1
|
Wang SF, Chen HL, Liu FT. Galectins and Host-Pathogen Interactions: The roles in viral infections. Semin Immunol 2024; 76:101911. [PMID: 39580998 DOI: 10.1016/j.smim.2024.101911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024]
Abstract
Galectins, a family of carbohydrate-binding proteins, play crucial roles in the host-virus interaction landscape. This review explores the multifaceted contributions of endogenous galectins to various stages of the viral lifecycle, including attachment, replication, assembly, and release of progeny virions. Recent studies have indicated that viral infections can induce the expression and secretion of specific galectins, with elucidated signaling pathways in some cases, enhancing our understanding of their regulatory mechanisms. While many studies have focused on the effects of exogenous recombinant galectins, there is growing interest in the intrinsic functions of endogenous galectins, particularly through genetic alterations in cellular models. This review highlights the need for further research to uncover the complex roles of galectins in modulating viral infections and emphasizes their potential as therapeutic targets in the fight against viral diseases. Understanding these interactions could pave the way for novel strategies to enhance host defense mechanisms and mitigate viral pathogenesis.
Collapse
Affiliation(s)
- Sheng-Fan Wang
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.
| | - Hung-Lin Chen
- Master Program in Clinical Genomics and Proteomics, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Fu-Tong Liu
- Department of Dermatology, Keck School of Medicine of USC, Los Angeles, CA 90033, USA; Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan.
| |
Collapse
|
2
|
Nikolic VN, Popadic V, Jankovic SM, Govedarović N, Vujić S, Andjelković J, Stosic LS, Stevanović NČ, Zdravkovic M, Todorovic Z. The silent predictors: exploring galectin-3 and Irisin's tale in severe COVID-19. BMC Res Notes 2024; 17:324. [PMID: 39465409 PMCID: PMC11514771 DOI: 10.1186/s13104-024-06978-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 10/15/2024] [Indexed: 10/29/2024] Open
Abstract
OBJECTIVE This study aimed to evaluate the roles of galectin-3 and irisin as biomarkers in predicting severe outcomes in COVID-19 patients. RESULTS We analyzed serum levels of galectin-3 and irisin in 59 patients with severe COVID-19 and 30 healthy controls. Elevated galectin-3 levels were associated with increased risks of mortality, need for intensive care, and severe acute respiratory distress syndrome. The optimal cut-off value for galectin-3 was 13.47 ng/ml, with a sensitivity of 72.7% and specificity of 76.6%. Irisin levels did not differ significantly between survivors and non-survivors at admission or on the 3rd day post-admission, but approached significance on the 7th day. These findings suggest that galectin-3 could be a valuable prognostic biomarker for severe COVID-19 outcomes, while irisin's role remains to be clarified in further studies.
Collapse
Affiliation(s)
- Valentina N Nikolic
- Department of Pharmacology with Toxicology, University of Nis Faculty of Medicine, Bul. dr Zorana Djindjica 81 Nis, Nis, 18000, Serbia.
| | - Višeslav Popadic
- University Hospital Medical Center, Bezanijska kosa, Belgrade, Serbia
| | - Slobodan M Jankovic
- Department of Pharmacology and Toxicology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nenad Govedarović
- Department of Internal Medicine, University of Nis Faculty of Medicine, Nis, Serbia
| | - Stevan Vujić
- University of Nis Faculty of Medicine, Nis, Serbia
| | | | | | | | - Marija Zdravkovic
- University Hospital Medical Center, Bezanijska kosa, Belgrade, Serbia
- Department of Internal Medicine, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Zoran Todorovic
- University Hospital Medical Center, Bezanijska kosa, Belgrade, Serbia
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
3
|
Xiao Q, Zhou Q, Shen W, Dong S, Tan Y, Zhang X, Yao L, Li Q, Qin Z, Wang T. Blood urea nitrogen-to-albumin ratio independently predicts 30-day mortality in acute respiratory failure patients: a retrospective cohort study. J Thorac Dis 2024; 16:4892-4903. [PMID: 39268142 PMCID: PMC11388210 DOI: 10.21037/jtd-24-298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/21/2024] [Indexed: 09/15/2024]
Abstract
Background It is crucial to identify patients at high risk for acute respiratory failure (ARF) to provide appropriate and optimal clinical treatment. While previous studies have explored the use of prognostic biomarkers based on a combination of blood urea nitrogen (BUN) and albumin levels, no reports to date have evaluated its utility across a wide range of ARF etiologies in a large and diverse critical care population. Therefore, we aimed to ascertain the association between the BUN-to-albumin ratio (BAR) and mortality in these patients. Methods Data recorded in the first 24 h following intensive care unit (ICU) admission, including demographics, vital signs, laboratory test results, comorbidities, and score systems were retrieved from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database. A general additive model was used to determine whether there was a non-linear relationship between BAR and 30-day mortality. A multivariate Cox analysis was performed to measure the association between them. Results The study enrolled 9,734 patients with ARF. In comparison to survivors, non-survivors exhibited higher BAR [10.79 (6.25-18.81) vs. 7.35 (4.48-13.62), P<0.001]. The correlation between baseline BAR and 30-day all-cause mortality in patients with ARF was non-linear, with a significant inflection point (11.76 mg/g). The Kaplan-Meier curve demonstrated that ARF patients had higher 30-day all-cause mortality rates when they had higher BAR levels (>11.76 mg/g) with hazard ratio (HR) 1.54 [95% confidence interval (CI): 1.39-1.70]. Conclusions A high BAR was linked to a higher risk of mortality in ARF patients. BAR is a straightforward and possibly useful prognostic biomarker for ARF.
Collapse
Affiliation(s)
- Qiang Xiao
- Department of Pulmonary and Critical Care Medicine, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), Changde, China
| | - Quan Zhou
- Department of Science and Education, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), Changde, China
| | - Wei Shen
- Department of Quality Control, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), Changde, China
| | - Susu Dong
- Department of Pulmonary and Critical Care Medicine, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), Changde, China
| | - Yafen Tan
- Department of Pulmonary and Critical Care Medicine, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), Changde, China
| | - Xuan Zhang
- Department of Pulmonary and Critical Care Medicine, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), Changde, China
| | - Lu Yao
- Department of Pulmonary and Critical Care Medicine, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), Changde, China
| | - Qiuping Li
- Department of Pulmonary and Critical Care Medicine, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), Changde, China
| | - Zuoan Qin
- Department of Cardiovascular Medicine, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), Changde, China
| | - Tianli Wang
- Department of Pulmonary and Critical Care Medicine, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), Changde, China
| |
Collapse
|
4
|
Jia Q, Yang Y, Yao S, Chen X, Hu Z. Emerging Roles of Galectin-3 in Pulmonary Diseases. Lung 2024; 202:385-403. [PMID: 38850292 DOI: 10.1007/s00408-024-00709-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/24/2024] [Indexed: 06/10/2024]
Abstract
Galectin-3 is a multifunctional protein that is involved in various physiological and pathological events. Emerging evidence suggests that galectin-3 also plays a critical role in the pathogenesis of pulmonary diseases. Galectin-3 can be produced and secreted by various cell types in the lungs, and the overexpression of galectin-3 has been found in acute lung injury/acute respiratory distress syndrome (ALI/ARDS), pulmonary hypertension (PH), pulmonary fibrosis diseases, lung cancer, lung infection, chronic obstructive pulmonary disease (COPD), and asthma. Galectin-3 exerts diverse effects on the inflammatory response, immune cell activation, fibrosis and tissue remodeling, and tumorigenesis in these pulmonary disorders, and genetic and pharmacologic modulation of galectin-3 has therapeutic effects on the treatment of pulmonary illnesses. In this review, we summarize the structure and function of galectin-3 and the underlying mechanisms of galectin-3 in pulmonary disease pathologies; we also discuss preclinical and clinical evidence regarding the therapeutic potential of galectin-3 inhibitors in these pulmonary disorders. Additionally, targeting galectin-3 may be a very promising therapeutic approach for the treatment of pulmonary diseases.
Collapse
Affiliation(s)
- Qi Jia
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Yiyi Yang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Shanglong Yao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Zhiqiang Hu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China.
| |
Collapse
|
5
|
Saikh KU, Anam K, Sultana H, Ahmed R, Kumar S, Srinivasan S, Ahmed H. Targeting Myeloid Differentiation Primary Response Protein 88 (MyD88) and Galectin-3 to Develop Broad-Spectrum Host-Mediated Therapeutics against SARS-CoV-2. Int J Mol Sci 2024; 25:8421. [PMID: 39125989 PMCID: PMC11313481 DOI: 10.3390/ijms25158421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/16/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
Nearly six million people worldwide have died from the coronavirus disease (COVID-19) outbreak caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Although COVID-19 vaccines are largely successful in reducing the severity of the disease and deaths, the decline in vaccine-induced immunity over time and the continuing emergence of new viral variants or mutations underscore the need for an alternative strategy for developing broad-spectrum host-mediated therapeutics against SARS-CoV-2. A key feature of severe COVID-19 is dysregulated innate immune signaling, culminating in a high expression of numerous pro-inflammatory cytokines and chemokines and a lack of antiviral interferons (IFNs), particularly type I (alpha and beta) and type III (lambda). As a natural host defense, the myeloid differentiation primary response protein, MyD88, plays pivotal roles in innate and acquired immune responses via the signal transduction pathways of Toll-like receptors (TLRs), a type of pathogen recognition receptors (PRRs). However, recent studies have highlighted that infection with viruses upregulates MyD88 expression and impairs the host antiviral response by negatively regulating type I IFN. Galectin-3 (Gal3), another key player in viral infections, has been shown to modulate the host immune response by regulating viral entry and activating TLRs, the NLRP3 inflammasome, and NF-κB, resulting in the release of pro-inflammatory cytokines and contributing to the overall inflammatory response, the so-called "cytokine storm". These studies suggest that the specific inhibition of MyD88 and Gal3 could be a promising therapy for COVID-19. This review presents future directions for MyD88- and Gal3-targeted antiviral drug discovery, highlighting the potential to restore host immunity in SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Kamal U. Saikh
- GlycoMantra Inc., bwtech South of the University of Maryland Baltimore County, 1450 South Rolling Road, Baltimore, MD 21227, USA; (K.A.); (H.S.); (R.A.); (S.K.); (S.S.)
| | | | | | | | | | | | - Hafiz Ahmed
- GlycoMantra Inc., bwtech South of the University of Maryland Baltimore County, 1450 South Rolling Road, Baltimore, MD 21227, USA; (K.A.); (H.S.); (R.A.); (S.K.); (S.S.)
| |
Collapse
|
6
|
Portacci A, Iorillo I, Maselli L, Amendolara M, Quaranta VN, Dragonieri S, Carpagnano GE. The Role of Galectins in Asthma Pathophysiology: A Comprehensive Review. Curr Issues Mol Biol 2024; 46:4271-4285. [PMID: 38785528 PMCID: PMC11119966 DOI: 10.3390/cimb46050260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024] Open
Abstract
Galectins are a group of β-galactoside-binding proteins with several roles in immune response, cellular adhesion, and inflammation development. Current evidence suggest that these proteins could play a crucial role in many respiratory diseases such as pulmonary fibrosis, lung cancer, and respiratory infections. From this standpoint, an increasing body of evidence have recognized galectins as potential biomarkers involved in several aspects of asthma pathophysiology. Among them, galectin-3 (Gal-3), galectin-9 (Gal-9), and galectin-10 (Gal-10) are the most extensively studied in human and animal asthma models. These galectins can affect T helper 2 (Th2) and non-Th2 inflammation, mucus production, airway responsiveness, and bronchial remodeling. Nevertheless, while higher Gal-3 and Gal-9 concentrations are associated with a stronger degree of Th-2 phlogosis, Gal-10, which forms Charcot-Leyden Crystals (CLCs), correlates with sputum eosinophilic count, interleukin-5 (IL-5) production, and immunoglobulin E (IgE) secretion. Finally, several galectins have shown potential in clinical response monitoring after inhaled corticosteroids (ICS) and biologic therapies, confirming their potential role as reliable biomarkers in patients with asthma.
Collapse
Affiliation(s)
- Andrea Portacci
- Institute of Respiratory Disease, Department of Translational Biomedicine and Neuroscience, University “Aldo Moro”, 70121 Bari, Italy; (I.I.); (L.M.); (M.A.); (S.D.); (G.E.C.)
| | - Ilaria Iorillo
- Institute of Respiratory Disease, Department of Translational Biomedicine and Neuroscience, University “Aldo Moro”, 70121 Bari, Italy; (I.I.); (L.M.); (M.A.); (S.D.); (G.E.C.)
| | - Leonardo Maselli
- Institute of Respiratory Disease, Department of Translational Biomedicine and Neuroscience, University “Aldo Moro”, 70121 Bari, Italy; (I.I.); (L.M.); (M.A.); (S.D.); (G.E.C.)
| | - Monica Amendolara
- Institute of Respiratory Disease, Department of Translational Biomedicine and Neuroscience, University “Aldo Moro”, 70121 Bari, Italy; (I.I.); (L.M.); (M.A.); (S.D.); (G.E.C.)
| | | | - Silvano Dragonieri
- Institute of Respiratory Disease, Department of Translational Biomedicine and Neuroscience, University “Aldo Moro”, 70121 Bari, Italy; (I.I.); (L.M.); (M.A.); (S.D.); (G.E.C.)
| | - Giovanna Elisiana Carpagnano
- Institute of Respiratory Disease, Department of Translational Biomedicine and Neuroscience, University “Aldo Moro”, 70121 Bari, Italy; (I.I.); (L.M.); (M.A.); (S.D.); (G.E.C.)
| |
Collapse
|
7
|
Berber NK, Atlı S, Geçkil AA, Erdem M, Kıran TR, Otlu Ö, İn E. Diagnostic Value of Galectin-3 in Exacerbations of Chronic Obstructive Pulmonary Disease. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:529. [PMID: 38674175 PMCID: PMC11052179 DOI: 10.3390/medicina60040529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024]
Abstract
Background and Objectives: Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory disease characterized by acute exacerbations. Systemic inflammation and oxidative stress play an important role in the pathogenesis of COPD. Exacerbations in COPD reduce the quality of life and are associated with rapid disease progression. Galectin-3 is a beta-galactoside-binding lectin of approximately 30 kDa with pro-inflammatory and pro-fibrotic properties. This study aims to analyze the efficacy of serum galectin-3 in predicting exacerbations in COPD patients. Materials and Methods: Baseline demographic and clinical characteristics of all patients were recorded and blood samples were collected. A total of 58 consecutive COPD patients, including 28 patients (19 male and 9 female) with stable COPD and 30 patients (23 male and 7 female) with acute exacerbation of COPD (AECOPD), were included in the study. Results: Serum galectin-3 levels were significantly higher in the AECOPD group compared to the stable COPD group. A logistic regression analysis revealed that increased galectin-3 levels and disease duration were independent predictors of COPD exacerbation (OR = 5.322, 95% CI: 1.178-24.052, p = 0.03; and OR = 1.297, 95% CI: 1.028-1.635, p = 0.028; respectively). Conclusions: The results of our study demonstrated that Galectin-3 was a strong and independent predictor of exacerbations in COPD patients.
Collapse
Affiliation(s)
- Nurcan Kırıcı Berber
- Department of Chest Diseases, Malatya Turgut Özal University, Malatya 44210, Turkey;
| | - Siahmet Atlı
- Department of Chest Diseases, Van Training and Research Hospital, Van 65100, Turkey;
| | | | - Mehmet Erdem
- Department of Medical Biochemistry, Malatya Turgut Özal University, Malatya 44210, Turkey; (M.E.); (T.R.K.); (Ö.O.)
| | - Tuğba Raika Kıran
- Department of Medical Biochemistry, Malatya Turgut Özal University, Malatya 44210, Turkey; (M.E.); (T.R.K.); (Ö.O.)
| | - Önder Otlu
- Department of Medical Biochemistry, Malatya Turgut Özal University, Malatya 44210, Turkey; (M.E.); (T.R.K.); (Ö.O.)
| | - Erdal İn
- Department of Pulmonary Diseases, Faculty of Medicine, İzmir University of Economics, İzmir 35330, Turkey;
| |
Collapse
|
8
|
Karamese M, Gumus A, Atalay E, Tutuncu EE. Assessment of the levels of some prognostic biomolecules (galectins, ACE2, SCUBE1/2/3) in COVID-19 patients. Future Microbiol 2023; 18:1329-1337. [PMID: 37910069 DOI: 10.2217/fmb-2023-0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/20/2023] [Indexed: 11/03/2023] Open
Abstract
Aim: Our aim was to investigate the differences between healthy people and COVID-19 patients in terms of some immunological biomolecules, especially including those related to the inflammation process. Materials & methods: A total of 180 participants (90 healthy controls and 90 COVID-19 patients) were included. The expression levels of eight different inflammation-related biomolecules were measured by the ELISA technique. Results: The mean levels of ACE2, ANG1-7, GAL3, GAL9, SCUBE1, SCUBE2 and SCUBE3 were elevated in COVID-19 patients when compared with healthy controls, while the mean level of GAL2 was lower in COVID-19 patients than controls. Conclusion: To understand the cytokine storm mechanism and related parameters, more detailed studies should be performed investigating more related biomolecules and related signaling pathways.
Collapse
Affiliation(s)
- Murat Karamese
- Department of Medical Microbiology, Kafkas University, Faculty of Medicine, Kars, 36100, Turkey
| | - Abdullah Gumus
- Department of Medical Microbiology, Kafkas University, Faculty of Medicine, Kars, 36100, Turkey
| | - Eray Atalay
- Department of Internal Medicine, Kafkas University, Faculty of Medicine, Kars, 36100, Turkey
| | - Emin E Tutuncu
- Department of Clinical Microbiology & Infectious Diseases, Etlik City Hospital, Ankara, 06100, Turkey
| |
Collapse
|
9
|
Murphy SL, Halvorsen B, Holter JC, Huse C, Tveita A, Trøseid M, Hoel H, Kildal AB, Holten AR, Lerum TV, Skjønsberg OH, Michelsen AE, Aaløkken TM, Tonby K, Lind A, Dudman S, Granerud BK, Heggelund L, Bøe S, Dyrholt-Riise AM, Aukrust P, Barratt-Due A, Ueland T, Dahl TB. Circulating markers of extracellular matrix remodelling in severe COVID-19 patients. J Intern Med 2023; 294:784-797. [PMID: 37718572 DOI: 10.1111/joim.13725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
BACKGROUND Abnormal remodelling of the extracellular matrix (ECM) has generally been linked to pulmonary inflammation and fibrosis and may also play a role in the pathogenesis of severe COVID-19. To further elucidate the role of ECM remodelling and excessive fibrogenesis in severe COVID-19, we examined circulating levels of mediators involved in various aspects of these processes in COVID-19 patients. METHODS Serial blood samples were obtained from two cohorts of hospitalised COVID-19 patients (n = 414). Circulating levels of ECM remodelling mediators were quantified by enzyme immunoassays in samples collected during hospitalisation and at 3-month follow-up. Samples were related to disease severity (respiratory failure and/or treatment at the intensive care unit), 60-day total mortality and pulmonary pathology after 3-months. We also evaluated the direct effect of inactivated SARS-CoV-2 on the release of the different ECM mediators in relevant cell lines. RESULTS Several of the measured markers were associated with adverse outcomes, notably osteopontin (OPN), S100 calcium-binding protein A12 and YKL-40 were associated with disease severity and mortality. High levels of ECM mediators during hospitalisation were associated with computed tomography thorax pathology after 3-months. Some markers (i.e. growth differential factor 15, galectin 3 and matrix metalloproteinase 9) were released from various relevant cell lines (i.e. macrophages and lung cell lines) in vitro after exposure to inactivated SARS-CoV-2 suggesting a direct link between these mediators and the causal agent of COVID-19. CONCLUSION Our findings highlight changes to ECM remodelling and particularly a possible role of OPN, S100A12 and YKL-40 in the pathogenesis of severe COVID-19.
Collapse
Affiliation(s)
- Sarah Louise Murphy
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Bente Halvorsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Medicine, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jan Cato Holter
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Camilla Huse
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Anders Tveita
- Department of Internal Medicine, Baerum Hospital, Vestre Viken Hospital Trust, Gjettum, Norway
- Division of Laboratory Medicine, Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Marius Trøseid
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Hedda Hoel
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Department of Internal Medicine, Lovisenberg Diaconal Hospital, Oslo, Norway
| | - Anders Benjamin Kildal
- Department of Anesthesiology and Intensive Care, University Hospital of North Norway, Tromsø, Norway
- Department of Clinical Medicine, Faculty of Health Sciences, UIT - The Arctic University of Norway, Tromsø, Norway
| | - Aleksander Rygh Holten
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Acute Medicine, Oslo University Hospital, Oslo, Norway
| | - Tøri Vigeland Lerum
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Pulmonary Medicine, Oslo University Hospital Ullevål, Oslo, Norway
| | - Ole Henning Skjønsberg
- Department of Internal Medicine, Lovisenberg Diaconal Hospital, Oslo, Norway
- Department of Radiology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Annika E Michelsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Trond M Aaløkken
- Department of Internal Medicine, Lovisenberg Diaconal Hospital, Oslo, Norway
- Department of Infectious Diseases, Oslo University Hospital Ullevål, Oslo, Norway
| | - Kristian Tonby
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Infectious Diseases, Oslo University Hospital Ullevål, Oslo, Norway
| | - Andreas Lind
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Susanne Dudman
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Beathe Kiland Granerud
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Lars Heggelund
- Department of Internal Medicine, Drammen Hospital, Vestre Viken Hospital Trust, Drammen, Norway
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Simen Bøe
- Department of Anesthesiology and Intensive Care, Hammerfest County Hospital, Hammerfest, Norway
| | - Anne Ma Dyrholt-Riise
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Infectious Diseases, Oslo University Hospital Ullevål, Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Andreas Barratt-Due
- Division of Laboratory Medicine, Department of Immunology, Oslo University Hospital, Oslo, Norway
- Department of Anesthesia and Intensive Care Medicine, Oslo University Hospital, Oslo, Norway
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Thrombosis Research Center (TREC), Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Tuva Børresdatter Dahl
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| |
Collapse
|
10
|
Ren J, Kang Q, Wang F, Yu W. Association of lactate/albumin ratio with in-hospital mortality in ICU patients with acute respiratory failure: A retrospective analysis based on MIMIC-IV database. Medicine (Baltimore) 2023; 102:e35410. [PMID: 37773797 PMCID: PMC10545303 DOI: 10.1097/md.0000000000035410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 09/05/2023] [Indexed: 10/01/2023] Open
Abstract
We aimed to investigate the association between the lactate/albumin ratio (LAR), and in-hospital mortality in critically ill patients with acute respiratory failure. This retrospective cohort study was conducted based on the medical information mart for intensive care-IV database, which included critically ill adult patients with acute respiratory failure whose primary endpoint was in-hospital death. The analyses included curve fitting, a logistic multivariate regression model, and subgroup analysis. In this study, 6028 intensive care unit patients with acute respiratory failure were analyzed. Of these, 1843 (30.57%) died. After adjusting for confounding factors, a nonlinear relationship between LAR and in-hospital mortality was observed, and the risk of death was found to decrease by 81% with a reduction of 1 unit of LAR when it was < 4.46. The association between LAR and in-hospital mortality was not statistically significant when LAR was > 4.46. Hence, the relationship between LAR and in-hospital mortality could only be observed when the LAR was < 4.46. There is a nonlinear relationship between LAR and the risk of in-hospital death in intensive care unit patients with acute respiratory failure, and there is a saturation effect.
Collapse
Affiliation(s)
- Jing Ren
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Qingdao University, Qingdao, Shandong, People’s Republic of China
| | - Quou Kang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Qingdao University, Qingdao, Shandong, People’s Republic of China
| | - Fangfang Wang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Qingdao University, Qingdao, Shandong, People’s Republic of China
| | - Wencheng Yu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Qingdao University, Qingdao, Shandong, People’s Republic of China
| |
Collapse
|
11
|
Pedicillo MC, De Stefano IS, Zamparese R, Barile R, Meccariello M, Agostinone A, Villani G, Colangelo T, Serviddio G, Cassano T, Ronchi A, Franco R, Pannone P, Zito Marino F, Miele F, Municinò M, Pannone G. The Role of Toll-like Receptor-4 in Macrophage Imbalance in Lethal COVID-19 Lung Disease, and Its Correlation with Galectin-3. Int J Mol Sci 2023; 24:13259. [PMID: 37686069 PMCID: PMC10487501 DOI: 10.3390/ijms241713259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
To the current data, there have been 6,955,141 COVID-19-related deaths worldwide, reported to WHO. Toll-like receptors (TLRs) implicated in bacterial and virus sensing could be a crosstalk between activation of persistent innate-immune inflammation, and macrophage's sub-population alterations, implicated in cytokine storm, macrophage over-activation syndrome, unresolved Acute Respiratory Disease Syndrome (ARDS), and death. The aim of this study is to demonstrate the association between Toll-like-receptor-4 (TLR-4)-induced inflammation and macrophage imbalance in the lung inflammatory infiltrate of lethal COVID-19 disease. Twenty-five cases of autopsy lung tissues were studied by digital pathology-based immunohistochemistry to evaluate expression levels of TLR-4 (CD 284), pan-macrophage marker CD68 (clone KP1), sub-population marker related to alveolar macrophage Galectin-3 (GAL-3) (clone 9C4), and myeloid derived CD163 (clone MRQ-26), respectively. SARS-CoV-2 viral persistence has been evaluated by in situ hybridation (ISH) method. This study showed TLR-4 up-regulation in a subgroup of patients, increased macrophage infiltration in both Spike-1(+) and Spike-1(-) lungs (p < 0.0001), and a macrophage shift with important down-regulation of GAL-3(+) alveolar macrophages associated with Spike-1 persistence (p < 0.05), in favor of CD163(+) myeloid derived monocyte-macrophages. Data show that TLR-4 expression induces a persistent activation of the inflammation, with inefficient resolution, and pathological macrophage shift, thus explaining one of the mechanisms of lethal COVID-19.
Collapse
Affiliation(s)
- Maria Carmela Pedicillo
- Department of Clinical and Experimental Medicine, University of Foggia, Viale L.Pinto 1, 71122 Foggia, Italy; (M.C.P.); (I.S.D.S.); (A.A.)
| | - Ilenia Sara De Stefano
- Department of Clinical and Experimental Medicine, University of Foggia, Viale L.Pinto 1, 71122 Foggia, Italy; (M.C.P.); (I.S.D.S.); (A.A.)
| | - Rosanna Zamparese
- Legal Medicine Unit, Ascoli Piceno Hospital C-G. Mazzoni, Viale Degli Iris 13, 63100 Ascoli Piceno, Italy;
| | - Raffaele Barile
- Department of Medical and Surgical Sciences, University of Foggia, Viale L.Pinto 1, 71122 Foggia, Italy; (R.B.); (M.M.); (T.C.); (G.S.); (T.C.)
| | - Mario Meccariello
- Department of Medical and Surgical Sciences, University of Foggia, Viale L.Pinto 1, 71122 Foggia, Italy; (R.B.); (M.M.); (T.C.); (G.S.); (T.C.)
| | - Alessio Agostinone
- Department of Clinical and Experimental Medicine, University of Foggia, Viale L.Pinto 1, 71122 Foggia, Italy; (M.C.P.); (I.S.D.S.); (A.A.)
| | - Giuliana Villani
- Policlinico Riuniti, University-Hospital, Viale L.Pinto 1, 71122 Foggia, Italy;
| | - Tommaso Colangelo
- Department of Medical and Surgical Sciences, University of Foggia, Viale L.Pinto 1, 71122 Foggia, Italy; (R.B.); (M.M.); (T.C.); (G.S.); (T.C.)
- Cancer Cell Signalling Unit, Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), IRCCS Fondazione Casa Sollievo della Sofferenza, Viale Cappuccini sc.c., San Giovanni Rotondo, 71013 Foggia, Italy
| | - Gaetano Serviddio
- Department of Medical and Surgical Sciences, University of Foggia, Viale L.Pinto 1, 71122 Foggia, Italy; (R.B.); (M.M.); (T.C.); (G.S.); (T.C.)
| | - Tommaso Cassano
- Department of Medical and Surgical Sciences, University of Foggia, Viale L.Pinto 1, 71122 Foggia, Italy; (R.B.); (M.M.); (T.C.); (G.S.); (T.C.)
| | - Andrea Ronchi
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania “L Vanvitelli”, via Luciano Armanni, 80138 Naples, Italy; (A.R.); (R.F.); (F.Z.M.)
| | - Renato Franco
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania “L Vanvitelli”, via Luciano Armanni, 80138 Naples, Italy; (A.R.); (R.F.); (F.Z.M.)
| | - Paola Pannone
- Federico II, Department of Clinical Medicine and Surgery, School of medicine and Surgery, University of Naples, via Sergio Pasini, 80131 Naples, Italy;
| | - Federica Zito Marino
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania “L Vanvitelli”, via Luciano Armanni, 80138 Naples, Italy; (A.R.); (R.F.); (F.Z.M.)
| | - Francesco Miele
- Department of Surgery, University of Campania “L Vanvitelli”, 80138 Naples, Italy;
| | - Maurizio Municinò
- Forensic Medicine Unit, “S. Giuliano” Hospital, via Giambattista Basile, 80014 Giugliano in Campania, Italy;
| | - Giuseppe Pannone
- Department of Clinical and Experimental Medicine, University of Foggia, Viale L.Pinto 1, 71122 Foggia, Italy; (M.C.P.); (I.S.D.S.); (A.A.)
| |
Collapse
|
12
|
Bouffette S, Botez I, De Ceuninck F. Targeting galectin-3 in inflammatory and fibrotic diseases. Trends Pharmacol Sci 2023; 44:519-531. [PMID: 37391294 DOI: 10.1016/j.tips.2023.06.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 07/02/2023]
Abstract
Galectin (Gal)-3 is a β-galactoside-binding lectin emerging as a key player in cardiac, hepatic, renal, and pulmonary fibrosis and inflammation, respiratory infections caused by COVID-19, and neuroinflammatory disorders. Here, we review recent information highlighting Gal-3 as a relevant therapeutic target in these specific disease conditions. While a causal link was difficult to establish until now, we discuss how recent strategic breakthroughs allowed us to identify new-generation Gal-3 inhibitors with improved potency, selectivity, and bioavailability, and report their usefulness as valuable tools for proof-of-concept studies in various preclinical models of the aforementioned diseases, with emphasis on those actually in clinical stages. We also address critical views and suggestions intended to expand the therapeutic opportunities provided by this complex target.
Collapse
Affiliation(s)
- Selena Bouffette
- Servier, Neurology and Immuno-inflammation Therapeutic Area, Servier R&D Center, Gif-sur-Yvette, France; Université Paris-Saclay, Inserm, Inflammation Microbiome and Immunosurveillance, Orsay, France
| | - Iuliana Botez
- Servier, Drug Design Small Molecules Unit, Servier R&D Center, Gif-sur-Yvette, France
| | - Frédéric De Ceuninck
- Servier, Neurology and Immuno-inflammation Therapeutic Area, Servier R&D Center, Gif-sur-Yvette, France.
| |
Collapse
|
13
|
Yaluri N, Stančáková Yaluri A, Žeňuch P, Žeňuchová Z, Tóth Š, Kalanin P. Cardiac Biomarkers and Their Role in Identifying Increased Risk of Cardiovascular Complications in COVID-19 Patients. Diagnostics (Basel) 2023; 13:2508. [PMID: 37568870 PMCID: PMC10417576 DOI: 10.3390/diagnostics13152508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/03/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023] Open
Abstract
Cardiovascular disease (CVD) is a global health concern, causing significant morbidity and mortality. Both lifestyle and genetics influence the development of CVD. It is often diagnosed late, when the treatment options are limited. Early diagnosis of CVD with help of biomarkers is necessary to prevent adverse outcomes. SARS-CoV-2 infection can cause cardiovascular complications even in patients with no prior history of CVD. This review highlights cardiovascular biomarkers, including novel ones, and their applications as diagnostic and prognostic markers of cardiovascular complications related to SARS-CoV-2 infection. Patients with severe SARS-CoV-2 infection were shown to have elevated levels of cardiac biomarkers, namely N-terminal pro-brain natriuretic peptide (NT-pro-BNP), creatine kinase-myocardial band (CK-MB), and troponins, indicating acute myocardial damage. These biomarkers were also associated with higher mortality rates and therefore should be used throughout COVID-19 patient care to identify high-risk patients promptly to optimize their outcomes. Additionally, microRNAs (miRNAs) are also considered as potential biomarkers and predictors of cardiac and vascular damage in SARS-CoV-2 infection. Identifying molecular pathways contributing to cardiovascular manifestations in COVID-19 is essential for development of early biomarkers, identification of new therapeutic targets, and better prediction and management of cardiovascular outcomes.
Collapse
Affiliation(s)
- Nagendra Yaluri
- Center of Clinical and Preclinical Research, University Research Park Medipark, P. J. Šafárik University, 040 01 Košice, Slovakia
| | | | - Pavol Žeňuch
- Center of Clinical and Preclinical Research, University Research Park Medipark, P. J. Šafárik University, 040 01 Košice, Slovakia
| | - Zuzana Žeňuchová
- Center of Clinical and Preclinical Research, University Research Park Medipark, P. J. Šafárik University, 040 01 Košice, Slovakia
| | - Štefan Tóth
- Center of Clinical and Preclinical Research, University Research Park Medipark, P. J. Šafárik University, 040 01 Košice, Slovakia
| | - Peter Kalanin
- Center of Clinical and Preclinical Research, University Research Park Medipark, P. J. Šafárik University, 040 01 Košice, Slovakia
| |
Collapse
|
14
|
Zhao F, Tallarek AC, Wang Y, Xie Y, Diemert A, Lu-Culligan A, Vijayakumar P, Kittmann E, Urbschat C, Bayo J, Arck PC, Farhadian SF, Dveksler GS, Garcia MG, Blois SM. A unique maternal and placental galectin signature upon SARS-CoV-2 infection suggests galectin-1 as a key alarmin at the maternal-fetal interface. Front Immunol 2023; 14:1196395. [PMID: 37475853 PMCID: PMC10354452 DOI: 10.3389/fimmu.2023.1196395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/06/2023] [Indexed: 07/22/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic imposed a risk of infection and disease in pregnant women and neonates. Successful pregnancy requires a fine-tuned regulation of the maternal immune system to accommodate the growing fetus and to protect the mother from infection. Galectins, a family of β-galactoside-binding proteins, modulate immune and inflammatory processes and have been recognized as critical factors in reproductive orchestration, including maternal immune adaptation in pregnancy. Pregnancy-specific glycoprotein 1 (PSG1) is a recently identified gal-1 ligand at the maternal-fetal interface, which may facilitate a successful pregnancy. Several studies suggest that galectins are involved in the immune response in SARS-CoV-2-infected patients. However, the galectins and PSG1 signature upon SARS-CoV-2 infection and vaccination during pregnancy remain unclear. In the present study, we examined the maternal circulating levels of galectins (gal-1, gal-3, gal-7, and gal-9) and PSG1 in pregnant women infected with SARS-CoV-2 before vaccination or uninfected women who were vaccinated against SARS-CoV-2 and correlated their expression with different pregnancy parameters. SARS-CoV-2 infection or vaccination during pregnancy provoked an increase in maternal gal-1 circulating levels. On the other hand, levels of PSG1 were only augmented upon SARS-CoV-2 infection. A healthy pregnancy is associated with a positive correlation between gal-1 concentrations and gal-3 or gal-9; however, no correlation was observed between these lectins during SARS-CoV-2 infection. Transcriptome analysis of the placenta showed that gal-1, gal-3, and several PSG and glycoenzymes responsible for the synthesis of gal-1-binding glycotopes (such as linkage-specific N-acetyl-glucosaminyltransferases (MGATs)) are upregulated in pregnant women infected with SARS-CoV-2. Collectively, our findings identify a dynamically regulated "galectin-specific signature" that accompanies the SARS-CoV-2 infection and vaccination in pregnancy, and they highlight a potentially significant role for gal-1 as a key pregnancy protective alarmin during virus infection.
Collapse
Affiliation(s)
- Fangqi Zhao
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ann-Christin Tallarek
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yiru Wang
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yiran Xie
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anke Diemert
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alice Lu-Culligan
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, United States
| | - Pavithra Vijayakumar
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, United States
| | - Enrico Kittmann
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christopher Urbschat
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Juan Bayo
- Gene Therapy Laboratory, Instituto de Investigaciones en Medicina Traslacional, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Austral, Buenos Aires, Argentina
| | - Petra C. Arck
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Shelli F. Farhadian
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Gabriela S. Dveksler
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Mariana G. Garcia
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sandra M. Blois
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
15
|
Grewal T, Buechler C. Adipokines as Diagnostic and Prognostic Markers for the Severity of COVID-19. Biomedicines 2023; 11:1302. [PMID: 37238973 PMCID: PMC10215701 DOI: 10.3390/biomedicines11051302] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Accumulating evidence implicates obesity as a risk factor for increased severity of disease outcomes in patients infected with severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). Obesity is associated with adipose tissue dysfunction, which not only predisposes individuals to metabolic complications, but also substantially contributes to low-grade systemic inflammation, altered immune cell composition, and compromised immune function. This seems to impact the susceptibility and outcome of diseases caused by viruses, as obese people appear more vulnerable to developing infections and they recover later from infectious diseases than normal-weight individuals. Based on these findings, increased efforts to identify suitable diagnostic and prognostic markers in obese Coronavirus disease 2019 (COVID-19) patients to predict disease outcomes have been made. This includes the analysis of cytokines secreted from adipose tissues (adipokines), which have multiple regulatory functions in the body; for instance, modulating insulin sensitivity, blood pressure, lipid metabolism, appetite, and fertility. Most relevant in the context of viral infections, adipokines also influence the immune cell number, with consequences for overall immune cell activity and function. Hence, the analysis of the circulating levels of diverse adipokines in patients infected with SARS-CoV-2 have been considered to reveal diagnostic and prognostic COVID-19 markers. This review article summarizes the findings aimed to correlate the circulating levels of adipokines with progression and disease outcomes of COVID-19. Several studies provided insights on chemerin, adiponectin, leptin, resistin, and galectin-3 levels in SARS-CoV-2-infected patients, while limited information is yet available on the adipokines apelin and visfatin in COVID-19. Altogether, current evidence points at circulating galectin-3 and resistin levels being of diagnostic and prognostic value in COVID-19 disease.
Collapse
Affiliation(s)
- Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia;
| | - Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, 93053 Regensburg, Germany
| |
Collapse
|
16
|
Sigamani A, Mayo KH, Miller MC, Chen-Walden H, Reddy S, Platt D. An Oral Galectin Inhibitor in COVID-19—A Phase II Randomized Controlled Trial. Vaccines (Basel) 2023; 11:vaccines11040731. [PMID: 37112643 PMCID: PMC10140888 DOI: 10.3390/vaccines11040731] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
Background: SARS-CoV-2 vaccines play an important role in reducing disease severity, hospitalization, and death, although they failed to prevent the transmission of SARS-CoV-2 variants. Therefore, an effective inhibitor of galectin-3 (Gal-3) could be used to treat and prevent the transmission of COVID-19. ProLectin-M (PL-M), a Gal-3 antagonist, was shown to interact with Gal-3 and thereby prevent cellular entry of SARS-CoV-2 in previous studies. Aim: The present study aimed to further evaluate the therapeutic effect of PL-M tablets in 34 subjects with COVID-19. Methods: The efficacy of PL-M was evaluated in a randomized, double-blind, placebo-controlled clinical study in patients with mild to moderately severe COVID-19. Primary endpoints included changes in the absolute RT-PCR Ct values of the nucleocapsid and open reading frame (ORF) genes from baseline to days 3 and 7. The incidence of adverse events, changes in blood biochemistry, inflammatory biomarkers, and levels of antibodies against COVID-19 were also evaluated as part of the safety evaluation. Results: PL-M treatment significantly (p = 0.001) increased RT-PCR cycle counts for N and ORF genes on days 3 (Ct values 32.09 ± 2.39 and 30.69 ± 3.38, respectively) and 7 (Ct values 34.91 ± 0.39 and 34.85 ± 0.61, respectively) compared to a placebo treatment. On day 3, 14 subjects in the PL-M group had cycle counts for the N gene above the cut-off value of 29 (target cycle count 29), whereas on day 7, all subjects had cycle counts above the cut-off value. Ct values in placebo subjects were consistently less than 29, and no placebo subjects were RT-PCR-negative until day 7. Most of the symptoms disappeared completely after receiving PL-M treatment for 7 days in more patients compared to the placebo group. Conclusion: PL-M is safe and effective for clinical use in reducing viral loads and promoting rapid viral clearance in COVID-19 patients by inhibiting SARS-CoV-2 entry into cells through the inhibition of Gal-3.
Collapse
Affiliation(s)
- Alben Sigamani
- Carmel Research Consultancy Pvt. Ltd., Bengaluru 560025, Karnataka, India
- Correspondence: ; Tel.: +9188-8443-1444
| | - Kevin H. Mayo
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street, Minneapolis, MN 55455, USA
| | - Michelle C. Miller
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street, Minneapolis, MN 55455, USA
| | - Hana Chen-Walden
- Pharmalectin India Pvt. Ltd., Rangareddy 500039, Telangana, India
| | - Surendar Reddy
- Department of Pulmonology, ESIC Medical College and Hospital, Sanath Nagar, Hyderabad 500038, Telangana, India
| | - David Platt
- Pharmalectin India Pvt. Ltd., Rangareddy 500039, Telangana, India
| |
Collapse
|
17
|
Berber NK, Geçkil AA, Altan NÖ, Kıran TR, Otlu Ö, Erdem M, İn E. Efficacy of serum apelin and galectin-3 as potential predictors of mortality in severe COVID-19 patients. J Med Virol 2023; 95:e28494. [PMID: 36633201 DOI: 10.1002/jmv.28494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/29/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
Apelin is a cardioprotective biomarker while galectin-3 is a pro-inflammatory and profibrotic biomarker. Endothelial dysfunction, hyperinflammation, and pulmonary fibrosis are key mechanisms that contribute to the development of adverse outcomes in Coronavirus disease 2019 (COVID-19) infection. This study aims to analyze the prognostic value of serum apelin and galectin-3 levels to early predict patients at high risk of mortality in patients hospitalized for severe COVID-19 pneumonia. The study included 78 severe COVID-19 patients and 40 healthy controls. The COVID-19 patients were divided into two groups, survivors and nonsurvivors, according to their in-hospital mortality status. Basic demographic and clinical data of all patients were collected, and blood samples were taken before treatment. In our study, serum apelin levels were determined to be significantly lower in both nonsurvivor and survivor COVID-19 patients compared to the control subjects (for both groups, p < 0.001). However, serum apelin levels were similar in survivor and nonsurvivor COVID-19 patients (p > 0.05). Serum galectin-3 levels were determined to be higher in a statistically significant way in nonsurvivors compared to survivors and controls (for both groups; p < 0.001). Additionally, serum galectin-3 levels were significantly higher in the survivor patients compared to the control subjects (p < 0.001). Positive correlations were observed between galectin-3 and age, ferritin, CK-MB and NT-proBNP variables (r = 0.32, p = 0.004; r = 0.24, p = 0.04; r = 0.24, p = 0.03; and r = 0.33, p = 0.003, respectively) while a negative correlation was observed between galectin-3 and albumin (r = -0.31, p = 0.006). Multiple logistic regression analysis revealed that galectin-3 was an independent predictor of mortality in COVID-19 patients (odds ratio [OR] = 2.272, 95% confidence interval [CI] = 1.106-4.667; p = 0.025). When the threshold value for galectin-3 was regarded as 2.8 ng/ml, it was discovered to predict mortality with 80% sensitivity and 57% specificity (area under the curve = 0.738, 95% CI = 0.611-0.866, p = 0.002). Galectin-3 might be a simple, useful, and prognostic biomarker that can be utilized to predict patients who are at high risk of mortality in severe COVID-19 patients.
Collapse
Affiliation(s)
- Nurcan Kırıcı Berber
- Department of Chest Diseases, Malatya Turgut Özal University Faculty of Medicine, Malatya, Turkey
| | - Ayşegül Altıntop Geçkil
- Department of Chest Diseases, Malatya Turgut Özal University Faculty of Medicine, Malatya, Turkey
| | - Nazife Özge Altan
- Department of Chest Diseases, Tunceli State Hospital, Tunceli, Turkey
| | - Tuğba Raika Kıran
- Department of Biochemistry, Malatya Turgut Özal University Faculty of Medicine, Malatya, Turkey
| | - Önder Otlu
- Department of Biochemistry, Malatya Turgut Özal University Faculty of Medicine, Malatya, Turkey
| | - Mehmet Erdem
- Department of Biochemistry, Malatya Turgut Özal University Faculty of Medicine, Malatya, Turkey
| | - Erdal İn
- Department of Chest Diseases, Malatya Turgut Özal University Faculty of Medicine, Malatya, Turkey
| |
Collapse
|
18
|
Gaughan EE, Quinn TM, Mills A, Bruce AM, Antonelli J, MacKinnon AC, Aslanis V, Li F, O’Connor R, Boz C, Mills R, Emanuel P, Burgess M, Rinaldi G, Valanciute A, Mills B, Scholefield E, Hardisty G, Findlay EG, Parker RA, Norrie J, Dear JW, Akram AR, Koch O, Templeton K, Dockrell DH, Walsh TS, Partridge S, Humphries D, Wang-Jairaj J, Slack RJ, Schambye H, Phung D, Gravelle L, Lindmark B, Shankar-Hari M, Hirani N, Sethi T, Dhaliwal K. An Inhaled Galectin-3 Inhibitor in COVID-19 Pneumonitis: A Phase Ib/IIa Randomized Controlled Clinical Trial (DEFINE). Am J Respir Crit Care Med 2023; 207:138-149. [PMID: 35972987 PMCID: PMC9893334 DOI: 10.1164/rccm.202203-0477oc] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/16/2022] [Indexed: 02/02/2023] Open
Abstract
Rationale: High circulating galectin-3 is associated with poor outcomes in patients with coronavirus disease (COVID-19). We hypothesized that GB0139, a potent inhaled thiodigalactoside galectin-3 inhibitor with antiinflammatory and antifibrotic actions, would be safely and effectively delivered in COVID-19 pneumonitis. Objectives: Primary outcomes were safety and tolerability of inhaled GB0139 as an add-on therapy for patients hospitalized with COVID-19 pneumonitis. Methods: We present the findings of two arms of a phase Ib/IIa randomized controlled platform trial in hospitalized patients with confirmed COVID-19 pneumonitis. Patients received standard of care (SoC) or SoC plus 10 mg inhaled GB0139 twice daily for 48 hours, then once daily for up to 14 days or discharge. Measurements and Main Results: Data are reported from 41 patients, 20 of which were assigned randomly to receive GB0139. Primary outcomes: the GB0139 group experienced no treatment-related serious adverse events. Incidences of adverse events were similar between treatment arms (40 with GB0139 + SoC vs. 35 with SoC). Secondary outcomes: plasma GB0139 was measurable in all patients after inhaled exposure and demonstrated target engagement with decreased circulating galectin (overall treatment effect post-hoc analysis of covariance [ANCOVA] over days 2-7; P = 0.0099 vs. SoC). Plasma biomarkers associated with inflammation, fibrosis, coagulopathy, and major organ function were evaluated. Conclusions: In COVID-19 pneumonitis, inhaled GB0139 was well-tolerated and achieved clinically relevant plasma concentrations with target engagement. The data support larger clinical trials to determine clinical efficacy. Clinical trial registered with ClinicalTrials.gov (NCT04473053) and EudraCT (2020-002230-32).
Collapse
Affiliation(s)
- Erin E. Gaughan
- Centre for Inflammation Research, Edinburgh BioQuarter
- Department of Respiratory Medicine
| | - Tom M. Quinn
- Centre for Inflammation Research, Edinburgh BioQuarter
- Department of Respiratory Medicine
| | | | | | | | | | | | - Feng Li
- Centre for Inflammation Research, Edinburgh BioQuarter
| | | | - Cecilia Boz
- Centre for Inflammation Research, Edinburgh BioQuarter
| | - Ross Mills
- Centre for Inflammation Research, Edinburgh BioQuarter
| | | | | | | | | | - Bethany Mills
- Centre for Inflammation Research, Edinburgh BioQuarter
| | | | | | | | | | - John Norrie
- Edinburgh Clinical Trials Unit, Usher Institute, and
| | - James W. Dear
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Ahsan R. Akram
- Centre for Inflammation Research, Edinburgh BioQuarter
- Department of Respiratory Medicine
| | - Oliver Koch
- Centre for Inflammation Research, Edinburgh BioQuarter
- Infectious Diseases Department, Western General Hospital, Edinburgh, United Kingdom
| | | | - David H. Dockrell
- Centre for Inflammation Research, Edinburgh BioQuarter
- Infectious Diseases Department, Western General Hospital, Edinburgh, United Kingdom
| | - Timothy S. Walsh
- Centre for Inflammation Research, Edinburgh BioQuarter
- Department of Critical Care, New Royal Infirmary of Edinburgh, Edinburgh BioQuarter, Edinburgh, United Kingdom
| | | | | | | | | | | | - De Phung
- Galecto Inc., Copenhagen, Denmark; and
| | | | | | - Manu Shankar-Hari
- Centre for Inflammation Research, Edinburgh BioQuarter
- Department of Critical Care, New Royal Infirmary of Edinburgh, Edinburgh BioQuarter, Edinburgh, United Kingdom
| | - Nikhil Hirani
- Centre for Inflammation Research, Edinburgh BioQuarter
- Department of Respiratory Medicine
| | | | - Kevin Dhaliwal
- Centre for Inflammation Research, Edinburgh BioQuarter
- Department of Respiratory Medicine
| |
Collapse
|
19
|
Behnoush AH, Khalaji A, Alemohammad SY, Kalantari A, Cannavo A, Dimitroff CJ. Galectins can serve as biomarkers in COVID-19: A comprehensive systematic review and meta-analysis. Front Immunol 2023; 14:1127247. [PMID: 36923399 PMCID: PMC10009778 DOI: 10.3389/fimmu.2023.1127247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Background Galectins are an eleven-member class of lectins in humans that function as immune response mediators and aberrancies in their expression are commonly associated with immunological diseases. Several studies have focused on galectins as they may represent an important biomarker and a therapeutic target in the fight against COVID-19. This systematic review and meta-analysis examined the usefulness of clinical assessment of circulating galectin levels in patients with COVID-19. Methods International databases including PubMed, Scopus, Web of Science, and Embase were systematically used as data sources for our analyses. The random-effect model was implemented to calculate the standardized mean difference (SMD) and a 95% confidence interval (CI). Results A total of 18 studies, comprising 2,765 individuals, were identified and used in our analyses. We found that Gal-3 is the most widely investigated galectin in COVID-19. Three studies reported significantly higher Gal-1 levels in COVID-19 patients. Meta-analysis revealed that patients with COVID-19 had statistically higher levels of Gal-3 compared with healthy controls (SMD 0.53, 95% CI 0.10 to 0.96, P=0.02). However, there was no significant difference between severe and non-severe cases (SMD 0.45, 95% CI -0.17 to 1.07, P=0.15). While one study supports lower levels of Gal-8 in COVID-19, Gal-9 was measured to be higher in patients and more severe cases. Conclusion Our study supports Gal-3 as a valuable non-invasive biomarker for the diagnosis and/or prognosis of COVID-19. Moreover, based on the evidence provided here, more studies are needed to confirm a similar diagnostic and prognostic role for Gal-1, -8, and -9.
Collapse
Affiliation(s)
- Amir Hossein Behnoush
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirmohammad Khalaji
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyedeh Yasaman Alemohammad
- Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, United States
| | - Amirali Kalantari
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alessandro Cannavo
- Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy
| | - Charles J Dimitroff
- Department of Translational Medicine, Translational Glycobiology Institute at Florida International University, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| |
Collapse
|
20
|
Galectin-3 binding protein stimulated IL-6 expression is impeded by antibody intervention in SARS-CoV-2 susceptible cell lines. Sci Rep 2022; 12:17047. [PMID: 36220879 PMCID: PMC9553085 DOI: 10.1038/s41598-022-20852-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 09/20/2022] [Indexed: 12/30/2022] Open
Abstract
COVID-19 is the global pandemic that affected our population in the past 2 years. Considerable research has been done to better understand the pathophysiology of this disease and to identify new therapeutic targets, especially for severe cases. Galectin-3 (Gal-3) is a receptor present at the surface of different cell types, namely epithelial and inflammatory cells, which has been described as a severity marker in COVID-19. The activation of Gal-3 through its binding protein (Gal-3BP) is directly linked to the production of pro-inflammatory cytokines that contribute for the cytokine storm (CS) observed in severe COVID-19 patients. Here, we show that D2, a recombinant fragment of the lectin-binding region of Gal-3BP was able to stimulate the expression of IL-6 in colon and lung epithelial cell lines in β-galactoside dependent manner. We further show that D2-induced IL-6 augmentation was reduced by the anti-Gal-3BP monoclonal antibody 1959. Our data confirm and extend prior findings of Gal-3BP mediated IL-6 induction, enlightening the potential of its antibody-mediated s blockage for the prevention and treatment of CS and severe disease in COVID-19 patients.
Collapse
|
21
|
Portacci A, Quaranta VN, Iorillo I, Buonamico E, Diaferia F, Quaranta S, Locorotondo C, Dragonieri S, Carpagnano GE. The impact of healthcare setting on post-COVID mood disorders: A single-centre perspective from Southern Italy Respiratory Intensive Care Unit. Respir Med 2022; 203:107006. [PMID: 36223711 PMCID: PMC9526869 DOI: 10.1016/j.rmed.2022.107006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/21/2022] [Accepted: 09/27/2022] [Indexed: 01/08/2023]
Abstract
Background and objectives Post-COVID syndrome includes several clinical identities, with both physical and mental alterations lasting several months from the acute phase of COVID-19 disease. However, to date, data concerning the relationship between healthcare settings during COVID-19 disease and post-COVID mood disorders are lacking. Methods We performed a prospective study enrolling 440 patients with post-COVID syndrome. Each patient underwent a complete clinical evaluation, along with blood and functional tests. Patients were divided according to the healthcare setting needed during COVID-19 disease. Results Patients admitted to RICU were more prone to develop mental alterations, even when compared to ICU-admitted patients. Other risk factors for mood disorders included female gender and some post-COVID symptoms. Conclusions Healthcare needs during COVID-19 can explain the higher incidence of mood disorders in post-COVID syndrome. RICU arises as an important but underexplored risk factor for post-COVID psychic sequelae.
Collapse
Affiliation(s)
- Andrea Portacci
- Institute of Respiratory Disease, Department of Basic Medical Science, Neuroscience and Sense Organs, University "Aldo Moro", Bari, Italy.
| | | | - Ilaria Iorillo
- Institute of Respiratory Disease, Department of Basic Medical Science, Neuroscience and Sense Organs, University "Aldo Moro", Bari, Italy.
| | - Enrico Buonamico
- Institute of Respiratory Disease, Department of Basic Medical Science, Neuroscience and Sense Organs, University "Aldo Moro", Bari, Italy.
| | | | - Sara Quaranta
- Institute of Respiratory Disease, Department of Basic Medical Science, Neuroscience and Sense Organs, University "Aldo Moro", Bari, Italy.
| | - Cristian Locorotondo
- Institute of Respiratory Disease, Department of Basic Medical Science, Neuroscience and Sense Organs, University "Aldo Moro", Bari, Italy.
| | - Silvano Dragonieri
- Institute of Respiratory Disease, Department of Basic Medical Science, Neuroscience and Sense Organs, University "Aldo Moro", Bari, Italy.
| | - Giovanna Elisiana Carpagnano
- Institute of Respiratory Disease, Department of Basic Medical Science, Neuroscience and Sense Organs, University "Aldo Moro", Bari, Italy.
| |
Collapse
|
22
|
Portacci A, Pierucci P, Quaranta VN, Quaranta S, Iorillo I, Locorotondo C, Buonamico E, Dragonieri S, Carpagnano GE. A glimpse in post-COVID pathophysiology: the role of exhaled breath condensate pH as an early marker of residual alveolar inflammation. Expert Rev Respir Med 2022; 16:1093-1099. [PMID: 36170967 DOI: 10.1080/17476348.2022.2130764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND . Residual alveolar inflammation seems to be paramount in post-COVID pathophysiology. Currently, we still lack a reliable marker to detect and track alveolar phlogosis in these patients. Exhaled Breath Condensate (EBC) pH has robust evidences highlighting its correlation with lung phlogosis in various diseases. We aim to define the reliability of alveolar and bronchial EBC pH in the assessment and in the follow up of post-COVID related inflammation. RESEARCH DESIGN AND METHODS We enrolled 10 patients previously hospitalized due to COVID-19 pneumonia. We performed a complete follow-up after 3 months and 6 months from discharge. Each visit included routine blood tests, arterial blood gas analysis, 6-minute walking test, spirometry, diffusing capacity and body plethysmography. Finally, bronchial and alveolar EBC were collected at the end of each visit. RESULTS Alveolar EBC pH was significantly lower than bronchial EBC pH at T1. Moreover, alveolar EBC pH tended to be more acid after 3 months from hospital discharge compared to the same sample 6 months later. Serum inflammatory biomarkers showed no significant differences from T1 to T2. However, alveolar EBC pH was positively correlated with neutrophil-lymphocyte ratio. CONCLUSIONS Collecting EBC pH could help to understand pathophysiologic mechanism as well as monitoring alveolar inflammation in the post-COVID syndrome.
Collapse
Affiliation(s)
- Andrea Portacci
- Institute of Respiratory Disease, Department of Basic Medical Science, Neuroscience and Sense Organs, University of Medicine "Aldo Moro", Bari, Italy
| | - Paola Pierucci
- Institute of Respiratory Disease, Department of Basic Medical Science, Neuroscience and Sense Organs, University of Medicine "Aldo Moro", Bari, Italy
| | | | - Sara Quaranta
- Institute of Respiratory Disease, Department of Basic Medical Science, Neuroscience and Sense Organs, University of Medicine "Aldo Moro", Bari, Italy
| | - Ilaria Iorillo
- Institute of Respiratory Disease, Department of Basic Medical Science, Neuroscience and Sense Organs, University of Medicine "Aldo Moro", Bari, Italy
| | - Cristian Locorotondo
- Institute of Respiratory Disease, Department of Basic Medical Science, Neuroscience and Sense Organs, University of Medicine "Aldo Moro", Bari, Italy
| | - Enrico Buonamico
- Institute of Respiratory Disease, Department of Basic Medical Science, Neuroscience and Sense Organs, University of Medicine "Aldo Moro", Bari, Italy
| | - Silvano Dragonieri
- Institute of Respiratory Disease, Department of Basic Medical Science, Neuroscience and Sense Organs, University of Medicine "Aldo Moro", Bari, Italy
| | - Giovanna Elisiana Carpagnano
- Institute of Respiratory Disease, Department of Basic Medical Science, Neuroscience and Sense Organs, University of Medicine "Aldo Moro", Bari, Italy
| |
Collapse
|
23
|
Lolobali MC, Widnyana IMG, Wulansari NMA, Wibhuti IBR, Wiryana M, Sedono R, Heriwardito A. Contributing Factors to Increased Left Ventricular End-Diastolic Volume in COVID-19 ICU Patients in Sanglah Hospital: A Study on Galectin-3. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.10591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND: Coronavirus disease 2019 (COVID-19) is a respiratory disease that has become the largest pandemic and also could put the heart at risk of dysfunction. Galectin-3 is involved in the inflammatory process that continues with remodeling and eventually fibrosis. Using galectin-3 examination, we could predict the possible worsening of heart function and evaluate data on influencing factors for increased left ventricular end-diastolic volume (LVEDV) which could later progress to heart failure.
METHODS: This is an observational prospective analytic study in the COVID-19 ICU of Sanglah Hospital, Bali, Indonesia. The study was conducted from June to October 2021. All research subjects had their blood samples taken for galectin-3 levels examination using enzyme-linked immunosorbent assay (ELISA). Subjects were also evaluated for left ventricular end-diastolic volume (LVEDV) with echocardiography, SOFA scores, and troponin I levels. Subjects were treated with COVID-19 standard protocol established by the Ministry of Health. After 72 h post-admission, subjects were re-examined for galectin-3 levels and LVEDV. Data were analyzed using STATA™.
RESULTS: A total of 45 research subjects were analyzed. Bivariate analysis of the difference of galectin-3 and LVEDV was shown to be insignificant (r = 0.08), no correlation was found between galectin-3 level and LVEDV on ICU admission (r = 0.191), and no correlation found between galectin-3 level and LVEDV after 72 h of hospitalization (r=0.197). Multivariate analysis also showed that none of the variables, namely, difference of galectin-3 level, age, gender, troponin I, SOFA, and Charlson scores had statistically significant correlation with LVEDV (p < 0.05).
CONCLUSION: No significant correlation was found between galectin-3 level and an increase in LVEDV.
Collapse
|
24
|
Oatis D, Simon-Repolski E, Balta C, Mihu A, Pieretti G, Alfano R, Peluso L, Trotta MC, D’Amico M, Hermenean A. Cellular and Molecular Mechanism of Pulmonary Fibrosis Post-COVID-19: Focus on Galectin-1, -3, -8, -9. Int J Mol Sci 2022; 23:8210. [PMID: 35897786 PMCID: PMC9332679 DOI: 10.3390/ijms23158210] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022] Open
Abstract
Pulmonary fibrosis is a consequence of the pathological accumulation of extracellular matrix (ECM), which finally leads to lung scarring. Although the pulmonary fibrogenesis is almost known, the last two years of the COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its post effects added new particularities which need to be explored. Many questions remain about how pulmonary fibrotic changes occur within the lungs of COVID-19 patients, and whether the changes will persist long term or are capable of resolving. This review brings together existing knowledge on both COVID-19 and pulmonary fibrosis, starting with the main key players in promoting pulmonary fibrosis, such as alveolar and endothelial cells, fibroblasts, lipofibroblasts, and macrophages. Further, we provide an overview of the main molecular mechanisms driving the fibrotic process in connection with Galactin-1, -3, -8, and -9, together with the currently approved and newly proposed clinical therapeutic solutions given for the treatment of fibrosis, based on their inhibition. The work underlines the particular pathways and processes that may be implicated in pulmonary fibrosis pathogenesis post-SARS-CoV-2 viral infection. The recent data suggest that galectin-1, -3, -8, and -9 could become valuable biomarkers for the diagnosis and prognosis of lung fibrosis post-COVID-19 and promising molecular targets for the development of new and original therapeutic tools to treat the disease.
Collapse
Affiliation(s)
- Daniela Oatis
- Department of Infectious Disease, Faculty of Medicine, Vasile Goldis Western University of Arad, 310414 Arad, Romania;
- Doctoral School of Biology, Vasile Goldis Western University of Arad, 310414 Arad, Romania
| | - Erika Simon-Repolski
- Doctoral School of Medicine, Vasile Goldis Western University of Arad, 310414 Arad, Romania;
- Department of Pneumology, Arad Clinical Emergency Hospital, 310031 Arad, Romania
| | - Cornel Balta
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 310144 Arad, Romania;
| | - Alin Mihu
- Department of Microbiology, Faculty of Medicine, Vasile Goldis Western University of Arad, 310414 Arad, Romania;
| | - Gorizio Pieretti
- Department of Plastic Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Roberto Alfano
- Department of Advanced Medical and Surgical Sciences “DAMSS”, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Luisa Peluso
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (L.P.); (M.C.T.); (M.D.)
| | - Maria Consiglia Trotta
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (L.P.); (M.C.T.); (M.D.)
| | - Michele D’Amico
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (L.P.); (M.C.T.); (M.D.)
| | - Anca Hermenean
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 310144 Arad, Romania;
- Department of Histology, Faculty of Medicine, Vasile Goldis Western University of Arad, 310414 Arad, Romania
| |
Collapse
|
25
|
Balta S, Balta I. COVID-19 and Inflammatory Markers. Curr Vasc Pharmacol 2022; 20:326-332. [PMID: 35379133 DOI: 10.2174/1570161120666220404200205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 02/11/2022] [Accepted: 02/18/2022] [Indexed: 01/25/2023]
Abstract
Coronavirus disease-2019 (COVID-19) causes mild illness to serious infection with lung involvement, thrombosis, and other complications potentially resulting in fatal outcomes. Recognised inflammatory biomarkers play important roles in managing patients with COVID-19; for example, diagnosis, follow-up, assessment of treatment response, and risk stratification. Inflammatory markers in COVID-19 disease were analysed in two categories. Well-known inflammatory markers include complete blood count, C-reactive protein, albumin, cytokines, and erythrocyte sedimentation rate. Asymmetric dimethylarginine, endocan, pentraxin 3, serum amyloid A, soluble urokinase plasminogen activator receptor, total oxidant status and total antioxidant status, and galectin-3 are considered among the emerging inflammatory markers. This brief narrative review assesses the relationship between these inflammatory markers and COVID-19 infection.
Collapse
Affiliation(s)
- Sevket Balta
- Department of Cardiology, Hayat Hospital, Malatya, Turkey
| | - Ilknur Balta
- Department of Dermatology, Malatya Training and Research Hospital, Malatya, Turkey
| |
Collapse
|
26
|
Gal-3BP in Viral Infections: An Emerging Role in Severe Acute Respiratory Syndrome Coronavirus 2. Int J Mol Sci 2022; 23:ijms23137314. [PMID: 35806317 PMCID: PMC9266551 DOI: 10.3390/ijms23137314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 12/15/2022] Open
Abstract
Galectin-3 binding protein (Gal-3BP) is a multifunctional glycoprotein involved in cell–cell and cell–matrix interactions known to be upregulated in cancer and various viral infections, including HIV-1, HCV, and SARS-CoV-2, with a key role in regulating the antiviral immune response. Studies have identified a direct correlation between circulating levels of Gal-3BP and the severity of disease and/or disease progression for some viral infections, including SARS-CoV-2, suggesting a role of Gal-3BP in these processes. Due to Gal-3BP’s complex biology, the molecular mechanisms underlying its role in viral diseases have been only partially clarified. Gal-3BP induces the expression of interferons (IFNs) and proinflammatory cytokines, including interleukin-6 (IL-6), mainly interacting with galectin-3, targeting the TNF receptor-associated factors (TRAF-6 and TRAF-3) complex, thus having a putative role in the modulation of TGF-β signaling. In addition, an antiviral activity of Gal-3BP has been ascribed to a direct interaction of the protein with virus components. In this review, we explored the role of Gal-3BP in viral infections and the relationship between Gal-3BP upregulation and disease severity and progression, mainly focusing on SARS-CoV-2. Augmented knowledge of Gal-3BP’s role in virus infections can be useful to evaluate its possible use as a prognostic biomarker and as a putative target to block or attenuate severe disease.
Collapse
|
27
|
Serial cardiac biomarkers for risk stratification of patients with COVID-19. Clin Biochem 2022; 107:24-32. [PMID: 35691587 PMCID: PMC9181199 DOI: 10.1016/j.clinbiochem.2022.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Several studies have demonstrated an association between elevated cardiac biomarkers and adverse outcomes in patients with COVID-19. However, the prognostic and predictive capability of a multimarker panel in a prospectively collected, diverse "all-comers" COVID-19 population has not been fully elucidated. DESIGN & METHODS We prospectively assessed high sensitivity cardiac troponin I (hsTnI), NT-pro B-type Natriuretic Peptide (NT-proBNP), Galectin-3 (Gal-3), and procalcitonin (PCT) in 4,282 serial samples from 358 patients admitted with symptomatic, RT-PCR confirmed SARS-CoV-2 infection. Outcomes examined were 30-day in-hospital mortality and requirement for intubation within 10 days. RESULTS Baseline hsTnI had the highest AUC for predicting 30-day mortality (0.81; 95% CI, 0.73-0.88), followed by NT-proBNP (0.80; 0.74-0.86), PCT (0.77; 0.70-0.84), and Gal-3 (0.68; 0.60-0.76). HsTnI < 3.5 ng/L at baseline identified patients at low risk for in-hospital mortality (NPV 95.9%, sensitivity 97.3%) and 10-day intubation (NPV 90.4%, sensitivity 88.5%). Continuous, log-2 increases in troponin concentration were associated with reduced survival (p < 0.001) on Kaplan-Meier curves and increased risk of 30-day mortality: HR 1.26 (1.16-1.37) in univariate and 1.19 (1.03-1.4) in multivariate models. Time-varying doubling of concentrations of hsTnI and Gal-3 were associated with increased risk of 30-day mortality (adjusted HR 1.21, 1.06-1.4, and 1.92, 1.40-2.6). CONCLUSION HsTnI, NT-proBNP, Gal-3, and PCT are elevated at baseline in patients that have worse outcomes from COVID-19. HsTnI was the only independent predictor of 30-day mortality and intubation. Time-varying, doubling in hsTnI and Gal-3 further aided in prognostication of adverse outcomes. These results support the use of hsTnI for triaging patients with COVID-19.
Collapse
|
28
|
Al-Mterin MA, Alsalman A, Elkord E. Inhibitory Immune Checkpoint Receptors and Ligands as Prognostic Biomarkers in COVID-19 Patients. Front Immunol 2022; 13:870283. [PMID: 35432324 PMCID: PMC9008255 DOI: 10.3389/fimmu.2022.870283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/07/2022] [Indexed: 12/13/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is caused by SARS-CoV-2. During T-cell activation, the immune system uses different checkpoint pathways to maintain co-inhibitory and co-stimulatory signals. In COVID-19, expression of immune checkpoints (ICs) is one of the most important manifestations, in addition to lymphopenia and inflammatory cytokines, contributing to worse clinical outcomes. There is a controversy whether upregulation of ICs in COVID-19 patients might lead to T-cell exhaustion or activation. This review summarizes the available studies that investigated IC receptors and ligands in COVID-19 patients, as well as their effect on T-cell function. Several IC receptors and ligands, including CTLA-4, BTLA, TIM-3, VISTA, LAG-3, TIGIT, PD-1, CD160, 2B4, NKG2A, Galectin-9, Galectin-3, PD-L1, PD-L2, LSECtin, and CD112, were upregulated in COVID-19 patients. Based on the available studies, there is a possible relationship between disease severity and increased expression of IC receptors and ligands. Overall, the upregulation of some ICs could be used as a prognostic biomarker for disease severity.
Collapse
Affiliation(s)
| | - Alhasan Alsalman
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Eyad Elkord
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
- Biomedical Research Center, School of Science, Engineering and Environment, University of Salford, Manchester, United Kingdom
| |
Collapse
|
29
|
Crapnell RD, Dempsey NC, Sigley E, Tridente A, Banks CE. Electroanalytical point-of-care detection of gold standard and emerging cardiac biomarkers for stratification and monitoring in intensive care medicine - a review. Mikrochim Acta 2022; 189:142. [PMID: 35279780 PMCID: PMC8917829 DOI: 10.1007/s00604-022-05186-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/17/2022] [Indexed: 12/27/2022]
Abstract
Determination of specific cardiac biomarkers (CBs) during the diagnosis and management of adverse cardiovascular events such as acute myocardial infarction (AMI) has become commonplace in emergency department (ED), cardiology and many other ward settings. Cardiac troponins (cTnT and cTnI) and natriuretic peptides (BNP and NT-pro-BNP) are the preferred biomarkers in clinical practice for the diagnostic workup of AMI, acute coronary syndrome (ACS) and other types of myocardial ischaemia and heart failure (HF), while the roles and possible clinical applications of several other potential biomarkers continue to be evaluated and are the subject of several comprehensive reviews. The requirement for rapid, repeated testing of a small number of CBs in ED and cardiology patients has led to the development of point-of-care (PoC) technology to circumvent the need for remote and lengthy testing procedures in the hospital pathology laboratories. Electroanalytical sensing platforms have the potential to meet these requirements. This review aims firstly to reflect on the potential benefits of rapid CB testing in critically ill patients, a very distinct cohort of patients with deranged baseline levels of CBs. We summarise their source and clinical relevance and are the first to report the required analytical ranges for such technology to be of value in this patient cohort. Secondly, we review the current electrochemical approaches, including its sub-variants such as photoelectrochemical and electrochemiluminescence, for the determination of important CBs highlighting the various strategies used, namely the use of micro- and nanomaterials, to maximise the sensitivities and selectivities of such approaches. Finally, we consider the challenges that must be overcome to allow for the commercialisation of this technology and transition into intensive care medicine.
Collapse
Affiliation(s)
- Robert D Crapnell
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK
| | - Nina C Dempsey
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK.
| | - Evelyn Sigley
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK
| | - Ascanio Tridente
- Intensive Care Unit, Whiston Hospital, St Helens and Knowsley Teaching Hospitals NHS Trust, Warrington Road, Prescot, L35 5DR, UK
| | - Craig E Banks
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK.
| |
Collapse
|
30
|
Biomarkers Associated with Cardiovascular Disease in COVID-19. Cells 2022; 11:cells11060922. [PMID: 35326373 PMCID: PMC8946710 DOI: 10.3390/cells11060922] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/20/2022] [Accepted: 03/05/2022] [Indexed: 02/08/2023] Open
Abstract
Coronavirus disease-19 (COVID-19) emerged late December 2019 in the city of Wuhan, China and has since spread rapidly all over the world causing a global pandemic. While the respiratory system is the primary target of disease manifestation, COVID-19 has been shown to also affect several other organs, making it a rather complex, multi-system disease. As such, cardiovascular involvement has been a topic of discussion since the beginning of the COVID-19 pandemic, primarily due to early reports of excessive myocardial injury in these patients. Treating physicians are faced with multiple challenges in the management and early triage of patients with COVID-19, as disease severity is highly variable ranging from an asymptomatic infection to critical cases rapidly deteriorating to intensive care treatment or even fatality. Laboratory biomarkers provide important prognostic information which can guide decision making in the emergency department, especially in patients with atypical presentations. Several cardiac biomarkers, most notably high-sensitive cardiac troponin (hs-cTn) and N-terminal pro-B-type natriuretic peptide (NT-proBNP), have emerged as valuable predictors of prognosis in patients with COVID-19. The purpose of this review was to offer a concise summary on prognostic cardiac biomarkers in COVID-19 and discuss whether routine measurements of these biomarkers are warranted upon hospital admission.
Collapse
|
31
|
Pedrosa LDF, Raz A, Fabi JP. The Complex Biological Effects of Pectin: Galectin-3 Targeting as Potential Human Health Improvement? Biomolecules 2022; 12:289. [PMID: 35204790 PMCID: PMC8961642 DOI: 10.3390/biom12020289] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 02/07/2023] Open
Abstract
Galectin-3 is the only chimeric representative of the galectin family. Although galectin-3 has ubiquitous regulatory and physiological effects, there is a great number of pathological environments where galectin-3 cooperatively participates. Pectin is composed of different chemical structures, such as homogalacturonans, rhamnogalacturonans, and side chains. The study of pectin's major structural aspects is fundamental to predicting the impact of pectin on human health, especially regarding distinct molecular modulation. One of the explored pectin's biological activities is the possible galectin-3 protein regulation. The present review focuses on revealing the structure/function relationship of pectins, their fragments, and their biological effects. The discussion highlighted by this review shows different effects described within in vitro and in vivo experimental models, with interesting and sometimes contradictory results, especially regarding galectin-3 interaction. The review demonstrates that pectins are promissory food-derived molecules for different bioactive functions. However, galectin-3 inhibition by pectin had been stated in literature before, although it is not a fully understood, experimentally convincing, and commonly agreed issue. It is demonstrated that more studies focusing on structural analysis and its relation to the observed beneficial effects, as well as substantial propositions of cause and effect alongside robust data, are needed for different pectin molecules' interactions with galectin-3.
Collapse
Affiliation(s)
- Lucas de Freitas Pedrosa
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508000, SP, Brazil;
| | - Avraham Raz
- Department of Oncology and Pathology, School of Medicine, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA;
| | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508000, SP, Brazil;
- Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo 05508080, SP, Brazil
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo 05508080, SP, Brazil
| |
Collapse
|