1
|
Khan S, Balyan P, Ali A, Sharma S, Sachar S. Exploring the effect of surfactants on the interactions of manganese dioxide nanoparticles with biomolecules. J Biomol Struct Dyn 2025; 43:644-664. [PMID: 38006308 DOI: 10.1080/07391102.2023.2283157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/27/2023] [Indexed: 11/27/2023]
Abstract
Interactions of manganese dioxide nanoparticles (MnO2 NPs) with vital biomolecules namely deoxyribonucleic acid (DNA) and serum albumin (BSA) have been studied in association with different surfactants by using fluorescence (steady state, synchronous and 3D), UV-visible, resonance light scattering (RLS), dynamic light scattering (DLS), and sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). The esterase activity of serum albumin was tested in associations with MnO2 NPs and surfactants. The antioxidant potential of prepared NPs was also evaluated (DPPH method). Gel electrophoresis was carried out to analyze the effect of MnO2 NPs and surfactants on DNA. Presence of CTAB, Tween 20, DTAB and Tween 80 enhanced nanoparticle-protein binding. Tween 20 based nanoparticle systems showed long-term stability and biocompatibility. The quenching of BSA fluorescence emission in presence of MnO2 NPs alone and along with Tween 20 revealed stronger association of nanoparticles with proteins. Enhancement in the esterase activity (BSA) was observed in the presence of Tween 20. Furthermore, radical scavenging activity showed highest antioxidant potential in presence of Tween 20. The enthalpy and entropy assessment for protein-NPs association showed the predominance of Vander Waals interactions and hydrogen bonding. The synchronous fluorescence analysis highlighted the involvement of tryptophan (Trp) in the MnO2 NPs-protein interactions. The study evaluates the influence of surfactant on the associations of MnO2 NPs with the essential biomolecules. The findings can be crucially utilized in designing biocompatible MnO2 formulations for long term applications.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shagufta Khan
- Department of Chemistry, University of Mumbai, Mumbai, India
| | - Prairna Balyan
- Department of Life Sciences, University of Mumbai, Mumbai, India
| | - Ahmad Ali
- Department of Life Sciences, University of Mumbai, Mumbai, India
| | - Shweta Sharma
- Institute of Forensic Science & Criminology, Punjab University, Chandigarh, India
| | - Shilpee Sachar
- Department of Chemistry, University of Mumbai, Mumbai, India
| |
Collapse
|
2
|
Kummur KN, Panda SM, Patil MB, Tripathy U, Sidarai AH. Revealing the interaction mechanism between bovine serum albumin (BSA) and a fluorescent coumarin derivative: A multispectroscopic and in silico approach. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 318:124466. [PMID: 38761474 DOI: 10.1016/j.saa.2024.124466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/05/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
The interaction of biomacromolecules with each other or with the ligands is essential for biological activity. In this context, the molecular recognition of bovine serum albumin (BSA) with 4-(Benzo[1,3]dioxol-5-yloxymethyl)-7-hydroxy-chromen-2-one (4BHC) is explored using multispectroscopic and computational techniques. UV-Vis spectroscopy helped in predicting the conformational variations in BSA. Using fluorescence spectroscopy, the quenching behaviour of the fluorophore upon interaction with the ligand is examined, which is found to be a static type of quenching; fluorescence lifetime studies further verify this. The binding constant is discovered to be in the range of 104 M-1, which indicates the moderate type of association that results in reversible binding, where the transport and release of ligands in the target tissue takes place. Fourier-transform infrared spectroscopy (FT-IR) measurements validate the secondary structure conformational changes of BSA after complexing with 4BHC. The thermodynamic factors obtained through temperature-dependent fluorescence studies suggest that the dominant kind of interaction force is hydrophobic in nature, and the interaction process is spontaneous. The alterations in the surrounding microenvironment of the binding site and conformational shifts in the structure of the protein are studied through 3D fluorescence and synchronous fluorescence studies. Molecular docking and molecular dynamics (MD) simulations agree with experimental results and explain the structural stability throughout the discussion. The outcomes might have possible applications in the field of pharmacodynamics and pharmacokinetics.
Collapse
Affiliation(s)
- Kavyashree Nagappa Kummur
- Department of Studies in Physics, Karnatak University, Pavatenagar, Dharwad, 580003, Karnataka, India
| | - Smita Manjari Panda
- Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, Jharkhand, India
| | | | - Umakanta Tripathy
- Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, Jharkhand, India.
| | - Ashok H Sidarai
- Department of Studies in Physics, Karnatak University, Pavatenagar, Dharwad, 580003, Karnataka, India.
| |
Collapse
|
3
|
Seddik RG, Rashidi FB, Salah-Eldin DS, Shoukry AA. Synthesis, Characterization, DNA Binding, Biological Significance, and Molecular Docking Approaches of a Palladium(II) Complex with Ciprofloxacin for More Efficient Therapy. Chem Biodivers 2024; 21:e202400415. [PMID: 39034296 DOI: 10.1002/cbdv.202400415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
To evaluate the biotransformation and the mechanism of binding as well as the biological impact of metal-based- drugs involving Pd(II), known to have high potency and low toxicity for use as anticancer therapeutics, in the present study, a newly synthesized palladium (II) complex, [Pd(CPF)(OH2)2]2+ (where CPF is ciprofloxacin), has been synthesized and characterized and thoroughly evaluated for its antimicrobial properties. The interaction of the diaqua complex with CT-DNA and BSA was studied through various techniques, including UV-vis spectroscopy, thermal denaturation, viscometry, gel electrophoresis, ethanol precipitation, and molecular docking studies. The results indicate that the complex exhibits a robust binding interaction with CT-DNA, possibly via minor groove binding and (or) electrostatic interactions. Furthermore, the complex displays good binding affinity towards BSA, indicating its potential as a target for DNA and BSA in biological media. The invitro cytotoxicity assay reveals that this complex can be classified as a promising cell growth inhibitor against MCF-7, HT-29, and A549. Thus, this newly synthesized palladium (II) complex is a promising candidate for further exploration as a potential anticancer therapeutic.
Collapse
Affiliation(s)
- Ramy G Seddik
- Biochemistry Division, Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
- Faculty of Science, Galala University, 43511, Suze, Egypt
| | - Fatma B Rashidi
- Biochemistry Division, Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Doaa S Salah-Eldin
- Biochemistry Division, Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Azza A Shoukry
- Inorganic Chemistry Division, Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
4
|
Fatima U, Yadav N, Venkatesu P. Sustainable combination of ionic liquid and deep eutectic solvent for protecting and preserving of the protein structure: The synergistic interaction of enzymes and eco-friendly hybrid ionic fluids. Int J Biol Macromol 2024; 268:131997. [PMID: 38697420 DOI: 10.1016/j.ijbiomac.2024.131997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Hybrid ionic fluids (HIFs) are one of the emerging and fascinating sustainable solvent media, a novel environment-friendly solvent for biomolecules. The HIFs have been synthesized by combining a deep eutectic solvent (DES), an ionic liquid (IL) having a common ion. The stability and activity of hen's egg white lysozyme (Lyz) in the presence of a recently designed new class of biocompatible solvents, HIFs have been explored by UV-visible, steady-state fluorescence, circular dichroism (CD), Fourier transform infrared spectroscopy (FT-IR) along with dynamic light scattering (DLS) measurements. This work emphasizes the effect of DES synthesized by using 1:2 choline chloride and glycerol [Glyn], ILs (1-butly-3-methylimidazolium chloride [BMIM]Cl and choline acetate [Chn][Ac]) and their corresponding HIFs on the structure and functionality of Lyz. Moving forward, we also studied the secondary structure, thermal stability and enzymatic activity and thermodynamic profile of Lyz at pH = 7 in the presence of varying concentrations (0.1 to 0.5) M of [BMIM]Cl, [Chn][Ac] ILs, [Glyn] DES and [Glyn][BMIM]Cl (hybrid ionic fluid1) as well as [Glyn][Chn][Ac] (hybrid ionic fluid2). Spectroscopic results elucidate that ILs affect the activity and structural stability of Lyz, whereas the stability and activity are increased by DES and are maintained by HIFs at all the studied concentrations. Overall, the experimental results studied elucidate expressly that the properties of Lyz are maintained in the presence of hybrid ionic fluid1 while these properties are intensified in hybrid ionic fluid2. This work has elucidated expressly biocompatible green solvents in protein stability and functionality due to the alluring properties of DES, which can counteract the negative effect of ILs in HIFs.
Collapse
Affiliation(s)
- Urooj Fatima
- Department of Chemistry, University of Delhi, Delhi 110 007, India
| | - Niketa Yadav
- Department of Chemistry, University of Delhi, Delhi 110 007, India
| | | |
Collapse
|
5
|
Jana G, Sing S, Das A, Basu A. Interaction of food colorant indigo carmine with human and bovine serum albumins: A multispectroscopic, calorimetric, and theoretical investigation. Int J Biol Macromol 2024; 259:129143. [PMID: 38176484 DOI: 10.1016/j.ijbiomac.2023.129143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
In this work we have studied the interaction of the food dye Indigo-Carmine (IndC) with the most studied model transport proteins i.e. human and bovine serum albumin (HSA & BSA). A multispectroscopic approach was used to analyze the details of the binding process. The intrinsic fluorescence of both the albumins was significantly quenched by IndC and the quenching was both static and dynamic in nature with the former being dominant. The HSA-lndC and BSA-IndC distance after complexation was determined by Förster resonance energy transfer (FRET) method which suggested efficient energy transfer from the albumins to IndC. Thermodynamics of serum protein-IndC complexation was estimated by isothermal titration calorimetry (ITC) which revealed that the binding was enthalpy driven. Circular dichroism (CD) and FTIR spectroscopy revealed that the binding of IndC induced secondary structural changes in both the serum proteins. Synchronous and 3D fluorescence spectroscopy revealed that the binding interaction caused microenvironmental changes of protein fluorophores. Molecular docking analysis suggested that hydrogen bonding and hydrophobic interactions are the major forces involved in the complexation process.
Collapse
Affiliation(s)
- Gouranga Jana
- Department of Chemistry, Vidyasagar University, Midnapore 721 102, India
| | - Shukdeb Sing
- Department of Chemistry, Vidyasagar University, Midnapore 721 102, India
| | - Arindam Das
- Department of Chemistry, Vidyasagar University, Midnapore 721 102, India
| | - Anirban Basu
- Department of Chemistry, Vidyasagar University, Midnapore 721 102, India.
| |
Collapse
|
6
|
Yang Y, Wang S, Liu X, Zhang W, Tong W, Luo H, Zhao L. Interactions of ferulic acid and ferulic acid methyl ester with endogenous proteins: Determination using the multi-methods. Heliyon 2024; 10:e24605. [PMID: 38312678 PMCID: PMC10835327 DOI: 10.1016/j.heliyon.2024.e24605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 02/06/2024] Open
Abstract
Ferulic acid (FA) and ferulic acid methyl ester (FAM) are important phenolic compounds in Baijiu. In this study, the interaction of FA and FAM with human serum albumin (HSA) and lysozyme (LZM) was investigated using multispectral methods and molecular dynamics simulation. FA and FAM could interact with HSA and LZM, changing the conformation and hydrophilicity of the protein. The quenching mechanisms of FA-HSA, FA-LZM, FAM-HSA, and FAM-LZM were all static-quenching. In the FA-HSA, FAM-HSA, and FA-LZM systems, the interaction forces were mainly hydrophobic interactions and hydrogen bonding. In the FAM-LZM system, the interaction forces were mainly hydrophobic interactions, hydrogen bonding, and van der Waals force. Common metal ions such as K+, Ca2+, Cu2+, Mg2+, and Mn2+ could affect the binding ability of FA and FAM to HSA and LZM. Moreover, FA and FAM could increase the stability of HSA and LZM, and the protein bound to FA/FAM was more stable than the free protein. FA and FAM had varying degrees of impact on the physiological activities of HSA and LZM. This study provides relevant information on the interactions and metabolic mechanisms of FA and its derivatives with endogenous proteins.
Collapse
Affiliation(s)
- Ying Yang
- School of Biological Engineering, Sichuan University of Science and Engineering, Yibin, 644000, China
| | - Shuqin Wang
- School of Biological Engineering, Sichuan University of Science and Engineering, Yibin, 644000, China
| | - Xingyan Liu
- School of Biological Engineering, Sichuan University of Science and Engineering, Yibin, 644000, China
| | - Wenbin Zhang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510000, China
| | - Wenhua Tong
- School of Biological Engineering, Sichuan University of Science and Engineering, Yibin, 644000, China
- Key Laboratory of Brewing Biotechnology and Application, Yibin, 644000, China
| | - Huibo Luo
- School of Biological Engineering, Sichuan University of Science and Engineering, Yibin, 644000, China
- Key Laboratory of Brewing Biotechnology and Application, Yibin, 644000, China
| | - Liming Zhao
- East China University of Science and Technology, Shanghai, 200000, China
| |
Collapse
|
7
|
Seddik RG, Shoukry AA, Rashidi FB, Salah-Eldin DS. Investigation on CT-DNA and Protein Interaction of New Pd(II) Complexes Involving Ceftazidime and 3-Amino-1,2,3-triazole: Synthesis, Characterization, Biological Impact, Anticancer Evaluation, and Molecular Docking Approaches. Chem Biodivers 2023; 20:e202301170. [PMID: 37850505 DOI: 10.1002/cbdv.202301170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/12/2023] [Accepted: 10/15/2023] [Indexed: 10/19/2023]
Abstract
Two new palladium (II) complexes, [Pd(CAZ)(OH2 )2 ]2+ (1) and [Pd(3-AT)(OH2 )2 ]2+ (2), (CAZ=ceftazidime, and 3-AT=amitrole) were synthesized and studied for their potential as anticancer drugs with low toxicity and high potency. To fully characterize these complexes, we conducted elemental analysis and FT-IR studies. Furthermore, we irradiated the complexes with Indian 60 Co gamma rays and thoroughly evaluated their antimicrobial properties. Our results demonstrate that the inhibitory activity of complexes was significantly enhanced against (G+) bacteria and fungi. Additionally, we probed the complexes' interaction with CT-DNA and BSA using various techniques, including UV-vis spectroscopy, thermal denaturation, viscometry, gel electrophoresis, and molecular docking studies. Our findings conclusively demonstrate that these complexes possess a strong binding interaction with CT-DNA via minor groove binding and/or electrostatic interactions, as well as excellent binding affinity to BSA. Finally, we conducted a cytotoxicity assay that clearly indicates these complexes hold immense promise as cell growth inhibitors against MCF-7 and HCT-116.
Collapse
Affiliation(s)
- Ramy G Seddik
- Biochemistry Division, Chemistry Department, Faculty of Science, Cairo University, 12613, Giza, Egypt
- Faculty of Basic Science, Galala University, 43511, Suze, Egypt
| | - Azza A Shoukry
- Inorganic Chemistry Division, Chemistry Department, Faculty of Science, Cairo University, 12613, Giza, Egypt
| | - Fatma B Rashidi
- Biochemistry Division, Chemistry Department, Faculty of Science, Cairo University, 12613, Giza, Egypt
| | - Doaa S Salah-Eldin
- Biochemistry Division, Chemistry Department, Faculty of Science, Cairo University, 12613, Giza, Egypt
| |
Collapse
|
8
|
Geng M, Feng X, Wu X, Tan X, Liu Z, Li L, Huang Y, Teng F, Li Y. Encapsulating vitamins C and E using food-grade soy protein isolate and pectin particles as carrier: Insights on the vitamin additive antioxidant effects. Food Chem 2023; 418:135955. [PMID: 36963139 DOI: 10.1016/j.foodchem.2023.135955] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/25/2023] [Accepted: 03/13/2023] [Indexed: 03/26/2023]
Abstract
Functional factors show additive effects in the same nutraceutical food. In this study, a core-shell structure based on soy protein isolate (SPI) and pectin was constructed as a delivery system for vitamins C and E under neutral (pH 7.0) and acidic environment (pH 4.0). The SPI-vitamin-pectin complex formed at pH 4.0 showed larger particle size, higher turbidity, lower fluorescence intensity, and higher vitamin E encapsulation efficiency than those formed at pH 7.0. Also, the addition of vitamin C significantly enhanced the vitamin E encapsulation efficiency in the particles. Furthermore, the antioxidant properties of DPPH, ABTS, and hydroxyl radicals were increased by the addition of vitamin C, maximum values of 77%, 82%, and 65%, suggesting that vitamins C and E have additive antioxidant effects. These findings proposed a simple, structured protein-polysaccharide-based food-grade delivery system, which could serve as the basis for the design of products having multiple functional factors.
Collapse
Affiliation(s)
- Mengjie Geng
- Department of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xumei Feng
- Department of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xixi Wu
- Department of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiangyun Tan
- Department of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zengnan Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Lijia Li
- Department of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yuyang Huang
- College of Food Engineering, Harbin University of Commerce, Harbin, Heilongjiang 150028, China
| | - Fei Teng
- Department of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Yang Li
- Department of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
9
|
Udnoor A, Lokolkar M, Yallur BC, Kale R, Kalasad MN, Katrahalli U, Manjunatha DH. Monitoring the interactions between bovine serum albumin and ZnO/Ag nanoparticles by spectroscopic techniques. J Biomol Struct Dyn 2023; 41:352-365. [PMID: 34821210 DOI: 10.1080/07391102.2021.2006788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Inducing the bio-functionalization in noble metal nanoparticles like gold, silver, zinc is very important to accomplish their biocompatibility in biological activities. These metal nanoparticles are being rigorously used in bio-sensing tools keeping their remarkable properties in mind. Amongst the serum albumins, the most ample proteins in plasma are bovine serum albumin and human serum albumin. A broad variety of physiological functions of bovine serum albumin has made it a model protein for bio-functionalization. In the present study, ZnO/Ag nanoparticles were synthesized and characterized by SEM and XRD techniques and the interaction between bovine serum albumin and ZnO/Ag nanoparticles was evaluated by employing ultra-violet, steady state fluorescence, circular dichroism and FTIR spectroscopic techniques. Upon the excitation of bovine serum albumin, ZnO/Ag nanoparticles appreciably reduced the intrinsic fluorescence intensity of bovine serum albumin. The number of binding locations and apparent binding constants at different temperatures were calculated by the fluorescence quenching method. Static mechanism of quenching and conformational modifications in bovine serum albumin were also found.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abhishek Udnoor
- PG Department of Chemistry, The Maratha Mandal Degree College, Belagavi, Karnataka, India
| | - Manjunath Lokolkar
- PG Department of Chemistry, The Maratha Mandal Degree College, Belagavi, Karnataka, India
| | - Basappa C Yallur
- Department of Chemistry, MS Ramaiah Institute of Technology, Bangalore, Karnataka, India
| | - Raju Kale
- PG Department of Chemistry, The Maratha Mandal Degree College, Belagavi, Karnataka, India
| | - Muttanagoud N Kalasad
- Department of Studies in Physics, Davangere University, Shivagangothri, Davangere, Karnataka, India
| | - Umesha Katrahalli
- PG Department of Chemistry, Vijaya College, Bangalore, Karnataka, India
| | | |
Collapse
|
10
|
Indumathy R, Senthilrajkapoor P, Kalaiarasi G, Sathyaraj G, Uma V. Synthesis, spectral characterization, protein binding and cytotoxic evaluation of new cobalt(II) and cobalt(III) complexes containing benzimidazolylterpyridine as ligand. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2141116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ramasamy Indumathy
- Department of Chemistry, Nallamuthu Gounder Mahalingam College, Pollachi, India
| | | | - Giriraj Kalaiarasi
- Department of Chemistry, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore, India
| | - Gopal Sathyaraj
- Centre for Analysis, Testing, Evaluation & Reporting Services (CATERS), CSIR-Central Leather Research Institute, Adyar, Chennai, India
| | - Varadarajan Uma
- Department of Chemistry, Presidency College, Chepauk, Chennai, India
| |
Collapse
|
11
|
Song JW, Liu YS, Guo YR, Zhong WX, Guo YP, Guo L. Nano-Liposomes Double Loaded with Curcumin and Tetrandrine: Preparation, Characterization, Hepatotoxicity and Anti-Tumor Effects. Int J Mol Sci 2022; 23:ijms23126858. [PMID: 35743311 PMCID: PMC9224699 DOI: 10.3390/ijms23126858] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/16/2022] [Accepted: 06/19/2022] [Indexed: 12/24/2022] Open
Abstract
(1) Background: Curcumin (CUR) and tetrandrine (TET) are natural compounds with various bioactivities, but have problems with low solubility, stability, and absorption rate, resulting in low bioavailability, and limited applications in food, medicine, and other fields. It is very important to improve the solubility while maintaining the high activity of drugs. Liposomes are micro–vesicles synthesized from cholesterol and lecithin. With high biocompatibility and biodegradability, liposomes can significantly improve drug solubility, efficacy, and bioavailability. (2) Methods: In this work, CUR and TET were encapsulated with nano–liposomes and g DSPE–MPEG 2000 (DP)was added as a stabilizer to achieve better physicochemical properties, biosafety, and anti–tumor effects. (3) Results: The nano–liposome (CT–DP–Lip) showed stable particle size (under 100 nm) under different conditions, high solubility, drug encapsulation efficiency (EE), loading capacity (LC), release rate in vitro, and stability. In addition, in vivo studies demonstrated CT–DP–Lip had no significant toxicity on zebrafish. Tumor cytotoxicity test showed that CT–DP–Lip had a strong inhibitory effect on a variety of cancer cells. (4) Conclusions: This work showed that nano–liposomes can significantly improve the physical and chemical properties of CUR and TET and make them safer and more efficient.
Collapse
Affiliation(s)
- Jia-Wen Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (J.-W.S.); (Y.-S.L.)
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.-R.G.); (W.-X.Z.)
| | - Yu-Shi Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (J.-W.S.); (Y.-S.L.)
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.-R.G.); (W.-X.Z.)
| | - Yu-Rou Guo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.-R.G.); (W.-X.Z.)
| | - Wen-Xiao Zhong
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.-R.G.); (W.-X.Z.)
| | - Yi-Ping Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (J.-W.S.); (Y.-S.L.)
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.-R.G.); (W.-X.Z.)
- Correspondence: (Y.-P.G.); (L.G.); Tel.: +86-13881721018 (L.G.)
| | - Li Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (J.-W.S.); (Y.-S.L.)
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.-R.G.); (W.-X.Z.)
- Correspondence: (Y.-P.G.); (L.G.); Tel.: +86-13881721018 (L.G.)
| |
Collapse
|
12
|
Li X, Li M, Sun N, He F, Chu S, Zong W, Niu Q, Liu R. Response of earthworm coelomocytes and catalase to pentanone and hexanone: a revelation of the toxicity of conventional solvents at the cellular and molecular level. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:44282-44296. [PMID: 35128610 DOI: 10.1007/s11356-022-18864-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Organic solvents like 2-pentanone and 2-hexanone which are widely used in industrial production make up a large proportion of the source of chemical pollution. What is worrisome is that the cellular and molecular toxicity of 2-pentanone and 2-hexanone has not been reported yet. Based on this, earthworms and catalase (CAT) were chosen as target receptors for the toxicity studies. The cytotoxicity of 2-pentanone and 2-hexanone was revealed by measuring the multiple intracellular indicators of oxidative stress. At the molecular level, changes in the structure and function of CAT were characterized in vitro by the spectroscopy and molecular docking. The results show that 2-pentanone and 2-hexanone that induced the accumulation of reactive oxygen species can eventually reduce coelomocytes viability, accompanying by the regular changes of antioxidant activity and lipid peroxidation level. In addition, the exposure of 2-pentanone and 2-hexanone can shrink the backbone structure of CAT, quench the fluorescence, and misfold the secondary structure. The decrease in enzyme activity should be attributed to the structural changes induced by surface binding. This study discussed the toxicological effects and mechanisms of conventional solvents at the cellular and molecular level, which creatively proposed a joint research method.
Collapse
Affiliation(s)
- Xiangxiang Li
- School of Environmental Science and Engineering, China - America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China
| | - Meifei Li
- School of Environmental Science and Engineering, China - America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China
| | - Ning Sun
- School of Environmental Science and Engineering, China - America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China
| | - Falin He
- School of Environmental Science and Engineering, China - America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China
| | - Shanshan Chu
- School of Environmental Science and Engineering, China - America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China
| | - Wansong Zong
- College of Population, Resources and Environment, Shandong Normal University, 88# East Wenhua Road, Jinan, 250014, People's Republic of China
| | - Qigui Niu
- School of Environmental Science and Engineering, China - America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China
| | - Rutao Liu
- School of Environmental Science and Engineering, China - America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China.
| |
Collapse
|
13
|
Oziri OJ, Maeki M, Tokeshi M, Isono T, Tajima K, Satoh T, Sato SI, Yamamoto T. Topology-Dependent Interaction of Cyclic Poly(ethylene glycol) Complexed with Gold Nanoparticles against Bovine Serum Albumin for a Colorimetric Change. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5286-5295. [PMID: 34878285 DOI: 10.1021/acs.langmuir.1c03027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Unique physical and chemical properties arising from a polymer topology recently draw significant attention. In this study, cyclic poly(ethylene glycol) (c-PEG) was found to significantly interact with bovine serum albumin (BSA), suggested by nuclear magnetic resonance, dynamic light scattering, and fluorescence spectroscopy. On the other hand, linear HO-PEG-OH and MeO-PEG-OMe showed no affinity. Furthermore, a complex of gold nanoparticles and c-PEG (AuNPs/c-PEG) attracted BSA to form aggregates, and the red color of the AuNPs dispersion evidently disappeared, whereas ones with linear PEG or without PEG did not demonstrate such a phenomenon. The interactions among BSA, AuNPs, and PEG were investigated by changing the incubation time and concentration of the components by using UV-Vis and fluorescence spectroscopy.
Collapse
Affiliation(s)
- Onyinyechukwu Justina Oziri
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Masatoshi Maeki
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Manabu Tokeshi
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Takuya Isono
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Kenji Tajima
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Toshifumi Satoh
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Shin-Ichiro Sato
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Takuya Yamamoto
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
14
|
Rashtbari S, Dehghan G, Sadeghi L, Sareminia L, Iranshahy M, Iranshahi M, Khataee A, Yoon Y. Interaction of bovine serum albumin with ellagic acid and urolithins A and B: Insights from surface plasmon resonance, fluorescence, and molecular docking techniques. Food Chem Toxicol 2022; 162:112913. [PMID: 35276234 DOI: 10.1016/j.fct.2022.112913] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/22/2022] [Accepted: 03/06/2022] [Indexed: 12/14/2022]
Abstract
Human serum albumin (HSA) shows the sequence homology and structural similarity with bovine serum albumin (BSA). Therefore, here, the interaction of natural phenolic antioxidants, ellagic acid (ELA), and its derivatives-urolithins A (ULA) and B (ULB)-with BSA was investigated. The results of surface plasmon resonance (SPR) indicated a high affinity of ELA, ULA, and ULB to BSA, with KD value < 1 × 10-6 M. The KD values of binding of the studied compounds to BSA increased with temperature, revealing a reduction in affinity with an increase in temperature. Fluorescence data showed that the quenching of BSA by tested compounds occurred via a static quenching. However, the affinity of ELA for BSA was higher than that of ULA and ULB, which may be because of the presence of a large number of hydroxyl groups in its structure. The assessment of the antioxidant activity of BSA and BSA-ELA/ULA/ULB complexes using the DPPH assay indicated that the DPPH scavenging activity of BSA increased after complex formation with ELA/ULA/ULB in the following order: BSA-ELA > BSA-ULA > BSA-ULB > BSA, which was due to their structural differences. The results of the docking analysis were in agreement with the experimental results.
Collapse
Affiliation(s)
- Samaneh Rashtbari
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Gholamreza Dehghan
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, 51666-16471, Tabriz, Iran.
| | - Leila Sadeghi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Leila Sareminia
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Milad Iranshahy
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Iranshahi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran; Department of Environmental Engineering, Faculty of Engineering, Gebze Technical University, 41400, Gebze, Turkey
| | - Yeojoon Yoon
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, Republic of Korea.
| |
Collapse
|
15
|
Zhang Y, Cao Y, Li Y, Zhang X. Interactions between Human Serum Albumin and Sulfadimethoxine Determined Using Spectroscopy and Molecular Docking. Molecules 2022; 27:molecules27051526. [PMID: 35268627 PMCID: PMC8911820 DOI: 10.3390/molecules27051526] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 11/16/2022] Open
Abstract
Sulfonamides are widely used antibiotics in agricultural production. However, the potential threat of these drugs to human health has increased global concern. Human serum albumin (HSA) is the main reservoir and transporter of exogenous small molecules in humans. In this study, the interaction between sulfadimethoxine (SMT) and human serum albumin (HSA) was studied using spectroscopy and computer simulation. Our results showed that the hydrogen bonding and van der Waals forces drove SMT to enter the binding site I of HSA spontaneously and resulted in the fluorescence quenching of HSA. The stability of the HSA–SMT complex decreased with an increase in temperature. The binding of SMT to HSA induced alterations in the secondary structure of HSA, where the content of α-helix decreased from 61.0% of the free state to 59.0% of the compound state. The π–π, π–σ, and π–alkyl interactions between HSA and SMT were found to play important roles in maintaining the stability of the complex.
Collapse
Affiliation(s)
- Yuai Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China;
- NanChang Bozekang Pharmaceutical Technology Co., Ltd., Nanchang 330000, China
| | - Yiqing Cao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China;
| | - Yan Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China;
- Correspondence: (Y.L.); (X.Z.)
| | - Xuemei Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China;
- Correspondence: (Y.L.); (X.Z.)
| |
Collapse
|
16
|
Liu SY, Zhang YY, Chu GX, Bao GH. N-ethyl-2-pyrrolidinone substitution enhances binding affinity between tea flavoalkaloids and human serum albumin: Greatly influenced by esterization. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 262:120097. [PMID: 34182296 DOI: 10.1016/j.saa.2021.120097] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/04/2021] [Accepted: 06/17/2021] [Indexed: 05/25/2023]
Abstract
Formation of catechins-human serum albumin (HSA) complex contributes to stably transporting catechins and regulating their bioavailability. Recently, a new class of catechins namely flavoalkaloids have been reported from tea. The unique structural modification with an N-ethyl-2-pyrrolidinone ring at catechins from these flavoalkaloids has raised our interest in their HSA binding affinity. Thus, we investigated the interaction between HSA and flavoalkaloids by molecular docking, UV-Vis spectroscopy (UV), fluorescence quenching approaches, and surface plasmon resonance (SPR). Thermodynamic parameters suggest that electrostatic forces contribute greatly to the interaction. The binding ability is affected by different ester group (galloyl or cinnamoyl) at 3-OH, N-ethyl-2-pyrrolidinone substituted position (C-6 or C-8), C-2, C-3 and C-5''' configurations, and hydroxyl group numbers at B ring, among which the 3-O-cinnamoyl substitution and 5'''-R configuration present the strongest contributions. UV showed slight changes in the conformation and microenvironment of HSA during the binding process. The quenching and binding constants suggest that the quenching is a static type. The small KD values (1-20 μM) detected by SPR confirmed the strong binding affinities between HSA and flavoalkaloids. Present study will help us to understand the interaction mechanism between flavoalkaloids and HSA, shedding light on structural modification of common catechins to enhance the stability, bioavailability and bioactivities.
Collapse
Affiliation(s)
- Shi-Yu Liu
- Natural Products Laboratory, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, People's Republic of China.
| | - Yuan-Yuan Zhang
- Natural Products Laboratory, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, People's Republic of China.
| | - Gang-Xiu Chu
- Natural Products Laboratory, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, People's Republic of China.
| | - Guan-Hu Bao
- Natural Products Laboratory, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, People's Republic of China.
| |
Collapse
|
17
|
In silico and multi-spectroscopic analyses on the interaction of 5-amino-8-hydroxyquinoline and bovine serum albumin as a potential anticancer agent. Sci Rep 2021; 11:20187. [PMID: 34642420 PMCID: PMC8511024 DOI: 10.1038/s41598-021-99690-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/28/2021] [Indexed: 12/20/2022] Open
Abstract
5-Amino-8-hydroxyquinoline (5A8HQ), an amino derivative of 8-hydroxyquinoline, has become a potential anticancer candidate because of its promising proteasome inhibitory activity to overcome and yet synergize bortezomib for fighting cancers. Therefore, in this study, its physicochemical properties and interaction activities with serum protein have extensively been elucidated by both in vitro and in silico approaches to fulfill the pharmacokinetic and pharmacodynamic gaps. 5A8HQ exhibited the drug-likeness properties, where oral administration seems to be a route of choice owing to its high-water solubility and intestinal absorptivity. Multi-spectroscopic investigations suggested that 5A8HQ tended to associate with bovine serum albumin (BSA), a representative of serum protein, via the ground-state complexation. It apparently bound in a protein cleft between subdomains IIA and IIIA of BSA as suggested by the molecular docking and molecular dynamics simulations. The binding was mainly driven by hydrogen bonding and electrostatic interactions with a moderate binding constant at 104 M−1, conforming with the predicted free fraction in serum at 0.484. Therefore, 5A8HQ seems to display a good bioavailability in plasma to reach target sites and exerts its potent pharmacological activity. Likewise, serum albumin is a good candidate to be reservoir and transporter of 5A8HQ in the circulatory system.
Collapse
|
18
|
Hossain MJ, Sultan MZ, Rashid MA, Kuddus MR. Interactions of linagliptin, rabeprazole sodium, and their formed complex with bovine serum albumin: Computational docking and fluorescence spectroscopic methods. ANALYTICAL SCIENCE ADVANCES 2021; 2:480-494. [PMID: 38716443 PMCID: PMC10989571 DOI: 10.1002/ansa.202000153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/26/2021] [Accepted: 04/05/2021] [Indexed: 11/17/2024]
Abstract
The foremost aim of this thermodynamic study was to evaluate the pharmacokinetics (PK) and pharmacodynamics (PD) profiles of linagliptin (LG), rabeprazole sodium (RS), and their 1:1 formed complex by interacting with bovine serum albumin (BSA) at physiological pH 7.4. The molecular interactions of these ligands with the desired biomolecule were substantiated by the spectral quelling of fluorescence intensity of BSA. The fluorescent test and molecular docking revealed that the quenching mechanism was a spontaneous and exothermic static process, and the protein gained its secondary structure due to the interactions. The spectroscopic method was exercised to determine the thermodynamic factors that supported the interactions mediated by van der Waals forces and hydrogen bonds. The activation energy of the formed complex was higher than its precursor drugs while interacting with BSA, and the energy transformation profiles were studied by UV-fluorescence overlaid curves according to Förster resonance energy transfer (FRET) theory. The double log plot verified that these ligands bound with protein at a 1:1 ratio, which was confirmed by the approximately estimated values of the binding parameters. The drastically lower value of the binding constant of the formed complex suggested the lower half-life as well as its triggered elimination rate from the cardiovascular system, which may be an initial indicator of the reduced hypoglycemic property of linagliptin. Moreover, the UV-vis and synchronous fluorescence spectroscopic methods affirmed the conformational changes of the BSA due to drug-protein complexation and polarity alterations in the microenvironment of disparate chromophores of the biomolecule.
Collapse
Affiliation(s)
- Md. Jamal Hossain
- Department of Pharmaceutical ChemistryFaculty of PharmacyUniversity of DhakaDhaka‐1000Bangladesh
- Department of PharmacyState University of Bangladesh77 Satmasjid Road, DhanmondiDhaka‐1205Bangladesh
| | - Md. Zakir Sultan
- Centre for Advanced Research in Sciences (CARS)University of DhakaDhaka‐1000Bangladesh
| | - Mohammad A. Rashid
- Department of Pharmaceutical ChemistryFaculty of PharmacyUniversity of DhakaDhaka‐1000Bangladesh
| | - Md. Ruhul Kuddus
- Department of Pharmaceutical ChemistryFaculty of PharmacyUniversity of DhakaDhaka‐1000Bangladesh
| |
Collapse
|
19
|
Alhumaydhi FA, Aljasir MA, Aljohani AS, Alsagaby SA, Alwashmi AS, Shahwan M, Hassan MI, Islam A, Shamsi A. Probing the interaction of memantine, an important Alzheimer's drug, with human serum albumin: In silico and in vitro approach. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116888] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
20
|
Prasanthan P, Kishore N. Unusual human serum albumin fibrillation inhibition by ketoprofen and fenoprofen: Mechanistic insights. J Mol Recognit 2021; 34:e2937. [PMID: 34505308 DOI: 10.1002/jmr.2937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/10/2021] [Accepted: 08/21/2021] [Indexed: 11/07/2022]
Abstract
Development of efficient therapeutic strategies to combat protein misfolding and fibrillation is of great clinical significance. In the current study, efforts have been made to obtain qualitative and quantitative insights into interactions of anti-inflammatory drugs; ketoprofen and fenoprofen with the transport protein HSA and their inhibitory action on fibrillation by employing a combination of calorimetric, spectroscopic, microscopic, and molecular docking methods. Interestingly, both ketoprofen and fenoprofen are able to completely inhibit fibrillation of HSA when added at a concentration of 0.5 mM for fenoprofen or 1 mM ketoprofen. Further, no amorphous aggregates are formed. Isothermal titration calorimetric studies highlight the predominant role of polar interactions of these drugs with protein in prevention of fibrillation. The role of conformational flexibility of benzoyl and phenoxy groups of drugs has been correlated with inhibition efficiency. Such studies highlight the role of functionality required for an inhibitor in addressing neurodegenerative diseases.
Collapse
Affiliation(s)
- Pooja Prasanthan
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Nand Kishore
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
21
|
Kumar D, Desa A, Chougle S, Bhatkalkar SG, Sachar S, Selvaa Kumar C, Ali A. Evaluation of the antiglycating potential of thymoquinone and its interaction with BSA. J Biomol Struct Dyn 2021; 40:8455-8463. [PMID: 33908315 DOI: 10.1080/07391102.2021.1912642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Thymoquinone (TQ) is a bioactive component of medicinal plant, Nigella sativa. It has been identified as promising anti-inflammatory and anti-analgesic properties. In the present study, the TQ has been investigated for physiological interaction as well as binding properties with serum albumin and their thermodynamic parameters at different temperatures. Glycation process was checked with the measurement of fructosamine content, carbonyl content and total advanced glycated end products. The aggregation of amyloid β-structure was measured with Thioflavin-T and the secondary structure of BSA was observed by circular dichroism (CD) in glycated and thermal treated samples. The results indicate that the TQ showed binding interaction (both static and dynamic) with BSA (Kb= 18.31 × 107 M-1 at 293 K) and suppression of glycated products. The glycation-induced and thermal aggregation were prevented and the secondary structure of BSA was maintained. Therefore, these findings suggest that TQ may be used for a therapeutic drug for antiglycation as well as anti-aggregation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Dinesh Kumar
- Department of Life Sciences, University of Mumbai, Mumbai, India
| | - Amisha Desa
- Department of Life Sciences, University of Mumbai, Mumbai, India
| | - Sana Chougle
- Department of Life Sciences, University of Mumbai, Mumbai, India
| | | | - Shilpee Sachar
- Department of Chemistry, University of Mumbai, Mumbai, India
| | - C Selvaa Kumar
- School of Biotechnology and Bioinformatics, D. Y. Patil Deemed to be University, Navi Mumbai, India
| | - Ahmad Ali
- Department of Life Sciences, University of Mumbai, Mumbai, India
| |
Collapse
|
22
|
Judy E, Kishore N. Discrepancies in Thermodynamic Information Obtained from Calorimetry and Spectroscopy in Ligand Binding Reactions: Implications on Correct Analysis in Systems of Biological Importance. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Eva Judy
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai – 400 076, India
| | - Nand Kishore
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai – 400 076, India
| |
Collapse
|
23
|
Liu Z, Huang X, Jiang Z, Tuo X. Investigation of the binding properties between levamlodipine and HSA based on MCR-ALS and computer modeling. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 245:118929. [PMID: 32961448 DOI: 10.1016/j.saa.2020.118929] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/26/2020] [Accepted: 09/05/2020] [Indexed: 06/11/2023]
Abstract
Levamlodipine (LEE) is a drug commonly used for antihypertensive treatment in clinical therapy. The overlapping fluorescence spectra of LEE and human serum albumin (HSA) cause some trouble in analysis of interactions between them by using the classic fluorescence method. Here, the multivariate curve resolution-alternating least squares (MCR-ALS) approach was used to overcome this disadvantage. Meanwhile, the binding properties of LEE-HSA complex were then explored through computer modeling. The MCR-ALS results suggested that LEE-HSA complex was present in the mixture solution of LEE and HSA. This conclusion was then confirmed by the Stern-Volmer equation and time-resolved fluorescence experiment. The binding constant (Ka) was 2.139 × 104 L·mol-1 at 298 K. LEE was located close to the Trp-214 residue of HSA, with van der Waals forces and hydrogen bonding as main driving forces for this interaction. LEE can alter the conformation of HSA, in which the content of α-helix reduced from 57.2% to 52.3%. The Pi-Alkyl interactions contributed to maintaining the stability of the LEE-HSA complex. The results of molecular dynamics simulations showed that LEE-HSA complex was formed within 5 ns, and the particle size (Rg) of HSA was altered by the binding reaction. This study would promote better understanding of the transportation and distribution mechanisms of LEE in the human body.
Collapse
Affiliation(s)
- Zhaoqing Liu
- College of Chemistry, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Xiaojian Huang
- School of Pharmacy, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Zheng Jiang
- School of Pharmacy, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Xun Tuo
- College of Chemistry, Nanchang University, Nanchang 330031, Jiangxi, China.
| |
Collapse
|
24
|
Hossain MJ, Rashid MA, Sultan MZ. Transition Metal Chelation Augments the Half-life of Secnidazole: Molecular Docking and Fluorescence Spectroscopic Approaches. Drug Res (Stuttg) 2020; 70:583-592. [PMID: 33098081 DOI: 10.1055/a-1252-2322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This current research aimed to establish the most required pharmacodynamics parameters of two transition metal complexes of an antimicrobial drug secnidazole. The spectroscopic fluorescence quenching strategy was outlined to evaluate the binding mechanism and binding affinity of nickel (II) and chromium (III) complexes of secnidazole with bovine serum albumin (BSA). The conformational modifications and the interacting patterns of the protein due to the interaction of the parent compound of the metal complexes have been investigated by molecular docking approach. The ligand-protein interactions were confirmed by the spectral quelling of the serum protein's intensity in the presence of metal chelate of secnidazole. The quenching mechanism was an endothermic dynamic process. The calculated thermodynamic factors delineated van der Waals interactions mainly influenced the spontaneous process. The UV-fluorescence curves were studied to establish the energy transformation profile according to the Förster resonance energy transfer (FRET) theory. The double-logarithm plot exhibited the binding number that ensured the drug-protein interaction was at a 1:1 ratio. The compared binding constants dictated that both metal chelates gained higher binding affinity, longer half-life, and achieved the capacity to show the pharmacological effects by a lower dose than the parent molecule.
Collapse
Affiliation(s)
- Md Jamal Hossain
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka-1000, Bangladesh.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka-1000, Bangladesh
| | - Mohammad A Rashid
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka-1000, Bangladesh
| | - Md Zakir Sultan
- Centre for Advanced Research in Sciences (CARS), University of Dhaka, Dhaka-1000, Bangladesh
| |
Collapse
|
25
|
Gordon F, Elcoroaristizabal S, Ryder AG. Modelling Förster resonance energy transfer (FRET) using anisotropy resolved multi-dimensional emission spectroscopy (ARMES). Biochim Biophys Acta Gen Subj 2020; 1865:129770. [PMID: 33214128 DOI: 10.1016/j.bbagen.2020.129770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/09/2020] [Accepted: 10/19/2020] [Indexed: 12/01/2022]
Abstract
BACKGROUND Förster Resonance Energy Transfer (FRET) is widely used to study the structure and dynamics of biomolecular systems and also causes the non-linear fluorescence response observed in multi-fluorophore proteins. Accurate FRET analysis, in terms of measuring changes in donor and acceptor spectra and energy transfer efficiency is therefore critical. METHODS We demonstrate a novel quantitative FRET analysis using anisotropy resolved multidimensional emission spectroscopy (ARMES) in a Human Serum Albumin (HSA) and 1,8-anilinonaphathalene sulfonate (ANS) model. ARMES combines 4D measurement of polarized excitation emission matrices (pEEM) with multivariate data analysis to spectrally resolve contributing fluorophores. Multivariate analysis (Parallel Factor, PARAFAC and restricted Tucker3) was used to resolve fluorophore contributions and for modelling the quenching of HSA emission and the HSA-ANS interactions. RESULTS pEEM spectra were modelled using Tucker3 which accommodates non-linearities introduced by FRET and a priori chemical knowledge was used to optimise the solution, thus resolving three components: HSA emission, ANS emission from indirect FRET excitation, and ANS emission from direct excitation. Perpendicular emission measurements were more sensitive to indirectly excited acceptor emission. PARAFAC modelling of HSA, donor emission, separated ANS FRET interacting (Tryptophan) and non-interacting (Tyrosine) components. This enabled a new way of calculating quenching constants using the multi-dimensional emission of individual donor fluorophores. CONCLUSIONS FRET efficiency could be calculated using the multi-dimensional, resolved emission of the interacting donor fluorophores only which yielded higher ET efficiencies compared to conventional methods. GENERAL SIGNIFICANCE Shows the potential of multidimensional fluorescence measurements and data analysis for more accurate FRET modelling in proteins.
Collapse
Affiliation(s)
- Fiona Gordon
- Nanoscale BioPhotonics Laboratory, School of Chemistry, National University of Ireland, Galway, Galway H91 CF50, Ireland.
| | - Saioa Elcoroaristizabal
- Nanoscale BioPhotonics Laboratory, School of Chemistry, National University of Ireland, Galway, Galway H91 CF50, Ireland.
| | - Alan G Ryder
- Nanoscale BioPhotonics Laboratory, School of Chemistry, National University of Ireland, Galway, Galway H91 CF50, Ireland.
| |
Collapse
|
26
|
Understanding the binding between Rosmarinic acid and serum albumin: In vitro and in silico insight. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113348] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
27
|
Maikoo S, Chakraborty A, Vukea N, Dingle LMK, Samson WJ, de la Mare JA, Edkins AL, Booysen IN. Ruthenium complexes with mono- or bis-heterocyclic chelates: DNA/BSA binding, antioxidant and anticancer studies. J Biomol Struct Dyn 2020; 39:4077-4088. [DOI: 10.1080/07391102.2020.1775126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Sanam Maikoo
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Abir Chakraborty
- Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| | - Nyeleti Vukea
- Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| | | | - William John Samson
- Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| | - Jo-Anne de la Mare
- Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| | - Adrienne Lesley Edkins
- Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| | - Irvin Noel Booysen
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| |
Collapse
|
28
|
Shahabadi N, Zendehcheshm S, Momeni BZ, Abbasi R. Antiproliferative activity and human serum albumin binding propensity of [SnMe2Cl2(bu2bpy)]: multi-spectroscopic analysis, atomic force microscopy, and computational studies. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1775821] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Nahid Shahabadi
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
- Medical Biology Research Center (MBRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saba Zendehcheshm
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - Badri Z Momeni
- Faculty of Chemistry, KN Toosi University of Technology, Tehran, Iran
| | - Reyhaneh Abbasi
- Faculty of Chemistry, KN Toosi University of Technology, Tehran, Iran
| |
Collapse
|
29
|
A biophysical strategy to examine the impact of newly synthesized polymerizable ammonium-based ionic liquids on the structural stability and proteolytic activity of stem bromelain. Int J Biol Macromol 2020; 151:957-966. [DOI: 10.1016/j.ijbiomac.2019.10.208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/14/2019] [Accepted: 10/24/2019] [Indexed: 11/23/2022]
|
30
|
Zakariya SM, Furkan M, Zaman M, Chandel TI, Ali SM, Uversky VN, Khan RH. An in-vitro elucidation of inhibitory potential of carminic acid: Possible therapeutic approach for neurodegenerative diseases. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112692] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
Vafakish B, Wilson LD. Cu(II) Ion Adsorption by Aniline Grafted Chitosan and Its Responsive Fluorescence Properties. Molecules 2020; 25:molecules25051052. [PMID: 32110994 PMCID: PMC7179099 DOI: 10.3390/molecules25051052] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 02/18/2020] [Accepted: 02/24/2020] [Indexed: 12/03/2022] Open
Abstract
The detection and removal of heavy metal species in aquatic environments is of continued interest to address ongoing efforts in water security. This study was focused on the preparation and characterization of aniline grafted chitosan (CS-Ac-An), and evaluation of its adsorption properties with Cu(II) under variable conditions. Materials characterization provides support for the grafting of aniline onto chitosan, where the kinetic and thermodynamic adsorption properties reveal a notably greater uptake (>20-fold) of Cu(II) relative to chitosan, where the adsorption capacity (Qm) of CS-Ac-An was 106.6 mg/g. Adsorbent regeneration was demonstrated over multiple adsorption-desorption cycles with good uptake efficiency. CS-Ac-An has a strong fluorescence emission that undergoes prominent quenching at part per billion levels in aqueous solution. The quenching process displays a linear response over variable Cu(II) concentration (0.05–5 mM) that affords reliable detection of low level Cu(II) levels by an in situ “turn-off” process. The tweezer-like chelation properties of CS-Ac-An with Cu(II) was characterized by complementary spectroscopic methods: IR, NMR, X-ray photoelectron (XPS), and scanning electron microscopy (SEM). The role of synergistic effects are inferred among two types of active adsorption sites: electron rich arene rings and amine groups of chitosan with Cu(II) species to afford a tweezer-like binding modality.
Collapse
|
32
|
Zhao L, Guo D, Lin J, Liu R. Responses of catalase and superoxide dismutase to low-dose quantum dots on molecular and cellular levels. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 181:388-394. [PMID: 31212187 DOI: 10.1016/j.ecoenv.2019.06.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/06/2019] [Accepted: 06/09/2019] [Indexed: 06/09/2023]
Abstract
With the wider application of cadmium-containing quantum dots (Cd-QDs) in biomedical fields, it is easier for people to be exposed. Studies have suggested that Cd-QDs could release cadmium ion and induce oxidative effects due to the disruption of redox equilibrium. Antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD), play an important role in organisms to resist the negative impact of exogenous substances. Molecular mechanisms of antioxidant enzymes with Cd-QDs remain unclear, however. In this study, structural and functional changes of CAT and SOD have been investigated under low dose Cd-QDs exposure. Cell viability, malondialdehyde (MDA) level, CAT and SOD activities were influenced by Cd-QDs in hepatocytes of mice. To further investigate the responses of CAT and SOD to Cd-QDs, multiple spectroscopic, calorimetric and activity measurements were carried out. Similar interaction patterns were observed that result in interaction force, structural and functional changes: Cd-QDs combine with CAT and SOD through hydrophobic forces; Intrinsic fluorescence of proteins was statically quenched by Cd-QDs and new complexes were formed; Also, the skeleton and secondary structure (with α-helix decrease) of CAT and SOD was influenced. Taken together, we suggest that Cd-QDs chosen in this study induce oxidative stress effects to hepatocytes but have not caused serious oxidative stress damage at concentrations below 10 μg/mL. MPA-CdSe/ZnS QDs caused the lowest level of oxidative stress which is associated with the induction of antioxidant proteins. This paper presents responses of CAT and SOD to low-dose Cd-QDs, and provides a reference for evaluating health damages caused by Cd-QDs.
Collapse
Affiliation(s)
- Lining Zhao
- School of Environmental Science and Engineering, Shandong University, China -America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Dandan Guo
- Digital Management Center of Urban Underground Pipelines, Qixia Branch of Nanjing Planning Bureau, Jiangsu Province, 118# Wenyuan Road, Nanjing, 210046, PR China
| | - Jing Lin
- North China Sea Data & Information Service of SOA, 27# Yunling Road, Laoshan, Qingdao, 266061, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China -America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China.
| |
Collapse
|
33
|
Elamathi C, Madankumar A, Kaminsky W, Prabhakaran R. Synthesis, spectroscopic studies and biological evaluations of copper(I)/(II) metallates containing nitrogen heterocycles. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.119039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
34
|
Fattahian Kalhor N, Saeidifar M, Ramshini H, Saboury AA. Interaction, cytotoxicity and sustained release assessment of a novel anti-tumor agent using bovine serum albumin nanocarrier. J Biomol Struct Dyn 2019; 38:2546-2558. [DOI: 10.1080/07391102.2019.1638303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Nassim Fattahian Kalhor
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Karaj, Iran
| | - Maryam Saeidifar
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Karaj, Iran
| | | | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
35
|
Sonthanasamy RSA, Sulaiman NMN, Tan LL, Lazim AM. Comprehensive spectroscopic studies of synergism between Gadong starch based carbon dots and bovine serum albumin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 218:85-96. [PMID: 30954801 DOI: 10.1016/j.saa.2019.03.108] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/28/2019] [Accepted: 03/28/2019] [Indexed: 06/09/2023]
Abstract
Carbon dots (C-dots) were used to study the binding mechanisms with serum protein, bovine serum albumin (BSA) by using two notable binding systems known as non-covalent and covalent interaction. Interaction between C-dots and BSA were estimated by Stern-Volmer equation and Double Log Regression Model (DLRM). According to the fluorescent intensity, quenching of model carrier protein by C-dots was due to dynamic quenching for non-covalent and static quenching for covalent binding. The binding site constant, KA and number of binding site, for covalent interaction is 1754.7L/mol and n≈1 (0.6922) were determined by DLRM on fluorescence quenching results. The blue shift of the fluorescence spectrum, from 450nm to 421nm (non-covalent) and 430nm (covalent) and suggested that both the microenvironment of C-dots and protein changed in relation to the protein concentration. The fluorescence intensity results show that protein structure has a significant role in Protein-C-dots interactions and type of binding influence physicochemical properties of C-dots differently. Understanding to this bio interface is important to utilize both quantum dots and biomolecules for biomedical field. It can be a useful guideline to design further applications in biomedical and bioimaging.
Collapse
Affiliation(s)
- Regina Sisika A Sonthanasamy
- School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Nik Muslihuddin Nik Sulaiman
- School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Ling Ling Tan
- Southest Asia Disaster Preventation Research Initiative (SEADPRI-UKM), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Azwan Mat Lazim
- School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.
| |
Collapse
|
36
|
Tayyab S, Sam SE, Kabir MZ, Ridzwan NFW, Mohamad SB. Molecular interaction study of an anticancer drug, ponatinib with human serum albumin using spectroscopic and molecular docking methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 214:199-206. [PMID: 30780089 DOI: 10.1016/j.saa.2019.02.028] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 02/04/2019] [Accepted: 02/11/2019] [Indexed: 06/09/2023]
Abstract
Binding of a potent anticancer agent, ponatinib (PTB) to human serum albumin (HSA), main ligand transporter in blood plasma was analyzed with several spectral techniques such as fluorescence, absorption and circular dichroism along with molecular docking studies. Decrease in the KSV value with increasing temperature pointed towards PTB-induced quenching as the static quenching, thus affirming complexation between PTB and HSA. An intermediate binding affinity was found to stabilize the PTB-HSA complex, as suggested by the Ka value. Thermodynamic analysis of the binding phenomenon revealed participation of hydrophobic and van der Waals interactions along with hydrogen bonds, which was also supported by molecular docking analysis. Changes in both secondary and tertiary structures as well as in the microenvironment around Trp and Tyr residues of HSA were anticipated upon PTB binding to the protein, as manifested from circular dichroism and three-dimensional fluorescence spectra, respectively. Binding of PTB to HSA led to protein's thermal stabilization. Competitive ligand displacement experiments using different site markers such as warfarin, indomethacin and ketoprofen disclosed the binding site of PTB as Sudlow's site I in HSA, which was further confirmed by molecular docking analysis.
Collapse
Affiliation(s)
- Saad Tayyab
- Biomolecular Research Group, Biochemistry Programme, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia; Centre of Research for Computational Sciences and Informatics for Biology, Bioindustry, Environment, Agriculture and Healthcare, University of Malaya, Kuala Lumpur, Malaysia.
| | - Si Enn Sam
- Biomolecular Research Group, Biochemistry Programme, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Md Zahirul Kabir
- Biomolecular Research Group, Biochemistry Programme, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Nor Farrah Wahidah Ridzwan
- Bioinformatics Programme, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Saharuddin B Mohamad
- Bioinformatics Programme, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia; Centre of Research for Computational Sciences and Informatics for Biology, Bioindustry, Environment, Agriculture and Healthcare, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
37
|
Khan M, Husain Q. Safeguarding the catalytic activity and stability of polyaniline chitosan silver nanocomposite bound beta-galactosidase against product inhibitors and structurally related compound. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1075-1084. [DOI: 10.1080/21691401.2019.1593189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Maryam Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, U.P., India
| | - Qayyum Husain
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, U.P., India
| |
Collapse
|
38
|
Elamathi C, Butcher R, Prabhakaran R. Anomalous coordination behaviour of 6-methyl-2-oxo-1,2-dihydroquinoline-3-carboxaldehyde-4(N)-substituted Schiff bases in Cu(II) complexes: Studies of structure, biomolecular interactions and cytotoxicity. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4659] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- C. Elamathi
- Department of Chemistry; Bharathiar University; Coimbatore 641 046 India
| | - Ray Butcher
- Department of Inorganic and Structural Chemistry; Howard University; Washington DC 20059 USA
| | - R. Prabhakaran
- Department of Chemistry; Bharathiar University; Coimbatore 641 046 India
| |
Collapse
|
39
|
Chaves OA, Sasidharan R, dos Santos de Oliveira CHC, Manju SL, Joy M, Mathew B, Netto-Ferreira JC. In Vitro
Study of the Interaction Between HSA and 4-Bromoindolylchalcone, a Potent Human MAO-B Inhibitor: Spectroscopic and Molecular Modeling Studies. ChemistrySelect 2019. [DOI: 10.1002/slct.201802665] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Otávio Augusto Chaves
- SENAI Innovation Institute for Green Chemistry.; Rua Morais e Silva N° 53, Maracanã 20271030 Rio de Janeiro-RJ Brazil
- Institute of Chemistry; Department of Organic Chemistry; Universidade Federal Rural do Rio de Janeiro; BR-465 Km 7 23970-000 Seropédica-RJ Brazil
| | - Rani Sasidharan
- College of Pharmaceutical Science; Government T.D. Medical College, Alappuzha; Kerala India
- Department of Chemistry, SAS; VIT University, Vellore; 632014 Tamil Nadu India
| | - Cosme H. C. dos Santos de Oliveira
- Institute of Chemistry; Department of Organic Chemistry; Universidade Federal Rural do Rio de Janeiro; BR-465 Km 7 23970-000 Seropédica-RJ Brazil
| | | | - Monu Joy
- School of Pure & Applied Physics; M.G. University; 686560 Kottayam India
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab; Department of Pharmaceutical Chemistry; Ahalia School of Pharmacy, Palakkad; 678557 Kerala India
| | - José Carlos Netto-Ferreira
- SENAI Innovation Institute for Green Chemistry.; Rua Morais e Silva N° 53, Maracanã 20271030 Rio de Janeiro-RJ Brazil
- Divisão de Metrologia Química; Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO); 25250-020 Duque de Caxias-RJ Brazil
| |
Collapse
|
40
|
Temboot P, Usman F, Ul-Haq Z, Khalil R, Srichana T. Biomolecular interactions of amphotericin B nanomicelles with serum albumins: A combined biophysical and molecular docking approach. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 205:442-456. [PMID: 30055454 DOI: 10.1016/j.saa.2018.07.057] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/17/2018] [Accepted: 07/19/2018] [Indexed: 06/08/2023]
Abstract
In this work, we investigated the interaction of amphotericin B (AmB) nanomicelles on the binding affinity and conformational change of human serum albumin (HSA) in comparison with bovine serum albumin (BSA) under physiological conditions by conducting several spectroscopic techniques further confirmed through molecular docking approaches. The experimental results showed that AmB nanomicelles could bind to both HSA and BSA to form protein/drug complexes with one binding site, and the binding process was spontaneous under physiological conditions. Fluorescence studies revealed that the quenching mechanism of these complexes was static quenching rather than dynamic quenching and exhibited strong binding between serum albumin and AmB nanomicelles. The results from UV-Visible spectra, FT-IR spectra, and CD spectra revealed that the AmB formulations affected the structure of both HSA and BSA proteins by changing the microenvironment around the tryptophan residues of protein and caused a secondary structure change of the protein with the loss of helical stability. The molecular docking experiments also supported the above results and effectively proved the binding and changes in the conformation of serum albumins by AmB micelles. This finding provides information of in vitro drug-plasma protein interactions for further study on the AmB binding mechanism and the pharmacodynamics and pharmacokinetics.
Collapse
Affiliation(s)
- Pornvichai Temboot
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla Univesity, Songkhla 90112, Thailand
| | - Faisal Usman
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla Univesity, Songkhla 90112, Thailand
| | - Zaheer Ul-Haq
- Computational Chemistry Unit, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Ruqaiya Khalil
- Computational Chemistry Unit, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Teerapol Srichana
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla Univesity, Songkhla 90112, Thailand.
| |
Collapse
|
41
|
Moghadam NH, Salehzadeh S, Tanzadehpanah H, Saidijam M, Karimi J, Khazalpour S. In vitro cytotoxicity and DNA/HSA interaction study of triamterene using molecular modelling and multi-spectroscopic methods. J Biomol Struct Dyn 2018; 37:2242-2253. [PMID: 30043689 DOI: 10.1080/07391102.2018.1489305] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The anticancer activity of triamterene on HCT116 and CT26 colon cancer cells lines was investigated. Furthermore, the mechanism of interaction between triamterene and calf thymus DNA (ct-DNA) and also human serum albumin (HSA) was conducted using spectroscopic and molecular docking techniques. In vitro cytotoxicity of triamterene against HCT116 and CT26 cells showed promising anticancer effects with IC50 values of 31.30 and 24.45 μM, respectively. Competitive studies of the triamterene with NR (neutral red) and MB (methylene blue) as intercalator probes showed that triamterene can be replaced by these probes. The viscosity data also confirmed that triamterene binds to calf-thymus DNA through intercalation binding mode. Binding properties of triamterene with HSA in the presence of warfarin and ibuprofen showed that triamterene competes with warfarin for the site I of human serum albumin (HSA). In addition, the binding modes of triamterene with DNA and HSA were verified by molecular docking technique. Abbreviations ct-DNA calf thymus DNA CV cyclic voltammetry DNA deoxyribonucleic acid DPV differential pulse voltammetry FBS fetal bovine serum HSA human serum albumin NR neutral red MB methylene blue MTT 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazoliumbromide Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | - Hamid Tanzadehpanah
- b Research Center for Molecular Medicine , Hamadan University of Medical Sciences , Hamadan , Iran
| | - Massoud Saidijam
- b Research Center for Molecular Medicine , Hamadan University of Medical Sciences , Hamadan , Iran
| | - Jamshid Karimi
- c Department of Biochemistry , Hamadan University of Medical Sciences , Hamadan , Iran
| | | |
Collapse
|
42
|
Save SN, Choudhary S. Elucidation of energetics and mode of recognition of green tea polyphenols by human serum albumin. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.07.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Foo YY, Kabir MZ, Periasamy V, Malek SNA, Tayyab S. Spectroscopic studies on the interaction of green synthesized-gold nanoparticles with human serum albumin. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.05.115] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
44
|
Ali HM, El-Hashemy MA. Analytical investigation of the influence of ornidazole on the native protein fluorescence. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 201:178-184. [PMID: 29751351 DOI: 10.1016/j.saa.2018.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 04/06/2018] [Accepted: 05/01/2018] [Indexed: 06/08/2023]
Abstract
A novel spectrofluorimetric method for the determination of ornidazole (ORN) in pure form and dosage forms was developed based on the influence of ORN on the native fluorescence of bovine serum albumin (BSA) in a stimulated physiological environment. The obtained data reveal that the presence of ORN has a strong quenching effect on the fluorescence of BSA through both a dynamic and a static process. The parameters of the binding of ORN to BSA were calculated at different temperatures. Thermodynamic parameters values suggest a role of electrostatic and hydrophobic forces in the binding of ORN to BSA. The investigated method for the determination of ORN is accurate, precise and sensitive with a detection limit of 0.106 μg/mL and a quantification limit of 0.353 μg/mL. The quenching method was applied successfully in the determination of ORN in pure form and dosage forms.
Collapse
Affiliation(s)
- Hazim M Ali
- Department of Chemistry, College of Science, Jouf University, Sakaka, Saudi Arabia; Forensic Chemistry Department, Forensic Medicine Authority, Egypt.
| | - Mohammed A El-Hashemy
- Department of Chemistry, College of Science, Jouf University, Sakaka, Saudi Arabia; Air Pollution Research Department, Environmental Research Division, National Research Centre, 12622, Egypt
| |
Collapse
|
45
|
Santos JCN, da Silva IM, Braga TC, de Fátima Â, Figueiredo IM, Santos JCC. Thimerosal changes protein conformation and increase the rate of fibrillation in physiological conditions: Spectroscopic studies using bovine serum albumin (BSA). Int J Biol Macromol 2018; 113:1032-1040. [DOI: 10.1016/j.ijbiomac.2018.02.116] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/11/2018] [Accepted: 02/18/2018] [Indexed: 11/28/2022]
|
46
|
Jiao Q, Wang R, Jiang Y, Liu B. Study on the interaction between active components from traditional Chinese medicine and plasma proteins. Chem Cent J 2018; 12:48. [PMID: 29728878 PMCID: PMC5935606 DOI: 10.1186/s13065-018-0417-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 04/24/2018] [Indexed: 02/06/2023] Open
Abstract
Traditional Chinese medicine (TCM), as a unique form of natural medicine, has been used in Chinese traditional therapeutic systems over two thousand years. Active components in Chinese herbal medicine are the material basis for the prevention and treatment of diseases. Research on drug-protein binding is one of the important contents in the study of early stage clinical pharmacokinetics of drugs. Plasma protein binding study has far-reaching influence on the pharmacokinetics and pharmacodynamics of drugs and helps to understand the basic rule of drug effects. It is important to study the binding characteristics of the active components in Chinese herbal medicine with plasma proteins for the medical science and modernization of TCM. This review summarizes the common analytical methods which are used to study the active herbal components-protein binding and gives the examples to illustrate their application. Rules and influence factors of the binding between different types of active herbal components and plasma proteins are summarized in the end. Finally, a suggestion on choosing the suitable technique for different types of active herbal components is provided, and the prospect of the drug-protein binding used in the area of TCM research is also discussed.
Collapse
Affiliation(s)
- Qishu Jiao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Rufeng Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yanyan Jiang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Bin Liu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
47
|
Elamathi C, Butcher R, Prabhakaran R. Preparation, characterizations and biological evaluations of new copper(II) complexes containing ONO pincer type ligands. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4364] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- C. Elamathi
- Department of Chemistry; Bharathiar University; Coimbatore 641 046 India
| | - Ray Butcher
- Department of Inorganic and Structural Chemistry; Howard University; Washington DC 20059 USA
| | - R. Prabhakaran
- Department of Chemistry; Bharathiar University; Coimbatore 641 046 India
| |
Collapse
|
48
|
Iqbal S, Qais FA, Alam MM, Naseem I. Effect of glycation on human serum albumin–zinc interaction: a biophysical study. J Biol Inorg Chem 2018; 23:447-458. [DOI: 10.1007/s00775-018-1554-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 03/12/2018] [Indexed: 12/13/2022]
|
49
|
Shajari D, Bahari A, Gill P. Fast and simple detection of bovine serum albumin concentration by studying its interaction with gold nanorods. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.02.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Hasanzadeh A, Dehghan G, Shaghaghi M, Panahi Y, Jouyban A, Yekta R. Multispectral and molecular docking studies on the interaction of human serum albumin with iohexol. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.10.096] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|