-induced changes in inflammasome expression. Carotid body glomus cells also expressed IL-1 receptor and responded to application of IL-1β with increases in intracellular [Ca2+]. Four hours after injection of zymosan carotid sinus nerve chemoafferent discharge assessed in vitro (i.e., in the absence of acidosis/circulating inflammatory mediators) was increased five-fold (p < 0.001). Accordingly, zymosan-induced systemic inflammation was accompanied by enhanced respiratory activity. Conclusions: In carotid body chemosensitive glomus cells, activation of toll-like receptors increases NLRP3 inflammasome expression, and enhances IL-1β production, which is capable of acting in an autocrine manner to enhance peripheral chemoreceptor drive.
Collapse
|
32
|
Reyes EP, Abarzúa S, Martin A, Rodríguez J, Cortés PP, Fernández R. LPS-induced c-Fos activation in NTS neurons and plasmatic cortisol increases in septic rats are suppressed by bilateral carotid chemodenervation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 758:185-90. [PMID: 23080161 DOI: 10.1007/978-94-007-4584-1_26] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Lipopolysaccharide (LPS) administered I.P. increases significantly the activation of c-Fos in neurons of the nucleus of the solitary tract (NTS), which in turn activates hypothalamus-pituitary-adrenal axis. The vagus nerve appears to play a role in conveying cytokines signals to the central nervous system (CNS), since -in rodent models of sepsis- bilateral vagotomy abolishes increases in plasmatic glucocorticoid levels, but does not suppress c-Fos NTS activation. Considering that NTS also receives sensory inputs from carotid body chemoreceptors, we evaluated c-Fos activation and plasmatic cortisol levels 90 min after I.P. administration of 15 mg/kg LPS. Experiments were performed in male Sprague-Dawley rats, in control conditions and after bilateral carotid neurotomy (BCN). LPS administration significantly increases the number of c-Fos positive NTS neurons and plasmatic cortisol levels in animals with intact carotid/sinus nerves. When LPS was injected after BCN, the number of c-Fos positive NTS neurons, and plasmatic cortisol levels were not significantly modified. Our data suggest that carotid body chemoreceptors might mediate CNS activation during sepsis.
Collapse
Affiliation(s)
- Edison-Pablo Reyes
- Clínica Alemana-Universidad del Desarrollo, Lo Barrenechea, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
33
|
Mayer CA, Ao J, Di Fiore JM, Martin RJ, MacFarlane PM. Impaired hypoxic ventilatory response following neonatal sustained and subsequent chronic intermittent hypoxia in rats. Respir Physiol Neurobiol 2013; 187:167-75. [PMID: 23562917 DOI: 10.1016/j.resp.2013.03.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 03/20/2013] [Accepted: 03/21/2013] [Indexed: 11/15/2022]
Abstract
Neonatal chronic intermittent hypoxia (CIH) enhances the ventilatory sensitivity to acute hypoxia (acute hypoxic ventilatory response, HVR), whereas sustained hypoxia (SH) can have the opposite effect. Therefore, we investigated whether neonatal rats pre-treated with SH prior to CIH exhibit a modified HVR. Rat pups were exposed to CIH (5% O2/5min, 8h/day) between 6 and 15 days of postnatal age (P6-15) after pre-treatment with either normoxia or SH (11% O2; P1-5). Using whole-body plethysmography, the acute (5min, 10% O2) HVR at P16 (1 day post-CIH) was unchanged following CIH (67.9±6.7% above baseline) and also SH (58.8±10.5%) compared to age-matched normoxic rats (54.7±6.3%). In contrast, the HVR was attenuated (16.5±6.0%) in CIH exposed rats pre-treated with SH. These data suggest that while neonatal SH and CIH alone have little effect on the magnitude of the acute HVR, their combined effects impose a synergistic disturbance to postnatal development of the HVR. These data could provide important insight into the consequences of not maintaining adequate levels of oxygen saturation during the early neonatal period, especially in vulnerable preterm infants susceptible to frequent bouts of hypoxemic events (CIH) that are commonly associated with apnea of prematurity.
Collapse
Affiliation(s)
- C A Mayer
- Department of Pediatrics, Case Western Reserve University, Rainbow Babies & Children's Hospital, Cleveland, OH 44106, USA
| | | | | | | | | |
Collapse
|
34
|
Porzionato A, Macchi V, De Caro R, Di Giulio C. Inflammatory and immunomodulatory mechanisms in the carotid body. Respir Physiol Neurobiol 2013; 187:31-40. [PMID: 23485800 DOI: 10.1016/j.resp.2013.02.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 02/05/2013] [Accepted: 02/19/2013] [Indexed: 10/27/2022]
Abstract
Evidence is available about the role of inflammatory/immunological factors in the physiology and plasticity of the carotid body, with potential clinical implications in obstructive sleep apnea syndrome and sudden infant death syndrome. In humans, lymphomonocytic aggregations (chronic carotid glomitis) have been reported in aging and opiate addiction. Glomus cells produce prostaglandin E2 and the cytokines interleukin 1β, interleukin 6 and TNF-α, with corresponding receptors. These factors modulate glomus cell excitability, catecholamine release and/or chemoreceptor discharge. The above cytokines are up-regulated in chronic sustained or intermittent hypoxia, and prevention of these changes, with ibuprofen or dexamethasone, may modulate hypoxia-induced changes in carotid body chemosensitivity. The main transcription factors considered to be involved are NF-kB and HIFs. Circulating immunogens (lipopolysaccharide) and cytokines may also affect peripheral arterial chemoreception, with the carotid body exerting an immunosensing function.
Collapse
Affiliation(s)
- Andrea Porzionato
- Section of Anatomy, Department of Molecular Medicine, University of Padova, Padova, Italy.
| | | | | | | |
Collapse
|
35
|
Gauda EB, Shirahata M, Mason A, Pichard LE, Kostuk EW, Chavez-Valdez R. Inflammation in the carotid body during development and its contribution to apnea of prematurity. Respir Physiol Neurobiol 2013; 185:120-31. [DOI: 10.1016/j.resp.2012.08.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 07/20/2012] [Accepted: 08/02/2012] [Indexed: 01/09/2023]
|
36
|
Mkrtchian S, Kåhlin J, Ebberyd A, Gonzalez C, Sanchez D, Balbir A, Kostuk EW, Shirahata M, Fagerlund MJ, Eriksson LI. The human carotid body transcriptome with focus on oxygen sensing and inflammation--a comparative analysis. J Physiol 2012; 590:3807-19. [PMID: 22615433 DOI: 10.1113/jphysiol.2012.231084] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The carotid body (CB) is the key oxygen sensing organ. While the expression of CB specific genes is relatively well studied in animals, corresponding data for the human CB are missing. In this study we used five surgically removed human CBs to characterize the CB transcriptome with microarray and PCR analyses, and compared the results with mice data. In silico approaches demonstrated a unique gene expression profile of the human and mouse CB transcriptomes and an unexpected upregulation of both human and mouse CB genes involved in the inflammatory response compared to brain and adrenal gland data. Human CBs express most of the genes previously proposed to be involved in oxygen sensing and signalling based on animal studies, including NOX2, AMPK, CSE and oxygen sensitive K+ channels. In the TASK subfamily of K+ channels, TASK-1 is expressed in human CBs, while TASK-3 and TASK-5 are absent, although we demonstrated both TASK-1 and TASK-3 in one of the mouse reference strains. Maxi-K was expressed exclusively as the spliced variant ZERO in the human CB. In summary, the human CB transcriptome shares important features with the mouse CB, but also differs significantly in the expression of a number of CB chemosensory genes. This study provides key information for future functional investigations on the human carotid body.
Collapse
Affiliation(s)
- Souren Mkrtchian
- Section for Anesthesiology and Intensive Care Medicine, Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Inflammation and cardio-respiratory control. Foreword. Respir Physiol Neurobiol 2011; 178:359-61. [PMID: 21712104 DOI: 10.1016/j.resp.2011.06.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 06/14/2011] [Indexed: 11/21/2022]
|