1
|
Gou M, Chen W, Li Y, Chen S, Feng W, Pan S, Luo X, Tan S, Tian B, Li W, Tong J, Zhou Y, Li H, Yu T, Wang Z, Zhang P, Huang J, Kochunov P, Tian L, Li CSR, Hong LE, Tan Y. Immune-Inflammatory Response And Compensatory Immune-Regulatory Reflex Systems And White Matter Integrity in Schizophrenia. Schizophr Bull 2024; 50:199-209. [PMID: 37540273 PMCID: PMC10754202 DOI: 10.1093/schbul/sbad114] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
BACKGROUND AND HYPOTHESIS Low-grade neural and peripheral inflammation are among the proposed pathophysiological mechanisms of schizophrenia. White matter impairment is one of the more consistent findings in schizophrenia but the underlying mechanism remains obscure. Many cerebral white matter components are sensitive to neuroinflammatory conditions that can result in demyelination, altered oligodendrocyte differentiation, and other changes. We tested the hypothesis that altered immune-inflammatory response system (IRS) and compensatory immune-regulatory reflex system (IRS/CIRS) dynamics are associated with reduced white matter integrity in patients with schizophrenia. STUDY DESIGN Patients with schizophrenia (SCZ, 70M/50F, age = 40.76 ± 13.10) and healthy controls (HCs, 38M/27F, age = 37.48 ± 12.31) underwent neuroimaging and plasma collection. A panel of cytokines were assessed using enzyme-linked immunosorbent assay. White matter integrity was measured by fractional anisotropy (FA) from diffusion tensor imaging using a 3-T Prisma MRI scanner. The cytokines were used to generate 3 composite scores: IRS, CIRS, and IRS/CIRS ratio. STUDY RESULTS The IRS/CIRS ratio in SCZ was significantly higher than that in HCs (P = .009). SCZ had a significantly lower whole-brain white matter average FA (P < .001), and genu of corpus callosum (GCC) was the most affected white matter tract and its FA was significantly associated with IRS/CIRS (r = 0.29, P = .002). FA of GCC was negatively associated with negative symptom scores in SCZ (r = -0.23, P = .016). There was no mediation effect taking FA of GCC as mediator, for that IRS/CIRS was not associated with negative symptom score significantly (P = .217) in SCZ. CONCLUSIONS Elevated IRS/CIRS might partly account for the severity of negative symptoms through targeting the integrity of GCC.
Collapse
Affiliation(s)
- Mengzhuang Gou
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Wenjin Chen
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Yanli Li
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Song Chen
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Wei Feng
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Shujuan Pan
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Xingguang Luo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Shuping Tan
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Baopeng Tian
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Wei Li
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Jinghui Tong
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Yanfang Zhou
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Hongna Li
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Ting Yu
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Zhiren Wang
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Ping Zhang
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Junchao Huang
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Li Tian
- Institute of Biomedicine and Translational Medicine, Department of Physiology, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - L Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yunlong Tan
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| |
Collapse
|
2
|
Yamada S, Takahashi S, Malchow B, Papazova I, Stöcklein S, Ertl-Wagner B, Papazov B, Kumpf U, Wobrock T, Keller-Varady K, Hasan A, Falkai P, Wagner E, Raabe FJ, Keeser D. Cognitive and functional deficits are associated with white matter abnormalities in two independent cohorts of patients with schizophrenia. Eur Arch Psychiatry Clin Neurosci 2022; 272:957-969. [PMID: 34935072 PMCID: PMC9388472 DOI: 10.1007/s00406-021-01363-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/24/2021] [Indexed: 01/23/2023]
Abstract
BACKGROUND Significant evidence links white matter (WM) microstructural abnormalities to cognitive impairment in schizophrenia (SZ), but the relationship of these abnormalities with functional outcome remains unclear. METHODS In two independent cohorts (C1, C2), patients with SZ were divided into two subgroups: patients with higher cognitive performance (SZ-HCP-C1, n = 25; SZ-HCP-C2, n = 24) and patients with lower cognitive performance (SZ-LCP-C1, n = 25; SZ-LCP-C2, n = 24). Healthy controls (HC) were included in both cohorts (HC-C1, n = 52; HC-C2, n = 27). We compared fractional anisotropy (FA) of the whole-brain WM skeleton between the three groups (SZ-LCP, SZ-HCP, HC) by a whole-brain exploratory approach and an atlas-defined WM regions-of-interest approach via tract-based spatial statistics. In addition, we explored whether FA values were associated with Global Assessment of Functioning (GAF) scores in the SZ groups. RESULTS In both cohorts, mean FA values of whole-brain WM skeleton were significantly lower in the SCZ-LCP group than in the SCZ-HCP group. Whereas in C1 the FA of the frontal part of the left inferior fronto-occipital fasciculus (IFOF) was positively correlated with GAF score, in C2 the FA of the temporal part of the left IFOF was positively correlated with GAF score. CONCLUSIONS We provide robust evidence for WM microstructural abnormalities in SZ. These abnormalities are more prominent in patients with low cognitive performance and are associated with the level of functioning.
Collapse
Affiliation(s)
- Shinichi Yamada
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan
| | - Shun Takahashi
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan
- Clinical Research and Education Center, Asakayama General Hospital, Sakai, Japan
| | - Berend Malchow
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Irina Papazova
- Department of Psychiatry Psychotherapy and Psychosomatics, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Sophia Stöcklein
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Birgit Ertl-Wagner
- Division of Neuroradiology, Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Canada
| | - Boris Papazov
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Ulrike Kumpf
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Thomas Wobrock
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
- Department of Psychiatry and Psychotherapy, County Hospitals Darmstadt-Dieburg, Gross-Umstadt, Germany
| | | | - Alkomiet Hasan
- Department of Psychiatry Psychotherapy and Psychosomatics, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Elias Wagner
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Florian J Raabe
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany.
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany.
| | - Daniel Keeser
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany.
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany.
- NeuroImaging Core Unit Munich (NICUM), University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
3
|
Xie S, Zhuo J, Song M, Chu C, Cui Y, Chen Y, Wang H, Li L, Jiang T. Tract-specific white matter microstructural alterations in subjects with schizophrenia and unaffected first-degree relatives. Brain Imaging Behav 2022; 16:2110-2119. [PMID: 35732912 DOI: 10.1007/s11682-022-00681-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2022] [Indexed: 11/26/2022]
Abstract
White matter tracts alterations have been reported in schizophrenia (SZ), but whether such abnormalities are associated with the effects of the disorder itself and/or genetic vulnerability remains unclear. Moreover, the specific patterns of different parts of these altered tracts have been less well studied. Thus, diffusion-weighted images were acquired from 38 healthy controls (HCs), 48 schizophrenia patients, and 33 unaffected first-degree relatives of SZs (FDRs). Diffusion properties of the 25 major tracts automatically extracted with probabilistic tractography were calculated and compared among groups. Regarding the peripheral regions of the tracts, significantly higher diffusivity values in the left superior longitudinal fasciculus (SLF) and the left anterior thalamic radiation (ATR) were observed in SZs than in HCs and unaffected FDRs. However, there were no significant differences between HCs and FDRs in these two tracts. While no main effects of group with respect to the core regions of the 25 tracts survived multiple comparisons correction, FDRs had significantly higher diffusivity values in the left medial lemniscus and lower diffusivity values in the middle cerebellar peduncle than HCs and SZs. These findings enhance the understanding of the abnormal patterns in the peripheral and core regions of the tracts in SZs and those at high genetic risk for schizophrenia. Our results suggest that alterations in the peripheral regions of the left SLF and ATR are features of established illness rather than genetic predisposition, which may serve as critical neural substrates for the psychopathology of schizophrenia.
Collapse
Affiliation(s)
- Sangma Xie
- Institute of Biomedical Engineering and Instrumentation, School of Automation, Hangzhou Dianzi University, 310018, Hangzhou, China
| | - Junjie Zhuo
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, 570228, Haikou, China
| | - Ming Song
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100190, Beijing, China
| | - Congying Chu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China
| | - Yue Cui
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100190, Beijing, China
| | - Yunchun Chen
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, 710032, Xi'an, China
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, 710032, Xi'an, China
| | - Lihua Li
- Institute of Biomedical Engineering and Instrumentation, School of Automation, Hangzhou Dianzi University, 310018, Hangzhou, China
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China.
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China.
- University of Chinese Academy of Sciences, 100190, Beijing, China.
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China.
| |
Collapse
|
4
|
Is treatment-resistant schizophrenia associated with distinct neurobiological callosal connectivity abnormalities? CNS Spectr 2021; 26:545-549. [PMID: 32772934 DOI: 10.1017/s1092852920001753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Resistance to antipsychotic treatment affects up to 30% of patients with schizophrenia. Although the time course of development of treatment-resistant schizophrenia (TRS) varies from patient to patient, the reasons for these variations remain unknown. Growing evidence suggests brain dysconnectivity as a significant feature of schizophrenia. In this study, we compared fractional anisotropy (FA) of brain white matter between TRS and non-treatment-resistant schizophrenia (non-TRS) patients. Our central hypothesis was that TRS is associated with reduced FA values. METHODS TRS was defined as the persistence of moderate to severe symptoms after adequate treatment with at least two antipsychotics from different classes. Diffusion-tensor brain MRI obtained images from 34 TRS participants and 51 non-TRS. Whole-brain analysis of FA and axial, radial, and mean diffusivity were performed using Tract-Based Spatial Statistics (TBSS) and FMRIB's Software Library (FSL), yielding a contrast between TRS and non-TRS patients, corrected for multiple comparisons using family-wise error (FWE) < 0.05. RESULTS We found a significant reduction in FA in the splenium of corpus callosum (CC) in TRS when compared to non-TRS. The antipsychotic dose did not relate to the splenium CC. CONCLUSION Our results suggest that the focal abnormality of CC may be a potential biomarker of TRS.
Collapse
|
5
|
Mitelman SA, Buchsbaum MS, Christian BT, Merrill BM, Buchsbaum BR, Mukherjee J, Lehrer DS. Dopamine receptor density and white mater integrity: 18F-fallypride positron emission tomography and diffusion tensor imaging study in healthy and schizophrenia subjects. Brain Imaging Behav 2021; 14:736-752. [PMID: 30523488 DOI: 10.1007/s11682-018-0012-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dopaminergic dysfunction and changes in white matter integrity are among the most replicated findings in schizophrenia. A modulating role of dopamine in myelin formation has been proposed in animal models and healthy human brain, but has not yet been systematically explored in schizophrenia. We used diffusion tensor imaging and 18F-fallypride positron emission tomography in 19 healthy and 25 schizophrenia subjects to assess the relationship between gray matter dopamine D2/D3 receptor density and white matter fractional anisotropy in each diagnostic group. AFNI regions of interest were acquired for 42 cortical Brodmann areas and subcortical gray matter structures as well as stereotaxically placed in representative white matter areas implicated in schizophrenia neuroimaging literature. Welch's t-test with permutation-based p value adjustment was used to compare means of z-transformed correlations between fractional anisotropy and 18F-fallypride binding potentials in hypothesis-driven regions of interest in the diagnostic groups. Healthy subjects displayed an extensive pattern of predominantly negative correlations between 18F-fallypride binding across a range of cortical and subcortical gray matter regions and fractional anisotropy in rostral white matter regions (internal capsule, frontal lobe, anterior corpus callosum). These patterns were disrupted in subjects with schizophrenia, who displayed significantly weaker overall correlations as well as comparatively scant numbers of significant correlations with the internal capsule and frontal (but not temporal) white matter, especially for dopamine receptor density in thalamic nuclei. Dopamine D2/D3 receptor density and white matter integrity appear to be interrelated, and their decreases in schizophrenia may stem from hyperdopaminergia with dysregulation of dopaminergic impact on axonal myelination.
Collapse
Affiliation(s)
- Serge A Mitelman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA. .,Department of Psychiatry, Division of Child and Adolescent Psychiatry, Elmhurst Hospital Center, 79-01 Broadway, Elmhurst, NY, 11373, USA.
| | - Monte S Buchsbaum
- Departments of Psychiatry and Radiology, University of California, San Diego, 11388 Sorrento Valley Road, San Diego, CA, 92121, USA.,Department of Psychiatry and Human Behavior, Irvine School of Medicine, University of California, 101 The City Dr. S, Orange, CA, 92868, USA
| | - Bradley T Christian
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, 1500 Highland Avenue, Room T231, Madison, WI, 53705, USA
| | - Brian M Merrill
- Department of Psychiatry, Boonshoft School of Medicine, Wright State University, East Medical Plaza, Dayton, OH, 45408, USA
| | - Bradley R Buchsbaum
- The Rotman Research Institute, Baycrest Centre for Geriatric Care and Department of Psychiatry, University of Toronto, 3560 Bathurst St, Toronto, ON, M6A 2E1, Canada
| | - Jogeshwar Mukherjee
- Department of Radiological Sciences, Preclinical Imaging, Irvine School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Douglas S Lehrer
- Department of Psychiatry, Boonshoft School of Medicine, Wright State University, East Medical Plaza, Dayton, OH, 45408, USA
| |
Collapse
|
6
|
Faria AV, Zhao Y, Ye C, Hsu J, Yang K, Cifuentes E, Wang L, Mori S, Miller M, Caffo B, Sawa A. Multimodal MRI assessment for first episode psychosis: A major change in the thalamus and an efficient stratification of a subgroup. Hum Brain Mapp 2020; 42:1034-1053. [PMID: 33377594 PMCID: PMC7856640 DOI: 10.1002/hbm.25276] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/29/2020] [Accepted: 10/18/2020] [Indexed: 02/06/2023] Open
Abstract
Multi‐institutional brain imaging studies have emerged to resolve conflicting results among individual studies. However, adjusting multiple variables at the technical and cohort levels is challenging. Therefore, it is important to explore approaches that provide meaningful results from relatively small samples at institutional levels. We studied 87 first episode psychosis (FEP) patients and 62 healthy subjects by combining supervised integrated factor analysis (SIFA) with a novel pipeline for automated structure‐based analysis, an efficient and comprehensive method for dimensional data reduction that our group recently established. We integrated multiple MRI features (volume, DTI indices, resting state fMRI—rsfMRI) in the whole brain of each participant in an unbiased manner. The automated structure‐based analysis showed widespread DTI abnormalities in FEP and rs‐fMRI differences between FEP and healthy subjects mostly centered in thalamus. The combination of multiple modalities with SIFA was more efficient than the use of single modalities to stratify a subgroup of FEP (individuals with schizophrenia or schizoaffective disorder) that had more robust deficits from the overall FEP group. The information from multiple MRI modalities and analytical methods highlighted the thalamus as significantly abnormal in FEP. This study serves as a proof‐of‐concept for the potential of this methodology to reveal disease underpins and to stratify populations into more homogeneous sub‐groups.
Collapse
Affiliation(s)
- Andreia V Faria
- Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yi Zhao
- Department of Biostatistics, Indiana University, School of Medicine, Indianapolis, Indiana, USA
| | - Chenfei Ye
- Department of Electronics and Information, Harbin Institute of Technology Shenzhen Graduate School, Guangdong, China
| | - Johnny Hsu
- Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kun Yang
- Department Psychiatry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Elizabeth Cifuentes
- Department Psychiatry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lei Wang
- Department of Psychiatry and Behavioral Sciences and Radiology, Northwestern University, Evanston, Illinois, USA
| | - Susumu Mori
- Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael Miller
- Department of Biomedical Engineering, The Whiting School of Engineering, Baltimore, Maryland, USA
| | - Brian Caffo
- Department of Biostatistics, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Akira Sawa
- Department Psychiatry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Biomedical Engineering, The Whiting School of Engineering, Baltimore, Maryland, USA.,Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Mental Health, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Mitelman SA, Buchsbaum MS, Christian BT, Merrill BM, Adineh M, DeCastro A, Buchsbaum BR, Lehrer DS. Relationship between white matter glucose metabolism and fractional anisotropy in healthy and schizophrenia subjects. Psychiatry Res Neuroimaging 2020; 299:111060. [PMID: 32135405 DOI: 10.1016/j.pscychresns.2020.111060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 02/15/2020] [Accepted: 02/21/2020] [Indexed: 01/05/2023]
Abstract
Decreased fractional anisotropy and increased glucose utilization in the white matter have been reported in schizophrenia. These findings may be indicative of an inverse relationship between these measures of white matter integrity and metabolism. We used 18F-fluorodeoxyglucose positron emission tomography and diffusion-tensor imaging in 19 healthy and 25 schizophrenia subjects to assess and compare coterritorial correlation patterns between glucose utilization and fractional anisotropy on a voxel-by-voxel basis and across a range of automatically placed representative white matter regions of interest. We found a pattern of predominantly negative correlations between white matter metabolism and fractional anisotropy in both healthy and schizophrenia subjects. The overall strength of the relationship was attenuated in subjects with schizophrenia, who displayed significantly fewer and weaker correlations in all regions assessed with the exception of the corpus callosum. This attenuation was most prominent in the left prefrontal white matter and this region also best predicted the diagnosis of schizophrenia. There exists an inverse relationship between the measures of white matter integrity and metabolism, which may therefore be physiologically linked. In subjects with schizophrenia, hypermetabolism in the white matter may be a function of lower white matter integrity, with lower efficiency and increased energetic cost of task-related computations.
Collapse
Affiliation(s)
- Serge A Mitelman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States; Department of Psychiatry, Division of Child and Adolescent Psychiatry, Elmhurst Hospital Center, 79-01 Broadway, Elmhurst, NY 11373, United States.
| | - Monte S Buchsbaum
- NeuroPET Center, Departments of Psychiatry and Radiology, University of California, San Diego, 11388 Sorrento Valley Road, San Diego, CA 92121, United States
| | - Bradley T Christian
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, 1500 Highland Avenue, Room T231, Madison, WI 53705, United States
| | - Brian M Merrill
- Department of Psychiatry, Boonshoft School of Medicine, Wright State University, East Medical Plaza, Dayton, OH 45408, United States
| | - Mehdi Adineh
- Wallace-Kettering Neuroscience Institute, Kettering Medical Center, Kettering, OH 45429
| | - Alex DeCastro
- NeuroPET Center, Departments of Psychiatry and Radiology, University of California, San Diego, 11388 Sorrento Valley Road, San Diego, CA 92121, United States
| | - Bradley R Buchsbaum
- The Rotman Research Institute, Baycrest Centre for Geriatric Care and Department of Psychiatry, University of Toronto, 3560 Bathurst St., Toronto, Ontario, Canada, M6A 2E1
| | - Douglas S Lehrer
- Department of Psychiatry, Boonshoft School of Medicine, Wright State University, East Medical Plaza, Dayton, OH 45408, United States
| |
Collapse
|
8
|
A longitudinal neurite and free water imaging study in patients with a schizophrenia spectrum disorder. Neuropsychopharmacology 2019; 44:1932-1939. [PMID: 31153156 PMCID: PMC6785103 DOI: 10.1038/s41386-019-0427-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/08/2019] [Accepted: 05/23/2019] [Indexed: 12/14/2022]
Abstract
Diffusion tensor imaging (DTI) studies show widespread white matter abnormalities in schizophrenia, but it is difficult to directly relate these parameters to biological processes. Neurite orientation dispersion and density imaging (NODDI) is geared toward biophysical characterization of white matter microstructure, but only few studies have leveraged this technique to study white matter alterations. We recruited 42 schizophrenia patients (30 antipsychotic-naïve and 12 currently untreated) and 42 matched controls in this prospective study. We assessed the orientation dispersion index (ODI) and extracellular free water (FW) using single-shell DTI data before and after a 6-week trial of risperidone. Longitudinal data were available for 27 patients. Voxelwise analyses showed significantly increased ODI in the posterior limb of the internal capsule in unmedicated patients (242 voxels; x = -24; y = 6; z = 6; p < 0.01; α < 0.04), but no alterations in FW. Whole brain measures did not reveal alterations in ODI but a 6.3% trend-level increase in FW in unmedicated SZ (t = -1.873; p = 0.07). Baseline ODI was negatively correlated with subsequent response to antipsychotic treatment (r = -0.38; p = 0.049). Here, we demonstrated altered fiber complexity in medication-naïve and unmedicated patients with a schizophrenia spectrum illness. Lesser whole brain fiber uniformity was predictive of poor response to treatment, suggesting this measure may be a clinically relevant biomarker. Interestingly, we found no significant changes in NODDI indices after short-term treatment with risperidone. Our data show that biophysical diffusion models have promise for the in vivo evaluation of brain microstructure in this devastating neuropsychiatric syndrome.
Collapse
|
9
|
Hamoda HM, Makhlouf AT, Fitzsimmons J, Rathi Y, Makris N, Mesholam-Gately RI, Wojcik JD, Goldstein J, McCarley RW, Seidman LJ, Kubicki M, Shenton ME. Abnormalities in thalamo-cortical connections in patients with first-episode schizophrenia: a two-tensor tractography study. Brain Imaging Behav 2019; 13:472-481. [PMID: 29667043 DOI: 10.1007/s11682-018-9862-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The "cognitive dysmetria" hypothesis suggests that impairments in cognition and behavior in patients with schizophrenia can be explained by disruptions in the cortico-cerebellar-thalamic-cortical circuit. In this study we examine thalamo-cortical connections in patients with first-episode schizophrenia (FESZ). White matter pathways are investigated that connect the thalamus with three frontal cortex regions including the anterior cingulate cortex (ACC), ventrolateral prefrontal cortex (VLPFC), and lateral oribitofrontal cortex (LOFC). We use a novel method of two-tensor tractography in 26 patients with FESZ compared to 31 healthy controls (HC), who did not differ on age, sex, or education. Dependent measures were fractional anisotropy (FA), Axial Diffusivity (AD), and Radial Diffusivity (RD). Subjects were also assessed using clinical functioning measures including the Global Assessment of Functioning (GAF) Scale, the Global Social Functioning Scale (GF: Social), and the Global Role Functioning Scale (GF: Role). FESZ patients showed decreased FA in the right thalamus-right ACC and right-thalamus-right LOFC pathways compared to healthy controls (HCs). In the right thalamus-right VLPFC tract, we found decreased FA and increased RD in the FESZ group compared to HCs. After correcting for multiple comparisons, reductions in FA in the right thalamus- right ACC and the right thalamus- right VLPC tracts remained significant. Moreover, reductions in FA were significantly associated with lower global functioning scores as well as lower social and role functioning scores. We report the first diffusion tensor imaging study of white matter pathways connecting the thalamus to three frontal regions. Findings of white matter alterations and clinical associations in the thalamic-cortical component of the cortico-cerebellar-thalamic-cortical circuit in patients with FESZ support the cognitive dysmetria hypothesis and further suggest the possible involvement of myelin sheath pathology and axonal membrane disruption in the pathogenesis of the disorder.
Collapse
Affiliation(s)
- Hesham M Hamoda
- Department of Psychiatry, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA, USA. .,Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - A T Makhlouf
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - J Fitzsimmons
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Y Rathi
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - N Makris
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - R I Mesholam-Gately
- Massachusetts Mental Health Center, Public Psychiatry Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - J D Wojcik
- Massachusetts Mental Health Center, Public Psychiatry Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - J Goldstein
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Division of Women's Health, Connors Center for Women's Health & Gender Biology; Departments of Psychiatry and Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - R W McCarley
- Veterans Affairs Boston Healthcare System, Brockton Division, Brockton, MA, USA
| | - L J Seidman
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Massachusetts Mental Health Center, Public Psychiatry Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - M Kubicki
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - M E Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Veterans Affairs Boston Healthcare System, Brockton Division, Brockton, MA, USA
| |
Collapse
|
10
|
Faria AV, Crawford J, Ye C, Hsu J, Kenkare A, Scheretlen D, Sawa A. Relationship between neuropsychological behavior and brain white matter in first-episode psychosis. Schizophr Res 2019; 208:49-54. [PMID: 30987924 PMCID: PMC6544495 DOI: 10.1016/j.schres.2019.04.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/27/2019] [Accepted: 04/05/2019] [Indexed: 01/14/2023]
Abstract
We addressed the relationship between white matter architecture, represented by MRI fractional anisotropy (FA), and cognition in individuals with first-episode psychosis (FEP) by applying for a new methodology that allows whole brain parcellation of core and peripheral white matter in a biologically meaningful fashion. Regionally specific correlations were found in FEP between three specific domains of cognition (processing speed, attention/working memory, and executive functioning) and FA at the deep (cerebral peduncles, sagittal striatum, uncinate, internal/external capsule, cingulum) and peripheral white matter (adjacent to inferior temporal, angular, supramarginal, insula, occipital, rectus gyrus).
Collapse
Affiliation(s)
- Andreia V. Faria
- Department of Radiology, The Johns Hopkins University
School of Medicine, Baltimore, MD, USA;,Correspondence to: Andreia V. Faria, M.D.,PhD.,
Associate Professor, Magnetic Resonance Research Division, Department of
Radiology, The Johns Hopkins University School of Medicine., 217B Traylor Bldg.,
720 Rutland Ave., Baltimore, MD 21205., Phone: (410) 4109554215, Fax: (410)
614-1948,
| | - Jeffrey Crawford
- Department Psychiatry, The Johns Hopkins University School
of Medicine, Baltimore, MD, USA
| | - Chenfei Ye
- Department of Electronics and Information, Harbin Institute
of Technology Shenzhen Graduate School, Guangdong, China, 518055
| | - John Hsu
- Department of Radiology, The Johns Hopkins University
School of Medicine, Baltimore, MD, USA
| | - Anshel Kenkare
- Department Psychiatry, The Johns Hopkins University School
of Medicine, Baltimore, MD, USA
| | - David Scheretlen
- Department Psychiatry, The Johns Hopkins University School
of Medicine, Baltimore, MD, USA
| | - Akira Sawa
- Department Psychiatry, The Johns Hopkins University School
of Medicine, Baltimore, MD, USA;,Department of Biomedical Engineering, The Johns Hopkins
University School of Medicine, Baltimore, MD, USA;,Department of Neuroscience, The Johns Hopkins University
School of Medicine, Baltimore, MD, USA;,Department of Mental Health, The Johns Hopkins University
Bloomberg School of Public Health Baltimore, MD, USA
| |
Collapse
|
11
|
Increased white matter metabolic rates in autism spectrum disorder and schizophrenia. Brain Imaging Behav 2019; 12:1290-1305. [PMID: 29168086 DOI: 10.1007/s11682-017-9785-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Both autism spectrum disorder (ASD) and schizophrenia are often characterized as disorders of white matter integrity. Multimodal investigations have reported elevated metabolic rates, cerebral perfusion and basal activity in various white matter regions in schizophrenia, but none of these functions has previously been studied in ASD. We used 18fluorodeoxyglucose positron emission tomography to compare white matter metabolic rates in subjects with ASD (n = 25) to those with schizophrenia (n = 41) and healthy controls (n = 55) across a wide range of stereotaxically placed regions-of-interest. Both subjects with ASD and schizophrenia showed increased metabolic rates across the white matter regions assessed, including internal capsule, corpus callosum, and white matter in the frontal and temporal lobes. These increases were more pronounced, more widespread and more asymmetrical in subjects with ASD than in those with schizophrenia. The highest metabolic increases in both disorders were seen in the prefrontal white matter and anterior limb of the internal capsule. Compared to normal controls, differences in gray matter metabolism were less prominent and differences in adjacent white matter metabolism were more prominent in subjects with ASD than in those with schizophrenia. Autism spectrum disorder and schizophrenia are associated with heightened metabolic activity throughout the white matter. Unlike in the gray matter, the vector of white matter metabolic abnormalities appears to be similar in ASD and schizophrenia, may reflect inefficient functional connectivity with compensatory hypermetabolism, and may be a common feature of neurodevelopmental disorders.
Collapse
|
12
|
Kolomeets NS, Vostrikov VM, Uranova NA. Abnormalities of oligodendrocyte clusters in supra- and infragranular layers of the prefrontal cortex in schizophrenia. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 119:62-68. [DOI: 10.17116/jnevro201911912162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Viviano JD, Buchanan RW, Calarco N, Gold JM, Foussias G, Bhagwat N, Stefanik L, Hawco C, DeRosse P, Argyelan M, Turner J, Chavez S, Kochunov P, Kingsley P, Zhou X, Malhotra AK, Voineskos AN. Resting-State Connectivity Biomarkers of Cognitive Performance and Social Function in Individuals With Schizophrenia Spectrum Disorder and Healthy Control Subjects. Biol Psychiatry 2018; 84:665-674. [PMID: 29779671 PMCID: PMC6177285 DOI: 10.1016/j.biopsych.2018.03.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/12/2018] [Accepted: 03/31/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Deficits in neurocognition and social cognition are drivers of reduced functioning in schizophrenia spectrum disorders, with potentially shared neurobiological underpinnings. Many studies have sought to identify brain-based biomarkers of these clinical variables using a priori dichotomies (e.g., good vs. poor cognition, deficit vs. nondeficit syndrome). METHODS We evaluated a fully data-driven approach to do the same by building and validating a brain connectivity-based biomarker of social cognitive and neurocognitive performance in a sample using resting-state and task-based functional magnetic resonance imaging (n = 74 healthy control participants, n = 114 persons with schizophrenia spectrum disorder, 188 total). We used canonical correlation analysis followed by clustering to identify a functional connectivity signature of normal and poor social cognitive and neurocognitive performance. RESULTS Persons with poor social cognitive and neurocognitive performance were differentiated from those with normal performance by greater resting-state connectivity in the mirror neuron and mentalizing systems. We validated our findings by showing that poor performers also scored lower on functional outcome measures not included in the original analysis and by demonstrating neuroanatomical differences between the normal and poorly performing groups. We used a support vector machine classifier to demonstrate that functional connectivity alone is enough to distinguish normal and poorly performing participants, and we replicated our findings in an independent sample (n = 75). CONCLUSIONS A brief functional magnetic resonance imaging scan may ultimately be useful in future studies aimed at characterizing long-term illness trajectories and treatments that target specific brain circuitry in those with impaired cognition and function.
Collapse
Affiliation(s)
- Joseph D Viviano
- Kimel Family Translational Imaging-Genetics Research Lab, Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario
| | - Robert W Buchanan
- Department of Psychiatry, Maryland Psychiatric Research Center, Catonsville, Maryland
| | - Navona Calarco
- Kimel Family Translational Imaging-Genetics Research Lab, Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario
| | - James M Gold
- Department of Psychiatry, Maryland Psychiatric Research Center, Catonsville, Maryland
| | - George Foussias
- Department of Psychiatry, University of Toronto, Toronto, Ontario
| | - Nikhil Bhagwat
- Kimel Family Translational Imaging-Genetics Research Lab, Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario; Computational Brain Anatomy Laboratory, Brain Imaging Center, Douglas Mental Health University Institute, Verdun, Quebec, Canada
| | - Laura Stefanik
- Kimel Family Translational Imaging-Genetics Research Lab, Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario
| | - Colin Hawco
- Kimel Family Translational Imaging-Genetics Research Lab, Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario; Department of Psychiatry, University of Toronto, Toronto, Ontario
| | - Pamela DeRosse
- Department of Psychiatry, The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hofstra University, Hempstead, Manhasset; Center for Psychiatric Neuroscience, The Feinstein Institute for Medical Research, Manhasset, New York; Division of Psychiatry Research, The Zucker Hillside Hospital, Division of Northwell Health, Glen Oaks, New York
| | - Miklos Argyelan
- Department of Psychiatry, The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hofstra University, Hempstead, Manhasset; Center for Psychiatric Neuroscience, The Feinstein Institute for Medical Research, Manhasset, New York; Division of Psychiatry Research, The Zucker Hillside Hospital, Division of Northwell Health, Glen Oaks, New York
| | - Jessica Turner
- Department of Psychology, Georgia State University, Atlanta, Georgia
| | - Sofia Chavez
- Department of Psychiatry, University of Toronto, Toronto, Ontario; MRI Unit, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario
| | - Peter Kochunov
- Department of Psychiatry, Maryland Psychiatric Research Center, Catonsville, Maryland
| | - Peter Kingsley
- Department of Psychiatry, The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hofstra University, Hempstead, Manhasset; Center for Psychiatric Neuroscience, The Feinstein Institute for Medical Research, Manhasset, New York; Division of Psychiatry Research, The Zucker Hillside Hospital, Division of Northwell Health, Glen Oaks, New York
| | - Xiangzhi Zhou
- Department of Psychiatry, The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hofstra University, Hempstead, Manhasset; Center for Psychiatric Neuroscience, The Feinstein Institute for Medical Research, Manhasset, New York; Division of Psychiatry Research, The Zucker Hillside Hospital, Division of Northwell Health, Glen Oaks, New York
| | - Anil K Malhotra
- Department of Psychiatry, The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hofstra University, Hempstead, Manhasset; Center for Psychiatric Neuroscience, The Feinstein Institute for Medical Research, Manhasset, New York; Division of Psychiatry Research, The Zucker Hillside Hospital, Division of Northwell Health, Glen Oaks, New York
| | - Aristotle N Voineskos
- Kimel Family Translational Imaging-Genetics Research Lab, Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario; Department of Psychiatry, University of Toronto, Toronto, Ontario.
| |
Collapse
|
14
|
Crocker CE, Tibbo PG. Confused Connections? Targeting White Matter to Address Treatment Resistant Schizophrenia. Front Pharmacol 2018; 9:1172. [PMID: 30405407 PMCID: PMC6201564 DOI: 10.3389/fphar.2018.01172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/28/2018] [Indexed: 12/14/2022] Open
Abstract
Despite development of comprehensive approaches to treat schizophrenia and other psychotic disorders and improve outcomes, there remains a proportion (approximately one-third) of patients who are treatment resistant and will not have remission of psychotic symptoms despite adequate trials of pharmacotherapy. This level of treatment response is stable across all stages of the spectrum of psychotic disorders, including early phase psychosis and chronic schizophrenia. Our current pharmacotherapies are beneficial in decreasing positive symptomology in most cases, however, with little to no impact on negative or cognitive symptoms. Not all individuals with treatment resistant psychosis unfortunately, even benefit from the potential pharmacological reductions in positive symptoms. The existing pharmacotherapy for psychosis is targeted at neurotransmitter receptors. The current first and second generation antipsychotic medications all act on dopamine type 2 receptors with the second generation drugs also interacting significantly with serotonin type 1 and 2 receptors, and with varying pharmacodynamic profiles overall. This focus on developing dopaminergic/serotonergic antipsychotics, while beneficial, has not reduced the proportion of patients experiencing treatment resistance to date. Another pharmacological approach is imperative to address treatment resistance both for response overall and for negative symptoms in particular. There is research suggesting that changes in white matter integrity occur in schizophrenia and these may be more associated with cognition and even negative symptomology. Here we review the evidence that white matter abnormalities in the brain may be contributing to the symptomology of psychotic disorders. Additionally, we propose that white matter may be a viable pharmacological target for pharmacoresistant schizophrenia and discuss current treatments in development for schizophrenia that target white matter.
Collapse
Affiliation(s)
- Candice E Crocker
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada.,Department of Diagnostic Imaging, Nova Scotia Health Authority, Halifax, NS, Canada
| | - Philip G Tibbo
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
15
|
Bubb EJ, Metzler-Baddeley C, Aggleton JP. The cingulum bundle: Anatomy, function, and dysfunction. Neurosci Biobehav Rev 2018; 92:104-127. [PMID: 29753752 PMCID: PMC6090091 DOI: 10.1016/j.neubiorev.2018.05.008] [Citation(s) in RCA: 436] [Impact Index Per Article: 72.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 05/01/2018] [Accepted: 05/04/2018] [Indexed: 12/16/2022]
Abstract
The cingulum bundle is a prominent white matter tract that interconnects frontal, parietal, and medial temporal sites, while also linking subcortical nuclei to the cingulate gyrus. Despite its apparent continuity, the cingulum's composition continually changes as fibres join and leave the bundle. To help understand its complex structure, this review begins with detailed, comparative descriptions of the multiple connections comprising the cingulum bundle. Next, the impact of cingulum bundle damage in rats, monkeys, and humans is analysed. Despite causing extensive anatomical disconnections, cingulum bundle lesions typically produce only mild deficits, highlighting the importance of parallel pathways and the distributed nature of its various functions. Meanwhile, non-invasive imaging implicates the cingulum bundle in executive control, emotion, pain (dorsal cingulum), and episodic memory (parahippocampal cingulum), while clinical studies reveal cingulum abnormalities in numerous conditions, including schizophrenia, depression, post-traumatic stress disorder, obsessive compulsive disorder, autism spectrum disorder, Mild Cognitive Impairment, and Alzheimer's disease. Understanding the seemingly diverse contributions of the cingulum will require better ways of isolating pathways within this highly complex tract.
Collapse
Affiliation(s)
- Emma J Bubb
- School of Psychology, Cardiff University, 70 Park Place, Cardiff, CF10 3AT, Wales, UK
| | | | - John P Aggleton
- School of Psychology, Cardiff University, 70 Park Place, Cardiff, CF10 3AT, Wales, UK.
| |
Collapse
|
16
|
Hawco C, Voineskos AN, Radhu N, Rotenberg D, Ameis S, Backhouse FA, Semeralul M, Daskalakis ZJ. Age and gender interactions in white matter of schizophrenia and obsessive compulsive disorder compared to non-psychiatric controls: commonalities across disorders. Brain Imaging Behav 2018; 11:1836-1848. [PMID: 27915397 DOI: 10.1007/s11682-016-9657-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Schizophrenia (SCZ) and obsessive-compulsive disorder (OCD) are psychiatric disorders with abnormalities in white matter structure. These disorders share high comorbidity and family history of OCD is a risk factor for SCZ which suggests some shared neurobiology. White matter was examined using diffusion tensor imaging in relativity large samples of SCZ (N = 48), OCD (N = 38) and non-psychiatric controls (N = 45). Fractional anisotropy (FA) was calculated and tract based spatial statistics were used to compare groups. In a whole brain analysis, SCZ and OCD both showed small FA reductions relative to controls in the corpus callosum. Both SCZ and OCD showed accelerated reductions in FA with age; specifically in the left superior longitudinal fasciculus in OCD, while the SCZ group demonstrated a more widespread pattern of FA reduction. Patient groups did not differ from each other in total FA or age effects in any regions. A general linear model using 13 a-priori regions of interest showed marginal group, group*gender, and group*age interactions. When OCD and SCZ groups were analyzed together, these marginal effects became significant (p < 0.05), suggesting commonalities exist between these patient groups. Overall, our results demonstrate a similar pattern of accelerated white matter decline with age and greater white matter deficit in females in OCD and SCZ, with overlap in the spatial pattern of deficits. There was no evidence for statistical differences in overall white matter between OCD and SCZ. Taken together, the results support the notion of shared neurobiology in SCZ and OCD.
Collapse
Affiliation(s)
- Colin Hawco
- Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Unit 4-1, Office 125, 1001 Queen Street West, Toronto, ON, M6J 1H4, Canada. .,Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada.
| | - Aristotle N Voineskos
- Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Unit 4-1, Office 125, 1001 Queen Street West, Toronto, ON, M6J 1H4, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Natasha Radhu
- Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Unit 4-1, Office 125, 1001 Queen Street West, Toronto, ON, M6J 1H4, Canada.,Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - David Rotenberg
- Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Unit 4-1, Office 125, 1001 Queen Street West, Toronto, ON, M6J 1H4, Canada
| | - Stephanie Ameis
- Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Unit 4-1, Office 125, 1001 Queen Street West, Toronto, ON, M6J 1H4, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Felicity A Backhouse
- Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Unit 4-1, Office 125, 1001 Queen Street West, Toronto, ON, M6J 1H4, Canada.,Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Mawahib Semeralul
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Zafiris J Daskalakis
- Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Unit 4-1, Office 125, 1001 Queen Street West, Toronto, ON, M6J 1H4, Canada.,Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
17
|
Huang JY, Liu CM, Hwang TJ, Chen YJ, Hsu YC, Hwu HG, Lin YT, Hsieh MH, Liu CC, Chien YL, Tseng WYI. Shared and distinct alterations of white matter tracts in remitted and nonremitted patients with schizophrenia. Hum Brain Mapp 2018; 39:2007-2019. [PMID: 29377322 DOI: 10.1002/hbm.23982] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/13/2018] [Accepted: 01/16/2018] [Indexed: 01/01/2023] Open
Abstract
Patients with schizophrenia do not usually achieve remission state even after adequate antipsychotics treatment. Previous studies found significant difference in white matter integrity between patients with good outcomes and those with poor outcomes, but difference is still unclear at individual tract level. This study aimed to use a systematic approach to identify the tracts that were associated with remission state in patients with schizophrenia. We evaluated 91 patients with schizophrenia (remitted, 50; nonremitted, 41) and 50 healthy controls through diffusion spectrum imaging. White matter tract integrity was assessed through an automatic tract-specific analysis method to determine the mean generalized fractional anisotropy (GFA) values of the 76 white matter tract bundles in each participant. Analysis of covariance among the 3 groups revealed 12 tracts that were significantly different in GFA values. Post-hoc analysis showed that compared with the healthy controls, the nonremission group had reduced integrity in all 12 tracts, whereas the remission group had reduced integrity in only 4 tracts. Comparison between the remission and nonremission groups revealed 4 tracts with significant difference (i.e., the right fornix, bilateral uncinate fasciculi, and callosal fibers connecting the temporal poles) even after adjusting age, sex, education year, illness duration, and medication dose. Furthermore, all the 4 tracts were correlated with negative symptoms scores of the positive and negative syndrome scale. In conclusion, our study identified the tracts that were associated with remission state of schizophrenia. These tracts might be a potential prognostic marker for the symptomatic remission in patients with schizophrenia.
Collapse
Affiliation(s)
- Jing-Ying Huang
- Institute of Medical Device and Imaging, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Radiology, Wei Gong Memorial Hospital, Miaoli, Taiwan
| | - Chih-Min Liu
- Department of Psychiatry, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.,Graduate Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Tzung-Jeng Hwang
- Department of Psychiatry, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.,Graduate Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Jen Chen
- Institute of Medical Device and Imaging, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yung-Chin Hsu
- Institute of Medical Device and Imaging, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hai-Gwo Hwu
- Department of Psychiatry, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.,Graduate Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Tin Lin
- Department of Psychiatry, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.,Graduate Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ming-Hsien Hsieh
- Department of Psychiatry, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.,Graduate Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chen-Chung Liu
- Department of Psychiatry, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.,Graduate Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Ling Chien
- Department of Psychiatry, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.,Graduate Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wen-Yih Isaac Tseng
- Institute of Medical Device and Imaging, National Taiwan University College of Medicine, Taipei, Taiwan.,Graduate Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan.,Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
18
|
Reavis EA, Lee J, Wynn JK, Narr KL, Njau SN, Engel SA, Green MF. Linking optic radiation volume to visual perception in schizophrenia and bipolar disorder. Schizophr Res 2017; 190:102-106. [PMID: 28318839 PMCID: PMC5600632 DOI: 10.1016/j.schres.2017.03.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 03/06/2017] [Accepted: 03/09/2017] [Indexed: 11/29/2022]
Abstract
People with schizophrenia typically show visual processing deficits on masking tasks and other performance-based measures, while people with bipolar disorder may have related deficits. The etiology of these deficits is not well understood. Most neuroscientific studies of perception in schizophrenia and bipolar disorder have focused on visual processing areas in the cerebral cortex, but perception also depends on earlier components of the visual system that few studies have examined in these disorders. Using diffusion weighted imaging (DWI), we investigated the structure of the primary sensory input pathway to the cortical visual system: the optic radiations. We used probabilistic tractography to identify the optic radiations in 32 patients with schizophrenia, 31 patients with bipolar disorder, and 30 healthy controls. The same participants also performed a visual masking task outside the scanner. We characterized the optic radiations with three structural measures: fractional anisotropy, mean diffusivity, and tract volume. We did not find significant differences in those structural measures across groups. However, we did find a significant correlation between the volume of the optic radiations and visual masking thresholds that was unique to the schizophrenia group and explained variance in masking performance above and beyond that previously accounted for by differences in visual cortex. Thus, individual differences in the volume of the optic radiations explained more variance in visual masking performance in the schizophrenia group than the bipolar or control groups. This suggests that individual differences in the structure of the subcortical visual system have an important influence on visual processing in schizophrenia.
Collapse
Affiliation(s)
- Eric A. Reavis
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles: Los Angeles, CA 90024; USA,Desert Pacific Mental Illness Research, Education, and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System: Los Angeles, CA 90073; USA,Corresponding Author: ; phone: (310) 794-5586; fax: (310) 268-4056; 760 Westwood Plaza; Room 27-440; Los Angeles, CA 90024
| | - Junghee Lee
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90024, USA; Desert Pacific Mental Illness Research, Education, and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA 90073, USA.
| | - Jonathan K. Wynn
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles: Los Angeles, CA 90024; USA,Desert Pacific Mental Illness Research, Education, and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System: Los Angeles, CA 90073; USA
| | - Katherine L. Narr
- Departments of Neurology, Psychiatry & Biobehavioral Sciences, University of California, Los Angeles: Los Angeles, CA 90024; USA
| | - Stephanie N. Njau
- Department of Neurology, University of California, Los Angeles: Los Angeles, CA 90024; USA
| | - Stephen A. Engel
- Department of Psychology University of Minnesota: Minneapolis, MN 55455; USA
| | - Michael F. Green
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles: Los Angeles, CA 90024; USA,Desert Pacific Mental Illness Research, Education, and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System: Los Angeles, CA 90073; USA
| |
Collapse
|
19
|
Elucidation of shared and specific white matter findings underlying psychopathology clusters in schizophrenia. Asian J Psychiatr 2017; 30:144-151. [PMID: 28938151 DOI: 10.1016/j.ajp.2017.08.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/28/2017] [Indexed: 12/27/2022]
Abstract
BACKGROUND Schizophrenia is associated with diverse white matter (WM) brain abnormalities. In this study, we sought to examine the WM microstructural findings which underlie clinical psychopathology clusters in schizophrenia and hypothesized that these symptom clusters are associated with common and unique WM tracts. METHODS Overall, 76 healthy controls (HC), and 148 patients with schizophrenia (SZ) were recruited and severity of symptomatology in schizophrenia was assessed using the Positive and Negative Syndrome Scale. WM fractional anisotropy (FA) values were extracted from their diffusion tensor images. Psychopathology clusters were first determined using factor analysis and the relationship between these symptom factors and FA values were then assessed with structural equation modelling, which included covariates such as age, sex, duration of illness and medications prescribed. RESULTS Patients with schizophrenia had reduced FA in the genu of corpus callosum (gCC) compared to HC. A three-factor model, namely Positive, Negative, Disorganised factors, was determined as the best fit for the data. All three psychopathology factors were associated with decreased FA in the gCC and bilateral cingulate gyrus. Higher Negative factor scores were uniquely associated with decreased FA in the right sagittal striatum and right superior longitudinal fasciculus. CONCLUSIONS This study found shared and specific WM changes and their associations with specific symptom clusters, which potentially allows for monitoring of such white matter findings associated with clinical presentations in schizophrenia over treatment and illness course.
Collapse
|
20
|
Wojtalik JA, Smith MJ, Keshavan MS, Eack SM. A Systematic and Meta-analytic Review of Neural Correlates of Functional Outcome in Schizophrenia. Schizophr Bull 2017; 43:1329-1347. [PMID: 28204755 PMCID: PMC5737663 DOI: 10.1093/schbul/sbx008] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Individuals with schizophrenia are burdened with impairments in functional outcome, despite existing interventions. The lack of understanding of the neurobiological correlates supporting adaptive function in the disorder is a significant barrier to developing more effective treatments. This research conducted a systematic and meta-analytic review of all peer-reviewed studies examining brain-functional outcome relationships in schizophrenia. A total of 53 (37 structural and 16 functional) brain imaging studies examining the neural correlates of functional outcome across 1631 individuals with schizophrenia were identified from literature searches in relevant databases occurring between January, 1968 and December, 2016. Study characteristics and results representing brain-functional outcome relationships were systematically extracted, reviewed, and meta-analyzed. Results indicated that better functional outcome was associated with greater fronto-limbic and whole brain volumes, smaller ventricles, and greater activation, especially during social cognitive processing. Thematic observations revealed that the dorsolateral prefrontal cortex, anterior cingulate, posterior cingulate, parahippocampal gyrus, superior temporal sulcus, and cerebellum may have role in functioning. The neural basis of functional outcome and disability is infrequently studied in schizophrenia. While existing evidence is limited and heterogeneous, these findings suggest that the structural and functional integrity of fronto-limbic brain regions is consistently related to functional outcome in individuals with schizophrenia. Further research is needed to understand the mechanisms and directionality of these relationships, and the potential for identifying neural targets to support functional improvement.
Collapse
Affiliation(s)
- Jessica A Wojtalik
- School of Social Work, University of Pittsburgh, Pittsburgh, PA,To whom correspondence should be addressed; School of Social Work, University of Pittsburgh, 2117 Cathedral of Learning, Pittsburgh, PA 15260, US; tel: 412-624-6304, e-mail:
| | - Matthew J Smith
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL
| | | | - Shaun M Eack
- School of Social Work, University of Pittsburgh, Pittsburgh, PA,Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
21
|
Alloza C, Bastin ME, Cox SR, Gibson J, Duff B, Semple SI, Whalley HC, Lawrie SM. Central and non-central networks, cognition, clinical symptoms, and polygenic risk scores in schizophrenia. Hum Brain Mapp 2017; 38:5919-5930. [PMID: 28881417 DOI: 10.1002/hbm.23798] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 08/02/2017] [Accepted: 08/24/2017] [Indexed: 12/25/2022] Open
Abstract
Schizophrenia is a complex disorder that may be the result of aberrant connections between specific brain regions rather than focal brain abnormalities. Here, we investigate the relationships between brain structural connectivity as described by network analysis, intelligence, symptoms, and polygenic risk scores (PGRS) for schizophrenia in a group of patients with schizophrenia and a group of healthy controls. Recently, researchers have shown an interest in the role of high centrality networks in the disorder. However, the importance of non-central networks still remains unclear. Thus, we specifically examined network-averaged fractional anisotropy (mean edge weight) in central and non-central subnetworks. Connections with the highest betweenness centrality within the average network (>75% of centrality values) were selected to represent the central subnetwork. The remaining connections were assigned to the non-central subnetwork. Additionally, we calculated graph theory measures from the average network (connections that occur in at least 2/3 of participants). Density, strength, global efficiency, and clustering coefficient were significantly lower in patients compared with healthy controls for the average network (pFDR < 0.05). All metrics across networks were significantly associated with intelligence (pFDR < 0.05). There was a tendency towards significance for a correlation between intelligence and PGRS for schizophrenia (r = -0.508, p = 0.052) that was significantly mediated by central and non-central mean edge weight and every graph metric from the average network. These results are consistent with the hypothesis that intelligence deficits are associated with a genetic risk for schizophrenia, which is mediated via the disruption of distributed brain networks. Hum Brain Mapp 38:5919-5930, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Clara Alloza
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Mark E Bastin
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, United Kingdom.,Centre for Clinical Brain Sciences, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom.,Scottish Imaging Network: A Platform for Scientific Excellence (SINAPSE) Collaboration, Edinburgh, United Kingdom
| | - Simon R Cox
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, United Kingdom.,Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom.,Scottish Imaging Network: A Platform for Scientific Excellence (SINAPSE) Collaboration, Edinburgh, United Kingdom
| | - Jude Gibson
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Barbara Duff
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Scott I Semple
- Clinical Research Imaging Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Heather C Whalley
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Stephen M Lawrie
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
22
|
Onay A, Eser HY, Ulaşoğlu-Yıldız Ç, Aslan S, Talı ET. A combined VBM and DTI study of schizophrenia: bilateral decreased insula volume and cerebral white matter disintegrity corresponding to subinsular white matter projections unlinked to clinical symptomatology. Diagn Interv Radiol 2017; 23:390-397. [PMID: 28870884 PMCID: PMC5602366 DOI: 10.5152/dir.2017.16519] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 01/18/2017] [Accepted: 04/07/2017] [Indexed: 01/09/2023]
Abstract
PURPOSE Grey matter and white matter changes within the brain are well defined in schizophrenia. However, most studies focused on either grey matter changes or white matter integrity separately; only in limited number of studies these changes were interpreted in the same frame. In addition, the relationship of these findings with clinical variables is not clearly established. Here, we aimed to investigate the grey matter and white matter changes in schizophrenia patients and exhibit the relation of these imaging findings with clinical variables. METHODS A total of 20 schizophrenia patients and 16 matched healthy controls underwent magnetic resonance imaging to investigate the grey matter and white matter alterations that occur in schizophrenia patients using voxel-based morphometry (VBM) and whole brain voxel-wise analysis of diffusion tensor imaging (DTI) parameters with SPM8, respectively. While the preprocessing steps of VBM were performed with the default parameters of VBM8 toolbox, the preprocessing steps of DTI were carried out using FSL. Additionally, VBM results were correlated with clinical variables. RESULTS Bilateral insula showed decreased grey matter volume in schizophrenia patients compared with healthy controls (P < 0.01). The opposite contrast did not show a significant difference. Psychiatric scores, duration of illness, and age were not correlated with the decreased grey matter volume of insula in schizophrenia patients. DTI analysis revealed a significant increase in mean, radial, and axial diffusivity, mainly of the fibers of bilateral anterior thalamic radiation and superior longitudinal fasciculus with left predominance, which intersected with bilateral subinsular white matter (P < 0.05). CONCLUSION Our findings suggest that insula may be the main affected brain region in schizophrenia, which is also well supported by the literature. Our results were independent of disease duration and schizophrenia symptoms. White matter alterations were observed within bilateral anterior thalamic radiation and superior longitudinal fasciculus that intersects with subinsular white matter. Studies with larger sample sizes and more detailed clinical assessments are required to understand the function of insula in the neurobiology of schizophrenia.
Collapse
Affiliation(s)
| | | | - Çiğdem Ulaşoğlu-Yıldız
- From the Departments of Radiology (A.O. , ) and Psychiatry (H.Y.E.), Koç University School of Medicine, İstanbul, Turkey; Hulusi Behçet Life Sciences Research Center (Ç.U.Y.), İstanbul University İstanbul School of Medicine, İstanbul, Turkey; the Departments of Psychiatry (S.A.) and Radiology (E.T.T.), Gazi University School of Medicine, Ankara, Turkey
| | - Selçuk Aslan
- From the Departments of Radiology (A.O. , ) and Psychiatry (H.Y.E.), Koç University School of Medicine, İstanbul, Turkey; Hulusi Behçet Life Sciences Research Center (Ç.U.Y.), İstanbul University İstanbul School of Medicine, İstanbul, Turkey; the Departments of Psychiatry (S.A.) and Radiology (E.T.T.), Gazi University School of Medicine, Ankara, Turkey
| | - Erhan Turgut Talı
- From the Departments of Radiology (A.O. , ) and Psychiatry (H.Y.E.), Koç University School of Medicine, İstanbul, Turkey; Hulusi Behçet Life Sciences Research Center (Ç.U.Y.), İstanbul University İstanbul School of Medicine, İstanbul, Turkey; the Departments of Psychiatry (S.A.) and Radiology (E.T.T.), Gazi University School of Medicine, Ankara, Turkey
| |
Collapse
|
23
|
Szewczyk LM, Brozko N, Nagalski A, Röckle I, Werneburg S, Hildebrandt H, Wisniewska MB, Kuznicki J. ST8SIA2 promotes oligodendrocyte differentiation and the integrity of myelin and axons. Glia 2016; 65:34-49. [PMID: 27534376 PMCID: PMC5129544 DOI: 10.1002/glia.23048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 07/18/2016] [Accepted: 08/01/2016] [Indexed: 12/19/2022]
Abstract
ST8SIA2 is a polysialyltransferase that attaches polysialic acid to the glycoproteins NCAM1 and CADM1. Polysialylation is involved in brain development and plasticity. ST8SIA2 is a schizophrenia candidate gene, and St8sia2−/− mice exhibit schizophrenia‐like behavior. We sought to identify new pathological consequences of ST8SIA2 deficiency. Our proteomic analysis suggested myelin impairment in St8sia2−/− mice. Histological and immune staining together with Western blot revealed that the onset of myelination was not delayed in St8sia2−/− mice, but the content of myelin was lower. Ultrastructure analysis of the corpus callosum showed thinner myelin sheaths, smaller and irregularly shaped axons, and white matter lesions in adult St8sia2−/− mice. Then we evaluated oligodendrocyte differentiation in vivo and in vitro. Fewer OLIG2+ cells in the cortex and corpus callosum, together with the higher percentage of undifferentiated oligodenroglia in St8sia2−/− mice suggested an impairment in oligodendrocyte generation. Experiment on primary cultures of oligodendrocyte precursor cells (OPCs) confirmed a cell‐autonomous effect of ST8SIA2 in oligodendroglia, and demonstrated that OPC to oligodendrocyte transition is inhibited in St8sia2−/− mice. Concluding, ST8SIA2‐mediated polysialylation influences on oligodendrocyte differentiation, and oligodendrocyte deficits in St8sia2 mice are a possible cause of the demyelination and degeneration of axons, resembling nerve fiber alterations in schizophrenia. GLIA 2016;65:34–49
Collapse
Affiliation(s)
- Lukasz Mateusz Szewczyk
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology, ul. Ks. Trojdena 4, Warszawa, 02-109, Poland.,Laboratory of Molecular Neurobiology, Centre of New Technologies, University of Warsaw, ul. Banacha 2C, Warszawa, 02-097, Poland.,Postgraduate School of Molecular Medicine, ul. Zwirki i Wigury 61, Warszawa, 02-091, Poland
| | - Nikola Brozko
- Laboratory of Molecular Neurobiology, Centre of New Technologies, University of Warsaw, ul. Banacha 2C, Warszawa, 02-097, Poland.,Postgraduate School of Molecular Medicine, ul. Zwirki i Wigury 61, Warszawa, 02-091, Poland
| | - Andrzej Nagalski
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology, ul. Ks. Trojdena 4, Warszawa, 02-109, Poland
| | - Iris Röckle
- Institute for Cellular Chemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, Hannover, 30625, Germany
| | - Sebastian Werneburg
- Institute for Cellular Chemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, Hannover, 30625, Germany
| | - Herbert Hildebrandt
- Institute for Cellular Chemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, Hannover, 30625, Germany
| | - Marta Barbara Wisniewska
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology, ul. Ks. Trojdena 4, Warszawa, 02-109, Poland.,Laboratory of Molecular Neurobiology, Centre of New Technologies, University of Warsaw, ul. Banacha 2C, Warszawa, 02-097, Poland
| | - Jacek Kuznicki
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology, ul. Ks. Trojdena 4, Warszawa, 02-109, Poland
| |
Collapse
|
24
|
Milleit B, Smesny S, Rothermundt M, Preul C, Schroeter ML, von Eiff C, Ponath G, Milleit C, Sauer H, Gaser C. Serum S100B Protein is Specifically Related to White Matter Changes in Schizophrenia. Front Cell Neurosci 2016; 10:33. [PMID: 27013967 PMCID: PMC4782018 DOI: 10.3389/fncel.2016.00033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 01/30/2016] [Indexed: 01/26/2023] Open
Abstract
Background: Schizophrenia can be conceptualized as a form of dysconnectivity between brain regions.To investigate the neurobiological foundation of dysconnectivity, one approach is to analyze white matter structures, such as the pathology of fiber tracks. S100B is considered a marker protein for glial cells, in particular oligodendrocytes and astroglia, that passes the blood brain barrier and is detectable in peripheral blood. Earlier Studies have consistently reported increased S100B levels in schizophrenia. In this study, we aim to investigate associations between S100B and structural white matter abnormalities. Methods: We analyzed data of 17 unmedicated schizophrenic patients (first and recurrent episode) and 22 controls. We used voxel based morphometry (VBM) to detect group differences of white matter structures as obtained from T1-weighted MR-images and considered S100B serum levels as a regressor in an age-corrected interaction analysis. Results: S100B was increased in both patient subgroups. Using VBM, we found clusters indicating significant differences of the association between S100B concentration and white matter. Involved anatomical structures are the posterior cingulate bundle and temporal white matter structures assigned to the superior longitudinal fasciculus. Conclusions: S100B-associated alterations of white matter are shown to be existent already at time of first manifestation of psychosis and are distinct from findings in recurrent episode patients. This suggests involvement of S100B in an ongoing and dynamic process associated with structural brain changes in schizophrenia. However, it remains elusive whether increased S100B serum concentrations in psychotic patients represent a protective response to a continuous pathogenic process or if elevated S100B levels are actively involved in promoting structural brain damage.
Collapse
Affiliation(s)
- Berko Milleit
- Department of Psychiatry, Jena University HospitalJena, Germany; St. Joseph-KrankenhausDessau-Roßlau, Germany
| | - Stefan Smesny
- Department of Psychiatry, Jena University Hospital Jena, Germany
| | - Matthias Rothermundt
- Department of Psychiatry, University of MuensterMuenster, Germany; Department of Psychiatry, St. Rochus HospitalTelgte, Germany
| | - Christoph Preul
- Department of Neurology, Jena University Hospital Jena, Germany
| | - Matthias L Schroeter
- Max Planck Institute for Human Cognitive and Brain Sciences and Clinic for Cognitive Neurology Leipzig, Germany
| | - Christof von Eiff
- Institute of Medical Microbiology, University of Muenster Muenster, Germany
| | - Gerald Ponath
- Department of Psychiatry, University of MuensterMuenster, Germany; Department of Neurology, School of Medicine, Yale UniversityNew Haven, CT, USA
| | - Christine Milleit
- Department of Psychiatry, Jena University HospitalJena, Germany; Department of Psychiatry, Sophien- und Hufeland-KlinikumWeimar, Germany
| | - Heinrich Sauer
- Department of Psychiatry, Jena University Hospital Jena, Germany
| | - Christian Gaser
- Department of Psychiatry, Jena University HospitalJena, Germany; Department of Neurology, Jena University HospitalJena, Germany
| |
Collapse
|
25
|
Rigucci S, Santi G, Corigliano V, Imola A, Rossi-Espagnet C, Mancinelli I, De Pisa E, Manfredi G, Bozzao A, Carducci F, Girardi P, Comparelli A. White matter microstructure in ultra-high risk and first episode schizophrenia: A prospective study. Psychiatry Res Neuroimaging 2016; 247:42-48. [PMID: 26651180 DOI: 10.1016/j.pscychresns.2015.11.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/29/2015] [Accepted: 11/15/2015] [Indexed: 01/01/2023]
Abstract
There is increasing evidence of white matter (WM) pathology in schizophrenia, but its role at the very early stage of the disorder remains unclear. In an exploration of WM microstructure in ultra-high risk (UHR) subjects and first episode schizophrenia (FES), 34 FES, 27 UHR and 26 healthy control (HC) subjects underwent a magnetic resonance imaging (MRI) tract based spatial statistics (TBSS) investigation. Whole brain fractional anisotropy (FA), mean diffusivity (MD), radial (RD) and axial diffusivity (AD) values were extracted. UHR subjects who later developed psychosis showed lower FA compared with HC in the corpus callosum (CC), the left superior and inferior longitudinal fasciculus, the left inferior fronto-occipital fasciculs (IFO), and the forceps; RD was significantly higher in the CC, the forceps, the anterior thalamic radiation bilaterally, and the cingulum bundle. FES, compared to HC, showed a significant FA reduction of the CC, the superior and inferior longitudinal fasciculi bilaterally, the IFO bilaterally, the corona radiate bilaterally, and the forceps; while RD was found to be significantly increased in the left superior longitudinal fasciculus. UHR who later developed psychosis had WM abnormalities affecting brain pathways that are crucial for intra- and inter-hemispheric connections.
Collapse
Affiliation(s)
- Silvia Rigucci
- Unit of Psychiatry, Sant'Andrea Hospital, Department of Neurosciences, Mental Health and Sensory Organs (Ne.S.M.O.S.), Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy.
| | - Giulia Santi
- Faculty of Medicine and Pharmacy, Department of Physiology, Sapienza University of Rome, Rome, Italy
| | - Valentina Corigliano
- Unit of Psychiatry, Sant'Andrea Hospital, Department of Neurosciences, Mental Health and Sensory Organs (Ne.S.M.O.S.), Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Annamaria Imola
- Faculty of Medicine and Pharmacy, Department of Physiology, Sapienza University of Rome, Rome, Italy
| | - Camilla Rossi-Espagnet
- Unit of Neuroradiology, Sant'Andrea Hospital, Department of Neurosciences, Mental Health and Sensory Organs (Ne.S.M.O.S.), Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Iginia Mancinelli
- Unit of Psychiatry, Sant'Andrea Hospital, Department of Neurosciences, Mental Health and Sensory Organs (Ne.S.M.O.S.), Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Eleonora De Pisa
- Unit of Psychiatry, Sant'Andrea Hospital, Department of Neurosciences, Mental Health and Sensory Organs (Ne.S.M.O.S.), Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Giovanni Manfredi
- Unit of Psychiatry, Sant'Andrea Hospital, Department of Neurosciences, Mental Health and Sensory Organs (Ne.S.M.O.S.), Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Alessandro Bozzao
- Unit of Neuroradiology, Sant'Andrea Hospital, Department of Neurosciences, Mental Health and Sensory Organs (Ne.S.M.O.S.), Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Filippo Carducci
- Faculty of Medicine and Pharmacy, Department of Physiology, Sapienza University of Rome, Rome, Italy
| | - Paolo Girardi
- Unit of Psychiatry, Sant'Andrea Hospital, Department of Neurosciences, Mental Health and Sensory Organs (Ne.S.M.O.S.), Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Anna Comparelli
- Unit of Psychiatry, Sant'Andrea Hospital, Department of Neurosciences, Mental Health and Sensory Organs (Ne.S.M.O.S.), Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
26
|
The role of the thalamus in schizophrenia from a neuroimaging perspective. Neurosci Biobehav Rev 2015; 54:57-75. [DOI: 10.1016/j.neubiorev.2015.01.013] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 12/19/2014] [Accepted: 01/12/2015] [Indexed: 02/06/2023]
|
27
|
Patel VS, Kelly S, Wright C, Gupta CN, Arias-Vasquez A, Perrone-Bizzozero N, Ehrlich S, Wang L, Bustillo JR, Morris D, Corvin A, Cannon DM, McDonald C, Donohoe G, Calhoun VD, Turner JA. MIR137HG risk variant rs1625579 genotype is related to corpus callosum volume in schizophrenia. Neurosci Lett 2015; 602:44-9. [PMID: 26123324 DOI: 10.1016/j.neulet.2015.06.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 06/10/2015] [Accepted: 06/17/2015] [Indexed: 10/23/2022]
Abstract
Genome-wide association studies implicate the MIR137HG risk variant rs1625579 (MIR137HGrv) within the host gene for microRNA-137 as a potential regulator of schizophrenia susceptibility. We examined the influence of MIR137HGrv genotype on 17 subcortical and callosal volumes in a large sample of individuals with schizophrenia and healthy controls (n=841). Although the volumes were overall reduced relative to healthy controls, for individuals with schizophrenia the homozygous MIR137HGrv risk genotype was associated with attenuated reduction of mid-posterior corpus callosum volume (p=0.001), along with trend-level effects in the adjacent central and posterior corpus callosum. These findings are unique in the literature and remain robust after analysis in ethnically homogenous and single-scanner subsets of the larger sample. Thus, our study suggests that the mechanisms whereby MIR137HGrv works to increase schizophrenia risk are not those that generate the corpus callosum volume reductions commonly found in the disorder.
Collapse
Affiliation(s)
- Veena S Patel
- The Mind Research Network and Lovelace Respiratory Research Institute, 1101 Yale Blvd. NE, Albuquerque, NM 87106, USA.
| | - Sinead Kelly
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, and Trinity College Institute for Neuroscience, Trinity College Dublin, Ireland.
| | - Carrie Wright
- The Mind Research Network and Lovelace Respiratory Research Institute, 1101 Yale Blvd. NE, Albuquerque, NM 87106, USA; Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.
| | - Cota Navin Gupta
- The Mind Research Network and Lovelace Respiratory Research Institute, 1101 Yale Blvd. NE, Albuquerque, NM 87106, USA.
| | - Alejandro Arias-Vasquez
- Technische Universität Dresden, Faculty of Medicine, Department of Child and Adolescent Psychiatry, Translational Developmental Neuroscience Section, Fetscherstraße 74, 01307 Dresden, Germany.
| | - Nora Perrone-Bizzozero
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.
| | - Stefan Ehrlich
- Technische Universität Dresden, Faculty of Medicine, Department of Child and Adolescent Psychiatry, Translational Developmental Neuroscience Section, Fetscherstraße 74, 01307 Dresden, Germany.
| | - Lei Wang
- Northwestern University Feinberg School of Medicine, Chicago, IL 60614, USA.
| | - Juan R Bustillo
- Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.
| | - Derek Morris
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, and Trinity College Institute for Neuroscience, Trinity College Dublin, Ireland; Clinical Neuroimaging Laboratory and Cognitive Genetics group, Departments of Psychiatry, Anatomy, Biochemistry and School of Psychology, National University of Ireland, Galway, Ireland.
| | - Aiden Corvin
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, and Trinity College Institute for Neuroscience, Trinity College Dublin, Ireland.
| | - Dara M Cannon
- Clinical Neuroimaging Laboratory and Cognitive Genetics group, Departments of Psychiatry, Anatomy, Biochemistry and School of Psychology, National University of Ireland, Galway, Ireland.
| | - Colm McDonald
- Clinical Neuroimaging Laboratory and Cognitive Genetics group, Departments of Psychiatry, Anatomy, Biochemistry and School of Psychology, National University of Ireland, Galway, Ireland.
| | - Gary Donohoe
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, and Trinity College Institute for Neuroscience, Trinity College Dublin, Ireland; Clinical Neuroimaging Laboratory and Cognitive Genetics group, Departments of Psychiatry, Anatomy, Biochemistry and School of Psychology, National University of Ireland, Galway, Ireland.
| | - Vince D Calhoun
- The Mind Research Network and Lovelace Respiratory Research Institute, 1101 Yale Blvd. NE, Albuquerque, NM 87106, USA; Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; Departments of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM 87131, USA.
| | - Jessica A Turner
- The Mind Research Network and Lovelace Respiratory Research Institute, 1101 Yale Blvd. NE, Albuquerque, NM 87106, USA; Departments of Psychology and Neurosciences, Georgia State University, Atlanta, GA 30302, USA.
| |
Collapse
|
28
|
Ohtani T, Bouix S, Lyall AE, Hosokawa T, Saito Y, Melonakos E, Westin CF, Seidman LJ, Goldstein J, Mesholam-Gately R, Petryshen T, Wojcik J, Kubicki M. Abnormal white matter connections between medial frontal regions predict symptoms in patients with first episode schizophrenia. Cortex 2015; 71:264-76. [PMID: 26277547 DOI: 10.1016/j.cortex.2015.05.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 04/17/2015] [Accepted: 05/26/2015] [Indexed: 12/11/2022]
Abstract
INTRODUCTION The medial orbitofrontal cortex (mOFC) and rostral part of anterior cingulate cortex (rACC) have been suggested to be involved in the neural network of salience and emotional processing, and associated with specific clinical symptoms in schizophrenia. Considering the schizophrenia dysconnectivity hypothesis, the connectivity abnormalities between mOFC and rACC might be associated with clinical characteristics in first episode schizophrenia patients (FESZ). METHODS After parcellating mOFC into the anterior and posterior part, diffusion properties of the mOFC-rACC white matter connections for 21 patients with FESZ and 21 healthy controls (HCs) were examined using stochastic tractography, one of the most effective Diffusion Tensor Imaging (DTI) methods for examining tracts between adjacent gray matter (GM) regions. RESULTS Fractional anisotropy (FA) reductions were observed in bilateral posterior, but not anterior mOFC-rACC connections (left: p < .0001; right: p < .0001) in FESZ compared to HCs. In addition, reduced FA in the left posterior mOFC-rACC connection was associated with more severe anhedonia-asociality (rho = -.633, p = .006) and total score (rho = -.520, p = .032) in the Scale for the Assessment of Negative Symptoms (SANS); reduced FA in the right posterior mOFC-rACC connection was associated with more severe affective flattening (rho = -.644, p = .005), total score (rho = -.535, p = .027) in SANS, hallucinations (rho = -.551, p = .018), delusions (rho = -.632, p = .005) and total score (rho = -.721, p = .001) in the Scale for the Assessment of Positive Symptoms (SAPS) in FESZ. CONCLUSIONS The observed white matter abnormalities within the connections between mOFC and rACC might be associated with the psychopathology of the early stage of schizophrenia.
Collapse
Affiliation(s)
- Toshiyuki Ohtani
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; VA Boston Healthcare System, Boston, MA, USA; Safety and Health Organization, Chiba University, Chiba City, Chiba, Japan
| | - Sylvain Bouix
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Amanda E Lyall
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Taiga Hosokawa
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; VA Boston Healthcare System, Boston, MA, USA; Tsuchida Hospital, Tokyo, Japan
| | - Yukiko Saito
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Neuropsychiatry, Kansai Medical University, Moriguchi City, Osaka, Japan
| | - Eric Melonakos
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Carl-Fredrik Westin
- Surgical Planning Laboratory, MRI Division, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Larry J Seidman
- Massachusetts Mental Health Center Public Psychiatry Division, Beth Israel Deaconess Medical Center, Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jill Goldstein
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Raquelle Mesholam-Gately
- Massachusetts Mental Health Center Public Psychiatry Division, Beth Israel Deaconess Medical Center, Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Tracey Petryshen
- Stanley Center of Psychiatry Research, Broad Institute of MIT and Harvard, Boston, MA, USA; Psychiatry and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA
| | - Joanne Wojcik
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marek Kubicki
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; VA Boston Healthcare System, Boston, MA, USA.
| |
Collapse
|
29
|
Leroux E, Delcroix N, Dollfus S. Left-hemisphere lateralization for language and interhemispheric fiber tracking in patients with schizophrenia. Schizophr Res 2015; 165:30-7. [PMID: 25868933 DOI: 10.1016/j.schres.2015.03.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 02/24/2015] [Accepted: 03/22/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND It has been suggested that the degree of hemispheric specialization (HS) depends on the structural connectivity between the two hemispheres, that is to say the corpus callosum (CC). Studies, performed only on healthy participants, investigated this anatomo-functional relationship. Nevertheless, it has never been studied in schizophrenia. We therefore propose to study the anatomo-functional relationships between the integrity of interhemispheric connectivity and leftward functional lateralization for language in patients with schizophrenia compared with healthy participants, driven by a multimodal approach combining fMRI and DTI-based fiber tractography. We hypothesized that reduced leftward functional lateralization for language in patients with schizophrenia could be related to a callosal hypoconnectivity. MATERIALS AND METHODS Seventeen patients based on the DSM-IV, and 17 controls were included. The functional laterality index and interhemispheric diffusion values between homologue temporal regions, belonging to the language network, were individually extracted in order to study the anatomo-functional relationships. RESULTS In the patients, higher mean and radial diffusivity (RD) values (thicker myelin sheaths) were associated with less leftward lateralization. In contrast, the controls presented higher RD values and lower fractional anisotropy values (axonal loss) with more leftward lateralization. CONCLUSIONS Our study revealed a relationship between the CC and the HS for language, but did not provide evidence clarifying the direction of the relationship between callosal connectivity and functional lateralization for language. In particular, the present findings showed that the loss of integrity in interhemispheric callosal fibers was associated with reduced leftward cerebral dominance for language in patients with schizophrenia.
Collapse
Affiliation(s)
- Elise Leroux
- CHU de Caen, Service de Psychiatrie, Centre Esquirol, Caen F-14000, France; CNRS, UMR 6301 ISTCT, ISTS Team, GIP CYCERON, Bd Henri Becquerel, BP5229, F-14074 Caen cedex, France.
| | - Nicolas Delcroix
- CNRS, UMS 3408, GIP CYCERON, Bd Henri Becquerel, BP5229, F-14074 Caen cedex, France.
| | - Sonia Dollfus
- CHU de Caen, Service de Psychiatrie, Centre Esquirol, Caen F-14000, France; CNRS, UMR 6301 ISTCT, ISTS Team, GIP CYCERON, Bd Henri Becquerel, BP5229, F-14074 Caen cedex, France; Université de Caen Basse-Normandie, UFR de médecine (Medical School), Caen F-14000, France.
| |
Collapse
|
30
|
Balevich EC, Haznedar MM, Wang E, Newmark RE, Bloom R, Schneiderman JS, Aronowitz J, Tang CY, Chu KW, Byne W, Buchsbaum MS, Hazlett EA. Corpus callosum size and diffusion tensor anisotropy in adolescents and adults with schizophrenia. Psychiatry Res 2015; 231:244-51. [PMID: 25637358 PMCID: PMC4363270 DOI: 10.1016/j.pscychresns.2014.12.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 11/07/2014] [Accepted: 12/11/2014] [Indexed: 01/18/2023]
Abstract
The corpus callosum has been implicated as a region of dysfunctional connectivity in schizophrenia, but the association between age and callosal pathology is unclear. Magnetic resonance imaging (MRI) and diffusion-tensor imaging (DTI) were performed on adults (n=34) and adolescents (n=17) with schizophrenia and adult (n=33) and adolescent (n=15) age- and sex-matched healthy controls. The corpus callosum was manually traced on each participant׳s MRI, and the DTI scan was co-registered to the MRI. The corpus callosum was divided into five anteroposterior segments. Area and anisotropy were calculated for each segment. Both patient groups demonstrated reduced callosal anisotropy; however, the adolescents exhibited reductions mostly in anterior regions while the reductions were more prominent in posterior regions of the adults. The adolescent patients showed greater decreases in absolute area as compared with the adult patients, particularly in the anterior segments. However, the adults showed greater reductions when area was considered relative to whole brain white matter volume. Our results suggest that the initial stages of the illness are characterized by deficiencies in frontal connections, and the chronic phase is characterized by deficits in the posterior corpus callosum; or, alternatively, adolescent-onset schizophrenia may represent a different or more severe form of the illness.
Collapse
Affiliation(s)
- Emily C. Balevich
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA,The Graduate Center, City University of New York, New York, NY, 10016, USA
| | - M. Mehmet Haznedar
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA,Outpatient Psychiatry Care Center, James J. Peters VA Medical Center, Bronx, NY, 10468, USA
| | - Eugene Wang
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Randall E. Newmark
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Rachel Bloom
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jason S. Schneiderman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jonathan Aronowitz
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Cheuk Y. Tang
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - King-Wai Chu
- Research and Development and VISN 3 Mental Illness Research, Education, and Clinical Care Center, James J. Peters VA Medical Center, Bronx, NY, 10468, USA
| | - William Byne
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA,Outpatient Psychiatry Care Center, James J. Peters VA Medical Center, Bronx, NY, 10468, USA,Research and Development and VISN 3 Mental Illness Research, Education, and Clinical Care Center, James J. Peters VA Medical Center, Bronx, NY, 10468, USA
| | - Monte S. Buchsbaum
- Departments of Psychiatry and Radiology, University of California, San Diego School of Medicine, 92093, USA
| | - Erin A. Hazlett
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA,Research and Development and VISN 3 Mental Illness Research, Education, and Clinical Care Center, James J. Peters VA Medical Center, Bronx, NY, 10468, USA,Address correspondence to: Erin A. Hazlett, Ph.D, Tel.: (718) 584-9000 x3701, Fax: (718) 364-3576,
| |
Collapse
|
31
|
Spalletta G, De Rossi P, Piras F, Iorio M, Dacquino C, Scanu F, Girardi P, Caltagirone C, Kirkpatrick B, Chiapponi C. Brain white matter microstructure in deficit and non-deficit subtypes of schizophrenia. Psychiatry Res 2015; 231:252-61. [PMID: 25649975 DOI: 10.1016/j.pscychresns.2014.12.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 11/05/2014] [Accepted: 12/23/2014] [Indexed: 01/20/2023]
Abstract
Dividing schizophrenia into its deficit (SZD) and nondeficit (SZND) subtypes may help to identify specific and more homogeneous pathophysiological characteristics. Our aim was to define a whole brain voxelwise map specifically characterizing white matter tracts of schizophrenia patients with and without the deficit syndrome. We compared microstructural diffusion-related parameters as measured by diffusion tensor imaging in 21 SZD patients, 21 SZND patients, and 21 healthy controls, age- and gender-matched. Results showed that fractional anisotropy was reduced in the right precentral area in SZND patients, and in the left corona radiata of the schizophrenia group as a whole. Axial diffusivity was reduced in the left postcentral area of SZD patients and in the left cerebellum of the whole schizophrenia group. Radial diffusivity was increased in the left forceps minor of SZD patients, in the left internal capsule of SZND patients, and in the right inferior fronto-occipital fasciculus in the whole schizophrenia group. Mean diffusivity was increased from healthy controls to SZD patients to SZND patients in the right occipital lobe. In conclusion, SZD patients are not simply at the extreme end of a severity continuum of white matter disruption. Rather, the SZD and SZND subtypes are associated with distinct and specific brain microstructural anomalies that are consistent with their peculiar psychopathological dimensions.
Collapse
Affiliation(s)
- Gianfranco Spalletta
- Laboratory of Clinical and Behavioural Neurology, IRCCS Santa Lucia Foundation, Rome, Italy.
| | - Pietro De Rossi
- Laboratory of Clinical and Behavioural Neurology, IRCCS Santa Lucia Foundation, Rome, Italy; NESMOS Department, Faculty of Medicine and Psychology, "Sapienza" University of Rome, Rome, Italy
| | - Fabrizio Piras
- Laboratory of Clinical and Behavioural Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Mariangela Iorio
- Laboratory of Clinical and Behavioural Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Claudia Dacquino
- Laboratory of Clinical and Behavioural Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Francesca Scanu
- Laboratory of Clinical and Behavioural Neurology, IRCCS Santa Lucia Foundation, Rome, Italy; Department of Neurology and Psychiatry, Faculty of Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Paolo Girardi
- NESMOS Department, Faculty of Medicine and Psychology, "Sapienza" University of Rome, Rome, Italy
| | - Carlo Caltagirone
- Laboratory of Clinical and Behavioural Neurology, IRCCS Santa Lucia Foundation, Rome, Italy; Department of Neuroscience, "Tor Vergata" University, Rome, Italy
| | - Brian Kirkpatrick
- Department of Psychiatry and Behavioral Science, University of Nevada School of Medicine, Reno, NV, USA
| | - Chiara Chiapponi
- Laboratory of Clinical and Behavioural Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
32
|
Fung G, Cheung C, Chen E, Lam C, Chiu C, Law CW, Leung MK, Deng M, Cheung V, Qi L, Nailin Y, Tai KS, Yip L, Suckling J, Sham P, McAlonan G, Chua SE. MRI predicts remission at 1 year in first-episode schizophrenia in females with larger striato-thalamic volumes. Neuropsychobiology 2015; 69:243-8. [PMID: 24993979 DOI: 10.1159/000358837] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 01/20/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS The Remission in Schizophrenia Working Group has defined remission as 'a low-mild symptom intensity level, maintained for a minimum of 6 months, where such symptoms do not affect an individual's behaviour' [Andreasen et al.: Am J Psychiatry 2005;162:441-449]. Since brain morphology relates to symptomatology, treatment and illness progression, MRI may assist in predicting remission. METHODS Thirty-nine patients newly diagnosed with DSM-IV schizophrenia underwent MRI brain scan prior to antipsychotic exposure. The Global Assessment of Functioning (GAF) score was entered into a voxel-based analysis to evaluate its relationship with cerebral grey matter volume from the baseline MRI. We entered age, total intracranial volume and intake GAF score as co-variates. Males and females were analysed separately because gender is a potent determinant of outcome. RESULTS Males had lower GAF scores than females, both at intake and at 1 year. Males comprised only 40% (12 out of 39) of the early remission group. For females only, early remission was strongly and positively correlated with bilateral lentiform and striatal volumes. For males, there was no such relationship. CONCLUSION Larger striato-thalamic volume correlated with early remission in females only. These baseline MRI findings were unlikely to be confounded by antipsychotic treatment and chronicity. These brain morphological markers show gender dimorphism and may assist in the prediction of early remission in newly diagnosed schizophrenia.
Collapse
Affiliation(s)
- Germaine Fung
- Department of Psychiatry, Queen Mary Hospital, University of Hong Kong, Hong Kong, SAR, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Najjar S, Pearlman DM. Neuroinflammation and white matter pathology in schizophrenia: systematic review. Schizophr Res 2015; 161:102-12. [PMID: 24948485 DOI: 10.1016/j.schres.2014.04.041] [Citation(s) in RCA: 220] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 03/30/2014] [Accepted: 04/03/2014] [Indexed: 01/24/2023]
Abstract
BACKGROUND Neuroinflammation and white matter pathology have each been independently associated with schizophrenia, and experimental studies have revealed mechanisms by which the two can interact in vitro, but whether these abnormalities simultaneously co-occur in people with schizophrenia remains unclear. METHOD We searched MEDLINE, EMBASE, PsycINFO and Web of Science from inception through 12 January 2014 for studies reporting human data on the relationship between microglial or astroglial activation, or cytokines and white matter pathology in schizophrenia. RESULTS Fifteen studies totaling 792 subjects (350 with schizophrenia, 346 controls, 49 with bipolar disorder, 37 with major depressive disorder and 10 with Alzheimer's disease) met all eligibility criteria. Five neuropathological and two neuroimaging studies collectively yielded consistent evidence of an association between schizophrenia and microglial activation, particularly in white rather than gray matter regions. Ultrastructural analysis revealed activated microglia near dystrophic and apoptotic oligodendroglia, demyelinating and dysmyelinating axons and swollen and vacuolated astroglia in subjects with schizophrenia but not controls. Two neuroimaging studies found an association between carrier status for a functional single nucleotide polymorphism in the interleukin-1β gene and abnormal white as well as gray matter volumes in schizophrenia but not controls. A neuropathological study found that orbitofrontal white matter neuronal density was increased in schizophrenia cases exhibiting high transcription levels of pro-inflammatory cytokines relative to those exhibiting low transcription levels and to controls. Schizophrenia was associated with decreased astroglial density specifically in subgenual cingulate white matter and anterior corpus callosum, but not other gray or white matter areas. Astrogliosis was consistently absent. Data on astroglial gene expression, mRNA expression and protein concentration were inconsistent. CONCLUSION Neuroinflammation is associated with white matter pathology in people with schizophrenia, and may contribute to structural and functional disconnectivity, even at the first episode of psychosis.
Collapse
Affiliation(s)
- Souhel Najjar
- Neuroinflammation Research Group, Epilepsy Center Division, Department of Neurology, NYU School of Medicine, New York, New York, United States.
| | - Daniel M Pearlman
- Neuroinflammation Research Group, Epilepsy Center Division, Department of Neurology, NYU School of Medicine, New York, New York, United States; The Dartmouth Institute of Health Policy and Clinical Practice, Audrey and Theodor Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States
| |
Collapse
|
34
|
Bijanki KR, Hodis B, Magnotta VA, Zeien E, Andreasen NC. Effects of age on white matter integrity and negative symptoms in schizophrenia. Schizophr Res 2015; 161:29-35. [PMID: 24957354 PMCID: PMC4272674 DOI: 10.1016/j.schres.2014.05.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/05/2014] [Accepted: 05/09/2014] [Indexed: 11/30/2022]
Abstract
The current study examined the relationship between white matter integrity as indexed by diffusion tensor imaging and negative symptom severity in schizophrenia. The current study included statistical controls for age effects on the relationship of interest, a major weakness of the existing literature on the subject. Participants included 59 chronic schizophrenia patients, and 31 first-episode schizophrenia patients. Diffusion-weighted neuroimaging was used to calculate fractional anisotropy (FA) in each major brain region (frontal, temporal, parietal, and occipital lobes). Negative symptoms were measured using the Scale for the Assessment of Negative Symptoms (SANS) in all schizophrenia patients. Significant bivariate correlations were observed between global SANS scores and global FA, as well as in most brain regions. These relationships appeared to be driven by SANS items measuring facial expressiveness, poor eye contact, affective flattening, inappropriate affect, poverty of speech, poverty of speech content, alogia, and avolition. However, upon addition of age as a covariate, the observed relationships became non-significant. Further analysis revealed very strong age effects on both FA and SANS scores in the current sample. The findings of this study refute previous reports of significant relationships between DTI variables and negative symptoms in schizophrenia, and they suggest an important confounding variable to be considered in future studies in this population.
Collapse
Affiliation(s)
- Kelly Rowe Bijanki
- Department of Psychiatry, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, United States
| | - Brendan Hodis
- Department of Psychiatry, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, United States
| | - Vincent A Magnotta
- Department of Psychiatry, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, United States; Department of Radiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, United States
| | - Eugene Zeien
- Department of Psychiatry, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, United States
| | - Nancy C Andreasen
- Department of Psychiatry, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, United States.
| |
Collapse
|
35
|
Prasad KM, Upton CH, Nimgaonkar VL, Keshavan MS. Differential susceptibility of white matter tracts to inflammatory mediators in schizophrenia: an integrated DTI study. Schizophr Res 2015; 161:119-25. [PMID: 25449712 PMCID: PMC4277723 DOI: 10.1016/j.schres.2014.09.043] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 09/23/2014] [Accepted: 09/25/2014] [Indexed: 02/03/2023]
Abstract
BACKGROUND The pathophysiological underpinnings of impaired anatomical and functional connectivity are not precisely known. Emerging data suggest that immune mediators may underlie such dysconnectivity. We examined anatomical brain connections using diffusion tensor imaging (DTI) data in relation to interleukin-6 (IL-6) and C-reactive protein (CRP) levels among early-course clinically stable schizophrenia subjects compared to healthy controls (HC). METHODS DTI data were acquired in 30 directions with 2 averages. Fractional anisotropy (FA) and radial diffusivity (RD) maps were separately processed using FSL4.1.9 and Tract-Based Spatial Statistics (TBSS). Threshold free cluster enhancements (TFCE) were examined employing familywise error (FWE) corrections for multiple testing within linear regression models including age, sex and socioeconomic status as covariates. IL-6 and CRP were assayed using highly sensitive and specific sandwich immunosorbent assays. RESULTS The groups did not differ in age and sex as well as in the IL-6 and CRP levels. IL-6 levels were negatively correlated with the FA and positively correlated with RD among schizophrenia subjects but not HC. The voxel clusters that showed significant correlations were localized to the forceps major, the inferior longitudinal fasciculus and the inferior fronto-occipital fasciculus. CRP levels showed similar pattern except for lack of correlation with RD on any cluster that corresponded to the forceps major. DISCUSSION Our results suggest that the IL-6 and CRP contribute to impaired anisotropy of water diffusion in selected pathways that have been previously associated with schizophrenia suggesting differential susceptibility of selected neural pathways to immune mediators.
Collapse
Affiliation(s)
- Konasale M Prasad
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, United States
| | - Catherine H Upton
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, United States
| | - Vishwajit L Nimgaonkar
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, United States
| | - Matcheri S Keshavan
- Department of Psychiatry and Behavioral Neuroscience, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
36
|
Wheeler AL, Voineskos AN. A review of structural neuroimaging in schizophrenia: from connectivity to connectomics. Front Hum Neurosci 2014; 8:653. [PMID: 25202257 PMCID: PMC4142355 DOI: 10.3389/fnhum.2014.00653] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 08/05/2014] [Indexed: 11/13/2022] Open
Abstract
In patients with schizophrenia neuroimaging studies have revealed global differences with some brain regions showing focal abnormalities. Examining neurocircuitry, diffusion-weighted imaging studies have identified altered structural integrity of white matter in frontal and temporal brain regions and tracts such as the cingulum bundles, uncinate fasciculi, internal capsules and corpus callosum associated with the illness. Furthermore, structural co-variance analyses have revealed altered structural relationships among regional morphology in the thalamus, frontal, temporal and parietal cortices in schizophrenia patients. The distributed nature of these abnormalities in schizophrenia suggests that multiple brain circuits are impaired, a neural feature that may be better addressed with network level analyses. However, even with the advent of these newer analyses, a large amount of variability in findings remains, likely partially due to the considerable heterogeneity present in this disorder.
Collapse
Affiliation(s)
- Anne L Wheeler
- Kimel Family Translational Imaging Genetics Laboratory, Centre for Addiction and Mental Health, Research Imaging Centre Toronto, ON, Canada ; Department of Psychiatry, University of Toronto Toronto, ON, Canada
| | - Aristotle N Voineskos
- Kimel Family Translational Imaging Genetics Laboratory, Centre for Addiction and Mental Health, Research Imaging Centre Toronto, ON, Canada ; Department of Psychiatry, University of Toronto Toronto, ON, Canada
| |
Collapse
|
37
|
Asami T, Lee SH, Bouix S, Rathi Y, Whitford TJ, Niznikiewicz M, Nestor P, McCarley RW, Shenton ME, Kubicki M. Cerebral white matter abnormalities and their associations with negative but not positive symptoms of schizophrenia. Psychiatry Res 2014; 222:52-9. [PMID: 24650453 PMCID: PMC4083818 DOI: 10.1016/j.pscychresns.2014.02.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 12/11/2013] [Accepted: 02/12/2014] [Indexed: 10/25/2022]
Abstract
Although diffusion tensor imaging (DTI) studies have reported fractional anisotropy (FA) abnormalities in multiple white matter (WM) regions in schizophrenia, relationship between abnormal FA and negative symptoms has not been fully explored. DTI data were acquired from twenty-four patients with chronic schizophrenia and twenty-five healthy controls. Regional brain abnormalities were evaluated by conducting FA comparisons in the cerebral and each lobar WMs between groups. Focal abnormalities were also evaluated with a voxel-wise tract specific method. Associations between structural WM changes and negative symptoms were assessed using the Scale for the Assessment of Negative Symptoms (SANS). The patient group showed decreased FA in the cerebrum, especially in the frontal lobe, compared with controls. A voxel-wise analysis showed FA decreases in almost all WM tracts in schizophrenia. Correlation analyses demonstrated negative relationships between FA in the cerebrum, particularly in the left hemisphere, and SANS global and global rating scores (Anhedonia-Asociality, Attention, and Affective-Flattening), and also associations between FA of left frontal lobe and SANS global score, Anhedonia-Asociality, and Attention. This study demonstrates that patients with chronic schizophrenia evince widespread cerebral FA abnormalities and that these abnormalities, especially in the left hemisphere, are associated with negative symptoms.
Collapse
Affiliation(s)
- Takeshi Asami
- Laboratory of Neuroscience, Clinical Neuroscience Division, Department of Psychiatry, Veterans Affairs Boston Healthcare System, Brockton Division, Harvard Medical School, Brockton, Massachusetts, U.S.A,Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, U.S.A
| | - Sang Hyuk Lee
- Laboratory of Neuroscience, Clinical Neuroscience Division, Department of Psychiatry, Veterans Affairs Boston Healthcare System, Brockton Division, Harvard Medical School, Brockton, Massachusetts, U.S.A,Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, U.S.A
| | - Sylvain Bouix
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, U.S.A
| | - Yogesh Rathi
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, U.S.A
| | - Thomas J. Whitford
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, U.S.A,School of Psychology, University of New South Wales, Sydney, New South Wales, Australia
| | - Margaret Niznikiewicz
- Laboratory of Neuroscience, Clinical Neuroscience Division, Department of Psychiatry, Veterans Affairs Boston Healthcare System, Brockton Division, Harvard Medical School, Brockton, Massachusetts, U.S.A
| | - Paul Nestor
- Laboratory of Neuroscience, Clinical Neuroscience Division, Department of Psychiatry, Veterans Affairs Boston Healthcare System, Brockton Division, Harvard Medical School, Brockton, Massachusetts, U.S.A
| | - Robert W. McCarley
- Laboratory of Neuroscience, Clinical Neuroscience Division, Department of Psychiatry, Veterans Affairs Boston Healthcare System, Brockton Division, Harvard Medical School, Brockton, Massachusetts, U.S.A
| | - Martha E. Shenton
- Laboratory of Neuroscience, Clinical Neuroscience Division, Department of Psychiatry, Veterans Affairs Boston Healthcare System, Brockton Division, Harvard Medical School, Brockton, Massachusetts, U.S.A,Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, U.S.A,Surgical Planning Laboratory, MRI Division, Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts U.S.A
| | - Marek Kubicki
- Laboratory of Neuroscience, Clinical Neuroscience Division, Department of Psychiatry, Veterans Affairs Boston Healthcare System, Brockton Division, Harvard Medical School, Brockton, MA, USA; Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women׳s Hospital, Harvard Medical School, Boston, MA, USA; Surgical Planning Laboratory, MRI Division, Department of Radiology, Brigham and Women׳s Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
38
|
Chuang JY, Murray GK, Metastasio A, Segarra N, Tait R, Spencer J, Ziauddeen H, Dudas RB, Fletcher PC, Suckling J. Brain structural signatures of negative symptoms in depression and schizophrenia. Front Psychiatry 2014; 5:116. [PMID: 25221526 PMCID: PMC4145726 DOI: 10.3389/fpsyt.2014.00116] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 08/12/2014] [Indexed: 02/02/2023] Open
Abstract
Negative symptoms occur in several major mental health disorders with undetermined mechanisms and unsatisfactory treatments; identification of their neural correlates might unveil the underlying pathophysiological basis and pinpoint the therapeutic targets. In this study, participants with major depressive disorder (n = 24), schizophrenia (n = 22), and healthy controls (n = 20) were assessed with 10 frequently used negative symptom scales followed by principal component analysis (PCA) of the scores. A linear model with the prominent components identified by PCA was then regressed on gray and white-matter volumes estimated from T1-weighted magnetic resonance imaging. In depressed patients, negative symptoms such as blunted affect, alogia, withdrawal, and cognitive impairment, assessed mostly via clinician-rated scales were inversely associated with gray matter volume in the bilateral cerebellum. In patients with schizophrenia, anhedonia, and avolition evaluated via self-rated scales inversely related to white-matter volume in the left anterior limb of internal capsule/anterior thalamic radiation and positively in the left superior longitudinal fasiculus. The pathophysiological mechanisms underlying negative symptoms might differ between depression and schizophrenia. These results also point to future negative symptom scale development primarily focused on detecting and monitoring the corresponding changes to brain structure or function.
Collapse
Affiliation(s)
- Jie-Yu Chuang
- Department of Psychiatry, University of Cambridge , Cambridge , UK
| | - Graham K Murray
- Department of Psychiatry, University of Cambridge , Cambridge , UK ; Behavioural and Clinical Neuroscience Institute, University of Cambridge , Cambridge , UK ; Cambridgeshire and Peterborough NHS Foundation Trust , Cambridge , UK
| | | | - Nuria Segarra
- Department of Psychiatry, University of Cambridge , Cambridge , UK
| | - Roger Tait
- Behavioural and Clinical Neuroscience Institute, University of Cambridge , Cambridge , UK
| | - Jenny Spencer
- Department of Psychiatry, University of Cambridge , Cambridge , UK ; Cambridgeshire and Peterborough NHS Foundation Trust , Cambridge , UK
| | - Hisham Ziauddeen
- Department of Psychiatry, University of Cambridge , Cambridge , UK ; Cambridgeshire and Peterborough NHS Foundation Trust , Cambridge , UK ; Wellcome Trust MRC, Institute of Metabolic Science, University of Cambridge , Cambridge , UK
| | - Robert B Dudas
- Department of Psychiatry, University of Cambridge , Cambridge , UK ; Behavioural and Clinical Neuroscience Institute, University of Cambridge , Cambridge , UK ; Cambridgeshire and Peterborough NHS Foundation Trust , Cambridge , UK ; Norfolk and Suffolk NHS Foundation Trust , Norfolk , UK
| | - Paul C Fletcher
- Department of Psychiatry, University of Cambridge , Cambridge , UK ; Cambridgeshire and Peterborough NHS Foundation Trust , Cambridge , UK
| | - John Suckling
- Department of Psychiatry, University of Cambridge , Cambridge , UK ; Behavioural and Clinical Neuroscience Institute, University of Cambridge , Cambridge , UK ; Cambridgeshire and Peterborough NHS Foundation Trust , Cambridge , UK
| |
Collapse
|
39
|
Cullen AE, De Brito SA, Gregory SL, Murray RM, Williams SCR, Hodgins S, Laurens KR. Temporal lobe volume abnormalities precede the prodrome: a study of children presenting antecedents of schizophrenia. Schizophr Bull 2013; 39:1318-27. [PMID: 23135906 PMCID: PMC3796075 DOI: 10.1093/schbul/sbs128] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Distributed abnormalities of gray matter (GM) and white matter (WM) volume characterize individuals experiencing their first episode of schizophrenia. Regions of abnormality are present already, albeit less extensively, during the prodromal phase of illness. This study aimed to determine whether putatively at-risk children, aged 9-12 years, who present multiple antecedents of schizophrenia (ASz), display GM and WM volume abnormalities relative to typically developing (TD) children presenting no antecedents. Structural magnetic resonance images were acquired for 20 ASz children and 20 TD children matched on age, sex, and IQ. Whole-brain differences in GM and WM volume were determined using voxel-based morphometry. Relative to the TD group, ASz children showed significantly decreased GM volume in the right middle temporal gyrus (MTG) and increased GM volume in the left superior-middle temporal gyri (P < 0.05, cluster correction). WM volume was significantly increased in ASz children relative to TD children in a cluster encompassing the left inferior parietal lobe, occipital lobe, and superior temporal gyrus. Post-hoc analyses indicated that these abnormalities were not limited to ASz children who self-reported auditory hallucinations on questionnaire. Our findings suggest that children aged 9-12 years who present multiple ASz are characterized by abnormalities of GM and WM volume in the temporal lobes, comprising a subset of the regions affected in first-episode schizophrenia and in the prodromal phase of illness. These preliminary findings indicate that structural brain abnormalities associated with schizophrenia may be detected in putatively at-risk, preprodromal children. Prospective studies following the brain development of at-risk children are needed.
Collapse
Affiliation(s)
- Alexis E. Cullen
- Department of Forensic and Neurodevelopmental Sciences; ,To whom correspondence should be addressed; Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Box P023, De Crespigny Park, London, SE5 8AF; tel: +44 20 7848 5678, fax: +44 (0)20 7848 0754, e-mail:
| | | | | | | | - Steven C. R. Williams
- Centre for Neuroimaging Sciences, Institute of Psychiatry, King’s College London, London, UK
| | - Sheilagh Hodgins
- Department of Forensic and Neurodevelopmental Sciences; ,Département de Psychiatrie, Université de Montréal, Montréal, Canada
| | - Kristin R. Laurens
- Department of Forensic and Neurodevelopmental Sciences; ,Research Unit for Schizophrenia Epidemiology, School of Psychiatry, University of New South Wales, Sydney, Australia;,Schizophrenia Research Institute, Sydney, Australia
| |
Collapse
|
40
|
Association of white matter deficits with clinical symptoms in antipsychotic-naive first-episode schizophrenia: an optimized VBM study using 3T. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2013; 27:283-90. [PMID: 24100864 DOI: 10.1007/s10334-013-0411-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 09/20/2013] [Accepted: 09/24/2013] [Indexed: 02/05/2023]
Abstract
OBJECT To examine the whole brain white matter morphology in antipsychotic-naive patients with first-episode schizophrenia (FES) and its correlations with symptom severity. MATERIALS AND METHODS High-resolution T1-weighted images of 64 drug-naive FES patients and 64 matched healthy controls were acquired using a 3 T MR imaging system. Then, optimized voxel-based morphometry was performed to compare the group differences. Finally, correlation analyses were conducted between the white matter volume (WMV) changes and clinical symptoms. RESULTS The FES showed significantly decreased WMV in the bilateral posterior limb of the internal capsule (PLIC) and right subgyral frontal white matter. The volume of the bilateral PLIC was negatively correlated with the Positive and Negative Syndrome Scale positive scores. Positive correlations were observed between all of the changed WMV measures and the Global Assessment of Functioning scores. CONCLUSION The current findings provide further evidence to support internal capsule and subgyral frontal white matter deficits at the early stage of schizophrenia that are potentially related to the core pathophysiology of the disease. Furthermore, these anatomical alterations were related to the clinical symptoms but not the untreated illness duration, suggesting that these deficits are related to aberrations in the neurodevelopmental process and may be relatively stable during the early course of schizophrenia.
Collapse
|
41
|
Giezendanner S, Walther S, Razavi N, Van Swam C, Fisler MS, Soravia LM, Andreotti J, Schwab S, Jann K, Wiest R, Horn H, Müller TJ, Dierks T, Federspiel A. Alterations of white matter integrity related to the season of birth in schizophrenia: a DTI study. PLoS One 2013; 8:e75508. [PMID: 24086548 PMCID: PMC3785501 DOI: 10.1371/journal.pone.0075508] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 08/12/2013] [Indexed: 01/19/2023] Open
Abstract
In schizophrenia there is a consistent epidemiological finding of a birth excess in winter and spring. Season of birth is thought to act as a proxy indicator for harmful environmental factors during foetal maturation. There is evidence that prenatal exposure to harmful environmental factors may trigger pathologic processes in the neurodevelopment, which subsequently increase the risk of schizophrenia. Since brain white matter alterations have repeatedly been found in schizophrenia, the objective of this study was to investigate whether white matter integrity was related to the season of birth in patients with schizophrenia. Thirty-four patients with schizophrenia and 33 healthy controls underwent diffusion tensor imaging. Differences in the fractional anisotropy maps of schizophrenia patients and healthy controls born in different seasons were analysed with tract-based spatial statistics. A significant main effect of season of birth and an interaction of group and season of birth showed that patients born in summer had significantly lower fractional anisotropy in widespread white matter regions than those born in the remainder of the year. Additionally, later age of schizophrenia onset was found in patients born in winter months. The current findings indicate a relationship of season of birth and white matter alterations in schizophrenia and consequently support the neurodevelopmental hypothesis of early pathological mechanisms in schizophrenia.
Collapse
Affiliation(s)
- Stéphanie Giezendanner
- Department of Psychiatric Neurophysiology, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
- * E-mail: (SG); (AF)
| | - Sebastian Walther
- Department of Psychiatric Neurophysiology, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Nadja Razavi
- Department of Psychiatric Neurophysiology, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Claudia Van Swam
- Department of Psychiatric Neurophysiology, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Melanie Sarah Fisler
- Department of Psychiatric Neurophysiology, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Leila Maria Soravia
- Department of Psychiatric Neurophysiology, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Jennifer Andreotti
- Department of Psychiatric Neurophysiology, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Simon Schwab
- Department of Psychiatric Neurophysiology, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Kay Jann
- Department of Psychiatric Neurophysiology, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Roland Wiest
- University Institute of Diagnostic and Interventional Neuroradiology, Inselspital and University of Bern, Bern, Switzerland
| | - Helge Horn
- Department of Psychiatric Neurophysiology, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Thomas Jörg Müller
- Department of Psychiatric Neurophysiology, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Thomas Dierks
- Department of Psychiatric Neurophysiology, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Andrea Federspiel
- Department of Psychiatric Neurophysiology, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
- * E-mail: (SG); (AF)
| |
Collapse
|
42
|
Schizophrenia-like phenotype of polysialyltransferase ST8SIA2-deficient mice. Brain Struct Funct 2013; 220:71-83. [DOI: 10.1007/s00429-013-0638-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 09/10/2013] [Indexed: 10/26/2022]
|
43
|
GÜLEÇ H, ULUSOY KAYMAK S, BİLİCİ M, GANGAL A, KAYIKÇ IOĞLU T, SARI A, TAN Ü. Clinical, Neurocognitive, Structural Imaging and Dermatogliphics in Schizophrenia According to Kraepelin Criteria. Noro Psikiyatr Ars 2013; 50:256-262. [PMID: 28360552 PMCID: PMC5363444 DOI: 10.4274/npa.y6504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Accepted: 03/26/2012] [Indexed: 12/01/2022] Open
Abstract
INTRODUCTION A century ago, Kraepelin stated that the distinctive feature of schizophrenia was progressive deterioration. Kraepelin criteria for schizophrenia are: (1) continuous hospitalization or complete dependence on others for obtaining basic necessities of life, (2) unemployment and (3) no remission for the past five years. We aimed to determine the clinical appearance and structural biological features of Kraepelinian schizophrenia. METHODS The sample consisted of 17 Kraepelinian patients, 30 non-Kraepelinian schizophrenic patients and 43 healthy controls. The Clinical Global Impressions (CGI) and the Positive and Negative Syndrome Scales (PANSS) were used for clinical assessment. The Frontal Assessment Battery (FAB) and the Verbal Fluency and Color Trail Test (CTT) were included in the cognitive battery. Brain magnetic resonance imaging and dermatoglyphic measurements were performed for structural features. RESULT Duration of illness, hospitalization, suicide attempts, admission type, presence of a stressor and treatment choice were similar between the two patient groups. Treatment resistance and family history of schizophrenia were more common in Kraepelinian patients. PANSS and CGI subscales scores were also higher in this group. Only the category fluency and CTT-I were different in Kraepelinian patients in comparison to the other patient group. Structural findings were not different between the three groups. CONCLUSION Category fluency, which was lower in Kraepelinian patients, is an important marker of a degenerative process. The collection of severe clinical symptoms, family history of psychiatric illness and nonresponse to treatment in this particular group of patients points to the need to conduct further studies including cluster analysis in methodology.
Collapse
Affiliation(s)
- Hüseyin GÜLEÇ
- Karadeniz Technical University Medical Faculty, Department of Psychiatry Clinic, Trabzon, Turkey
- Erenköy Education and Research Hospital, Department of Psychiatry Clinic, Istanbul, Turkey
| | - Semra ULUSOY KAYMAK
- Ankara Oncology Education and Research Hospital, Department of Psychiatry Clinic, Ankara, Turkey
| | - Mustafa BİLİCİ
- Karadeniz Technical University Medical Faculty, Department of Psychiatry Clinic, Trabzon, Turkey
- Erenköy Education and Research Hospital, Department of Psychiatry Clinic, Istanbul, Turkey
| | - Ali GANGAL
- Karadeniz Technical University Faculty of Engeneering, Electric Electronics Engeneering, Trabzon, Turkey
| | - Temel KAYIKÇ IOĞLU
- Karadeniz Technical University Faculty of Engeneering, Electric Electronics Engeneering, Trabzon, Turkey
| | - Ahmet SARI
- Karadeniz Technical University, Department of Radiology, Trabzon, Turkey
| | - Üner TAN
- Çukurova University Medical Faculty, Department of Physiology, Adana, Turkey
| |
Collapse
|
44
|
Prata DP, Kanaan RA, Barker GJ, Shergill S, Woolley J, Georgieva L, Picchioni MM, Kravariti E, Walshe M, Allin M, Toulopoulou T, Bramon E, McDonald C, Giampietro V, Murray RM, Brammer M, O'Donovan M, McGuire P. Risk variant of oligodendrocyte lineage transcription factor 2 is associated with reduced white matter integrity. Hum Brain Mapp 2013; 34:2025-31. [PMID: 22505278 PMCID: PMC6870420 DOI: 10.1002/hbm.22045] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 11/14/2011] [Accepted: 01/01/2011] [Indexed: 11/12/2022] Open
Abstract
The oligodendrocyte lineage transcription factor 2 (OLIG2) regulates the genesis of oligodendrocytes, the brain cells responsible for axonal myelination. Although it has been associated with psychiatric and neurological disorders, the impact of this gene on white matter integrity has never been investigated in humans. Using diffusion tensor imaging, we examined the effect of a single nucleotide polymorphism (rs1059004) in OLIG2 previously associated with reduced gene expression, and with psychiatric disorders on fractional anisotropy in 78 healthy subjects. We found that the risk allele (A) was associated with reduced white matter integrity in the corona radiata bilaterally. This is consistent with evidence that it is a schizophrenia susceptibility gene, and suggests that it may confer increased risk through an effect on neuroanatomical connectivity.
Collapse
Affiliation(s)
- Diana P Prata
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, King's Health Partners, London, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
New AS, Carpenter DM, Perez-Rodriguez MM, Ripoll LH, Avedon J, Patil U, Hazlett EA, Goodman M. Developmental differences in diffusion tensor imaging parameters in borderline personality disorder. J Psychiatr Res 2013; 47:1101-9. [PMID: 23628384 PMCID: PMC3725738 DOI: 10.1016/j.jpsychires.2013.03.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 02/27/2013] [Accepted: 03/28/2013] [Indexed: 01/09/2023]
Abstract
BACKGROUND Borderline personality disorder (BPD) often presents during adolescence. Early detection and intervention decreases its subsequent severity. However, little is known about early predictors and biological underpinnings of BPD. The observed abnormal functional connectivity among brain regions in BPD led to studies of white matter, as the neural substrate of connectivity. However, diffusion tensor imaging (DTI) studies in adult BPD have been inconclusive, and, as yet, there are no published DTI studies in borderline adolescents. METHODS We conducted DTI tractography in 38 BPD patients (14-adolescents, 24-adults) and 32 healthy controls (13-adolescents, 19-adults). RESULTS We found bilateral tract-specific decreased fractional anisotropy (FA) in inferior longitudinal fasciculus (ILF) in BPD adolescents compared to adolescent controls. ILF FA was significantly higher in adolescent controls compared to BPD adolescents, BPD adults and adult controls (Wilks F(3,57) = 3.55, p < 0.02). Follow-up voxelwise TBSS analysis demonstrated lower FA in BPD adolescents compared to adolescent controls also in uncinate and occipitofrontal fasciculi. DISCUSSION FA generally develops along an inverted U-shape curve, increasing through adolescence, and slowly decreasing in adulthood. Our findings suggest that, in adolescent BPD, this normal developmental "peak" in FA, which is seen in healthy controls, is not achieved. This suggests a possible neural substrate for the previously reported OFC-amygdala disconnect in adults with BPD. It raises the possibility that a white matter tract abnormality in BPD present in adolescence may not be appreciable in adulthood, but a functional abnormality in the coordination among brain regions persists. Our finding represents a possible biological marker to identify those at risk for developing BPD.
Collapse
Affiliation(s)
- Antonia S. New
- The Mental Health Patient Care Center and the Mental Illness Research Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, NY,Department of Psychiatry, Mount Sinai School of Medicine, New York, NY
| | | | - M. Mercedes Perez-Rodriguez
- The Mental Health Patient Care Center and the Mental Illness Research Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, NY,Department of Psychiatry, Mount Sinai School of Medicine, New York, NY
| | - Luis H. Ripoll
- The Mental Health Patient Care Center and the Mental Illness Research Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, NY,Department of Psychiatry, Mount Sinai School of Medicine, New York, NY
| | - Jennifer Avedon
- Department of Psychiatry, Mount Sinai School of Medicine, New York, NY
| | - Uday Patil
- University of Texas Southwestern Medical Center at Dallas
| | - Erin A. Hazlett
- The Mental Health Patient Care Center and the Mental Illness Research Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, NY,Department of Psychiatry, Mount Sinai School of Medicine, New York, NY
| | - Marianne Goodman
- The Mental Health Patient Care Center and the Mental Illness Research Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, NY,Department of Psychiatry, Mount Sinai School of Medicine, New York, NY
| |
Collapse
|
46
|
Microstructural white matter alterations in psychotic disorder: a family-based diffusion tensor imaging study. Schizophr Res 2013; 146:291-300. [PMID: 23523694 DOI: 10.1016/j.schres.2013.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 02/26/2013] [Accepted: 03/01/2013] [Indexed: 12/14/2022]
Abstract
BACKGROUND There is evidence for microstructural white matter alterations in patients with psychotic disorder, suggesting altered interregional connectivity. Less is known about the presence and role of white matter alterations in well individuals at higher than average genetic risk for psychotic disorder. METHODS 85 patients with psychotic disorder, 93 non-psychotic siblings of patients with psychotic disorder and 80 healthy controls underwent a diffusion tensor imaging (DTI) scanning protocol. In a whole brain voxel-based analysis using Tract Based Spatial Statistics (TBSS), fractional anisotropy (FA) values were compared between the three groups. Effects of antipsychotic medication and drug use were examined. RESULTS The patients displayed significantly lower mean FA than the controls in the following regions: corpus callosum (genu, body, splenium), forceps major and minor, external capsule bilaterally, corona radiata (anterior, posterior) bilaterally, left superior corona radiata and posterior thalamic radiation bilaterally. Similar FA differences existed between the patients and siblings; the siblings did not differ from the controls. CONCLUSION Profound microstructural white matter alterations were found in the corpus callosum and other tracti and fasciculi in the patients with psychotic disorder, but not in siblings and the controls. These alterations may reflect brain pathology associated with the illness, illness-related environmental risk factors, or its treatment, rather than genetic risk.
Collapse
|
47
|
Human and monkey ventral prefrontal fibers use the same organizational principles to reach their targets: tracing versus tractography. J Neurosci 2013; 33:3190-201. [PMID: 23407972 DOI: 10.1523/jneurosci.2457-12.2013] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This article is a comparative study of white matter projections from ventral prefrontal cortex (vPFC) between human and macaque brains. We test whether the organizational rules that vPFC connections follow in macaques are preserved in humans. These rules concern the trajectories of some of the white matter projections from vPFC and how the position of regions in the vPFC dictate the trajectories of their projections in the white matter. To address this question, we present a novel approach that combines direct tracer measurements of entire white matter trajectories in macaque monkeys with diffusion MRI tractography of both macaques and humans. The approach allows us to provide explicit validation of diffusion tractography and transfer tractography strategies across species to test the extent to which inferences from macaques can be applied to human neuroanatomy. Apart from one exception, we found a remarkable overlap between the two techniques in the macaque. Furthermore, the organizational principles followed by vPFC tracts in macaques are preserved in humans.
Collapse
|
48
|
Feusner J, Arienzo D, Li W, Zhan L, GadElkarim J, Thompson P, Leow A. White matter microstructure in body dysmorphic disorder and its clinical correlates. Psychiatry Res 2013; 211:132-40. [PMID: 23375265 PMCID: PMC3570702 DOI: 10.1016/j.pscychresns.2012.11.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 10/29/2012] [Accepted: 11/02/2012] [Indexed: 01/14/2023]
Abstract
Body dysmorphic disorder (BDD) is characterized by an often-delusional preoccupation with misperceived defects of appearance, causing significant distress and disability. Although previous studies have found functional abnormalities in visual processing, frontostriatal, and limbic systems, no study to date has investigated the microstructure of white matter connecting these systems in BDD. Participants comprised 14 medication-free individuals with BDD and 16 healthy controls who were scanned using diffusion-weighted magnetic resonance imaging (MRI). We utilized probabilistic tractography to reconstruct tracts of interest, and tract-based spatial statistics to investigate whole brain white matter. To estimate white matter microstructure, we used fractional anisotropy (FA), mean diffusivity (MD), and linear and planar anisotropy (c(l) and c(p)). We correlated diffusion measures with clinical measures of symptom severity and poor insight/delusionality. Poor insight negatively correlated with FA and c(l) and positively correlated with MD in the inferior longitudinal fasciculus (ILF) and the forceps major (FM). FA and c(l) were lower in the ILF and the inferior fronto-occipital fasciculus and higher in the FM in the BDD group, but differences were nonsignificant. This is the first diffusion-weighted MR investigation of white matter in BDD. Results suggest a relationship between impairments in insight, a clinically important phenotype, and fiber disorganization in tracts connecting visual with emotion/memory processing systems.
Collapse
Affiliation(s)
- Jamie Feusner
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA,Corresponding author. 300 UCLA Medical Plaza, Suite 2200, Los Angeles, CA 90095. Tel.: + 1-310-206-4951; fax: + 1-323-443-3593. (J.D. Feusner)
| | - Donatello Arienzo
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Wei Li
- UCLA Neuroscience Interdisciplinary Program, University of California, Los Angeles, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Liang Zhan
- Laboratory of Neuro Imaging (LONI), Department of Neurology, University of California, Los Angeles, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Johnson GadElkarim
- Department of Electrical and Computer Engineering, University of Illinois, Chicago, Chicago, IL, USA,Department of Psychiatry, University of Illinois, Chicago, Chicago, IL, USA
| | - Paul Thompson
- Laboratory of Neuro Imaging (LONI), Department of Neurology, University of California, Los Angeles, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Alex Leow
- Department of Psychiatry, University of Illinois, Chicago, Chicago, IL, USA,Department of Bioengineering, University of Illinois, Chicago, Chicago, IL, USA,Community Psychiatry Associates, Sacramento, CA, USA
| |
Collapse
|
49
|
Reading SAJ, Oishi K, Redgrave GW, McEntee J, Shanahan M, Yoritomo N, Younes L, Mori S, Miller MI, van Zijl P, Margolis RL, Ross CA. Diffuse abnormality of low to moderately organized white matter in schizophrenia. Brain Connect 2013; 1:511-9. [PMID: 22500774 DOI: 10.1089/brain.2011.0041] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Increasing evidence suggests that abnormal white matter is central to the pathophysiology and, potentially, the pathogenesis of schizophrenia (SCZ). The spatial distribution of observed abnormalities and the type of white matter involved remain to be elucidated. Seventeen chronically ill individuals with SCZ and 17 age- and gender-matched controls were studied using a 3T magnetic resonance imaging diffusion tensor imaging protocol designed to examine the abnormalities of white matter by region and by level of architectural infrastructure as assessed by fractional anisotropy (FA) in native space. After assessing whole-brain FA, FA was divided into quartiles, capturing all brain regions with FA values from 0 to 0.25, 0.25 to 0.5, 0.5 to 0.75, and 0.75 to 1.0. Mean whole-brain FA was 4.6% smaller in the SCZ group than in healthy controls. This difference was largely accounted for by FA values from the second quartile (between 0.25 and 0.5). Second quartile FA was decreased in all 130 brain regions of the template in the SCZ group, with the difference reaching statistical significance in 41 regions. Correspondingly, the amount of brain tissue with an FA of ∼0.4 was significantly reduced in the SCZ group, while the amount of brain tissue falling in the lowest quartile of FA was increased. These findings strongly imply a diffuse loss of white matter integrity in SCZ. Our finding that the loss of integrity disproportionately involves white matter of low to moderate organization suggests an approach to the specificity of white matter abnormalities in SCZ based on microstructure rather than spatial distribution.
Collapse
Affiliation(s)
- Sarah A J Reading
- Division of Neuroimaging, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Rosenberger G, Nestor PG, Oh JS, Levitt JJ, Kindleman G, Bouix S, Fitzsimmons J, Niznikiewicz M, Westin CF, Kikinis R, McCarley RW, Shenton ME, Kubicki M. Anterior limb of the internal capsule in schizophrenia: a diffusion tensor tractography study. Brain Imaging Behav 2013; 6:417-25. [PMID: 22415192 DOI: 10.1007/s11682-012-9152-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Thalamo-cortical feedback loops play a key role in the processing and coordination of processing and integration of perceptual inputs and outputs, and disruption in this connection has long been hypothesized to contribute significantly to neuropsychological disturbances in schizophrenia. To test this hypothesis, we applied diffusion tensor tractography to 18 patients suffering schizophrenia and 20 control subjects. Fractional anisotropy (FA) was evaluated in the bilateral anterior and posterior limbs of the internal capsule, and correlated with clinical and neurocognitive measures. Patients diagnosed with schizophrenia showed significantly reduced FA bilaterally in the anterior but not the posterior limb of the internal capsule, compared with healthy control subjects. Lower FA correlated with lower scores on tests of declarative episodic memory in the patient group only. These findings suggest that disruptions, bilaterally, in thalamo-cortical connections in schizophrenia may contribute to disease-related impairment in the coordination of mnemonic processes of encoding and retrieval that are vital for efficient learning of new information.
Collapse
Affiliation(s)
- Gudrun Rosenberger
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, 1249 Boylston Street, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|