1
|
Tschiersch M, Umakantha A, Williamson RC, Smith MA, Barbosa J, Compte A. Redundant, weakly connected prefrontal hemispheres balance precision and capacity in spatial working memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.15.633176. [PMID: 39868323 PMCID: PMC11760753 DOI: 10.1101/2025.01.15.633176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
How the prefrontal hemispheres coordinate to adapt to spatial working memory (WM) demands remains an open question. Recently, two models have been proposed: A specialized model, where each hemisphere governs contralateral behavior, and a redundant model, where both hemispheres equally guide behavior in the full visual space. To explore these alternatives, we analyzed simultaneous bilateral prefrontal cortex recordings from three macaque monkeys performing a visuo-spatial WM task. Each hemisphere represented targets across the full visual field and equally predicted behavioral imprecisions. Furthermore, memory errors were weakly correlated between hemispheres, suggesting that redundant, weakly coupled prefrontal hemispheres support spatial WM. Attractor model simulations showed that the hemispheric redundancy improved precision in simple tasks, whereas weak inter-hemispheric coupling allowed for specialized hemispheres in complex tasks. This interhemispheric architecture reconciles previous findings thought to support distinct models into a unified architecture, providing a versatile interhemispheric architecture that adapts to varying cognitive demands.
Collapse
Affiliation(s)
| | - Akash Umakantha
- Center for the Neural Basis of Cognition, Pittsburgh PA, USA
- Carnegie Mellon University Neuroscience Institute, Pittsburgh PA, USA
| | - Ryan C Williamson
- Center for the Neural Basis of Cognition, Pittsburgh PA, USA
- Carnegie Mellon University Neuroscience Institute, Pittsburgh PA, USA
| | - Matthew A Smith
- Center for the Neural Basis of Cognition, Pittsburgh PA, USA
- Carnegie Mellon University Neuroscience Institute, Pittsburgh PA, USA
- Carnegie Mellon University Biomedical Engineering Institute, Pittsburgh PA, USA
| | - Joao Barbosa
- Laboratoire de Neurosciences Cognitives et Computationnelles, INSERM U960, Ecole Normale Superieure - PSL Research University, 75005, Paris, France
- Cognitive Neuroimaging Unit, INSERM, CEA, CNRS, Université Paris-Saclay, NeuroSpin center, 91191 Gif/Yvette, France
- Institut de neuromodulation, GHU Paris, psychiatrie et neurosciences, centre hospitalier Sainte-Anne, pôle hospitalo-universitaire 15, Université Paris Cité, Paris, France
| | | |
Collapse
|
2
|
Zhang H, Kuang Q, Li R, Song Z, She S, Zheng Y. Association between homotopic connectivity and clinical symptoms in first-episode schizophrenia. Heliyon 2024; 10:e30347. [PMID: 38707391 PMCID: PMC11066690 DOI: 10.1016/j.heliyon.2024.e30347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 04/13/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024] Open
Abstract
Background Abnormal functional connectivity (FC) in the brain has been observed in schizophrenia patients. However, studies on FC between homotopic brain regions are limited, and the results of these studies are inconsistent. The aim of this study was to compare homotopic connectivity between first-episode schizophrenia (FES) patients and healthy subjects and assess its correlation with clinical symptoms. Methods Thirty-one FES patients and thirty-three healthy controls (HC) were included in the study. The voxel-mirrored homotopic connectivity (VMHC) method of resting-state functional magnetic resonance imaging (rs-fMRI) was used to analyse the changes in homotopic connectivity between the two groups. The 5-factor PANSS model was used to quantitatively evaluate the severity of symptoms in FES patients. Partial correlation analysis was used to assess the correlation between homotopic connectivity changes and clinical symptoms. Results Compared to those in the HC group, VMHC values were decreased in the paracentral lobule (PL), thalamus, and superior temporal gyrus (STG) in the FES group (P < 0.05, FDR correction). No significant differences in white matter volume (WMV) within the subregion of the corpus callosum or in brain regions associated with reduced VMHC were observed between the two groups. Partial correlation analyses revealed that VMHC in the bilateral STG of FES patients was positively correlated with negative symptoms (rleft = 0.46, p < 0.05; rright = 0.47, p < 0.05), and VMHC in the right thalamus was negatively correlated with disorganized/concrete symptoms (rright = 0.45, p < 0.05). Conclusion Our study revealed that homotopic connectivity is altered in the resting-state brain of FES patients and correlates with the severity of negative symptoms; this change may be independent of structural changes in white matter. These findings may contribute to the development of the abnormal connectivity hypothesis in schizophrenia patients.
Collapse
Affiliation(s)
| | | | - Ruikeng Li
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, China
| | - Zhen Song
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, China
| | - Shenglin She
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, China
| | - Yingjun Zheng
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, China
| |
Collapse
|
3
|
Xie Y, Li C, Guan M, Zhang T, Ma C, Wang Z, Ma Z, Wang H, Fang P. Low-frequency rTMS induces modifications in cortical structural connectivity - functional connectivity coupling in schizophrenia patients with auditory verbal hallucinations. Hum Brain Mapp 2024; 45:e26614. [PMID: 38375980 PMCID: PMC10878014 DOI: 10.1002/hbm.26614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/09/2024] [Accepted: 01/19/2024] [Indexed: 02/21/2024] Open
Abstract
Auditory verbal hallucinations (AVH) are distinctive clinical manifestations of schizophrenia. While low-frequency repetitive transcranial magnetic stimulation (rTMS) has demonstrated potential in mitigating AVH, the precise mechanisms by which it operates remain obscure. This study aimed to investigate alternations in structural connectivity and functional connectivity (SC-FC) coupling among schizophrenia patients with AVH prior to and following treatment with 1 Hz rTMS that specifically targets the left temporoparietal junction. Initially, patients exhibited significantly reduced macroscopic whole brain level SC-FC coupling compared to healthy controls. Notably, SC-FC coupling increased significantly across multiple networks, including the somatomotor, dorsal attention, ventral attention, frontoparietal control, and default mode networks, following rTMS treatment. Significant alternations in SC-FC coupling were noted in critical nodes comprising the somatomotor network and the default mode network, such as the precentral gyrus and the ventromedial prefrontal cortex, respectively. The alternations in SC-FC coupling exhibited a correlation with the amelioration of clinical symptom. The results of our study illuminate the intricate relationship between white matter structures and neuronal activity in patients who are receiving low-frequency rTMS. This advances our understanding of the foundational mechanisms underlying rTMS treatment for AVH.
Collapse
Affiliation(s)
- Yuanjun Xie
- Military Medical Psychology SchoolFourth Military Medical UniversityXi'anChina
- Department of Radiology, Xijing HospitalFourth Military Medical UniversityXi'anChina
| | - Chenxi Li
- Military Medical Psychology SchoolFourth Military Medical UniversityXi'anChina
| | - Muzhen Guan
- Department of Mental HealthXi'an Medical CollegeXi'anChina
| | - Tian Zhang
- Military Medical Psychology SchoolFourth Military Medical UniversityXi'anChina
| | - Chaozong Ma
- Military Medical Psychology SchoolFourth Military Medical UniversityXi'anChina
| | - Zhongheng Wang
- Department of Psychiatry, Xijing HospitalFourth Military Medical UniversityXi'anChina
| | - Zhujing Ma
- Military Medical Psychology SchoolFourth Military Medical UniversityXi'anChina
| | - Huaning Wang
- Department of Psychiatry, Xijing HospitalFourth Military Medical UniversityXi'anChina
| | - Peng Fang
- Military Medical Psychology SchoolFourth Military Medical UniversityXi'anChina
- Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent PerceptionXi'anChina
| |
Collapse
|
4
|
Klaassen AL, Michel C, Stüble M, Kaess M, Morishima Y, Kindler J. Reduced anterior callosal white matter in risk for psychosis associated with processing speed as a fundamental cognitive impairment. Schizophr Res 2024; 264:211-219. [PMID: 38157681 DOI: 10.1016/j.schres.2023.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/29/2023] [Accepted: 12/17/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Previous research in psychotic disorders discovered associations between reduced integrity of white matter (WM) in the corpus callosum (CC) and impaired cognitive functions, suggesting processing speed as a central construct. However, it is still largely unexplored to what extent disruption in callosal WM is related to cognitive deficits during the risk stage prior to psychosis. METHODS To address this gap, we measured the WM integrity in CC by fractional anisotropy (FA) and assessed cognition in 60 clinical-high risk for psychosis (CHR) patients during adolescence/young adulthood and 38 healthy control (HC) subjects. We employed tract based spatial statistics to examine group differences and associations between CC-FA and processing speed, executive function, and spatial working memory. RESULTS We revealed deficits in processing speed, executive function, and spatial working memory of CHR patients, and reductions in FA of the genu and the body of the CC (p < 0.05, corrected for multiple comparisons) compared to HC. A mediation analysis using the combined sample (CHR + HC) showed that processing speed mediates the associations between the impaired CC structure and executive function and spatial working memory, respectively. Exploratory analyses between CC-FA and the cognitive domains located associations of processing speed in the genu and the body of CC with distinct spatial distributions of executive function and spatial working memory. CONCLUSION We suggest processing speed as a subordinate cognitive factor contributing to the associations between callosal WM, executive function and working memory. These results extend findings in psychotic disorders to the prior risk stage.
Collapse
Affiliation(s)
- Arndt-Lukas Klaassen
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy Bern, University of Bern, Switzerland.
| | - Chantal Michel
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy Bern, University of Bern, Switzerland
| | - Miriam Stüble
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy Bern, University of Bern, Switzerland; Graduate School for Health Sciences, University of Bern, Bern, Switzerland
| | - Michael Kaess
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy Bern, University of Bern, Switzerland; University Hospital Heidelberg, Department of Child and Adolescent Psychiatry, Center for Psychosocial Medicine, University of Heidelberg, Germany
| | - Yosuke Morishima
- University Hospital of Psychiatry Bern, Department of Psychiatric Neurophysiology, University of Bern, Switzerland
| | - Jochen Kindler
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy Bern, University of Bern, Switzerland
| |
Collapse
|
5
|
Tao B, Xiao Y, Li B, Yu W, Zhu F, Gao Z, Cao H, Gong Q, Gu S, Qiu C, Lui S. Linked patterns of interhemispheric functional connectivity and microstructural characteristics of the corpus callosum in antipsychotic-naive first-episode schizophrenia. Asian J Psychiatr 2023; 86:103659. [PMID: 37327564 DOI: 10.1016/j.ajp.2023.103659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/18/2023]
Abstract
OBJECTIVE Many magnetic resonance imaging (MRI) studies have showed significant structural abnormalities of the corpus callosum (CC) and dysregulated interhemispheric functional connectivity (FC) in schizophrenia. Although the hemispheres are mainly linked through CC, few studies directly examined the relationship between aberrant interhemispheric FC and the white matter deficits of the CC in schizophrenia. METHODS One hundred and sixty-nine antipsychotic-naive first-episode schizophrenia patients (AN-FES) and 214 healthy controls (HCs) were recruited. Diffusional and functional MRI data were obtained for each participant, and fractional anisotropy (FA) values of the five CC subregions and interhemispheric FC for each participant were acquired. Between-group differences in these metrics were compared using multivariate analysis of covariance (MANCOVA). Moreover, sparse canonical correlation analysis (sCCA) was conducted to explore correlations of fibers integrity of the CC subregions with dysregulated interhemispheric FC in patients. RESULTS Compared with HCs, the patients with schizophrenia showed significantly reduced FA values of the CC subregions and dysregulated connectivity between two cerebral hemispheres. The canonical correlation coefficients identified five significant sCCA modes between FA and FC (r > 0.75, p < 0.001), suggesting strong relationships between FA values of the CC subregions and interhemispheric FC in patients. CONCLUSION Our findings support a key role of CC in maintaining ongoing functional communication between two cerebral hemispheres, and suggest that microstructural changes of white matter fibers crossing different CC subregions may affect special interhemispheric FC in schizophrenia.
Collapse
Affiliation(s)
- Bo Tao
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yuan Xiao
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Bin Li
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, No. 2006 Xiyuan Avenue, West Hi-Tech Zone, 611731, Chengdu, China
| | - Wei Yu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Fei Zhu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Ziyang Gao
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Hengyi Cao
- Center for Psychiatry Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY, USA; Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY, USA
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| | - Shi Gu
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, No. 2006 Xiyuan Avenue, West Hi-Tech Zone, 611731, Chengdu, China..
| | - Changjian Qiu
- Mental Health Center, West China Hospital of Sichuan University, 28 Dianxin Street, Chengdu, China.
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
6
|
Tseng HH, Hsu CF, Lu TH, Yang YK, Chen PS, Lin PT, Chang YPE, Weng JC. Disrupted white matter network of brain structural connectomes in bipolar disorder patients revealed by q-ball imaging. J Affect Disord 2023; 330:239-244. [PMID: 36870453 DOI: 10.1016/j.jad.2023.02.139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
BACKGROUND Structural and functional brain changes have been found to be associated with altered emotion and cognition in patients with bipolar disorder (BD). Widespread microstructural white matter abnormalities have been observed using traditional structural imaging in BD. q-Ball imaging (QBI) and graph theoretical analysis (GTA) improve the specificity and sensitivity and high accuracy of fiber tracking. We applied QBI and GTA to investigate and compare the structural connectivity alterations and network alterations in patients with and without BD. METHODS Sixty-two patients with BD and 62 healthy controls (HCs) completed a MR scan. We evaluated the group differences in generalized fractional anisotropy (GFA) and normalized quantitative anisotropy (NQA) values by voxel-based statistical analysis with QBI. We also evaluated the group differences in topological parameters of GTA and subnetwork interconnections in network-based statistical analysis (NBS). RESULTS The QBI indices in the BD group were significantly lower than those in the HC group in the corpus callosum, cingulate gyrus, and caudate. The GTA indices indicated that the BD group demonstrated less global integration and higher local segregation than the HC group, but they retained small-world properties. NBS evaluation showed that the majority of the more connected subnetworks in BD occurred in thalamo-temporal/parietal connectivity. CONCLUSION Our findings supported white matter integrity with network alterations in BD.
Collapse
Affiliation(s)
- Huai-Hsuan Tseng
- Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Fen Hsu
- Division of Clinical Psychology, Graduate Institute of Behavioral Sciences, Chang Gung University, Taoyuan, Taiwan; Department of Child Psychiatry, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Tsung-Hua Lu
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yen Kuang Yang
- Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Psychiatry, Tainan Hospital, Ministry of Health and Welfare, Tainan, Taiwan
| | - Po See Chen
- Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Ti Lin
- Department of Medical Imaging and Radiological Sciences and Department of Artificial Intelligence, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Peng Eve Chang
- Department of Counseling and Clinical Psychology, Columbia University, New York City, NY, USA
| | - Jun-Cheng Weng
- Department of Medical Imaging and Radiological Sciences and Department of Artificial Intelligence, Chang Gung University, Taoyuan, Taiwan; Medical Imaging Research Center, Institute for Radiological Research, Chang Gung University and Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Department of Psychiatry, Chang Gung Memorial Hospital, Chiayi, Taiwan.
| |
Collapse
|
7
|
Smigielski L, Stämpfli P, Wotruba D, Buechler R, Sommer S, Gerstenberg M, Theodoridou A, Walitza S, Rössler W, Heekeren K. White matter microstructure and the clinical risk for psychosis: A diffusion tensor imaging study of individuals with basic symptoms and at ultra-high risk. Neuroimage Clin 2022; 35:103067. [PMID: 35679786 PMCID: PMC9178487 DOI: 10.1016/j.nicl.2022.103067] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/19/2022] [Accepted: 05/28/2022] [Indexed: 12/29/2022]
Abstract
This DTI cross-sectional study compared UHR, basic symptom & control groups (n = 112). The splenium of UHR individuals exhibited differences in fractional anisotropy (FA). Basic symptoms alone were not associated with white matter microstructure changes. Large differences in FA & radial diffusivity were found in converters to psychosis. Regional FA was inversely correlated with the general psychopathology domain.
Background Widespread white matter abnormalities are a frequent finding in chronic schizophrenia patients. More inconsistent results have been provided by the sparser literature on at-risk states for psychosis, i.e., emerging subclinical symptoms. However, considering risk as a homogenous construct, an approach of earlier studies, may impede our understanding of neuro-progression into psychosis. Methods An analysis was conducted of 3-Tesla MRI diffusion and symptom data from 112 individuals (mean age, 21.97 ± 4.19) within two at-risk paradigm subtypes, only basic symptoms (n = 43) and ultra-high risk (n = 37), and controls (n = 32). Between-group comparisons (involving three study groups and further split based on the subsequent transition to schizophrenia) of four diffusion-tensor-imaging-derived scalars were performed using voxelwise tract-based spatial statistics, followed by correlational analyses with Structured Interview for Prodromal Syndromes responses. Results Relative to controls, fractional anisotropy was lower in the splenium of the corpus callosum of ultra-high-risk individuals, but only before stringent multiple-testing correction, and negatively correlated with General Symptom severity among at-risk individuals. At-risk participants who transitioned to schizophrenia within 3 years, compared to those that did not transition, had more severe WM differences in fractional anisotropy and radial diffusivity (particularly in the corpus callosum, anterior corona radiata, and motor/sensory tracts), which were even more extensive compared to healthy controls. Conclusions These findings align with the subclinical symptom presentation and more extensive disruptions in converters, suggestive of severity-related demyelination or axonal pathology. Fine-grained but detectable differences among ultra-high-risk subjects (i.e., with brief limited intermittent and/or attenuated psychotic symptoms) point to the splenium as a discrete site of emerging psychopathology, while basic symptoms alone were not associated with altered fractional anisotropy.
Collapse
Affiliation(s)
- Lukasz Smigielski
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland; Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| | - Philipp Stämpfli
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland; MR-Center of the Psychiatric Hospital and the Department of Child and Adolescent Psychiatry, University of Zurich, Zurich, Switzerland
| | - Diana Wotruba
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Roman Buechler
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland; Department of Neuroradiology, University Hospital of Zurich, Zurich, Switzerland
| | - Stefan Sommer
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland; MR-Center of the Psychiatric Hospital and the Department of Child and Adolescent Psychiatry, University of Zurich, Zurich, Switzerland
| | - Miriam Gerstenberg
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Anastasia Theodoridou
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland; Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Wulf Rössler
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland; Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin, Campus Charité Mitte, Berlin, Germany; Laboratory of Neuroscience (LIM 27), Institute of Psychiatry, Universidade de São Paulo, São Paulo, Brazil
| | - Karsten Heekeren
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland; Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland; Department of Psychiatry and Psychotherapy I, LVR-Hospital, Cologne, Germany
| |
Collapse
|
8
|
Lee DK, Lee H, Ryu V, Kim SW, Ryu S. Different patterns of white matter microstructural alterations between psychotic and non-psychotic bipolar disorder. PLoS One 2022; 17:e0265671. [PMID: 35303011 PMCID: PMC8933039 DOI: 10.1371/journal.pone.0265671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/06/2022] [Indexed: 11/29/2022] Open
Abstract
This study aimed to investigate alterations in white matter (WM) microstructure in patients with psychotic and non-psychotic bipolar disorder (PBD and NPBD, respectively). We used 3T-magnetic resonance imaging to examine 29 PBD, 23 NPBD, and 65 healthy control (HC) subjects. Using tract-based spatial statistics for diffusion tensor imaging data, we compared fractional anisotropy (FA) and mean diffusion (MD) pairwise among the PBD, NPBD, and HC groups. We found several WM areas of decreased FA or increased MD in the PBD and NPBD groups compared to HC. PBD showed widespread FA decreases in the corpus callosum as well as the bilateral internal capsule and fornix. However, NPBD showed local FA decreases in a part of the corpus callosum body as well as in limited regions within the left cerebral hemisphere, including the anterior and posterior corona radiata and the cingulum. In addition, both PBD and NPBD shared widespread MD increases across the posterior corona radiata, cingulum, and sagittal stratum. These findings suggest that widespread WM microstructural alterations might be a common neuroanatomical characteristic of bipolar disorder, regardless of being psychotic or non-psychotic. Particularly, PBD might involve extensive inter-and intra-hemispheric WM connectivity disruptions.
Collapse
Affiliation(s)
- Dong-Kyun Lee
- Department of Mental Health Research, National Center for Mental Health, Seoul, Republic of Korea
| | - Hyeongrae Lee
- Department of Mental Health Research, National Center for Mental Health, Seoul, Republic of Korea
| | - Vin Ryu
- Department of Mental Health Research, National Center for Mental Health, Seoul, Republic of Korea
| | - Sung-Wan Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Seunghyong Ryu
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Republic of Korea
- * E-mail:
| |
Collapse
|
9
|
Xu M, Zhang W, Hochwalt P, Yang C, Liu N, Qu J, Sun H, DelBello MP, Lui S, Nery FG. Structural connectivity associated with familial risk for mental illness: A meta‐analysis of diffusion tensor imaging studies in relatives of patients with severe mental disorders. Hum Brain Mapp 2022; 43:2936-2950. [PMID: 35285560 PMCID: PMC9120564 DOI: 10.1002/hbm.25827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/23/2022] [Accepted: 02/14/2022] [Indexed: 02/05/2023] Open
Abstract
Schizophrenia (SCZ), bipolar disorder (BD), and major depressive disorder (MDD) are heritable conditions with overlapping genetic liability. Transdiagnostic and disorder‐specific brain changes associated with familial risk for developing these disorders remain poorly understood. We carried out a meta‐analysis of diffusion tensor imaging (DTI) studies to investigate white matter microstructure abnormalities in relatives that might correspond to shared and discrete biomarkers of familial risk for psychotic or mood disorders. A systematic search of PubMed and Embase was performed to identify DTI studies in relatives of SCZ, BD, and MDD patients. Seed‐based d Mapping software was used to investigate global differences in fractional anisotropy (FA) between overall and disorder‐specific relatives and healthy controls (HC). Our search identified 25 studies that met full inclusion criteria. A total of 1,144 relatives and 1,238 HC were included in the meta‐analysis. The overall relatives exhibited decreased FA in the genu and splenium of corpus callosum (CC) compared with HC. This finding was found highly replicable in jack‐knife analysis and subgroup analyses. In disorder‐specific analysis, compared to HC, relatives of SCZ patients exhibited the same changes while those of BD showed reduced FA in the left inferior longitudinal fasciculus (ILF). The present study showed decreased FA in the genu and splenium of CC in relatives of SCZ, BD, and MDD patients, which might represent a shared familial vulnerability marker of severe mental illness. The white matter abnormalities in the left ILF might represent a specific familial risk for bipolar disorder.
Collapse
Affiliation(s)
- Mengyuan Xu
- Department of Radiology West China Hospital of Sichuan University Chengdu China
- Research Unit of Psychoradiology Chinese Academy of Medical Sciences Chengdu China
| | - Wenjing Zhang
- Department of Radiology West China Hospital of Sichuan University Chengdu China
- Research Unit of Psychoradiology Chinese Academy of Medical Sciences Chengdu China
| | - Paul Hochwalt
- Department of Psychiatry and Behavioral Neuroscience University of Cincinnati College of Medicine Cincinnati Ohio USA
| | - Chengmin Yang
- Department of Radiology West China Hospital of Sichuan University Chengdu China
- Research Unit of Psychoradiology Chinese Academy of Medical Sciences Chengdu China
| | - Naici Liu
- Department of Radiology West China Hospital of Sichuan University Chengdu China
- Research Unit of Psychoradiology Chinese Academy of Medical Sciences Chengdu China
| | - Jiao Qu
- Department of Radiology West China Hospital of Sichuan University Chengdu China
- Research Unit of Psychoradiology Chinese Academy of Medical Sciences Chengdu China
| | - Hui Sun
- Department of Radiology West China Hospital of Sichuan University Chengdu China
- Research Unit of Psychoradiology Chinese Academy of Medical Sciences Chengdu China
| | - Melissa P. DelBello
- Department of Psychiatry and Behavioral Neuroscience University of Cincinnati College of Medicine Cincinnati Ohio USA
| | - Su Lui
- Department of Radiology West China Hospital of Sichuan University Chengdu China
- Research Unit of Psychoradiology Chinese Academy of Medical Sciences Chengdu China
| | - Fabiano G. Nery
- Department of Psychiatry and Behavioral Neuroscience University of Cincinnati College of Medicine Cincinnati Ohio USA
| |
Collapse
|
10
|
Is treatment-resistant schizophrenia associated with distinct neurobiological callosal connectivity abnormalities? CNS Spectr 2021; 26:545-549. [PMID: 32772934 DOI: 10.1017/s1092852920001753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Resistance to antipsychotic treatment affects up to 30% of patients with schizophrenia. Although the time course of development of treatment-resistant schizophrenia (TRS) varies from patient to patient, the reasons for these variations remain unknown. Growing evidence suggests brain dysconnectivity as a significant feature of schizophrenia. In this study, we compared fractional anisotropy (FA) of brain white matter between TRS and non-treatment-resistant schizophrenia (non-TRS) patients. Our central hypothesis was that TRS is associated with reduced FA values. METHODS TRS was defined as the persistence of moderate to severe symptoms after adequate treatment with at least two antipsychotics from different classes. Diffusion-tensor brain MRI obtained images from 34 TRS participants and 51 non-TRS. Whole-brain analysis of FA and axial, radial, and mean diffusivity were performed using Tract-Based Spatial Statistics (TBSS) and FMRIB's Software Library (FSL), yielding a contrast between TRS and non-TRS patients, corrected for multiple comparisons using family-wise error (FWE) < 0.05. RESULTS We found a significant reduction in FA in the splenium of corpus callosum (CC) in TRS when compared to non-TRS. The antipsychotic dose did not relate to the splenium CC. CONCLUSION Our results suggest that the focal abnormality of CC may be a potential biomarker of TRS.
Collapse
|
11
|
Bang M, Eom J, An C, Kim S, Park YW, Ahn SS, Kim J, Lee SK, Lee SH. An interpretable multiparametric radiomics model for the diagnosis of schizophrenia using magnetic resonance imaging of the corpus callosum. Transl Psychiatry 2021; 11:462. [PMID: 34489405 PMCID: PMC8421339 DOI: 10.1038/s41398-021-01586-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/04/2021] [Accepted: 08/19/2021] [Indexed: 01/06/2023] Open
Abstract
There is a growing need to develop novel strategies for the diagnosis of schizophrenia using neuroimaging biomarkers. We investigated the robustness of the diagnostic model for schizophrenia using radiomic features from T1-weighted and diffusion tensor images of the corpus callosum (CC). A total of 165 participants [86 schizophrenia and 79 healthy controls (HCs)] were allocated to training (N = 115) and test (N = 50) sets. Radiomic features of the CC subregions were extracted from T1-weighted, apparent diffusion coefficient (ADC), and fractional anisotropy (FA) images (N = 1605). Following feature selection, various combinations of classifiers were trained, and Bayesian optimization was adopted in the best performing classifier. Discrimination, calibration, and clinical utility of the model were assessed. An online calculator was constructed to offer the probability of having schizophrenia. SHapley Additive exPlanations (SHAP) was applied to explore the interpretability of the model. We identified 30 radiomic features to differentiate participants with schizophrenia from HCs. The Bayesian optimized model achieved the highest performance, with an area under the curve (AUC), accuracy, sensitivity, and specificity of 0.89 (95% confidence interval: 0.81-0.98), 80.0, 83.3, and 76.9%, respectively, in the test set. The final model offers clinical probability in an online calculator. The model explanation by SHAP suggested that second-order features from the posterior CC were highly associated with the risk of schizophrenia. The multiparametric radiomics model focusing on the CC shows its robustness for the diagnosis of schizophrenia. Radiomic features could be a potential source of biomarkers that support the biomarker-based diagnosis of schizophrenia and improve the understanding of its neurobiology.
Collapse
Affiliation(s)
- Minji Bang
- grid.410886.30000 0004 0647 3511Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| | - Jihwan Eom
- grid.15444.300000 0004 0470 5454Department of Computer Science, Yonsei University, Seoul, Republic of Korea
| | - Chansik An
- grid.416665.60000 0004 0647 2391Research and Analysis Team, National Health Insurance Service Ilsan Hospital, Goyang, Republic of Korea
| | - Sooyon Kim
- grid.15444.300000 0004 0470 5454Department of Statistics and Data Science, Yonsei University, Seoul, Republic of Korea
| | - Yae Won Park
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Sung Soo Ahn
- grid.15444.300000 0004 0470 5454Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jinna Kim
- grid.15444.300000 0004 0470 5454Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung-Koo Lee
- grid.15444.300000 0004 0470 5454Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang-Hyuk Lee
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea.
| |
Collapse
|
12
|
Relationship of Corpus Callosum Integrity with Working Memory, Planning, and Speed of Processing in Patients with First-Episode and Chronic Schizophrenia. J Clin Med 2021; 10:jcm10143158. [PMID: 34300325 PMCID: PMC8304050 DOI: 10.3390/jcm10143158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/09/2021] [Accepted: 07/11/2021] [Indexed: 11/16/2022] Open
Abstract
There is a paucity of reports examining the relationship between the integrity of the corpus callosum (CC) and different aspects of cognitive functioning in patients with first-episode (FES) and chronic schizophrenia (CS) simultaneously; furthermore, what results exist are inconclusive. We used diffusion tensor imaging tractography to investigate differences in integrity in five regions of the CC between FES, CS, and healthy controls (HC). Additionally, we analyzed correlations between these regions' integrity and working memory, planning, and speed of processing. Eighteen patients with FES, 55 patients with CS, and 30 HC took part in the study. We assessed cognitive functions with four tasks from Measurement and Treatment Research to Improve Cognition in Schizophrenia. Patients with CS showed lower fractional anisotropy (FA) in Region 5 (statistical trend) and higher mean diffusivity (MD) in Regions 4 and 5 than HC, and patients with FES had higher MD in Region 3 (statistical trend) than HC. Both clinical groups performed worse on working memory and speed of processing tasks than HC, and patients with CS scored worse than HC on independent planning, and worse than FES and HC on dependent planning. Moreover, in patients with CS, MD in Region 3 was correlated with verbal working memory. Our results suggest that patients with FES and CS are characterized by impaired integrity of the middle and posterior CC, respectively. We confirmed that both clinical groups have cognitive impairments. Moreover, the integrity of the middle CC may influence planning in patients with CS.
Collapse
|
13
|
Chang X, Mandl RCW, Pasternak O, Brouwer RM, Cahn W, Collin G. Diffusion MRI derived free-water imaging measures in patients with schizophrenia and their non-psychotic siblings. Prog Neuropsychopharmacol Biol Psychiatry 2021; 109:110238. [PMID: 33400942 DOI: 10.1016/j.pnpbp.2020.110238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/16/2020] [Accepted: 12/30/2020] [Indexed: 10/22/2022]
Abstract
Free-water imaging is a diffusion MRI technique that separately models water diffusion hindered by fiber tissue and water that disperses freely in the extracellular space. Studies using this technique have shown that schizophrenia is characterized by a lower level of fractional anisotropy of the tissue compartment (FAt) and higher free-water fractional volume (FW). It is unknown, however, whether such abnormalities are an expression of pre-existing (genetic) risk for schizophrenia or a manifestation of the illness. To investigate the contribution of familial risk factors to white matter abnormalities, we used the free-water imaging technique to assess FAt and FW in a large cohort of 471 participants including 161 patients with schizophrenia, 182 non-psychotic siblings, and 128 healthy controls. In this sample, patients did not show significant differences in FAt as compared to controls, but did exhibit a higher level of FW relative to both controls and siblings in the left uncinate fasciculus, superior corona radiata and fornix / stria terminalis. This increase in FW was found to be related to, though not solely explained by, ventricular enlargement. Siblings did not show significant FW abnormalities. However, siblings did show a higher level of FAt as compared to controls and patients, in line with results of a previous study on the same data using conventional DTI. Taken together, our findings suggest that extracellular free-water accumulation in patients is likely a manifestation of established disease rather than an expression of familial risk for schizophrenia and that super-normal levels of FAt in unaffected siblings may reflect a compensatory process.
Collapse
Affiliation(s)
- Xiao Chang
- Department of Psychiatry, University Medical Center Utrecht (UMCU), UMCU Brain Center, Utrecht, the Netherlands; Social, Genetic and Developmental Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
| | - René C W Mandl
- Department of Psychiatry, University Medical Center Utrecht (UMCU), UMCU Brain Center, Utrecht, the Netherlands
| | - Ofer Pasternak
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Rachel M Brouwer
- Department of Psychiatry, University Medical Center Utrecht (UMCU), UMCU Brain Center, Utrecht, the Netherlands
| | - Wiepke Cahn
- Department of Psychiatry, University Medical Center Utrecht (UMCU), UMCU Brain Center, Utrecht, the Netherlands; Altrecht Institute of Mental Health Care, Utrecht, the Netherlands
| | - Guusje Collin
- Department of Psychiatry, University Medical Center Utrecht (UMCU), UMCU Brain Center, Utrecht, the Netherlands; Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, USA; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Boston, USA
| |
Collapse
|
14
|
Wang D, Zhuo K, Sun Y, Xiang Q, Guo X, Wang J, Xu Y, Liu D, Li Y. Middle temporal corpus callosum impairment as a predictor of eight-week treatment outcome of drug-naïve first-episode psychosis patients: A pilot longitudinal study. Schizophr Res 2021; 232:95-97. [PMID: 34029947 DOI: 10.1016/j.schres.2021.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 05/01/2021] [Accepted: 05/02/2021] [Indexed: 11/19/2022]
Affiliation(s)
- Danni Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Kaiming Zhuo
- First-episode Schizophrenia and Early Psychosis Program, Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yu Sun
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Zhejiang 310052, China; Department of Radiology, the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang 310052, China
| | - Qiong Xiang
- First-episode Schizophrenia and Early Psychosis Program, Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Xiaoyun Guo
- First-episode Schizophrenia and Early Psychosis Program, Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Jinhong Wang
- Department of Medical Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yifeng Xu
- First-episode Schizophrenia and Early Psychosis Program, Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Institute of Mental Health, Fudan University, Shanghai 200030, China
| | - Dengtang Liu
- First-episode Schizophrenia and Early Psychosis Program, Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Institute of Mental Health, Fudan University, Shanghai 200030, China.
| | - Yao Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China.
| |
Collapse
|
15
|
Podwalski P, Tyburski E, Szczygieł K, Waszczuk K, Rek-Owodziń K, Mak M, Plichta P, Bielecki M, Rudkowski K, Kucharska-Mazur J, Andrusewicz W, Misiak B, Szulc A, Michalczyk A, Michałowska S, Sagan L, Samochowiec J. White Matter Integrity of the Corpus Callosum and Psychopathological Dimensions in Deficit and Non-Deficit Schizophrenia Patients. J Clin Med 2021; 10:jcm10112225. [PMID: 34063845 PMCID: PMC8196621 DOI: 10.3390/jcm10112225] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/04/2021] [Accepted: 05/19/2021] [Indexed: 12/19/2022] Open
Abstract
Deficit syndrome (DS) is a subtype of schizophrenia characterized by primary persistent negative symptoms. The corpus callosum (CC) appears to be related to psychopathology in schizophrenia. This study assessed white matter integrity in the CC using diffusion tensor imaging (DTI) in deficit and non-deficit schizophrenia (NDS) patients. We also investigated the psychopathological dimensions of schizophrenia and their relationship to CC integrity. Fifteen DS patients, 40 NDS patients, and 30 healthy controls (HC) underwent psychiatric evaluation and neuroimaging. We divided the CC into five regions and assessed their fractional anisotropy (FA) and mean diffusivity (MD). Psychopathology was assessed with the Positive and Negative Syndrome Scale. DS patients had lower FA than NDS patients and HC, and higher MD in Region 5 of the CC than did HC. NDS patients had higher MD in Region 4 of the CC. The patient groups differed in terms of negative symptoms. After differentiating clinical groups and HC, no significant correlations were observed between DTI measures and psychopathological symptoms. Our results suggest that DS and NDS are characterized by minor impairments of the posterior CC. We confirmed that DS patients have greater negative psychopathology than NDS patients. Our results are preliminary, and further studies are needed.
Collapse
Affiliation(s)
- Piotr Podwalski
- Department of Psychiatry, Pomeranian Medical University, 71-460 Szczecin, Poland; (K.S.); (K.W.); (K.R.); (J.K.-M.); (A.M.); (J.S.)
- Correspondence:
| | - Ernest Tyburski
- Institute of Psychology, SWPS University of Social Sciences and Humanities, 61-719 Poznan, Poland;
| | - Krzysztof Szczygieł
- Department of Psychiatry, Pomeranian Medical University, 71-460 Szczecin, Poland; (K.S.); (K.W.); (K.R.); (J.K.-M.); (A.M.); (J.S.)
| | - Katarzyna Waszczuk
- Department of Psychiatry, Pomeranian Medical University, 71-460 Szczecin, Poland; (K.S.); (K.W.); (K.R.); (J.K.-M.); (A.M.); (J.S.)
| | - Katarzyna Rek-Owodziń
- Department of Health Psychology, Pomeranian Medical University, 71-460 Szczecin, Poland; (K.R.-O.); (M.M.); (P.P.); (M.B.)
| | - Monika Mak
- Department of Health Psychology, Pomeranian Medical University, 71-460 Szczecin, Poland; (K.R.-O.); (M.M.); (P.P.); (M.B.)
| | - Piotr Plichta
- Department of Health Psychology, Pomeranian Medical University, 71-460 Szczecin, Poland; (K.R.-O.); (M.M.); (P.P.); (M.B.)
| | - Maksymilian Bielecki
- Department of Health Psychology, Pomeranian Medical University, 71-460 Szczecin, Poland; (K.R.-O.); (M.M.); (P.P.); (M.B.)
| | - Krzysztof Rudkowski
- Department of Psychiatry, Pomeranian Medical University, 71-460 Szczecin, Poland; (K.S.); (K.W.); (K.R.); (J.K.-M.); (A.M.); (J.S.)
| | - Jolanta Kucharska-Mazur
- Department of Psychiatry, Pomeranian Medical University, 71-460 Szczecin, Poland; (K.S.); (K.W.); (K.R.); (J.K.-M.); (A.M.); (J.S.)
| | - Wojciech Andrusewicz
- Department of Neurosurgery, Pomeranian Medical University, 71-252 Szczecin, Poland; (W.A.); (L.S.)
| | - Błażej Misiak
- Department of Genetics, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Agata Szulc
- Department of Psychiatry, Faculty of Health Sciences, Medical University in Warsaw, 05-802 Warsaw, Poland;
| | - Anna Michalczyk
- Department of Psychiatry, Pomeranian Medical University, 71-460 Szczecin, Poland; (K.S.); (K.W.); (K.R.); (J.K.-M.); (A.M.); (J.S.)
| | - Sylwia Michałowska
- Department of Clinical Psychology, Institute of Psychology, University of Szczecin, 71-004 Szczecin, Poland;
| | - Leszek Sagan
- Department of Neurosurgery, Pomeranian Medical University, 71-252 Szczecin, Poland; (W.A.); (L.S.)
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University, 71-460 Szczecin, Poland; (K.S.); (K.W.); (K.R.); (J.K.-M.); (A.M.); (J.S.)
| |
Collapse
|
16
|
McNabb CB, McIlwain ME, Anderson VM, Kydd RR, Sundram F, Russell BR. Aberrant white matter microstructure in treatment-resistant schizophrenia ✰. Psychiatry Res Neuroimaging 2020; 305:111198. [PMID: 33035754 DOI: 10.1016/j.pscychresns.2020.111198] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 02/01/2023]
Abstract
Treatment response in schizophrenia divides into three subcategories: treatment-responsive (first-line responders; FLR), treatment-resistant (TRS), and ultra-treatment-resistant schizophrenia (UTRS). White matter abnormalities could drive antipsychotic resistance but little work has investigated differences between TRS and UTRS. The current study aimed to establish whether differences in white matter structure are present across both treatment-resistant subtypes or if UTRS is distinct from TRS. Diffusion-weighted images were acquired for 18 individuals with TRS, 14 with UTRS, 18 FLR and 20 healthy controls. Measures of fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD) and axial diffusivity (AD) were obtained using tract-based spatial statistics. Analysis of variance and post-hoc t-tests were conducted for each measure. Those with TRS had lower FA than healthy controls in superior longitudinal fasciculus, corpus callosum, thalamic radiation, corticospinal tract, internal capsule, corona radiata and fronto-occipital fasciculus (p<.05 FWE-corrected). Lower FA was also observed in TRS compared with UTRS in the superior longitudinal fasciculus (p<.05 FWE-corrected). No post-hoc tests survived corrections for multiple comparisons and no differences in MD, AD or RD were observed. These data suggest that microstructural deficits in white matter could contribute to TRS but suggest that other mechanisms may be more relevant for UTRS.
Collapse
Affiliation(s)
- Carolyn B McNabb
- School of Pharmacy, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand; School of Psychology and Clinical Language Sciences, University of Reading, Earley Gate, Reading RG6 7BE, United Kingdom
| | - Meghan E McIlwain
- School of Pharmacy, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand
| | - Valerie M Anderson
- School of Pharmacy, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand
| | - Robert R Kydd
- Department of Psychological Medicine, University of Auckland, Auckland City Hospital, 2 Park Road, Grafton, Auckland 1023, New Zealand
| | - Frederick Sundram
- Department of Psychological Medicine, University of Auckland, Auckland City Hospital, 2 Park Road, Grafton, Auckland 1023, New Zealand
| | - Bruce R Russell
- School of Pharmacy, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| |
Collapse
|
17
|
Magnetic resonance diffusion tensor imaging in psychiatry: a narrative review of its potential role in diagnosis. Pharmacol Rep 2020; 73:43-56. [PMID: 33125677 PMCID: PMC7862529 DOI: 10.1007/s43440-020-00177-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 10/04/2020] [Accepted: 10/14/2020] [Indexed: 12/28/2022]
Abstract
Diffusion tensor imaging (DTI) is an imaging technique that uses magnetic resonance. It measures the diffusion of water molecules in tissues, which can occur either without restriction (i.e., in an isotropic manner) or limited by some obstacles, such as cell membranes (i.e., in an anisotropic manner). Diffusion is most often measured in terms of, inter alia, fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD). DTI allows us to reconstruct, visualize, and evaluate certain qualities of white matter. To date, many studies have sought to associate various changes in the distribution of diffusion within the brain with mental diseases and disorders. A better understanding of white matter integrity disorders can help us recognize the causes of diseases, as well as help create objective methods of psychiatric diagnosis, identify biomarkers of mental illness, and improve pharmacotherapy. The aim of this work is to present the characteristics of DTI as well as current research on its use in schizophrenia, affective disorders, and other mental disorders.
Collapse
|
18
|
Tønnesen S, Kaufmann T, de Lange AMG, Richard G, Doan NT, Alnæs D, van der Meer D, Rokicki J, Moberget T, Maximov II, Agartz I, Aminoff SR, Beck D, Barch DM, Beresniewicz J, Cervenka S, Fatouros-Bergman H, Craven AR, Flyckt L, Gurholt TP, Haukvik UK, Hugdahl K, Johnsen E, Jönsson EG, Kolskår KK, Kroken RA, Lagerberg TV, Løberg EM, Nordvik JE, Sanders AM, Ulrichsen K, Andreassen OA, Westlye LT. Brain Age Prediction Reveals Aberrant Brain White Matter in Schizophrenia and Bipolar Disorder: A Multisample Diffusion Tensor Imaging Study. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 5:1095-1103. [PMID: 32859549 DOI: 10.1016/j.bpsc.2020.06.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 06/15/2020] [Accepted: 06/26/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Schizophrenia (SZ) and bipolar disorder (BD) share substantial neurodevelopmental components affecting brain maturation and architecture. This necessitates a dynamic lifespan perspective in which brain aberrations are inferred from deviations from expected lifespan trajectories. We applied machine learning to diffusion tensor imaging (DTI) indices of white matter structure and organization to estimate and compare brain age between patients with SZ, patients with BD, and healthy control (HC) subjects across 10 cohorts. METHODS We trained 6 cross-validated models using different combinations of DTI data from 927 HC subjects (18-94 years of age) and applied the models to the test sets including 648 patients with SZ (18-66 years of age), 185 patients with BD (18-64 years of age), and 990 HC subjects (17-68 years of age), estimating the brain age for each participant. Group differences were assessed using linear models, accounting for age, sex, and scanner. A meta-analytic framework was applied to assess the heterogeneity and generalizability of the results. RESULTS Tenfold cross-validation revealed high accuracy for all models. Compared with HC subjects, the model including all feature sets significantly overestimated the age of patients with SZ (Cohen's d = -0.29) and patients with BD (Cohen's d = 0.18), with similar effects for the other models. The meta-analysis converged on the same findings. Fractional anisotropy-based models showed larger group differences than the models based on other DTI-derived metrics. CONCLUSIONS Brain age prediction based on DTI provides informative and robust proxies for brain white matter integrity. Our results further suggest that white matter aberrations in SZ and BD primarily consist of anatomically distributed deviations from expected lifespan trajectories that generalize across cohorts and scanners.
Collapse
Affiliation(s)
- Siren Tønnesen
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Tobias Kaufmann
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ann-Marie G de Lange
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, United Kingdom
| | - Geneviève Richard
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Nhat Trung Doan
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Dag Alnæs
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Bjørknes University College, Oslo, Norway
| | - Dennis van der Meer
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Jaroslav Rokicki
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Torgeir Moberget
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ivan I Maximov
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ingrid Agartz
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm Region, Stockholm, Sweden; Stockholm Health Care Services, Stockholm Region, Stockholm, Sweden
| | - Sofie R Aminoff
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Early Intervention in Psychosis Advisory Unit for South East Norway, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Dani Beck
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Deanna M Barch
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri; Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri; Department of Radiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Justyna Beresniewicz
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway; NORMENT, Haukeland University Hospital, Bergen, Norway
| | - Simon Cervenka
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm Region, Stockholm, Sweden; Stockholm Health Care Services, Stockholm Region, Stockholm, Sweden
| | - Helena Fatouros-Bergman
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm Region, Stockholm, Sweden; Stockholm Health Care Services, Stockholm Region, Stockholm, Sweden
| | - Alexander R Craven
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway; NORMENT, Haukeland University Hospital, Bergen, Norway; Department of Clinical Engineering, Haukeland University Hospital, Bergen, Norway
| | - Lena Flyckt
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm Region, Stockholm, Sweden; Stockholm Health Care Services, Stockholm Region, Stockholm, Sweden
| | - Tiril P Gurholt
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Unn K Haukvik
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Adult Psychiatry Unit, Department of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Kenneth Hugdahl
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway; NORMENT, Haukeland University Hospital, Bergen, Norway; Department of Radiology, Haukeland University Hospital, Bergen, Norway; Department of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Erik Johnsen
- Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway
| | - Erik G Jönsson
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm Region, Stockholm, Sweden; Stockholm Health Care Services, Stockholm Region, Stockholm, Sweden
| | | | - Knut K Kolskår
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Sunnaas Rehabilitation Hospital HF, Nesodden, Norway
| | - Rune Andreas Kroken
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway; NORMENT, Haukeland University Hospital, Bergen, Norway
| | - Trine V Lagerberg
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Else-Marie Løberg
- Department of Clinical Psychology, University of Bergen, Bergen, Norway; NORMENT, Haukeland University Hospital, Bergen, Norway; Department of Addiction Medicine, Haukeland University Hospital, Bergen, Norway
| | | | - Anne-Marthe Sanders
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Sunnaas Rehabilitation Hospital HF, Nesodden, Norway
| | - Kristine Ulrichsen
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Sunnaas Rehabilitation Hospital HF, Nesodden, Norway
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Lars T Westlye
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
19
|
Wells R, Jacomb I, Swaminathan V, Sundram S, Weinberg D, Bruggemann J, Cropley V, Lenroot RK, Pereira AM, Zalesky A, Bousman C, Pantelis C, Weickert CS, Weickert TW. The Impact of Childhood Adversity on Cognitive Development in Schizophrenia. Schizophr Bull 2020; 46:140-153. [PMID: 31050754 PMCID: PMC6942153 DOI: 10.1093/schbul/sbz033] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Childhood adversity, such as physical, sexual, and verbal abuse, as well as neglect and family conflict, is a risk factor for schizophrenia. Such adversity can lead to disruptions of cognitive function during development, undermining intellectual capabilities and academic achievement. Schizophrenia is a neurodevelopmental disorder that is associated with cognitive impairments that may become evident during childhood. The Australian Schizophrenia Research Bank database comprises a large community cohort (N = 1169) in which we previously identified 3 distinct cognitive groups among people with schizophrenia: (1) Compromised, current, and estimated premorbid cognitive impairment; (2) Deteriorated, substantial decline from estimated premorbid function; and (3) Preserved, performing in the normal cognitive range without decline. The compromised group displayed the worst functional and symptom outcomes. Here, we extend our previous work by assessing the relationship among these categories of cognitive abilities and reported childhood adversity in 836 patients and healthy controls. Exploratory factor analysis of the Childhood Adversity Questionnaire revealed 3 factors (lack of parental involvement; overt abuse; family breakdown and hardship). People with schizophrenia reported significantly more childhood adversity than healthy controls on all items and factors. People with schizophrenia in the compromised group reported significantly more lack of parental involvement and family breakdown and hardship and lower socioeconomic status than those in the deteriorated group. The cognitive groups were not related to family history of psychosis. These findings identify specific social and family factors that impact cognition, highlighting the important role of these factors in the development of cognitive and functional abilities in schizophrenia.
Collapse
Affiliation(s)
- Ruth Wells
- School of Psychiatry, University of New South Wales, Sydney, Australia,Neuroscience Research Australia, Randwick, Sydney, Australia
| | - Isabella Jacomb
- School of Psychiatry, University of New South Wales, Sydney, Australia,Neuroscience Research Australia, Randwick, Sydney, Australia
| | - Vaidy Swaminathan
- Department of Psychiatry, University of Melbourne, Parkville, Australia,Mental Health Program, Monash Medical Centre, Monash Health, Clayton, Australia,Schizophrenia Research Institute, Sydney, Australia,Molecular Psychopharmacology Laboratory, The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Suresh Sundram
- Department of Psychiatry, University of Melbourne, Parkville, Australia,Mental Health Program, Monash Medical Centre, Monash Health, Clayton, Australia,Molecular Psychopharmacology Laboratory, The Florey Institute of Neuroscience and Mental Health, Parkville, Australia,Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, Australia
| | - Danielle Weinberg
- School of Psychiatry, University of New South Wales, Sydney, Australia,Neuroscience Research Australia, Randwick, Sydney, Australia,Present address: Clinical Research Support Office, Childrens Hospital of Philadelphia, Philadelphia, PA
| | - Jason Bruggemann
- School of Psychiatry, University of New South Wales, Sydney, Australia,Neuroscience Research Australia, Randwick, Sydney, Australia
| | - Vanessa Cropley
- Department of Psychiatry, University of Melbourne, Parkville, Australia
| | - Rhoshel K Lenroot
- School of Psychiatry, University of New South Wales, Sydney, Australia,Neuroscience Research Australia, Randwick, Sydney, Australia,Schizophrenia Research Institute, Sydney, Australia,Present address: School of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM
| | - Avril M Pereira
- Department of Psychiatry, University of Melbourne, Parkville, Australia,Molecular Psychopharmacology Laboratory, The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Andrew Zalesky
- Department of Psychiatry, University of Melbourne, Parkville, Australia
| | - Chad Bousman
- Department of Psychiatry, University of Melbourne, Parkville, Australia,Present address: Department of Medical Genetics, Psychiatry, and Physiology & Pharmacology, University of Calgary, Alberta, Canada
| | - Christos Pantelis
- Department of Psychiatry, University of Melbourne, Parkville, Australia,Schizophrenia Research Institute, Sydney, Australia
| | - Cynthia Shannon Weickert
- School of Psychiatry, University of New South Wales, Sydney, Australia,Neuroscience Research Australia, Randwick, Sydney, Australia,Schizophrenia Research Institute, Sydney, Australia,Present address: Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, New York
| | - Thomas W Weickert
- School of Psychiatry, University of New South Wales, Sydney, Australia,Neuroscience Research Australia, Randwick, Sydney, Australia,Schizophrenia Research Institute, Sydney, Australia,To whom correspondence should be addressed; tel: +61-02-9399-1730, fax: +61-02-9399-1034, e-mail:
| |
Collapse
|
20
|
Matsuda Y, Makinodan M, Morimoto T, Kishimoto T. Neural changes following cognitive remediation therapy for schizophrenia. Psychiatry Clin Neurosci 2019; 73:676-684. [PMID: 31278805 DOI: 10.1111/pcn.12912] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/13/2019] [Accepted: 07/01/2019] [Indexed: 01/15/2023]
Abstract
Patients with schizophrenia experience cognitive impairments that relate to poorer social functioning even after amelioration of positive symptoms. Pharmacological treatment and cognitive remediation are the two important therapeutic approaches for cognitive impairment in schizophrenia. Cognitive remediation therapy (CRT) for schizophrenia improves cognitive functioning and induces neuroplasticity, but different approaches and durations of CRT and different neuroimaging devices have led to varying results in meta-analyses. The objective of this review was to explore the impact of CRT on neurobiology. Several studies have provided evidence of increased activation in the frontal brain regions, such as the prefrontal cortex, anterior cingulate cortex, and parietal and occipital regions during working memory or executive function tasks after CRT. Two studies have shown alterations in resting-state connectivity between the prefrontal cortex and temporal regions. Two studies have reported that CRT induces changes in gray matter volume in the hippocampus. Further, one study observed that patients who had received CRT had elevated fractional anisotropy in the basal ganglia. We conclude that neuroimaging studies assessing CRT in patients with schizophrenia showed functional, structural, and connectivity changes that were positively correlated with cognitive improvements despite heterogeneous CRT approaches. Future studies that combine multiple modalities are required to address the differences, effects of intrinsic motivation, and pharmacological augmentation of CRT. Further understanding of the biological basis might lead to predictions of the CRT response in patients with schizophrenia and contribute to identification of schizophrenia patients for future interventions.
Collapse
Affiliation(s)
- Yasuhiro Matsuda
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, Nara, Japan
| | - Manabu Makinodan
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, Nara, Japan
| | - Tsubasa Morimoto
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, Nara, Japan
| | - Toshifumi Kishimoto
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, Nara, Japan
| |
Collapse
|
21
|
Cea-Cañas B, de Luis R, Lubeiro A, Gomez-Pilar J, Sotelo E, Del Valle P, Gómez-García M, Alonso-Sánchez A, Molina V. Structural connectivity in schizophrenia and bipolar disorder: Effects of chronicity and antipsychotic treatment. Prog Neuropsychopharmacol Biol Psychiatry 2019; 92:369-377. [PMID: 30790676 DOI: 10.1016/j.pnpbp.2019.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/11/2019] [Accepted: 02/14/2019] [Indexed: 11/26/2022]
Abstract
Previous studies based on graph theory parameters applied to diffusion tensor imaging support an alteration of the global properties of structural connectivity network in schizophrenia. However, the specificity of this alteration and its possible relation with chronicity and treatment have received small attention. We have assessed small-world (SW) and connectivity strength indexes of the structural network built using fractional anisotropy values of the white matter tracts connecting 84 cortical and subcortical regions in 25 chronic and 18 first episode (FE) schizophrenia and 24 bipolar patients and 28 healthy controls. Chronic schizophrenia and bipolar patients showed significantly smaller SW and connectivity strength indexes in comparison with controls and FE patients. SW reduction was driven by increased averaged path-length (PL) values. Illness duration but not treatment doses were negatively associated with connectivity strength, SW and PL in patients. Bipolar patients exposed to antipsychotics did not differ in SW or connectivity strength from bipolar patients without such an exposure. Executive functions and social cognition were related to SW index in the schizophrenia group. Our results support a role for chronicity but not treatment in structural network alterations in major psychoses, which may not differ between schizophrenia and bipolar disorder, and may hamper cognition.
Collapse
Affiliation(s)
- Benjamín Cea-Cañas
- Clinical Neurophysiology Service, Clinical Hospital of Valladolid, Ramón y Cajal, 3, 47003 Valladolid, Spain
| | - Rodrigo de Luis
- Imaging Processing Laboratory, University of Valladolid, Paseo de Belén, 15, 47011 Valladolid, Spain
| | - Alba Lubeiro
- Psychiatry Department, School of Medicine, University of Valladolid, Av. Ramón y Cajal, 7, 47005 Valladolid, Spain
| | - Javier Gomez-Pilar
- Biomedical Engineering Group, University of Valladolid, Paseo de Belén, 15, 47011 Valladolid, Spain
| | - Eva Sotelo
- Psychiatry Service, Clinical Hospital of Valladolid, Ramón y Cajal, 3, 47003 Valladolid, Spain
| | - Pilar Del Valle
- Psychiatry Service, Clinical Hospital of Valladolid, Ramón y Cajal, 3, 47003 Valladolid, Spain
| | - Marta Gómez-García
- Psychiatry Service, Clinical Hospital of Valladolid, Ramón y Cajal, 3, 47003 Valladolid, Spain
| | - Adrián Alonso-Sánchez
- Psychiatry Service, Clinical Hospital of Valladolid, Ramón y Cajal, 3, 47003 Valladolid, Spain
| | - Vicente Molina
- Psychiatry Department, School of Medicine, University of Valladolid, Av. Ramón y Cajal, 7, 47005 Valladolid, Spain; Psychiatry Service, Clinical Hospital of Valladolid, Ramón y Cajal, 3, 47003 Valladolid, Spain; Neurosciences Institute of Castilla y León (INCYL), University of Salamanca, Pintor Fernando Gallego, 1, 37007 Salamanca, Spain.
| |
Collapse
|
22
|
Interhemispheric connectivity and hemispheric specialization in schizophrenia patients and their unaffected siblings. NEUROIMAGE-CLINICAL 2019; 21:101656. [PMID: 30660663 PMCID: PMC6412072 DOI: 10.1016/j.nicl.2019.101656] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/13/2018] [Accepted: 01/03/2019] [Indexed: 11/20/2022]
Abstract
Hemispheric integration and specialization are two prominent organizational principles for macroscopic brain function. Impairments of interhemispheric cooperation have been reported in schizophrenia patients, but whether such abnormalities should be attributed to effects of illness or familial risk remains inconclusive. Moreover, it is unclear how abnormalities in interhemispheric connectivity impact hemispheric specialization. To address these questions, we performed magnetic resonance imaging (MRI) in a large cohort of 253 participants, including 84 schizophrenia patients, 106 of their unaffected siblings and 63 healthy controls. Interhemispheric connectivity and hemispheric specialization were calculated from resting-state functional connectivity, and compared across groups. Results showed that schizophrenia patients exhibit lower interhemispheric connectivity as compared to controls and siblings. In addition, patients showed higher levels of hemispheric specialization as compared to siblings. Level of interhemispheric connectivity and hemispheric specialization correlated with duration of illness in patients. No significant alterations were identified in siblings relative to controls on both measurements. Furthermore, alterations in interhemispheric connectivity correlated with changes in hemispheric specialization in patients relative to controls and siblings. Taken together, these results suggest that lower interhemispheric connectivity and associated abnormalities in hemispheric specialization are features of established illness, rather than an expression of preexistent familial risk for schizophrenia.
Collapse
|
23
|
Koshiyama D, Fukunaga M, Okada N, Morita K, Nemoto K, Yamashita F, Yamamori H, Yasuda Y, Fujimoto M, Kelly S, Jahanshad N, Kudo N, Azechi H, Watanabe Y, Donohoe G, Thompson PM, Kasai K, Hashimoto R. Role of frontal white matter and corpus callosum on social function in schizophrenia. Schizophr Res 2018; 202:180-187. [PMID: 30005932 DOI: 10.1016/j.schres.2018.07.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 06/10/2018] [Accepted: 07/01/2018] [Indexed: 12/11/2022]
Abstract
Patients with schizophrenia show severe impairment in social function and have difficulty in their daily social life. Although a recent large-scale multicenter study revealed alterations in white matter microstructures, the association between these anatomical changes and social dysfunction in schizophrenia remains unknown. Therefore, we investigated the association between the white matter integrity of regions of interest and social function in schizophrenia. A total of 149 patients with schizophrenia and 602 healthy comparison subjects (HCS) underwent DTI and completed the Picture Arrangement subtest of the Wechsler Adult Intelligence Scale-Third Edition and the Finance subscale of the University of California, San Diego, Performance-Based Skills Assessment Brief, as social indices of interest. The fractional anisotropy (FA) in the anterior corona radiata and corpus callosum was significantly lower in patients than in HCS, and the radial diffusivity (RD) in the anterior corona radiata and corpus callosum was significantly higher in patients. The Picture Arrangement and Finance scores were both significantly impaired in patients. The effect of the FA of the right anterior corona radiata on the Finance score and the Picture Arrangement score, of the RD of the right anterior corona radiata on the Picture Arrangement score, and of the RD of the corpus callosum on the Picture Arrangement score were significant. In conclusion, our results confirmed the association between structural connectivity in the right frontal white matter and corpus callosum and social function in schizophrenia. These findings may provide a foundation for developing an intervention for functional recovery in schizophrenia.
Collapse
Affiliation(s)
- Daisuke Koshiyama
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masaki Fukunaga
- Division of Cerebral Integration, National Institute for Physiological Sciences, Aichi, Japan
| | - Naohiro Okada
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Tokyo, Japan
| | - Kentaro Morita
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kiyotaka Nemoto
- Department of Psychiatry, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Fumio Yamashita
- Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Iwate, Japan
| | - Hidenaga Yamamori
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yuka Yasuda
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Michiko Fujimoto
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Sinead Kelly
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, United States of America; Harvard Medical School, Boston, MA, United States of America
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, United States of America
| | - Noriko Kudo
- Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Osaka, Japan
| | - Hirotsugu Azechi
- Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Osaka, Japan
| | - Yoshiyuki Watanabe
- Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Gary Donohoe
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, United States of America
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Tokyo, Japan
| | - Ryota Hashimoto
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan; Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Osaka, Japan.
| |
Collapse
|
24
|
Tønnesen S, Kaufmann T, Doan NT, Alnæs D, Córdova-Palomera A, Meer DVD, Rokicki J, Moberget T, Gurholt TP, Haukvik UK, Ueland T, Lagerberg TV, Agartz I, Andreassen OA, Westlye LT. White matter aberrations and age-related trajectories in patients with schizophrenia and bipolar disorder revealed by diffusion tensor imaging. Sci Rep 2018; 8:14129. [PMID: 30237410 PMCID: PMC6147807 DOI: 10.1038/s41598-018-32355-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 09/06/2018] [Indexed: 12/18/2022] Open
Abstract
Supported by histological and genetic evidence implicating myelin, neuroinflammation and oligodendrocyte dysfunction in schizophrenia spectrum disorders (SZ), diffusion tensor imaging (DTI) studies have consistently shown white matter (WM) abnormalities when compared to healthy controls (HC). The diagnostic specificity remains unclear, with bipolar disorders (BD) frequently conceptualized as a less severe clinical manifestation along a psychotic spectrum. Further, the age-related dynamics and possible sex differences of WM abnormalities in SZ and BD are currently understudied. Using tract-based spatial statistics (TBSS) we compared DTI-based microstructural indices between SZ (n = 128), BD (n = 61), and HC (n = 293). We tested for age-by-group and sex-by-group interactions, computed effect sizes within different age-bins and within genders. TBSS revealed global reductions in fractional anisotropy (FA) and increases in radial (RD) diffusivity in SZ compared to HC, with strongest effects in the body and splenium of the corpus callosum, and lower FA in SZ compared to BD in right inferior longitudinal fasciculus and right inferior fronto-occipital fasciculus, and no significant differences between BD and HC. The results were not strongly dependent on age or sex. Despite lack of significant group-by-age interactions, a sliding-window approach supported widespread WM involvement in SZ with most profound differences in FA from the late 20 s.
Collapse
Affiliation(s)
- Siren Tønnesen
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Tobias Kaufmann
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nhat Trung Doan
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Dag Alnæs
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Aldo Córdova-Palomera
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Dennis van der Meer
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Jaroslav Rokicki
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Torgeir Moberget
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Tiril P Gurholt
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Unn K Haukvik
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Torill Ueland
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Trine Vik Lagerberg
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ingrid Agartz
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Ole A Andreassen
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Lars T Westlye
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.
- Department of Psychology, University of Oslo, Oslo, Norway.
| |
Collapse
|
25
|
Prendergast DM, Karlsgodt KH, Fales CL, Ardekani BA, Szeszko PR. Corpus callosum shape and morphology in youth across the psychosis Spectrum. Schizophr Res 2018; 199:266-273. [PMID: 29656909 DOI: 10.1016/j.schres.2018.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/12/2018] [Accepted: 04/03/2018] [Indexed: 11/16/2022]
Abstract
The corpus callosum is the largest white matter tract in the human brain connecting and coordinating homologous regions of the right and left hemispheres and has been strongly implicated in the pathogenesis of psychosis. We investigated corpus callosum morphology in a large community cohort of 917 individuals (aged 8-21), including 267 endorsing subsyndromal or threshold psychotic symptoms (207 on the psychosis spectrum and 60 with limited psychosis based on previously published criteria) and 650 non-psychotic volunteers. We used a highly reliable and previously published algorithm to automatically identify the midsagittal plane and to align the corpus callosum along the anterior and posterior commissures for segmentation, thereby eliminating these sources of error variance in dependent measures, which included perimeter, length, mean thickness and shape (circularity). The parcellation scheme divided the corpus callosum into 7 subregions that consisted of the rostrum, genu, rostral body, anterior midbody, posterior midbody, isthmus, and splenium. Both individuals endorsing psychotic symptoms and those with limited psychosis had significantly (p<.05) smaller area and lower thickness measures compared to healthy volunteers, but did not differ significantly from each other. Findings were relatively widespread indicating a relatively global effect not circumscribed to any particular corpus callosum subregion. These data are consistent with the hypothesis that corpus callosum abnormalities may be evident early in the course of illness and predate the onset of frank psychosis. Given that these measures can be easily obtained and are highly reliable they may assist in the identification of individuals at future risk for psychosis.
Collapse
Affiliation(s)
| | - K H Karlsgodt
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA, USA
| | - C L Fales
- Center for Psychiatric Neuroscience, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - B A Ardekani
- Center for Brain Imaging and Neuromodulation, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - P R Szeszko
- James J. Peters VA Medical Center, Mental Health Patient Care Center and Mental Illness Research Education Clinical Center (MIRECC), Bronx, NY, USA; Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY, USA
| |
Collapse
|
26
|
Zhao W, Guo S, He N, Yang AC, Lin CP, Tsai SJ. Callosal and subcortical white matter alterations in schizophrenia: A diffusion tensor imaging study at multiple levels. Neuroimage Clin 2018; 20:594-602. [PMID: 30186763 PMCID: PMC6120601 DOI: 10.1016/j.nicl.2018.08.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 07/25/2018] [Accepted: 08/20/2018] [Indexed: 12/28/2022]
Abstract
Diffusion tensor imaging and its distinct capability to detect micro-structural changes in vivo allows the exploration of white matter (WM) abnormalities in patients who have been diagnosed with schizophrenia; however, the results regarding the anatomical positions and degree of abnormalities are inconsistent. In order to obtain more robust and stable findings, we conducted a multi-level analysis to investigate WM disruption in a relatively large sample size (142 schizophrenia patients and 163 healthy subjects). Specifically, we evaluated the univariate fractional anisotropy (FA) in voxel level; the bivariate pairwise structural connectivity between regions using deterministic tractography as the network node defined by the Human Brainnetome Atlas; and the multivariate network topological properties, including the network hub, efficiency, small-worldness, and strength. Our data demonstrated callosal and subcortical WM alterations in patients with schizophrenia. These disruptions were evident in both voxel and connectivity levels and further supported by associations between FA values and illness duration. Based on the findings regarding topological properties, the structural network showed weaker global integration in patients with schizophrenia than in healthy subjects, while brain network hubs showed decreased functionality. We replicated these findings using an automated anatomical labeling atlas to define the network node. Our study indicates that callosal and subcortical WM disruptions are biomarkers for chronic schizophrenia.
Collapse
Affiliation(s)
- Wei Zhao
- College of Mathematics and Statistics, Key Laboratory of High Performance Computing and Stochastic Information Processing (Ministry of Education of China), Hunan Normal University, Changsha, PR China
| | - Shuixia Guo
- College of Mathematics and Statistics, Key Laboratory of High Performance Computing and Stochastic Information Processing (Ministry of Education of China), Hunan Normal University, Changsha, PR China; Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, PR China.
| | - Ningning He
- College of Mathematics and Statistics, Key Laboratory of High Performance Computing and Stochastic Information Processing (Ministry of Education of China), Hunan Normal University, Changsha, PR China
| | - Albert C Yang
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Psychiatry, School of Medicine, National Yang-Ming University, Taipei, Taiwan; Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, USA; Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Ching-Po Lin
- Aging and Health Research Center, National Yang-Ming University, Taipei, Taiwan; Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan; Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Psychiatry, School of Medicine, National Yang-Ming University, Taipei, Taiwan; Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
27
|
Gomez-Pilar J, de Luis-García R, Lubeiro A, de la Red H, Poza J, Núñez P, Hornero R, Molina V. Relations between structural and EEG-based graph metrics in healthy controls and schizophrenia patients. Hum Brain Mapp 2018; 39:3152-3165. [PMID: 29611297 DOI: 10.1002/hbm.24066] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 03/06/2018] [Accepted: 03/19/2018] [Indexed: 12/27/2022] Open
Abstract
Our aim was to assess structural and functional networks in schizophrenia patients; and the possible prediction of the latter based on the former. The possible dependence of functional network properties on structural alterations has not been analyzed in schizophrenia. We applied averaged path-length (PL), clustering coefficient, and density (D) measurements to data from diffusion magnetic resonance and electroencephalography in 39 schizophrenia patients and 79 controls. Functional data were collected for the global and theta frequency bands during an odd-ball task, prior to stimulus delivery and at the corresponding processing window. Connectivity matrices were constructed from tractography and registered cortical segmentations (structural) and phase-locking values (functional). Both groups showed a significant electroencephalographic task-related modulation (change between prestimulus and response windows) in the global and theta bands. Patients showed larger structural PL and prestimulus density in the global and theta bands, and lower PL task-related modulation in the theta band. Structural network values predicted prestimulus global band values in controls and global band task-related modulation in patients. Abnormal functional values found in patients (prestimulus density in the global and theta bands and task-related modulation in the theta band) were not predicted by structural data in this group. Structural and functional network abnormalities respectively predicted cognitive performance and positive symptoms in patients. Taken together, the alterations in the structural and functional theta networks in the patients and the lack of significant relations between these alterations, suggest that these types of network abnormalities exist in different groups of schizophrenia patients.
Collapse
Affiliation(s)
- Javier Gomez-Pilar
- Biomedical Engineering Group, University of Valladolid, Paseo de Belén, 15, 47011 Valladolid, Spain
| | - Rodrigo de Luis-García
- Imaging Processing Laboratory, University of Valladolid, Paseo de Belén, 15, 47011 Valladolid, Spain
| | - Alba Lubeiro
- Psychiatry Department, School of Medicine, University of Valladolid, Av. Ramón y Cajal, 7, Valladolid, 47005, Spain
| | - Henar de la Red
- Psychiatry Service, Clinical Hospital of Valladolid, Ramón y Cajal, 3, Valladolid, 47003, Spain
| | - Jesús Poza
- Biomedical Engineering Group, University of Valladolid, Paseo de Belén, 15, 47011 Valladolid, Spain.,Psychiatry Service, Clinical Hospital of Valladolid, Ramón y Cajal, 3, Valladolid, 47003, Spain.,Neurosciences Institute of Castilla y León (INCYL), Pintor Fernando Gallego, 1, 37007 University of Salamanca, 37007, Salamanca, Spain.,IMUVA, Mathematics Research Institute, University of Valladolid, Valladolid, Spain
| | - Pablo Núñez
- Biomedical Engineering Group, University of Valladolid, Paseo de Belén, 15, 47011 Valladolid, Spain
| | - Roberto Hornero
- Biomedical Engineering Group, University of Valladolid, Paseo de Belén, 15, 47011 Valladolid, Spain.,Neurosciences Institute of Castilla y León (INCYL), Pintor Fernando Gallego, 1, 37007 University of Salamanca, 37007, Salamanca, Spain.,IMUVA, Mathematics Research Institute, University of Valladolid, Valladolid, Spain
| | - Vicente Molina
- Psychiatry Department, School of Medicine, University of Valladolid, Av. Ramón y Cajal, 7, Valladolid, 47005, Spain.,Psychiatry Service, Clinical Hospital of Valladolid, Ramón y Cajal, 3, Valladolid, 47003, Spain.,Neurosciences Institute of Castilla y León (INCYL), Pintor Fernando Gallego, 1, 37007 University of Salamanca, 37007, Salamanca, Spain
| |
Collapse
|
28
|
Shahab S, Stefanik L, Foussias G, Lai MC, Anderson KK, Voineskos AN. Sex and Diffusion Tensor Imaging of White Matter in Schizophrenia: A Systematic Review Plus Meta-analysis of the Corpus Callosum. Schizophr Bull 2018; 44:203-221. [PMID: 28449132 PMCID: PMC5767963 DOI: 10.1093/schbul/sbx049] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sex is considered an understudied variable in health research. Schizophrenia is a brain disorder with known sex differences in epidemiology and clinical presentation. We systematically reviewed the literature for sex-based differences of diffusion properties of white matter tracts in schizophrenia. We then conducted a meta-analysis examining sex-based differences in the genu and splenium of the corpus callosum in schizophrenia. Medline and Embase were searched to identify relevant papers. Studies fulfilling the following criteria were included: (1) included individuals with a diagnosis of schizophrenia, (2) included a control group of healthy individuals, (3) included both sexes in the patient and the control groups, (4) used diffusion tensor imaging, and (5) involved analyzing metrics of white matter microstructural integrity. Fractional anisotropy (FA) was used as the measure of interest in the meta-analysis. Of 730 studies reviewed, 75 met the inclusion criteria. Most showed no effect of sex, however, those that did found either that females have lower FA than males, or that the effect of disease in females is larger than that in males. The findings of the meta-analysis in the corpus callosum supported this result. There is a recognized need for studies on schizophrenia with a sufficient sample of female patients. Lack of power undermines the ability to detect sex-based differences. Understanding the sex-specific impact of illness on neural circuits may help inform development of new treatments, and improvement of existing interventions.
Collapse
Affiliation(s)
- Saba Shahab
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada,Centre for Addiction and Mental Health and Slaight Family Centre for Youth in Transition, Toronto, ON, Canada
| | - Laura Stefanik
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada,Centre for Addiction and Mental Health and Slaight Family Centre for Youth in Transition, Toronto, ON, Canada,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - George Foussias
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada,Centre for Addiction and Mental Health and Slaight Family Centre for Youth in Transition, Toronto, ON, Canada,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Meng-Chuan Lai
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada,Centre for Addiction and Mental Health and Slaight Family Centre for Youth in Transition, Toronto, ON, Canada,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada,Department of Psychiatry, University of Toronto, Toronto, ON, Canada,Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK,Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Kelly K Anderson
- Centre for Addiction and Mental Health and Slaight Family Centre for Youth in Transition, Toronto, ON, Canada,Department of Epidemiology & Biostatistics and Psychiatry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | - Aristotle N Voineskos
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada,Centre for Addiction and Mental Health and Slaight Family Centre for Youth in Transition, Toronto, ON, Canada,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada,Department of Psychiatry, University of Toronto, Toronto, ON, Canada,To whom correspondence should be addressed; 250 College Street, Toronto, ON M5T 1R8, Canada; tel: 416-535-8501 ext. 33977, fax: 416-260-4162, e-mail:
| |
Collapse
|
29
|
Are Anesthesia and Surgery during Infancy Associated with Decreased White Matter Integrity and Volume during Childhood? Anesthesiology 2017; 127:788-799. [DOI: 10.1097/aln.0000000000001808] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Abstract
Background
Anesthetics have neurotoxic effects in neonatal animals. Relevant human evidence is limited. We sought such evidence in a structural neuroimaging study.
Methods
Two groups of children underwent structural magnetic resonance imaging: patients who, during infancy, had one of four operations commonly performed in otherwise healthy children and comparable, nonexposed control subjects. Total and regional brain tissue composition and volume, as well as regional indicators of white matter integrity (fractional anisotropy and mean diffusivity), were analyzed.
Results
Analyses included 17 patients, without potential confounding central nervous system problems or risk factors, who had general anesthesia and surgery during infancy and 17 control subjects (age ranges, 12.3 to 15.2 yr and 12.6 to 15.1 yr, respectively). Whole brain white matter volume, as a percentage of total intracranial volume, was lower for the exposed than the nonexposed group, 37.3 ± 0.4% and 38.9 ± 0.4% (least squares mean ± SE), respectively, a difference of 1.5 percentage points (95% CI, 0.3 to 2.8; P = 0.016). Corresponding decreases were statistically significant for parietal and occipital lobes, infratentorium, and brainstem separately. White matter integrity was lower for the exposed than the nonexposed group in superior cerebellar peduncle, cerebral peduncle, external capsule, cingulum (cingulate gyrus), and fornix (cres) and/or stria terminalis. The groups did not differ in total intracranial, gray matter, and cerebrospinal fluid volumes.
Conclusions
Children who had anesthesia and surgery during infancy showed broadly distributed, decreased white matter integrity and volume. Although the findings may be related to anesthesia and surgery during infancy, other explanations are possible.
Collapse
|
30
|
Serpa MH, Doshi J, Erus G, Chaim-Avancini TM, Cavallet M, van de Bilt MT, Sallet PC, Gattaz WF, Davatzikos C, Busatto GF, Zanetti MV. State-dependent microstructural white matter changes in drug-naïve patients with first-episode psychosis. Psychol Med 2017; 47:2613-2627. [PMID: 28826419 DOI: 10.1017/s0033291717001015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Diffusion tensor imaging (DTI) studies have consistently shown white matter (WM) microstructural abnormalities in schizophrenia. Whether or not such alterations could vary depending on clinical status (i.e. acute psychosis v. remission) remains to be investigated. METHODS Twenty-five treatment-naïve first-episode psychosis (FEP) patients and 51 healthy-controls (HC) underwent MRI scanning at baseline. Twenty-one patients were re-scanned as soon as they achieved sustained remission of symptoms; 36 HC were also scanned twice. Rate-of-change maps of longitudinal DTI changes were calculated for in order to examine WM alterations associated with changes in clinical status. We conducted voxelwise analyses of fractional anisotropy (FA) and trace (TR) maps. RESULTS At baseline, FEP presented reductions of FA in comparison with HC [p < 0.05, false-discovery rate (FDR)-corrected] affecting fronto-limbic WM and associative, projective and commissural fasciculi. After symptom remission, patients showed FA increase over time (p < 0.001, uncorrected) in some of the above WM tracts, namely the right anterior thalamic radiation, right uncinate fasciculus/inferior fronto-occipital fasciculus, and left inferior fronto-occipital fasciculus/inferior longitudinal fasciculus. We also found significant correlations between reductions in PANSS scores and FA increases over time (p < 0.05, FDR-corrected). CONCLUSIONS WM changes affecting brain tracts critical to the integration of perceptual information, cognition and emotions are detectable soon after the onset of FEP and may partially reverse in direct relation to the remission of acute psychotic symptoms. Our findings reinforce the view that WM abnormalities in brain tracts are a key neurobiological feature of acute psychotic disorders, and recovery from such WM pathology can lead to amelioration of symptoms.
Collapse
Affiliation(s)
- M H Serpa
- Laboratory of Psychiatric Neuroimaging (LIM-21),Department and Institute of Psychiatry,Faculty of Medicine,University of São Paulo, Centro de Medicina Nuclear,3o andar, LIM-21,Rua Dr. Ovídio Pires de Campos,s/n, São Paulo, SP,Brazil
| | - J Doshi
- Section of Biomedical Image Analysis (SBIA), Department of Radiology,University of Pennsylvania,3600 Market St,Suite 380, Philadelphia, PA,USA
| | - G Erus
- Section of Biomedical Image Analysis (SBIA), Department of Radiology,University of Pennsylvania,3600 Market St,Suite 380, Philadelphia, PA,USA
| | - T M Chaim-Avancini
- Laboratory of Psychiatric Neuroimaging (LIM-21),Department and Institute of Psychiatry,Faculty of Medicine,University of São Paulo, Centro de Medicina Nuclear,3o andar, LIM-21,Rua Dr. Ovídio Pires de Campos,s/n, São Paulo, SP,Brazil
| | - M Cavallet
- Laboratory of Psychiatric Neuroimaging (LIM-21),Department and Institute of Psychiatry,Faculty of Medicine,University of São Paulo, Centro de Medicina Nuclear,3o andar, LIM-21,Rua Dr. Ovídio Pires de Campos,s/n, São Paulo, SP,Brazil
| | - M T van de Bilt
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Centro de Medicina Nuclear,3o andar, LIM-21,Rua Dr. Ovídio Pires de Campos,s/n, São Paulo, SP,Brazil
| | - P C Sallet
- Laboratory of Neuroscience, LIM-27,Department and Institute of Psychiatry,Faculty of Medicine,University of São Paulo, Instituto de Psiquiatria,3o andar, LIM-27,Rua Dr. Ovídio Pires de Campos,s/n, São Paulo, SP,Brazil
| | - W F Gattaz
- Laboratory of Neuroscience, LIM-27,Department and Institute of Psychiatry,Faculty of Medicine,University of São Paulo, Instituto de Psiquiatria,3o andar, LIM-27,Rua Dr. Ovídio Pires de Campos,s/n, São Paulo, SP,Brazil
| | - C Davatzikos
- Section of Biomedical Image Analysis (SBIA), Department of Radiology,University of Pennsylvania,3600 Market St,Suite 380, Philadelphia, PA,USA
| | - G F Busatto
- Laboratory of Psychiatric Neuroimaging (LIM-21),Department and Institute of Psychiatry,Faculty of Medicine,University of São Paulo, Centro de Medicina Nuclear,3o andar, LIM-21,Rua Dr. Ovídio Pires de Campos,s/n, São Paulo, SP,Brazil
| | - M V Zanetti
- Laboratory of Psychiatric Neuroimaging (LIM-21),Department and Institute of Psychiatry,Faculty of Medicine,University of São Paulo, Centro de Medicina Nuclear,3o andar, LIM-21,Rua Dr. Ovídio Pires de Campos,s/n, São Paulo, SP,Brazil
| |
Collapse
|
31
|
Saito J, Hori M, Nemoto T, Katagiri N, Shimoji K, Ito S, Tsujino N, Yamaguchi T, Shiraga N, Aoki S, Mizuno M. Longitudinal study examining abnormal white matter integrity using a tract-specific analysis in individuals with a high risk for psychosis. Psychiatry Clin Neurosci 2017; 71:530-541. [PMID: 28220654 DOI: 10.1111/pcn.12515] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 02/09/2017] [Accepted: 02/15/2017] [Indexed: 01/07/2023]
Abstract
AIM Although volume reductions in the grey matter have been previously observed in individuals with an at-risk mental state (ARMS) for psychosis, the features of white matter integrity and their correlation with psychiatric symptoms remain unclear. METHODS Forty-six ARMS subjects were examined using magnetic resonance imaging (MRI) to acquire diffusion tensor imaging (DTI); the subjects were also evaluated using the Scale of Prodromal Symptoms at baseline and at 52 weeks. Sixteen healthy controls also underwent MRI scanning. The DTI results were longitudinally analyzed using a tract-specific analysis to measure the fractional anisotropy (FA) values of the entire corpus callosum (CC), as well as its genu, trunk, and splenium. RESULTS During the 52-week study period, seven patients developed psychosis (ARMS-P) and 39 did not (ARMS-NP). In the entire CC and the genu, trunk, and splenium of the CC, the FA values of the ARMS subjects were each significantly smaller than the respective values of the healthy controls at baseline. In the genu and trunk, the baseline FA values in the ARMS-NP group were, paradoxically, smaller than those of the ARMS-P group at baseline. Regarding the association between the FA values and psychiatric symptoms, a reduction in the FA value in the genu was significantly correlated with a deterioration of negative symptoms among the ARMS subjects. CONCLUSION Abnormal white matter integrity in the CC may predict the long-term outcome of patients with prodromal psychosis, since negative symptoms are associated with poor functioning.
Collapse
Affiliation(s)
- Junichi Saito
- Department of Neuropsychiatry, Toho University School of Medicine, Tokyo, Japan
| | - Masaaki Hori
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Takahiro Nemoto
- Department of Neuropsychiatry, Toho University School of Medicine, Tokyo, Japan
| | - Naoyuki Katagiri
- Department of Neuropsychiatry, Toho University School of Medicine, Tokyo, Japan
| | - Keigo Shimoji
- Department of Diagnostic Radiology, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| | - Shinya Ito
- Department of Social Medicine, Toho University School of Medicine, Tokyo, Japan.,Department of Public Health, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Naohisa Tsujino
- Department of Neuropsychiatry, Toho University School of Medicine, Tokyo, Japan
| | - Taiju Yamaguchi
- Department of Neuropsychiatry, Toho University School of Medicine, Tokyo, Japan
| | - Nobuyuki Shiraga
- Department of Radiology, Toho University Omori Medical Center, Tokyo, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Masafumi Mizuno
- Department of Neuropsychiatry, Toho University School of Medicine, Tokyo, Japan
| |
Collapse
|
32
|
Molina V, Lubeiro A, Soto O, Rodriguez M, Álvarez A, Hernández R, de Luis-García R. Alterations in prefrontal connectivity in schizophrenia assessed using diffusion magnetic resonance imaging. Prog Neuropsychopharmacol Biol Psychiatry 2017; 76:107-115. [PMID: 28288855 DOI: 10.1016/j.pnpbp.2017.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 03/09/2017] [Accepted: 03/09/2017] [Indexed: 10/20/2022]
Abstract
BACKGROUND Spatial and biological characteristics of structural frontal disconnectivity in schizophrenia remain incompletely understood. Simultaneous streamline count (SC) and fractional anisotropy (FA) analyses may yield relevant complementary information to this end. METHODS Using 3T diffusion magnetic resonance imaging both SC and FA were calculated for the tracts linking lateral and medial subregions of prefrontal cortex (PFC) to cingulate, hippocampus, caudate and thalamus in 27 schizophrenia patients (14 first-episodes) and 27 controls. Relationships of these parameters with cognition, symptoms, treatment doses and illness duration were assessed where significant between-groups differences were detected. RESULTS Patients showed lower SC and FA in the tracts linking lateral and medial PFC to thalamus (likely corresponding to anterior thalamic peduncle) and lower FA in those linking PFC to caudate (likely through internal capsule), right caudal anterior cingulate and left hippocampus (likely corresponding to hippocampal-prefrontal pathway). Moreover, patients showed greater SC values for the tracts linking medial PFC and left caudal anterior cingulate. SC and FA values for the tracts linking PFC and caudal anterior cingulate were positively related to motor speed, executive function, problem solving and completed categories in WCST. FA for the tract linking right lateral PFC and caudate was directly related to positive symptoms and FA for the tract linking left medial PFC and left thalamus was inversely related to negative symptoms. Treatment doses were not associated with SC or FA values in any tract. Illness duration was negatively associated with SC and FA in the tracts linking PFC and subcortical areas. CONCLUSIONS Widespread alterations in frontal structural connectivity of PFC can be found in schizophrenia, and are related to cognition, symptoms and illness duration.
Collapse
Affiliation(s)
- Vicente Molina
- Psychiatry Department, School of Medicine, University of Valladolid, Av. Ramón y Cajal, 7, 47005 Valladolid, Spain; Psychiatry Service, Clinical Hospital of Valladolid, Ramón y Cajal, 3, 47003 Valladolid, Spain; Neurosciences Institute of Castilla y León (INCYL), Pintor Fernando Gallego, 1, 37007, University of Salamanca, Spain; CIBERSAM (Biomedical Research Network in Mental Health), Instituto de Salud Carlos III, Spain.
| | - Alba Lubeiro
- Psychiatry Department, School of Medicine, University of Valladolid, Av. Ramón y Cajal, 7, 47005 Valladolid, Spain
| | - Oscar Soto
- Psychiatry Department, School of Medicine, University of Valladolid, Av. Ramón y Cajal, 7, 47005 Valladolid, Spain
| | - Margarita Rodriguez
- Radiology Service, Clinical Hospital of Valladolid, Ramón y Cajal, 3, 47003 Valladolid, Spain
| | - Aldara Álvarez
- Psychiatry Service, Clinical Hospital of Valladolid, Ramón y Cajal, 3, 47003 Valladolid, Spain
| | - Rebeca Hernández
- Psychiatry Service, Clinical Hospital of Valladolid, Ramón y Cajal, 3, 47003 Valladolid, Spain
| | - Rodrigo de Luis-García
- Imaging Processing Laboratory, University of Valladolid, Paseo de Belén, 15, 47011 Valladolid, Spain
| |
Collapse
|
33
|
Steen VM, Skrede S, Polushina T, López M, Andreassen OA, Fernø J, Hellard SL. Genetic evidence for a role of the SREBP transcription system and lipid biosynthesis in schizophrenia and antipsychotic treatment. Eur Neuropsychopharmacol 2017; 27:589-598. [PMID: 27492885 DOI: 10.1016/j.euroneuro.2016.07.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 07/15/2016] [Accepted: 07/19/2016] [Indexed: 12/21/2022]
Abstract
Schizophrenia is a serious psychotic disorder, with disabling symptoms and markedly reduced life expectancy. The onset is usually in late adolescence or early adulthood, which in time overlaps with the maturation of the brain including the myelination process. Interestingly, there seems to be a link between myelin abnormalities and schizophrenia. The oligodendrocyte-derived myelin membranes in the CNS are highly enriched for lipids (cholesterol, phospholipids and glycosphingolipids), thereby pointing at lipid homeostasis as a relevant target for studying the genetics and pathophysiology of schizophrenia. The biosynthesis of fatty acids and cholesterol is regulated by the sterol regulatory element binding protein (SREBP) transcription factors SREBP1 and SREBP2, which are encoded by the SREBF1 and SREBF2 genes on chromosome 17p11.2 and 22q13.2, respectively. Here we review the evidence for the involvement of SREBF1 and SREBF2 as genetic risk factors in schizophrenia and discuss the role of myelination and SREBP-mediated lipid biosynthesis in the etiology, pathophysiology and drug treatment of schizophrenia.
Collapse
Affiliation(s)
- Vidar M Steen
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway.
| | - Silje Skrede
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Tatiana Polushina
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Miguel López
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela 15706, Spain
| | - Ole A Andreassen
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Johan Fernø
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Stephanie Le Hellard
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
34
|
Schizophrenia symptomatic associations with diffusion tensor imaging measured fractional anisotropy of brain: a meta-analysis. Neuroradiology 2017; 59:699-708. [PMID: 28550466 DOI: 10.1007/s00234-017-1844-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 05/02/2017] [Indexed: 12/15/2022]
Abstract
PURPOSE Several studies have examined the relationships between diffusion tensor imaging (DTI)-measured fractional anisotropy (FA) and the symptoms of schizophrenia, but results vary across the studies. The aim of this study was to carry out a meta-analysis of correlation coefficients reported by relevant studies to evaluate the correlative relationships between FA of various parts of the brain and schizophrenia symptomatic assessments. METHODS Literature was searched in several electronic databases, and study selection was based on précised eligibility criteria. Correlation coefficients between FA of a part of the brain and schizophrenia symptom were first converted into Fisher's z-scores for meta-analyses, and then overall effect sizes were back transformed to correlation coefficients. RESULTS Thirty-three studies (1121 schizophrenia patients; age 32.66 years [95% confidence interval (CI) 30.19, 35.13]; 65.95 % [57.63, 74.28] males) were included in this meta-analysis. Age was inversely associated with brain FA (z-scores [95% CI] -0.23 [-0.14, -0.32]; p ˂ 0.00001). Brain FA of various areas was inversely associated with negative symptoms of schizophrenia (z-score -0.30 [-0.23, -0.36]; p ˂ 0.00001) but was positively associated with positive symptoms of schizophrenia (z-score 0.16 [0.04, 0.27]; p = 0.007) and general psychopathology of schizophrenia (z-score 0.26 [0.15, 0.37]; p = 0.00001). CONCLUSION Although, DTI-measured brain FA is found to be inversely associated with negative symptoms and positively associated with positive symptoms and general psychopathology of schizophrenia, the effect sizes of these correlations are low and may not be clinically significant. Moreover, brain FA was also negatively associated with age of patients.
Collapse
|
35
|
DeRosse P, Ikuta T, Karlsgodt KH, Peters BD, Gopin CB, Szeszko PR, Malhotra AK. White Matter Abnormalities Associated With Subsyndromal Psychotic-Like Symptoms Predict Later Social Competence in Children and Adolescents. Schizophr Bull 2017; 43:152-159. [PMID: 27190281 PMCID: PMC5216847 DOI: 10.1093/schbul/sbw062] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
INTRODUCTION Recent data suggest that healthy children and adolescents who report psychotic-like experiences (PLEs) evidence abnormalities in white matter (WM). To date, no study has examined whether WM abnormalities associated with PLEs are predictive of outcome at a later time-point. The present study examined whether abnormalities in WM associated with PLEs in children and adolescents at a baseline assessment were predictive of social functioning at a 12-month follow-up. SUBJECTS AND METHODS Healthy children and adolescents aged 8-18 years (N = 56) were recruited from the community and received a diffusion tensor imaging exam and a clinical exam at baseline. Voxel-wise statistical analysis of fractional anisotropy (FA), using Tract-Based Spatial Statistics, and probabilistic tractography were used to identify WM abnormalities associated with PLEs at baseline. These abnormalities were then examined for association to social problems and social competence in 28 participants at 12-month follow-up. RESULTS Lower FA in regions proximal to the superior longitudinal fasciculus (SLF) and corticospinal tract bilaterally as well as in the left inferior fronto-occipital fasciculus and inferior longitudinal fasciculus were associated with higher levels of PLEs at baseline. Moreover, baseline FA in the SLF, but not baseline severity of PLEs, was significantly predictive of social competence at a 12-month follow-up. In contrast, baseline severity of PLEs, but not baseline FA in the SLF, predicted social problems at 12-month follow-up. DISCUSSION These findings suggest that alterations in WM, which are associated with symptoms of psychosis well below the threshold of clinical significance, may have significant ramifications for later social development.
Collapse
Affiliation(s)
- Pamela DeRosse
- Center for Translational Psychiatry, The Feinstein Institute for Medical Research, Manhasset, NY; .,Division of Psychiatry Research, The Zucker Hillside Hospital, Division of the North Shore-Long Island Jewish Health System, Glen Oaks, NY
| | - Toshikazu Ikuta
- Department of Communication Sciences and Disorders, School of Applied Sciences, University of Mississippi, University, MS;,These authors contributed equally to the article
| | - Katherine H. Karlsgodt
- Center for Translational Psychiatry, The Feinstein Institute for Medical Research, Manhasset, NY;,Division of Psychiatry Research, The Zucker Hillside Hospital, Division of the North Shore-Long Island Jewish Health System, Glen Oaks, NY;,Hofstra North Shore–LIJ School of Medicine, Departments of Psychiatry and Molecular Medicine, Hempstead, NY
| | - Bart D. Peters
- Division of Psychiatry Research, The Zucker Hillside Hospital, Division of the North Shore-Long Island Jewish Health System, Glen Oaks, NY
| | | | - Philip R. Szeszko
- Center for Translational Psychiatry, The Feinstein Institute for Medical Research, Manhasset, NY;,Division of Psychiatry Research, The Zucker Hillside Hospital, Division of the North Shore-Long Island Jewish Health System, Glen Oaks, NY;,Hofstra North Shore–LIJ School of Medicine, Departments of Psychiatry and Molecular Medicine, Hempstead, NY
| | - Anil K. Malhotra
- Center for Translational Psychiatry, The Feinstein Institute for Medical Research, Manhasset, NY;,Division of Psychiatry Research, The Zucker Hillside Hospital, Division of the North Shore-Long Island Jewish Health System, Glen Oaks, NY;,Hofstra North Shore–LIJ School of Medicine, Departments of Psychiatry and Molecular Medicine, Hempstead, NY;,Department of Psychiatry and Behavioral Science, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY
| |
Collapse
|
36
|
Yapıcı-Eser H, Onay A, Öztop-Çakmak Ö, Egemen E, Vanlı-Yavuz EN, Solaroğlu İ. Rare case of glioblastoma multiforme located in posterior corpus callosum presenting with depressive symptoms and visual memory deficits. BMJ Case Rep 2016; 2016:bcr-2016-216505. [PMID: 27979842 DOI: 10.1136/bcr-2016-216505] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Most of the primary brain tumours are located in the supratentorial region, and it is uncommon to see tumour growth on deep brain structures such as posterior corpus callosum (PCC). In addition, lesions in PCC are also difficult to recognise, because construction apraxia, visuospatial perception and attentional capacity impairment may be the only presenting symptoms. Here, we represent a rare case of gliobastoma multiforme located in PCC, which solely presents with depressive symptoms and visual memory deficits. Initial manifestations of primary brain tumours with psychiatric symptoms and memory disturbances, in addition to headaches and seizures, should be kept in mind.
Collapse
Affiliation(s)
- Hale Yapıcı-Eser
- Department of Psychiatry, Koç Universitesi, School of Medicine, Istanbul, Turkey
| | - Aslıhan Onay
- Department of Radiology, Koç University Hospital, İstanbul, Turkey
| | | | - Emrah Egemen
- Department of Neurosurgery, Koç University Hospital, İstanbul, Turkey
| | | | - İhsan Solaroğlu
- Department of Neurosurgery, Koç University, School of Medicine, İstanbul, Turkey
| |
Collapse
|
37
|
Schilbach L, Derntl B, Aleman A, Caspers S, Clos M, Diederen KMJ, Gruber O, Kogler L, Liemburg EJ, Sommer IE, Müller VI, Cieslik EC, Eickhoff SB. Differential Patterns of Dysconnectivity in Mirror Neuron and Mentalizing Networks in Schizophrenia. Schizophr Bull 2016; 42:1135-48. [PMID: 26940699 PMCID: PMC4988733 DOI: 10.1093/schbul/sbw015] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Impairments of social cognition are well documented in patients with schizophrenia (SCZ), but the neural basis remains poorly understood. In light of evidence that suggests that the "mirror neuron system" (MNS) and the "mentalizing network" (MENT) are key substrates of intersubjectivity and joint action, it has been suggested that dysfunction of these neural networks may underlie social difficulties in SCZ patients. Additionally, MNS and MENT might be associated differently with positive vs negative symptoms, given prior social cognitive and symptom associations. We assessed resting state functional connectivity (RSFC) in meta-analytically defined MNS and MENT networks in this patient group. Magnetic resonance imaging (MRI) scans were obtained from 116 patients and 133 age-, gender- and movement-matched healthy controls (HC) at 5 different MRI sites. Network connectivity was analyzed for group differences and correlations with clinical symptoms. Results demonstrated decreased connectivity within the MNS and also the MENT in patients compared to controls. Notably, dysconnectivity of the MNS was related to symptom severity, while no such relationship was observed for the MENT. In sum, these findings demonstrate that differential patterns of dysconnectivity exist in SCZ patients, which may contribute differently to the interpersonal difficulties commonly observed in the disorder.
Collapse
Affiliation(s)
- Leonhard Schilbach
- Max Planck Institute of Psychiatry, Munich, Germany;,Department of Psychiatry, University Hospital Cologne, Cologne, Germany;,These authors contributed equally
| | - Birgit Derntl
- Department of Psychiatry, Psychotherapy & Psychosomatics, RWTH University Aachen, Aachen, Germany; Jülich Aachen Research Alliance, JARA-BRAIN, Translational Brain Medicine, Jülich-Aachen, Germany; Institute of Neuroscience and Medicine (INM-1), Research Centre Juelich, Juelich, Germany; Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany;
| | - Andre Aleman
- BCN Neuroimaging Center, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Svenja Caspers
- Institute of Neuroscience and Medicine (INM-1), Research Centre Juelich, Juelich, Germany
| | - Mareike Clos
- Institute of Neuroscience and Medicine (INM-1), Research Centre Juelich, Juelich, Germany
| | - Kelly M. J. Diederen
- Neuroscience Division, University Medical Center Utrecht & Rudolf Magnus Institute for Neuroscience, Utrecht, Netherlands
| | - Oliver Gruber
- Department of Psychiatry and Psychotherapy, University of Göttingen, Göttingen, Germany;,Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Heidelberg University Hospital, Heidelberg, Germany
| | - Lydia Kogler
- Department of Psychiatry, Psychotherapy & Psychosomatics, RWTH University Aachen, Aachen, Germany;,Jülich Aachen Research Alliance, JARA-BRAIN, Translational Brain Medicine, Jülich-Aachen, Germany;,Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Edith J. Liemburg
- BCN Neuroimaging Center, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Iris E. Sommer
- Neuroscience Division, University Medical Center Utrecht & Rudolf Magnus Institute for Neuroscience, Utrecht, Netherlands
| | - Veronika I. Müller
- Institute of Neuroscience and Medicine (INM-1), Research Centre Juelich, Juelich, Germany;,Institute of Clinical Neuroscience and Medical Psychology, HHU Duesseldorf, Duesseldorf, Germany
| | - Edna C. Cieslik
- Institute of Neuroscience and Medicine (INM-1), Research Centre Juelich, Juelich, Germany;,Institute of Clinical Neuroscience and Medical Psychology, HHU Duesseldorf, Duesseldorf, Germany
| | - Simon B. Eickhoff
- Institute of Neuroscience and Medicine (INM-1), Research Centre Juelich, Juelich, Germany;,Institute of Clinical Neuroscience and Medical Psychology, HHU Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
38
|
Diffusion Tensor MR Imaging Evaluation of Callosal Abnormalities in Schizophrenia: A Meta-Analysis. PLoS One 2016; 11:e0161406. [PMID: 27536773 PMCID: PMC4990171 DOI: 10.1371/journal.pone.0161406] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 08/04/2016] [Indexed: 12/16/2022] Open
Abstract
Widespread white matter (WM) abnormalities have been found in patients with schizophrenia. Corpus callosum (CC) is the key area that connects the left and right brain hemispheres. However, the results of studies considering different subregions of the CC as regions of interest in patients with schizophrenia have been inconsistent. To obtain a more consistent evaluation of the diffusion characteristics change of the corpus callosum (CC) related to schizophrenia. A meta-analysis involving fractional anisotropy (FA) values in the CC of 729 schizophrenic subjects and 682 healthy controls from 22 studies was conducted. Overall FA values in the CC of the schizophrenic group were less than that of the healthy control group [weighted mean difference (WMD) = -0.021,P< 0.001]. So were the FA values in the genus region (WMD = -0.019, P< 0.001) and the splenium region (WMD = -0.020, P< 0.001) of the CC respectively. The FA reduction was also significant in subjects with chronic schizophrenia (WMD = -0.032, P< 0.001) and first-episode schizophrenia (WMD = -0.014, P = 0.001). In present study, we demonstrated an overall FA decrease in the CC of schizophrenic patients. In the two subgroup analyses of the genu vs splenium region and chronic vs first-episode schizophrenia, the decrease of all groups was significant. Further studies with more homogenous populations and standardized DTI protocols are needed to confirm and extend these findings.
Collapse
|
39
|
Voineskos AN, Felsky D, Wheeler AL, Rotenberg DJ, Levesque M, Patel S, Szeszko PR, Kennedy JL, Lencz T, Malhotra AK. Limited Evidence for Association of Genome-Wide Schizophrenia Risk Variants on Cortical Neuroimaging Phenotypes. Schizophr Bull 2016; 42:1027-36. [PMID: 26712857 PMCID: PMC4903045 DOI: 10.1093/schbul/sbv180] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND There are now over 100 established genetic risk variants for schizophrenia; however, their influence on brain structure and circuitry across the human lifespan are not known. METHODS We examined healthy individuals 8-86 years of age, from the Centre for Addiction and Mental Health, the Zucker Hillside Hospital, and the Philadelphia Neurodevelopmental Cohort. Following thorough quality control procedures, we investigated associations of established genetic risk variants with heritable neuroimaging phenotypes relevant to schizophrenia, namely thickness of frontal and temporal cortical regions (n = 565) and frontotemporal and interhemispheric white matter tract fractional anisotropy (FA) (n = 530). RESULTS There was little evidence for association of risk variants with imaging phenotypes. No association with cortical thickness of any region was present. Only rs12148337, near a long noncoding RNA region, was associated with white matter FA (splenium of corpus callosum) following multiple comparison correction (corrected p = .012); this single nucleotide polymorphism was also associated with genu FA and superior longitudinal fasciculus FA at p <.005 (uncorrected). There was no association of polygenic risk score with white matter FA or cortical thickness. CONCLUSIONS In sum, our findings provide limited evidence for association of schizophrenia risk variants with cortical thickness or diffusion imaging white matter phenotypes. When taken with recent lack of association of these variants with subcortical brain volumes, our results either suggest that structural neuroimaging approaches at current resolution are not sufficiently sensitive to detect effects of these risk variants or that multiple comparison correction in correlated phenotypes is too stringent, potentially "eliminating" biologically important signals.
Collapse
Affiliation(s)
- Aristotle N. Voineskos
- Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada;,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada;,These authors contributed equally to the article.,*To whom correspondence should be addressed; Kimel Family Translational Imaging-Genetics Laboratory, Research Imaging Centre, Campbell Family Mental Health Institute, Centre for Addiction and Mental Health (CAMH), 250 College Street, Toronto, Ontario M5R 1T8, Canada; tel: 416-535-8501 x33977, fax: 416-260-4162, e-mail:
| | - Daniel Felsky
- Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada;,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada;,These authors contributed equally to the article
| | - Anne L. Wheeler
- Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada;,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - David J. Rotenberg
- Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Melissa Levesque
- Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Sejal Patel
- Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada;,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Philip R. Szeszko
- Zucker Hillside Hospital, Glen Oaks, NY;,Center for Psychiatric Neuroscience, Feinstein Institute, Manhasset, NY
| | - James L. Kennedy
- Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada;,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Todd Lencz
- Zucker Hillside Hospital, Glen Oaks, NY;,Center for Psychiatric Neuroscience, Feinstein Institute, Manhasset, NY
| | - Anil K. Malhotra
- Zucker Hillside Hospital, Glen Oaks, NY;,Center for Psychiatric Neuroscience, Feinstein Institute, Manhasset, NY
| |
Collapse
|
40
|
Hozer F, Houenou J. Can neuroimaging disentangle bipolar disorder? J Affect Disord 2016; 195:199-214. [PMID: 26896814 DOI: 10.1016/j.jad.2016.01.039] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 01/02/2016] [Accepted: 01/24/2016] [Indexed: 01/03/2023]
Abstract
BACKGROUND Bipolar disorder heterogeneity is large, leading to difficulties in identifying neuropathophysiological and etiological mechanisms and hindering the formation of clinically homogeneous patient groups in clinical trials. Identifying markers of clinically more homogeneous groups would help disentangle BD heterogeneity. Neuroimaging may aid in identifying such groups by highlighting specific biomarkers of BD subtypes or clinical dimensions. METHODS We performed a systematic literature search of the neuroimaging literature assessing biomarkers of relevant BD phenotypes (type-I vs. II, presence vs. absence of psychotic features, suicidal behavior and impulsivity, rapid cycling, good vs. poor medication response, age at onset, cognitive performance and circadian abnormalities). RESULTS Consistent biomarkers were associated with suicidal behavior, i.e. frontal/anterior alterations (prefrontal and cingulate grey matter, prefrontal white matter) in patients with a history of suicide attempts; and with cognitive performance, i.e. involvement of frontal and temporal regions, superior and inferior longitudinal fasciculus, right thalamic radiation, and corpus callosum in executive dysfunctions. For the other dimensions and sub-types studied, no consistent biomarkers were identified. LIMITATIONS Studies were heterogeneous both in methodology and outcome. CONCLUSIONS Though theoretically promising, neuroimaging has not yet proven capable of disentangling subtypes and dimensions of bipolar disorder, due to high between-study heterogeneity. We issue recommendations for future studies.
Collapse
Affiliation(s)
- Franz Hozer
- Neurospin, UNIACT, Psychiatry Team, I2BM, CEA Saclay, F-91191 Gif-Sur-Yvette, France; INSERM U955, IMRB, Université Paris Est, Equipe 15 "Psychiatrie Translationnelle", Créteil F-94000, France; Fondation Fondamental, Créteil F-94010, France
| | - Josselin Houenou
- Neurospin, UNIACT, Psychiatry Team, I2BM, CEA Saclay, F-91191 Gif-Sur-Yvette, France; INSERM U955, IMRB, Université Paris Est, Equipe 15 "Psychiatrie Translationnelle", Créteil F-94000, France; Fondation Fondamental, Créteil F-94010, France; AP-HP, Hôpitaux Universitaires Mondor, DHU PePsy, Pôle de Psychiatrie, Créteil F-94000, France.
| |
Collapse
|
41
|
Lerman-Sinkoff DB, Barch DM. Network community structure alterations in adult schizophrenia: identification and localization of alterations. Neuroimage Clin 2015; 10:96-106. [PMID: 26793435 PMCID: PMC4683428 DOI: 10.1016/j.nicl.2015.11.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/30/2015] [Accepted: 11/15/2015] [Indexed: 11/17/2022]
Abstract
A growing body of literature suggests functional connectivity alterations in schizophrenia. While findings have been mixed, evidence points towards a complex pattern of hyper-connectivity and hypo-connectivity. This altered connectivity can be represented and analyzed using the mathematical frameworks provided by graph and information theory to represent functional connectivity data as graphs comprised of nodes and edges linking the nodes. One analytic technique in this framework is the determination and analysis of network community structure, which is the grouping of nodes into linked communities or modules. This data-driven technique finds a best-fit structure such that nodes in a given community have greater connectivity with nodes in their community than with nodes in other communities. These community structure representations have been found to recapitulate known neural-systems in healthy individuals, have been used to identify novel functional systems, and have identified and localized community structure alterations in a childhood onset schizophrenia cohort. In the present study, we sought to determine whether community structure alterations were present in an adult onset schizophrenia cohort while stringently controlling for sources of imaging artifacts. Group level average graphs in healthy controls and individuals with schizophrenia exhibited visually similar network community structures and high amounts of normalized mutual information (NMI). However, testing of individual subject community structures identified small but significant alterations in community structure with alterations being driven by changes in node community membership in the somatosensory, auditory, default mode, salience, and subcortical networks.
Collapse
Affiliation(s)
- Dov B. Lerman-Sinkoff
- Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Dr., Saint Louis, MO 63130, United States
- Medical Scientist Training Program, Washington University in St. Louis, 660 S. Euclid Ave., Saint Louis, MO 63110, United States
| | - Deanna M. Barch
- Neuroscience Program, Washington University in St. Louis, 660 S. Euclid Ave., Saint Louis, MO 63110, United States
- Department of Psychological & Brain Sciences, Washington University in St. Louis, 1 Brookings Dr., Saint Louis, MO 63130, United States
- Department of Psychiatry & Radiology, Washington University in St. Louis, 660 S. Euclid Ave., Saint Louis, MO 63110, United States
| |
Collapse
|
42
|
Chen J, Yao Z, Qin J, Yan R, Hua L, Lu Q. Abnormal inter- and intra-hemispheric integration in male paranoid schizophrenia: a graph-theoretical analysis. SHANGHAI ARCHIVES OF PSYCHIATRY 2015; 27:158-66. [PMID: 26300598 PMCID: PMC4526828 DOI: 10.11919/j.issn.1002-0829.215036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 06/13/2015] [Indexed: 01/24/2023]
Abstract
BACKGROUND The human brain is a complex network of regions that are structurally interconnected by white matter (WM) tracts. Schizophrenia (SZ) can be conceptualized as a disconnection syndrome characterized by widespread disconnections in WM pathways. AIMS To assess whether or not anatomical disconnections are associated with disruption of the topological properties of inter- and intra-hemispheric networks in SZ. METHODS We acquired the diffusion tensor imaging data from 24 male patients with paranoid SZ during an acute phase of their illness and from 24 healthy age-matched male controls. The brain FA-weighted (fractional anisotropy-weighted) structural networks were constructed and the inter- and intra-hemispheric integration was assessed by estimating the average characteristic path lengths (CPLs) between and within the left and right hemisphere networks. RESULTS The mean CPLs for all 18 inter-and intra-hemispheric CPLs assessed were longer in the SZ patient group than in the control group, but only some of these differences were significantly different: the CPLs for the overall inter-hemispheric and the left and right intra-hemispheric networks; the CPLs for the interhemisphere subnetworks of the frontal lobes, temporal lobes, and subcortical structures; and the CPL for the intra- frontal subnetwork in the right hemisphere. Among the 24 patients, the CPL of the inter-frontal subnetwork was positively associated with negative symptom severity, but this was the only significant result among 72 assessed correlations, so it may be a statistical artifact. CONCLUSIONS Our findings suggest that the integrity of intra- and inter-hemispheric WM tracts is disrupted in males with paranoid SZ, supporting the brain network disconnection model (i.e., the (')connectivity hypothesis(')) of schizophrenia. Larger studies with less narrowly defined samples of individuals with schizophrenia are needed to confirm these results.
Collapse
Affiliation(s)
- Jianhuai Chen
- Department of Psychiatry, Nanjing Medical University affiliated Nanjing Brain Hospital, Nanjing, Jiangsu Province, China
| | - Zhijian Yao
- Department of Psychiatry, Nanjing Medical University affiliated Nanjing Brain Hospital, Nanjing, Jiangsu Province, China ; Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Jiaolong Qin
- Department of Psychiatry, Nanjing Medical University affiliated Nanjing Brain Hospital, Nanjing, Jiangsu Province, China
| | - Rui Yan
- Department of Psychiatry, Nanjing Medical University affiliated Nanjing Brain Hospital, Nanjing, Jiangsu Province, China
| | - Lingling Hua
- Department of Psychiatry, Nanjing Medical University affiliated Nanjing Brain Hospital, Nanjing, Jiangsu Province, China
| | - Qing Lu
- Nanjing University Medical School, Nanjing, Jiangsu Province, China ; Nanjing University Medical School, Nanjing, Jiangsu Province, China
| |
Collapse
|
43
|
Contralateral targeting of the corpus callosum in normal and pathological brain function. Trends Neurosci 2015; 38:264-72. [PMID: 25841797 DOI: 10.1016/j.tins.2015.02.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/25/2015] [Accepted: 02/27/2015] [Indexed: 12/14/2022]
Abstract
The corpus callosum connects the two cortical hemispheres of the mammalian brain and is susceptible to structural defects during development, which often result in significant neuropsychological dysfunction. To date, such individuals have been studied primarily with regards to the integrity of the callosal tract at the midline. However, the mechanisms regulating the contralateral targeting of the corpus callosum, after midline crossing has occurred, are less well understood. Recent evidence suggests that defects in contralateral targeting can occur in isolation from midline-tract malformations, and may have significant functional implications. We propose that contralateral targeting is a crucially important and relatively under-investigated event in callosal development, and that defects in this process may constitute an undiagnosed phenotype in several neurological disorders.
Collapse
|
44
|
|
45
|
Gupta CN, Chen J, Liu J, Damaraju E, Wright C, Perrone-Bizzozero NI, Pearlson G, Luo L, Michael AM, Turner JA, Calhoun VD. Genetic markers of white matter integrity in schizophrenia revealed by parallel ICA. Front Hum Neurosci 2015; 9:100. [PMID: 25784871 PMCID: PMC4347454 DOI: 10.3389/fnhum.2015.00100] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 02/10/2015] [Indexed: 11/13/2022] Open
Abstract
It is becoming a consensus that white matter integrity is compromised in schizophrenia (SZ), however the underlying genetics remains elusive. Evidence suggests a polygenic basis of the disorder, which involves various genetic variants with modest individual effect sizes. In this work, we used a multivariate approach, parallel independent component analysis (P-ICA), to explore the genetic underpinnings of white matter abnormalities in SZ. A pre-filtering step was first applied to locate 6527 single nucleotide polymorphisms (SNPs) discriminating patients from controls with a nominal uncorrected p-value of 0.01. These potential susceptibility loci were then investigated for associations with fractional anisotropy (FA) images in a cohort consisting of 73 SZ patients and 87 healthy controls (HC). A significant correlation (r = −0.37, p = 1.25 × 10−6) was identified between one genetic factor and one FA component after controlling for scanning site, ethnicity, age, and sex. The identified FA-SNP association remained stable in a 10-fold validation. A 5000-run permutation test yielded a p-value of 2.00 × 10−4. The FA component reflected decreased white matter integrity in the forceps major for SZ patients. The SNP component was overrepresented in genes whose products are involved in corpus callosum morphology (e.g., CNTNAP2, NPAS3, and NFIB) as well as canonical pathways of synaptic long term depression and protein kinase A signaling. Taken together, our finding delineates a part of genetic architecture underlying SZ-related FA reduction, emphasizing the important role of genetic variants involved in neural development.
Collapse
Affiliation(s)
| | - Jiayu Chen
- The Mind Research Network Albuquerque, NM, USA
| | - Jingyu Liu
- The Mind Research Network Albuquerque, NM, USA ; Department of Electrical and Computer Engineering, University of New Mexico Albuquerque, NM, USA
| | | | - Carrie Wright
- The Mind Research Network Albuquerque, NM, USA ; Department of Neurosciences, School of Medicine, University of New Mexico Albuquerque, NM, USA
| | | | - Godfrey Pearlson
- Departments of Psychiatry, Yale University School of Medicine New Haven, CT, USA ; Olin Neuropsychiatry Research Center, Institute of Living Hartford, CT, USA
| | - Li Luo
- Department of Internal Medicine, University of New Mexico Albuquerque, NM, USA
| | | | - Jessica A Turner
- The Mind Research Network Albuquerque, NM, USA ; Department of Psychology and Neuroscience Institute, Georgia State University Atlanta, GA, USA
| | - Vince D Calhoun
- The Mind Research Network Albuquerque, NM, USA ; Department of Electrical and Computer Engineering, University of New Mexico Albuquerque, NM, USA ; Department of Neurosciences, School of Medicine, University of New Mexico Albuquerque, NM, USA ; Departments of Psychiatry, Yale University School of Medicine New Haven, CT, USA
| |
Collapse
|
46
|
Katagiri N, Pantelis C, Nemoto T, Zalesky A, Hori M, Shimoji K, Saito J, Ito S, Dwyer DB, Fukunaga I, Morita K, Tsujino N, Yamaguchi T, Shiraga N, Aoki S, Mizuno M. A longitudinal study investigating sub-threshold symptoms and white matter changes in individuals with an 'at risk mental state' (ARMS). Schizophr Res 2015; 162:7-13. [PMID: 25638727 DOI: 10.1016/j.schres.2015.01.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 12/20/2014] [Accepted: 01/02/2015] [Indexed: 01/02/2023]
Abstract
BACKGROUND Evidence supports disruption in white matter (WM) connectivity in established schizophrenia, however, it is unclear when these abnormalities occur during the course of illness and if they are progressive. Here we investigated whether WM abnormalities predate illness onset by examining a group of individuals with an 'at risk mental state' (ARMS) and assess whether there is evidence of progressive change. We hypothesized that WM abnormalities are associated with symptom change. METHODS Sixteen healthy controls and 41 ARMS subjects at baseline underwent Diffusion Tensor Imaging (DTI). Sub-threshold positive symptoms were measured using the Scale of Prodromal Symptoms (SOPS). Imaging and symptoms were re-administered in the ARMS group after one year (52weeks). Fractional anisotropy (FA) value differences between ARMS and control groups at baseline were localized using the method of Tract-Based Spatial Statistics (TBSS). RESULTS At baseline, FA was significantly reduced in a sub-region of the corpus callosum (CC) in the ARMS group as a whole compared to controls. This reduction was also found in the 34 individuals who did not transition (ARMS-N) during the one-year follow-up. However, the ARMS-N group showed a significant improvement in sub-threshold positive symptoms at follow-up, which was correlated with an increase in FA in the same CC region (r=-0.664, p<0.001). DISCUSSION There was a significant FA reduction in the CC in individuals at high risk for psychosis regardless of transition status at one year. This suggests that WM abnormalities in the CC may represent a biological vulnerability to psychosis. Improvement in sub-threshold positive symptoms was associated with improvement in measures of WM integrity in the CC. This may suggest that neurobiological 'resilience' is associated with improved outcomes, although this notion requires future study.
Collapse
Affiliation(s)
- Naoyuki Katagiri
- Department of Neuropsychiatry, Toho University School of Medicine, Tokyo, Japan; Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Parkville, Melbourne, Australia
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Parkville, Melbourne, Australia
| | - Takahiro Nemoto
- Department of Neuropsychiatry, Toho University School of Medicine, Tokyo, Japan.
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Parkville, Melbourne, Australia; Melbourne School of Engineering, The University of Melbourne, Melbourne, Australia
| | - Masaaki Hori
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Keigo Shimoji
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Diagnostic Radiology, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| | - Junichi Saito
- Department of Neuropsychiatry, Toho University School of Medicine, Tokyo, Japan
| | - Shinya Ito
- Department of Social Medicine, Toho University School of Medicine, Tokyo, Japan
| | - Dominic B Dwyer
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Parkville, Melbourne, Australia
| | - Issei Fukunaga
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Keiko Morita
- Department of Neuropsychiatry, Toho University School of Medicine, Tokyo, Japan
| | - Naohisa Tsujino
- Department of Neuropsychiatry, Toho University School of Medicine, Tokyo, Japan
| | - Taiju Yamaguchi
- Department of Neuropsychiatry, Toho University School of Medicine, Tokyo, Japan
| | - Nobuyuki Shiraga
- Department of Radiology, Toho University School of Medicine, Tokyo, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Masafumi Mizuno
- Department of Neuropsychiatry, Toho University School of Medicine, Tokyo, Japan
| |
Collapse
|
47
|
Harms MP, Akhter KD, Csernansky JG, Mori S, Barch DM. Fractional anisotropy in individuals with schizophrenia and their nonpsychotic siblings. Psychiatry Res 2015; 231:87-91. [PMID: 25453989 PMCID: PMC4272646 DOI: 10.1016/j.pscychresns.2014.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 08/18/2014] [Accepted: 10/09/2014] [Indexed: 01/03/2023]
Abstract
Fractional anisotropy (FA) was examined in a priori selected fiber tracts in individuals with schizophrenia (n=25) and their non-psychotic siblings (n=29) versus controls (n=35). FA was reduced in a portion of the fornix in individuals with schizophrenia (although this did not survive correction for the number of tracts investigated). FA in the siblings did not differ from that in controls in any of the investigated tracts.
Collapse
Affiliation(s)
- Michael P. Harms
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA,Corresponding author: Department of Psychiatry (Box 8134), Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA. Tel.: +1 (314) 747-6173; Fax: +1 (314) 747-2182;
| | - Kazi D. Akhter
- Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - John G. Csernansky
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Susumu Mori
- Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Deanna M. Barch
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA,Department of Psychology, Washington University, St. Louis, MO, USA
| |
Collapse
|
48
|
Najjar S, Pearlman DM. Neuroinflammation and white matter pathology in schizophrenia: systematic review. Schizophr Res 2015; 161:102-12. [PMID: 24948485 DOI: 10.1016/j.schres.2014.04.041] [Citation(s) in RCA: 220] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 03/30/2014] [Accepted: 04/03/2014] [Indexed: 01/24/2023]
Abstract
BACKGROUND Neuroinflammation and white matter pathology have each been independently associated with schizophrenia, and experimental studies have revealed mechanisms by which the two can interact in vitro, but whether these abnormalities simultaneously co-occur in people with schizophrenia remains unclear. METHOD We searched MEDLINE, EMBASE, PsycINFO and Web of Science from inception through 12 January 2014 for studies reporting human data on the relationship between microglial or astroglial activation, or cytokines and white matter pathology in schizophrenia. RESULTS Fifteen studies totaling 792 subjects (350 with schizophrenia, 346 controls, 49 with bipolar disorder, 37 with major depressive disorder and 10 with Alzheimer's disease) met all eligibility criteria. Five neuropathological and two neuroimaging studies collectively yielded consistent evidence of an association between schizophrenia and microglial activation, particularly in white rather than gray matter regions. Ultrastructural analysis revealed activated microglia near dystrophic and apoptotic oligodendroglia, demyelinating and dysmyelinating axons and swollen and vacuolated astroglia in subjects with schizophrenia but not controls. Two neuroimaging studies found an association between carrier status for a functional single nucleotide polymorphism in the interleukin-1β gene and abnormal white as well as gray matter volumes in schizophrenia but not controls. A neuropathological study found that orbitofrontal white matter neuronal density was increased in schizophrenia cases exhibiting high transcription levels of pro-inflammatory cytokines relative to those exhibiting low transcription levels and to controls. Schizophrenia was associated with decreased astroglial density specifically in subgenual cingulate white matter and anterior corpus callosum, but not other gray or white matter areas. Astrogliosis was consistently absent. Data on astroglial gene expression, mRNA expression and protein concentration were inconsistent. CONCLUSION Neuroinflammation is associated with white matter pathology in people with schizophrenia, and may contribute to structural and functional disconnectivity, even at the first episode of psychosis.
Collapse
Affiliation(s)
- Souhel Najjar
- Neuroinflammation Research Group, Epilepsy Center Division, Department of Neurology, NYU School of Medicine, New York, New York, United States.
| | - Daniel M Pearlman
- Neuroinflammation Research Group, Epilepsy Center Division, Department of Neurology, NYU School of Medicine, New York, New York, United States; The Dartmouth Institute of Health Policy and Clinical Practice, Audrey and Theodor Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States
| |
Collapse
|
49
|
Lener MS, Wong E, Tang CY, Byne W, Goldstein KE, Blair NJ, Haznedar MM, New AS, Chemerinski E, Chu KW, Rimsky LS, Siever LJ, Koenigsberg HW, Hazlett EA. White matter abnormalities in schizophrenia and schizotypal personality disorder. Schizophr Bull 2015; 41:300-10. [PMID: 24962608 PMCID: PMC4266294 DOI: 10.1093/schbul/sbu093] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Prior diffusion tensor imaging (DTI) studies examining schizotypal personality disorder (SPD) and schizophrenia, separately have shown that compared with healthy controls (HCs), patients show frontotemporal white matter (WM) abnormalities. This is the first DTI study to directly compare WM tract coherence with tractography and fractional anisotropy (FA) across the schizophrenia spectrum in a large sample of demographically matched HCs (n = 55), medication-naive SPD patients (n = 49), and unmedicated/never-medicated schizophrenia patients (n = 22) to determine whether (a) frontal-striatal-temporal WM tract abnormalities in schizophrenia are similar to, or distinct from those observed in SPD; and (b) WM tract abnormalities are associated with clinical symptom severity indicating a common underlying pathology across the spectrum. Compared with both the HC and SPD groups, schizophrenia patients showed WM abnormalities, as indexed by lower FA in the temporal lobe (inferior longitudinal fasciculus) and cingulum regions. SPD patients showed lower FA in the corpus callosum genu compared with the HC group, but this regional abnormality was more widespread in schizophrenia patients. Across the schizophrenia spectrum, greater WM disruptions were associated with greater symptom severity. Overall, frontal-striatal-temporal WM dysconnectivity is attenuated in SPD compared with schizophrenia patients and may mitigate the emergence of psychosis.
Collapse
Affiliation(s)
- Marc S. Lener
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Edmund Wong
- Translational and Molecular Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Cheuk Y. Tang
- Translational and Molecular Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - William Byne
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY;,Mental Illness Research, Education, and Clinical Center (MIRECC VISN 3), James J. Peters Veterans Affairs Medical Center, Bronx, NY;,Department of Outpatient Psychiatry, James J. Peters Veterans Affairs Medical Center, Bronx, NY
| | - Kim E. Goldstein
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Nicholas J. Blair
- Mental Illness Research, Education, and Clinical Center (MIRECC VISN 3), James J. Peters Veterans Affairs Medical Center, Bronx, NY;,Research and Development, James J. Peters Veterans Affairs Medical Center, Bronx, NY
| | - M. Mehmet Haznedar
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY;,Department of Outpatient Psychiatry, James J. Peters Veterans Affairs Medical Center, Bronx, NY
| | - Antonia S. New
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY;,Mental Illness Research, Education, and Clinical Center (MIRECC VISN 3), James J. Peters Veterans Affairs Medical Center, Bronx, NY
| | - Eran Chemerinski
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY;,Department of Outpatient Psychiatry, James J. Peters Veterans Affairs Medical Center, Bronx, NY
| | - King-Wai Chu
- Mental Illness Research, Education, and Clinical Center (MIRECC VISN 3), James J. Peters Veterans Affairs Medical Center, Bronx, NY;,Research and Development, James J. Peters Veterans Affairs Medical Center, Bronx, NY
| | - Liza S. Rimsky
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Larry J. Siever
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY;,Mental Illness Research, Education, and Clinical Center (MIRECC VISN 3), James J. Peters Veterans Affairs Medical Center, Bronx, NY;,Department of Outpatient Psychiatry, James J. Peters Veterans Affairs Medical Center, Bronx, NY
| | - Harold W. Koenigsberg
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY;,Department of Outpatient Psychiatry, James J. Peters Veterans Affairs Medical Center, Bronx, NY
| | - Erin A. Hazlett
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY;,Mental Illness Research, Education, and Clinical Center (MIRECC VISN 3), James J. Peters Veterans Affairs Medical Center, Bronx, NY;,Research and Development, James J. Peters Veterans Affairs Medical Center, Bronx, NY,*To whom correspondence should be addressed; Mental Illness Research, Education, and Clinical Center, James J. Peters VA Medical Center, 130 West Kingsbridge Road, Room 6A-44, Bronx, NY, US; tel: 718-584-9000 x3701, fax: 718-364-3576, e-mail:
| |
Collapse
|
50
|
Kenk M, Selvanathan T, Rao N, Suridjan I, Rusjan P, Remington G, Meyer JH, Wilson AA, Houle S, Mizrahi R. Imaging neuroinflammation in gray and white matter in schizophrenia: an in-vivo PET study with [18F]-FEPPA. Schizophr Bull 2015; 41:85-93. [PMID: 25385788 PMCID: PMC4266311 DOI: 10.1093/schbul/sbu157] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Neuroinflammation and abnormal immune responses have been implicated in schizophrenia (SCZ). Past studies using positron emission tomography (PET) that examined neuroinflammation in patients with SCZ in vivo using the translocator protein 18kDa (TSPO) target were limited by the insensitivity of the first-generation imaging agent [(11)C]-PK11195, scanners used, and the small sample sizes studied. Present study uses a novel second-generation TSPO PET radioligand N-acetyl-N-(2-[(18)F]fluoroethoxybenzyl)-2-phenoxy-5-pyridinamine ([(18)F]-FEPPA) to evaluate whether there is increased neuroinflammation in patients with SCZ. A cross-sectional study was performed using [(18)F]-FEPPA and a high-resolution research tomograph (HRRT). Eighteen patients with SCZ with ongoing psychotic symptoms and 27 healthy volunteers (HV) were recruited from a tertiary psychiatric clinical setting and the community, respectively. All participants underwent [(18)F]-FEPPA PET and magnetic resonance imaging, and PET data were analyzed to obtain [(18)F]-FEPPA total volume of distribution (VT) using a 2-tissue compartment model with an arterial plasma input function, as previously validated. All subjects were classified as high-, medium- or low-affinity [(18)F]-FEPPA binders on the basis of rs6971 polymorphism, and genotype information was incorporated into the analyses of imaging outcomes. No significant differences in neuroinflammation indexed as [(18)F]-FEPPA VT were observed between groups in either gray (F(1,39) = 0.179, P = .674) or white matter regions (F(1,38) = 0.597, P = .445). The lack of significant difference in neuroinflammation in treated patients with SCZ in the midst of a psychotic episode and HV suggests that neuroinflammatory processes may take place early in disease progression or are affected by antipsychotic treatment.
Collapse
Affiliation(s)
- Miran Kenk
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Thiviya Selvanathan
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Naren Rao
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Ivonne Suridjan
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Pablo Rusjan
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Gary Remington
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Jeffrey H Meyer
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Alan A Wilson
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Sylvain Houle
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Romina Mizrahi
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| |
Collapse
|