1
|
Williams-Fegredo T, Davies L, Knevelman C, Miskin J, Mitrophanous K, Rafiq QA. Auto-transduction in lentiviral vector bioprocessing: A quantitative assessment and a novel inhibition strategy. Biotechnol Bioeng 2024; 121:3728-3741. [PMID: 39244694 DOI: 10.1002/bit.28834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/26/2024] [Indexed: 09/10/2024]
Abstract
Lentiviral vectors are highly efficient gene delivery vehicles used extensively in the rapidly growing field of cell and gene therapy. Demand for efficient, large-scale, lentiviral vector bioprocessing is growing as more therapies reach late-stage clinical trials and are commercialized. However, despite substantial progress, several process inefficiencies remain. The unintended auto-transduction of viral vector-producing cells by newly synthesized lentiviral vector particles during manufacturing processes constitutes one such inefficiency which remains largely unaddressed. In this study, we determined that over 60% of functional lentiviral vector particles produced during an upstream production process were lost to auto-transduction, highlighting a major process inefficiency likely widespread within the industry. Auto-transduction of cells by particles pseudotyped with the widely used vesicular stomatitis virus G protein was inhibited via the adoption of a reduced extracellular pH during vector production, impairing the ability of the vector to interact with its target receptor. Employing a posttransfection pH shift to pH 6.7-6.8 resulted in a sevenfold reduction in vector genome integration events, arising from lentiviral vector-mediated transduction, within viral vector-producing cell populations and ultimately resulted in improved lentiviral vector production kinetics. The proposed strategy is scalable and cost-effective, providing an industrially relevant approach to improve lentiviral vector production efficiencies.
Collapse
Affiliation(s)
- Thomas Williams-Fegredo
- Oxford Biomedica (UK) Limited, Oxford, UK
- Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, London, UK
| | - Lee Davies
- Oxford Biomedica (UK) Limited, Oxford, UK
| | | | | | | | - Qasim A Rafiq
- Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, London, UK
| |
Collapse
|
2
|
Splichal RC, Chen K, Walton SP, Chan C. The Role of Endoplasmic Reticulum Stress on Reducing Recombinant Protein Production in Mammalian Cells. Biochem Eng J 2024; 210:109434. [PMID: 39220803 PMCID: PMC11360842 DOI: 10.1016/j.bej.2024.109434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Therapeutic recombinant protein production relies on industrial scale culture of mammalian cells to produce active proteins in quantities sufficient for clinical use. The combination of stresses from industrial cell culture environment and recombinant protein production can overwhelm the protein synthesis machinery in the endoplasmic reticulum (ER). This leads to a buildup of improperly folded proteins which induces ER stress. Cells respond to ER stress by activating the Unfolded Protein Response (UPR). To restore proteostasis, ER sensor proteins reduce global protein synthesis and increase chaperone protein synthesis, and if that is insufficient the proteins are degraded. If proteostasis is still not restored, apoptosis is initiated. Increasing evidence suggests crosstalk between ER proteostasis and DNA damage repair (DDR) pathways. External factors (e.g., metabolites) from the cellular environment as well as internal factors (e.g., transgene copy number) can impact genome stability. Failure to maintain genome integrity reduces cell viability and in turn protein production. This review focuses on the association between ER stress and processes that affect protein production and secretion. The processes mediated by ER stress, including inhibition of global protein translation, chaperone protein production, degradation of misfolded proteins, DNA repair, and protein secretion, impact recombinant protein production. Recombinant protein production can be reduced by ER stress through increased autophagy and protein degradation, reduced protein secretion, and reduced DDR response.
Collapse
Affiliation(s)
- R. Chauncey Splichal
- Department of Chemical Engineering and Materials Science, Michigan State University, MI, USA
| | - Kevin Chen
- Department of Chemical Engineering and Materials Science, Michigan State University, MI, USA
| | - S. Patrick Walton
- Department of Chemical Engineering and Materials Science, Michigan State University, MI, USA
| | - Christina Chan
- Department of Chemical Engineering and Materials Science, Michigan State University, MI, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, MI, USA
- Department of Computer Science and Engineering, Michigan State University, MI, USA
- Institute for Quantitative Health Science and Engineering, Division of Medical Devices, Michigan State University, MI, USA
| |
Collapse
|
3
|
Saeidi D, Saeidi S, Moazen F, Akbari V. Cloning and Optimization of Intracellular Expression of Human Interferon β-1a in Pichia pastoris GS115. Adv Biomed Res 2024; 13:66. [PMID: 39434950 PMCID: PMC11493217 DOI: 10.4103/abr.abr_376_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/27/2023] [Accepted: 01/01/2024] [Indexed: 10/23/2024] Open
Abstract
Background Interferon-beta (IFN-β) is a cytokine with a wide range of biological and pharmaceutical applications, including multiple sclerosis (MS), cancer, some autoimmune disorders, and viral infectious diseases. Thus, many studies have been performed to develop novel strategies for the high-yield production of functional IFN-β in a cost-effective approach. Here, we aimed to improve the intracellular expression of IFN-β-1a in Pichia pastoris. Materials and Methods The gene of IFN-β-1a was successfully sub-cloned into the pPICZA vector. The recombinant vector was transfected to P. pastoris GS115 cells by electroporation. After screening positive P. pastoris transformants, the expression of IFN-β-1a was evaluated and the cultivation conditions, including temperature, time of incubation, and methanol concentration, were optimized. The protein expression levels were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Results The double digestion with EcoRI and XhoI restriction enzymes and sequence analysis confirmed the correct sub-cloning of the IFN-β-1a gene into pPICZA. SDS-PAGE analysis showed that the highest level of IFN-β-1a (25 mg per 1 L of yeast culture) was produced with 2% methanol at 28°C after 72 h incubation. Conclusion Optimization of cultivation conditions for intracellular expression of IFN-β-1a was successfully performed. This approach can be generally applied to improve the production yield and quality of other recombinant proteins in P. pastoris.
Collapse
Affiliation(s)
- Diba Saeidi
- Pharmacy Student Research Committee, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sara Saeidi
- Pharmacy Student Research Committee, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Moazen
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Vajihe Akbari
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
4
|
Dorogin J, Benz MA, Moore CJ, Benoit DSW, Hettiaratchi MH. Recombinant and Synthetic Affibodies Function Comparably for Modulating Protein Release. Cell Mol Bioeng 2024; 17:305-312. [PMID: 39372554 PMCID: PMC11450113 DOI: 10.1007/s12195-024-00815-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/16/2024] [Indexed: 10/08/2024] Open
Abstract
Purpose Affibodies are a class of versatile affinity proteins with a wide variety of therapeutic applications, ranging from contrast agents for imaging to cell-targeting therapeutics. We have identified several affibodies specific to bone morphogenetic protein-2 (BMP-2) with a range of binding affinities and demonstrated the ability to tune release rate of BMP-2 from affibody-conjugated poly(ethylene glycol) maleimide (PEG-mal) hydrogels based on affibody affinity strength. In this work, we compare the purity, structure, and activity of recombinant, bacterially-expressed BMP-2-specific affibodies with affibodies synthesized via solid-phase peptide synthesis. Methods High- and low-affinity BMP-2-specific affibodies were recombinantly expressed using BL21(DE3) E. coli and chemically synthesized using microwave-assisted solid-phase peptide synthesis with Fmoc-Gly-Wang resin. The secondary structures of the affibodies and dissociation constants of affibody-BMP-2 binding were characterized by circular dichroism and biolayer interferometry, respectively. Endotoxin levels were measured using chromogenic limulus amebocyte lysate (LAL) assays. Affibody-conjugated PEG-mal hydrogels were fabricated and loaded with BMP-2 to evaluate hydrogel capacity for controlled release, quantified by enzyme-linked immunosorbent assays (ELISA). Results Synthetic and recombinant affibodies were determined to be α-helical by circular dichroism. The synthetic high- and low-affinity BMP-2-specific affibodies demonstrated comparable BMP-2 binding dissociation constants to their recombinant counterparts. Recombinant affibodies retained some endotoxins after purification, while endotoxins were not detected in the synthetic affibodies above FDA permissible limits. High-affinity affibody-conjugated hydrogels reduced cumulative BMP-2 release compared to the low-affinity affibody-conjugated hydrogels and hydrogels without affibodies. Conclusions Synthetic affibodies demonstrate comparable structure and function to recombinant affibodies while reducing endotoxin contamination and increasing product yield, indicating that solid-phase peptide synthesis is a viable method of producing affibodies for controlled protein release and other applications.
Collapse
Affiliation(s)
- Jonathan Dorogin
- Department of Bioengineering, University of Oregon, Knight Campus, Eugene, Oregon USA
| | - Morrhyssey A. Benz
- Department of Bioengineering, University of Oregon, Knight Campus, Eugene, Oregon USA
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon USA
| | - Cameron J. Moore
- Department of Bioengineering, University of Oregon, Knight Campus, Eugene, Oregon USA
| | - Danielle S. W. Benoit
- Department of Bioengineering, University of Oregon, Knight Campus, Eugene, Oregon USA
| | - Marian H. Hettiaratchi
- Department of Bioengineering, University of Oregon, Knight Campus, Eugene, Oregon USA
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon USA
| |
Collapse
|
5
|
Williams-Fegredo T, Davies L, Knevelman C, Mitrophanous K, Miskin J, Rafiq QA. Development of novel lipoplex formulation methodologies to improve large-scale transient transfection for lentiviral vector manufacture. Mol Ther Methods Clin Dev 2024; 32:101260. [PMID: 38745895 PMCID: PMC11092396 DOI: 10.1016/j.omtm.2024.101260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 04/24/2024] [Indexed: 05/16/2024]
Abstract
Large-scale transient transfection has advanced significantly over the last 20 years, enabling the effective production of a diverse range of biopharmaceutical products, including viral vectors. However, a number of challenges specifically related to transfection reagent stability and transfection complex preparation times remain. New developments and improved transfection technologies are required to ensure that transient gene expression-based bioprocesses can meet the growing demand for viral vectors. In this paper, we demonstrate that the growth of cationic lipid-based liposomes, an essential step in many cationic lipid-based transfection processes, can be controlled through adoption of low pH (pH 6.40 to pH 6.75) and in low salt concentration (0.2× PBS) formulations, facilitating improved control over the nanoparticle growth kinetics and enhancing particle stability. Such complexes retain the ability to facilitate efficient transfection for prolonged periods compared with standard preparation methodologies. These findings have significant industrial applications for the large-scale manufacture of lentiviral vectors for two principal reasons. First, the alternative preparation strategy enables longer liposome incubation times to be used, facilitating effective control in a good manufacturing practices setting. Second, the improvement in particle stability facilitates the setting of wider process operating ranges, which will significantly improve process robustness and maximise batch-to-batch control and product consistency.
Collapse
Affiliation(s)
- Thomas Williams-Fegredo
- Oxford Biomedica (UK) Limited, Windrush Court, Transport Way, Oxford OX4 6LT, UK
- Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, Bernard Katz Building, Gower Street, London WC1E 6BT, UK
| | - Lee Davies
- Oxford Biomedica (UK) Limited, Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | - Carol Knevelman
- Oxford Biomedica (UK) Limited, Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | | | - James Miskin
- Oxford Biomedica (UK) Limited, Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | - Qasim A. Rafiq
- Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, Bernard Katz Building, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
6
|
Champeil J, Mangion M, Gilbert R, Gaillet B. Improved Manufacturing Methods of Extracellular Vesicles Pseudotyped with the Vesicular Stomatitis Virus Glycoprotein. Mol Biotechnol 2024; 66:1116-1131. [PMID: 38182864 DOI: 10.1007/s12033-023-01007-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/27/2023] [Indexed: 01/07/2024]
Abstract
Extracellular vesicles (EV), which expose the vesicular stomatitis virus glycoprotein (VSVG) on their surface, are used for delivery of nucleic acids and proteins in human cell lines. These particles are biomanufactured using methods that are difficult to scale up. Here, we describe the development of the first EV-VSVG production process in serum-free media using polyethylenimine (PEI)-based transient transfection of HEK293 suspension cells, as well as the first EV-VSVG purification process to utilize both ultracentrifugation and chromatography. Three parameters were investigated for EV-VSVG production: cell density, DNA concentration, and DNA:PEI ratio. The best production titer was obtained with 3 × 106 cells/mL, a plasmid concentration of 2 µg/mL, and a DNA:PEI ratio of 1:4. The production kinetics of VSVG was performed and showed that the highest amount of VSVG was obtained 3 days after transfection. Addition of cell culture supplements during the transfection resulted in an increase in VSVG production, with a maximum yield obtained with 2 mM of sodium butyrate added 18 h after transfection. Moreover, the absence of EV-VSVG during cell transfection with a GFP-coding plasmid revealed to be ineffective, with no fluorescent cells. An efficient EV-VSVG purification procedure consisting of a two-step concentration by low-speed centrifugation and sucrose cushion ultracentrifugation followed by a heparin affinity chromatography purification was also developed. Purified bioactive EV-VSVG preparations were characterized and revealed that EV-VSVG are spherical particles of 176.4 ± 88.32 nm with 91.4% of protein similarity to exosomes.
Collapse
Affiliation(s)
- Juliette Champeil
- Chemical Engineering Department, Université Laval, 1065, Avenue de la Médecine, Pavillon Pouliot, Québec, QC, G1V 0A6, Canada
- PROTEO: The Quebec Network for Research on Protein Function, Structure, and Engineering, Université du Québec à Montréal, 201 Avenue du Président Kennedy, Montréal, QC, H2X 3Y7, Canada
- ThéCell: FRQS Cell, Tissue and Gene Therapy Network, Laboratoire d'organogénèse expérimentale - LOEX, 1401, 18E rue, Québec, QC, G1J 1Z4, Canada
| | - Mathias Mangion
- Chemical Engineering Department, Université Laval, 1065, Avenue de la Médecine, Pavillon Pouliot, Québec, QC, G1V 0A6, Canada
- PROTEO: The Quebec Network for Research on Protein Function, Structure, and Engineering, Université du Québec à Montréal, 201 Avenue du Président Kennedy, Montréal, QC, H2X 3Y7, Canada
- ThéCell: FRQS Cell, Tissue and Gene Therapy Network, Laboratoire d'organogénèse expérimentale - LOEX, 1401, 18E rue, Québec, QC, G1J 1Z4, Canada
| | - Rénald Gilbert
- ThéCell: FRQS Cell, Tissue and Gene Therapy Network, Laboratoire d'organogénèse expérimentale - LOEX, 1401, 18E rue, Québec, QC, G1J 1Z4, Canada
- Human Health Therapeutics Research Center, National Research Council Canada, 6100, Avenue Royalmount, Montréal, Québec, H4P 2R2, Canada
| | - Bruno Gaillet
- Chemical Engineering Department, Université Laval, 1065, Avenue de la Médecine, Pavillon Pouliot, Québec, QC, G1V 0A6, Canada.
- PROTEO: The Quebec Network for Research on Protein Function, Structure, and Engineering, Université du Québec à Montréal, 201 Avenue du Président Kennedy, Montréal, QC, H2X 3Y7, Canada.
- ThéCell: FRQS Cell, Tissue and Gene Therapy Network, Laboratoire d'organogénèse expérimentale - LOEX, 1401, 18E rue, Québec, QC, G1J 1Z4, Canada.
| |
Collapse
|
7
|
Roshanmehr F, Abdoli S, Bazi Z, Jari M, Shahbazi M. Enhancing the productivity and proliferation of CHO-K1 cells by oncoprotein YAP (Yes-associated protein). Appl Microbiol Biotechnol 2024; 108:285. [PMID: 38573360 PMCID: PMC10994876 DOI: 10.1007/s00253-024-13122-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 04/05/2024]
Abstract
CHO cells are extensively employed in biological drug industry to manufacture therapeutic proteins. Nevertheless, production of biopharmaceuticals faces obstacles such as limited growth and inadequate productivity. Employing host cell engineering techniques for CHO cells serves as a valuable approach to address the constraints encountered in biologics manufacturing. Despite advancements, most techniques focus on specific genes to address individual cellular challenges. The significance of YAP, transcriptional co-activator, cannot be overstated due to its involvement in regulating organ size and tumor formation. YAP's influence extends to various cellular processes and is regulated by kinase cascade in the Hippo pathway, which phosphorylates serine residues in specific LATS recognition motifs. Activation of YAP has been observed to impact both the size and quantity of cells. This research investigates the effects of YAP5SA on proliferation, apoptosis, and productivity in CHO-K1 cells. YAP5SA, with mutations in all five LATS-target sites, is selected for its heightened activity and resistance to repression through the Hippo-LATS1/2 kinase signaling pathway. Plasmid harboring YAP5SA was transfected into EPO-CHO and the influence of YAP5SA overexpression was investigated. According to our findings, transfection of EPO-CHO cells with YAP5SA exhibited a substantial enhancement in CHO cell productivity, resulting in a 3-fold increase in total protein and EPO, as well as a 1.5-fold increase in specific productivity. Additionally, it significantly contributes in augmenting viability, size, and proliferation. Overall, the findings of this study exemplify the potential of utilizing YAP5SA to impact particular cellular mechanisms, thereby presenting an avenue for customizing cells to fulfill production demands. KEY POINTS: • YAP5SA in CHO cells boosts growth, reduces apoptosis, and significantly improves productivity. • YAP5SA regulates genes involved in proliferation, survival, and mTOR activation. • YAP5SA increases productivity by improving cell cycle, c-MYC expression, and mTOR pathway.
Collapse
Affiliation(s)
- Farnaz Roshanmehr
- Medical Cellular & Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Shahriyar Abdoli
- Medical Cellular & Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Zahra Bazi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Maryam Jari
- Medical Cellular & Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Majid Shahbazi
- Medical Cellular & Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
- Arya Tina Gene (ATG), Biopharmaceutical Company, Gorgan, Iran.
| |
Collapse
|
8
|
Flock J, Xie Y, Lemaitre R, Lapouge K, Remans K. The Use of Baculovirus-Mediated Gene Expression in Mammalian Cells for Recombinant Protein Production. Methods Mol Biol 2024; 2810:29-53. [PMID: 38926271 DOI: 10.1007/978-1-0716-3878-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Baculovirus-mediated gene expression in mammalian cells, BacMam, is a useful alternative to transient transfection for recombinant protein production in various types of mammalian cell lines. We decided to establish BacMam in our lab in order to streamline our workflows for gene expression in insect and mammalian cells, as it is straightforward to parallelize the baculovirus generation for both types of eukaryotic cells. This chapter provides a step-by-step description of the protocols we use for the generation of the recombinant BacMam viruses, the transduction of mammalian cell cultures, and optimization of the protein production conditions through small-scale expression and purification tests.
Collapse
Affiliation(s)
- Julia Flock
- Protein Expression and Purification Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Yexin Xie
- Protein Expression and Purification Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Régis Lemaitre
- Protein Biochemistry Facility, Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany
| | - Karine Lapouge
- Protein Expression and Purification Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Kim Remans
- Protein Expression and Purification Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
| |
Collapse
|
9
|
Mishra V. Dot-Blotting: A Quick Method for Expression Analysis of Recombinant Proteins. Curr Protoc 2022; 2:e546. [PMID: 36094175 PMCID: PMC9473290 DOI: 10.1002/cpz1.546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Expressing recombinant proteins in heterologous host cells is a prerequisite for purification and other downstream processes. Cell cultures require a protein expression test to optimize incubation time, temperature, and additives (like chemical inducers) to identify the best growth conditions with maximum recombinant protein yield. However, running SDS-PAGE followed by western blotting is cumbersome and results are not quick. Here, I describe a simple protocol to quickly check the presence of recombinant protein in cell cultures using a dot-blot experiment. The cells can be rapidly lysed and directly spotted on the nitrocellulose membrane. Then, the membrane is incubated with a horseradish peroxidase (HRP) conjugated antibody raised against the affinity tag present on the recombinant protein to confirm the protein expression by chemiluminescence. It takes less than an hour to get results. This method rapidly investigates recombinant protein expression in different cell lines and tests other variables. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Protein expression analysis for eukaryotic systems Basic Protocol 2: Protein expression analysis for bacterial systems.
Collapse
Affiliation(s)
- Vibhor Mishra
- St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
10
|
Saghaleyni R, Malm M, Moruzzi N, Zrimec J, Razavi R, Wistbacka N, Thorell H, Pintar A, Hober A, Edfors F, Chotteau V, Berggren PO, Grassi L, Zelezniak A, Svensson T, Hatton D, Nielsen J, Robinson JL, Rockberg J. Enhanced metabolism and negative regulation of ER stress support higher erythropoietin production in HEK293 cells. Cell Rep 2022; 39:110936. [PMID: 35705050 DOI: 10.1016/j.celrep.2022.110936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/05/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022] Open
Abstract
Recombinant protein production can cause severe stress on cellular metabolism, resulting in limited titer and product quality. To investigate cellular and metabolic characteristics associated with these limitations, we compare HEK293 clones producing either erythropoietin (EPO) (secretory) or GFP (non-secretory) protein at different rates. Transcriptomic and functional analyses indicate significantly higher metabolism and oxidative phosphorylation in EPO producers compared with parental and GFP cells. In addition, ribosomal genes exhibit specific expression patterns depending on the recombinant protein and the production rate. In a clone displaying a dramatically increased EPO secretion, we detect higher gene expression related to negative regulation of endoplasmic reticulum (ER) stress, including upregulation of ATF6B, which aids EPO production in a subset of clones by overexpression or small interfering RNA (siRNA) knockdown. Our results offer potential target pathways and genes for further development of the secretory power in mammalian cell factories.
Collapse
Affiliation(s)
- Rasool Saghaleyni
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Magdalena Malm
- KTH - Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology, and Health, Department of Protein Science, 106 91 Stockholm, Sweden
| | - Noah Moruzzi
- The Rolf Luft Research Center for Diabetes and Endocrinology, Department of Molecular Medicine and Surgery, Karolinska Institute, 17176 Stockholm, Sweden
| | - Jan Zrimec
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Ronia Razavi
- KTH - Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology, and Health, Department of Protein Science, 106 91 Stockholm, Sweden
| | - Num Wistbacka
- KTH - Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology, and Health, Department of Protein Science, 106 91 Stockholm, Sweden
| | - Hannes Thorell
- KTH - Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology, and Health, Department of Protein Science, 106 91 Stockholm, Sweden
| | - Anton Pintar
- KTH - Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology, and Health, Department of Protein Science, 106 91 Stockholm, Sweden
| | - Andreas Hober
- Science for Life Laboratory, KTH - Royal Institute of Technology, 171 65 Solna, Sweden
| | - Fredrik Edfors
- Science for Life Laboratory, KTH - Royal Institute of Technology, 171 65 Solna, Sweden
| | - Veronique Chotteau
- KTH - Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology, and Health, Department of Industrial Biotechnology, 106 91 Stockholm, Sweden
| | - Per-Olof Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Department of Molecular Medicine and Surgery, Karolinska Institute, 17176 Stockholm, Sweden
| | - Luigi Grassi
- Cell Culture & Fermentation Sciences, BioPharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Aleksej Zelezniak
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Thomas Svensson
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden; Department of Biology and Biological Engineering, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Chalmers University of Technology, Kemivägen 10, 41258 Gothenburg, Sweden
| | - Diane Hatton
- Cell Culture & Fermentation Sciences, BioPharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Jonathan L Robinson
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden; Department of Biology and Biological Engineering, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Chalmers University of Technology, Kemivägen 10, 41258 Gothenburg, Sweden.
| | - Johan Rockberg
- KTH - Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology, and Health, Department of Protein Science, 106 91 Stockholm, Sweden.
| |
Collapse
|
11
|
Behravan A, Hashemi A, Marashi SA. A Constraint-based modeling approach to reach an improved chemically defined minimal medium for recombinant antiEpEX-scFv production by Escherichia coli. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
12
|
Moatamedi N, Emamzadeh R, Sadeghi HMM, Akbari V. Bioprocess optimization of interferon β-1-a in Pichia pastoris and its improved inhibitory effect against hepatocellular carcinoma cells. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e18984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
13
|
Hennigan JN, Lynch MD. The past, present, and future of enzyme-based therapies. Drug Discov Today 2022; 27:117-133. [PMID: 34537332 PMCID: PMC8714691 DOI: 10.1016/j.drudis.2021.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/15/2021] [Accepted: 09/10/2021] [Indexed: 01/03/2023]
Abstract
Enzyme-based therapeutics (EBTs) have the potential to tap into an almost unmeasurable amount of enzyme biodiversity and treat myriad conditions. Although EBTs were some of the first biologics used clinically, the rate of development of newer EBTs has lagged behind that of other biologics. Here, we review the history of EBTs, and discuss the state of each class of EBT, their potential clinical advantages, and the unique challenges to their development. Additionally, we discuss key remaining technical barriers that, if addressed, could increase the diversity and rate of the development of EBTs.
Collapse
Affiliation(s)
| | - Michael D Lynch
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
14
|
Sharma R, Harrison STL, Tai SL. Advances in Bioreactor Systems for the Production of Biologicals in Mammalian Cells. CHEMBIOENG REVIEWS 2021. [DOI: 10.1002/cben.202100022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Rajesh Sharma
- University of Cape Town Centre for Bioprocess Engineering Research (CeBER) Department of Chemical Engineering Faculty of Engineering and the Built Environment Private Bag 7701 Rondebosch South Africa
| | - Susan T. L. Harrison
- University of Cape Town Centre for Bioprocess Engineering Research (CeBER) Department of Chemical Engineering Faculty of Engineering and the Built Environment Private Bag 7701 Rondebosch South Africa
| | - Siew Leng Tai
- University of Cape Town Centre for Bioprocess Engineering Research (CeBER) Department of Chemical Engineering Faculty of Engineering and the Built Environment Private Bag 7701 Rondebosch South Africa
| |
Collapse
|
15
|
García-Cordero J, Mendoza-Ramírez J, Fernández-Benavides D, Roa-Velazquez D, Filisola-Villaseñor J, Martínez-Frías SP, Sanchez-Salguero ES, Miguel-Rodríguez CE, Maravillas Montero JL, Torres-Ruiz JJ, Gómez-Martín D, Argumedo LS, Morales-Ríos E, Alvarado-Orozco JM, Cedillo-Barrón L. Recombinant Protein Expression and Purification of N, S1, and RBD of SARS-CoV-2 from Mammalian Cells and Their Potential Applications. Diagnostics (Basel) 2021; 11:diagnostics11101808. [PMID: 34679506 PMCID: PMC8534734 DOI: 10.3390/diagnostics11101808] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 01/08/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has reached an unprecedented level. There is a strong demand for diagnostic and serological supplies worldwide, making it necessary for countries to establish their own technologies to produce high-quality biomolecules. The two main viral antigens used for the diagnostics for severe acute respiratory syndrome coronavirus (SARS-CoV-2) are the structural proteins spike (S) protein and nucleocapsid (N) protein. The spike protein of SARS-CoV-2 is cleaved into S1 and S2, in which the S1 subunit has the receptor-binding domain (RBD), which induces the production of neutralizing antibodies, whereas nucleocapsid is an ideal target for viral antigen-based detection. In this study, we designed plasmids, pcDNA3.1/S1 and pcDNA3.1/N, and optimized their expression of the recombinant S1 and N proteins from SARS-CoV-2 in a mammalian system. The RBD was used as a control. The antigens were successfully purified from Expi293 cells, with high yields of the S1, N, and RBD proteins. The immunogenic abilities of these proteins were demonstrated in a mouse model. Further, enzyme-linked immunosorbent assays with human serum samples showed that the SARS-CoV-2 antigens are a suitable alternative for serological assays to identify patients infected with COVID-19.
Collapse
Affiliation(s)
- Julio García-Cordero
- Departamento de Biomedicina Molecular CINVESTAV IPN, Av. IPN # 2508 Col, San Pedro Zacatenco, México City 07360, Mexico; (J.G.-C.); (J.M.-R.); (S.P.M.-F.); (E.S.S.-S.); (C.E.M.-R.); (L.S.A.)
| | - Juvenal Mendoza-Ramírez
- Departamento de Biomedicina Molecular CINVESTAV IPN, Av. IPN # 2508 Col, San Pedro Zacatenco, México City 07360, Mexico; (J.G.-C.); (J.M.-R.); (S.P.M.-F.); (E.S.S.-S.); (C.E.M.-R.); (L.S.A.)
| | - David Fernández-Benavides
- Centro de Ingeniería y Desarrollo Industrial (CIDESI), Av. Playa Pie de la Cuesta No. 702, Desarrollo San Pablo, Querétaro 76125, Mexico; (D.F.-B.); (J.M.A.-O.)
| | - Daniela Roa-Velazquez
- Departamento de Bioquímica CINVESTAV IPN, Av. IPN # 2508 Col, San Pedro Zacatenco, México City 07360, Mexico; (D.R.-V.); (J.F.-V.); (E.M.-R.)
| | - Jessica Filisola-Villaseñor
- Departamento de Bioquímica CINVESTAV IPN, Av. IPN # 2508 Col, San Pedro Zacatenco, México City 07360, Mexico; (D.R.-V.); (J.F.-V.); (E.M.-R.)
| | - Sandra Paola Martínez-Frías
- Departamento de Biomedicina Molecular CINVESTAV IPN, Av. IPN # 2508 Col, San Pedro Zacatenco, México City 07360, Mexico; (J.G.-C.); (J.M.-R.); (S.P.M.-F.); (E.S.S.-S.); (C.E.M.-R.); (L.S.A.)
| | - Erik Saul Sanchez-Salguero
- Departamento de Biomedicina Molecular CINVESTAV IPN, Av. IPN # 2508 Col, San Pedro Zacatenco, México City 07360, Mexico; (J.G.-C.); (J.M.-R.); (S.P.M.-F.); (E.S.S.-S.); (C.E.M.-R.); (L.S.A.)
| | - Carlos E. Miguel-Rodríguez
- Departamento de Biomedicina Molecular CINVESTAV IPN, Av. IPN # 2508 Col, San Pedro Zacatenco, México City 07360, Mexico; (J.G.-C.); (J.M.-R.); (S.P.M.-F.); (E.S.S.-S.); (C.E.M.-R.); (L.S.A.)
| | - Jose L. Maravillas Montero
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, México City 14080, Mexico;
| | - Jose J. Torres-Ruiz
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, México City 14080, Mexico; (J.J.T.-R.); (D.G.-M.)
| | - Diana Gómez-Martín
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, México City 14080, Mexico; (J.J.T.-R.); (D.G.-M.)
| | - Leopoldo Santos Argumedo
- Departamento de Biomedicina Molecular CINVESTAV IPN, Av. IPN # 2508 Col, San Pedro Zacatenco, México City 07360, Mexico; (J.G.-C.); (J.M.-R.); (S.P.M.-F.); (E.S.S.-S.); (C.E.M.-R.); (L.S.A.)
| | - Edgar Morales-Ríos
- Departamento de Bioquímica CINVESTAV IPN, Av. IPN # 2508 Col, San Pedro Zacatenco, México City 07360, Mexico; (D.R.-V.); (J.F.-V.); (E.M.-R.)
| | - Juan M. Alvarado-Orozco
- Centro de Ingeniería y Desarrollo Industrial (CIDESI), Av. Playa Pie de la Cuesta No. 702, Desarrollo San Pablo, Querétaro 76125, Mexico; (D.F.-B.); (J.M.A.-O.)
| | - Leticia Cedillo-Barrón
- Departamento de Biomedicina Molecular CINVESTAV IPN, Av. IPN # 2508 Col, San Pedro Zacatenco, México City 07360, Mexico; (J.G.-C.); (J.M.-R.); (S.P.M.-F.); (E.S.S.-S.); (C.E.M.-R.); (L.S.A.)
- Correspondence:
| |
Collapse
|
16
|
Luthra A, Spanjaard RA, Cheema S, Veith N, Kober L, Wang Y, Jing T, Zhao Y, Hoeksema F, Yallop C, Havenga M, Bakker WAM. STEP® vectors for rapid generation of stable transfected CHO cell pools and clones with high expression levels and product quality homogeneity of difficult-to-express proteins. Protein Expr Purif 2021; 186:105920. [PMID: 34044134 DOI: 10.1016/j.pep.2021.105920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 11/24/2022]
Abstract
Many proteins produced in CHO cells need evaluation for their clinical and commercial potential. Traditional methods based on stable clone generation are slow and unsuitable for screening larger numbers of proteins, while transient expression technologies are fast but unpredictable regarding product quality and lacking an optional path to subcloning. The STEP® vector technology introduced here combines the best properties of both methods. STEP® vectors contain a strong transcriptional cassette driving expression of a bicistronic mRNA. The gene-of-interest (GOI) is cloned upstream of a functionally impaired zeocin resistance gene (FI-Zeo) whose translation is coupled to that of the GOI through an IRES. Stable transfected cells surviving zeocin selection produce high levels of FI-Zeo and thus, high levels of the GOI-encoded protein. By using different spacers, the translational coupling efficiency and selection strength can be controlled allowing maximization of expression of any GOI. Production of laronidase and factor VII (FVII) is presented as examples of unrelated, difficult-to-express (DTE) proteins. First step is rapid generation of transfected pools with the STEP® vectors. All high expressing surviving pools showed high product quality homogeneity as did monoclonal cell lines obtained from the top pools. Up to 500 μg/mL laronidase was obtained with virtually identical glycosylation profile as reference product. For FVII, cell specific productivity of 0.45 pg/cell/day with 50 IU/μg protein matched highest reported levels of reference product even before process development. Taken together, STEP® vector technology is ideally suited for rapid, small to large-scale production of DTE proteins compared to traditional methods.
Collapse
Affiliation(s)
- Abhinav Luthra
- Batavia Biosciences Inc., 300 Trade Center Suite 6650, Woburn, MA, USA
| | - Remco A Spanjaard
- Batavia Biosciences Inc., 300 Trade Center Suite 6650, Woburn, MA, USA
| | - Sarwat Cheema
- Batavia Biosciences Inc., 300 Trade Center Suite 6650, Woburn, MA, USA
| | - Nathalie Veith
- UGA Biopharma GmbH, Neuendorfstraße 20a, 16761, Hennigsdorf, Germany
| | - Lars Kober
- UGA Biopharma GmbH, Neuendorfstraße 20a, 16761, Hennigsdorf, Germany
| | - Yiding Wang
- COPro Bio, Room 301, Tsinghua SEM X-elerator, No.36 Haidian Xi Road, Haidian District, Beijing, China
| | - Tao Jing
- COPro Bio, Room 301, Tsinghua SEM X-elerator, No.36 Haidian Xi Road, Haidian District, Beijing, China
| | - Yi Zhao
- COPro Bio, Room 301, Tsinghua SEM X-elerator, No.36 Haidian Xi Road, Haidian District, Beijing, China
| | - Femke Hoeksema
- Batavia Biosciences Inc., 300 Trade Center Suite 6650, Woburn, MA, USA
| | - Chris Yallop
- Batavia Biosciences Inc., 300 Trade Center Suite 6650, Woburn, MA, USA
| | - Menzo Havenga
- Batavia Biosciences Inc., 300 Trade Center Suite 6650, Woburn, MA, USA
| | | |
Collapse
|
17
|
Robinson EK, Covarrubias S, Zhou S, Carpenter S. Generation and utilization of a HEK-293T murine GM-CSF expressing cell line. PLoS One 2021; 16:e0249117. [PMID: 33836009 PMCID: PMC8034741 DOI: 10.1371/journal.pone.0249117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 03/11/2021] [Indexed: 12/13/2022] Open
Abstract
Macrophages and dendritic cells (DCs) are innate immune cells that play a key role in defense against pathogens. In vitro cultures of bone marrow-derived macrophages (BMDMs) and dendritic cells (BMDCs) are well-established and valuable methods for immunological studies. Typically, commercially available recombinant GM-CSF is utilized to generate BMDCs and is also used to culture alveolar macrophages. We have generated a new HEK-293T cell line expressing murine GM-CSF that secretes high levels of GM-CSF (~180 ng/ml) into complete media as an alternative to commercial GM-CSF. Differentiation of dendritic cells and expression of various markers were kinetically assessed using the GM-CSF HEK293T cell line, termed supGM-CSF and compared directly to purified commercial GMCSF. After 7–9 days of cell culture the supGM-CSF yielded twice as many viable cells compared to the commercial purified GM-CSF. In addition to differentiating BMDCs, the supGM-CSF can be utilized to culture functionally active alveolar macrophages. Collectively, our results show that supernatant from our GM-CSF HEK293T cell line supports the differentiation of mouse BMDCs or alveolar macrophage culturing, providing an economical alternative to purified GM-CSF.
Collapse
Affiliation(s)
- Elektra Kantzari Robinson
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, United States of America
| | - Sergio Covarrubias
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, United States of America
| | - Simon Zhou
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, United States of America
| | - Susan Carpenter
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, United States of America
- * E-mail:
| |
Collapse
|
18
|
Rugbjerg P, Olsson L. The future of self-selecting and stable fermentations. J Ind Microbiol Biotechnol 2020; 47:993-1004. [PMID: 33136197 PMCID: PMC7695646 DOI: 10.1007/s10295-020-02325-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/17/2020] [Indexed: 02/08/2023]
Abstract
Unfavorable cell heterogeneity is a frequent risk during bioprocess scale-up and characterized by rising frequencies of low-producing cells. Low-producing cells emerge by both non-genetic and genetic variation and will enrich due to their higher specific growth rate during the extended number of cell divisions of large-scale bioproduction. Here, we discuss recent strategies for synthetic stabilization of fermentation populations and argue for their application to make cell factory designs that better suit industrial needs. Genotype-directed strategies leverage DNA-sequencing data to inform strain design. Self-selecting phenotype-directed strategies couple high production with cell proliferation, either by redirected metabolic pathways or synthetic product biosensing to enrich for high-performing cell variants. Evaluating production stability early in new cell factory projects will guide heterogeneity-reducing design choices. As good initial metrics, we propose production half-life from standardized serial-passage stability screens and production load, quantified as production-associated percent-wise growth rate reduction. Incorporating more stable genetic designs will greatly increase scalability of future cell factories through sustaining a high-production phenotype and enabling stable long-term production.
Collapse
Affiliation(s)
- Peter Rugbjerg
- Enduro Genetics ApS, Copenhagen, Denmark. .,Department of Biology and Biological Engineering, Industrial Biotechnology, Chalmers University of Technology, Gothenburg, Sweden.
| | - Lisbeth Olsson
- Department of Biology and Biological Engineering, Industrial Biotechnology, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
19
|
Grindel B, Engel BJ, Hall CG, Kelderhouse LE, Lucci A, Zacharias NM, Takahashi TT, Millward SW. Mammalian Expression and In Situ Biotinylation of Extracellular Protein Targets for Directed Evolution. ACS OMEGA 2020; 5:25440-25455. [PMID: 33043224 PMCID: PMC7542843 DOI: 10.1021/acsomega.0c03990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 09/08/2020] [Indexed: 05/17/2023]
Abstract
Directed evolution is a powerful tool for the selection of functional ligands from molecular libraries. Extracellular domains (ECDs) of cell surface receptors are common selection targets for therapeutic and imaging agent development. Unfortunately, these proteins are often post-translationally modified and are therefore unsuitable for expression in bacterial systems. Directional immobilization of these targets is further hampered by the absence of biorthogonal groups for site-specific chemical conjugation. We have developed a nonadherent mammalian expression system for rapid, high-yield expression of biotinylated ECDs. ECDs from EGFR, HER2, and HER3 were site-specifically biotinylated in situ and recovered from the cell culture supernatant with yields of up to 10 mg/L at >90% purity. Biotinylated ECDs also contained a protease cleavage site for rapid and selective release of the ECD after immobilization on avidin/streptavidin resins and library binding. A model mRNA display selection round was carried out against the HER2 ECD with the HER2 affibody expressed as an mRNA-protein fusion. HER2 affibody-mRNA fusions were selectively released by thrombin and quantitative PCR revealed substantial improvements in the enrichment of functional affibody-mRNA fusions relative to direct PCR amplification of the resin-bound target. This methodology allows rapid purification of high-quality targets for directed evolution and selective elution of functional sequences at the conclusion of each selection round.
Collapse
Affiliation(s)
- Brian
J. Grindel
- Department
of Cancer Systems Imaging, MD Anderson Cancer
Center, Houston, Texas 77030, United States
| | - Brian J. Engel
- Department
of Cancer Systems Imaging, MD Anderson Cancer
Center, Houston, Texas 77030, United States
| | - Carolyn G. Hall
- Department
of Breast Surgical Oncology, MD Anderson
Cancer Center, Houston, Texas 77030, United States
| | - Lindsay E. Kelderhouse
- Department
of Cancer Systems Imaging, MD Anderson Cancer
Center, Houston, Texas 77030, United States
| | - Anthony Lucci
- Department
of Breast Surgical Oncology, MD Anderson
Cancer Center, Houston, Texas 77030, United States
| | - Niki M. Zacharias
- Department
of Urology, MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Terry T. Takahashi
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Steven W. Millward
- Department
of Cancer Systems Imaging, MD Anderson Cancer
Center, Houston, Texas 77030, United States
| |
Collapse
|
20
|
van der Woude R, Turner HL, Tomris I, Bouwman KM, Ward AB, de Vries RP. Drivers of recombinant soluble influenza A virus hemagglutinin and neuraminidase expression in mammalian cells. Protein Sci 2020; 29:1975-1982. [PMID: 32710576 PMCID: PMC7454420 DOI: 10.1002/pro.3918] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/13/2020] [Accepted: 07/20/2020] [Indexed: 11/11/2022]
Abstract
Recombinant soluble trimeric influenza A virus hemagglutinins (HA) and tetrameric neuraminidases (NAs) have proven to be excellent tools to decipher biological properties. Receptor binding and sialic acid cleavage by recombinant proteins correlate satisfactorily compared to whole viruses. Expression of HA and NA can be achieved in a plethora of different laboratory hosts. For immunological and receptor interaction studies however, insect and mammalian cell expressed proteins are preferred due to the presence of N-linked glycosylation and disulfide bond formation. Because mammalian-cell expression is widely applied, an increased expression yield is an important goal. Here we report that using codon-optimized genes and sfGFP fusions, the expression yield of HA can be significantly improved. sfGFP also significantly increased expression yields when fused to the N-terminus of NA. In this study, a suite of different hemagglutinin and neuraminidase constructs are described, which can be valuable tools to study a wide array of different HAs, NAs and their mutants.
Collapse
Affiliation(s)
- Roosmarijn van der Woude
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Hannah L Turner
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Ilhan Tomris
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Kim M Bouwman
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Robert P de Vries
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
21
|
Chiabrando D, Scietti L, Prajica AG, Bertino F, Tolosano E, Magnani F. Expression and purification of the heme exporter FLVCR1a. Protein Expr Purif 2020; 172:105637. [PMID: 32278001 DOI: 10.1016/j.pep.2020.105637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/30/2020] [Accepted: 04/03/2020] [Indexed: 12/24/2022]
Abstract
With many crucial roles in enzymatic aerobic metabolism, the concentration of the heme must be tightly regulated. The heme exporter Feline Leukemia Virus sub-group C Receptor 1a (FLVCR1a), an integral membrane protein with twelve transmembrane helices, is a key player in the maintenance of cellular heme homeostasis. It was first identified as the host receptor for the Feline Leukemia Virus sub-group C (FeLV-C), a retrovirus causing hematological abnormalities in cats and other felines. Mutations in the Flvcr1 were later identified in human patients affected by Posterior Column Ataxia and Retinitis Pigmentosa (PCARP) and Hereditary Sensory and Autonomic Neuropathies (HSANs). Despite being an essential component in heme balance, currently there is a lack in the understanding of its function at the molecular level, including the effect of disease-causing mutations on protein function and structure. Therefore, there is a need for protocols to achieve efficient recombinant production yielding milligram amounts of highly pure protein to be used for biochemical and structural studies. Here, we report the first FLVCR1a reliable protocol suitable for both antibody generation and structural characterisation.
Collapse
Affiliation(s)
- Deborah Chiabrando
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Luigi Scietti
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - Adriana Georgiana Prajica
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - Francesca Bertino
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Emanuela Tolosano
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Francesca Magnani
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Via Ferrata 9, 27100, Pavia, Italy.
| |
Collapse
|
22
|
Gutiérrez-González M, Farías C, Tello S, Pérez-Etcheverry D, Romero A, Zúñiga R, Ribeiro CH, Lorenzo-Ferreiro C, Molina MC. Optimization of culture conditions for the expression of three different insoluble proteins in Escherichia coli. Sci Rep 2019; 9:16850. [PMID: 31727948 PMCID: PMC6856375 DOI: 10.1038/s41598-019-53200-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 10/12/2019] [Indexed: 02/06/2023] Open
Abstract
Recombinant protein expression for structural and therapeutic applications requires the use of systems with high expression yields. Escherichia coli is considered the workhorse for this purpose, given its fast growth rate and feasible manipulation. However, bacterial inclusion body formation remains a challenge for further protein purification. We analyzed and optimized the expression conditions for three different proteins: an anti-MICA scFv, MICA, and p19 subunit of IL-23. We used a response surface methodology based on a three-level Box-Behnken design, which included three factors: post-induction temperature, post-induction time and IPTG concentration. Comparing this information with soluble protein data in a principal component analysis revealed that insoluble and soluble proteins have different optimal conditions for post-induction temperature, post-induction time, IPTG concentration and in amino acid sequence features. Finally, we optimized the refolding conditions of the least expressed protein, anti-MICA scFv, using a fast dilution protocol with different additives, obtaining soluble and active scFv for binding assays. These results allowed us to obtain higher yields of proteins expressed in inclusion bodies. Further studies using the system proposed in this study may lead to the identification of optimal environmental factors for a given protein sequence, favoring the acceleration of bioprocess development and structural studies.
Collapse
Affiliation(s)
- Matías Gutiérrez-González
- Centro de Inmunobiotecnología, Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Programa de Doctorado en Farmacología, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Camila Farías
- Centro de Inmunobiotecnología, Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Samantha Tello
- Centro de Inmunobiotecnología, Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Diana Pérez-Etcheverry
- Área de Biotecnología, Instituto Polo Tecnológico de Pando, Facultad de Química, Universidad de la República Oriental del Uruguay, Montevideo, Uruguay
| | - Alfonso Romero
- Centro de Inmunobiotecnología, Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Roberto Zúñiga
- Centro de Inmunobiotecnología, Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Carolina H Ribeiro
- Centro de Inmunobiotecnología, Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Carmen Lorenzo-Ferreiro
- Área de Biotecnología, Instituto Polo Tecnológico de Pando, Facultad de Química, Universidad de la República Oriental del Uruguay, Montevideo, Uruguay
| | - María Carmen Molina
- Centro de Inmunobiotecnología, Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
23
|
Lee Y, Kim H, Kim E, Park S, Ryu KH, Lee EG. Rational design of transient gene expression process with lipoplexes for high-level therapeutic protein production in HEK293 cells. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.06.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
24
|
Systems biology approach in the formulation of chemically defined media for recombinant protein overproduction. Appl Microbiol Biotechnol 2019; 103:8315-8326. [PMID: 31418052 DOI: 10.1007/s00253-019-10048-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/16/2019] [Accepted: 07/23/2019] [Indexed: 02/06/2023]
Abstract
The cell culture medium is an intricate mixture of components which has a tremendous effect on cell growth and recombinant protein production. Regular cell culture medium includes various components, and the decision about which component should be included in the formulation and its optimum amount is an underlying issue in biotechnology industries. Applying conventional techniques to design an optimal medium for the production of a recombinant protein requires meticulous and immense research. Moreover, since the medium formulation for the production of one protein could not be the best choice for another protein, hence, the most suitable media should be determined for each recombinant cell line. Accordingly, medium formulation becomes a laborious, time-consuming, and costly process in biomanufacturing of recombinant protein, and finding alternative strategies for medium development seems to be crucial. In silico modeling is an attractive concept to be adapted for medium formulation due to its high potential to supersede laboratory examinations. By emerging the high-throughput datasets, scientists can disclose the knowledge about the effect of medium components on cell growth and metabolism, and via applying this information through systems biology approach, medium formulation optimization could be accomplished in silico with no need of significant amount of experimentation. This review demonstrates some of the applications of systems biology as a powerful tool for medium development and illustrates the effect of medium optimization with system-level analysis on the production of recombinant proteins in different host cells.
Collapse
|
25
|
Rekena A, Didrihsone E, Vegere K. The role of magnetic field in the biopharmaceutical production: Current perspectives. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2019; 22:e00334. [PMID: 31011551 PMCID: PMC6460295 DOI: 10.1016/j.btre.2019.e00334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/19/2019] [Accepted: 03/28/2019] [Indexed: 01/02/2023]
Abstract
Current scientific evidence on the influence of magnetic field on mammalian cell lines used for industrial production of biopharmaceuticals, on human cell lines and on potential cell lines for the biopharmaceutical production is presented in this review. A novel magnetic coupling induced agitation could be the best solution to eliminate sources of contamination in stirred tank bioreactors which is especially important for mammalian cell cultures. Nevertheless, the side effect of magnetically-coupled stirring mechanism is that cells are exposed to the generated magnetic field. The influence of magnetic field on biological systems has been investigated for several decades. The research continues nowadays as well, investigating the influence of various types of magnetic field in a variety of experimental setups. In the context of bioreactors, only the lower frequencies and intensities of the magnetic field are relevant.
Collapse
Affiliation(s)
- Alina Rekena
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka 3, Riga, LV1007, Latvia
| | - Elina Didrihsone
- Bioengineering Laboratory, Latvian State Institute of Wood Chemistry, Dzerbenes 27, Riga, LV1006, Latvia
- Institute of Polymer Materials, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Paula Valdena 3, Riga, LV-1048, Latvia
| | - Kristine Vegere
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka 3, Riga, LV1007, Latvia
- Water Research Laboratory, Faculty of Civil Engineering, Riga Technical University, Paula Valdena 1-205, Riga, LV1048, Latvia
| |
Collapse
|
26
|
Pedro AQ, Queiroz JA, Passarinha LA. Smoothing membrane protein structure determination by initial upstream stage improvements. Appl Microbiol Biotechnol 2019; 103:5483-5500. [PMID: 31127356 PMCID: PMC7079970 DOI: 10.1007/s00253-019-09873-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 12/14/2022]
Abstract
Membrane proteins (MP) constitute 20–30% of all proteins encoded by the genome of various organisms and perform a wide range of essential biological functions. However, despite they represent the largest class of protein drug targets, a relatively small number high-resolution 3D structures have been obtained yet. Membrane protein biogenesis is more complex than that of the soluble proteins and its recombinant biosynthesis has been a major drawback, thus delaying their further structural characterization. Indeed, the major limitation in structure determination of MP is the low yield achieved in recombinant expression, usually coupled to low functionality, pinpointing the optimization target in recombinant MP research. Recently, the growing attention that have been dedicated to the upstream stage of MP bioprocesses allowed great advances, permitting the evolution of the number of MP solved structures. In this review, we analyse and discuss effective solutions and technical advances at the level of the upstream stage using prokaryotic and eukaryotic organisms foreseeing an increase in expression yields of correctly folded MP and that may facilitate the determination of their three-dimensional structure. A section on techniques used to protein quality control and further structure determination of MP is also included. Lastly, a critical assessment of major factors contributing for a good decision-making process related to the upstream stage of MP is presented.
Collapse
Affiliation(s)
- Augusto Quaresma Pedro
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6201-001, Covilhã, Portugal
- CICECO - Aveiro Institute of Materials, Department of Chemistry, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - João António Queiroz
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6201-001, Covilhã, Portugal
| | - Luís António Passarinha
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6201-001, Covilhã, Portugal.
- UCIBIO@REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal.
| |
Collapse
|
27
|
Jazayeri SH, Amiri-Yekta A, Bahrami S, Gourabi H, Sanati MH, Khorramizadeh MR. Vector and Cell Line Engineering Technologies Toward Recombinant Protein Expression in Mammalian Cell Lines. Appl Biochem Biotechnol 2018; 185:986-1003. [PMID: 29396733 DOI: 10.1007/s12010-017-2689-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 12/29/2017] [Indexed: 11/26/2022]
Abstract
The rapid growth of global biopharmaceutical market in the recent years has been a good indication of its significance in biotechnology industry. During a long period of time in recombinant protein production from 1980s, optimizations in both upstream and downstream processes were launched. In this regard, one of the most promising strategies is expression vector engineering technology based on incorporation of DNA opening elements found in the chromatin border regions of vectors as well as targeting gene integration. Along with these approaches, cell line engineering has revealed convenient outcomes in isolating high-producing clones. According to the fact that more than 50% of the approved therapeutic proteins is being manufactured in mammalian cell lines, in this review, we focus on several approaches and developments in vector and cell line engineering technologies in mammalian cell culture.
Collapse
Affiliation(s)
- Seyedeh Hoda Jazayeri
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Genetics, Reproductive Biomedicine Research Center, ACECR, Royan Institute for Reproductive Biomedicine, P.O. Box: 14155-6343, Tehran, Iran
| | - Amir Amiri-Yekta
- Department of Genetics, Reproductive Biomedicine Research Center, ACECR, Royan Institute for Reproductive Biomedicine, P.O. Box: 14155-6343, Tehran, Iran
| | - Salahadin Bahrami
- Department of Genetics, Reproductive Biomedicine Research Center, ACECR, Royan Institute for Reproductive Biomedicine, P.O. Box: 14155-6343, Tehran, Iran
| | - Hamid Gourabi
- Department of Genetics, Reproductive Biomedicine Research Center, ACECR, Royan Institute for Reproductive Biomedicine, P.O. Box: 14155-6343, Tehran, Iran
| | - Mohammad Hossein Sanati
- Department of Genetics, Reproductive Biomedicine Research Center, ACECR, Royan Institute for Reproductive Biomedicine, P.O. Box: 14155-6343, Tehran, Iran.
- Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
| | - Mohammad Reza Khorramizadeh
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, P.O. Box: 1411413137, Tehran, Iran.
| |
Collapse
|
28
|
Gutiérrez-Granados S, Cervera L, Kamen AA, Gòdia F. Advancements in mammalian cell transient gene expression (TGE) technology for accelerated production of biologics. Crit Rev Biotechnol 2018; 38:918-940. [DOI: 10.1080/07388551.2017.1419459] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sonia Gutiérrez-Granados
- Departament d’Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura Cervera
- Department of Bioengineering, McGill University, Montréal, Canada
| | - Amine A. Kamen
- Department of Bioengineering, McGill University, Montréal, Canada
| | - Francesc Gòdia
- Departament d’Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
29
|
Pavlečić M, Crnić D, Jurković E, Šantek MI, Rezić T, Šantek B. Heterotrophic cultivation of Euglena gracilis on chemically pretreated media. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2018. [DOI: 10.1590/0104-6632.20180351s2016045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Chen C, Le H, Follstad B, Goudar CT. A Comparative Transcriptomics Workflow for Analyzing Microarray Data From CHO Cell Cultures. Biotechnol J 2017; 13:e1700228. [PMID: 29215210 DOI: 10.1002/biot.201700228] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/16/2017] [Indexed: 01/15/2023]
Abstract
Microarray-based comparative transcriptomics analysis is a powerful tool to understand therapeutic protein producing mammalian cell lines at the gene expression level. However, an integrated analysis workflow specifically designed for end-to-end analysis of microarray data for CHO cells, the most prevalent host for commercial recombinant protein production, is lacking. To address this gap, an automated data analysis workflow in R that leverages public domain analysis modules is developed to analyze microarray based gene expression data. In addition to testing the global transcriptome differences of CHO cells at different conditions, the workflow identifies differentially expressed genes and pathways with intuitive visualizations as the outputs. The utility of this automated workflow is demonstrated by comparing the transcriptomic profiles of recombinant protein expressing CHO cells with and without a temperature shift. Statistically significant differential expression at the gene, pathway, and global transcriptome levels are identified and visualized. An automated workflow like the one developed in this study will enable rapid translation of CHO culture microarray data into biologically relevant information for mechanism-driven cell line optimization and bioprocess development.
Collapse
Affiliation(s)
- Chun Chen
- Drug Substance Technologies, Process Development, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Huong Le
- Drug Substance Technologies, Process Development, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Brian Follstad
- Drug Substance Technologies, Process Development, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Chetan T Goudar
- Drug Substance Technologies, Process Development, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA 91320, USA
| |
Collapse
|
31
|
Production of HIV virus-like particles by transient transfection of CAP-T cells at bioreactor scale avoiding medium replacement. J Biotechnol 2017; 263:11-20. [DOI: 10.1016/j.jbiotec.2017.09.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 09/25/2017] [Accepted: 09/27/2017] [Indexed: 11/20/2022]
|
32
|
Inwood S, Buehler E, Betenbaugh M, Lal M, Shiloach J. Identifying HIPK1 as Target of miR-22-3p Enhancing Recombinant Protein Production From HEK 293 Cell by Using Microarray and HTP siRNA Screen. Biotechnol J 2017; 13. [PMID: 28987030 DOI: 10.1002/biot.201700342] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 09/11/2017] [Indexed: 01/20/2023]
Abstract
Protein expression from human embryonic kidney cells (HEK 293) is an important tool for structural and clinical studies. It is previously shown that microRNAs (small, noncoding RNAs) are effective means for improved protein expression from these cells, and by conducting a high-throughput screening of the human microRNA library, several microRNAs are identified as potential candidates for improving expression. From these, miR-22-3p is chosen for further study since it increased the expression of luciferase, two membrane proteins and a secreted fusion protein with minimal effect on the cells' growth and viability. Since each microRNA can interact with several gene targets, it is of interest to identify the repressed genes for understanding and exploring the improved expression mechanism for further implementation. Here, the authors describe a novel approach for identification of the target genes by integrating the differential gene expression analysis with information obtained from our previously conducted high-throughput siRNA screening. The identified genes were validated as being involved in improving luciferase expression by using siRNA and qRT-PCR. Repressing the target gene, HIPK1, is found to increase luciferase and GPC3 expression 3.3- and 2.2-fold, respectively.
Collapse
Affiliation(s)
- Sarah Inwood
- Biotechnology Core Laboratory NIDDK, NIH, Bethesda, Maryland 20892, USA.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Eugen Buehler
- Chemical Genomics Center, National Center for Advancing Translational Sciences, NIH, Rockville, MD 20850
| | - Michael Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Madhu Lal
- Chemical Genomics Center, National Center for Advancing Translational Sciences, NIH, Rockville, MD 20850
| | - Joseph Shiloach
- Biotechnology Core Laboratory NIDDK, NIH, Bethesda, Maryland 20892, USA
| |
Collapse
|
33
|
Del Prete S, Perfetto R, Rossi M, Alasmary FAS, Osman SM, AlOthman Z, Supuran CT, Capasso C. A one-step procedure for immobilising the thermostable carbonic anhydrase (SspCA) on the surface membrane of Escherichia coli. J Enzyme Inhib Med Chem 2017; 32:1120-1128. [PMID: 28791907 PMCID: PMC6010132 DOI: 10.1080/14756366.2017.1355794] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The carbonic anhydrase superfamily (CA, EC 4.2.1.1) of metalloenzymes is present in all three domains of life (Eubacteria, Archaea, and Eukarya), being an interesting example of convergent/divergent evolution, with its seven families (α-, β-, γ-, δ-, ζ-, η-, and θ-CAs) described so far. CAs catalyse the simple, but physiologically crucial reaction of carbon dioxide hydration to bicarbonate and protons. Recently, our groups characterised the α-CA from the thermophilic bacterium, Sulfurihydrogenibium yellowstonense finding a very high catalytic activity for the CO2 hydration reaction (kcat = 9.35 × 105 s-1 and kcat/Km = 1.1 × 108 M-1 s-1) which was maintained after heating the enzyme at 80 °C for 3 h. This highly thermostable SspCA was covalently immobilised within polyurethane foam and onto the surface of magnetic Fe3O4 nanoparticles. Here, we describe a one-step procedure for immobilising the thermostable SspCA directly on the surface membrane of Escherichia coli, using the INPN domain of Pseudomonas syringae. This strategy has clear advantages with respect to other methods, which require as the first step the production and the purification of the biocatalyst, and as the second step the immobilisation of the enzyme onto a specific support. Our results demonstrate that thermostable SspCA fused to the INPN domain of P. syringae ice nucleation protein (INP) was correctly expressed on the outer membrane of engineered E. coli cells, affording for an easy approach to design biotechnological applications for this highly effective thermostable catalyst.
Collapse
Affiliation(s)
- Sonia Del Prete
- a Dipartimento di Scienze Bio-Agroalimentari, CNR-Istituto di Bioscienze e Biorisorse , CNR , Napoli , Italy.,b Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche, and Laboratorio di Chimica Bioinorganica, Polo Scientifico , Università degli Studi di Firenze , Florence , Italy
| | - Rosa Perfetto
- a Dipartimento di Scienze Bio-Agroalimentari, CNR-Istituto di Bioscienze e Biorisorse , CNR , Napoli , Italy
| | - Mosè Rossi
- a Dipartimento di Scienze Bio-Agroalimentari, CNR-Istituto di Bioscienze e Biorisorse , CNR , Napoli , Italy
| | - Fatmah A S Alasmary
- c Department of Chemistry, College of Science , King Saud University , Riyadh , Saudi Arabia
| | - Sameh M Osman
- c Department of Chemistry, College of Science , King Saud University , Riyadh , Saudi Arabia
| | - Zeid AlOthman
- c Department of Chemistry, College of Science , King Saud University , Riyadh , Saudi Arabia
| | - Claudiu T Supuran
- b Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche, and Laboratorio di Chimica Bioinorganica, Polo Scientifico , Università degli Studi di Firenze , Florence , Italy
| | - Clemente Capasso
- a Dipartimento di Scienze Bio-Agroalimentari, CNR-Istituto di Bioscienze e Biorisorse , CNR , Napoli , Italy
| |
Collapse
|
34
|
Brown AJ, Kalsi D, Fernandez-Martell A, Cartwright J, Barber NOW, Patel YD, Turner R, Bryant CL, Johari YB, James DC. Expression Systems for Recombinant Biopharmaceutical Production by Mammalian Cells in Culture. METHODS AND PRINCIPLES IN MEDICINAL CHEMISTRY 2017. [DOI: 10.1002/9783527699124.ch13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Adam J. Brown
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | - Devika Kalsi
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | | | - Joe Cartwright
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | - Nicholas O. W. Barber
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | - Yash D. Patel
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | | | - Claire L. Bryant
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | - Yusuf B. Johari
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | - David C. James
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| |
Collapse
|
35
|
Suárez M, Sordo Y, Prieto Y, Rodríguez MP, Méndez L, Rodríguez EM, Rodríguez-Mallon A, Lorenzo E, Santana E, González N, Naranjo P, Frías MT, Carpio Y, Estrada MP. A single dose of the novel chimeric subunit vaccine E2-CD154 confers early full protection against classical swine fever virus. Vaccine 2017; 35:4437-4443. [DOI: 10.1016/j.vaccine.2017.05.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/18/2017] [Accepted: 05/07/2017] [Indexed: 01/07/2023]
|
36
|
Burgard J, Valli M, Graf AB, Gasser B, Mattanovich D. Biomarkers allow detection of nutrient limitations and respective supplementation for elimination in Pichia pastoris fed-batch cultures. Microb Cell Fact 2017; 16:117. [PMID: 28693509 PMCID: PMC5504661 DOI: 10.1186/s12934-017-0730-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/28/2017] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Industrial processes for recombinant protein production challenge production hosts, such as the yeast Pichia pastoris, on multiple levels. During a common P. pastoris fed-batch process, cells experience strong adaptations to different metabolic states or suffer from environmental stresses due to high cell density cultivation. Additionally, recombinant protein production and nutrient limitations are challenging in these processes. RESULTS Pichia pastoris producing porcine carboxypeptidase B (CpB) was cultivated in glucose or methanol-limited fed-batch mode, and the cellular response was analyzed using microarrays. Thereby, strong transcriptional regulations in transport-, regulatory- and metabolic processes connected to sulfur, phosphorus and nitrogen metabolism became obvious. The induction of these genes was observed in both glucose- and methanol- limited fed batch cultivations, but were stronger in the latter condition. As the transcriptional pattern was indicative for nutrient limitations, we performed fed-batch cultivations where we added the respective nutrients and compared them to non-supplemented cultures regarding cell growth, productivity and expression levels of selected biomarker genes. In the non-supplemented reference cultures we observed a strong increase in transcript levels of up to 89-fold for phosphorus limitation marker genes in the late fed-batch phase. Transcript levels of sulfur limitation marker genes were up to 35-fold increased. By addition of (NH4)2SO4 or (NH4)2HPO4, respectively, we were able to suppress the transcriptional response of the marker genes to levels initially observed at the start of the fed batch. Additionally, supplementation had also a positive impact on biomass generation and recombinant protein production. Supplementation with (NH4)2SO4 led to 5% increase in biomass and 52% higher CpB activity in the supernatant, compared to the non-supplemented reference cultivations. In (NH4)2HPO4 supplemented cultures 9% higher biomass concentrations and 60% more CpB activity were reached. CONCLUSIONS Transcriptional analysis of P. pastoris fed-batch cultivations led to the identification of nutrient limitations in the later phases, and respective biomarker genes for indication of limitations. Supplementation of the cultivation media with those nutrients eliminated the limitations on the transcriptional level, and was also shown to enhance productivity of a recombinant protein. The biomarker genes are versatily applicable to media and process optimization approaches, where tailor-made solutions are envisioned.
Collapse
Affiliation(s)
- Jonas Burgard
- Austrian Centre of Industrial Biotechnology, Vienna, Austria
- Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Minoska Valli
- Austrian Centre of Industrial Biotechnology, Vienna, Austria
- Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Alexandra B. Graf
- Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
- School of Bioengineering, University of Applied Sciences FH Campus Vienna, Vienna, Austria
| | - Brigitte Gasser
- Austrian Centre of Industrial Biotechnology, Vienna, Austria
- Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Diethard Mattanovich
- Austrian Centre of Industrial Biotechnology, Vienna, Austria
- Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
37
|
The Intersection of Structural and Chemical Biology - An Essential Synergy. Cell Chem Biol 2016; 23:173-182. [PMID: 26933743 DOI: 10.1016/j.chembiol.2015.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 12/04/2015] [Accepted: 12/04/2015] [Indexed: 12/22/2022]
Abstract
The continual improvement in our ability to generate high resolution structural models of biological molecules has stimulated and supported innovative chemical biology projects that target increasingly challenging ligand interaction sites. In this review we outline some of the recent developments in chemical biology and rational ligand design and show selected examples that illustrate the synergy between these research areas.
Collapse
|
38
|
Braguy J, Zurbriggen MD. Synthetic strategies for plant signalling studies: molecular toolbox and orthogonal platforms. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 87:118-38. [PMID: 27227549 DOI: 10.1111/tpj.13218] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 05/11/2016] [Accepted: 05/13/2016] [Indexed: 05/15/2023]
Abstract
Plants deploy a wide array of signalling networks integrating environmental cues with growth, defence and developmental responses. The high level of complexity, redundancy and connection between several pathways hampers a comprehensive understanding of involved functional and regulatory mechanisms. The implementation of synthetic biology approaches is revolutionizing experimental biology in prokaryotes, yeasts and animal systems and can likewise contribute to a new era in plant biology. This review gives an overview on synthetic biology approaches for the development and implementation of synthetic molecular tools and techniques to interrogate, understand and control signalling events in plants, ranging from strategies for the targeted manipulation of plant genomes up to the spatiotemporally resolved control of gene expression using optogenetic approaches. We also describe strategies based on the partial reconstruction of signalling pathways in orthogonal platforms, like yeast, animal and in vitro systems. This allows a targeted analysis of individual signalling hubs devoid of interconnectivity with endogenous interacting components. Implementation of the interdisciplinary synthetic biology tools and strategies is not exempt of challenges and hardships but simultaneously most rewarding in terms of the advances in basic and applied research. As witnessed in other areas, these original theoretical-experimental avenues will lead to a breakthrough in the ability to study and comprehend plant signalling networks.
Collapse
Affiliation(s)
- Justine Braguy
- Institute of Synthetic Biology and CEPLAS, University of Düsseldorf, Universitätstrasse 1, Building 26.12.U1.25, Düsseldorf, 40225, Germany
- King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Matias D Zurbriggen
- Institute of Synthetic Biology and CEPLAS, University of Düsseldorf, Universitätstrasse 1, Building 26.12.U1.25, Düsseldorf, 40225, Germany
| |
Collapse
|
39
|
Ritter A, Rauschert T, Oertli M, Piehlmaier D, Mantas P, Kuntzelmann G, Lageyre N, Brannetti B, Voedisch B, Geisse S, Jostock T, Laux H. Disruption of the gene C12orf35
leads to increased productivities in recombinant CHO cell lines. Biotechnol Bioeng 2016; 113:2433-42. [DOI: 10.1002/bit.26009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/08/2016] [Accepted: 05/09/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Anett Ritter
- Novartis Institutes for BioMedical Research; Basel Switzerland
- Novartis Pharma AG; Integrated Biologics Profiling Unit, Werk Klybeck Postfach CH-4002; Basel Switzerland
| | | | - Mevion Oertli
- Novartis Institutes for BioMedical Research; Basel Switzerland
- Novartis Pharma AG; Integrated Biologics Profiling Unit, Werk Klybeck Postfach CH-4002; Basel Switzerland
| | - Daniel Piehlmaier
- Novartis Pharma AG; Integrated Biologics Profiling Unit, Werk Klybeck Postfach CH-4002; Basel Switzerland
| | - Panagiotis Mantas
- Novartis Pharma AG; Integrated Biologics Profiling Unit, Werk Klybeck Postfach CH-4002; Basel Switzerland
| | | | - Nadine Lageyre
- Novartis Institutes for BioMedical Research; Basel Switzerland
| | | | - Bernd Voedisch
- Novartis Institutes for BioMedical Research; Basel Switzerland
| | - Sabine Geisse
- Novartis Institutes for BioMedical Research; Basel Switzerland
| | - Thomas Jostock
- Novartis Pharma AG; Integrated Biologics Profiling Unit, Werk Klybeck Postfach CH-4002; Basel Switzerland
| | - Holger Laux
- Novartis Pharma AG; Integrated Biologics Profiling Unit, Werk Klybeck Postfach CH-4002; Basel Switzerland
| |
Collapse
|
40
|
García-Nafría J, Watson JF, Greger IH. IVA cloning: A single-tube universal cloning system exploiting bacterial In Vivo Assembly. Sci Rep 2016; 6:27459. [PMID: 27264908 PMCID: PMC4893743 DOI: 10.1038/srep27459] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/13/2016] [Indexed: 12/11/2022] Open
Abstract
In vivo homologous recombination holds the potential for optimal molecular cloning, however, current strategies require specialised bacterial strains or laborious protocols. Here, we exploit a recA-independent recombination pathway, present in widespread laboratory E.coli strains, to develop IVA (In Vivo Assembly) cloning. This system eliminates the need for enzymatic assembly and reduces all molecular cloning procedures to a single-tube, single-step PCR, performed in <2 hours from setup to transformation. Unlike other methods, IVA is a complete system, and offers significant advantages over alternative methods for all cloning procedures (insertions, deletions, site-directed mutagenesis and sub-cloning). Significantly, IVA allows unprecedented simplification of complex cloning procedures: five simultaneous modifications of any kind, multi-fragment assembly and library construction are performed in approximately half the time of current protocols, still in a single-step fashion. This system is efficient, seamless and sequence-independent, and requires no special kits, enzymes or proprietary bacteria, which will allow its immediate adoption by the academic and industrial molecular biology community.
Collapse
Affiliation(s)
- Javier García-Nafría
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Jake F. Watson
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Ingo H. Greger
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| |
Collapse
|
41
|
The impact of structural genomics: the first quindecennial. ACTA ACUST UNITED AC 2016; 17:1-16. [PMID: 26935210 DOI: 10.1007/s10969-016-9201-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 02/17/2016] [Indexed: 12/21/2022]
Abstract
The period 2000-2015 brought the advent of high-throughput approaches to protein structure determination. With the overall funding on the order of $2 billion (in 2010 dollars), the structural genomics (SG) consortia established worldwide have developed pipelines for target selection, protein production, sample preparation, crystallization, and structure determination by X-ray crystallography and NMR. These efforts resulted in the determination of over 13,500 protein structures, mostly from unique protein families, and increased the structural coverage of the expanding protein universe. SG programs contributed over 4400 publications to the scientific literature. The NIH-funded Protein Structure Initiatives alone have produced over 2000 scientific publications, which to date have attracted more than 93,000 citations. Software and database developments that were necessary to handle high-throughput structure determination workflows have led to structures of better quality and improved integrity of the associated data. Organized and accessible data have a positive impact on the reproducibility of scientific experiments. Most of the experimental data generated by the SG centers are freely available to the community and has been utilized by scientists in various fields of research. SG projects have created, improved, streamlined, and validated many protocols for protein production and crystallization, data collection, and functional analysis, significantly benefiting biological and biomedical research.
Collapse
|
42
|
Rahimpour A, Ahani R, Najaei A, Adeli A, Barkhordari F, Mahboudi F. Development of Genetically Modified Chinese Hamster Ovary Host Cells for the Enhancement of Recombinant Tissue Plasminogen Activator Expression. Malays J Med Sci 2016; 23:6-13. [PMID: 27547109 PMCID: PMC4976708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 01/17/2016] [Indexed: 06/06/2023] Open
Abstract
BACKGROUND Chinese hamster ovary (CHO) cells are the most commonly used host system for the expression of high quality recombinant proteins. However, the development of stable, high-yielding CHO cell lines is a major bottleneck in the industrial manufacturing of therapeutic proteins. Therefore, different strategies such as the generation of more efficient expression vectors and establishment of genetically engineered host cells have been employed to increase the efficiency of cell line development. In order to examine the possibility of generating improved CHO host cells, cell line engineering approaches were developed based on ceramide transfer protein (CERT), and X-box binding protein 1s (XBP1s). METHODS CHO cells were transfected with CERT S132A, a mutant variant of CERT which is resistant to phosphorylation, or XBP1s expression plasmids, and then stable cell pools were generated. Transient expression of t-PA was examined in engineered cell pools in comparison to un-modified CHO host cells. RESULTS Overexpression of CERT S132A led to the enhancement of recombinant tissue plasminogen activator (t-PA) expression in transient expression by 50%. On the other hand, it was observed that the ectopic expression of the XBP1s, did not improve the t-PA expression level. CONCLUSION The results obtained in this study indicate successful development of the improved CHO host cells through CERT S132A overexpression.
Collapse
Affiliation(s)
- Azam Rahimpour
- Department of Tissue engineering, Faculty of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985717443, Iran
| | - Roshanak Ahani
- Department of Virology, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Azita Najaei
- Department of Biochemistry, Payame Noor University, Tehran, 1659639884, Iran
| | - Ahmad Adeli
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Farzaneh Barkhordari
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Fereidoun Mahboudi
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| |
Collapse
|
43
|
Chen C, Le H, Goudar CT. Integration of systems biology in cell line and process development for biopharmaceutical manufacturing. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2015.11.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
44
|
Betts Z, Dickson AJ. Ubiquitous Chromatin Opening Elements (UCOEs) effect on transgene position and expression stability in CHO cells following methotrexate (MTX) amplification. Biotechnol J 2016; 11:554-64. [DOI: 10.1002/biot.201500159] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 08/30/2015] [Accepted: 12/02/2015] [Indexed: 11/12/2022]
Affiliation(s)
- Zeynep Betts
- The University of Manchester, Faculty of Life Sciences, Michael Smith Building; Manchester United Kingdom
| | - Alan J. Dickson
- The University of Manchester, Faculty of Life Sciences, Michael Smith Building; Manchester United Kingdom
| |
Collapse
|
45
|
Dyson MR. Fundamentals of Expression in Mammalian Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 896:217-24. [DOI: 10.1007/978-3-319-27216-0_14] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
46
|
Zheng H, Handing KB, Zimmerman MD, Shabalin IG, Almo SC, Minor W. X-ray crystallography over the past decade for novel drug discovery - where are we heading next? Expert Opin Drug Discov 2015; 10:975-89. [PMID: 26177814 DOI: 10.1517/17460441.2015.1061991] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Macromolecular X-ray crystallography has been the primary methodology for determining the three-dimensional structures of proteins, nucleic acids and viruses. Structural information has paved the way for structure-guided drug discovery and laid the foundations for structural bioinformatics. However, X-ray crystallography still has a few fundamental limitations, some of which may be overcome and complemented using emerging methods and technologies in other areas of structural biology. AREAS COVERED This review describes how structural knowledge gained from X-ray crystallography has been used to advance other biophysical methods for structure determination (and vice versa). This article also covers current practices for integrating data generated by other biochemical and biophysical methods with those obtained from X-ray crystallography. Finally, the authors articulate their vision about how a combination of structural and biochemical/biophysical methods may improve our understanding of biological processes and interactions. EXPERT OPINION X-ray crystallography has been, and will continue to serve as, the central source of experimental structural biology data used in the discovery of new drugs. However, other structural biology techniques are useful not only to overcome the major limitation of X-ray crystallography, but also to provide complementary structural data that is useful in drug discovery. The use of recent advancements in biochemical, spectroscopy and bioinformatics methods may revolutionize drug discovery, albeit only when these data are combined and analyzed with effective data management systems. Accurate and complete data management is crucial for developing experimental procedures that are robust and reproducible.
Collapse
Affiliation(s)
- Heping Zheng
- University of Virginia, Department of Molecular Physiology and Biological Physics , 1340 Jefferson Park Avenue, Charlottesville, VA 22908 , USA +1 434 243 6865 ; +1 434 243 2981 ;
| | | | | | | | | | | |
Collapse
|
47
|
Betts Z, Dickson AJ. Assessment of UCOE on Recombinant EPO Production and Expression Stability in Amplified Chinese Hamster Ovary Cells. Mol Biotechnol 2015; 57:846-58. [DOI: 10.1007/s12033-015-9877-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
48
|
Büssow K. Stable mammalian producer cell lines for structural biology. Curr Opin Struct Biol 2015; 32:81-90. [DOI: 10.1016/j.sbi.2015.03.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 02/11/2015] [Accepted: 03/03/2015] [Indexed: 11/28/2022]
|
49
|
Le Pape F, Bossard M, Dutheil D, Rousselot M, Polard V, Férec C, Leize E, Delépine P, Zal F. Advancement in recombinant protein production using a marine oxygen carrier to enhance oxygen transfer in a CHO-S cell line. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015; 43:186-95. [DOI: 10.3109/21691401.2015.1029632] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
50
|
Basilio D, Accardi A. A Proteoliposome-Based Efflux Assay to Determine Single-molecule Properties of Cl- Channels and Transporters. J Vis Exp 2015:52369. [PMID: 25938223 PMCID: PMC4541587 DOI: 10.3791/52369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The last 15 years have been characterized by an explosion in the ability to overexpress and purify membrane proteins from prokaryotic organisms as well as from eukaryotes. This increase has been largely driven by the successful push to obtain structural information on membrane proteins. However, the ability to functionally interrogate these proteins has not advanced at the same rate and is often limited to qualitative assays of limited quantitative value, thereby limiting the mechanistic insights that they can provide. An assay to quantitatively investigate the transport activity of reconstituted Cl(-) channels or transporters is described. The assay is based on the measure of the efflux rate of Cl(-) from proteoliposomes following the addition of the K(+) ionophore valinomycin to shunt the membrane potential. An ion sensitive electrode is used to follow the time-course of ion efflux from proteoliposomes reconstituted with the desired protein. The method is highly suited for mechanistic studies, as it allows for the quantitative determination of key properties of the reconstituted protein, such as its unitary transport rate, the fraction of active protein and the molecular mass of the functional unit. The assay can also be utilized to determine the effect of small molecule compounds that directly inhibit/activate the reconstituted protein, as well as to test the modulatory effects of the membrane composition or lipid-modifying reagents. Where possible, direct comparison between results obtained using this method were found to be in good agreement with those obtained using electrophysiological approaches. The technique is illustrated using CLC-ec1, a CLC-type H(+)/Cl(-) exchanger, as a model system. The efflux assay can be utilized to study any Cl(-) conducting channel/transporter and, with minimal changes, can be adapted to study any ion-transporting protein.
Collapse
Affiliation(s)
- Daniel Basilio
- Department of Anesthesiology, Weill Cornell Medical College
| | - Alessio Accardi
- Department of Anesthesiology, Weill Cornell Medical College; Department of Physiology and Biophysics, Weill Cornell Medical College; Department of Biochemistry, Weill Cornell Medical College;
| |
Collapse
|