1
|
Machiraju SN, Wyss J, Light G, Braff DL, Cadenhead KS. Novel N100 area reliably captures aberrant sensory processing and is associated with neurocognition in early psychosis. Schizophr Res 2024; 271:71-80. [PMID: 39013347 DOI: 10.1016/j.schres.2024.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/24/2024] [Accepted: 07/09/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND Despite findings from translational and genetic studies in the event-related potential (ERP) literature, the validity and reliability of P50 suppression as a schizophrenia spectrum endophenotype has been questioned. Here, we aimed to examine sensory registration and gating measures derived from P50 and N100 amplitude, as well as N100 area-a novel approach proposed herein-in early psychosis versus health. METHODS Individuals at clinical high risk for psychosis (CHR; n = 77), first-episode psychosis (FE; n = 52), and healthy controls (HC; n = 65) were assessed in a paired-click auditory ERP paradigm. Eight CHR converted to psychosis (CHRC) and 39 did not (CHR-NC) by 24 months, while 30 CHR were lost to follow-. Group differences, test-retest reliability, and associations with neurocognitive function were assessed in nine ERP measures. RESULTS Significant differences were observed in N100 S1 amplitude, S1 area, and area difference between HC and FE, as well as in N100 S1 area between HC and CHR, among the total population. Furthermore, significant differences were found in N100 S1 area between HC and CHR-NC (Cliff's delta, Δ = 0.32), as well as in N100 area difference between HC and CHR-C (Δ = 0.55). Both N100 S1 area and area difference demonstrated moderate to acceptable reliability (intraclass correlation coefficients: 0.61-0.78). Processing speed negatively correlated with both N100 S1 area and area difference, while executive function negatively correlated with N100 S1 area alone in CHR and FE. CONCLUSION Among the ERP measures studied, N100 area measures may serve as a reliable biomarker of aberrant sensory processing and neurocognition in early psychosis.
Collapse
Affiliation(s)
| | - Jeffrey Wyss
- Department of Psychiatry, University of California, San Diego, United States of America
| | - Gregory Light
- Department of Psychiatry, University of California, San Diego, United States of America; Department of Psychiatry, VA San Diego Health, United States of America
| | - David L Braff
- Department of Psychiatry, University of California, San Diego, United States of America
| | - Kristin S Cadenhead
- Department of Psychiatry, University of California, San Diego, United States of America.
| |
Collapse
|
2
|
Read E, Hindges R. A novel locomotion-based prepulse inhibition assay in zebrafish larvae. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.000914. [PMID: 38344062 PMCID: PMC10853821 DOI: 10.17912/micropub.biology.000914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/20/2023] [Accepted: 01/11/2024] [Indexed: 03/07/2024]
Abstract
Sensory gating, measured using prepulse inhibition (PPI), is an endophenotype of neuropsychiatric disorders that can be assessed in larval zebrafish models. However, current PPI assays require high-speed cameras to capture rapid c-bend startle behaviours of the larvae. In this study, we designed and employed a PPI paradigm that uses locomotion as a read-out of zebrafish larval startle responses. PPI percentage was measured at a maximum of 87% and strongly reduced upon administration of the NMDA receptor antagonist, MK-801. This work provides the foundation for simpler and more accessible PPI assays using larval zebrafish to model key endophenotypes of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Emily Read
- Centre for Developmental Neurobiology & MRC Centre for Neurodevelopmental Disorders, King's College London, London, England, United Kingdom
| | - Robert Hindges
- Centre for Developmental Neurobiology & MRC Centre for Neurodevelopmental Disorders, King's College London, London, England, United Kingdom
| |
Collapse
|
3
|
Zhang D, Xu L, Liu X, Cui H, Wei Y, Zheng W, Hong Y, Qian Z, Hu Y, Tang Y, Li C, Liu Z, Chen T, Liu H, Zhang T, Wang J. Eye Movement Characteristics for Predicting a Transition to Psychosis: Longitudinal Changes and Implications. Schizophr Bull 2024:sbae001. [PMID: 38245498 DOI: 10.1093/schbul/sbae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Abstract
BACKGROUND AND HYPOTHESIS Substantive inquiry into the predictive power of eye movement (EM) features for clinical high-risk (CHR) conversion and their longitudinal trajectories is currently sparse. This study aimed to investigate the efficiency of machine learning predictive models relying on EM indices and examine the longitudinal alterations of these indices across the temporal continuum. STUDY DESIGN EM assessments (fixation stability, free-viewing, and smooth pursuit tasks) were performed on 140 CHR and 98 healthy control participants at baseline, followed by a 1-year longitudinal observational study. We adopted Cox regression analysis and constructed random forest prediction models. We also employed linear mixed-effects models (LMMs) to analyze longitudinal changes of indices while stratifying by group and time. STUDY RESULTS Of the 123 CHR participants who underwent a 1-year clinical follow-up, 25 progressed to full-blown psychosis, while 98 remained non-converters. Compared with the non-converters, the converters exhibited prolonged fixation durations, decreased saccade amplitudes during the free-viewing task; larger saccades, and reduced velocity gain during the smooth pursuit task. Furthermore, based on 4 baseline EM measures, a random forest model classified converters and non-converters with an accuracy of 0.776 (95% CI: 0.633, 0.882). Finally, LMMs demonstrated no significant longitudinal alterations in the aforementioned indices among converters after 1 year. CONCLUSIONS Aberrant EMs may precede psychosis onset and remain stable after 1 year, and applying eye-tracking technology combined with a modeling approach could potentially aid in predicting CHRs evolution into overt psychosis.
Collapse
Affiliation(s)
- Dan Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Lihua Xu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Xu Liu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Huiru Cui
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yanyan Wei
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Wensi Zheng
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yawen Hong
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Zhenying Qian
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yegang Hu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Chunbo Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Zhi Liu
- Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, PR China
- School of Communication and Information Engineering, Shanghai University, Shanghai, PR China
| | - Tao Chen
- Labor and Worklife Program, Harvard University, Cambridge, MA, USA
- Big Data Research Lab, University of Waterloo, Waterloo, ON, Canada
- Niacin (Shanghai) Technology Co., Ltd., Shanghai, PR China
| | - Haichun Liu
- Department of Automation, Shanghai Jiao Tong University, Shanghai, PR China
| | - Tianhong Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science, Shanghai, PR China
- Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, PR China
| |
Collapse
|
4
|
Hamilton HK, Mathalon DH. Neurophysiological Models in Individuals at Clinical High Risk for Psychosis: Using Translational EEG Paradigms to Forecast Psychosis Risk and Resilience. ADVANCES IN NEUROBIOLOGY 2024; 40:385-410. [PMID: 39562452 DOI: 10.1007/978-3-031-69491-2_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Over the last several decades, there have been major research efforts to improve the identification of youth and young adults at clinical high-risk for psychosis (CHR-P). Among individuals identified as CHR-P based on clinical criteria, approximately 20% progress to full-blown psychosis over 2-3 years and 30% achieve remission. In more recent years, neurophysiological measures with established sensitivity to schizophrenia have gained traction in the study of CHR-P and its range of clinical outcomes, with the goal of identifying specific biomarkers that precede psychosis onset that 7 chapter, we review studies examining several translational electroencephalography (EEG) and event-related potential (ERP) measures, which have known sensitivity to schizophrenia and reflect abnormal sensory, perceptual, and cognitive processing of task stimuli, as predictors of future clinical outcomes in CHR-P individuals. We discuss the promise of these EEG/ERP biomarkers of psychosis risk, including their potential to provide (a) translational bridges between human studies and animal models focused on drug development for early psychosis, (b) target engagement measures for clinical trials, and (c) prognostic indicators that could enhance personalized treatment planning.
Collapse
Affiliation(s)
- Holly K Hamilton
- Department of Psychiatry & Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
- Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, USA
| | - Daniel H Mathalon
- Department of Psychiatry & Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA.
- San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA.
| |
Collapse
|
5
|
Dutra-Tavares AC, Souza TP, Silva JO, Semeão KA, Mello FF, Filgueiras CC, Ribeiro-Carvalho A, Manhães AC, Abreu-Villaça Y. Neonatal phencyclidine as a model of sex-biased schizophrenia symptomatology in adolescent mice. Psychopharmacology (Berl) 2023; 240:2111-2129. [PMID: 37530885 DOI: 10.1007/s00213-023-06434-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/22/2023] [Indexed: 08/03/2023]
Abstract
Sex-biased differences in schizophrenia are evident in several features of the disease, including symptomatology and response to pharmacological treatments. As a neurodevelopmental disorder, these differences might originate early in life and emerge later during adolescence. Considering that the disruption of the glutamatergic system during development is known to contribute to schizophrenia, we hypothesized that the neonatal phencyclidine model could induce sex-dependent behavioral and neurochemical changes associated with this disorder during adolescence. C57BL/6 mice received either saline or phencyclidine (5, 10, or 20 mg/kg) on postnatal days (PN) 7, 9, and 11. Behavioral assessment occurred in late adolescence (PN48-50), when mice were submitted to the open field, social interaction, and prepulse inhibition tests. Either olanzapine or saline was administered before each test. The NMDAR obligatory GluN1 subunit and the postsynaptic density protein 95 (PSD-95) were evaluated in the frontal cortex and hippocampus at early (PN30) and late (PN50) adolescence. Neonatal phencyclidine evoked dose-dependent deficits in all analyzed behaviors and males were more susceptible. Males also had reduced GluN1 expression in the frontal cortex at PN30. There were late-emergent effects at PN50. Cortical GluN1 was increased in both sexes, while phencyclidine increased cortical and decreased hippocampal PSD-95 in females. Olanzapine failed to mitigate most phencyclidine-evoked alterations. In some instances, this antipsychotic aggravated the deficits or potentiated subthreshold effects. These results lend support to the use of neonatal phencyclidine as a sex-biased neurodevelopmental preclinical model of schizophrenia. Olanzapine null effects and deleterious outcomes suggest that its use during adolescence should be further evaluated.
Collapse
Affiliation(s)
- Ana Carolina Dutra-Tavares
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 andar, Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| | - Thainá P Souza
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 andar, Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| | - Juliana O Silva
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 andar, Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| | - Keila A Semeão
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 andar, Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| | - Felipe F Mello
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 andar, Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| | - Claudio C Filgueiras
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 andar, Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| | - Anderson Ribeiro-Carvalho
- Departamento de Ciências, Faculdade de Formação de Professores da Universidade do Estado do Rio de Janeiro (UERJ), RJ, São Gonçalo, Brazil
| | - Alex C Manhães
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 andar, Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| | - Yael Abreu-Villaça
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 andar, Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil.
| |
Collapse
|
6
|
Woods R, Lorusso J, Fletcher J, ElTaher H, McEwan F, Harris I, Kowash H, D'Souza SW, Harte M, Hager R, Glazier JD. Maternal immune activation and role of placenta in the prenatal programming of neurodevelopmental disorders. Neuronal Signal 2023; 7:NS20220064. [PMID: 37332846 PMCID: PMC10273029 DOI: 10.1042/ns20220064] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023] Open
Abstract
Maternal infection during pregnancy, leading to maternal immune activation (mIA) and cytokine release, increases the offspring risk of developing a variety of neurodevelopmental disorders (NDDs), including schizophrenia. Animal models have provided evidence to support these mechanistic links, with placental inflammatory responses and dysregulation of placental function implicated. This leads to changes in fetal brain cytokine balance and altered epigenetic regulation of key neurodevelopmental pathways. The prenatal timing of such mIA-evoked changes, and the accompanying fetal developmental responses to an altered in utero environment, will determine the scope of the impacts on neurodevelopmental processes. Such dysregulation can impart enduring neuropathological changes, which manifest subsequently in the postnatal period as altered neurodevelopmental behaviours in the offspring. Hence, elucidation of the functional changes that occur at the molecular level in the placenta is vital in improving our understanding of the mechanisms that underlie the pathogenesis of NDDs. This has notable relevance to the recent COVID-19 pandemic, where inflammatory responses in the placenta to SARS-CoV-2 infection during pregnancy and NDDs in early childhood have been reported. This review presents an integrated overview of these collective topics and describes the possible contribution of prenatal programming through placental effects as an underlying mechanism that links to NDD risk, underpinned by altered epigenetic regulation of neurodevelopmental pathways.
Collapse
Affiliation(s)
- Rebecca M. Woods
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Jarred M. Lorusso
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Jennifer Fletcher
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Heidi ElTaher
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
- Department of Physiology, Faculty of Medicine, Alexandria University, Egypt
| | - Francesca McEwan
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Isabella Harris
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Hager M. Kowash
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9WL, U.K
| | - Stephen W. D'Souza
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9WL, U.K
| | - Michael Harte
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Reinmar Hager
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Jocelyn D. Glazier
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| |
Collapse
|
7
|
Wang B, Zartaloudi E, Linden JF, Bramon E. Neurophysiology in psychosis: The quest for disease biomarkers. Transl Psychiatry 2022; 12:100. [PMID: 35277479 PMCID: PMC8917164 DOI: 10.1038/s41398-022-01860-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 01/11/2023] Open
Abstract
Psychotic disorders affect 3% of the population at some stage in life, are a leading cause of disability, and impose a great economic burden on society. Major breakthroughs in the genetics of psychosis have not yet been matched by an understanding of its neurobiology. Biomarkers of perception and cognition obtained through non-invasive neurophysiological tools, especially EEG, offer a unique opportunity to gain mechanistic insights. Techniques for measuring neurophysiological markers are inexpensive and ubiquitous, thus having the potential as an accessible tool for patient stratification towards early treatments leading to better outcomes. In this paper, we review the literature on neurophysiological markers for psychosis and their relevant disease mechanisms, mainly covering event-related potentials including P50/N100 sensory gating, mismatch negativity, and the N100 and P300 waveforms. While several neurophysiological deficits are well established in patients with psychosis, more research is needed to study neurophysiological markers in their unaffected relatives and individuals at clinical high risk. We need to harness EEG to investigate markers of disease risk as key steps to elucidate the aetiology of psychosis and facilitate earlier detection and treatment.
Collapse
Affiliation(s)
- Baihan Wang
- Division of Psychiatry, University College London, London, UK.
| | - Eirini Zartaloudi
- Division of Psychiatry, University College London, London, UK.
- Institute of Clinical Trials and Methodology, University College London, London, UK.
| | - Jennifer F Linden
- Ear Institute, University College London, London, UK
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK
| | - Elvira Bramon
- Division of Psychiatry, University College London, London, UK
- Institute of Cognitive Neuroscience, University College London, London, UK
| |
Collapse
|
8
|
San-Martin R, Zimiani MI, de Ávila MAV, Shuhama R, Del-Ben CM, Menezes PR, Fraga FJ, Salum C. Early Schizophrenia and Bipolar Disorder Patients Display Reduced Neural Prepulse Inhibition. Brain Sci 2022; 12:93. [PMID: 35053836 PMCID: PMC8773710 DOI: 10.3390/brainsci12010093] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/29/2021] [Accepted: 12/29/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Altered sensorimotor gating has been demonstrated by Prepulse Inhibition (PPI) tests in patients with psychosis. Recent advances in signal processing methods allow assessment of neural PPI through electroencephalogram (EEG) recording during acoustic startle response measures (classic muscular PPI). Simultaneous measurements of muscular (eye-blink) and neural gating phenomena during PPI test may help to better understand sensorial processing dysfunctions in psychosis. In this study, we aimed to assess simultaneously muscular and neural PPI in early bipolar disorder and schizophrenia patients. METHOD Participants were recruited from a population-based case-control study of first episode psychosis. PPI was measured using electromyography (EMG) and EEG in pulse alone and prepulse + pulse with intervals of 30, 60, and 120 ms in early bipolar disorder (n = 18) and schizophrenia (n = 11) patients. As control group, 15 socio-economically matched healthy subjects were recruited. All subjects were evaluated with Rating Scale, Hamilton Rating Scale for Depression, and Young Mania Rating Scale questionnaires at recruitment and just before PPI test. Wilcoxon ranked sum tests were used to compare PPI test results between groups. RESULTS In comparison to healthy participants, neural PPI was significantly reduced in PPI 30 and PPI60 among bipolar and schizophrenia patients, while muscular PPI was reduced in PPI60 and PPI120 intervals only among patients with schizophrenia. CONCLUSION The combination of muscular and neural PPI evaluations suggested distinct impairment patterns among schizophrenia and bipolar disorder patients. Simultaneous recording may contribute with novel information in sensory gating investigations.
Collapse
Affiliation(s)
- Rodrigo San-Martin
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo 09606-045, Brazil; (R.S.-M.); (M.I.Z.)
| | - Maria Inês Zimiani
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo 09606-045, Brazil; (R.S.-M.); (M.I.Z.)
| | | | - Rosana Shuhama
- Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto 14040-900, Brazil; (M.A.V.d.Á.); (R.S.); (C.M.D.-B.)
- Population Mental Health Research Center, Universidade de São Paulo, São Paulo 01246-903, Brazil;
| | - Cristina Marta Del-Ben
- Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto 14040-900, Brazil; (M.A.V.d.Á.); (R.S.); (C.M.D.-B.)
- Population Mental Health Research Center, Universidade de São Paulo, São Paulo 01246-903, Brazil;
| | - Paulo Rossi Menezes
- Population Mental Health Research Center, Universidade de São Paulo, São Paulo 01246-903, Brazil;
- Department of Preventive Medicine, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-903, Brazil
| | - Francisco José Fraga
- Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas, Universidade Federal do ABC, Santo André 09210-580, Brazil;
| | - Cristiane Salum
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo 09606-045, Brazil; (R.S.-M.); (M.I.Z.)
| |
Collapse
|
9
|
Stark T, Di Martino S, Drago F, Wotjak CT, Micale V. Phytocannabinoids and schizophrenia: Focus on adolescence as a critical window of enhanced vulnerability and opportunity for treatment. Pharmacol Res 2021; 174:105938. [PMID: 34655773 DOI: 10.1016/j.phrs.2021.105938] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/10/2021] [Accepted: 10/11/2021] [Indexed: 12/16/2022]
Abstract
The recent shift in socio-political debates and growing liberalization of Cannabis use across the globe has raised concern regarding its impact on vulnerable populations such as adolescents. Concurrent with declining perception of Cannabis harms, more adolescents are using it daily in several countries and consuming marijuana strains with high content of psychotropic delta (9)-tetrahydrocannabinol (THC). These dual, related trends seem to facilitate the development of compromised social and cognitive performance at adulthood, which are described in preclinical and human studies. Cannabis exerts its effects via altering signalling within the endocannabinoid system (ECS), which modulates the stress circuitry during the neurodevelopment. In this context early interventions appear to circumvent the emergence of adult neurodevelopmental deficits. Accordingly, Cannabis sativa second-most abundant compound, cannabidiol (CBD), emerges as a potential therapeutic agent to treat neuropsychiatric disorders. We first focus on human and preclinical studies on the long-term effects induced by adolescent THC exposure as a "critical window" of enhanced neurophysiological vulnerability, which could be involved in the pathophysiology of schizophrenia and related primary psychotic disorders. Then, we focus on adolescence as a "window of opportunity" for early pharmacological treatment, as novel risk reduction strategy for neurodevelopmental disorders. Thus, we review current preclinical and clinical evidence regarding the efficacy of CBD in terms of positive, negative and cognitive symptoms treatment, safety profile, and molecular targets.
Collapse
Affiliation(s)
- Tibor Stark
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Department of Stress Neurobiology & Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Serena Di Martino
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Carsten T Wotjak
- Department of Stress Neurobiology & Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany; Central Nervous System Diseases Research (CNSDR), Boehringer Ingelheim Pharma GmbH & Co KG, 88397 Biberach an der Riss, Germany
| | - Vincenzo Micale
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| |
Collapse
|
10
|
Li W, Mao Z, Bo Q, Sun Y, Wang Z, Wang C. Pre-pulse inhibition deficits in individuals at clinical high-risk for psychosis: A systematic review and meta-analysis. Early Interv Psychiatry 2021; 15:794-806. [PMID: 32705810 DOI: 10.1111/eip.13015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 06/15/2020] [Accepted: 06/24/2020] [Indexed: 11/29/2022]
Abstract
AIM Neurophysiological markers of schizophrenia may help identify individuals who are at an increased risk of developing psychosis. As an operational measure of sensorimotor gating, pre-pulse inhibition (PPI) deficit has been investigated in clinical high-risk (CHR) individuals. In this study, we performed a systematic review and meta-analysis of studies that investigated PPI in CHR individuals. METHODS Relevant studies published as of July 2019 were retrieved from the PubMed, Cochrane, Embase, PscyINFO, EBSCO and Chinese databases. PPI was evaluated by calculating the standard mean differences (SMDs) between CHR individuals and healthy controls (HC) in meta-analysis. Quality of studies was assessed using the Newcastle-Ottawa Scale. I2 index was used to assess heterogeneity and Egger's test was used to assess publication bias. RESULTS Eight studies were found to be eligible. The meta-analysis included five studies with a combined study population of 184 CHR subjects and 161 HC. CHR individuals showed lower PPI levels compared to HC in 120 ms inter-stimulus interval or stimulus onset asynchrony paradigm (P = .491, SMD = -0.62). No significant heterogeneity was observed in 120 ms PPI paradigm (χ2 = 3.41, P = .491, I2 = 0.0%). CONCLUSION CHR individuals had lower PPI level compared to HC in 120 ms paradigm, which were relatively stable and significant. The results indicate the presence of information processing and inhibitory problems prior to the development of full-blown psychosis. PPI may be clinically used as an objective indicator to supplement the understanding of CHR individuals.
Collapse
Affiliation(s)
- Weidi Li
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders & Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Zhen Mao
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders & Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Qijing Bo
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders & Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yue Sun
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders & Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Zhimin Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders & Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Chuanyue Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders & Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Catalan A, Salazar de Pablo G, Vaquerizo Serrano J, Mosillo P, Baldwin H, Fernández-Rivas A, Moreno C, Arango C, Correll CU, Bonoldi I, Fusar-Poli P. Annual Research Review: Prevention of psychosis in adolescents - systematic review and meta-analysis of advances in detection, prognosis and intervention. J Child Psychol Psychiatry 2021; 62:657-673. [PMID: 32924144 DOI: 10.1111/jcpp.13322] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/20/2020] [Accepted: 07/31/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND The clinical high-risk state for psychosis (CHR-P) paradigm has facilitated the implementation of psychosis prevention into clinical practice; however, advancements in adolescent CHR-P populations are less established. METHODS We performed a PRISMA/MOOSE-compliant systematic review of the Web of Science database, from inception until 7 October 2019, to identify original studies conducted in CHR-P children and adolescents (mean age <18 years). Findings were systematically appraised around core themes: detection, prognosis and intervention. We performed meta-analyses (employing Q statistics and I 2 test) regarding the proportion of CHR-P subgroups, the prevalence of baseline comorbid mental disorders, the risk of psychosis onset and the type of interventions received at baseline. Quality assessment and publication bias were also analysed. RESULTS Eighty-seven articles were included (n = 4,667 CHR-P individuals). Quality of studies ranged from 3.5 to 8 (median 5.5) on a modified Newcastle-Ottawa scale. Detection: Individuals were aged 15.6 ± 1.2 years (51.5% males), mostly (83%) presenting with attenuated positive psychotic symptoms. CHR-P psychometric accuracy improved when caregivers served as additional informants. Comorbid mood (46.4%) and anxiety (31.4%) disorders were highly prevalent. Functioning and cognition were impaired. Neurobiological studies were inconclusive. PROGNOSIS Risk for psychosis was 10.4% (95%CI: 5.8%-18.1%) at 6 months, 20% (95%CI: 15%-26%) at 12 months, 23% (95%CI: 18%-29%) at 24 months and 23.3% (95%CI: 17.3%-30.7%) at ≥36 months. INTERVENTIONS There was not enough evidence to recommend one specific treatment (including cognitive behavioural therapy) over the others (including control conditions) to prevent the transition to psychosis in this population. Randomised controlled trials suggested that family interventions, cognitive remediation and fish oil supplementation may improve cognition, symptoms and functioning. At baseline, 30% of CHR-P adolescents were prescribed antipsychotics and 60% received psychotherapy. CONCLUSIONS It is possible to detect and formulate a group-level prognosis in adolescents at risk for psychosis. Future interventional research is required.
Collapse
Affiliation(s)
- Ana Catalan
- Mental Health Department - Biocruces Bizkaia Health Research Institute, Basurto University Hospital, Faculty of Medicine and Dentistry, University of the Basque Country - UPV/EHU, Biscay, Spain.,Early Psychosis: Interventions and Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Gonzalo Salazar de Pablo
- Early Psychosis: Interventions and Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.,Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón School of Medicine, IiSGM, CIBERSAM, Complutense University of Madrid, Madrid, Spain
| | - Julio Vaquerizo Serrano
- Early Psychosis: Interventions and Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.,Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón School of Medicine, IiSGM, CIBERSAM, Complutense University of Madrid, Madrid, Spain
| | - Pierluca Mosillo
- Early Psychosis: Interventions and Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.,Faculty of Medicine and Surgery, University of Pavia, Pavia, Italy
| | - Helen Baldwin
- Early Psychosis: Interventions and Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Aranzazu Fernández-Rivas
- Mental Health Department - Biocruces Bizkaia Health Research Institute, Basurto University Hospital, Faculty of Medicine and Dentistry, University of the Basque Country - UPV/EHU, Biscay, Spain
| | - Carmen Moreno
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón School of Medicine, IiSGM, CIBERSAM, Complutense University of Madrid, Madrid, Spain
| | - Celso Arango
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón School of Medicine, IiSGM, CIBERSAM, Complutense University of Madrid, Madrid, Spain
| | - Christoph U Correll
- The Zucker Hillside Hospital, Department of Psychiatry, Northwell Health, Glen Oaks, NY, USA.,Department of Psychiatry and Molecular Medicine, Zucker School of Medicine at Hofstra/ Northwell, Hempstead, NY, USA.,Center for Psychiatric Neuroscience, The Feinstein Institutes for Medical Research, Manhasset, NY, USA.,Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany
| | - Ilaria Bonoldi
- Early Psychosis: Interventions and Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Paolo Fusar-Poli
- Early Psychosis: Interventions and Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.,OASIS service, South London and Maudsley NHS Foundation Trust, London, UK.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,National Institute for Health Research, Maudsley Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, London, UK
| |
Collapse
|
12
|
Perrottelli A, Giordano GM, Brando F, Giuliani L, Mucci A. EEG-Based Measures in At-Risk Mental State and Early Stages of Schizophrenia: A Systematic Review. Front Psychiatry 2021; 12:653642. [PMID: 34017273 PMCID: PMC8129021 DOI: 10.3389/fpsyt.2021.653642] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/06/2021] [Indexed: 12/17/2022] Open
Abstract
Introduction: Electrophysiological (EEG) abnormalities in subjects with schizophrenia have been largely reported. In the last decades, research has shifted to the identification of electrophysiological alterations in the prodromal and early phases of the disorder, focusing on the prediction of clinical and functional outcome. The identification of neuronal aberrations in subjects with a first episode of psychosis (FEP) and in those at ultra high-risk (UHR) or clinical high-risk (CHR) to develop a psychosis is crucial to implement adequate interventions, reduce the rate of transition to psychosis, as well as the risk of irreversible functioning impairment. The aim of the review is to provide an up-to-date synthesis of the electrophysiological findings in the at-risk mental state and early stages of schizophrenia. Methods: A systematic review of English articles using Pubmed, Scopus, and PsychINFO was undertaken in July 2020. Additional studies were identified by hand-search. Electrophysiological studies that included at least one group of FEP or subjects at risk to develop psychosis, compared to healthy controls (HCs), were considered. The heterogeneity of the studies prevented a quantitative synthesis. Results: Out of 319 records screened, 133 studies were included in a final qualitative synthesis. Included studies were mainly carried out using frequency analysis, microstates and event-related potentials. The most common findings included an increase in delta and gamma power, an impairment in sensory gating assessed through P50 and N100 and a reduction of Mismatch Negativity and P300 amplitude in at-risk mental state and early stages of schizophrenia. Progressive changes in some of these electrophysiological measures were associated with transition to psychosis and disease course. Heterogeneous data have been reported for indices evaluating synchrony, connectivity, and evoked-responses in different frequency bands. Conclusions: Multiple EEG-indices were altered during at-risk mental state and early stages of schizophrenia, supporting the hypothesis that cerebral network dysfunctions appear already before the onset of the disorder. Some of these alterations demonstrated association with transition to psychosis or poor functional outcome. However, heterogeneity in subjects' inclusion criteria, clinical measures and electrophysiological methods prevents drawing solid conclusions. Large prospective studies are needed to consolidate findings concerning electrophysiological markers of clinical and functional outcome.
Collapse
Affiliation(s)
- Andrea Perrottelli
- Department of Psychiatry, University of Campania "Luigi Vanvitelli", Naples, Italy
| | | | - Francesco Brando
- Department of Psychiatry, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Luigi Giuliani
- Department of Psychiatry, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Armida Mucci
- Department of Psychiatry, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
13
|
Afonso AC, Pacheco FD, Canever L, Wessler PG, Mastella GA, Godoi AK, Hubbe I, Bischoff LM, Bialecki AVS, Zugno AI. Schizophrenia-like behavior is not altered by melatonin supplementation in rodents. AN ACAD BRAS CIENC 2020; 92:e20190981. [PMID: 32844989 DOI: 10.1590/0001-3765202020190981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 12/06/2019] [Indexed: 11/22/2022] Open
Abstract
An emerging area in schizophrenia research focuses on the impact of immunomodulatory drugs such as melatonin, which have played important roles in many biological systems and functions, and appears to be promising. The objective was to evaluate the effect of melatonin on behavioral parameters in an animal model of schizophrenia. For this, Wistar rats were divided and used in two different protocols. In the prevention protocol, the animals received 1 or 10mg/kg of melatonin or water for 14 days, and between the 8th and 14th day they received ketamine or saline. In the reversal protocol, the opposite occurred. On the 14th day, the animals underwent behavioral tests: locomotor activity and prepulse inhibition task. In both protocols, the results revealed that ketamine had effects on locomotor activity and prepulse inhibition, confirming the validity of ketamine construction as a good animal model of schizophrenia. However, at least at the doses used, melatonin was not able to reverse/prevent ketamine damage. More studies are necessary to evaluate the role of melatonin as an adjuvant treatment in psychiatric disorders.
Collapse
Affiliation(s)
- Arlindo C Afonso
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Felipe D Pacheco
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Lara Canever
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Patricia G Wessler
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Gustavo A Mastella
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Amanda K Godoi
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Isabela Hubbe
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Laura M Bischoff
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Alex Victor S Bialecki
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Alexandra I Zugno
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| |
Collapse
|
14
|
Hamilton HK, Boos AK, Mathalon DH. Electroencephalography and Event-Related Potential Biomarkers in Individuals at Clinical High Risk for Psychosis. Biol Psychiatry 2020; 88:294-303. [PMID: 32507388 PMCID: PMC8300573 DOI: 10.1016/j.biopsych.2020.04.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 01/17/2023]
Abstract
Clinical outcomes vary among youths at clinical high risk for psychosis (CHR-P), with approximately 20% progressing to full-blown psychosis over 2 to 3 years and 30% achieving remission. Recent research efforts have focused on identifying biomarkers that precede psychosis onset and enhance the accuracy of clinical outcome prediction in CHR-P individuals, with the ultimate goal of developing staged treatment approaches based on the individual's level of risk. Identifying such biomarkers may also facilitate progress toward understanding pathogenic mechanisms underlying psychosis onset, which may support the development of mechanistically informed early interventions for psychosis. In recent years, electroencephalography-based event-related potential measures with established sensitivity to schizophrenia have gained traction in the study of CHR-P and its clinical outcomes. In this review, we describe the evidence for event-related potential abnormalities in CHR-P and discuss how they inform our understanding of information processing deficits as vulnerability markers for emerging psychosis and as indicators of future outcomes. Among the measures studied, P300 and mismatch negativity are notable because deficits predict conversion to psychosis and/or CHR-P remission. However, the accuracy with which these and other measures predict outcomes in CHR-P has been obscured in the prior literature by the tendency to only report group-level differences, underscoring the need for inclusion of individual predictive accuracy metrics in future studies. Nevertheless, both P300 and mismatch negativity show promise as electrophysiological markers of risk for psychosis, as target engagement measures for clinical trials, and as potential translational bridges between human studies and animal models focused on novel drug development for early psychosis.
Collapse
Affiliation(s)
- Holly K Hamilton
- San Francisco Veterans Affairs Health Care System, San Francisco, California; Department of Psychiatry, University of California, San Francisco, California
| | - Alison K Boos
- San Francisco Veterans Affairs Health Care System, San Francisco, California; Northern California Institute for Research and Education, San Francisco, California
| | - Daniel H Mathalon
- San Francisco Veterans Affairs Health Care System, San Francisco, California; Department of Psychiatry, University of California, San Francisco, California.
| |
Collapse
|
15
|
Bo Q, Mao Z, Tian Q, Yang N, Li X, Dong F, Zhou F, Li L, Wang C. Impaired Sensorimotor Gating Using the Acoustic Prepulse Inhibition Paradigm in Individuals at a Clinical High Risk for Psychosis. Schizophr Bull 2020; 47:128-137. [PMID: 32743658 PMCID: PMC7825103 DOI: 10.1093/schbul/sbaa102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Many robust studies have investigated prepulse inhibition (PPI) in patients with schizophrenia. Recent evidence indicates that PPI may help identify individuals who are at clinical high risk for psychosis (CHR). Selective attention to prepulse stimulus can specifically enhance PPI in healthy subjects; however, this enhancement effect is not observed in patients with schizophrenia. Modified PPI measurement with selective attentional modulation using perceived spatial separation (PSS) condition may be a more robust and sensitive index of PPI impairment in CHR individuals. The current study investigated an improved PSSPPI condition in CHR individuals compared with patients with first-episode schizophrenia (FES) and healthy controls (HC) and evaluated the accuracy of PPI in predicting CHR from HC. We included 53 FESs, 55 CHR individuals, and 53 HCs. CHRs were rated on the Structured Interview for Prodromal Syndromes. The measures of perceived spatial co-location PPI (PSCPPI) and PSSPPI conditions were applied using 60- and 120-ms lead intervals. Compared with HC, the CHR group had lower PSSPPI level (Inter-stimulus interval [ISI] = 60 ms, P < .001; ISI = 120 ms, P < .001). PSSPPI showed an effect size (ES) between CHR and HC (ISI = 60 ms, Cohen's d = 0.91; ISI = 120 ms, Cohen's d = 0.98); on PSSPPI using 60-ms lead interval, ES grade increased from CHR to FES. The area under the receiver operating characteristic curve for PSSPPI was greater than that for PSCPPI. CHR individuals showed a PSSPPI deficit similar to FES, with greater ES and sensitivity. PSSPPI appears a promising objective approach for preliminary identification of CHR individuals.
Collapse
Affiliation(s)
- Qijing Bo
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders and Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, Beijing, China,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Zhen Mao
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders and Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, Beijing, China,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Qing Tian
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders and Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, Beijing, China,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Ningbo Yang
- Department of Psychiatry, First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Xianbin Li
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders and Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, Beijing, China,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Fang Dong
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders and Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, Beijing, China,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Fuchun Zhou
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders and Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, Beijing, China,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Liang Li
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| | - Chuanyue Wang
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders and Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, Beijing, China,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China,To whom correspondence should be addressed; Beijing Anding Hospital, Capital Medical University, No. 5 Ankang Lane, Dewai Avenue, Xicheng District, Beijing 100088, China; tel: +86-10-58303195, fax: +86-10-58303133, e-mail:
| |
Collapse
|
16
|
Togay B, Çıkrıkçılı U, Bayraktaroglu Z, Uslu A, Noyan H, Üçok A. Lower prepulse inhibition in clinical high-risk groups but not in familial risk groups for psychosis compared with healthy controls. Early Interv Psychiatry 2020; 14:196-202. [PMID: 31264797 DOI: 10.1111/eip.12845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 04/18/2019] [Accepted: 06/09/2019] [Indexed: 10/26/2022]
Abstract
AIM Although the lower level of prepulse inhibition (PPI) of the startle response is well known in schizophrenia, the onset of this difference is not clear. The aim of the present study was to compare PPI in individuals with clinical and familial high risk for psychosis, and healthy controls. METHODS We studied PPI in individuals within three groups: ultra-high risk for psychosis (UHR, n = 29), familial high risk for psychosis (FHR, n = 24) and healthy controls (HC, n = 28). The FHR group was chosen among siblings of patients with schizophrenia, whereas UHR was defined based on the Comprehensive Assessment of At-Risk Mental States (CAARMS). We collected clinical data using the BPRS-E, SANS and SAPS when individuals with UHR were antipsychotic-naïve. A cognitive battery that assessed attention, cognitive flexibility, working memory, verbal learning and memory domains was applied to all participants. RESULTS PPI was lower in the UHR group compared with both the FHR and HC groups. Those with a positive family history for schizophrenia had lower PPI than others in the UHR group. There was no difference in PPI between the FHR and HC groups. We found no relationship between PPI and cognitive performance in the three groups. Startle reactivity was not different among the three groups. Positive and negative symptoms were not related to PPI and startle reactivity in the UHR group. CONCLUSIONS Our findings suggest that clinical and familial high-risk groups for psychosis have different patterns of PPI.
Collapse
Affiliation(s)
- Bilge Togay
- University of Health Sciences, Tepecik Training and Research Hospital, Clinic of Psychiatry, Izmir, Turkey
| | | | - Zubeyir Bayraktaroglu
- Istanbul Medipol University, International School of Medicine, Department of Physiology, Beykoz, Istanbul, Turkey.,Istanbul Medipol University, Regenerative and Restorative Medicine Research Center (REMER), Beykoz, Istanbul, Turkey
| | - Atilla Uslu
- Istanbul Faculty of Medicine, Department of Physiology, Istanbul University, Istanbul, Turkey
| | - Handan Noyan
- Institute of Experimental Medicine and Research, Istanbul University, Istanbul, Turkey
| | - Alp Üçok
- Istanbul Faculty of Medicine, Department of Psychiatry, Istanbul University, Istanbul, Turkey
| |
Collapse
|
17
|
Rydkjaer J, Jepsen JRM, Pagsberg AK, Fagerlund B, Glenthoej BY, Oranje B. Do young adolescents with first-episode psychosis or ADHD show sensorimotor gating deficits? Psychol Med 2020; 50:607-615. [PMID: 30873927 DOI: 10.1017/s0033291719000412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Early identification is important for patients with early-onset schizophrenia (SZ). Assessment of (candidate) endophenotypic markers for SZ, such as prepulse inhibition of the startle reflex (PPI), may help distinguish between the early-onset SZ and other psychiatric disorders. We explored whether PPI deficits usually seen in adult-onset SZ are present in young adolescents with either early-onset psychosis or attention deficit/hyperactivity disorder (ADHD). METHODS Twenty-five adolescents with first-episode, non-affective psychosis (FEP), 28 adolescents with ADHD and 43 healthy controls (HC), aged 12-17 years, were assessed with an auditory PPI paradigm. RESULTS No significant group differences were found in PPI. However, when the FEP group was divided into those already diagnosed with SZ (n = 13) and those without (N-SZ) (n = 12), and all four groups (SZ, N-SZ, ADHD and HC) were compared on percentage PPI in the 85/60 trials, significantly less PPI was found in patients with SZ than in the HC as well as the ADHD group. No significant group differences were found in explorative analyses on the other trial types. Additionally, startle magnitude was significantly higher in SZ than in N-SZ patients. CONCLUSION Young adolescents with SZ showed sensorimotor gating deficits similar to those usually found in adults with SZ and had larger startle magnitude than patients with other types of non-affective early-onset psychosis. No sensorimotor gating deficits were found in adolescents with ADHD. Our findings support the theory that deficient PPI is endophenotypic for SZ.
Collapse
Affiliation(s)
- Jacob Rydkjaer
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS) and Center for Neuropsychiatric Schizophrenia Research (CNSR), Mental Health Center Glostrup, University of Copenhagen, Copenhagen, Denmark
- Child and Adolescent Mental Health Center, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
| | - Jens Richardt Moellegaard Jepsen
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS) and Center for Neuropsychiatric Schizophrenia Research (CNSR), Mental Health Center Glostrup, University of Copenhagen, Copenhagen, Denmark
- Child and Adolescent Mental Health Center, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
| | - Anne Katrine Pagsberg
- Child and Adolescent Mental Health Center, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Fagerlund
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS) and Center for Neuropsychiatric Schizophrenia Research (CNSR), Mental Health Center Glostrup, University of Copenhagen, Copenhagen, Denmark
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Birte Yding Glenthoej
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS) and Center for Neuropsychiatric Schizophrenia Research (CNSR), Mental Health Center Glostrup, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bob Oranje
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS) and Center for Neuropsychiatric Schizophrenia Research (CNSR), Mental Health Center Glostrup, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
18
|
Chang Q, Liu M, Tian Q, Wang H, Luo Y, Zhang J, Wang C. EEG-Based Brain Functional Connectivity in First-Episode Schizophrenia Patients, Ultra-High-Risk Individuals, and Healthy Controls During P50 Suppression. Front Hum Neurosci 2019; 13:379. [PMID: 31803031 PMCID: PMC6870009 DOI: 10.3389/fnhum.2019.00379] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 10/10/2019] [Indexed: 01/29/2023] Open
Abstract
Dysfunctional processing of auditory sensory gating has generally been found in schizophrenic patients and ultra-high-risk (UHR) individuals. The aim of the study was to investigate the differences of functional interaction between brain regions and performance during the P50 sensory gating in UHR group compared with those in first-episode schizophrenia patients (FESZ) and healthy controls (HC) groups. The study included 128-channel scalp Electroencephalogram (EEG) recordings during the P50 auditory paradigm for 35 unmedicated FESZ, 30 drug-free UHR, and 40 HC. Cortical sources of scalp electrical activity were recomputed using exact low-resolution electromagnetic tomography (eLORETA), and functional brain networks were built at the source level and compared between the groups (FESZ, UHR, HC). A classifier using decision tree was designed for differentiating the three groups, which uses demographic characteristics, MATRICS Consensus Cognitive Battery parameters, behavioral features in P50 paradigm, and the measures of functional brain networks based on graph theory during P50 sensory gating. The results showed that very few brain connectivities were significantly different between FESZ and UHR groups during P50 sensory gating, and that a large number of brain connectivities were significantly different between FESZ and HC groups and between UHR and HC groups. Furthermore, the FESZ group had a stronger connection in the right superior frontal gyrus and right insula than the HC group. And the UHR group had an enhanced connection in the paracentral lobule and the middle temporal gyrus compared with the HC group. Moreover, comparison of classification analysis results showed that brain network metrics during P50 sensory gating can improve the accuracy of the classification for FESZ, UHR and HC groups. Our findings provide insight into the mechanisms of P50 suppression in schizophrenia and could potentially improve the performance of early identification and diagnosis of schizophrenia for the earliest intervention.
Collapse
Affiliation(s)
- Qi Chang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China
| | - Meijun Liu
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China
| | - Qing Tian
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Hua Wang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.,Hefei Innovation Research Institute, Beihang University, Hefei, China.,School of Biomedical Engineering, Anhui Medical University, Hefei, China
| | - Yu Luo
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China
| | - Jicong Zhang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China.,Hefei Innovation Research Institute, Beihang University, Hefei, China.,School of Biomedical Engineering, Anhui Medical University, Hefei, China
| | - Chuanyue Wang
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| |
Collapse
|
19
|
Petty A, Cui X, Tesiram Y, Kirik D, Howes O, Eyles D. Enhanced Dopamine in Prodromal Schizophrenia (EDiPS): a new animal model of relevance to schizophrenia. NPJ SCHIZOPHRENIA 2019; 5:6. [PMID: 30926827 PMCID: PMC6441087 DOI: 10.1038/s41537-019-0074-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/12/2019] [Indexed: 12/13/2022]
Abstract
One of the most robust neurochemical abnormalities reported in patients living with schizophrenia is an increase in dopamine (DA) synthesis and release in the dorsal striatum (DS). Importantly, it appears that this increase progresses as a patient transitions from a prodromal stage to the clinical diagnosis of schizophrenia. Here we have recreated this pathophysiology in an animal model by increasing the capacity for DA synthesis preferentially within the DS. To achieve this we administer a genetic construct containing the rate-limiting enzymes in DA synthesis—tyrosine hydroxylase (TH), and GTP cyclohydrolase 1 (GCH1) (packaged within an adeno-associated virus)—into the substantia nigra pars compacta (SNpc) of adolescent animals. We refer to this model as “Enhanced Dopamine in Prodromal Schizophrenia” (EDiPS). We first confirmed that the TH enzyme is preferentially increased in the DS. As adults, EDiPS animals release significantly more DA in the DS following a low dose of amphetamine (AMPH), have increased AMPH-induced hyperlocomotion and show deficits in pre-pulse inhibition (PPI). The glutamatergic response to AMPH is also altered, again in the DS. EDiPS represents an ideal experimental platform to (a) understand how a preferential increase in DA synthesis capacity in the DS relates to “positive” symptoms in schizophrenia; (b) understand how manipulation of DS DA may influence other neurotransmitter systems shown to be altered in patients with schizophrenia; (c) allow researchers to follow an “at risk”-like disease course from adolescence to adulthood; and (d) ultimately allow trials of putative prophylactic agents to prevent disease onset in vulnerable populations.
Collapse
Affiliation(s)
- Alice Petty
- Queensland Brain Institute, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Xiaoying Cui
- Queensland Brain Institute, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yasvir Tesiram
- Centre for Advanced Imaging, University of Queensland, QLD, Brisbane, 4072, Australia
| | - Deniz Kirik
- BRAINS Unit, Department of Experimental Medical Science, Lund University, 22184, Lund, Sweden
| | - Oliver Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.,MRS London Institute of Medical Sciences, Hammersmith Hospital, London, UK.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Darryl Eyles
- Queensland Brain Institute, University of Queensland, Brisbane, QLD, 4072, Australia. .,Queensland Centre for Mental Health Research, Wacol, QLD, 4076, Australia.
| |
Collapse
|
20
|
Neurogranin regulates sensorimotor gating through cortico-striatal circuitry. Neuropharmacology 2019; 150:91-99. [PMID: 30902751 DOI: 10.1016/j.neuropharm.2019.03.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/28/2019] [Accepted: 03/14/2019] [Indexed: 12/11/2022]
Abstract
Glutamate dysregulation is known to contribute to many psychiatric disorders including schizophrenia. Aberrant cortico-striatal activity and therefore glutamate levels might be relevant to this disease characterized by reduced prepulse inhibition (PPI), however, the molecular and behavioral mechanism of the pathophysiology of schizophrenia remains unclear. The focus of this study was to contribute to the current understanding of the glutamate and neurogranin (Ng) pathway, in relation to the cortico-striatal pathology of schizophrenia using a mouse model. A variant of the Ng gene has been detected in people with schizophrenia, implicating maladaptation of cortical glutamate signaling and sensorimotor gating. To test Ng-mediated PPI regulation in the mouse model, we utilized Ng null mice, viral-mediated Ng expression, and genetics approaches. Our results demonstrate that lack of Ng in mice decreases PPI. Ng over-expression in the prefrontal cortex (PFC) increases PPI, while Ng expression in either the nucleus accumbens (NAc) or hippocampus induces no change in PPI. Using optogenetics and chemogenetics, we identified that cortico-striatal activation is involved in PPI regulation. Finally, pharmacological regulation of Ng using glutamate receptor inhibitors demonstrated altered PPI between genotypes. In this study, we have investigated the impact of Ng expression on sensorimotor gating. This study contributes to a better understanding of the glutamatergic theory of schizophrenia, opening novel therapeutic avenues that may lead to glutamatergic treatments to ameliorate the symptoms of schizophrenia.
Collapse
|
21
|
Young spontaneously hypertensive rats (SHRs) display prodromal schizophrenia-like behavioral abnormalities. Prog Neuropsychopharmacol Biol Psychiatry 2019; 90:169-176. [PMID: 30500412 DOI: 10.1016/j.pnpbp.2018.11.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 10/05/2018] [Accepted: 11/24/2018] [Indexed: 11/24/2022]
Abstract
The Spontaneously Hypertensive Rat (SHR) strain has been suggested as an animal model of schizophrenia, considering that adult SHRs display behavioral abnormalities that mimic the cognitive, psychotic and negative symptoms of the disease and are characteristic of its animal models. SHRs display: (I) deficits in fear conditioning and latent inhibition (modeling cognitive impairments), (II) deficit in prepulse inhibition of startle reflex (reflecting a deficit in sensorimotor gating, and associated with psychotic symptoms), (III) diminished social behavior (modeling negative symptoms) and (IV) hyperlocomotion (modeling the hyperactivity of the dopaminergic mesolimbic system/ psychotic symptoms). These behavioral abnormalities are reversed specifically by the administration of antipsychotic drugs. Here, we performed a behavioral characterization of young (27-50 days old) SHRs in order to investigate potential early behavioral abnormalities resembling the prodromal phase of schizophrenia. When compared to Wistar rats, young SHRs did not display hyperlocomotion or PPI deficit, but exhibited diminished social interaction and impaired fear conditioning and latent inhibition. These findings are in accordance with the clinical course of schizophrenia: manifestation of social and cognitive impairments and absence of full-blown psychotic symptoms in the prodromal phase. The present data reinforce the SHR strain as a model of schizophrenia, expanding its validity to the prodromal phase of the disorder.
Collapse
|
22
|
Quednow BB, Ejebe K, Wagner M, Giakoumaki SG, Bitsios P, Kumari V, Roussos P. Meta-analysis on the association between genetic polymorphisms and prepulse inhibition of the acoustic startle response. Schizophr Res 2018; 198:52-59. [PMID: 29287625 DOI: 10.1016/j.schres.2017.12.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/13/2017] [Accepted: 12/18/2017] [Indexed: 01/14/2023]
Abstract
Sensorimotor gating measured by prepulse inhibition (PPI) of the acoustic startle response (ASR) has been proposed as one of the most promising electrophysiological endophenotypes of schizophrenia. During the past decade, a number of publications have reported significant associations between genetic polymorphisms and PPI in samples of schizophrenia patients and healthy volunteers. However, an overall evaluation of the robustness of these results has not been published so far. Therefore, we performed the first meta-analysis of published and unpublished associations between gene polymorphisms and PPI of ASR. Unpublished associations between genetic polymorphisms and PPI were derived from three independent samples. In total, 120 single observations from 16 independent samples with 2660 study participants and 43 polymorphisms were included. After correction for multiple testing based on false discovery rate and considering the number of analyzed polymorphisms, significant associations were shown for four variants, even though none of these associations survived a genome-wide correction (P<5∗10-8). These results imply that PPI might be modulated by four genotypes - COMT rs4680 (primarily in males), GRIK3 rs1027599, TCF4 rs9960767, and PRODH rs385440 - indicating a role of these gene variations in the development of early information processing deficits in schizophrenia. However, the overall impact of single genes on PPI is still rather small suggesting that PPI is - like the disease phenotype - highly polygenic. Future genome-wide analyses studies with large sample sizes will enhance our understanding on the genetic architecture of PPI.
Collapse
Affiliation(s)
- Boris B Quednow
- Experimental and Clinical Pharmacopsychology, Psychiatric Hospital, University of Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland.
| | - Kenechi Ejebe
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Michael Wagner
- Department for Neurodegenerative Diseases and GeriatricPsychiatry, University Hospital Bonn, Bonn, Germany
| | - Stella G Giakoumaki
- Department of Psychology, Gallos University campus, University of Crete, Rethymno, Greece
| | - Panos Bitsios
- Department of Psychiatry and Behavioral Sciences, Faculty of Medicine, Voutes University campus, University of Crete, Heraklion, Greece
| | - Veena Kumari
- Department of Psychology, Institute of Psychiatry, King's College London, United Kingdom
| | - Panos Roussos
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA; Mental Illness Research, Education, and Clinical Center (VISN 2), James J. Peters VA Medical Center, New York, USA.
| |
Collapse
|
23
|
Swerdlow NR, Light GA, Thomas ML, Sprock J, Calkins ME, Green MF, Greenwood TA, Gur RE, Gur RC, Lazzeroni LC, Nuechterlein KH, Radant AD, Seidman LJ, Siever LJ, Silverman JM, Stone WS, Sugar CA, Tsuang DW, Tsuang MT, Turetsky BI, Braff DL. Deficient prepulse inhibition in schizophrenia in a multi-site cohort: Internal replication and extension. Schizophr Res 2018; 198:6-15. [PMID: 28549722 PMCID: PMC5700873 DOI: 10.1016/j.schres.2017.05.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/08/2017] [Accepted: 05/10/2017] [Indexed: 11/29/2022]
Abstract
BACKGROUND The Consortium on the Genetics of Schizophrenia (COGS) collected case-control endophenotype and genetic information from 2457 patients and healthy subjects (HS) across 5 test sites over 3.5 years. Analysis of the first "wave" (W1) of 1400 subjects identified prepulse inhibition (PPI) deficits in patients vs. HS. Data from the second COGS "wave" (W2), and the combined W(1+2), were used to assess: 1) the replicability of PPI deficits in this design; 2) the impact of response criteria on PPI deficits; and 3) PPI in a large cohort of antipsychotic-free patients. METHODS PPI in W2 HS (n=315) and schizophrenia patients (n=326) was compared to findings from W1; planned analyses assessed the impact of diagnosis, "wave" (1 vs. 2), and startle magnitude criteria. Combining waves allowed us to assess PPI in 120 antipsychotic-free patients, including many in the early course of illness. RESULTS ANOVA of all W(1+2) subjects revealed robust PPI deficits in patients across "waves" (p<0.0004). Strict response criteria excluded almost 39% of all subjects, disproportionately impacting specific subgroups; ANOVA in this smaller cohort confirmed no significant effect of "wave" or "wave x diagnosis" interaction, and a significant effect of diagnosis (p<0.002). Antipsychotic-free, early-illness patients had particularly robust PPI deficits. DISCUSSION Schizophrenia-linked PPI deficits were replicable across two multi-site "waves" of subjects collected over 3.5years. Strict response criteria disproportionately excluded older, male, non-Caucasian patients with low-normal hearing acuity. These findings set the stage for genetic analyses of PPI using the combined COGS wave 1 and 2 cohorts.
Collapse
Affiliation(s)
- Neal R. Swerdlow
- Department of Psychiatry, University of California San Diego, La Jolla, CA,Corresponding Author: Neal R. Swerdlow, M.D., Ph.D., University of California San Diego, Dept. of Psychiatry, 9500 Gilman Drive, La Jolla, CA 92093-0804 619-543-6270 (office); 619-543-2493 (fax);
| | - Gregory A. Light
- Department of Psychiatry, University of California San Diego, La Jolla, CA,VISN 22, Mental Illness Research, Education & Clinical Center (MIRECC), VA San Diego Healthcare System, San Diego, CA
| | - Michael L. Thomas
- Department of Psychiatry, University of California San Diego, La Jolla, CA,VISN 22, Mental Illness Research, Education & Clinical Center (MIRECC), VA San Diego Healthcare System, San Diego, CA
| | - Joyce Sprock
- Department of Psychiatry, University of California San Diego, La Jolla, CA,VISN 22, Mental Illness Research, Education & Clinical Center (MIRECC), VA San Diego Healthcare System, San Diego, CA
| | - Monica E. Calkins
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA
| | - Michael F. Green
- Department of Psychiatry and Biobehavioral Sciences, Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA,VA Greater Los Angeles Healthcare System, Los Angeles, CA
| | | | - Raquel E. Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA
| | - Ruben C. Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA
| | - Laura C. Lazzeroni
- Departments of Psychiatry and Behavioral Sciences and of Pediatrics, Stanford University, Stanford, CA
| | - Keith H. Nuechterlein
- Department of Psychiatry and Biobehavioral Sciences, Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Allen D. Radant
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA,VA Puget Sound Health Care System, Seattle, WA
| | - Larry J. Seidman
- Department of Psychiatry, Harvard Medical School, Boston, MA,Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Boston, MA
| | - Larry J. Siever
- Department of Psychiatry, The Mount Sinai School of Medicine, New York, NY,James J. Peters VA Medical Center, New York, NY
| | - Jeremy M. Silverman
- Department of Psychiatry, The Mount Sinai School of Medicine, New York, NY,James J. Peters VA Medical Center, New York, NY
| | - William S. Stone
- Department of Psychiatry, Harvard Medical School, Boston, MA,Harvard Institute of Psychiatric Epidemiology and Genetics, Boston, MA
| | - Catherine A. Sugar
- Department of Psychiatry and Biobehavioral Sciences, Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA,VISN 22, Mental Illness Research, Education & Clinical Center (MIRECC), VA San Diego Healthcare System, San Diego, CA,Department of Biostatistics, University of California Los Angeles School of Public Health, Los Angeles, CA
| | - Debby W. Tsuang
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA,VA Puget Sound Health Care System, Seattle, WA
| | - Ming T. Tsuang
- Department of Psychiatry, University of California San Diego, La Jolla, CA,Institute for Genomic Medicine, University of California San Diego, La Jolla, CA,Harvard Institute of Psychiatric Epidemiology and Genetics, Boston, MA
| | - Bruce I. Turetsky
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA
| | - David L. Braff
- Department of Psychiatry, University of California San Diego, La Jolla, CA,VISN 22, Mental Illness Research, Education & Clinical Center (MIRECC), VA San Diego Healthcare System, San Diego, CA
| |
Collapse
|
24
|
Lee AH, Brandon CL, Wang J, Frost WN. An Argument for Amphetamine-Induced Hallucinations in an Invertebrate. Front Physiol 2018; 9:730. [PMID: 29988540 PMCID: PMC6026665 DOI: 10.3389/fphys.2018.00730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 05/25/2018] [Indexed: 12/03/2022] Open
Abstract
Hallucinations – compelling perceptions of stimuli that aren’t really there – occur in many psychiatric and neurological disorders, and are triggered by certain drugs of abuse. Despite their clinical importance, the neuronal mechanisms giving rise to hallucinations are poorly understood, in large part due to the absence of animal models in which they can be induced, confirmed to be endogenously generated, and objectively analyzed. In humans, amphetamine (AMPH) and related psychostimulants taken in large or repeated doses can induce hallucinations. Here we present evidence for such phenomena in the marine mollusk Tritonia diomedea. Animals injected with AMPH were found to sporadically launch spontaneous escape swims in the absence of eliciting stimuli. Deafferented isolated brains exposed to AMPH, where real stimuli could play no role, generated sporadic, spontaneous swim motor programs. A neurophysiological search of the swim network traced the origin of these drug-induced spontaneous motor programs to spontaneous bursts of firing in the S-cells, the CNS afferent neurons that normally inform the animal of skin contact with its predators and trigger the animal’s escape swim. Further investigation identified AMPH-induced enhanced excitability and plateau potential properties in the S-cells. Taken together, these observations support an argument that Tritonia’s spontaneous AMPH-induced swims are triggered by false perceptions of predator contact – i.e., hallucinations—and illuminate potential cellular mechanisms for such phenomena.
Collapse
Affiliation(s)
- Anne H Lee
- Department of Cell Biology and Anatomy, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Cindy L Brandon
- Department of Cell Biology and Anatomy, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Jean Wang
- Department of Cell Biology and Anatomy, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - William N Frost
- Department of Cell Biology and Anatomy, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| |
Collapse
|
25
|
Lepock JR, Mizrahi R, Korostil M, Bagby RM, Pang EW, Kiang M. Event-Related Potentials in the Clinical High-Risk (CHR) State for Psychosis: A Systematic Review. Clin EEG Neurosci 2018; 49:215-225. [PMID: 29382210 DOI: 10.1177/1550059418755212] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
There is emerging evidence that identification and treatment of individuals in the prodromal or clinical high-risk (CHR) state for psychosis can reduce the probability that they will develop a psychotic disorder. Event-related brain potentials (ERPs) are a noninvasive neurophysiological technique that holds promise for improving our understanding of neurocognitive processes underlying the CHR state. We aimed to systematically review the current literature on cognitive ERP studies of the CHR population, in order to summarize and synthesize the results, and their implications for our understanding of the CHR state. Across studies, amplitudes of the auditory P300 and duration mismatch negativity (MMN) ERPs appear reliably reduced in CHR individuals, suggesting that underlying impairments in detecting changes in auditory stimuli are a sensitive early marker of the psychotic disease process. There are more limited data indicating that an earlier-latency auditory ERP response, the N100, is also reduced in amplitude, and in the degree to which it is modulated by stimulus characteristics, in the CHR population. There is also evidence that a number of auditory ERP measures (including P300, MMN and N100 amplitudes, and N100 gating in response to repeated stimuli) can further refine our ability to detect which CHR individuals are most at risk for developing psychosis. Thus, further research is warranted to optimize the predictive power of algorithms incorporating these measures, which could help efforts to target psychosis prevention interventions toward those most in need.
Collapse
Affiliation(s)
- Jennifer R Lepock
- 1 Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Romina Mizrahi
- 1 Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada.,2 Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,3 Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Michele Korostil
- 1 Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada.,2 Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,3 Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,4 Rotman Research Institute, Baycrest Health Sciences, Toronto, Ontario, Canada
| | - R Michael Bagby
- 1 Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada.,2 Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,3 Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,5 Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Elizabeth W Pang
- 1 Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada.,6 Division of Neurology, Hospital for Sick Children, Toronto, Ontario, Canada.,7 Neuroscience and Mental Health, SickKids Research Institute, Toronto, Ontario, Canada
| | - Michael Kiang
- 1 Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada.,2 Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,3 Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
26
|
Clinical high risk for psychosis in children and adolescents: a systematic review. Eur Child Adolesc Psychiatry 2018; 27:683-700. [PMID: 28914382 DOI: 10.1007/s00787-017-1046-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 08/31/2017] [Indexed: 12/31/2022]
Abstract
The concept of being at risk for psychosis has been introduced both for adults and children and adolescents, but fewer studies have been conducted in the latter population. The aim of this study is to systematically review the articles associated with clinical description, interventions, outcome and other areas in children and adolescents at risk for psychosis. We searched in MEDLINE/PubMed and PsycINFO databases for articles published up to 30/06/16. Reviewed articles were prospective studies; written in English; original articles with Clinical High Risk (CHR) for psychosis samples; and mean age of samples younger than 18 years. From 103 studies initially selected, 48 met inclusion criteria and were systematically reviewed. Studies show that CHR children and adolescents present several clinical characteristics at baseline, with most attenuated positive-symptom inclusion criteria observed, reporting mostly perceptual abnormalities and suspiciousness, and presenting comorbid conditions such as depressive and anxiety disorders. CHR children and adolescents show lower general intelligence and no structural brain changes compared with controls. Original articles reviewed show rates of conversion to psychosis between 17 and 20% at 1 year follow-up and between 7 and 21% at 2 years. While 36% of patients recovered from their CHR status at 6-year follow-up, 40% still met CHR criteria. Studies in children and adolescents with CHR were conducted with different methodologies, assessments tools and small samples. It is important to conduct studies on psychopharmacological and psychological treatment, as well as replication of the few studies found.
Collapse
|
27
|
Scott D, Tamminga CA. Effects of genetic and environmental risk for schizophrenia on hippocampal activity and psychosis-like behavior in mice. Behav Brain Res 2018; 339:114-123. [PMID: 29155005 DOI: 10.1016/j.bbr.2017.10.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/27/2017] [Accepted: 10/31/2017] [Indexed: 10/18/2022]
Abstract
Schizophrenia is a serious mental illness most notably characterized by psychotic symptoms. In humans, psychotic disorders are associated with specific hippocampal pathology. However, animal model systems for psychosis often lack this pathology, and have been weak in providing a representation of psychosis. We utilized a double-risk model system combining genetic risk with environmental stress. We hypothesized these factors will induce hippocampal subfield pathology consistent with human findings, as well as behavioral phenotypes relevant to psychosis. To address this, we exposed wild-type and transgenic Disc1 dominant negative (Disc1-deficient) mice to maternal deprivation. In adulthood, hippocampal subfields were examined for signs of cellular and behavioral pathology associated with psychosis. Mice exposed to maternal deprivation showed a decrease in dentate gyrus activity, and an increase in CA3/CA1 activity. Furthermore, results demonstrated a differential behavioral effect between maternal deprivation and Disc1 deficiency, with maternal deprivation associated with a hyperactive phenotype and impaired prepulse inhibition, and Disc1 deficiency causing an impairment in fear conditioning. These results suggest distinct consequences of environmental and genetic risk factors contributing to psychosis, with maternal deprivation inducing a state more wholly consistent with schizophrenia psychosis. Further research is needed to determine if this pathology is causally related to a specific behavioral phenotype. The development of a strong inference animal model system for psychosis would satisfy a high medical need in schizophrenia research.
Collapse
Affiliation(s)
- Daniel Scott
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas TX, 75390-9127, United States.
| | - Carol A Tamminga
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas TX, 75390-9127, United States
| |
Collapse
|
28
|
Bergeron SA, Carrier N, Li GH, Ahn S, Burgess HA. Gsx1 expression defines neurons required for prepulse inhibition. Mol Psychiatry 2015; 20:974-85. [PMID: 25224259 PMCID: PMC4362800 DOI: 10.1038/mp.2014.106] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 07/09/2014] [Accepted: 08/04/2014] [Indexed: 02/07/2023]
Abstract
In schizophrenia, cognitive overload is thought to reflect an inability to suppress non-salient information, a process which is studied using prepulse inhibition (PPI) of the startle response. PPI is reduced in schizophrenia and routinely tested in animal models and preclinical trials of antipsychotic drugs. However, the underlying neuronal circuitry is not well understood. We used a novel genetic screen in larval zebrafish to reveal the molecular identity of neurons that are required for PPI in fish and mice. Ablation or optogenetic silencing of neurons with developmental expression of the transcription factor genomic screen homeobox 1 (gsx1) produced profound defects in PPI in zebrafish, and PPI was similarly impaired in Gsx1 knockout mice. Gsx1-expressing neurons reside in the dorsal brainstem and form synapses closely apposed to neurons that initiate the startle response. Surprisingly, brainstem Gsx1 neurons are primarily glutamatergic despite their role in a functionally inhibitory pathway. As Gsx1 has an important role in regulating interneuron development in the forebrain, these findings reveal a molecular link between control of interneuron specification and circuits that gate sensory information across brain regions.
Collapse
Affiliation(s)
- Sadie A. Bergeron
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Nicole Carrier
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Grace H. Li
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Sohyun Ahn
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Harold A. Burgess
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA,6 Center Drive, Building 6B, Rm 3B308, Bethesda, MD 20892, , tel: 301-402-6018; fax: 301-496-0243
| |
Collapse
|
29
|
Du Z. Predisposition to Schizophrenia: An Update of Current Understanding. Cell Biochem Biophys 2015; 73:187-90. [PMID: 25711187 DOI: 10.1007/s12013-015-0614-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Within the field of mental health, the concept of predisposition or that of being "at risk" has been properly addressed by Mrazek and Haggarty. This period prior to clear diagnosis of psychosis has been referred by several names like 'premorbid' phase, at-risk individuals, predisposed individuals, prodromal phase, etc. The premorbid phase is perhaps the most debated term in this list because this term suggests that the morbidity arises only in the overt illness phase. However, evidences arising from several different lines of observations suggest that this may not be the case. In spite of the fact that it has been generally accepted that the prodromal phase precedes the clinical phase, identification of this phase remains a challenge. The real challenge in identifying the onset of the prepsychotic phase is the differentiation of 'normal' experiences from these 'abnormal' experiences. Much fewer studies have been conducted for the assessment of cognitive functions in prodromal phase or predisposed phases of schizophrenia. Cognitive deficits, particularly in memory and attentional functions, are among the most extensively documented aspects of psychosis. Regarding the somatosensory abnormalities in the high-risk individuals, so far there has been only one study conducted which involved somatosensory evoked potentials in these patients.
Collapse
Affiliation(s)
- Zhongxiang Du
- Department of Psychiatry, The First Hospital of Xuzhou, Xuzhou, Jiangsu, China.
| |
Collapse
|
30
|
Shaikh M, Dutt A, Broome MR, Vozmediano AG, Ranlund S, Diez A, Caseiro O, Lappin J, Amankwa S, Carletti F, Fusar-Poli P, Walshe M, Hall MH, Howes O, Ellett L, Murray RM, McGuire P, Valmaggia L, Bramon E. Sensory gating deficits in the attenuated psychosis syndrome. Schizophr Res 2015; 161:277-82. [PMID: 25556079 DOI: 10.1016/j.schres.2014.12.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 10/31/2014] [Accepted: 12/11/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND Individuals with an "Attenuated Psychosis Syndrome" (APS) have a 20-40% chance of developing a psychotic disorder within two years; however it is difficult to predict which of them will become ill on the basis of their clinical symptoms alone. We examined whether P50 gating deficits could help to discriminate individuals with APS and also those who are particularly likely to make a transition to psychosis. METHOD 36 cases meeting PACE (Personal Assessment and Crisis Evaluation) criteria for the APS, all free of antipsychotics, and 60 controls performed an auditory conditioning-testing experiment while their electroencephalogram was recorded. The P50 ratio and its C-T difference were compared between groups. Subjects received follow-up for up to 2 years to determine their clinical outcome. RESULTS The P50 ratio was significantly higher and C-T difference lower in the APS group compared to controls. Of the individuals with APS who completed the follow-up (n=36), nine (25%) developed psychosis. P50 ratio and the C-T difference did not significantly differ between those individuals who developed psychosis and those who did not within the APS group. CONCLUSION P50 deficits appear to be associated with the pre-clinical phase of psychosis. However, due to the limitations of the study and its sample size, replication in an independent cohort is necessary, to clarify the role of P50 deficits in illness progression and whether this inexpensive and non-invasive EEG marker could be of clinical value in the prediction of psychosis outcomes amongst populations at risk.
Collapse
Affiliation(s)
- Madiha Shaikh
- NIHR Biomedical Research Centre for Mental Health at the Institute of Psychiatry, King's College London, The South London and Maudsley NHS Foundation Trust, London, UK; Department of Psychology, Royal Holloway, University of London, UK.
| | - Anirban Dutt
- NIHR Biomedical Research Centre for Mental Health at the Institute of Psychiatry, King's College London, The South London and Maudsley NHS Foundation Trust, London, UK
| | | | - Alberto G Vozmediano
- Psychiatry Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Siri Ranlund
- Division of Psychiatry & Institute of Cognitive Neuroscience, University College London, W1W 7EJ, UK
| | - Alvaro Diez
- Division of Psychiatry & Institute of Cognitive Neuroscience, University College London, W1W 7EJ, UK
| | - Olalla Caseiro
- University Hospital Marqués de Valdecilla, IFIMAV, Spain
| | - Julia Lappin
- NIHR Biomedical Research Centre for Mental Health at the Institute of Psychiatry, King's College London, The South London and Maudsley NHS Foundation Trust, London, UK
| | - Susan Amankwa
- NIHR Biomedical Research Centre for Mental Health at the Institute of Psychiatry, King's College London, The South London and Maudsley NHS Foundation Trust, London, UK
| | - Francesco Carletti
- NIHR Biomedical Research Centre for Mental Health at the Institute of Psychiatry, King's College London, The South London and Maudsley NHS Foundation Trust, London, UK
| | - Paolo Fusar-Poli
- NIHR Biomedical Research Centre for Mental Health at the Institute of Psychiatry, King's College London, The South London and Maudsley NHS Foundation Trust, London, UK
| | - Muriel Walshe
- NIHR Biomedical Research Centre for Mental Health at the Institute of Psychiatry, King's College London, The South London and Maudsley NHS Foundation Trust, London, UK
| | - Mei-Hua Hall
- Psychology Research Laboratory, Harvard Medical School, McLean Hospital, Belmont, MA, USA
| | - Oliver Howes
- NIHR Biomedical Research Centre for Mental Health at the Institute of Psychiatry, King's College London, The South London and Maudsley NHS Foundation Trust, London, UK
| | - Lyn Ellett
- Department of Psychology, Royal Holloway, University of London, UK
| | - Robin M Murray
- NIHR Biomedical Research Centre for Mental Health at the Institute of Psychiatry, King's College London, The South London and Maudsley NHS Foundation Trust, London, UK
| | - Philip McGuire
- NIHR Biomedical Research Centre for Mental Health at the Institute of Psychiatry, King's College London, The South London and Maudsley NHS Foundation Trust, London, UK
| | - Lucia Valmaggia
- NIHR Biomedical Research Centre for Mental Health at the Institute of Psychiatry, King's College London, The South London and Maudsley NHS Foundation Trust, London, UK
| | - Elvira Bramon
- NIHR Biomedical Research Centre for Mental Health at the Institute of Psychiatry, King's College London, The South London and Maudsley NHS Foundation Trust, London, UK; Division of Psychiatry & Institute of Cognitive Neuroscience, University College London, W1W 7EJ, UK
| |
Collapse
|
31
|
McCabe KL, Atkinson RJ, Cooper G, Melville JL, Harris J, Schall U, Loughland CM, Thienel R, Campbell LE. Pre-pulse inhibition and antisaccade performance indicate impaired attention modulation of cognitive inhibition in 22q11.2 deletion syndrome (22q11DS). J Neurodev Disord 2014; 6:38. [PMID: 25279014 PMCID: PMC4182838 DOI: 10.1186/1866-1955-6-38] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 09/13/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND 22q11.2 deletion syndrome (22q11DS) is associated with a number of physical anomalies and neuropsychological deficits including impairments in executive and sensorimotor function. It is estimated that 25% of children with 22q11DS will develop schizophrenia and other psychotic disorders later in life. Evidence of genetic transmission of information processing deficits in schizophrenia suggests performance in 22q11DS individuals will enhance understanding of the neurobiological and genetic substrates associated with information processing. In this report, we examine information processing in 22q11DS using measures of startle eyeblink modification and antisaccade inhibition to explore similarities with schizophrenia and associations with neurocognitive performance. METHODS Startle modification (passive and active tasks; 120- and 480-ms pre-pulse intervals) and antisaccade inhibition were measured in 25 individuals with genetically confirmed 22q11DS and 30 healthy control subjects. RESULTS Individuals with 22q11DS exhibited increased antisaccade error as well as some evidence (trend-level effect) of impaired sensorimotor gating during the active condition, suggesting a dysfunction in controlled attentional processing, rather than a pre-attentive dysfunction using this paradigm. CONCLUSIONS The findings from the present study show similarities with previous studies in clinical populations associated with 22q11DS such as schizophrenia that may indicate shared dysfunction of inhibition pathways in these groups.
Collapse
Affiliation(s)
- Kathryn Louise McCabe
- Schizophrenia Research Institute, Darlinghurst, Australia ; Brain & Mind Research Institute, University of Sydney, Sydney, Australia ; Centre for Translational Neuroscience & Mental Health, University of Newcastle, Callaghan, Newcastle Australia
| | - Rebbekah Josephine Atkinson
- Schizophrenia Research Institute, Darlinghurst, Australia ; Centre for Translational Neuroscience & Mental Health, University of Newcastle, Callaghan, Newcastle Australia ; School of Medicine & Public Health, University of Newcastle, Callaghan, Newcastle, Australia
| | - Gavin Cooper
- Schizophrenia Research Institute, Darlinghurst, Australia ; Centre for Translational Neuroscience & Mental Health, University of Newcastle, Callaghan, Newcastle Australia ; School of Psychology, University of Newcastle, Science Offices, Callaghan, Ourimbah, NSW 2258 Australia
| | - Jessica Lauren Melville
- Centre for Translational Neuroscience & Mental Health, University of Newcastle, Callaghan, Newcastle Australia ; School of Psychology, University of Newcastle, Science Offices, Callaghan, Ourimbah, NSW 2258 Australia
| | - Jill Harris
- Minerals Industry Safety and Health Centre, University of Queensland, Brisbane, Australia
| | - Ulrich Schall
- Schizophrenia Research Institute, Darlinghurst, Australia ; Centre for Translational Neuroscience & Mental Health, University of Newcastle, Callaghan, Newcastle Australia ; School of Medicine & Public Health, University of Newcastle, Callaghan, Newcastle, Australia
| | - Carmel Maree Loughland
- Schizophrenia Research Institute, Darlinghurst, Australia ; Centre for Translational Neuroscience & Mental Health, University of Newcastle, Callaghan, Newcastle Australia
| | - Renate Thienel
- Schizophrenia Research Institute, Darlinghurst, Australia ; Centre for Translational Neuroscience & Mental Health, University of Newcastle, Callaghan, Newcastle Australia ; School of Medicine & Public Health, University of Newcastle, Callaghan, Newcastle, Australia
| | - Linda Elisabet Campbell
- Schizophrenia Research Institute, Darlinghurst, Australia ; Centre for Translational Neuroscience & Mental Health, University of Newcastle, Callaghan, Newcastle Australia ; School of Psychology, University of Newcastle, Science Offices, Callaghan, Ourimbah, NSW 2258 Australia
| |
Collapse
|
32
|
Abstract
Psychotic disorders continue to be among the most disabling and scientifically challenging of all mental illnesses. Accumulating research findings suggest that the etiologic processes underlying the development of these disorders are more complex than had previously been assumed. At the same time, this complexity has revealed a wider range of potential options for preventive intervention, both psychosocial and biological. In part, these opportunities result from our increased understanding of the dynamic and multifaceted nature of the neurodevelopmental mechanisms involved in the disease process, as well as the evidence that many of these entail processes that are malleable. In this article, we review the burgeoning research literature on the prodrome to psychosis, based on studies of individuals who meet clinical high risk criteria. This literature has examined a range of factors, including cognitive, genetic, psychosocial, and neurobiological. We then turn to a discussion of some contemporary models of the etiology of psychosis that emphasize the prodromal period. These models encompass the origins of vulnerability in fetal development, as well as postnatal stress, the immune response, and neuromaturational processes in adolescent brain development that appear to go awry during the prodrome to psychosis. Then, informed by these neurodevelopmental models of etiology, we turn to the application of new research paradigms that will address critical issues in future investigations. It is expected that these studies will play a major role in setting the stage for clinical trials aimed at preventive intervention.
Collapse
|
33
|
De Koning MB, Bloemen OJ, Van Duin EDA, Booij J, Abel KM, De Haan L, Linszen DH, Van Amelsvoort TA. Pre-pulse inhibition and striatal dopamine in subjects at an ultra-high risk for psychosis. J Psychopharmacol 2014; 28:553-60. [PMID: 24526133 DOI: 10.1177/0269881113519507] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Reduced prepulse inhibition (PPI) of the acoustic startle response is thought to represent a robust biomarker in schizophrenia. Reduced PPI has been demonstrated in subjects at ultra high risk (UHR) for developing psychosis. Imaging studies report disruption of striatal dopaminergic neurotransmission in patients with schizophrenia. First, we compared the PPI of the acoustic startle response in UHR subjects versus healthy controls, to see if we could replicate previous findings of reduced PPI; secondly, we investigated our hypothesis that PPI would be negatively correlated with striatal synaptic dopamine (DA) concentration. We measured the startle reactivity and PPI of the acoustic startle response in 14 UHR subjects, and 14 age- and gender-matched healthy controls. Imaging of 11 UHR subjects and 11 healthy controls was completed by an [(123)I]-IBZM (radiotracer for dopamine D2/3 receptors) SPECT, at baseline and again after DA depletion with alpha-methyl-para-tyrosine (AMPT). The percentage change in striatal [(123)I]-IBZM radiotracer binding potential is a proxy of striatal synaptic DA concentration. UHR subjects showed reduced PPI, compared to control subjects. In both UHR and control subjects, there were no significant correlations between striatal synaptic DA concentration and PPI. We provide further evidence for the hypothesis that these two biomarkers are measuring different aspects of pathophysiology.
Collapse
Affiliation(s)
- Mariken B De Koning
- Department of Psychiatry, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands Arkin Mental Health Care, Amsterdam, The Netherlands
| | - Oswald Jn Bloemen
- Department of Psychiatry, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Esther DA Van Duin
- Department of Psychiatry, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Jan Booij
- Department of Nuclear Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Kathryn M Abel
- Centre for Women's Mental Health, Manchester Academy of Health Sciences, University of Manchester, Manchester, UK
| | - Lieuwe De Haan
- Department of Psychiatry, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Don H Linszen
- Department of Psychiatry, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Thérèse Amj Van Amelsvoort
- Department of Psychiatry, Maastricht University, Maastricht, The Netherlands Department of Psychiatry, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
34
|
Wise-Faberowski L, Quinonez ZA, Hammer GB. Anesthesia and the developing brain: relevance to the pediatric cardiac surgery. Brain Sci 2014; 4:295-310. [PMID: 24961762 PMCID: PMC4101478 DOI: 10.3390/brainsci4020295] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/02/2014] [Accepted: 04/05/2014] [Indexed: 01/29/2023] Open
Abstract
Anesthetic neurotoxicity has been a hot topic in anesthesia for the past decade. It is of special interest to pediatric anesthesiologists. A subgroup of children potentially at greater risk for anesthetic neurotoxicity, based on a prolonged anesthetic exposure early in development, are those children receiving anesthesia for surgical repair of congenital heart disease. These children have a known risk of neurologic deficit after cardiopulmonary bypass for surgical repair of congenital heart disease. Yet, the type of anesthesia used has not been considered as a potential etiology for their neurologic deficits. These children not only receive prolonged anesthetic exposure during surgical repair, but also receive repeated anesthetic exposures during a critical period of brain development. Their propensity to abnormal brain development, as a result of congenital heart disease, may modify their risk of anesthetic neurotoxicity. This review article provides an overview of anesthetic neurotoxicity from the perspective of a pediatric cardiac anesthesiologist and provides insight into basic science and clinical investigations as it relates to this unique group of children who have been studied over several decades for their risk of neurologic injury.
Collapse
Affiliation(s)
- Lisa Wise-Faberowski
- Lucile Packard Children's Hospital, Stanford University School of Medicine, Palo Alto, CA 94305, USA.
| | - Zoel A Quinonez
- Lucile Packard Children's Hospital, Stanford University School of Medicine, Palo Alto, CA 94305, USA.
| | - Gregory B Hammer
- Lucile Packard Children's Hospital, Stanford University School of Medicine, Palo Alto, CA 94305, USA.
| |
Collapse
|
35
|
Swerdlow NR, Light GA, Sprock J, Calkins ME, Green MF, Greenwood TA, Gur RE, Gur RC, Lazzeroni LC, Nuechterlein KH, Radant AD, Ray A, Seidman LJ, Siever LJ, Silverman JM, Stone WS, Sugar CA, Tsuang DW, Tsuang MT, Turetsky BI, Braff DL. Deficient prepulse inhibition in schizophrenia detected by the multi-site COGS. Schizophr Res 2014; 152:503-12. [PMID: 24405980 PMCID: PMC3960985 DOI: 10.1016/j.schres.2013.12.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 12/05/2013] [Accepted: 12/06/2013] [Indexed: 11/21/2022]
Abstract
BACKGROUND Startle inhibition by weak prepulses (PPI) is studied to understand the biology of information processing in schizophrenia patients and healthy comparison subjects (HCS). The Consortium on the Genetics of Schizophrenia (COGS) identified associations between PPI and single nucleotide polymorphisms in schizophrenia probands and unaffected relatives, and linkage analyses extended evidence for the genetics of PPI deficits in schizophrenia in the COGS-1 family study. These findings are being extended in a 5-site "COGS-2" study of 1800 patients and 1200 unrelated HCS to facilitate genetic analyses. We describe a planned interim analysis of COGS-2 PPI data. METHODS Eyeblink startle was measured in carefully screened HCS and schizophrenia patients (n=1402). Planned analyses of PPI (60 ms intervals) assessed effects of diagnosis, sex and test site, PPI-modifying effects of medications and smoking, and relationships between PPI and neurocognitive measures. RESULTS 884 subjects met strict inclusion criteria. ANOVA of PPI revealed significant effects of diagnosis (p=0.0005) and sex (p<0.002), and a significant diagnosis×test site interaction. HCS>schizophrenia PPI differences were greatest among patients not taking 2nd generation antipsychotics, and were independent of smoking status. Modest but significant relationships were detected between PPI and performance in specific neurocognitive measures. DISCUSSION The COGS-2 multi-site study detects schizophrenia-related PPI deficits reported in single-site studies, including patterns related to diagnosis, prepulse interval, sex, medication and other neurocognitive measures. Site differences were detected and explored. The target COGS-2 schizophrenia "endophenotype" of reduced PPI should prove valuable for identifying and confirming schizophrenia risk genes in future analyses.
Collapse
Affiliation(s)
- Neal R Swerdlow
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States.
| | - Gregory A Light
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States; VISN 22, Mental Illness Research, Education & Clinical Center (MIRECC), VA San Diego Healthcare System, San Diego, CA, United States
| | - Joyce Sprock
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States; VISN 22, Mental Illness Research, Education & Clinical Center (MIRECC), VA San Diego Healthcare System, San Diego, CA, United States
| | - Monica E Calkins
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, United States
| | - Michael F Green
- Department of Psychiatry and Biobehavioral Sciences, Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States; VA Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Tiffany A Greenwood
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States
| | - Raquel E Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, United States
| | - Ruben C Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, United States
| | - Laura C Lazzeroni
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States; Department of Pediatrics, Stanford University, Stanford, CA, United States
| | - Keith H Nuechterlein
- Department of Psychiatry and Biobehavioral Sciences, Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Allen D Radant
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States; VA Puget Sound Health Care System, Seattle, WA, United States
| | - Amrita Ray
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States; Department of Pediatrics, Stanford University, Stanford, CA, United States
| | - Larry J Seidman
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States; Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Larry J Siever
- Department of Psychiatry, The Mount Sinai School of Medicine, New York, NY, United States; James J. Peters VA Medical Center, New York, NY, United States
| | - Jeremy M Silverman
- Department of Psychiatry, The Mount Sinai School of Medicine, New York, NY, United States; James J. Peters VA Medical Center, New York, NY, United States
| | - William S Stone
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States; Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Catherine A Sugar
- Department of Psychiatry and Biobehavioral Sciences, Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States; VISN 22, Mental Illness Research, Education & Clinical Center (MIRECC), VA San Diego Healthcare System, San Diego, CA, United States; Department of Biostatistics, University of California Los Angeles School of Public Health, Los Angeles, CA, United States
| | - Debby W Tsuang
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States; VA Puget Sound Health Care System, Seattle, WA, United States
| | - Ming T Tsuang
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, United States; Harvard Institute of Psychiatric Epidemiology and Genetics, Boston, MA, United States
| | - Bruce I Turetsky
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, United States
| | - David L Braff
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States; VISN 22, Mental Illness Research, Education & Clinical Center (MIRECC), VA San Diego Healthcare System, San Diego, CA, United States
| |
Collapse
|
36
|
Bodatsch M, Klosterkötter J, Daumann J. Contributions of experimental psychiatry to research on the psychosis prodrome. Front Psychiatry 2013; 4:170. [PMID: 24381564 PMCID: PMC3865446 DOI: 10.3389/fpsyt.2013.00170] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 12/04/2013] [Indexed: 11/13/2022] Open
Abstract
In the recent decades, a paradigmatic change in psychosis research and treatment shifted attention toward the early and particularly the prodromal stages of illness. Despite substantial progress with regard to the neuronal underpinnings of psychosis development, the crucial biological mechanisms leading to manifest illness are yet insufficiently understood. Until today, one significant approach to elucidate the neurobiology of psychosis has been the modeling of psychotic symptoms by psychedelic substances in healthy individuals. These models bear the opportunity to evoke particular neuronal aberrations and the respective psychotic symptoms in a controlled experimental setting. In the present paper, we hypothesize that experimental psychiatry bears unique opportunities in elucidating the biological mechanisms of the prodromal stages of psychosis. Psychosis risk symptoms are attenuated, transient, and often only retrospectively reported. The respective neuronal aberrations are thought being dynamic. The correlation of unstable psychopathology with observed neurofunctional disturbances is thus yet largely unclear. In modeling psychosis, the experimental setting allows not only for evoking particular symptoms, but for the concomitant assessment of psychopathology, neurophysiology, and neuropsychology. Herein, the glutamatergic model will be highlighted exemplarily, with special emphasis on its potential contribution to the elucidation of psychosis development. This model of psychosis appears as candidate for modeling the prodrome by inducing psychotic-like symptoms in healthy individuals. Furthermore, it alters pre-attentive processing like the Mismatch Negativity, an electrophysiological component which has recently been identified as a potential predictive marker of psychosis development. In summary, experimental psychiatry bears the potential to further elucidate the biological mechanisms of the psychosis prodrome. A better understanding of the respective pathophysiology might assist in the identification of predictive markers, and the development of preventive treatments.
Collapse
Affiliation(s)
- Mitja Bodatsch
- Department of Psychiatry and Psychotherapy, University of Cologne , Cologne , Germany
| | - Joachim Klosterkötter
- Department of Psychiatry and Psychotherapy, University of Cologne , Cologne , Germany
| | - Jörg Daumann
- Department of Psychiatry and Psychotherapy, University of Cologne , Cologne , Germany
| |
Collapse
|
37
|
Abstract
BACKGROUND The general anesthetics, isoflurane and sevoflurane, cause developmental abnormalities in neonatal animal models via incompletely understood mechanisms. Despite many common molecular targets, isoflurane and sevoflurane exhibit substantial differences in their actions. The authors sought to determine whether these differences can also be detected at the level of neurodevelopmental effects. METHODS Postnatal rats, 4-6 days old, were exposed to 1.2% isoflurane or 2.1% sevoflurane for 1-6 h and studied for immediate and delayed effects. RESULTS Isoflurane exposure was associated with weaker seizure-like electroencephalogram patterns than sevoflurane exposure. Confronted with a new environment at a juvenile age, the sevoflurane-exposed rats spent significantly more time in an "immobile" state than unexposed rats. Electroencephalographic (mean ± SE, 55.5 ± 12.80 s vs. 14.86 ± 7.03 s; P = 0.014; n = 6-7) and spontaneous behavior (F(2,39) = 4.43; P = 0.018) effects of sevoflurane were significantly diminished by pretreatment with the Na-K-2Cl cotransporter inhibitor bumetanide, whereas those of isoflurane were not. Pretreatment with bumetanide, however, diminished isoflurane-induced activation of caspase-3 in the cerebral cortex (F(2,8) = 22.869; P = 0.002) and prevented impairment in sensorimotor gating function (F(2,36) = 5.978; P = 0.006). CONCLUSIONS These findings in combination with results previously reported by the authors suggest that isoflurane and sevoflurane produce developmental effects acting via similar mechanisms that involve an anesthetic-induced increase in neuronal activity. At the same time, differences in their effects suggest differences in the mediating mechanisms and in their relative safety profile for neonatal anesthesia.
Collapse
|
38
|
Madsen GF, Bilenberg N, Cantio C, Oranje B. Increased prepulse inhibition and sensitization of the startle reflex in autistic children. Autism Res 2013; 7:94-103. [PMID: 24124111 DOI: 10.1002/aur.1337] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 09/03/2013] [Indexed: 11/10/2022]
Abstract
The relation between autism spectrum disorders (ASD) and schizophrenia is a subject of intense debate and research due to evidence of common neurobiological pathways in the two disorders. The objective of this study was to explore whether deficits in prepulse inhibition (PPI) of the startle reflex, as usually seen in schizophrenic patients, can be replicated in a group of children with ASD in comparison with a group of matched neuro-typically developed (NTD) controls. An additional aim was to explore possible psychophysiological subgroups within our ASD sample. In a case-control design, 35 ASD patients and 40 matched NTD controls were tested in a psychophysiological test battery. The PPI of the acoustic startle reflex was analyzed in 18 ASD subjects and 34 NTD controls. Habituation and sensitization were analyzed in 23 ASD subjects and 39 NTD controls. In trials with less intense prestimuli (76 dB), patients with ASD did not display the drop in percentage PPI normally found in healthy controls. In addition, ASD patients showed significantly increased sensitization compared with NTD controls. Combined, our results may reflect the hypersensitivity to sensory information in children with ASD. The relation to PPI deficits observed in schizophrenia is not apparent. Future research should study the developmental course of PPI deficits in ASD patients in a longitudinal design.
Collapse
Affiliation(s)
- Gitte Falcher Madsen
- Department of Child and Adolescent Mental Health Odense, Research Unit (University function), Mental Health Services in Region of Southern Denmark, Faculty of Health Sciences, University of Southern Denmark, Glostrup, Denmark
| | | | | | | |
Collapse
|
39
|
Goulding SM, Holtzman CW, Trotman HD, Ryan AT, Macdonald AN, Shapiro DI, Brasfield JL, Walker EF. The prodrome and clinical risk for psychotic disorders. Child Adolesc Psychiatr Clin N Am 2013; 22:557-67. [PMID: 24012073 PMCID: PMC4140174 DOI: 10.1016/j.chc.2013.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The psychosis prodrome offers great promise for identifying neural mechanisms involved in psychotic disorders and offers an opportunity to implement empirical interventions to delay, and ultimately ameliorate, illness onset. This article summarizes the literature on individuals in the putatively prodromal phase of psychosis/deemed at clinical high risk (CHR) for psychosis onset. Standardized measurement and manifestation of the CHR syndromes are discussed, followed by empirical findings that highlight the psychological deficits and biological abnormalities seen in CHR syndromes and psychotic disorders. Current controversies surrounding the diagnosis of CHR syndromes and issues related to the treatment of CHR individuals are also presented.
Collapse
Affiliation(s)
- Sandra M Goulding
- Mental Health and Development Program, Department of Psychology, Emory University, 36 Eagle Row, Room 270, Atlanta, GA 30322, USA.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Uzbay T, Goktalay G, Kayir H, Eker SS, Sarandol A, Oral S, Buyukuysal L, Ulusoy G, Kirli S. Increased plasma agmatine levels in patients with schizophrenia. J Psychiatr Res 2013; 47:1054-60. [PMID: 23664672 DOI: 10.1016/j.jpsychires.2013.04.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 04/02/2013] [Accepted: 04/04/2013] [Indexed: 12/12/2022]
Abstract
Agmatine is an endogenous substance, synthesized from l-arginine, and it is proposed to be a new neurotransmitter. Preclinical studies indicated that agmatine may have an important role in the pathophysiology of schizophrenia. This study was organized to investigate plasma agmatine in patients with schizophrenia and in healthy controls. Eighteen patients with schizophrenia and 19 healthy individuals constituted the subjects. Agmatine levels in the plasma were measured using the HPLC method. The S100B protein level, which is a peripheral biomarker for brain damage, was also measured using the ELISA method. While plasma levels of agmatine in patients with schizophrenia were significantly increased (p < 0.0001) compared to those of healthy individuals (control), there were no significant changes in the levels of S100B protein (p = 0.660). An ROC (receiver operating characteristic) curve analysis revealed that measuring plasma agmatine levels as a clinical diagnostic test would significantly differentiate between patients with schizophrenia and those in the control group (predictive value: 0.969; p < 0.0001). The predictive value of S100B measurements was not statistically significant (p > 0.05). A multiple regression analysis revealed that the age of the patient and the severity of the illness, as indicated by the PANSS score, significantly contributed the plasma agmatine levels in patients with schizophrenia. These results support the hypothesis that an excess agmatine release is important in the development of schizophrenia. The findings also imply that the plasma agmatine level may be a potential biomarker of schizophrenia.
Collapse
Affiliation(s)
- Tayfun Uzbay
- Uskudar University, Neuropsychopharmacology Application and Research Center, Istanbul, Turkey.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Disruption of Arp2/3 results in asymmetric structural plasticity of dendritic spines and progressive synaptic and behavioral abnormalities. J Neurosci 2013; 33:6081-92. [PMID: 23554489 DOI: 10.1523/jneurosci.0035-13.2013] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Despite evidence for a strong genetic contribution to several major psychiatric disorders, individual candidate genes account for only a small fraction of these disorders, leading to the suggestion that multigenetic pathways may be involved. Several known genetic risk factors for psychiatric disease are related to the regulation of actin polymerization, which plays a key role in synaptic plasticity. To gain insight into and test the possible pathogenetic role of this pathway, we designed a conditional knock-out of the Arp2/3 complex, a conserved final output for actin signaling pathways that orchestrates de novo actin polymerization. Here we report that postnatal loss of the Arp2/3 subunit ArpC3 in forebrain excitatory neurons leads to an asymmetric structural plasticity of dendritic spines, followed by a progressive loss of spine synapses. This progression of synaptic deficits corresponds with an evolution of distinct cognitive, psychomotor, and social disturbances as the mice age. Together, these results point to the dysfunction of actin signaling, specifically that which converges to regulate Arp2/3, as an important cellular pathway that may contribute to the etiology of complex psychiatric disorders.
Collapse
|
42
|
Oranje B, Lahuis B, van Engeland H, Jan van der Gaag R, Kemner C. Sensory and sensorimotor gating in children with multiple complex developmental disorders (MCDD) and autism. Psychiatry Res 2013; 206:287-92. [PMID: 23164481 DOI: 10.1016/j.psychres.2012.10.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 10/04/2012] [Accepted: 10/10/2012] [Indexed: 11/24/2022]
Abstract
Multiple Complex Developmental Disorder (MCDD) is a well-defined and validated behavioral subtype of autism with a proposed elevated risk of developing a schizophrenic spectrum disorder. The current study investigated whether children with MCDD show the same deficits in sensory gating that are commonly reported in schizophrenia, or whether they are indistinguishable from children with autism in this respect. P50 suppression and prepulse inhibition (PPI) of the startle reflex were assessed in children with MCDD (n=14) or autism (n=13), and healthy controls (n=12), matched on age and IQ. All subjects showed high levels of PPI and P50 suppression. However, no group differences were found. No abnormalities in sensory filtering could be detected in children with autism or MCDD. Since sensory gating deficits are commonly regarded as possible endophenotypic markers for schizophrenia, the current results do not support a high level of similarity between schizophrenia and MCDD.
Collapse
Affiliation(s)
- Bob Oranje
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Copenhagen University Hospital, University Psychiatric Center Glostrup, Ndr. Ringvej 29-67, DK-2600 Glostrup, Denmark.
| | | | | | | | | |
Collapse
|
43
|
Abstract
In prepulse inhibition (PPI), the startle response to a strong, unexpected stimulus is diminished if shortly preceded by the onset of a different stimulus. Because deficits in this inhibitory gating process are a hallmark feature of schizophrenia and certain other psychiatric disorders, the mechanisms underlying PPI are of significant interest. We previously used the invertebrate model system Tritonia diomedea to identify the first cellular mechanism for PPI--presynaptic inhibition of transmitter release from the afferent neurons (S-cells) mediating the startle response. Here, we report the involvement of a second, more powerful PPI mechanism in Tritonia: prepulse-elicited conduction block of action potentials traveling in the startle pathway caused by identified inhibitory interneurons activated by the prepulse. This example of axo-axonic conduction block--neurons in one pathway inhibiting the propagation of action potentials in another--represents a novel and potent mechanism of sensory gating in prepulse inhibition.
Collapse
|
44
|
Bodatsch M, Klosterkötter J, Müller R, Ruhrmann S. Basic disturbances of information processing in psychosis prediction. Front Psychiatry 2013; 4:93. [PMID: 23986723 PMCID: PMC3750943 DOI: 10.3389/fpsyt.2013.00093] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 08/09/2013] [Indexed: 11/13/2022] Open
Abstract
The basic symptoms (BS) approach provides a valid instrument in predicting psychosis onset and represents moreover a significant heuristic framework for research. The term "basic symptoms" denotes subtle changes of cognition and perception in the earliest and prodromal stages of psychosis development. BS are thought to correspond to disturbances of neural information processing. Following the heuristic implications of the BS approach, the present paper aims at exploring disturbances of information processing, revealed by functional magnetic resonance imaging (fMRI) and electro-encephalographic as characteristics of the at-risk state of psychosis. Furthermore, since high-risk studies employing ultra-high-risk criteria revealed non-conversion rates commonly exceeding 50%, thus warranting approaches that increase specificity, the potential contribution of neural information processing disturbances to psychosis prediction is reviewed. In summary, the at-risk state seems to be associated with information processing disturbances. Moreover, fMRI investigations suggested that disturbances of language processing domains might be a characteristic of the prodromal state. Neurophysiological studies revealed that disturbances of sensory processing may assist psychosis prediction in allowing for a quantification of risk in terms of magnitude and time. The latter finding represents a significant advancement since an estimation of the time to event has not yet been achieved by clinical approaches. Some evidence suggests a close relationship between self-experienced BS and neural information processing. With regard to future research, the relationship between neural information processing disturbances and different clinical risk concepts warrants further investigations. Thereby, a possible time sequence in the prodromal phase might be of particular interest.
Collapse
Affiliation(s)
- Mitja Bodatsch
- Department of Psychiatry and Psychotherapy, University of Cologne , Cologne , Germany
| | | | | | | |
Collapse
|
45
|
Roles of aldosterone and oxytocin in abnormalities caused by sevoflurane anesthesia in neonatal rats. Anesthesiology 2012; 117:791-800. [PMID: 22854980 DOI: 10.1097/aln.0b013e318266c62d] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND The authors sought to determine whether subjects with pathophysiological conditions that are characterized by increased concentrations of aldosterone have increased susceptibility to the side effects of neonatal anesthesia with sevoflurane. METHODS Postnatal day 4-20 (P4-P20) rats were exposed to sevoflurane, 6% and 2.1%, for 3 min and 60-360 min, respectively. Exogenous aldosterone was administered to imitate pathophysiological conditions with increased concentrations of aldosterone. RESULTS Six hours of anesthesia with sevoflurane on P4-P5 rats resulted in a more than 30-fold increase in serum concentrations of aldosterone (7.02 ± 1.61 ng/dl vs. 263.75 ± 22.31 ng/dl, mean ± SE, n = 5-6) and reduced prepulse inhibition of the acoustic startle response (F(2,37) = 5.66, P < 0.001). Administration of exogenous aldosterone during anesthesia with sevoflurane enhanced seizure-like electroencephalogram patterns in neonatal rats (48.25 ± 15.91 s vs. 222.00 ± 53.87 s, mean ± SE, n = 4) but did not affect electroencephalographic activity in older rats. Exogenous aldosterone increased activation of caspase-3 (F(3,28) = 11.02, P < 0.001) and disruption of prepulse inhibition of startle (F(3,46) = 6.36; P = 0.001) caused by sevoflurane. Intracerebral administration of oxytocin receptor agonists resulted in depressed seizure-like electroencephalogram patterns (F(2,17) = 6.37, P = 0.009), reduced activation of caspase-3 (t(11) = 2.83, P = 0.016), and disruption of prepulse inhibition of startle (t(7) = -2.9; P = 0.023) caused by sevoflurane. CONCLUSIONS These results suggest that adverse developmental effects of neonatal anesthesia with sevoflurane may involve both central and peripheral actions of the anesthetic. Subjects with increased concentrations of aldosterone may be more vulnerable, whereas intracerebral oxytocin receptor agonists may be neuroprotective.
Collapse
|
46
|
Lewis DA. Cortical circuit dysfunction and cognitive deficits in schizophrenia--implications for preemptive interventions. Eur J Neurosci 2012; 35:1871-8. [PMID: 22708598 DOI: 10.1111/j.1460-9568.2012.08156.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Schizophrenia is a devastating disorder that is common, usually chronic, frequently associated with substantial co-morbidity for addictive and medical disorders and, as a consequence, very costly in both personal and economic terms. At present, no proven means for preventing or modifying the course of the illness exist. This review discusses evidence supporting the ideas that: (i) impairments in certain cognitive processes are the core feature of schizophrenia; (ii) these cognitive impairments reflect abnormalities in specific cortical circuits; and (iii) these circuitry abnormalities arise during childhood-adolescence. The implications of these findings for the development and implementation of safe, preemptive, disease-modifying interventions in individuals at high risk for a clinical diagnosis of schizophrenia are considered.
Collapse
Affiliation(s)
- David A Lewis
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, 3811 O'Hara Street, Biomedical Science Tower W1654, Pittsburgh, PA 15213, USA.
| |
Collapse
|
47
|
Swerdlow NR, Light GA, Breier MR, Shoemaker JM, Saint Marie RL, Neary AC, Geyer MA, Stevens KE, Powell SB. Sensory and sensorimotor gating deficits after neonatal ventral hippocampal lesions in rats. Dev Neurosci 2012; 34:240-9. [PMID: 22572564 DOI: 10.1159/000336841] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 01/27/2012] [Indexed: 01/20/2023] Open
Abstract
Neonatal ventral hippocampal lesions (NVHLs) in rats lead to reduced prepulse inhibition (PPI) of startle and other behavioral deficits in adulthood that model abnormalities in schizophrenia patients. A neurophysiological deficit in schizophrenia patients and their first-degree relatives is reduced gating of the P50 event-related potential (ERP). N40 ERP gating in rats may be a cross-species analog of P50 gating, and is disrupted in experimental manipulations related to schizophrenia. Here, we tested whether N40 gating as well as PPI is disrupted after NVHLs, using contemporaneous measures of these two conceptually related phenomena. Male rat pups received sham or ibotenic acid NVHLs on postnatal day 7. PPI was tested on days 35 and 56, after which rats were equipped with cortical surface electrodes for ERP measurements. One week later, PPI and N40 gating were measured in a single test, using paired S1-S2 clicks spaced 500 ms apart to elicit N40 gating. Compared to sham-lesioned rats, those with NVHLs exhibited PPI deficits on days 35 and 56. NVHL rats also exhibited reduced N40 gating and reduced PPI, when measured contemporaneously at day 65. Deficits in PPI and N40 gating appeared most pronounced in rats with larger lesions, focused within the ventral hippocampus. In this first report of contemporaneous measures of two important schizophrenia-related phenotypes in NVHL rats, NVHLs reproduce both sensory (N40) and sensorimotor (PPI) gating deficits exhibited in schizophrenia. In this study, lesion effects were detected prior to pubertal onset, and were sustained well into adulthood.
Collapse
Affiliation(s)
- Neal R Swerdlow
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|