1
|
Zapała L, Ciszkowicz E, Kosińska-Pezda M, Maciołek U, Kozioł AE, Miłoś A, Woźnicka E, Bocian A, Zapała W, Rydel-Ciszek K, Perrone MG. Novel silver(I) complexes with fenamates: Insights into synthesis, spectral characterization, and bioactivity. J Inorg Biochem 2025; 266:112846. [PMID: 39938147 DOI: 10.1016/j.jinorgbio.2025.112846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/27/2025] [Accepted: 02/03/2025] [Indexed: 02/14/2025]
Abstract
Six new Ag(I) ions complexes with N-phenylanthranilic, mefenamic, and niflumic acids have been synthesized. Three of them are binary complexes with the [Ag(L)] formula (where L represents N-phenylanthranilate (nfa), mefenamate (mfa), or niflumate (nif) ions), and the other three complexes are ternary with the formula [Ag(L)(phen)2]⋅nH2O (where phen - 1,10-phenanthroline). The complexes were characterized by elemental analysis, differential scanning calorimetry (DSC), X-ray fluorescence, powder X-ray diffraction, and single-crystal X-ray structure analysis. Additionally, techniques such as ESI-MS spectrometry, 1H NMR, UV-Vis, and FTIR spectroscopy were employed. The X-ray crystallography showed that in the solid [Ag(nif)] complex, the cation showed an unusual structure with coordination number 5, i.e. AgO3NC. The silver cation interacts with three niflumate anions, forming a two-dimensional coordination polymer. Complexes have potential antibacterial efficacy with varied minimum inhibitory concentration values (MIC) between 45.96 and 800 μM against multidrug-resistant Pseudomonas aeruginosa. Antibacterial combination therapy of Ag(I) complexes with chloramphenicol (CHL) and kanamycin (KAN) showed a very strong synergistic impact against P. aeruginosa with no cytotoxic effect on normal human fibroblasts. Complexes [Ag(nif)] and [Ag(nfa)] inhibit protein denaturation, bind to BSA via static quenching (kq = 0.65-1.08 × 1013 M-1 s-1). Furthermore, the formation of these complexes enhances the penetration of the drug across human membrane monolayers, which could improve bioavailability and therapeutic potential. The [Ag(nif)] complex demonstrates significant potential for topical dermal application due to its antimicrobial and anti-inflammatory properties. Notably, among all complexes evaluated, it displays the lowest BA/AB ratio (5.41), facilitating the most efficient transdermal permeation.
Collapse
Affiliation(s)
- Lidia Zapała
- Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, Al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland.
| | - Ewa Ciszkowicz
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, Al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland.
| | - Małgorzata Kosińska-Pezda
- Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, Al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland.
| | - Urszula Maciołek
- Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, M.C. Skłodowska Square 3, 20-031 Lublin, Poland.
| | - Anna E Kozioł
- Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, M.C. Skłodowska Square 3, 20-031 Lublin, Poland.
| | - Anna Miłoś
- Doctoral School of the Rzeszow University of Technology, Al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland.
| | - Elżbieta Woźnicka
- Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, Al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland.
| | - Aleksandra Bocian
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, Al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland.
| | - Wojciech Zapała
- Department of Chemical and Process Engineering, Faculty of Chemistry, Rzeszow University of Technology, Al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland.
| | - Katarzyna Rydel-Ciszek
- Department of Physical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, Al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland.
| | - Maria Grazia Perrone
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", Via E. Orabona 4, 70125 Bari, Italy.
| |
Collapse
|
2
|
Kuila A, Diez‐Cabanes V, Melillo A, Gosch J, Dhakshinamoorthy A, Yao S, Mouchaham G, Serre C, García H, Navalon S, Durrant JR, Maurin G, Paz Y. Excited State Transient Phenomena in Two Different Phases of the Photoactive MOF MIP-177(Ti). SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407273. [PMID: 39967438 PMCID: PMC11947516 DOI: 10.1002/smll.202407273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 01/28/2025] [Indexed: 02/20/2025]
Abstract
The metal organic framework (MOF) MIP-177(Ti) is under the spotlight for its robust photo-response and stability. This MOF can be synthesized in forms: MIP-177(Ti)-LT (LT: low temperature) and MIP-177(Ti)-HT (HT: high temperature). The MIP-177(Ti)-LT version comprises of Ti12O15 units interconnected by 3,3',5,5'-tetracarboxydiphenylmethane (mdip) ligands and interconnecting formate groups. Upon high temperature treatment, MIP-177(Ti)-LT loses its formate groups, thus rearranging into a continuous 1-D chain of Ti6O9 units leading to the MIP-177(Ti)-HT. Based on this 1-D connected structure, one should expect a higher catalytic activity of MIP-177(Ti)-HT. Nevertheless, the hydrogen evolution reaction photoactivity assessment clearly indicates the opposite. Combining transient IR measurements (TRIR), TAS and DFT/TD-DFPT calculations unveils the reasons for this situation. The TRIR measurements evidence that the photoinduced electrons are located in the inorganic part, while the holes are in the mdip ligand. The longer lifetime of MIP-177(Ti)-LT is mapped onto a slower decay of the Ti-O related peaks. A reversible change in the coordination of the carboxylate groups from a bidentate to a monodentate coordination is observed only in MIP-177(Ti)-LT. Complementary DFT and TD-DFPT simulations demonstrate a higher electron delocalization on the inorganic part for MIP-177(Ti)-LT (hence, enhanced mobility and slower recombination), thus explaining its superior photocatalytic activity.
Collapse
Affiliation(s)
- Aneek Kuila
- Department of Chemical EngineeringTechnionHaifa3200003Israel
| | | | - Arianna Melillo
- Institut des Matériaux Poreux de ParisESPCI ParisÉcole Normale SupérieureCNRSPSL UniversityParis75005France
| | - Jonas Gosch
- Instituto de Tecnología Química (UPV‐CSIC)Universitat Politècnica de ValènciaAvenida de los Naranjos s/nValencia46022Spain
| | | | - Shilin Yao
- Department of Chemistry and Centre for Processable ElectronicsImperial College LondonLondonW12 0BZUK
| | - Georges Mouchaham
- Institut des Matériaux Poreux de ParisESPCI ParisÉcole Normale SupérieureCNRSPSL UniversityParis75005France
| | - Christian Serre
- Institut des Matériaux Poreux de ParisESPCI ParisÉcole Normale SupérieureCNRSPSL UniversityParis75005France
| | - Hermenegildo García
- Instituto de Tecnología Química (UPV‐CSIC)Universitat Politècnica de ValènciaAvenida de los Naranjos s/nValencia46022Spain
| | - Sergio Navalon
- Departamento de QuímicaUniversitat Politècnica de ValènciaCamino de Vera s/nValencia46022Spain
| | - James R. Durrant
- Department of Chemistry and Centre for Processable ElectronicsImperial College LondonLondonW12 0BZUK
| | | | - Yaron Paz
- Department of Chemical EngineeringTechnionHaifa3200003Israel
| |
Collapse
|
3
|
Link MM, Lin YT, Banerjee J, Smith NJ, Ogrinc AL, Guo Y, Li YS, Yoo S, Oh K, Choi J, Kim SH. Probing Surface Reactions on Multicomponent Glass Using Reflection-Absorption Infrared Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:2753-2762. [PMID: 39836416 DOI: 10.1021/acs.langmuir.4c04590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The chemical reactivity of glass surfaces is often studied with elemental analysis techniques, and although such characterization methods provide insights on compositional changes from exposure to specific chemical conditions, molecule-specific chemical reactions are not determined unambiguously. This study demonstrates the use of reflection-absorption infrared spectroscopy (RAIRS) to detect molecular species on alkali-free boroaluminosilicate and alkali aluminosilicate glasses, using acetic acid vapor as a model reactant to probe reaction sites at the surface with or without pretreatment by aqueous solutions of varied pH. With the assistance of the theoretical calculation of spectral changes based on refractive indices of bulk materials, it was possible to identify the molecular species being removed and produced at the glass surface. It was found that acetic acid vapor reacts with the modifier ions present at the glass surface to form monodentate acetate groups. Such reactions caused the desorption of 2-2.5 monolayers of strongly bonded water that remained on the glass surface, even after exposure to vacuum for several hours. The overall reactivity of the glass surface with acetic acid was found to be relatively insensitive to the pH of the pretreatment solution, although the glass surface composition and network vibrations were impacted and varied with the pH of the solution.
Collapse
Affiliation(s)
- Mason M Link
- Department of Chemical Engineering and Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Yen-Ting Lin
- Department of Chemical Engineering and Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Joy Banerjee
- Science & Technology Division, Corning Incorporated, Corning, New York 14831, United States
| | - Nicholas J Smith
- Science & Technology Division, Corning Incorporated, Corning, New York 14831, United States
| | - Andrew L Ogrinc
- Department of Chemical Engineering and Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Yiwen Guo
- Department of Chemical Engineering and Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Yu-Sheng Li
- Department of Chemical Engineering and Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Soyeon Yoo
- Electronic Materials Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Kwanyoung Oh
- Electronic Materials Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Jiwon Choi
- Electronic Materials Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Seong H Kim
- Department of Chemical Engineering and Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Electronic Materials Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| |
Collapse
|
4
|
Li X, Qin C, Wang C, Pan F, Chen KJ. In situ formed CuSn alloy from multivariate metal-organic frameworks for tunable CO 2 electroreduction. Chem Commun (Camb) 2025; 61:2544-2547. [PMID: 39810646 DOI: 10.1039/d4cc05864j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
A molecular ligand separation method based on multivariate metal-organic frameworks (MOF) is developed to precisely regulate CuSn alloy for tuning the selectivity of HCOOH and CO in CO2 reduction. With this method, the agglomeration and heterogeneous nucleations of metals are effectively inhibited during the in situ electrochemical transformation of CuSn-MOFs into highly pure CuSn alloy. The low Sn content favors CO production, while the high Sn concentration facilitates HCOOH formation.
Collapse
Affiliation(s)
- Xuheng Li
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.
| | - Chen Qin
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.
| | - Chunli Wang
- Research Center for Environmental Material and Pollution Control Technology, National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, P. R. China
| | - Fuping Pan
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.
- Chongqing Innovation Center, Northwestern Polytechnical University, Chongqing, 401135, China
| | - Kai-Jie Chen
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.
| |
Collapse
|
5
|
Yang Q, Wang W, Yang Y, Li P, Yang X, Bai F, Zou B. Pressure treatment enables white-light emission in Zn-IPA MOF via asymmetrical metal-ligand chelate coordination. Nat Commun 2025; 16:696. [PMID: 39814792 PMCID: PMC11736072 DOI: 10.1038/s41467-025-55978-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/02/2025] [Indexed: 01/18/2025] Open
Abstract
Metal-organic frameworks that feature hybrid fluorescence and phosphorescence offer unique advantages in white-emitting communities based on their multiple emission centers and high exciton utilization. However, it poses a substantial challenge to realize superior white-light emission in single-component metal-organic frameworks without encapsulating varying chromophores or integrating multiple phosphor subunits. Here, we achieve a high-performance white-light emission with photoluminescence quantum yield of 81.3% via boosting triplet excitons distribution through pressure treatment in single-component Zn-IPA metal-organic frameworks. A novel metal-ligand asymmetrical chelate coordination is successfully integrated into the Zn-IPA after a high-pressure treatment over ~20.0 GPa. This modification unexpectedly endows the targeted sample with a new emergent electronic state to narrow the singlet-triplet energy gap, which effectively accelerates the spin-flipping process for boosted triplet excitons population. Time delay phosphor-converted light-emitting diodes are fabricated with long emission time up to ~7 s after switching off, providing significant advancements for white-light and time-delay lighting applications.
Collapse
Affiliation(s)
- Qing Yang
- State Key Laboratory of Superhard Materials, Synergetic Extreme Condition High-Pressure Science Center, College of Physics, Jilin University, Changchun, China
| | - Weibin Wang
- State Key Laboratory of Superhard Materials, Synergetic Extreme Condition High-Pressure Science Center, College of Physics, Jilin University, Changchun, China
| | - Yunfeng Yang
- State Key Laboratory of Superhard Materials, Synergetic Extreme Condition High-Pressure Science Center, College of Physics, Jilin University, Changchun, China
| | - Pengyuan Li
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Institute of Theoretical Chemistry and College of Chemistry, Jilin University, Changchun, China
| | - Xinyi Yang
- State Key Laboratory of Superhard Materials, Synergetic Extreme Condition High-Pressure Science Center, College of Physics, Jilin University, Changchun, China.
| | - Fuquan Bai
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Institute of Theoretical Chemistry and College of Chemistry, Jilin University, Changchun, China.
| | - Bo Zou
- State Key Laboratory of Superhard Materials, Synergetic Extreme Condition High-Pressure Science Center, College of Physics, Jilin University, Changchun, China.
| |
Collapse
|
6
|
Davoodi A, Akhbari K, Alirezvani M. H2O2-sensitive release of curcumin and zinc in normal and infected simulated cell tissues from a curcumin-zinc coordination complex with prolonged antibacterial activity. INORG CHEM COMMUN 2025; 171:113599. [DOI: 10.1016/j.inoche.2024.113599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
7
|
Smolková R, Smolko L, Samoľová E, Morgan I, Rennert R, Kaluđerović GN. Novel Zn(II), Co(II) and Cu(II) diflunisalato complexes with neocuproine and their exceptional antiproliferative activity against cancer cell lines. Dalton Trans 2024; 53:17595-17607. [PMID: 39402998 DOI: 10.1039/d4dt01736f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Three novel complexes of deprotonated diflunisal (dif) with neocuproine (neo) were synthesized and characterized via elemental, spectral (UV-vis, FTIR, fluorescence, and mass spectrometry), and single-crystal X-ray diffraction analyses. Although the compounds shared a similar composition of [MCl(dif)(neo)], where M represents Zn(II) (1), Co(II) (2) and Cu(II) (3), only 1 and 2 were isostructural, while 3 differed in both the molecular and supramolecular structures. In all three complex molecules, the central atom is coordinated by two nitrogen atoms of neo in a bidentate chelate mode, and one chlorido ligand and dif is bonded in either a monodentate mode via one oxygen atom of the carboxylate in 1 and 2 or in a bidentate chelate mode via both carboxylate oxygen atoms in 3. All three compounds demonstrated remarkable antiproliferative activity against human prostate (PC-3), colon (HCT116) and breast (MDA-MB-468) cancer cell lines with IC50 values in the nanomolar range, with the lowest values observed in the case of PC-3 and MDA-MB-468 with 2 (20.0 nM) and 3 (31.1 nM), respectively. Moreover, complex 2, as the most active, was further investigated for its potential to induce perturbations in the cell cycle of PC-3 cells. The results indicated an induction of caspase-independent apoptosis. The interaction of the complexes with genomic DNA isolated from the respective cancer cell lines was evaluated for the intercalative mode, with binding strength correlated with the antiproliferative activity against PC-3 and MDA-MB-468 cancer cell lines.
Collapse
Affiliation(s)
- Romana Smolková
- Faculty of Humanities and Natural Sciences, University of Presov, Ul. 17 novembra č. 1, 080 01 Prešov, Slovakia.
| | - Lukáš Smolko
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia
| | - Erika Samoľová
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Prague, Czechia
| | - Ibrahim Morgan
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany
| | - Robert Rennert
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany
| | - Goran N Kaluđerović
- Department of Engineering and Natural Sciences, University of Applied Sciences Merseburg, Eberhard-Leibnitz-Straße 2, 06217 Merseburg, Germany
| |
Collapse
|
8
|
Jahangir TN, Ahmed T, Ullah N, Kandiel TA. Tethering Cobalt Ions to BiVO 4 Surface via Robust Organic Bifunctional Linker for Efficient Photoelectrochemical Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403336. [PMID: 39221547 DOI: 10.1002/smll.202403336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/10/2024] [Indexed: 09/04/2024]
Abstract
In the quest for efficient and stable oxygen evolution catalysts (OECs) for photoelectrochemical water splitting, the surface modification of BiVO4 is a crucial step. In this study, a novel and robust OEC, based on 3-(bis(pyridin-2-ylmethyl) amino) propanoic acid bifunctional linker known as dipicolyl alanine acid (DPAA) and cobalt ions, is prepared and fully characterized. The DPAA is anchored to the surface of BiVO4 and utilized to tether cobalt ions. The Co-DPAA/BiVO4 photoanode exhibits remarkable stability and efficiency toward photoelectrochemical water oxidation. Specifically, it showed anodic photocurrent increase of 7.1, 5.0, 3.0, and 1.3-fold at 1.23 VRHE as compared to pristine BiVO4, DPAA/BiVO4, Co-BiVO4, and Co-Pi/BiVO4 photoanodes, respectively. The photoelectrochemical and IMPS studies revealed that the Co-DPAA/BiVO4 photoanode exhibits a longer transient decay time for surface-trapped holes, higher charge transfer kinetics, and charge separation efficiency compared to Co-Pi/BiVO4 and pristine BiVO4 photoelectrodes. This indicates that the Co-DPAA effectively reduces surface recombination and facilitates charge transfer. Moreover, at 1.23 VRHE, the Co-DPAA/BiVO4 photoanode achieved a faradic efficiency of 92% for oxygen evolution reaction and could retain a turnover frequency of 3.65 s-1. The exhibited efficiency is higher than most of the efficient molecular oxygen evolution catalysts based on Ru.
Collapse
Affiliation(s)
- Tahir Naveed Jahangir
- Department of Chemistry, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Tauqir Ahmed
- Center for Specialty Chemicals, Korea Research Institute of Chemical Technology, Ulsan, 44412, Republic of Korea
| | - Nisar Ullah
- Department of Chemistry, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
- Interdisciplinary Research Center for Refining and Advanced Chemicals, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Tarek A Kandiel
- Department of Chemistry, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM) at KFUPM, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
9
|
Cohen S, Chajanovsky I, Suckeveriene RY. Novel Preparation and Characterization of Zinc Ricinoleate Through Alkali Catalysis. Polymers (Basel) 2024; 16:3016. [PMID: 39518226 PMCID: PMC11548562 DOI: 10.3390/polym16213016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/16/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
The enhanced thermal and chemical stability of Zinc oxide-based materials make them excellent candidates for the removal of odor-producing pollutants and compounds. The zinc salt of ricinoleic acid, commonly known as zinc ricinoleate, is viewed as the top performer. This article describes an innovative two-step synthesis of zinc ricinoleate, where the first step consists of the preparation of an intermediate compound, methyl ricinoleate, which is synthesized via transesterification of castor oil with methanol and catalyzed by sodium hydroxide. The second step comprises the preparation of zinc ricinoleate through the saponification of methyl ricinoleate in the presence of zinc oxide particles. XRD, FTIR, and NMR spectroscopies confirmed the synthesis of methyl ricinoleate and zinc ricinoleate. HR-SEM and AFM images showed the formation of larger particles, while the thermal stability of the materials was confirmed by TGA.
Collapse
Affiliation(s)
| | | | - Ran Yosef Suckeveriene
- Department of Water Industry Engineering, Kinneret Academic College on The Sea of Galilee, Zemach 1513200, Israel; (S.C.); (I.C.)
| |
Collapse
|
10
|
He W, Li X, Dai X, Shao L, Fu Y, Xu D, Qi W. Redox Concomitant Formation Method for Fabrication of Cu(I)-MOF/Polymer Composites with Antifouling Properties. Angew Chem Int Ed Engl 2024; 63:e202411539. [PMID: 39034298 DOI: 10.1002/anie.202411539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/10/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Marine biofouling, which is one of the technical challenges hindering the growth of the marine economy, has been controlled using cuprous oxide (Cu2O) nanoparticles due to the exceptional antifouling properties of Cu(I) ions. However, Cu2O nanoparticles have encountered bottlenecks due to explosive releases of Cu+ ions, high toxicity at elevated doses, and long-term instability. Here, we present a novel method called Redox Concomitant Formation (RCF) for fabricating a hierarchical Cu(I) metal-organic framework polypyrrole (Cu(I)-MOF/PPy) composite. This method enables in situ phase transition via successive redox reactions that change the chemical valence state and coordination mode of Cu(II)-MOF, resulting in a new structure of Cu(I)-MOF while creating a PPy layer surrounded by the hierarchical structure. Owing to the steady release of Cu+ ions from the Cu(I) sites and photothermal properties of PPy, Cu(I)-MOF/PPy exhibits superior and broad-spectrum resistance to marine bacteria, algae, and surface-adhered biofilms in complex biological environments, as well as long-term stability, resulting in 100 % eradication efficiency under solar-driven heating. Mechanistic insights into successive structural redox reactions and formation using the RCF method are provided in detail, enabling the fabrication of novel MOFs with the desired composition and structure for a wide range of potential applications.
Collapse
Affiliation(s)
- Wenxiu He
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Xiangyu Li
- Shenyang National Laboratory for Materials Science, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, P. R. China
| | - Xueya Dai
- Institute of Metal Research, Shenyang National Laboratory for Materials Science, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
| | - Lei Shao
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Yu Fu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Dake Xu
- Shenyang National Laboratory for Materials Science, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, P. R. China
| | - Wei Qi
- Institute of Metal Research, Shenyang National Laboratory for Materials Science, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
| |
Collapse
|
11
|
Ismail KM, Rashidi FB, Hassan SS. Ultrasonic synthesis, characterization, DFT and molecular docking of a biocompatible Zn-based MOF as a potential antimicrobial, anti-inflammatory and antitumor agent. Sci Rep 2024; 14:21989. [PMID: 39313547 PMCID: PMC11420363 DOI: 10.1038/s41598-024-71609-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
Zinc metal-organic frameworks have emerged as promising candidates, demonstrating excellent biological properties stemming from the unique characteristics of MOFs and zinc. In this study, we employed a facile method to synthesize a zinc metal-organic framework [Zn(IP)(H2O)] using ultrasound irradiation, with the linker being isophthalic acid (IPA) (1,3-benzene dicarboxylic acid). The parent Zn-MOF and two Ag/Zn-MOF samples prepared via loading and encapsulation methods were comprehensively characterized using various techniques, including FT-IR, XRD, SEM, TEM, N2 adsorption-desorption isotherm, UV-vis spectroscopy and TGA. The parent Zn-MOF and two Ag/Zn-MOF samples exhibited a broad spectrum of antibacterial effects. Remarkably, genomic DNA of P. aeruginosa was effectively degraded by Zn-MOF, further supporting its potent antibacterial results. The free radical inhibition assay demonstrated a 71.0% inhibition under the influence of Zn-MOF. In vitro cytotoxicity activity of Zn-MOF against HepG-2 and Caco-2 cell lines revealed differential cytotoxic effects, with higher cytotoxicity against Caco-2 as explored from the IC50 values. This cytotoxicity was supported by the high binding affinity of Zn-MOF to CT-DNA. Importantly, the non-toxic property of Zn-MOF was confirmed through its lack of cytotoxic effects against normal lung cell (Wi-38). The anti-inflammatory treatment of Zn-MOF achieved 75.0% efficiency relative to the standard Ibuprofen drug. DFT and docking provided insights into the geometric stability of Zn-MOF and its interaction with active amino acids within selected proteins associated with the investigated diseases. Finally, the synthesized Zn-MOF shows promise for applications in cancer treatment, chemoprevention, and particularly antibacterial purposes.
Collapse
Affiliation(s)
- Khaled M Ismail
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt.
| | - Fatma B Rashidi
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Safaa S Hassan
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
12
|
Mondal H, Karmakar M, Datta B. Ligand-selective turn-off sensing, harvesting and post-adsorptive use of Dy(III) and Yb(III) by intrinsically fluorescent flower-shaped Gum Acacia-grafted hydrogels. Sci Rep 2024; 14:18373. [PMID: 39112525 PMCID: PMC11306756 DOI: 10.1038/s41598-024-65932-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/25/2024] [Indexed: 08/10/2024] Open
Abstract
Rare earth metals (REMs), such as Dysprosium (Dy) and Ytterbium (Yb), have experienced unprecedented demand in recent times due to their applications in high-end technologies. REMs are found only in select geographic locations placing tremendous economic constraints on their use. In this work, we have developed Gum Acacia-grafted hydrogels (GmAc-FluoroTerPs) that are capable of selective detection and capture of Dy and Yb. The intrinsically blue fluorescent polymer hydrogel GmAc-FluoroTerP has been optimized for Dy(III) and Yb(III) specific quenching, enabling limit of detection of the REMs at 0.13 nM and 60.8 pM, respectively. A comprehensive structural characterization of the fluorescent hydrogel has been performed via NMR, FTIR, XPS, EPR, TGA, XRD, TEM, SEM, EDX, TCSPC, and DLS. In addition to an in situ generated fluorophore, GmAc-FluoroTerP displays a distinctive aggregation induced emission enhancement in mixed solvents. The complexation of Dy(III)/Yb(III) with GmAc-FluoroTerP hydrogel has been characterized by XPS, TCSPC, and logic gate analyses, and the adsorptive capacity for Dy(III) and Yb(III) are found to be best reported till date as 125.57 mg g-1 and 102.27 mg g-1, respectively. Desorption at acidic pH allows recovery of the REMs. We also report semiconducting behaviour of the native fluorescent hydrogel, that is enhanced upon adsorptive capture of Dy(III) and Yb(III), with calculated band gaps at 1.37, 0.77, and 0.49 eV, respectively. The convergent sensing, capture, and reuse of Dy(III) and Yb(III) presented in this work promises a hitherto unreported template for application on other REMs.
Collapse
Affiliation(s)
- Himarati Mondal
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382055, India.
| | - Mrinmoy Karmakar
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382055, India
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Bhaskar Datta
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382055, India.
- Department of Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382055, India.
| |
Collapse
|
13
|
Munoz-Noval A, Fukami K, Kuruma T, Hayakawa S. Structure and complexation mechanism of aqueous Zn(II)-acetate complex studied by XAFS and Raman spectroscopies. ANAL SCI 2024; 40:1193-1201. [PMID: 38580852 PMCID: PMC11126429 DOI: 10.1007/s44211-024-00549-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/27/2024] [Indexed: 04/07/2024]
Abstract
In this work, the structure of Zn acetate has been determined by a combination of X-ray absorption fine structure and Raman spectroscopy. We have analyzed the local atomic environment and the main vibrational bands of the acetate and Zn acetate at different pH. The results suggest that Zn acetate complex acquires a bidentate structure that modifies its first coordination shell. Meanwhile, the coordination shell of the hydrated Zn cation is formed by 6 hydroxides at a mean distance of 2.06 Å, the coordination shell of the Zn cation in the complex is formed by 2 hydroxides and 2 oxygens from the carboxyl group of the acetate, at a mean Zn-O distance of 1.96 Å. The structure of the Zn acetate complex is compared to those of Zn malonate and Zn citrate, none of which present a reduction in the coordination shell neither a shrinkage of the Zn-O shell distance.
Collapse
Affiliation(s)
- Alvaro Munoz-Noval
- Department of Materials Physics, Faculty of Physics, University Complutense of Madrid, 28040, Madrid, Spain.
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Hiroshima, 739-8527, Japan.
| | - Kazuhiro Fukami
- Department of Materials Science and Engineering, Kyoto University, Kyoto, 606-8501, Japan
| | - Takuya Kuruma
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Hiroshima, 739-8527, Japan
- Mitsui Mining and Smelting Co Ltd, Shinagawa-Ku, Tokyo, Japan
| | - Shinjiro Hayakawa
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Hiroshima, 739-8527, Japan
| |
Collapse
|
14
|
Sk S, Bandyopadhyay S, Sarkar C, Das I, Gupta A, Sadangi M, Mondal S, Banerjee M, Vijaykumar G, Behera JN, Konar S, Mandal S, Bera M. Unraveling Multicopper [Cu 3] and [Cu 6] Clusters with Rare μ 3-Sulfato and Linear μ 2-Oxido-Bridges as Potent Antibiofilm Agents against Multidrug-Resistant Staphylococcus aureus. ACS APPLIED BIO MATERIALS 2024; 7:2423-2449. [PMID: 38478915 DOI: 10.1021/acsabm.4c00075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
In this research article, two multicopper [Cu3] and [Cu6] clusters, [Cu3(cpdp)(μ3-SO4)(Cl)(H2O)2]·3H2O (1) and [Cu6(cpdp)2(μ2-O)(Cl)2(H2O)4]·2Cl (2) (H3cpdp = N,N'-bis[2-carboxybenzomethyl]-N,N'-bis[2-pyridylmethyl]-1,3-diaminopropan-2-ol), have been explored as potent antibacterial and antibiofilm agents. Their molecular structures have been determined by a single-crystal X-ray diffraction study, and the compositions have been established by thermal and elemental analyses, including electrospray ionization mass spectrometry. Structural analysis shows that the metallic core of 1 is composed of a trinuclear [Cu3] assembly encapsulating a μ3-SO42- group, whereas the structure of 2 represents a hexanuclear [Cu6] assembly in which two trinuclear [Cu3] motifs are exclusively bridged by a linear μ2-O2- group. The most striking feature of the structure of 2 is the occurrence of an unusual linear oxido-bridge, with the Cu3-O6-Cu3' bridging angle being 180.00°. Whereas 1 can be viewed as an example of a copper(II)-based compound displaying a rare μ3:η1:η1:η1 bridging mode of the SO42- group, 2 is the first example of any copper(II)-based compound showing an unsupported linear Cu-O-Cu oxido-bridge. Employing variable-temperature SQUID magnetometry, the magnetic susceptibility data were measured and analyzed exemplarily for 1 in the temperature range of 2-300 K, revealing the occurrence of antiferromagnetic interactions among the paramagnetic copper centers. Both 1 and 2 exhibited potent antibacterial and antibiofilm activities against methicillin-resistant Staphylococcus aureus (MRSA BAA1717) and the clinically isolated culture of methicillin-resistant S. aureus (MRSA CI1). The mechanism of antibacterial and antibiofilm activities of these multicopper clusters was investigated by analyzing and determining the intracellular reactive oxygen species (ROS) generation, lipid peroxidation, microscopic observation of cell membrane disruption, membrane potential, and leakage of cellular components. Additionally, 1 and 2 showed a synergistic effect with commercially available antibiotics such as vancomycin with enhanced antibacterial activity. However, 1 possesses higher antibacterial, antibiofilm, and antivirulence actions, making it a potent therapeutic agent against both MRSA BAA1717 and MRSA CI1 strains.
Collapse
Affiliation(s)
- Sujan Sk
- Department of Chemistry, University of Kalyani, Nadia, Kalyani, West Bengal 741235, India
| | - Shrabasti Bandyopadhyay
- Department of Microbiology, University of Kalyani, Nadia, Kalyani, West Bengal 741235, India
| | - Chandan Sarkar
- Department of Chemistry, University of Kalyani, Nadia, Kalyani, West Bengal 741235, India
| | - Indrajit Das
- Department of Microbiology, University of Kalyani, Nadia, Kalyani, West Bengal 741235, India
| | - Arindam Gupta
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh 462066, India
| | - Manisha Sadangi
- School of Chemical Sciences, National Institute of Science Education & Research, An OCC of Homi Bhabha National Institute, Khurda, Bhubaneswar, Odisha 752050, India
| | - Soma Mondal
- Department of Microbiology, College of Medicine & Jawaharlal Nehru Memorial (JNM) Hospital, WBUHS, Nadia, Kalyani, West Bengal 741235, India
| | - Malabika Banerjee
- Cristália Produtos Químicos Farmacêuticos Limited, Rodovia Itapira, Sao Paulo CEP 13970-970, Brazil
| | - Gonela Vijaykumar
- Catalysis and Fine Chemicals Department, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - J N Behera
- School of Chemical Sciences, National Institute of Science Education & Research, An OCC of Homi Bhabha National Institute, Khurda, Bhubaneswar, Odisha 752050, India
| | - Sanjit Konar
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh 462066, India
| | - Supratim Mandal
- Department of Microbiology, University of Kalyani, Nadia, Kalyani, West Bengal 741235, India
| | - Manindranath Bera
- Department of Chemistry, University of Kalyani, Nadia, Kalyani, West Bengal 741235, India
| |
Collapse
|
15
|
Jin K, Park N, Ahn Y, Seo D, Moon D, Sung J, Park J. Solvent-induced structural transformation in a one-dimensional coordination polymer. NANOSCALE 2024; 16:4571-4577. [PMID: 38334421 DOI: 10.1039/d4nr00265b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
We have rationally designed a one-dimensional coordination polymer (1D CP), termed 1D-DGIST-18, that exhibits intrinsic structural flexibility. This 1D CP enables its expansion into a three-dimensional network through supramolecular interactions involving coordinated solvents and/or ligands. The strategic selection of solvents for solvent exchange, prior to drying, significantly influences the structures of 1D-DGIST-18 by removing certain coordinating solvents and modulating π-π stacking. Consequently, a hierarchical porosity emerges, ranging from micro- to meso- to macroporous structures, which is attributed to its inherent structural dynamics. Additionally, the formation of excimers endows 1D-DGIST-18, when immersed in acetone, with 'turn-on' fluorescence, as evidenced by fluorescence decay profiles. These structural transitions within 1D-DGIST-18 are further elucidated using single-crystal X-ray diffractometry. The insights from this study provide a foundation for the design of materials with structural dynamics and tunable properties.
Collapse
Affiliation(s)
- Kangwoo Jin
- Department of Physics and Chemistry, Daegu-Gyeongbuk Institute of Science and Technology, Daegu 42988, the Republic of Korea.
| | - Nohyoon Park
- Department of Physics and Chemistry, Daegu-Gyeongbuk Institute of Science and Technology, Daegu 42988, the Republic of Korea.
| | - Yongdeok Ahn
- Department of Physics and Chemistry, Daegu-Gyeongbuk Institute of Science and Technology, Daegu 42988, the Republic of Korea.
| | - Daeha Seo
- Department of Physics and Chemistry, Daegu-Gyeongbuk Institute of Science and Technology, Daegu 42988, the Republic of Korea.
| | - Dohyun Moon
- Beamline Department, Pohang Accelerator Laboratory, Pohang 37673, the Republic of Korea.
| | - Jooyoung Sung
- Department of Physics and Chemistry, Daegu-Gyeongbuk Institute of Science and Technology, Daegu 42988, the Republic of Korea.
| | - Jinhee Park
- Department of Physics and Chemistry, Daegu-Gyeongbuk Institute of Science and Technology, Daegu 42988, the Republic of Korea.
| |
Collapse
|
16
|
Sandeno SF, Schnitzenbaumer KJ, Krajewski SM, Beck RA, Ladd DM, Levine KR, Dayton D, Toney MF, Kaminsky W, Li X, Cossairt BM. Ligand Steric Profile Tunes the Reactivity of Indium Phosphide Clusters. J Am Chem Soc 2024; 146:3102-3113. [PMID: 38254269 DOI: 10.1021/jacs.3c10203] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Indium phosphide quantum dots have become an industrially relevant material for solid-state lighting and wide color gamut displays. The synthesis of indium phosphide quantum dots from indium carboxylates and tris(trimethylsilyl)phosphine (P(SiMe3)3) is understood to proceed through the formation of magic-sized clusters, with In37P20(O2CR)51 being the key isolable intermediate. The reactivity of the In37P20(O2CR)51 cluster is a vital parameter in controlling the conversion to quantum dots. Herein, we report structural perturbations of In37P20(O2CR)51 clusters induced by tuning the steric properties of a series of substituted phenylacetate ligands. This approach allows for control over reactivity with P(SiMe3)3, where meta-substituents enhance the susceptibility to ligand displacement, and para-substituents hinder phosphine diffusion to the core. Thermolysis studies show that with complete cluster dissolution, steric profile can modulate the nucleation period, resulting in a nanocrystal size dependence on ligand steric profile. The enhanced stability from ligand engineering also allows for the isolation and structural characterization by single-crystal X-ray diffraction of a new III-V magic-sized cluster with the formula In26P13(O2CR)39. This intermediate precedes the In37P20(O2CR)51 cluster on the InP QD reaction coordinate. The physical and electronic structure of this cluster are analyzed, providing new insight into previously unrecognized relationships between II-VI and III-V materials and the discrete growth of III-V cluster intermediates.
Collapse
Affiliation(s)
- Soren F Sandeno
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Kyle J Schnitzenbaumer
- Division of Natural Sciences and Mathematics, Transylvania University, Lexington, Kentucky 40508-1797, United States
| | - Sebastian M Krajewski
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Ryan A Beck
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Dylan M Ladd
- Department of Materials Science and Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Kelsey R Levine
- Department of Materials Science and Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Damara Dayton
- Department of Materials Science and Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Michael F Toney
- Department of Materials Science and Engineering, University of Colorado, Boulder, Colorado 80309, United States
- Department of Chemical and Biological Engineering, Renewable and Sustainable Energy Institute, University of Colorado, Boulder, Colorado 80309, United States
| | - Werner Kaminsky
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Brandi M Cossairt
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| |
Collapse
|
17
|
Seo YH, Lee MR, Lee DY, Park JH, Seo HJ, Park SU, Kim H, Kim SJ, Lee BY. Preparation of Well-Defined Double-Metal Cyanide Catalysts for Propylene Oxide Polymerization and CO 2 Copolymerization. Inorg Chem 2024; 63:1414-1426. [PMID: 38166391 DOI: 10.1021/acs.inorgchem.3c03957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Reevaluating the composition of the double metal cyanide catalyst (DMC) as a salt of (NC)6Co3- anions with 1:1 Zn2+/(X)Zn+ cations (X = Cl, RO, AcO), we prepared a series of well-defined DMCs, [ClZn+][Zn2+][(NC)6Co3-][ROH], [(RO)Zn+][Zn2+][(NC)6Co3-], [(AcO)Zn+][Zn2+][(NC)6Co3-], [(RO)Zn+]p[ClZn+](1-p)[Zn2+][(NC)6Co3-], [(AcO)Zn+]p[(tBuO)Zn+]q[Zn2+][(NC)6Co3-], and [(AcO)Zn+]p[(tBuO)Zn+]q[ClZn+]r[Zn2+][(NC)6Co3-]. The structure of [(MeOC3H6O)Zn+][Zn2+][(NC)6Co3-] was precisely determined at the atomic level through Rietveld refinement of the synchrotron X-ray powder diffraction data. By evaluating the catalyst's performance in both propylene oxide (PO) polymerization and PO/CO2 copolymerization, a correlation between structure and performance was established on various aspects including activity, dispersity, unsaturation level, and carbonate fraction in the resulting polyols. Ultimately, our study identified highly efficient catalysts that outperformed the state-of-the-art benchmark DMC not only in PO polymerization [DMC-(OAc/OtBu/Cl)(0.59/0.38/0.15)] but also in PO/CO2 copolymerization [DMC-(OAc/OtBu)(0.95/0.08)].
Collapse
Affiliation(s)
- Yeong Hyun Seo
- Department of Molecular Science and Technology, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Mi Ryu Lee
- Department of Molecular Science and Technology, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Da-Young Lee
- Department of Energy Systems Research, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Jun Hyeong Park
- Department of Molecular Science and Technology, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Hyeon Jeong Seo
- Department of Molecular Science and Technology, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Sang Uk Park
- Department of Molecular Science and Technology, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Hyunjin Kim
- Department of Molecular Science and Technology, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Seung-Joo Kim
- Department of Energy Systems Research, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Bun Yeoul Lee
- Department of Molecular Science and Technology, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| |
Collapse
|
18
|
Roth AN, Chen Y, Santhiran A, Opare-Addo J, Gi E, Smith EA, Rossini AJ, Vela J. Designing complex Pb 3SBr xI 4-x chalcohalides: tunable emission semiconductors through halide-mixing. Chem Sci 2023; 14:12331-12338. [PMID: 37969605 PMCID: PMC10631247 DOI: 10.1039/d3sc02733c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/12/2023] [Indexed: 11/17/2023] Open
Abstract
Chalcohalides are desirable semiconducting materials due to their enhanced light-absorbing efficiency and stability compared to lead halide perovskites. However, unlike perovskites, tuning the optical properties of chalcohalides by mixing different halide ions into their structure remains to be explored. Here, we present an effective strategy for halide-alloying Pb3SBrxI4-x (1 ≤ x ≤ 3) using a solution-phase approach and study the effect of halide-mixing on structural and optical properties. We employ a combination of X-ray diffraction, electron microscopy, and solid-state NMR spectroscopy to probe the chemical structure of the chalcohalides and determine mixed-halide incorporation. The absorption onsets of the chalcohalides blue-shift to higher energies as bromide replaces iodide within the structure. The photoluminescence maxima of these materials mimics this trend at both the ensemble and single particle fluorescence levels, as observed by solution-phase and single particle fluorescence microscopy, respectively. These materials exhibit superior stability against moisture compared to traditional lead halide perovskites, and IR spectroscopy reveals that the chalcohalide surfaces are terminated by both amine and carboxylate ligands. Electronic structure calculations support the experimental band gap widening and volume reduction with increased bromide incorporation, and provide useful insight into the likely atomic coloring patterns of the different mixed-halide compositions. Ultimately, this study expands the range of tunability that is achievable with chalcohalides, which we anticipate will improve the suitability of these semiconducting materials for light absorbing and emission applications.
Collapse
Affiliation(s)
- Alison N Roth
- US DOE Ames National Laboratory Ames Iowa 50010 USA
- Department of Chemistry, Iowa State University Ames Iowa 50011 USA
| | - Yunhua Chen
- US DOE Ames National Laboratory Ames Iowa 50010 USA
- Department of Chemistry, Iowa State University Ames Iowa 50011 USA
| | - Anuluxan Santhiran
- US DOE Ames National Laboratory Ames Iowa 50010 USA
- Department of Chemistry, Iowa State University Ames Iowa 50011 USA
| | - Jemima Opare-Addo
- US DOE Ames National Laboratory Ames Iowa 50010 USA
- Department of Chemistry, Iowa State University Ames Iowa 50011 USA
| | - Eunbyeol Gi
- US DOE Ames National Laboratory Ames Iowa 50010 USA
- Department of Chemistry, Iowa State University Ames Iowa 50011 USA
| | - Emily A Smith
- US DOE Ames National Laboratory Ames Iowa 50010 USA
- Department of Chemistry, Iowa State University Ames Iowa 50011 USA
| | - Aaron J Rossini
- US DOE Ames National Laboratory Ames Iowa 50010 USA
- Department of Chemistry, Iowa State University Ames Iowa 50011 USA
| | - Javier Vela
- US DOE Ames National Laboratory Ames Iowa 50010 USA
- Department of Chemistry, Iowa State University Ames Iowa 50011 USA
| |
Collapse
|
19
|
Chen X, Sapchenko S, Lu W, Li M, He M, Chen Y, Frogley MD, da Silva I, Yang S, Schröder M. Impact of Host-Guest Interactions on the Dielectric Properties of MFM-300 Materials. Inorg Chem 2023; 62:17157-17162. [PMID: 37812797 PMCID: PMC10598873 DOI: 10.1021/acs.inorgchem.3c02110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Indexed: 10/11/2023]
Abstract
Metal-organic framework (MOF) materials are attracting increasing interest in the field of electronics due to their structural diversity, intrinsic porosity, and designable host-guest interactions. Here, we report the dielectric properties of a series of robust materials, MFM-300(M) (M = Al, Sc, Cr, Fe, Ga, In), when exposed to different guest molecules. MFM-300(Fe) exhibits the most notable increase in dielectric constant to 35.3 ± 0.3 at 10 kHz upon adsorption of NH3. Structural analysis suggests that the electron delocalization induced by host-guest interactions between NH3 and the MOF host, as confirmed by neutron powder diffraction studies, leads to structural polarization, resulting in a high dielectric constant for NH3@MFM-300(Fe). This is further supported by ligand-to-metal charge-transfer transitions observed by solid-state UV/vis spectroscopy. The high detection sensitivity and stability to NH3 suggest that MFM-300(Fe) may act as a powerful dielectric-based sensor for NH3.
Collapse
Affiliation(s)
- Xi Chen
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
| | - Sergei Sapchenko
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
| | - Wanpeng Lu
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
| | - Ming Li
- Faculty
of Engineering, University of Nottingham, Nottingham NG7 2RD, U.K.
| | - Meng He
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
| | - Yinlin Chen
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
| | - Mark D. Frogley
- Diamond
Light Source, Harwell Science Campus, Oxfordshire OX11 0DE, U.K.
| | - Ivan da Silva
- ISIS
Facility, Science and Technology Facilities Council (STFC), Rutherford Appleton Laboratory, Didcot OX11 0QX, U.K.
| | - Sihai Yang
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
| | - Martin Schröder
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
| |
Collapse
|
20
|
Satyarthy S, Hasan Ul Iqbal M, Abida F, Nahar R, Hauser AJ, Cheng MMC, Ghosh A. Stearic Acid as an Atomic Layer Deposition Inhibitor: Spectroscopic Insights from AFM-IR. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2713. [PMID: 37836354 PMCID: PMC10574727 DOI: 10.3390/nano13192713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/19/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023]
Abstract
Modern-day chip manufacturing requires precision in placing chip materials on complex and patterned structures. Area-selective atomic layer deposition (AS-ALD) is a self-aligned manufacturing technique with high precision and control, which offers cost effectiveness compared to the traditional patterning techniques. Self-assembled monolayers (SAMs) have been explored as an avenue for realizing AS-ALD, wherein surface-active sites are modified in a specific pattern via SAMs that are inert to metal deposition, enabling ALD nucleation on the substrate selectively. However, key limitations have limited the potential of AS-ALD as a patterning method. The choice of molecules for ALD blocking SAMs is sparse; furthermore, deficiency in the proper understanding of the SAM chemistry and its changes upon metal layer deposition further adds to the challenges. In this work, we have addressed the above challenges by using nanoscale infrared spectroscopy to investigate the potential of stearic acid (SA) as an ALD inhibiting SAM. We show that SA monolayers on Co and Cu substrates can inhibit ZnO ALD growth on par with other commonly used SAMs, which demonstrates its viability towards AS-ALD. We complement these measurements with AFM-IR, which is a surface-sensitive spatially resolved technique, to obtain spectral insights into the ALD-treated SAMs. The significant insight obtained from AFM-IR is that SA SAMs do not desorb or degrade with ALD, but rather undergo a change in substrate coordination modes, which can affect ALD growth on substrates.
Collapse
Affiliation(s)
- Saumya Satyarthy
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA; (S.S.); (M.H.U.I.)
| | - Md Hasan Ul Iqbal
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA; (S.S.); (M.H.U.I.)
| | - Fairoz Abida
- Department of Electrical and Computer Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA; (F.A.); (M.M.-C.C.)
| | - Ridwan Nahar
- Department of Physics and Astronomy, The University of Alabama, Tuscaloosa, AL 35487, USA; (R.N.); (A.J.H.)
| | - Adam J. Hauser
- Department of Physics and Astronomy, The University of Alabama, Tuscaloosa, AL 35487, USA; (R.N.); (A.J.H.)
| | - Mark Ming-Cheng Cheng
- Department of Electrical and Computer Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA; (F.A.); (M.M.-C.C.)
| | - Ayanjeet Ghosh
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA; (S.S.); (M.H.U.I.)
| |
Collapse
|
21
|
Zubair M, Ahad SA, Amiinu IS, Lebedev VA, Mishra M, Geaney H, Singh S, Ryan KM. Colloidal synthesis of the mixed ionic-electronic conducting NaSbS 2 nanocrystals. NANOSCALE HORIZONS 2023; 8:1262-1272. [PMID: 37404207 DOI: 10.1039/d3nh00097d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Solution-based synthesis of mixed ionic and electronic conductors (MIECs) has enabled the development of novel inorganic materials with implications for a wide range of energy storage applications. However, many technologically relevant MIECs contain toxic elements (Pb) or are prepared by using traditional high-temperature solid-state synthesis. Here, we provide a simple, low-temperature and size-tunable (50-90 nm) colloidal hot injection approach for the synthesis of NaSbS2 based MIECs using widely available and non-toxic precursors. Key synthetic parameters (cationic precursor, reaction temperature, and ligand) are examined to regulate the shape and size of the NaSbS2 nanocrystals (NCs). FTIR studies revealed that ligands with carboxylate functionality are coordinated to the surface of the synthesized NaSbS2 NCs. The synthesized NaSbS2 nanocrystals have electronic and ionic conductivities of 3.31 × 10-10 (e-) and 1.9 × 10-5 (Na+) S cm-1 respectively, which are competitive with the ionic and electrical conductivities of perovskite materials generated by solid-state reactions. This research gives a mechanistic understanding and post-synthetic evaluation of parameters influencing the formation of sodium antimony chalcogenides materials.
Collapse
Affiliation(s)
- Maria Zubair
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick, Ireland.
| | - Syed Abdul Ahad
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick, Ireland.
| | - Ibrahim Saana Amiinu
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick, Ireland.
| | - Vasily A Lebedev
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick, Ireland.
| | - Mohini Mishra
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick, Ireland.
| | - Hugh Geaney
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick, Ireland.
| | - Shalini Singh
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick, Ireland.
| | - Kevin M Ryan
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick, Ireland.
| |
Collapse
|
22
|
Ahmadi S, Rohani S. Overcoming the Hydrophobic Nature of Zinc Phenylacetate Through Co-Crystallization with Isonicotinamide. J Pharm Sci 2023; 112:1929-1938. [PMID: 36893962 DOI: 10.1016/j.xphs.2023.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 03/09/2023]
Abstract
Zinc phenylacetate (Zn-PA), a substitute for sodium phenylacetate as an ammonia-scavenging drug is hydrophobic, which poses problems for drug dissolution and solubility. We were able to co-crystallize the zinc phenylacetate with isonicotinamide (INAM) and produce a novel crystalline compound (Zn-PA-INAM). The single crystal of this new crystal was obtained, and its structure is reported here for the first time. Zn-PA-INAM was characterized computationally by ab initio, Hirshfeld calculations, CLP-PIXEL lattice energy calculation, and BFDH morphology analysis, and experimentally by PXRD, Sc-XRD, FTIR, DSC, and TGA analyses. Structural and vibrational analyses showed a major modification in intermolecular interaction of Zn-PA-INAM compared to Zn-PA. The dispersion-based pi-stacking in Zn-PA is replaced by coulomb-polarization effect of hydrogen bonds. As a result, Zn-PA-INAM is hydrophilic, improving the wettability and powder dissolution of the target compound in an aqueous solution. Morphology analysis revealed, unlike Zn-PA, Zn-PA-INAM has polar groups exposed on its prominent crystalline faces, reducing the hydrophobicity of the crystal. The shift in average water droplet contact angle from 128.1° (Zn-PA) to 27.1° (Zn-PA-INAM) is strong evidence of a marked decrease in hydrophobicity of the target compound. Finally, HPLC was used to obtain the dissolution profile and solubility of Zn-PA-INAM compared to Zn-PA.
Collapse
Affiliation(s)
- Soroush Ahmadi
- Chemical and Biochemical Engineering, Western University, London, Ontario, N6A 5B9, Canada
| | - Sohrab Rohani
- Chemical and Biochemical Engineering, Western University, London, Ontario, N6A 5B9, Canada.
| |
Collapse
|
23
|
Ma J, Yang Y, Wang Q, Deng Y, Yap M, Chern WK, Oh JT, Chen Z. Degradation and Lifetime Prediction of Epoxy Composite Insulation Materials under High Relative Humidity. Polymers (Basel) 2023; 15:2666. [PMID: 37376312 DOI: 10.3390/polym15122666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
Insulation failure of composite epoxy insulation materials in distribution switchgear under the stress of heat and humidity is one of the leading causes of damage to switchgear components. This work prepared composite epoxy insulation materials by casting and curing a diglycidyl ether of bisphenol A (DGEBA)/anhydride/wollastonite composite system, and performed material accelerated aging experiments under three conditions: 75 °C and 95% relative humidity (RH), 85 °C and 95% RH, and 95 °C and 95% RH. Material, mechanical, thermal, chemical, and microstructural properties were investigated. Based on the IEC 60216-2 standard and our data, tensile strength and ester carbonyl bond (C=O) absorption in infrared spectra were chosen as failure criteria. At the failure points, the ester C=O absorption decreased to ~28% and the tensile strength decreased to 50%. Accordingly, a lifetime prediction model was established to estimate material lifetime at 25 °C and 95% RH to be 33.16 years. The material degradation mechanism was attributed to the hydrolysis of epoxy resin ester bonds into organic acids and alcohols under heat and humidity stresses. Organic acids reacted with calcium ions (Ca2+) of fillers to form carboxylate, which destroyed the resin-filler interface, resulting in a hydrophilic surface and a decrease in mechanical strength.
Collapse
Affiliation(s)
- Jielin Ma
- SP Group-NTU Joint Laboratory, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yan Yang
- SP Group-NTU Joint Laboratory, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Qi Wang
- SP Group-NTU Joint Laboratory, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yuheng Deng
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Malvern Yap
- SP Group-NTU Joint Laboratory, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | | | - Joo Tien Oh
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Zhong Chen
- SP Group-NTU Joint Laboratory, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
24
|
Majumder A, Sarkar C, Das I, Sk S, Bandyopadhyay S, Mandal S, Bera M. Design, Synthesis and Evaluation of a Series of Zinc(II) Complexes of Anthracene-Affixed Multifunctional Organic Assembly as Potential Antibacterial and Antibiofilm Agents against Methicillin-Resistant Staphylococcus aureus. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22781-22804. [PMID: 37129921 DOI: 10.1021/acsami.2c21899] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A novel class of zinc(II)-based metal complexes, i.e., [Zn2(acdp)(μ-Cl)]·2H2O (1), [Zn2(acdp)(μ-NO3)]·2H2O (2), and [Zn2(acdp)(μ-O2CCF3)]·2H2O (3) (Cl- = chloride; NO3- = nitrate; CF3CO2- = trifluoroacetate) of anthracene-affixed multifunctional organic assembly, H3acdp (H3acdp = N,N'-bis[anthracene-2-ylmethyl]-N,N'-bis[carboxymethyl]-1,3-diaminopropan-2-ol), have emerged as promising antibacterial and antibiofilm agents in the domain of medicinal chemistry. Accordingly, complexes 1-3 were synthesized by utilizing H3acdp in combination with ZnCl2, Zn(NO3)2·6H2O, and Zn(CF3CO2)2·H2O respectively, in the presence of NaOH at ambient temperature. The complexation between H3acdp and Zn2+ was delineated by a combined approach of spectrophotometric and spectrofluorometric titration studies. The stoichiometry of acdp3-/Zn2+ in all three complexes is observed to be 1:2, as confirmed by spectrophotometric/spectrofluorometric titration data. Elemental analysis (C, H, N, Zn), molar conductance, FTIR, UV-vis, and thermoanalytical (TGA/DTA) data were effectively used to characterize these complexes. Besides, the structures of 1-3 were established by density functional theory (DFT) calculation using B3LYP/6-311G, specifying a self-assembled compact geometry with average Zn···Zn separation of 3.4629 Å. All three zinc complexes exhibited significantly high antibacterial and antibiofilm activity against methicillin-resistant Staphylococcus aureus (MRSA BAA1717). However, complex 1 showed a more recognizable activity than 2 and 3, with minimum inhibitory concentration (MIC) values of 200, 350, and 450 μg/mL, respectively. The antimicrobial activity was tested by employing the minimum inhibitory concentration (MIC) and time-kill assay. The crystal violet (CV) assay and microscopic study were performed to examine the antibiofilm activity. As observed, complexes 1-3 had an effect on the production of extracellular polymeric substance (EPS), biofilm cell-viability, and other virulence factors such as staphyloxanthin and hemolysin production, autoaggregation ability, and microbial cell-surface hydrophobicity. Reactive oxygen species (ROS) generated due to inhibition of staphyloxanthin production in response to 1-3 were also analyzed. Moreover, complexes 1-3 showed an ability to damage the bacterial cell membrane due to accumulation of ROS resulting in DNA leakage. In addition, complexes 1-3 displayed a synergistic/additive activity with a commercially available antibiotic drug, vancomycin, with enhanced antibacterial activity. On the whole, our investigation disclosed that complex 1 could be a promising drug lead and attract much attention to medicinal chemists compared to 2 and 3 from therapeutic aspects.
Collapse
Affiliation(s)
- Avishek Majumder
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | - Chandan Sarkar
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | - Indrajit Das
- Department of Microbiology, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | - Sujan Sk
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | - Shrabasti Bandyopadhyay
- Department of Microbiology, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | - Supratim Mandal
- Department of Microbiology, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | - Manindranath Bera
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| |
Collapse
|
25
|
Sk S, Majumder A, Sow P, Samadder A, Bera M. Exploring a new family of designer copper(II) complexes of anthracene-appended polyfunctional organic assembly displaying potential anticancer activity via cytochrome c mediated mitochondrial apoptotic pathway. J Inorg Biochem 2023; 243:112182. [PMID: 36933342 DOI: 10.1016/j.jinorgbio.2023.112182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/27/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023]
Abstract
The present article describes the systematic study on design and synthesis, physicochemical properties and spectroscopic features, and potential anticancer activities of a family of novel copper(II)-based designer metal complexes [Cu2(acdp)(μ-Cl)(H2O)2] (1), [Cu2(acdp)(μ-NO3)(H2O)2] (2) and [Cu2(acdp)(μ-O2CCF3)(H2O)2] (3) of anthracene-appended polyfunctional organic assembly, H3acdp (H3acdp = N,N'-bis[anthracene-2-ylmethyl]-N,N'-bis[carboxymethyl]-1,3-diaminopropan-2-ol). Synthesis of 1-3 was accomplished under facile experimental conditions, preserving their overall integrity in solution. The incorporation of polycyclic anthracene skeleton within the backbone of organic assembly increases lipophilicity of resulting complexes, thereby dictating the degree of cellular uptake with improved biological activity. Complexes 1-3 were characterized by elemental analysis, molar conductance, FTIR, UV-Vis absorption/fluorescence emission titration spectroscopy, PXRD and TGA/DTA studies, including DFT calculations. The cellular cytotoxicity of 1-3 when studied in HepG2 cancer cell line showed substantial cytotoxic effects, whereas no such cytotoxicity was observed when exposed to normal L6 skeletal muscle cell line. Thereafter, the signaling factors involved in the process of cytotoxicity in HepG2 cancer cells were investigated. Alteration of cytochrome c and Bcl-2 protein expression levels along with modulation of mitochondrial membrane potential (MMP) in the presence of 1-3, strongly suggested the possibility of activating mitochondria-mediated apoptotic pathway involved in halting the cancer cell propagation. However, when a comparative assessment on their bio-efficacies was made, 1 showed higher cytotoxicity, nuclear condensation, DNA binding and damage, ROS generation and lower rate of cell proliferation compared to 2 and 3 in HepG2 cell line, indicating that the anticancer activity of 1 is significantly higher than that of 2 and 3.
Collapse
Affiliation(s)
- Sujan Sk
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | - Avishek Majumder
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | - Priyanka Sow
- Department of Zoology, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | - Asmita Samadder
- Department of Zoology, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India.
| | - Manindranath Bera
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India.
| |
Collapse
|
26
|
l-Arginine Carboxymethyl Cellulose Hydrogel Releasing Nitric Oxide to Improve Wound Healing. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
27
|
Mizutani N, Hosono N, Uemura T. Topological entrapment of macromolecules during the formation of metal-organic framework. Chem Commun (Camb) 2023; 59:1293-1296. [PMID: 36649107 DOI: 10.1039/d2cc06330a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Here we present our preliminary results on a novel approach to encapsulate large guest molecules in nanoporous materials, metal-organic frameworks (MOFs), via a newly discovered in situ crystal formation. This method has exciting prospects not only in the design of new organic/inorganic hybrids but also in capturing and separating molecules that are significantly larger than the actual pore size of the host MOF.
Collapse
Affiliation(s)
- Nagi Mizutani
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Nobuhiko Hosono
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Takashi Uemura
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
28
|
Co(II) fenamato, tolfenamato and niflumato complexes with neocuproine: Synthesis, crystal structure, spectral characterization and biological activity. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Sarkar C, Sk S, Majumder A, Haldar S, Vijaykumar G, Bera M. Synthesis, structure, thermal and magnetic properties of new tetranuclear copper(II) complex supported by multidentate ligand and glutarate functionality. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
30
|
Majumder A, Sk S, Das A, Vijaykumar G, Sahoo MK, Behera JN, Bera M. Ancillary-Ligand-Assisted Variation in Nuclearities Leading to the Formation of Di-, Tri-, and Tetranuclear Copper(II) Complexes with Multifaceted Carboxylate Coordination Chemistry. ACS OMEGA 2022; 7:39985-39997. [PMID: 36385820 PMCID: PMC9647862 DOI: 10.1021/acsomega.2c04627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
The self-assembly of a carboxylate-based dinucleating ligand, N,N'-bis[2-carboxybenzomethyl]-N,N'-bis[2-pyridylmethyl]-1,3-diaminopropan-2-ol (H3cpdp), and copper(II) ions in the presence of various exogenous ancillary ligands results in the formation of the new dinuclear complex [Cu2(cpdp)(μ-Hisophth)]4·2H2isophth·21H2O (1), trinuclear complex [Cu3(Hcpdp)(Cl)4] (2), and tetranuclear complex [Cu4(cpdp)(μ-Hphth)(μ4-phth)(piconol)(Cl)2]·3H2O (3) (H2phth = phthalic acid; H2isophth = isophthalic acid; piconol = 2-pyridinemethanol; Cl- = chloride). In methanol-water, the reaction of H3cpdp with CuCl2·2H2O at room temperature leads to the formation of 2. On the other hand, 1 and 3 have been obtained by carrying out the reaction of H3cpdp with CuCl2·2H2O/m-C6H4(CO2Na)2 and CuCl2·2H2O/o-C6H4(CO2Na)2/piconol, respectively, in methanol-water in the presence of NaOH at ambient temperature. All three complexes have been characterized by elemental analysis, molar electrical conductivity and magnetic moment measurements, FTIR, UV-vis spectroscopy, and PXRD, including single-crystal X-ray structural analyses. The molecular structure of 1 is based on a μ-alkoxide and μ-isophthalate-bridged dimeric [Cu2] core; the structure of 2 represents a trimeric [Cu3] core in which a μ-alcohol-bridged dinuclear [Cu2] unit is exclusively coupled with a [CuCl2] species by two μ:η1:η1-syn-anti carboxylate groups forming a triangular motif; the structure of 3 embodies a tetrameric [Cu4] core, with two copper(II) ions in a distorted-octahedral coordination environment, one copper(II) ion in a distorted-trigonal-bipyramidal coordination environment, and the other copper(II) ion in a square-planar coordination environment. In fact, 2 and 3 represent rare examples of copper(II)-based multinuclear complexes showing outstanding features of rich coordination chemistry: (i) using a symmetrical dinucleating ligand, trinuclear complex 2 is generated with four- and five-coordination environments around copper(II) ions; (ii) the unsymmetrical tetranuclear complex 3 is obtained by using the same ligand with four-, five- and six-coordination environments around copper(II) ions; (iii) tetracopper(II) complex 3 shows four different bridging modes of carboxylate groups simultaneously such as μ:η2, μ:η1:η1, μ3:η2:η1:η1, and μ4:η1:η1:η1:η1, the μ4:η1:η1:η1:η1 mode of phthalate being unprecedented. The formation of these [Cu2], [Cu3], and [Cu4] complexes can be controlled by changing the exogenous ancillary ligands and pH of the reaction solutions, thus allowing an effective tuning of the self-assembly. The magnetic susceptibility measurements suggest that the copper centers in all three complexes are antiferromagnetically coupled. The thermal properties of 1-3 have been investigated by thermogravimetric and differential thermal analytical (TGA and DTA) techniques, indicating that the decomposition of all three complexes proceeds via multistep processes.
Collapse
Affiliation(s)
- Avishek Majumder
- Department
of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | - Sujan Sk
- Department
of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | - Arpan Das
- Department
of Chemical Sciences, Indian Institute of
Science Education & Research-Kolkata, Mohanpur, West Bengal 741246, India
| | - Gonela Vijaykumar
- Department
of Chemical Sciences, Indian Institute of
Science Education & Research-Kolkata, Mohanpur, West Bengal 741246, India
| | - Malaya K. Sahoo
- School
of Chemical Sciences, National Institute
of Science Education & Research, An OCC of Homi Bhabha National
Institute, Bhubaneswar, Khurda, Odisha 752050, India
| | - J. N. Behera
- School
of Chemical Sciences, National Institute
of Science Education & Research, An OCC of Homi Bhabha National
Institute, Bhubaneswar, Khurda, Odisha 752050, India
| | - Manindranath Bera
- Department
of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| |
Collapse
|
31
|
Li X, Li X, Wang B. H 2O 2 activation by two-dimensional metal-organic frameworks with different metal nodes for micropollutants degradation: Metal dependence of boosting reactive oxygen species generation. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129757. [PMID: 35988492 DOI: 10.1016/j.jhazmat.2022.129757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/14/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
The existence of organic micropollutants (OPMs) in water poses a considerable threat to the environment. A centralized approach towards pollutants abatement has dominated over the recent decades wherein heterogeneous Fenton-like based advanced oxidation processes can be a promising technology. The application of engineered nanomaterials offers more opportunities to enhance their catalyst properties. This study synthesizes a series of ultrathin two-dimensional (2D) Metal-organic frameworks (MOFs) nanosheets with tunable metal clusters. The formation of reactive oxygen species (•OH and 1O2) can be significantly boosted via transferring the adsorbed H2O2 onto the solid-liquid interface by systematically tuning the metal species. The Co-MOF nanosheets exhibited an ultrafast degradation kinetic for BPA with a rate of 2.23 min-1 (4.98 times higher than that of the bulk MOF) and TOF (turnover frequency) value of 9.99 min-1, which are observably greater than that of the existing materials reported to date. Density functional theory simulation and experimental results unravel the mechanism for ROS formation, which is strongly metal-depend. We further loaded the powder onto a flow-through poly (vinylidene fluoride) (PVDF) microfiltration membrane and observed that the representative OPMs could be rapidly degraded, indicating promising properties for practical application.
Collapse
Affiliation(s)
- Xuheng Li
- School of Chemistry and Chemical Engineering, Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100084, China
| | - Xiang Li
- School of Chemistry and Chemical Engineering, Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100084, China.
| | - Bo Wang
- School of Chemistry and Chemical Engineering, Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100084, China
| |
Collapse
|
32
|
Tryfon P, Kamou NN, Ntalli N, Mourdikoudis S, Karamanoli K, Karfaridis D, Menkissoglu-Spiroudi U, Dendrinou-Samara C. Coated Cu-doped ZnO and Cu nanoparticles as control agents against plant pathogenic fungi and nematodes. NANOIMPACT 2022; 28:100430. [PMID: 36206943 DOI: 10.1016/j.impact.2022.100430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
In the current study, coated copper nanoparticles with polyethylene glycol 8000 (Cu@PEG NPs) and copper-doped zinc oxide nanoparticles with diethylene glycol (Cu-doped ZnO@DEG NPs) have been synthesized via solvothermal and microwave-assisted process, physicochemical characterized, and studied as nano-fungicides and nano-nematicides. Spheroidal Cu-doped ZnO@DEG NPs and urchin-like Cu@PEG NPs have been isolated with average crystallite sizes of 12 and 21 nm, respectively. The Cu doping (11.3 wt%) in ZnO lattice (88.7 wt%) was investigated by Rietveld refinement analysis and confirmed by X-ray Diffraction (XRD) and X-ray Photoelectron Spectroscopy (XPS). The Cu-doped ZnO@DEG and Cu@PEG NPs revealed a growth inhibition of fungi Botrytis cinerea (B. cinerea) and Sclerotinia sclerotiorum (S. sclerotiorum) and nematode paralysis of Meloidogyne javanica in a dose-dependent manner. Cu-doped ZnO@DEG NPs were more effective against M. javanica (EC50 = 2.60 μg/mL) than the Cu@PEG NPs (EC50 = 25 μg/mL). In contrast, the antifungal activity was approximately similar for both NPs, with EC50 values at 310 and 327 μg/mL against B. cinerea, respectively, and 260 and 278 μg/mL against S. sclerotiorum, respectively. Lettuce (Lactuca sativa) plants were inoculated with S. sclerotiorum or M. javanica and sprayed with either Cu-doped ZnO@DEG NPs or Cu@PEG NPs. The antifungal effect was evaluated based on a disease index (DI), and nematicidal activity was assessed based on the total number of galls and nematode females per root gram. NPs successfully inhibited the growth of both pathogens without causing phytotoxicity on lettuce. The DI were significantly decreased as compared to the positive control (DI = 5.2), estimated equal to 1.7, 2.9 and 2.5 for Cu@PEG NPs, Cu-doped ZnO@DEG NPs and the chemical control (KOCIDE 2000), respectively. The reduction in galling and population of M. javanica ranged from 39.32% to 32.29%, statistically like chemical control. The treatment of lettuce plants with Cu-doped ZnO@DEG NPs increased the leaf net photosynthetic value at 4.60 and 6.66 μmol CO2-2 s-1 in plants inoculated with S. sclerotiorum and M. javanica, respectively, as compared to the control (3.00 μmol CO2-2 s-1). The antioxidant capacity of NPs treated lettuce plants was evaluated as 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity in leaf extracts. Plants inoculated with S. sclerotiorum and sprayed with Cu-doped ZnO@DEG and Cu@PEG NPs, exhibited a 34.22% and 32.70% increase in antioxidant capacity, respectively, higher than the control. Similarly, an increase in antioxidant capacity was measured (39.49 and 37.36%) in lettuce inoculated with M. javanica and treated with Cu-doped ZnO@DEG and Cu@PEG NPs, respectively. Moreover, an increase of phenolic compounds in lettuce leaf tissue treated with NPs was measured as compared to the control. Overall, foliar applied Cu and Cu-doped ZnO NPs could be a promising tool to control phytopathogenic fungi and nematodes contributing to sustainability of agri-food sector.
Collapse
Affiliation(s)
- Panagiota Tryfon
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Nathalie N Kamou
- Pesticide Science Laboratory, School of Agriculture, Faculty of Agriculture Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Nikoletta Ntalli
- Analytical Chemistry and Pesticides Laboratory, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| | - Stefanos Mourdikoudis
- UCL Healthcare Biomagnetic and Nanomaterials Laboratories, 21 Albemarle Street, London W1S 4BS, United Kingdom; Biophysics Group, Department of Physics and Astronomy, University College London (UCL), London, United Kingdom
| | - Katerina Karamanoli
- Laboratory of Agricultural Chemistry, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Dimitrios Karfaridis
- Physics Department, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Urania Menkissoglu-Spiroudi
- Pesticide Science Laboratory, School of Agriculture, Faculty of Agriculture Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Catherine Dendrinou-Samara
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| |
Collapse
|
33
|
Zhang ZY, Qin GX, Li XM, Dong HL, Wan S, Ni YH, Liu J, Chen ZQ, Su Z. Enhanced Mechanical Stability and Proton Conductivity Performance from the Dense Mn(II)-Metal-Organic Framework to Porous Mn(II)-Fe(III)-Metal-Organic Framework. Inorg Chem 2022; 61:15166-15174. [PMID: 36084300 DOI: 10.1021/acs.inorgchem.2c02357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Postsynthetic modification (PSM) of the metal-organic framework (MOF) has been demonstrated to be an effective strategy to enhance performance. In this particular work, the anion framework Mn-MOF {[Mn3O(H2O)3(HTC)]2-} (HTC6- = (5'-(3,5-dicarboxyphenyl)-[1,1':3',1″-terphenyl]-3,3″,5,5″-tetracarboxylate] was obtained, and NH2(CH3)2+ ions were filled within the pores to balance the charge. In order to release the internal pores of Mn-MOF, the trivalent Fe(III) was introduced instead of Mn(II) nodes, resulting in the porous Mn1-xFex-MOF, and the NH2(CH3)2+ ions were simultaneously deported from the pores. The content of Fe(III) in Mn1-xFex-MOF was highly dependent on the concentration of Fe(III) solution, and the maximum could be up to Mn0.05Fe0.95-MOF with a BET surface area of 1209.457 m2 g-1. Compared to the amorphization of dense Mn-MOF at 0.8 GPa in a diamond anvil cell, the mechanical stability of porous Mn0.05Fe0.95-MOF has been dramatically enhanced, and the framework integrity could be maintained up to 16.5 GPa. The proton conductivity for the Mn1-xFex-MOF series was also investigated, where Mn0.93Fe0.07-MOF showed the best performance of 1.47 × 10-2 S cm-1 under 70 °C and 98% RH due to the onset of reversed charge from the anionic framework to cationic framework and the formation of the most compact hydrogen bonding net. This work has not only provided an example for the PSM strategy but also illustrated that the versatile functionalities of MOF materials were mainly ascribed to the tunable porosity.
Collapse
Affiliation(s)
- Zi-You Zhang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210046, China.,Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
| | - Guo-Xu Qin
- College of Chemistry and Materials Science, Anhui Key Laboratory of Functional Molecular Solids, Anhui Normal University, Wuhu 241000, China.,School of Chemistry and Materials Engineering, Chaohu University, Hefei, Anhui 238024, China
| | - Xiao-Min Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210046, China
| | - Hong-Liang Dong
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
| | - Shun Wan
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
| | - Yong-Hong Ni
- College of Chemistry and Materials Science, Anhui Key Laboratory of Functional Molecular Solids, Anhui Normal University, Wuhu 241000, China
| | - Jiang Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210046, China
| | - Zhi-Qiang Chen
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
| | - Zhi Su
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210046, China
| |
Collapse
|
34
|
Roth AN, Chen Y, Adamson MAS, Gi E, Wagner M, Rossini AJ, Vela J. Alkaline-Earth Chalcogenide Nanocrystals: Solution-Phase Synthesis, Surface Chemistry, and Stability. ACS NANO 2022; 16:12024-12035. [PMID: 35849721 DOI: 10.1021/acsnano.2c02116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Increasing demand for effective energy conversion materials and devices has renewed interest in semiconductors comprised of earth-abundant and biocompatible elements. Alkaline-earth sulfides doped with rare earth ions are versatile optical materials. However, relatively little is known about controlling the dimensionality, surface chemistry, and inherent optical properties of the undoped versions of alkaline-earth mono- and polychalcogenides. We describe the colloidal synthesis of alkaline-earth chalcogenide nanocrystals through the reaction of metal carboxylates with carbon disulfide or selenourea. Systematic exploration of the synthetic phase space allows us to tune particle sizes over a wide range using a mixture of commercially available carboxylate precursors. Solid-state NMR spectroscopy confirms the phase purity of the selenide compositions. Surface characterization reveals that bridging carboxylates and amines preferentially terminate the surface of the nanocrystals. While these materials are colloidally stable in the mother solution, the selenides are susceptible to oxidation over time, eventually degrading to selenium metal through polyselenide intermediates. As part of these investigations, we have developed the colloidal syntheses of barium di- and triselenides, two among few reported nanocrystalline alkaline-earth polychalcogenides. Electronic structure calculations reveal that both materials are indirect band gap semiconductors. The colloidal chemistry presented here may enable the synthesis of more complex, multinary chalcogenide materials containing alkaline-earth elements.
Collapse
Affiliation(s)
- Alison N Roth
- US DOE Ames Laboratory, Ames, Iowa 50011, United States
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Yunhua Chen
- US DOE Ames Laboratory, Ames, Iowa 50011, United States
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Marquix A S Adamson
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Eunbyeol Gi
- US DOE Ames Laboratory, Ames, Iowa 50011, United States
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Molly Wagner
- US DOE Ames Laboratory, Ames, Iowa 50011, United States
| | - Aaron J Rossini
- US DOE Ames Laboratory, Ames, Iowa 50011, United States
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Javier Vela
- US DOE Ames Laboratory, Ames, Iowa 50011, United States
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
35
|
Fabrication of hydrogels with adjustable mechanical properties through 3D cell-laden printing technology. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
36
|
Jiang Y, Jia S, Liu XQ, Cui P, Sun LB. Selective adsorption of ethane over ethylene through a metal–organic framework bearing dense alkyl groups. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Böszörményi É, Dömötör O, Kutus B, Varga G, Peintler G, Sipos P. Coordination motifs of binary neodymium(III) D-gluconate, D-galactonate and L-gulonate complexes and the transition from inner- to outer-sphere coordination in neutral to strongly alkaline medium. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
38
|
|
39
|
Chen J, Zeng X, Chen L. Evolution of microstructures and hydrogen bond interactions within choline amino acid ionic liquid and water mixtures. Phys Chem Chem Phys 2022; 24:17792-17808. [PMID: 35848866 DOI: 10.1039/d2cp01990f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The microstructures and interactions of choline amino acid ([Cho][AA]) ionic liquid (IL) and water molecules were investigated. When water was added to [Cho][AA], the asymmetric and symmetric vibration peaks of the -COO- group shifted to lower and higher wavenumbers, respectively. The increase of water addition also resulted in increased conductivity values and decreased viscosity values of [Cho][AA]-water mixtures. These features are consistent with the physical picture that [Cho][AA] could gradually dissociate into hydrated tight ion pairs and water-separated ion pairs and then into free and solvated ions. When it comes to different anions (choline lysine, [Cho][Lys], and choline aspartic acid, [Cho][Asp]), the anion structure has a significant regulation on [Cho][AA]-water interactions. The shorter side chain length and strong polar -COOH group of Asp- endow [Cho][Asp] with stronger cation-anion interactions and less dissociation by water molecules. As a result, the frequency shift degrees and conductivity values of [Cho][Asp]-water mixtures were lower, and the viscosity values were higher than those of [Cho][Lys]-water mixtures. And, [Cho][Lys] could completely dissociate as free hydrated ions at w : IL ≥ 7 : 3, while the free hydrated ions of [Cho][Asp] only occurred when the w : IL ratio reached 8 : 2. These results can ease the experimental effort and improve the application efficiency of [Cho][AA] ILs.
Collapse
Affiliation(s)
- Jin Chen
- Ministry of Education Engineering Research Center of Starch & Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Xixi Zeng
- Ministry of Education Engineering Research Center of Starch & Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Ling Chen
- Ministry of Education Engineering Research Center of Starch & Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
40
|
Vislavath P, Billa S, S P, Bahadur J, Sudarshan K, Patro TU, Rath SK, Ratna D. Heterogeneous Coordination Environment and Unusual Self-Assembly of Ionic Aggregates in a Model Ionomeric Elastomer: Effect of Curative Systems. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Prakash Vislavath
- Polymer Division, Naval Materials Research Laboratory, Ambernath, Maharashtra 421506, India
| | - Srikanth Billa
- Polymer Division, Naval Materials Research Laboratory, Ambernath, Maharashtra 421506, India
| | - Praveen S
- Polymer Division, Naval Materials Research Laboratory, Ambernath, Maharashtra 421506, India
| | - Jitendra Bahadur
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Kathi Sudarshan
- Radio Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - T. Umasankar Patro
- Department of Metallurgical & Materials Engineering, Defence Institute of Advanced Technology, Pune, Maharashtra 411025, India
| | - Sangram K. Rath
- Polymer Division, Naval Materials Research Laboratory, Ambernath, Maharashtra 421506, India
| | - Debdatta Ratna
- Polymer Division, Naval Materials Research Laboratory, Ambernath, Maharashtra 421506, India
| |
Collapse
|
41
|
Iizuka T, Hosono N, Uemura T. Toughening and stabilizing MOF crystals via polymeric guest inclusion. Dalton Trans 2022; 51:13204-13209. [PMID: 35801525 DOI: 10.1039/d2dt01425d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Improving the mechanical properties and stability of metal-organic frameworks (MOFs) is of significant interest due to their practical applications. Herein, we tune the mechanical properties of MOFs by filling the MOF pores with polymer chains. The mechanical properties reflect the filling rate, molecular weight, and inherent flexibility of the polymeric guests, imparting MOFs with improved resilience and toughness against mechanical pressures.
Collapse
Affiliation(s)
- Tomoya Iizuka
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Nobuhiko Hosono
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Takashi Uemura
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
42
|
Jin J, Habeger R, Yoder T, Coulliette D, Eisenhart A, Beck T, Kodithuwakku US, Kim DY, Benmore C, Hart R, Shafer WD. Molecular structure models of amorphous bismuth and cerium carboxylate catalyst precursors. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
43
|
Chen J, Fu W, Xiong J, Zhang W, Jiang FL, Zheng L, Liu Y, Jiang P. Reversible Zn 2+-induced 3D self-assembled aerogel of carboxyl modified copper indium diselenide quantum dots: mechanism and application for inkjet printing anti-counterfeiting. SOFT MATTER 2022; 18:3762-3770. [PMID: 35506885 DOI: 10.1039/d2sm00168c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Three-dimensional (3D) self-assembled quantum dot (QD) aerogels have attracted attention due to the combined properties of both QDs and porous materials. However, the difficulty and complexity of structural composition control limit the practical application of 3D self-assembled QDs. Hence, convenient, available and multifunction QD aerogels need to be explored to promote broader practical applications. Herein, we propose a universal and facile self-assembly method of copper indium selenium (CISe) QD aerogels based on coordination interaction between Zn2+ and carboxyl. Both experiments and Monte Carlo simulations indicate that QDs are aggregated into oligomers by Zn2+, and then the oligomers are gradually interconnected to each other to form a 3D network as the concentration of Zn2+ increases. Moreover, Zn2+-induced 3D self-assembled aerogel could be depolymerized by EDTA reversibly. In combination with CISe QDs, Zn-CISe aerogel has been successfully applied in green pollution-free environment-friendly anti-counterfeiting and encryption systems.
Collapse
Affiliation(s)
- Jilei Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), College of Chemistry and Molecular Sciences & School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, P. R. China.
| | - Wenrong Fu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), College of Chemistry and Molecular Sciences & School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, P. R. China.
| | - Jiaqiang Xiong
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430072, P. R. China
| | - Wei Zhang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430072, P. R. China
| | - Feng-Lei Jiang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), College of Chemistry and Molecular Sciences & School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, P. R. China.
| | - Liuchun Zheng
- State Key Laboratory of Separation Membranes and Membrane Process, School of Textile and School of Chemistry, Tiangong University, Tianjin 300387, P. R. China.
| | - Yi Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), College of Chemistry and Molecular Sciences & School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, P. R. China.
- State Key Laboratory of Separation Membranes and Membrane Process, School of Textile and School of Chemistry, Tiangong University, Tianjin 300387, P. R. China.
- Institute of Advanced Materials and Nanotechnology & Hubei Province Key Laboratory for Coal Conversion and New Carbon Materials, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Peng Jiang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), College of Chemistry and Molecular Sciences & School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, P. R. China.
| |
Collapse
|
44
|
Heiska J, Karppinen M. Gas-phase deposition of di- and tetra-lithium salts of 2,5-dihydroxyterephthalic acid. Dalton Trans 2022; 51:4246-4251. [PMID: 35225312 DOI: 10.1039/d2dt00055e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thin films of two ambipolar lithium-organic electrode materials, Li2DHTP and Li4DHTP, are grown from gaseous precursors, Li(thd) (tetramethyl heptanedione) and DHTP (dihydroxyterephthalic acid). These precursors are pulsed into the reactor in a sequential manner like in atomic/molecular layer deposition, but the reaction product, i.e. the di- or the tetra-lithium salt, is controlled by adjusting the precursor pulse lengths.
Collapse
Affiliation(s)
- Juho Heiska
- Department of Chemistry and Materials Science, Aalto University, FI-00076 Espoo, Finland. .,Vaasa University of Applied Sciences, Energy & Environmental Technology, FI-65200, Vaasa, Finland
| | - Maarit Karppinen
- Department of Chemistry and Materials Science, Aalto University, FI-00076 Espoo, Finland.
| |
Collapse
|
45
|
Leroy C, Métro TX, Hung I, Gan Z, Gervais C, Laurencin D. From Operando Raman Mechanochemistry to "NMR Crystallography": Understanding the Structures and Interconversion of Zn-Terephthalate Networks Using Selective 17O-Labeling. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:2292-2312. [PMID: 35281972 PMCID: PMC8908548 DOI: 10.1021/acs.chemmater.1c04132] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/31/2022] [Indexed: 06/14/2023]
Abstract
The description of the formation, structure, and reactivity of coordination networks and metal-organic frameworks (MOFs) remains a real challenge in a number of cases. This is notably true for compounds composed of Zn2+ ions and terephthalate ligands (benzene-1,4-dicarboxylate, BDC) because of the difficulties in isolating them as pure phases and/or because of the presence of structural defects. Here, using mechanochemistry in combination with operando Raman spectroscopy, the observation of the formation of various zinc terephthalate compounds was rendered possible, allowing the distinction and isolation of three intermediates during the ball-milling synthesis of Zn3(OH)4(BDC). An "NMR crystallography" approach was then used, combining solid-state NMR (1H, 13C, and 17O) and density functional theory (DFT) calculations to refine the poorly described crystallographic structures of these phases. Particularly noteworthy are the high-resolution 17O NMR analyses, which were made possible in a highly efficient and cost-effective way, thanks to the selective 17O-enrichment of either hydroxyl or terephthalate groups by ball-milling. This allowed the presence of defect sites to be identified for the first time in one of the phases, and the nature of the H-bonding network of the hydroxyls to be established in another. Lastly, the possibility of using deuterated precursors (e.g., D2O and d 4-BDC) during ball-milling is also introduced as a means for observing specific transformations during operando Raman spectroscopy studies, which would not have been possible with hydrogenated equivalents. Overall, the synthetic and spectroscopic approaches developed herein are expected to push forward the understanding of the structure and reactivity of other complex coordination networks and MOFs.
Collapse
Affiliation(s)
- César Leroy
- ICGM,
Univ Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | | | - Ivan Hung
- National
High Magnetic Laboratory (NHMFL), Tallahassee, Florida 32310-3706, United States
| | - Zhehong Gan
- National
High Magnetic Laboratory (NHMFL), Tallahassee, Florida 32310-3706, United States
| | - Christel Gervais
- Laboratoire
de Chimie de la Matière Condensée de Paris (LCMCP),
UMR 7574, Sorbonne Université, CNRS, F-75005 Paris, France
| | | |
Collapse
|
46
|
Zhong Y, Mu X, Cheang UK. High-performance and selective adsorption of ZIF-8/MIL-100 hybrids towards organic pollutants. NANOSCALE ADVANCES 2022; 4:1431-1444. [PMID: 36133691 PMCID: PMC9418704 DOI: 10.1039/d1na00819f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/27/2022] [Indexed: 05/26/2023]
Abstract
Environmental contamination by organic pollutants has become a pressing concern. In this study, metal-organic framework composites with a core-shell structure of MIL-100 wrapped around ZIF-8 (ZIF-MIL hybrids) were synthesized and characterized for their effectiveness to remove organic pollutants. First, a sequence of routine characterizations will examine the ZIF-MIL series samples' physicochemical properties and morphological characteristics. Then, the adsorption capacities of ZIF-MIL towards organic pollutants, including cationic dyes (methylene blue (MB), and rhodamine B (RHB)), anionic dyes (methyl orange (MO)), neutral pollutants (Sudan III (SD-III), tetracycline (TC) and amoxicillin (AMX)), were investigated. Among the ZIF-MIL series, ZIF-MIL-4 has an excellent specific surface area with high uptake of TC (1288 mg g-1) and RHB (1181 mg g-1). Based on the adsorption data from kinetic and dynamic studies, the adsorption process was closest to the pseudo-second-order kinetic model and Freundlich isotherm. In terms of thermodynamic parameter values, the adsorption of TC is an endothermic and spontaneous process, while the adsorption of RHB is an exothermic and spontaneous process. Furthermore, the reusability and selectivity studies of ZIF-MIL-4 towards TC and RHB exhibited significant regeneration ability and high selectivity. The effects of ionic strength and pH on pollutant removal efficiency were also tested. The experimental results showed that the main interactions between ZIF-MIL-4 and RHB or TC were weak coordination, electrostatic, hydrogen bonding, and π-π stacking interactions. Thus, the proposed MOF hybrid, by forming mixtures with other MOFs, can be a potential purifier with improved adsorption capacity and selectivity for organic pollutants as well as self-reusability.
Collapse
Affiliation(s)
- Yukun Zhong
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology Shenzhen 518055 China +86-755-88015352
| | - Xueliang Mu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology Shenzhen 518055 China +86-755-88015352
| | - U Kei Cheang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology Shenzhen 518055 China +86-755-88015352
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Southern University of Science and Technology Shenzhen 518055 China
- Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology Shenzhen 518055 China
| |
Collapse
|
47
|
Cu(II)/Guanidine Functionalized Disiloxane Complex of Supramolecular Structures for Visible Light-Driven Photocatalysis of Congo Red. Polymers (Basel) 2022; 14:polym14040817. [PMID: 35215730 PMCID: PMC8963006 DOI: 10.3390/polym14040817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 01/27/2023] Open
Abstract
The present study focuses on the synthesis of a new guanidine-functionalized disiloxane used as a ligand to obtain copper(II) complexes linked through hydrogen bonding into supramolecular structures. A two-step procedure was used to prepare the guanidine functionalized disiloxane ligand. Firstly, the hydrosilylation reaction between the siloxane precursor, namely 1,1,3,3-tetramethyldisiloxane (DS), and the allyl glycidyl ether (AGE) was performed in the presence of a platinum catalyst resulting in glycidoxypropyldisiloxane (DS-PMO) intermediary compound. In the second step, DS-PMO derivative was modified with 1,1,3,3-tetramethyl guanidine (TMGu) to obtain the guanidine-functionalized disiloxane ligand (bGu-DS) that was further used for the coordination of copper(II) acetate hydrate. The structures of the ligand and of its Cu(II) complex were confirmed by spectral methods (IR, UV-Vis, NMR, XRF) and correlated with theoretical calculations using semi-empirical PM6 and DFT methods. The copper(II) complex was found to exhibit low optical band gap energy (2.9 eV) and good photocatalytic activity under visible light irradiation in the decomposition of Congo Red (CR). A dye removal efficiency higher than 97% at the catalyst and CR concentrations of 1 and, respectively, 200 mg/L was obtained.
Collapse
|
48
|
Kato M, Fukui T, Sato H, Shoji Y, Fukushima T. Capturing the Trajectory of Metal-Ion-Cluster Formation: Stepwise Accumulation of Zn(II) Ions in a Robust Coordination Space Formed by a Rigid Tridentate Carboxylate Ligand. Inorg Chem 2022; 61:3649-3654. [PMID: 35148475 DOI: 10.1021/acs.inorgchem.1c03758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Organic ligand-directed synthesis of metal-ion clusters with a well-defined number and arrangement of metal ions is an important subject toward the development of functional inorganic-organic nanohybrids. Here we report the synthesis of multinuclear Zn-oxo clusters using a triptycene-based rigid ligand (H3L) featuring three metal-coordination sites arranged in a triangular shape. Upon complexation of H3L with zinc acetate dihydrate, a decanuclear Zn-oxo cluster and multinuclear Zn-oxo clusters with a smaller number of Zn(II) ions were formed as the final product and its intermediates, respectively. A comparison of the X-ray structure of the final product with those of the intermediates revealed the cluster-formation process, where four triptycene ligands preorganize to form a robust coordination space to which Zn(II) ions accumulate in a stepwise manner. This stepwise metal-ion accumulation, along with the formation of a large tetrahedral decanuclear Zn-oxo cluster, highlights the potential of ligand design using 1,8,13-substituted triptycenes for the development of various metal-ion clusters.
Collapse
Affiliation(s)
- Mikiya Kato
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan.,Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Tomoya Fukui
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan.,Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Hiroyasu Sato
- Application Laboratory, Rigaku Corporation, 3-9-12 Matsubara-cho, Akishima-shi, Tokyo 196-8666, Japan
| | - Yoshiaki Shoji
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan.,Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Takanori Fukushima
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan.,Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| |
Collapse
|
49
|
Guo Z, Liu X, Che Y, Chen D, Xing H. One-Pot Dual Catalysis of a Photoactive Coordination Polymer and Palladium Acetate for the Highly Efficient Cross-Coupling Reaction via Interfacial Electron Transfer. Inorg Chem 2022; 61:2695-2705. [DOI: 10.1021/acs.inorgchem.1c03961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhifen Guo
- Laboratory of Advanced Energy Materials, College of Chemistry, Northeast Normal University, Changchun 130021, P. R. China
| | - Xin Liu
- Laboratory of Advanced Energy Materials, College of Chemistry, Northeast Normal University, Changchun 130021, P. R. China
| | - Yan Che
- Laboratory of Advanced Energy Materials, College of Chemistry, Northeast Normal University, Changchun 130021, P. R. China
| | - Dashu Chen
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, No. 26 Hexing Road, Harbin 150040, China
| | - Hongzhu Xing
- Laboratory of Advanced Energy Materials, College of Chemistry, Northeast Normal University, Changchun 130021, P. R. China
| |
Collapse
|
50
|
Dinh Le C, Thang Pham C, Huy Nguyen H. Syntheses, Structures and Cytotoxicity of Cu(II) Complexes with α‐Amino acid derived Benzamidines. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202100351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Canh Dinh Le
- Department of Chemistry Quy Nhon University 170 An Duong Vuong Quy Nhon Vietnam
| | - Chien Thang Pham
- Department of Inorganic Chemistry VNU University of Science, Vietnam National University, Hanoi 19 Le Thanh Tong, Hoan Kiem 10021 Hanoi Vietnam
| | - Hung Huy Nguyen
- Department of Inorganic Chemistry VNU University of Science, Vietnam National University, Hanoi 19 Le Thanh Tong, Hoan Kiem 10021 Hanoi Vietnam
| |
Collapse
|