1
|
Makowski C, Nichols TE, Dale AM. Quality over quantity: powering neuroimaging samples in psychiatry. Neuropsychopharmacology 2024; 50:58-66. [PMID: 38902353 PMCID: PMC11525971 DOI: 10.1038/s41386-024-01893-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/06/2024] [Accepted: 05/24/2024] [Indexed: 06/22/2024]
Abstract
Neuroimaging has been widely adopted in psychiatric research, with hopes that these non-invasive methods will provide important clues to the underpinnings and prediction of various mental health symptoms and outcomes. However, the translational impact of neuroimaging has not yet reached its promise, despite the plethora of computational methods, tools, and datasets at our disposal. Some have lamented that too many psychiatric neuroimaging studies have been underpowered with respect to sample size. In this review, we encourage this discourse to shift from a focus on sheer increases in sample size to more thoughtful choices surrounding experimental study designs. We propose considerations at multiple decision points throughout the study design, data modeling and analysis process that may help researchers working in psychiatric neuroimaging boost power for their research questions of interest without necessarily increasing sample size. We also provide suggestions for leveraging multiple datasets to inform each other and strengthen our confidence in the generalization of findings to both population-level and clinical samples. Through a greater emphasis on improving the quality of brain-based and clinical measures rather than merely quantity, meaningful and potentially translational clinical associations with neuroimaging measures can be achieved with more modest sample sizes in psychiatry.
Collapse
Affiliation(s)
- Carolina Makowski
- Department of Radiology, University of California San Diego, San Diego, CA, USA.
| | - Thomas E Nichols
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Anders M Dale
- Departments of Radiology and Neurosciences, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
2
|
González-Peñas J, Alloza C, Brouwer R, Díaz-Caneja CM, Costas J, González-Lois N, Gallego AG, de Hoyos L, Gurriarán X, Andreu-Bernabeu Á, Romero-García R, Fañanás L, Bobes J, González-Pinto A, Crespo-Facorro B, Martorell L, Arrojo M, Vilella E, Gutiérrez-Zotes A, Perez-Rando M, Moltó MD, Buimer E, van Haren N, Cahn W, O'Donovan M, Kahn RS, Arango C, Pol HH, Janssen J, Schnack H. Accelerated Cortical Thinning in Schizophrenia Is Associated With Rare and Common Predisposing Variation to Schizophrenia and Neurodevelopmental Disorders. Biol Psychiatry 2024; 96:376-389. [PMID: 38521159 DOI: 10.1016/j.biopsych.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/22/2024] [Accepted: 03/05/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Schizophrenia is a highly heritable disorder characterized by increased cortical thinning throughout the life span. Studies have reported a shared genetic basis between schizophrenia and cortical thickness. However, no genes whose expression is related to abnormal cortical thinning in schizophrenia have been identified. METHODS We conducted linear mixed models to estimate the rates of accelerated cortical thinning across 68 regions from the Desikan-Killiany atlas in individuals with schizophrenia compared with healthy control participants from a large longitudinal sample (ncases = 169 and ncontrols = 298, ages 16-70 years). We studied the correlation between gene expression data from the Allen Human Brain Atlas and accelerated thinning estimates across cortical regions. Finally, we explored the functional and genetic underpinnings of the genes that contribute most to accelerated thinning. RESULTS We found a global pattern of accelerated cortical thinning in individuals with schizophrenia compared with healthy control participants. Genes underexpressed in cortical regions that exhibit this accelerated thinning were downregulated in several psychiatric disorders and were enriched for both common and rare disrupting variation for schizophrenia and neurodevelopmental disorders. In contrast, none of these enrichments were observed for baseline cross-sectional cortical thickness differences. CONCLUSIONS Our findings suggest that accelerated cortical thinning, rather than cortical thickness alone, serves as an informative phenotype for neurodevelopmental disruptions in schizophrenia. We highlight the genetic and transcriptomic correlates of this accelerated cortical thinning, emphasizing the need for future longitudinal studies to elucidate the role of genetic variation and the temporal-spatial dynamics of gene expression in brain development and aging in schizophrenia.
Collapse
Affiliation(s)
- Javier González-Peñas
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitària Gregorio Marañón, Madrid, Spain; CIBERSAM, Madrid, Spain.
| | - Clara Alloza
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitària Gregorio Marañón, Madrid, Spain; CIBERSAM, Madrid, Spain
| | - Rachel Brouwer
- Department of Psychiatry, UMCU Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Covadonga M Díaz-Caneja
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitària Gregorio Marañón, Madrid, Spain; CIBERSAM, Madrid, Spain; School of Medicine, Universidad Complutense, Madrid, Spain
| | - Javier Costas
- Instituto de Investigación Sanitària de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago de Compostela, Servizo Galego de Saúde, Santiago de Compostela, Galicia, Spain
| | - Noemí González-Lois
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitària Gregorio Marañón, Madrid, Spain
| | - Ana Guil Gallego
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitària Gregorio Marañón, Madrid, Spain
| | - Lucía de Hoyos
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitària Gregorio Marañón, Madrid, Spain
| | - Xaquín Gurriarán
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitària Gregorio Marañón, Madrid, Spain; CIBERSAM, Madrid, Spain
| | - Álvaro Andreu-Bernabeu
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitària Gregorio Marañón, Madrid, Spain; CIBERSAM, Madrid, Spain
| | - Rafael Romero-García
- Department of Medical Physiology and Biophysics, Instituto de Biomedicina de Sevilla, HUVR/CSIC/Universidad de Sevilla/CIBERSAM, Instituto de Salud Carlos III, Sevilla, Spain; Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Lourdes Fañanás
- CIBERSAM, Madrid, Spain; Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Julio Bobes
- CIBERSAM, Madrid, Spain; Faculty of Medicine and Health Sciences-Psychiatry, Universidad de Oviedo, Instituto de Investigación Sanitaria del Principado de Asturias, Instituto de Neurociencias del Principado de Asturias, Oviedo, Spain
| | - Ana González-Pinto
- CIBERSAM, Madrid, Spain; BIOARABA Health Research Institute, Organización Sanitaria Integrada Araba, University Hospital, University of the Basque Country, Vitoria, Spain
| | - Benedicto Crespo-Facorro
- CIBERSAM, Madrid, Spain; Hospital Universitario Virgen del Rocío, Department of Psychiatry, Universidad de Sevilla, Sevilla, Spain
| | - Lourdes Martorell
- CIBERSAM, Madrid, Spain; Hospital Universitari Institut Pere Mata, Institut d'Investigació Sanitària Pere Virgili-Centres de Recerca de Catalunya, Universitat Rovira i Virgili, Reus, Spain
| | - Manuel Arrojo
- Instituto de Investigación Sanitària de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago de Compostela, Servizo Galego de Saúde, Santiago de Compostela, Galicia, Spain
| | - Elisabet Vilella
- CIBERSAM, Madrid, Spain; Hospital Universitari Institut Pere Mata, Institut d'Investigació Sanitària Pere Virgili-Centres de Recerca de Catalunya, Universitat Rovira i Virgili, Reus, Spain
| | - Alfonso Gutiérrez-Zotes
- CIBERSAM, Madrid, Spain; Hospital Universitari Institut Pere Mata, Institut d'Investigació Sanitària Pere Virgili-Centres de Recerca de Catalunya, Universitat Rovira i Virgili, Reus, Spain
| | - Marta Perez-Rando
- Fundación Investigación Hospital Clínico de València, Fundación Investigación Hospital Clínico de Valencia, València, Spain; Unidad de Neurobiología, Instituto de Biotecnología y Biomedicina, Universitat de València, València, Spain
| | - María Dolores Moltó
- CIBERSAM, Madrid, Spain; Unidad de Neurobiología, Instituto de Biotecnología y Biomedicina, Universitat de València, València, Spain; Department of Genetics, Universitat de València, Campus of Burjassot, València, Spain
| | - Elizabeth Buimer
- Department of Psychiatry, UMCU Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Neeltje van Haren
- Department of Psychiatry, UMCU Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Wiepke Cahn
- Department of Psychiatry, UMCU Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands; Altrecht Mental Health Institute, Altrecht Science, Utrecht, the Netherlands
| | - Michael O'Donovan
- Medical Research Council for Neuropsychiatric Genetics and Genomics and Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - René S Kahn
- Department of Psychiatry, UMCU Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Celso Arango
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitària Gregorio Marañón, Madrid, Spain; CIBERSAM, Madrid, Spain; School of Medicine, Universidad Complutense, Madrid, Spain
| | - Hilleke Hulshoff Pol
- Department of Psychiatry, UMCU Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Joost Janssen
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitària Gregorio Marañón, Madrid, Spain; CIBERSAM, Madrid, Spain; Department of Psychiatry, UMCU Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Hugo Schnack
- Department of Psychiatry, UMCU Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
3
|
Svancer P, Capek V, Skoch A, Kopecek M, Vochoskova K, Fialova M, Furstova P, Jakob L, Bakstein E, Kolenic M, Hlinka J, Knytl P, Spaniel F. Longitudinal assessment of ventricular volume trajectories in early-stage schizophrenia: evidence of both enlargement and shrinkage. BMC Psychiatry 2024; 24:309. [PMID: 38658884 PMCID: PMC11040899 DOI: 10.1186/s12888-024-05749-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 04/08/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Lateral ventricular enlargement represents a canonical morphometric finding in chronic patients with schizophrenia; however, longitudinal studies elucidating complex dynamic trajectories of ventricular volume change during critical early disease stages are sparse. METHODS We measured lateral ventricular volumes in 113 first-episode schizophrenia patients (FES) at baseline visit (11.7 months after illness onset, SD = 12.3) and 128 age- and sex-matched healthy controls (HC) using 3T MRI. MRI was then repeated in both FES and HC one year later. RESULTS Compared to controls, ventricular enlargement was identified in 18.6% of patients with FES (14.1% annual ventricular volume (VV) increase; 95%CI: 5.4; 33.1). The ventricular expansion correlated with the severity of PANSS-negative symptoms at one-year follow-up (p = 0.0078). Nevertheless, 16.8% of FES showed an opposite pattern of statistically significant ventricular shrinkage during ≈ one-year follow-up (-9.5% annual VV decrease; 95%CI: -23.7; -2.4). There were no differences in sex, illness duration, age of onset, duration of untreated psychosis, body mass index, the incidence of Schneiderian symptoms, or cumulative antipsychotic dose among the patient groups exhibiting ventricular enlargement, shrinkage, or no change in VV. CONCLUSION Both enlargement and ventricular shrinkage are equally present in the early stages of schizophrenia. The newly discovered early reduction of VV in a subgroup of patients emphasizes the need for further research to understand its mechanisms.
Collapse
Affiliation(s)
- Patrik Svancer
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Vaclav Capek
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic
| | - Antonin Skoch
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic
- Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Miloslav Kopecek
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Kristyna Vochoskova
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Marketa Fialova
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Petra Furstova
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic
| | - Lea Jakob
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Eduard Bakstein
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic
- Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Marian Kolenic
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jaroslav Hlinka
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic
| | - Pavel Knytl
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Filip Spaniel
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic.
- Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
4
|
Han Y, Yang Y, Zhou Z, Jin X, Shi H, Shao M, Song M, Su X, Wang Q, Liu Q, Li W, Lv L. Cortical anatomical variations, gene expression profiles, and clinical phenotypes in patients with schizophrenia. Neuroimage Clin 2023; 39:103451. [PMID: 37315484 PMCID: PMC10509526 DOI: 10.1016/j.nicl.2023.103451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND AND HYPOTHESIS Schizophrenia (SZ) patients display significant structural brain abnormalities; nevertheless, the genetic mechanisms regulating cortical anatomical variations and their correlation with the disease phenotype are still ambiguous. STUDY DESIGN We characterized anatomical variation using a surface-based method derived from structural magnetic resonance imaging of patients with SZ and age- and sex-matched healthy controls (HCs). Partial least-squares regression was performed across cortex regions between anatomical variation and average transcriptional profiles of SZ risk genes and all qualified genes from the Allen Human Brain Atlas. The morphological features of each brain region were correlated to symptomology variables in patients with SZ using partial correlation analysis. STUDY RESULTS A total of 203 SZ and 201 HCs were included in the final analysis. We observed significant variation of 55 regions of cortical thickness, 23 regions of volume, 7 regions of area, and 55 regions of local gyrification index (LGI) between SZ and HC groups. Expression profiles of 4 SZ risk genes and 96 genes from all qualified genes showed a correlation to anatomical variability, however, after multiple comparisons, the correlations were no longer significant. LGI variability in multiple frontal subregions was associated with specific symptoms of SZ, whereas cognitive function involving attention/vigilance was linked to LGI variability across nine brain regions. CONCLUSIONS Cortical anatomical variation of patients with schizophrenia is associated with gene transcriptome profiles as well as clinical phenotypes.
Collapse
Affiliation(s)
- Yong Han
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, China
| | - Yongfeng Yang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, China
| | - Zhilu Zhou
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, China
| | - Xueyan Jin
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, China
| | - Han Shi
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, China
| | - Minglong Shao
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, China
| | - Meng Song
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, China
| | - Xi Su
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, China
| | - Qi Wang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, China
| | - Qing Liu
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, China
| | - Wenqiang Li
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, China.
| | - Luxian Lv
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
5
|
Kanahara N, Yamanaka H, Shiko Y, Kawasaki Y, Iyo M. The effects of cumulative antipsychotic dose on brain structures in patients with schizophrenia: Observational study of multiple CT scans over a long-term clinical course. Psychiatry Res Neuroimaging 2022; 319:111422. [PMID: 34856453 DOI: 10.1016/j.pscychresns.2021.111422] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/23/2021] [Accepted: 10/28/2021] [Indexed: 10/19/2022]
Abstract
Multiple lines of evidence indicate that antipsychotic agents could affect brain structures of schizophrenia patients. However, the effect of antipsychotic dosage or type on brain structure is uncertain. The present study retrospectively analyzed brain computed tomography (CT) images from a psychiatric hospital to examine the relationship between cumulative dose of antipsychotics and brain volume reduction in schizophrenia patients. A total of 43 patients with repeated relapse episode of psychosis were included and CT scans that were performed an average of 3.2 times per patient during nearly 13 years of follow-up were analyzed. The results revealed significant positive relationships of expansion of cerebrospinal fluid space with cumulative dosage of all antipsychotics and that of typical antipsychotics. Patients treated with antipsychotics including typical antipsychotics exhibited a greater volume reduction compared to patients treated with only atypical antipsychotics. The present study was one of the longest longitudinal studies examining the effects of antipsychotics on brain volume in schizophrenia patients. These results suggest a relation between cumulative lifetime antipsychotic dosage and progressive brain volume reduction in patients with schizophrenia. However, the effects of specific agent on brain structure are still uncertain, and more detailed analysis is needed.
Collapse
Affiliation(s)
- Nobuhisa Kanahara
- Division of Medical Treatment and Rehabilitation, Center for Forensic Mental Health, Chiba University, Chiba, Japan; Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan.
| | - Hiroshi Yamanaka
- Department of Psychiatry, Chiba Psychiatric Medical Center, Chiba, Japan
| | - Yuki Shiko
- Biostatistics Section, Clinical Research Center, Chiba University Hospital, Chiba, Japan
| | - Yohei Kawasaki
- Biostatistics Section, Clinical Research Center, Chiba University Hospital, Chiba, Japan
| | - Masaomi Iyo
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
6
|
Rodriguez-Perez N, Ayesa-Arriola R, Ortiz-García de la Foz V, Setien-Suero E, Tordesillas-Gutierrez D, Crespo-Facorro B. Long term cortical thickness changes after a first episode of non- affective psychosis: The 10 year follow-up of the PAFIP cohort. Prog Neuropsychopharmacol Biol Psychiatry 2021; 108:110180. [PMID: 33212193 DOI: 10.1016/j.pnpbp.2020.110180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/28/2020] [Accepted: 11/12/2020] [Indexed: 12/25/2022]
Abstract
Cortical thickness has been widely studied in individuals with schizophrenia and, in particular, first-episode psychosis. Abnormalities have been described, although there is, to date, a lack of consensus regarding changes across time and correlations with clinical and functional outcomes of the illness. One hundred and twenty-three first-episode psychosis patients and 74 healthy volunteers were subjected to magnetic resonance imaging scans and clinical and functional assessments by different scales at four consecutive visits during a 10 year follow-up period. Linear mixed effects models were applied to our data to compute cortical thickness changes over time in (1) schizophrenia patients versus healthy controls and (2) in patients with good versus poor functional outcome. The associations between cortical thickness percentage changes and clinical and functional status at 10 years were also assessed. The patients presented a thinner cortex than the controls at baseline (b's = -0.06; q ≤ 0.00023) with non-significant coefficients for the interaction term (follow-up time x group) (b's = -0.001; q ≥ 0.681). Poor functioning patients presented statistically significant coefficients for the interaction term (follow-up time x functionality) (left: b = -0.005, q = 0.019; right: b = -0.005, q = 0.022). In contrast, no correlations were found between cortical thickness measurements and clinical variables at 10 years. Overall, there were widespread thickness anomalies in first-episode psychosis patients across cortical regions that remained stable across time. Progressive thickness changes were related to patient functional outcomes, with progressive and steeper cortical thinning in patients with worse functional outcomes and a stabilization in those with better outcomes.
Collapse
Affiliation(s)
- Noelia Rodriguez-Perez
- Hospital Universitario Virgen del Rocío, Department of Psychiatry, Instituto de Investigación Sanitaria de Sevilla, IBiS, Sevilla, Spain; CIBERSAM, Centro Investigación Biomédica en Red Salud Mental, Madrid, Spain.
| | - Rosa Ayesa-Arriola
- University Hospital Marqués de Valdecilla, IDIVAL, Department of Psychiatry, School of Medicine, University of Cantabria, Santander, Spain
| | - Victor Ortiz-García de la Foz
- University Hospital Marqués de Valdecilla, IDIVAL, Department of Psychiatry, School of Medicine, University of Cantabria, Santander, Spain
| | - Esther Setien-Suero
- University Hospital Marqués de Valdecilla, IDIVAL, Department of Psychiatry, School of Medicine, University of Cantabria, Santander, Spain
| | - Diana Tordesillas-Gutierrez
- CIBERSAM, Centro Investigación Biomédica en Red Salud Mental, Madrid, Spain; Neuroimaging Unit, Technological Facilities, IDIVAL, Santander, Spain
| | - Benedicto Crespo-Facorro
- Hospital Universitario Virgen del Rocío, Department of Psychiatry, Instituto de Investigación Sanitaria de Sevilla, IBiS, Sevilla, Spain; CIBERSAM, Centro Investigación Biomédica en Red Salud Mental, Madrid, Spain; University of Sevilla, Sevilla, Spain.
| | | |
Collapse
|
7
|
Karpouzian-Rogers T, Cobia D, Petersen J, Wang L, Mittal VA, Csernansky JG, Smith MJ. Cognitive Empathy and Longitudinal Changes in Temporo-Parietal Junction Thickness in Schizophrenia. Front Psychiatry 2021; 12:667656. [PMID: 34054621 PMCID: PMC8160364 DOI: 10.3389/fpsyt.2021.667656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 04/15/2021] [Indexed: 01/04/2023] Open
Abstract
Objective: Deficits in cognitive empathy are well-documented in individuals with schizophrenia and are related to reduced community functioning. The temporoparietal junction (TPJ) is closely linked to cognitive empathy. We compared the relationship between baseline cognitive empathy and changes in TPJ thickness over 24 months between individuals with schizophrenia and healthy controls. Methods: Individuals with schizophrenia (n = 29) and healthy controls (n = 26) completed a cognitive empathy task and underwent structural neuroimaging at baseline and approximately 24 months later. Symmetrized percent change scores were calculated for right and left TPJ, as well as whole-brain volume, and compared between groups. Task accuracy was examined as a predictor of percent change in TPJ thickness and whole-brain volume in each group. Results: Individuals with schizophrenia demonstrated poorer accuracy on the cognitive empathy task (p < 0.001) and thinner TPJ cortex relative to controls at both time points (p = 0.01). In schizophrenia, greater task accuracy was uniquely related to less thinning of the TPJ over time (p = 0.02); task accuracy did not explain changes in left TPJ or whole-brain volume. Among controls, task accuracy did not explain changes in right or left TPJ, or whole-brain volume. Conclusions: Our findings suggest that greater cognitive empathy may explain sustained integrity of the right TPJ in individuals with schizophrenia, suggesting a contributory substrate for the long-term maintenance of this process in psychosis. Cognitive empathy was not related to changes in whole-brain volume, demonstrating the unique role of the TPJ in cognitive empathy.
Collapse
Affiliation(s)
- Tatiana Karpouzian-Rogers
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Derin Cobia
- Department of Psychology and Neuroscience Center, Brigham Young University, Provo, UT, United States
| | - Julie Petersen
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Lei Wang
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Department of Psychiatry and Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Vijay A Mittal
- Department of Psychology, Northwestern University, Evanston, IL, United States
| | - John G Csernansky
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Matthew J Smith
- School of Social Work, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
8
|
Brief Mindfulness Meditation Induces Gray Matter Changes in a Brain Hub. Neural Plast 2020; 2020:8830005. [PMID: 33299395 PMCID: PMC7704181 DOI: 10.1155/2020/8830005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/11/2020] [Accepted: 10/30/2020] [Indexed: 01/03/2023] Open
Abstract
Previous studies suggest that the practice of long-term (months to years) mindfulness meditation induces structural plasticity in gray matter. However, it remains unknown whether short-term (<30 days) mindfulness meditation in novices could induce similar structural changes. Our previous randomized controlled trials (RCTs) identified white matter changes surrounding the anterior cingulate cortex (ACC) and the posterior cingulate cortex (PCC) within 2 to 4 weeks, following 5-10 h of mindfulness training. Furthermore, these changes were correlated with emotional states in healthy adults. The PCC is a key hub in the functional anatomy implicated in meditation and other perspectival processes. In this longitudinal study using a randomized design, we therefore examined the effect of a 10 h of mindfulness training, the Integrative Body-Mind Training (IBMT) on gray matter volume of the PCC compared to an active control-relaxation training (RT). We found that brief IBMT increased ventral PCC volume and that baseline temperamental trait-an index of individual differences was associated with a reduction in training-induced gray matter increases. Our findings indicate that brief mindfulness meditation induces gray matter plasticity, suggesting that structural changes in ventral PCC-a key hub associated with self-awareness, emotion, cognition, and aging-may have important implications for protecting against mood-related disorders and aging-related cognitive declines.
Collapse
|
9
|
Makowski C, Lewis JD, Lepage C, Malla AK, Joober R, Evans AC, Lepage M. Intersection of verbal memory and expressivity on cortical contrast and thickness in first episode psychosis. Psychol Med 2020; 50:1923-1936. [PMID: 31456533 DOI: 10.1017/s0033291719002071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Longitudinal studies of first episode of psychosis (FEP) patients are critical to understanding the dynamic clinical factors influencing functional outcomes; negative symptoms and verbal memory (VM) deficits are two such factors that remain a therapeutic challenge. This study uses white-gray matter contrast at the inner edge of the cortex, in addition to cortical thickness, to probe changes in microstructure and their relation with negative symptoms and possible intersections with verbal memory. METHODS T1-weighted images and clinical data were collected longitudinally for patients (N = 88) over a two-year period. Cognitive data were also collected at baseline. Relationships between baseline VM (immediate/delayed recall) and rate of change in two negative symptom dimensions, amotivation and expressivity, were assessed at the behavioral level, as well as at the level of brain structure. RESULTS VM, particularly immediate recall, was significantly and positively associated with a steeper rate of expressivity symptom decline (r = 0.32, q = 0.012). Significant interaction effects between baseline delayed recall and change in expressivity were uncovered in somatomotor regions bilaterally for both white-gray matter contrast and cortical thickness. Furthermore, interaction effects between immediate recall and change in expressivity on cortical thickness rates were uncovered across higher-order regions of the language processing network. CONCLUSIONS This study shows common neural correlates of language-related brain areas underlying expressivity and VM in FEP, suggesting deficits in these domains may be more linked to speech production rather than general cognitive capacity. Together, white-gray matter contrast and cortical thickness may optimally inform clinical investigations aiming to capture peri-cortical microstructural changes.
Collapse
Affiliation(s)
- Carolina Makowski
- McGill Centre for Integrative Neuroscience, McGill University, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Montreal, Canada
- Department of Psychiatry, McGill University, Verdun, Canada
| | - John D Lewis
- McGill Centre for Integrative Neuroscience, McGill University, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Montreal, Canada
| | - Claude Lepage
- McGill Centre for Integrative Neuroscience, McGill University, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Montreal, Canada
| | - Ashok K Malla
- Department of Psychiatry, McGill University, Verdun, Canada
- Prevention and Early Intervention Program for Psychosis, Douglas Mental Health University Institute, Verdun, Canada
| | - Ridha Joober
- Department of Psychiatry, McGill University, Verdun, Canada
- Prevention and Early Intervention Program for Psychosis, Douglas Mental Health University Institute, Verdun, Canada
| | - Alan C Evans
- McGill Centre for Integrative Neuroscience, McGill University, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Montreal, Canada
| | - Martin Lepage
- Department of Psychiatry, McGill University, Verdun, Canada
- Prevention and Early Intervention Program for Psychosis, Douglas Mental Health University Institute, Verdun, Canada
| |
Collapse
|
10
|
Li X, Wu K, Zhang Y, Kong L, Bertisch H, DeLisi LE. Altered topological characteristics of morphological brain network relate to language impairment in high genetic risk subjects and schizophrenia patients. Schizophr Res 2019; 208:338-343. [PMID: 30700398 DOI: 10.1016/j.schres.2019.01.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 01/16/2019] [Accepted: 01/19/2019] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Evidence suggests relationships between abnormalities in various cortical and subcortical brain structures and language dysfunction in individuals with schizophrenia, and to some extent in those with increased genetic risk for this diagnosis. The topological features of the structural brain network at the systems-level and their impact on language function in schizophrenia and in those at high genetic risk has been less well studied. METHOD Single-subject morphological brain network was constructed in a total of 71 subjects (20 patients with schizophrenia, 19 individuals at high genetic risk for schizophrenia, and 32 controls). Among these 71 subjects, 56 were involved in our previous neuroimaging studies. Graphic Theoretical Techniques was applied to calculate the global and nodal topological characteristics of the morphological brain network of each participant. Index scores for five language-related cognitive tests were also attained from each participant. RESULTS Significantly smaller nodal degree in bilateral superior occipital gyri (SOG) were observed in individuals with schizophrenia, as compared to the controls and those at high risk; while significantly reduced nodal betweenness centrality (quantifying the level of a node in connecting other nodes in the network) in right middle frontal gyrus (MFG) was found in the high-risk group, relative to controls. The right MFG nodal efficiency and hub capacity (represented by both nodal degree and betweenness centrality) of the morphological brain network were negatively associated with the wide range achievement test (WRAT) standard performance score; while the right SOG nodal degree was positively associated with the WRAT standard performance score, in the entire study sample. CONCLUSIONS These findings enhance the understanding of structural brain abnormalities at the systems-level in individuals with schizophrenia and those at high genetic risk, which may serve as critical neural substrates for the origin of the language-related impairments and symptom manifestations of schizophrenia.
Collapse
Affiliation(s)
- Xiaobo Li
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China.
| | - Kai Wu
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China; Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, China; Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia, Guangzhou, China.
| | - Yue Zhang
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
| | - Lingyin Kong
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
| | | | - Lynn E DeLisi
- VA Boston Healthcare System, Harvard Medical School, Brockton, MA, USA
| |
Collapse
|
11
|
Konishi J, Del Re EC, Bouix S, Blokland GAM, Mesholam-Gately R, Woodberry K, Niznikiewicz M, Goldstein J, Hirayasu Y, Petryshen TL, Seidman LJ, Shenton ME, McCarley RW. Abnormal relationships between local and global brain measures in subjects at clinical high risk for psychosis: a pilot study. Brain Imaging Behav 2019; 12:974-988. [PMID: 28815390 DOI: 10.1007/s11682-017-9758-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We examined whether abnormal volumes of several brain regions as well as their mutual associations that have been observed in patients with schizophrenia, are also present in individuals at clinical high-risk (CHR) for developing psychosis. 3T magnetic resonance imaging was acquired in 19 CHR and 20 age- and handedness-matched controls. Volumes were measured for the body and temporal horns of the lateral ventricles, hippocampus and amygdala as well as total brain, cortical gray matter, white matter, and subcortical gray matter volumes. Relationships between volumes as well as correlations between volumes and cognitive and clinical measures were explored. Ratios of lateral ventricular volume to total brain volume and temporal horn volume to total brain volume were calculated. Volumetric abnormalities were lateralized to the left hemisphere. Volumes of the left temporal horn, and marginally, of the body of the left lateral ventricle were larger, while left amygdala but not hippocampal volume was significantly smaller in CHR participants compared to controls. Total brain volume was also significantly smaller and the ratio of the temporal horn/total brain volume was significantly higher in CHR than in controls. White matter volume correlated positively with higher verbal fluency score while temporal horn volume correlated positively with a greater number of perseverative errors. Together with the finding of larger temporal horns and smaller amygdala volumes in the left hemisphere, these results indicate that the ratio of temporal horns volume to brain volume is abnormal in CHR compared to controls. These abnormalities present in CHR individuals may constitute the biological basis for at least some of the CHR syndrome.
Collapse
Affiliation(s)
- Jun Konishi
- Laboratory of Neuroscience, Department of Psychiatry, VA Boston Healthcare System, Brockton Division, and Harvard Medical School, Boston, MA, USA.,Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA.,Department of Psychiatry, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Elisabetta C Del Re
- Laboratory of Neuroscience, Department of Psychiatry, VA Boston Healthcare System, Brockton Division, and Harvard Medical School, Boston, MA, USA. .,Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA.
| | - Sylvain Bouix
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA
| | - Gabriëlla A M Blokland
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.,Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Raquelle Mesholam-Gately
- Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA, USA
| | - Kristen Woodberry
- Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA, USA
| | - Margaret Niznikiewicz
- Laboratory of Neuroscience, Department of Psychiatry, VA Boston Healthcare System, Brockton Division, and Harvard Medical School, Boston, MA, USA
| | - Jill Goldstein
- Brigham and Women's Hospital, Connors Center for Women's Health and Gender Biology, Boston, MA, USA.,Health and Gender Biology, Boston, MA, USA.,Departments of Psychiatry and Medicine, Harvard Medical School, Boston, MA, USA
| | - Yoshio Hirayasu
- Department of Psychiatry, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Tracey L Petryshen
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.,Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Larry J Seidman
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA, USA
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA.,Department of Radiology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA.,Research and Development, VA Boston Healthcare System, Boston, MA, USA
| | - Robert W McCarley
- Laboratory of Neuroscience, Department of Psychiatry, VA Boston Healthcare System, Brockton Division, and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Rund BR. The research evidence for schizophrenia as a neurodevelopmental disorder. Scand J Psychol 2018; 59:49-58. [PMID: 29356007 DOI: 10.1111/sjop.12414] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/26/2017] [Indexed: 01/27/2023]
Abstract
Schizophrenia is a neurodevelopmental disorder that starts very early. In this review we describe the empirical evidence for the neurodevelopmental model. First, by outlining the roots of psychological research that laid the foundation of the model. Thereafter, describing cognitive dysfunction observed in schizophrenia, and the course of cognitive functioning in the illness. Then, research findings that speak for and studies that speak against the view that schizophrenia is a degenerative process is discussed. We find that there is ample evidence that cognitive disturbance is a core element in schizophrenia. However, we have limited understanding of what initiates the abnormal development. This the paper ends with pointing out some of the factors that may trigger the deviant neurocognitive development in schizophrenia.
Collapse
Affiliation(s)
- Bjorn Rishovd Rund
- Department of Psychology, University of Oslo, Oslo, Norway.,Vestre Viken Hospital Trust, Drammen, Norway
| |
Collapse
|
13
|
Fagerberg T, Söderman E, Petter Gustavsson J, Agartz I, Jönsson EG. Stability of personality traits over a five-year period in Swedish patients with schizophrenia spectrum disorder and non-psychotic individuals: a study using the Swedish universities scales of personality. BMC Psychiatry 2018; 18:54. [PMID: 29486736 PMCID: PMC6389041 DOI: 10.1186/s12888-018-1617-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 01/24/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Personality is considered as an important aspect in persons with psychotic disorders. Several studies have investigated personality in schizophrenia. However, no study has investigated stability of personality traits exceeding three years in patients with schizophrenia. This study aims to investigate the stability of personality traits over a five-year period among patients with schizophrenia and non-psychotic individuals and to evaluate case-control differences. METHODS Patients with psychotic disorders (n = 36) and non-psychotic individuals (n = 76) completed Swedish universities Scales of Personality (SSP) at two occasions five years apart. SSP scores were analysed for effect of time and case-control differences by multiple analysis of covariance (MANCOVA) and within-subjects correlation. RESULTS MANCOVA within-subjects analysis did not show any effect of time. Thus, SSP mean scale scores did not significantly vary during the five-year interval. Within subject correlations (Spearman) ranged 0.30-0.68 and 0.54-0.75 for the different SSP scales in patients and controls, respectively. Patients scored higher than controls in SSP scales Somatic Trait Anxiety, Psychic Trait Anxiety, Stress Susceptibility, Lack of Assertiveness, Detachment, Embitterment, and Mistrust. CONCLUSION The stability of the SSP personality trait was reasonably high among patients with psychotic disorder, although lower than among non-psychotic individuals, which is in accordance with previous research.
Collapse
Affiliation(s)
- Tomas Fagerberg
- Human Brain Informatics (HUBIN), Department of Clinical Neuroscience, Centre for Psychiatric Research, Psychiatry Section, Karolinska Institutet and Hospital, Stockholm, Sweden
| | - Erik Söderman
- Human Brain Informatics (HUBIN), Department of Clinical Neuroscience, Centre for Psychiatric Research, Psychiatry Section, Karolinska Institutet and Hospital, Stockholm, Sweden
| | - J. Petter Gustavsson
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Ingrid Agartz
- Human Brain Informatics (HUBIN), Department of Clinical Neuroscience, Centre for Psychiatric Research, Psychiatry Section, Karolinska Institutet and Hospital, Stockholm, Sweden
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine. Psychiatry section, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Erik G. Jönsson
- Human Brain Informatics (HUBIN), Department of Clinical Neuroscience, Centre for Psychiatric Research, Psychiatry Section, Karolinska Institutet and Hospital, Stockholm, Sweden
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine. Psychiatry section, University of Oslo, Oslo, Norway
| |
Collapse
|
14
|
Joo SW, Chon MW, Rathi Y, Shenton ME, Kubicki M, Lee J. Abnormal asymmetry of white matter tracts between ventral posterior cingulate cortex and middle temporal gyrus in recent-onset schizophrenia. Schizophr Res 2018; 192:159-166. [PMID: 28506703 DOI: 10.1016/j.schres.2017.05.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 05/04/2017] [Accepted: 05/07/2017] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Previous studies have reported abnormalities in the ventral posterior cingulate cortex (vPCC) and middle temporal gyrus (MTG) in schizophrenia patients. However, it remains unclear whether the white matter tracts connecting these structures are impaired in schizophrenia. Our study investigated the integrity of these white matter tracts (vPCC-MTG tract) and their asymmetry (left versus right side) in patients with recent onset schizophrenia. METHOD Forty-seven patients and 24 age-and sex-matched healthy controls were enrolled in this study. We extracted left and right vPCC-MTG tract on each side from T1W and diffusion MRI (dMRI) at 3T. We then calculated the asymmetry index of diffusion measures of vPCC-MTG tracts as well as volume and thickness of vPCC and MTG using the formula: 2×(right-left)/(right+left). We compared asymmetry indices between patients and controls and evaluated their correlations with the severity of psychiatric symptoms and cognition in patients using the Positive and Negative Syndrome Scale (PANSS), video-based social cognition scale (VISC) and the Wechsler Adult Intelligence Scale (WAIS-III). RESULTS Asymmetry of fractional anisotropy (FA) and radial diffusivity (RD) in the vPCC-MTG tract, while present in healthy controls, was not evident in schizophrenia patients. Also, we observed that patients, not healthy controls, had a significant FA decrease and RD increase in the left vPCC-MTG tract. There was no significant association between the asymmetry indices of dMRI measures and IQ, VISC, or PANSS scores in schizophrenia. CONCLUSION Disruption of asymmetry of the vPCC-MTG tract in schizophrenia may contribute to the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Sung Woo Joo
- Department of Psychiatry, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Myong-Wuk Chon
- Department of Psychiatry, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Yogesh Rathi
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; VA Boston Healthcare System, Brockton Division, Brockton, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marek Kubicki
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jungsun Lee
- Department of Psychiatry, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea; Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
15
|
The effect of duration of illness and antipsychotics on subcortical volumes in schizophrenia: Analysis of 778 subjects. NEUROIMAGE-CLINICAL 2017; 17:563-569. [PMID: 29201642 PMCID: PMC5702875 DOI: 10.1016/j.nicl.2017.11.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/31/2017] [Accepted: 11/06/2017] [Indexed: 12/02/2022]
Abstract
Background The effect of duration of illness and antipsychotic medication on the volumes of subcortical structures in schizophrenia is inconsistent among previous reports. We implemented a large sample analysis utilizing clinical data from 11 institutions in a previous meta-analysis. Methods Imaging and clinical data of 778 schizophrenia subjects were taken from a prospective meta-analysis conducted by the COCORO consortium in Japan. The effect of duration of illness and daily dose and type of antipsychotics were assessed using the linear mixed effect model where the volumes of subcortical structures computed by FreeSurfer were used as a dependent variable and age, sex, duration of illness, daily dose of antipsychotics and intracranial volume were used as independent variables, and the type of protocol was incorporated as a random effect for intercept. The statistical significance of fixed-effect of dependent variable was assessed. Results Daily dose of antipsychotics was positively associated with left globus pallidus volume and negatively associated with right hippocampus. It was also positively associated with laterality index of globus pallidus. Duration of illness was positively associated with bilateral globus pallidus volumes. Type of antipsychotics did not have any effect on the subcortical volumes. Discussion A large sample size, uniform data collection methodology and robust statistical analysis are strengths of the current study. This result suggests that we need special attention to discuss about relationship between subcortical regional brain volumes and pathophysiology of schizophrenia because regional brain volumes may be affected by antipsychotic medication. The imaging data as well as prescription data and demographics from 778 patients with schizophrenia from 11 institutions were included. The effect of protocol was cooperated as random-effect in the linear mixed-effect model. Significant positive association were found between daily dose of antipsychotics and left globus pallidus volume. Significant negative association was found between daily dose of antipsychotics and right hippocampus volume. Significant positive associations were found between duration of illness and bilateral volumes of globus pallidus.
Collapse
|
16
|
Progressive cortical reorganisation: A framework for investigating structural changes in schizophrenia. Neurosci Biobehav Rev 2017; 79:1-13. [DOI: 10.1016/j.neubiorev.2017.04.028] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/26/2017] [Accepted: 04/26/2017] [Indexed: 12/27/2022]
|
17
|
Effects of environmental risks and polygenic loading for schizophrenia on cortical thickness. Schizophr Res 2017; 184:128-136. [PMID: 27989645 DOI: 10.1016/j.schres.2016.12.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/09/2016] [Accepted: 12/11/2016] [Indexed: 01/21/2023]
Abstract
There are established differences in cortical thickness (CT) in schizophrenia (SCZ) and bipolar (BD) patients when compared to healthy controls (HC). However, it is unknown to what extent environmental or genetic risk factors impact on CT in these populations. We have investigated the effect of Environmental Risk Scores (ERS) and Polygenic Risk Scores for SCZ (PGRS-SCZ) on CT. Structural MRI scans were acquired at 3T for patients with SCZ or BD (n=57) and controls (n=41). Cortical reconstructions were generated in FreeSurfer (v5.3). The ERS was created by determining exposure to cannabis use, childhood adverse events, migration, urbanicity and obstetric complications. The PGRS-SCZ were generated, for a subset of the sample (Patients=43, HC=32), based on the latest PGC GWAS findings. ANCOVAs were used to test the hypotheses that ERS and PGRS-SCZ relate to CT globally, and in frontal and temporal lobes. An increase in ERS was negatively associated with CT within temporal lobe for patients. A higher PGRS-SCZ was also related to global cortical thinning for patients. ERS effects remained significant when including PGRS-SCZ as a fixed effect. No relationship which survived FDR correction was found for ERS and PGRS-SCZ in controls. Environmental risk for SCZ was related to localised cortical thinning in patients with SCZ and BD, while increased PGRS-SCZ was associated with global cortical thinning. Genetic and environmental risk factors for SCZ appear therefore to have differential effects. This provides a mechanistic means by which different risk factors may contribute to the development of SCZ and BD.
Collapse
|
18
|
Dietsche B, Kircher T, Falkenberg I. Structural brain changes in schizophrenia at different stages of the illness: A selective review of longitudinal magnetic resonance imaging studies. Aust N Z J Psychiatry 2017; 51:500-508. [PMID: 28415873 DOI: 10.1177/0004867417699473] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Schizophrenia is a devastating mental disorder accompanied by aberrant structural brain connectivity. The question whether schizophrenia is a progressive brain disorder is yet to be resolved. Thus, it is not clear when these structural alterations occur and how they develop over time. METHODS In our selective review, we summarized recent findings from longitudinal magnetic resonance imaging studies investigating structural brain alterations and its impact on clinical outcome at different stages of the illness: (1) subjects at ultra-high risk of developing psychosis, (2) patients with a first episode psychosis, and (3) chronically ill patients. Moreover, we reviewed studies examining the longitudinal effects of medication on brain structure in patients with schizophrenia. RESULTS (1) Studies from pre-clinical stages to conversion showed a more pronounced cortical gray matter loss (i.e. superior temporal and inferior frontal regions) in those individuals who later made transition to psychosis. (2) Studies investigating patients with a first episode psychosis revealed a decline in multiple gray matter regions (i.e. frontal regions and thalamus) over time as well as progressive cortical thinning in the superior and inferior frontal cortex. (3) Studies focusing on patients with chronic schizophrenia showed that gray matter decreased to a greater extent (i.e. frontal and temporal areas, thalamus, and cingulate cortices)-especially in poor-outcome patients. Very few studies reported effects on white matter microstructure in the longitudinal course of the illness. CONCLUSION There is adequate evidence to suggest that schizophrenia is associated with progressive gray matter abnormalities particularly during the initial stages of illness. However, causal relationships between structural changes and illness course-especially in chronically ill patients-should be interpreted with caution. Findings might be confounded by longer periods of treatment and higher doses of antipsychotics or epiphenomena related to the illness.
Collapse
Affiliation(s)
- Bruno Dietsche
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
| | - Irina Falkenberg
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
19
|
Huhtaniska S, Jääskeläinen E, Hirvonen N, Remes J, Murray GK, Veijola J, Isohanni M, Miettunen J. Long-term antipsychotic use and brain changes in schizophrenia - a systematic review and meta-analysis. Hum Psychopharmacol 2017; 32. [PMID: 28370309 DOI: 10.1002/hup.2574] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 01/13/2017] [Accepted: 01/28/2017] [Indexed: 01/03/2023]
Abstract
OBJECTIVE The association between long-term antipsychotic treatment and changes in brain structure in schizophrenia is unclear. Our aim was to conduct a systematic review and a meta-analysis on long-term antipsychotic effects on brain structures in schizophrenia focusing on studies with at least 2 years of follow-up between MRI scans. DESIGN Studies were systematically collected using 4 databases, and we also contacted authors for unpublished data. We calculated correlations between antipsychotic dose and/or type and brain volumetric changes and used random effect meta-analysis to study correlations by brain area. RESULTS Thirty-one publications from 16 samples fulfilled our inclusion criteria. In meta-analysis, higher antipsychotic exposure associated statistically significantly with parietal lobe decrease (studies, n = 4; r = -.14, p = .013) and with basal ganglia increase (n = 4; r = .10, p = .044). Most of the reported correlations in the original studies were statistically nonsignificant. There were no clear differences between typical and atypical exposure and brain volume change. The studies were often small and highly heterogeneous in their methods and seldom focused on antipsychotic medication and brain changes as the main subject. CONCLUSIONS Antipsychotic medication may associate with brain structure changes. More long-term follow-up studies taking into account illness severity measures are needed to make definitive conclusions.
Collapse
Affiliation(s)
- Sanna Huhtaniska
- Center for Life Course Health Research, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland.,Department of Psychiatry, Research Unit of Clinical Neuroscience, University of Oulu, Oulu, Finland
| | - Erika Jääskeläinen
- Center for Life Course Health Research, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland.,Department of Psychiatry, Research Unit of Clinical Neuroscience, University of Oulu, Oulu, Finland.,Department of Psychiatry, Oulu University Hospital, Oulu, Finland
| | - Noora Hirvonen
- Information Studies, Faculty of Humanities, University of Oulu, Oulu, Finland
| | - Jukka Remes
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - Graham K Murray
- Department of Psychiatry, University of Cambridge, Cambridge, UK.,Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Juha Veijola
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland.,Department of Psychiatry, Research Unit of Clinical Neuroscience, University of Oulu, Oulu, Finland.,Department of Psychiatry, Oulu University Hospital, Oulu, Finland
| | - Matti Isohanni
- Department of Psychiatry, Research Unit of Clinical Neuroscience, University of Oulu, Oulu, Finland.,Department of Psychiatry, Oulu University Hospital, Oulu, Finland
| | - Jouko Miettunen
- Center for Life Course Health Research, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland.,Department of Psychiatry, Research Unit of Clinical Neuroscience, University of Oulu, Oulu, Finland.,Department of Psychiatry, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
20
|
Cobia DJ, Smith MJ, Salinas I, Ng C, Gado M, Csernansky JG, Wang L. Progressive deterioration of thalamic nuclei relates to cortical network decline in schizophrenia. Schizophr Res 2017; 180:21-27. [PMID: 27613507 PMCID: PMC5263051 DOI: 10.1016/j.schres.2016.08.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 08/03/2016] [Accepted: 08/05/2016] [Indexed: 01/28/2023]
Abstract
Thalamic abnormalities are considered part of the complex pathophysiology of schizophrenia, particularly the involvement of specific thalamic nuclei. The goals of this study were to: introduce a novel atlas-based parcellation scheme for defining various thalamic nuclei; compare their integrity in a schizophrenia sample against healthy individuals at baseline and follow-up time points, as well as rates of change over time; examine relationships between the nuclei and abnormalities in known connected cortical regions; and finally, to determine if schizophrenia-related thalamic nuclei changes relate to cognitive functioning and clinical symptoms. Subjects were from a larger longitudinal 2-year follow-up study, schizophrenia (n=20) and healthy individuals (n=20) were group-matched for age, gender, and recent-alcohol use. We used high-dimensional brain mapping to obtain thalamic morphology, and applied a novel atlas-based method for delineating anterior, mediodorsal, and pulvinar nuclei. Results from cross sectional GLMs revealed group differences in bilateral mediodorsal and anterior nuclei, while longitudinal models revealed significant group-by-time interactions for the mediodorsal and pulvinar nuclei. Cortical correlations were the strongest for the pulvinar in frontal, temporal and parietal regions, followed by the mediodorsal nucleus in frontal regions, but none in the anterior nucleus. Thalamic measures did not correlate with cognitive and clinical scores at any time point or longitudinally. Overall, findings revealed a pattern of persistent progressive abnormalities in thalamic nuclei that relate to advancing cortical decline in schizophrenia, but not with measures of behavior.
Collapse
Affiliation(s)
- Derin J. Cobia
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 446 E. Ontario, Suite 7-100, Chicago, IL 60611 USA
| | - Matthew J. Smith
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 446 E. Ontario, Suite 7-100, Chicago, IL 60611 USA
| | - Ilse Salinas
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 446 E. Ontario, Suite 7-100, Chicago, IL 60611 USA
| | - Charlene Ng
- Virginia Commonwealth University, Chesterfield Family Practice Center, 2500 Pocoshock Place, Suite 202, Richmond, VA 23235 USA
| | - Mohktar Gado
- Department of Radiology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110 USA
| | - John G. Csernansky
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 446 E. Ontario, Suite 7-100, Chicago, IL 60611 USA
| | - Lei Wang
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 446 E. Ontario, Suite 7-100, Chicago, IL 60611 USA,Department of Radiology, Northwestern University Feinberg School of Medicine, 446 E. Ontario, Suite 7-100, Chicago, IL 60611 USA
| |
Collapse
|
21
|
Massey SH, Stern D, Alden EC, Petersen JE, Cobia DJ, Wang L, Csernansky JG, Smith MJ. Cortical thickness of neural substrates supporting cognitive empathy in individuals with schizophrenia. Schizophr Res 2017; 179:119-124. [PMID: 27665257 PMCID: PMC5222696 DOI: 10.1016/j.schres.2016.09.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 09/14/2016] [Accepted: 09/17/2016] [Indexed: 12/30/2022]
Abstract
BACKGROUND Cognitive empathy is supported by the medial prefrontal cortex (mPFC), inferior frontal gyrus (IFG), anterior mid-cingulate cortex (aMCC), insula (INS), supplementary motor area (SMA), right temporo-parietal junction (TPJ), and precuneus (PREC). In healthy controls, cortical thickness in these regions has been linked to cognitive empathy. As cognitive empathy is impaired in schizophrenia, we examined whether reduced cortical thickness in these regions was associated with poorer cognitive empathy in this population. METHODS 41 clinically-stable community-dwelling individuals with schizophrenia and 46 healthy controls group-matched on demographic variables completed self-report empathy questionnaires, a cognitive empathy task, and structural magnetic resonance imaging. We examined between-group differences in study variables using t-tests and analyses of variance. Next, we used Pearson correlations to evaluate the relationship between cognitive empathy and cortical thickness in the mPFC, IFG, aMCC, INS, SMA, TPJ, and PREC in both groups. RESULTS Individuals with schizophrenia demonstrated cortical thinning in the IFG, INS, SMA, TPJ, and PREC (all p<0.05) and impaired cognitive empathy across all measures (all p<0.01) relative to controls. While cortical thickness in the mPFC, IFC, aMCC, and INS (all p<0.05) was related to cognitive empathy in controls, we did not observe these relationships in individuals with schizophrenia (all p>0.10). CONCLUSIONS Individuals with schizophrenia have reduced cortical thickness in empathy-related neural regions and significant impairments in cognitive empathy. Interestingly, cortical thickness was related to cognitive empathy in controls but not in the schizophrenia group. We discuss other mechanisms that may account for cognitive empathy impairment in schizophrenia.
Collapse
Affiliation(s)
- Suena H. Massey
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 446 E. Ontario, Suite 7-100, Chicago, IL 60611, USA,Department of Medical Social Sciences, Northwestern University Feinberg School of Medicine, 633 N Saint Clair Street, 19th Floor, Chicago, IL 60611, USA
| | - Daniel Stern
- Department of Neuroscience, University of California-San Diego, San Diego, CA, USA
| | - Eva C. Alden
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 446 E. Ontario, Suite 7-100, Chicago, IL 60611, USA
| | - Julie E. Petersen
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 446 E. Ontario, Suite 7-100, Chicago, IL 60611, USA
| | - Derin J. Cobia
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 446 E. Ontario, Suite 7-100, Chicago, IL 60611, USA
| | - Lei Wang
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 446 E. Ontario, Suite 7-100, Chicago, IL 60611, USA,Department of Radiology, Northwestern University Feinberg School of Medicine, 676 N Saint Clair Street, Suite 800, Chicago, IL 60611
| | - John G. Csernansky
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 446 E. Ontario, Suite 7-100, Chicago, IL 60611, USA
| | - Matthew J. Smith
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 446 E. Ontario, Suite 7-100, Chicago, IL 60611, USA,Corresponding Author: Dr. Matthew J. Smith, PhD, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Abbott Hall, 13th Floor, 710 N Lake Shore Drive, Chicago, IL 60611, Phone: 1-312-503-2542, Fax: 1-312-503-0527,
| |
Collapse
|
22
|
Pronounced prefronto-temporal cortical thinning in schizophrenia: Neuroanatomical correlate of suicidal behavior? Schizophr Res 2016; 176:151-157. [PMID: 27567290 DOI: 10.1016/j.schres.2016.08.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 08/10/2016] [Accepted: 08/10/2016] [Indexed: 11/21/2022]
Abstract
Schizophrenia is characterized by increased mortality for which suicidality is the decisive factor. An analysis of cortical thickness and folding to further elucidate neuroanatomical correlates of suicidality in schizophrenia has not yet been performed. We searched for relevant brain regions with such differences between patients with suicide-attempts, patients without any suicidal thoughts and healthy controls. 37 schizophrenia patients (14 suicide-attempters and 23 non-suicidal) and 50 age- and gender-matched healthy controls were included. Suicidality was documented through clinical interview and chart review. All participants underwent T1-weighted MRI scans. Whole brain node-by-node cortical thickness and folding were estimated (FreeSurfer Software) and compared. Additionally a three group comparison for prefrontal regions-of-interest was performed in SPSS using a multifactorial GLM. Compared with the healthy controls patients showed a typical pattern of cortical thinning in prefronto-temporal regions and altered cortical folding in the right medial temporal cortex. Patients with suicidal behavior compared with non-suicidal patients demonstrated pronounced (p<0.05) cortical thinning in the right DLPFC and the superior temporal cortex. Comparing cortical thickness in suicidal patients with non-suicidal patients significant (p<0.05) cortical thinning was additionally found in the right superior and middle temporal, temporopolar and insular cortex. Our findings extend the evidence for neuroanatomical underpinnings of suicidal behaviour in schizophrenia. We identified cortical thinning in a network strongly involved in regulation of impulsivity, emotions and planning of behaviour in suicide attempters, which might lead to neuronal dysregulation in this network and consequently to a higher risk of suicidal behavior.
Collapse
|
23
|
Age-related cortical thickness trajectories in first episode psychosis patients presenting with early persistent negative symptoms. NPJ SCHIZOPHRENIA 2016; 2:16029. [PMID: 27602388 PMCID: PMC5007985 DOI: 10.1038/npjschz.2016.29] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/15/2016] [Accepted: 07/07/2016] [Indexed: 12/23/2022]
Abstract
Recent work has clearly established that early persistent negative symptoms (ePNS) can be observed following a first episode of psychosis (FEP), and can negatively affect functional outcome. There is also evidence for cortical changes associated with ePNS. Given that a FEP often occurs during a period of ongoing complex brain development and maturation, neuroanatomical changes may have a specific age-related component. The current study examines cortical thickness (CT) and trajectories with age using longitudinal structural imaging. Structural T1 volumes were acquired at three time points for ePNS (N=21), PNS due to secondary factors (N=31), non-PNS (N=45) patients, and controls (N=48). Images were processed using the CIVET pipeline. Linear mixed models were applied to test for the main effects of (a) group, (b) time, and interactions between (c) time and group membership, and (d) age and group membership. Compared with the non-PNS and secondary PNS patient groups, the ePNS group showed cortical thinning over time in temporal regions and a thickening with age primarily in prefrontal areas. Early PNS patients also had significantly different linear and quadratic age relationships with CT compared with other groups within cingulate, prefrontal, and temporal cortices. The current study demonstrates that FEP patients with ePNS show significantly different CT trajectories with age. Increased CT may be indicative of disruptions in cortical maturation processes within higher-order brain regions. Individuals with ePNS underline a unique subgroup of FEP patients that are differentiated at the clinical level and who exhibit distinct neurobiological patterns compared with their non-PNS peers.
Collapse
|
24
|
Roiz-Santiáñez R, Ortiz-García de la Foz V, Ayesa-Arriola R, Tordesillas-Gutiérrez D, Jorge R, Varela-Gómez N, Suárez-Pinilla P, Córdova-Palomera A, Navasa-Melado JM, Crespo-Facorro B. No progression of the alterations in the cortical thickness of individuals with schizophrenia-spectrum disorder: a three-year longitudinal magnetic resonance imaging study of first-episode patients. Psychol Med 2015; 45:2861-2871. [PMID: 26004991 DOI: 10.1017/s0033291715000811] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Cortical thickness measurement offers an index of brain development processes. In healthy individuals, cortical thickness is reduced with increasing age and is related to cognitive decline. Cortical thinning has been reported in schizophrenia. Whether cortical thickness changes differently over time in patients and its impact on outcome remain unanswered. METHOD Data were examined from 109 patients and 76 healthy controls drawn from the Santander Longitudinal Study of first-episode schizophrenia for whom adequate structural magnetic resonance imaging (MRI) data were available (n = 555 scans). Clinical and cognitive assessments and MRIs were acquired at three regular time points during a 3-year follow-up period. We investigated likely progressive cortical thickness changes in schizophrenia during the first 3 years after initiating antipsychotic treatment. The effects of cortical thickness changes on cognitive and clinical variables were also examined along with the impact of potential confounding factors. RESULTS There were significant diagnoses × scan time interaction main effects for total cortical thickness (F 1,309.1 = 4.60, p = 0.033) and frontal cortical thickness (F 1,310.6 = 5.30, p = 0.022), reflecting a lesser thinning over time in patients. Clinical and cognitive outcome was not associated with progressive cortical changes during the early years of the illness. CONCLUSIONS Cortical thickness abnormalities do not unswervingly progress, at least throughout the first years of the illness. Previous studies have suggested that modifiable factors may partly account for cortical thickness abnormalities. Therefore, the importance of implementing practical actions that may modify those factors and improve them over the course of the illness should be highlighted.
Collapse
Affiliation(s)
- R Roiz-Santiáñez
- Department of Psychiatry,University Hospital Marqués de Valdecilla,School of Medicine,University of Cantabria-IDIVAL,Santander,Spain
| | - V Ortiz-García de la Foz
- Department of Psychiatry,University Hospital Marqués de Valdecilla,School of Medicine,University of Cantabria-IDIVAL,Santander,Spain
| | - R Ayesa-Arriola
- Department of Psychiatry,University Hospital Marqués de Valdecilla,School of Medicine,University of Cantabria-IDIVAL,Santander,Spain
| | | | - R Jorge
- Department of Psychiatry and Behavioral Sciences,Baylor College of Medicine,Houston,TX,USA
| | - N Varela-Gómez
- Department of Psychiatry,University Hospital Marqués de Valdecilla,School of Medicine,University of Cantabria-IDIVAL,Santander,Spain
| | - P Suárez-Pinilla
- Department of Psychiatry,University Hospital Marqués de Valdecilla,School of Medicine,University of Cantabria-IDIVAL,Santander,Spain
| | - A Córdova-Palomera
- Cibersam (Centro Investigación Biomédica en Red Salud Mental),Madrid,Spain
| | - J M Navasa-Melado
- Department of Neuroradiology,University Hospital Marqués de Valdecilla-IDIVAL,Santander,Spain
| | - B Crespo-Facorro
- Department of Psychiatry,University Hospital Marqués de Valdecilla,School of Medicine,University of Cantabria-IDIVAL,Santander,Spain
| |
Collapse
|
25
|
Juuhl-Langseth M, Hartberg CB, Holmén A, Thormodsen R, Groote IR, Rimol LM, Emblem KE, Agartz I, Rund BR. Impaired Verbal Learning Is Associated with Larger Caudate Volumes in Early Onset Schizophrenia Spectrum Disorders. PLoS One 2015; 10:e0130435. [PMID: 26230626 PMCID: PMC4521864 DOI: 10.1371/journal.pone.0130435] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 05/20/2015] [Indexed: 01/31/2023] Open
Abstract
Background Both brain structural abnormalities and neurocognitive impairments are core features of schizophrenia. We have previously reported enlargements in subcortical brain structure volumes and impairment of neurocognitive functioning as measured by the MATRICS Cognitive Consensus Battery (MCCB) in early onset schizophrenia spectrum disorders (EOS). To our knowledge, no previous study has investigated whether neurocognitive performance and volumetric abnormalities in subcortical brain structures are related in EOS. Methods Twenty-four patients with EOS and 33 healthy controls (HC) were included in the study. Relationships between the caudate nucleus, the lateral and fourth ventricles volumes and neurocognitive performance were investigated with multivariate linear regression analyses. Intracranial volume, age, antipsychotic medication and IQ were included as independent predictor-variables. Results The caudate volume was negatively correlated with verbal learning performance uniquely in the EOS group (r=-.454, p=.034). There were comparable positive correlations between the lateral ventricular volume and the processing speed, attention and reasoning and problem solving domains for both the EOS patients and the healthy controls. Antipsychotic medication was related to ventricular enlargements, but did not affect the brain structure-function relationship. Conclusion Enlargement of the caudate volume was related to poorer verbal learning performance in patients with EOS. Despite a 32% enlargement of the lateral ventricles in the EOS group, associations to processing speed, attention and reasoning and problem solving were similar for both the EOS and the HC groups.
Collapse
Affiliation(s)
- Monica Juuhl-Langseth
- Research Unit Child and Adolescent Mental Health, Oslo University Hospital, Oslo Norway
- Department of Psychology, University of Oslo, Oslo, Norway
- * E-mail:
| | - Cecilie B. Hartberg
- NORMENT and K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Aina Holmén
- Department of Psychology, University of Oslo, Oslo, Norway
- Mental Health Services, Akershus University Hospital, Lørenskog, Norway
| | | | - Inge R. Groote
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Lars M. Rimol
- Department of Laboratory Medicine, Children's and Women's Health, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kyrre E. Emblem
- The Intervention Centre, Oslo University Hospital, Oslo, Norway
| | - Ingrid Agartz
- NORMENT and K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Bjørn R. Rund
- Department of Psychology, University of Oslo, Oslo, Norway
- Vestre Viken Hospital Trust, Drammen, Norway
| |
Collapse
|
26
|
Variations in Disrupted-in-Schizophrenia 1 gene modulate long-term longitudinal differences in cortical thickness in patients with a first-episode of psychosis. Brain Imaging Behav 2015. [DOI: 10.1007/s11682-015-9433-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
27
|
Chou PH, Koike S, Nishimura Y, Satomura Y, Kinoshita A, Takizawa R, Kasai K. Similar age-related decline in cortical activity over frontotemporal regions in schizophrenia: a multichannel near-infrared spectroscopy study. Schizophr Bull 2015; 41:268-79. [PMID: 24948388 PMCID: PMC4266293 DOI: 10.1093/schbul/sbu086] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
OBJECTIVES Although recent studies have demonstrated that patients with schizophrenia and healthy controls did not differ in the speed of age-related decline in cortical thickness and performances on cognitive tests, hemodynamic changes assessed by functional neuroimaging remain unclear. This study investigated age effects on regional brain cortical activity to determine whether there is similar age-related decline in cortical activity as those observed in cortical thickness and cognitive test performance. METHOD A total of 109 patients with schizophrenia (age range: 16-59 y) and 106 healthy controls (age range: 16-59 y) underwent near-infrared spectroscopy (NIRS) while performing a verbal fluency test (VFT). Group comparison of cortical activity was examined using 2-tailed t tests, adopting the false discovery rate method. The relationship between age and cortical activity was investigated using correlational and multiple regression analyses, adjusting for potential confounding variables. A 2-way ANOVA was conducted to investigate differences in the age effects between diagnostic groups. RESULTS The patient group exhibited significantly decreased cortical activity in several regions of the frontotemporal cortices. However, slopes of age-dependent decreases in cortical activity were similar between patients and healthy individuals at the bilateral frontotemporal regions. CONCLUSIONS Our study showed no significant between-group differences in the age-related decline in cortical activity, as measured by NIRS, over the frontotemporal regions during a VFT. The results of our study may indicate a decrease in cortical activity in a relatively limited period around illness onset rather than continuously progressing over the course of the illness.
Collapse
Affiliation(s)
- Po-Han Chou
- Department of Neuropsychiatry, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan;,Department of Psychiatry, Taichung Veterans General Hospital, Taichung City, Taiwan
| | - Shinsuke Koike
- Department of Neuropsychiatry, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan;,Division for Counseling and Support, Office for Mental Health Support, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yukika Nishimura
- Department of Neuropsychiatry, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yoshihiro Satomura
- Department of Neuropsychiatry, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Akihide Kinoshita
- Department of Neuropsychiatry, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ryu Takizawa
- Department of Neuropsychiatry, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan;,Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King’s College London, London, UK
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan;
| |
Collapse
|
28
|
Greater clinical and cognitive improvement with clozapine and risperidone associated with a thinner cortex at baseline in first-episode schizophrenia. Schizophr Res 2014; 158:223-9. [PMID: 25088730 DOI: 10.1016/j.schres.2014.06.042] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/21/2014] [Accepted: 06/24/2014] [Indexed: 12/18/2022]
Abstract
Cortical thickness may be useful as a treatment response predictor in first-episode (FE) patients with schizophrenia, although this possibility has been scarcely assessed. In this study we assessed the possible relation between cortical thickness in regions of interest selected because of previously reported structural alterations in schizophrenia and clinical and cognitive changes after two years of treatment with risperidone or clozapine in 31 neuroleptic-naïve FE patients with schizophrenia (16 of them treated with clozapine and 15 with risperidone). Using the last-observation-carried-forward (LOCF), a larger improvement in positive, negative and total symptoms was predicted by the amount of baseline cortical thinning in the right prefrontal cortex (pars orbitalis). After two years of treatment, cognitive status was reassessed in the 17 patients (11 on clozapine) who had not dropped out. Working memory improvement after reassessment was associated with a greater baseline cortical thinning in the left prefrontal cortex (pars orbitalis), and verbal memory improvement with a greater baseline cortical thinning in the left pars triangularis. Significant but weak cortical thickness decrease from baseline to follow-up was observed in patients in comparison to controls (left pars triangularis and opercularis, and left caudal middle frontal areas). These results may support a positive predictive role for cortical thinning in the frontal region with regard to clinical and cognitive improvement with clozapine and risperidone in FE patients with schizophrenia.
Collapse
|
29
|
Cortical thinning in temporo-parietal junction (TPJ) in non-affective first-episode of psychosis patients with persistent negative symptoms. PLoS One 2014. [PMID: 24979583 DOI: 10.1371/journal.pone.0101372.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Negative symptoms represent an unmet therapeutic need in many patients with schizophrenia. In an extension to our previous voxel-based morphometry findings, we employed a more specific, vertex-based approach to explore cortical thinning in relation to persistent negative symptoms (PNS) in non-affective first-episode of psychosis (FEP) patients to advance our understanding of the pathophysiology of primary negative symptoms. METHODS This study included 62 non-affective FEP patients and 60 non-clinical controls; 16 patients were identified with PNS (i.e., at least 1 primary negative symptom at moderate or greater severity sustained for at least 6 consecutive months). Using cortical thickness analyses, we explored for differences between PNS and non-PNS patients as well as between each patient group and healthy controls; cut-off threshold was set at p<0.01, corrected for multiple comparisons. RESULTS A thinner cortex prominently in the right superior temporal gyrus extending into the temporo-parietal junction (TPJ), right parahippocampal gyrus, and left orbital frontal gyrus was identified in PNS patients vs. non-PNS patients. Compared with healthy controls, PNS patients showed a thinner cortex prominently in the right superior temporal gyrus, right parahippocampal gyrus, and right cingulate; non-PNS patients showed a thinner cortex prominently in the parahippocampal gyrus bi-laterally. CONCLUSION Cortical thinning in the early stages of non-affective psychosis is present in the frontal and temporo-parietal regions in patients with PNS. With these brain regions strongly related to social cognitive functioning, our finding suggests a potential link between primary negative symptoms and social cognitive deficits through common brain etiologies.
Collapse
|
30
|
Bodnar M, Hovington CL, Buchy L, Malla AK, Joober R, Lepage M. Cortical thinning in temporo-parietal junction (TPJ) in non-affective first-episode of psychosis patients with persistent negative symptoms. PLoS One 2014; 9:e101372. [PMID: 24979583 PMCID: PMC4076331 DOI: 10.1371/journal.pone.0101372] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/29/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Negative symptoms represent an unmet therapeutic need in many patients with schizophrenia. In an extension to our previous voxel-based morphometry findings, we employed a more specific, vertex-based approach to explore cortical thinning in relation to persistent negative symptoms (PNS) in non-affective first-episode of psychosis (FEP) patients to advance our understanding of the pathophysiology of primary negative symptoms. METHODS This study included 62 non-affective FEP patients and 60 non-clinical controls; 16 patients were identified with PNS (i.e., at least 1 primary negative symptom at moderate or greater severity sustained for at least 6 consecutive months). Using cortical thickness analyses, we explored for differences between PNS and non-PNS patients as well as between each patient group and healthy controls; cut-off threshold was set at p<0.01, corrected for multiple comparisons. RESULTS A thinner cortex prominently in the right superior temporal gyrus extending into the temporo-parietal junction (TPJ), right parahippocampal gyrus, and left orbital frontal gyrus was identified in PNS patients vs. non-PNS patients. Compared with healthy controls, PNS patients showed a thinner cortex prominently in the right superior temporal gyrus, right parahippocampal gyrus, and right cingulate; non-PNS patients showed a thinner cortex prominently in the parahippocampal gyrus bi-laterally. CONCLUSION Cortical thinning in the early stages of non-affective psychosis is present in the frontal and temporo-parietal regions in patients with PNS. With these brain regions strongly related to social cognitive functioning, our finding suggests a potential link between primary negative symptoms and social cognitive deficits through common brain etiologies.
Collapse
Affiliation(s)
- Michael Bodnar
- Prevention and Early Intervention Program for Psychoses (PEPP – Montreal), Douglas Mental Health University Institute, Montreal, Canada
- Department of Psychology, McGill University, Montreal, Canada
| | - Cindy L. Hovington
- Department of Neurology & Neurosurgery, McGill University, Montreal, Canada
| | - Lisa Buchy
- Department of Neurology & Neurosurgery, McGill University, Montreal, Canada
| | - Ashok K. Malla
- Prevention and Early Intervention Program for Psychoses (PEPP – Montreal), Douglas Mental Health University Institute, Montreal, Canada
- Department of Psychiatry, McGill University, Montreal, Canada
| | - Ridha Joober
- Prevention and Early Intervention Program for Psychoses (PEPP – Montreal), Douglas Mental Health University Institute, Montreal, Canada
- Department of Psychiatry, McGill University, Montreal, Canada
| | - Martin Lepage
- Prevention and Early Intervention Program for Psychoses (PEPP – Montreal), Douglas Mental Health University Institute, Montreal, Canada
- Department of Psychology, McGill University, Montreal, Canada
- Department of Neurology & Neurosurgery, McGill University, Montreal, Canada
- Department of Psychiatry, McGill University, Montreal, Canada
- * E-mail:
| |
Collapse
|
31
|
Meyer F, Louilot A. Consequences at adulthood of transient inactivation of the parahippocampal and prefrontal regions during early development: new insights from a disconnection animal model for schizophrenia. Front Behav Neurosci 2014; 8:118. [PMID: 24778609 PMCID: PMC3985036 DOI: 10.3389/fnbeh.2014.00118] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 03/21/2014] [Indexed: 11/16/2022] Open
Abstract
The psychic disintegration characteristic of schizophrenia is thought to result from a defective connectivity, of neurodevelopmental origin, between several integrative brain regions. The parahippocampal region and the prefrontal cortex are described as the main regions affected in schizophrenia. Interestingly, latent inhibition (LI) has been found to be reduced in patients with schizophrenia, and the existence of a dopaminergic dysfunction is also generally well accepted in this disorder. In the present review, we have integrated behavioral and neurochemical data obtained in a LI protocol involving adult rats subjected to neonatal functional inactivation of the entorhinal cortex, the ventral subiculum or the prefrontal cortex. The data discussed suggest a subtle and transient functional blockade during early development of the aforementioned brain regions is sufficient to induce schizophrenia-related behavioral and dopaminergic abnormalities in adulthood. In summary, these results support the view that our conceptual and methodological approach, based on functional disconnections, is valid for modeling some aspects of the pathophysiology of schizophrenia from a neurodevelopmental perspective.
Collapse
Affiliation(s)
- Francisca Meyer
- 1Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Nijmegen, Netherlands
| | - Alain Louilot
- 2INSERM U 1114, Faculty of Medicine, FMTS, University of Strasbourg Strasbourg, France
| |
Collapse
|
32
|
Age-related cortical thickness differences in adolescents with early-onset schizophrenia compared with healthy adolescents. Psychiatry Res 2013; 214:190-6. [PMID: 24144503 DOI: 10.1016/j.pscychresns.2013.07.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Revised: 05/12/2013] [Accepted: 07/09/2013] [Indexed: 11/21/2022]
Abstract
The aim of the present study was to investigate the influence of age on cerebral cortical thickness in adolescents with early-onset schizophrenia (EOS) (n=22, aged 12-18 years), as compared to an age-matched healthy control group (n=32). All participants were scanned with magnetic resonance imaging. Whereas in the healthy control group there was a negative association between increasing age and cortical thickness measures in widespread brain regions, including frontal and parietal cortices, the patient group showed no significant effects of age when the groups were studied separately. There was a trend towards an age-by-group effect in the left supramarginal gyrus and the right pre- and postcentral gyri. The between-group statistical analysis indicated similar cortical thickness in the patients as in the healthy controls. There were no significant effects of medication on cortical thickness, nor was there any significant sex-by-group interaction. The results suggest that patients with EOS have a deficiency of the expected cortical thinning to occur during adolescence development. The findings are discussed in context of neurobiological processes known to be involved in brain maturation, including synaptic reorganization, pruning and myelination.
Collapse
|
33
|
Reichelt AC, Lee JLC. Memory reconsolidation in aversive and appetitive settings. Front Behav Neurosci 2013; 7:118. [PMID: 24058336 PMCID: PMC3766793 DOI: 10.3389/fnbeh.2013.00118] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 08/20/2013] [Indexed: 11/16/2022] Open
Abstract
Memory reconsolidation has been observed across species and in a number of behavioral paradigms. The majority of memory reconsolidation studies have been carried out in Pavlovian fear conditioning and other aversive memory settings, with potential implications for the treatment of post-traumatic stress disorder. However, there is a growing literature on memory reconsolidation in appetitive reward-related memory paradigms, including translational models of drug addiction. While there appears to be substantial similarity in the basic phenomenon and underlying mechanisms of memory reconsolidation across unconditioned stimulus valence, there are also notable discrepancies. These arise both when comparing aversive to appetitive paradigms and also across different paradigms within the same valence of memory. We review the demonstration of memory reconsolidation across different aversive and appetitive memory paradigms, the commonalities and differences in underlying mechanisms and the conditions under which each memory undergoes reconsolidation. We focus particularly on whether principles derived from the aversive literature are applicable to appetitive settings, and also whether the expanding literature in appetitive paradigms is informative for fear memory reconsolidation.
Collapse
Affiliation(s)
- Amy C Reichelt
- School of Psychology, University of Birmingham Birmingham, UK
| | | |
Collapse
|
34
|
Ketamine increases striatal dopamine release and hyperlocomotion in adult rats after postnatal functional blockade of the prefrontal cortex. Behav Brain Res 2013; 256:229-37. [PMID: 23958806 DOI: 10.1016/j.bbr.2013.08.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 08/09/2013] [Accepted: 08/11/2013] [Indexed: 02/04/2023]
Abstract
Schizophrenia is a complex psychiatric disorder that may result from defective connectivity, of neurodevelopmental origin, between several integrative brain regions. Different anomalies consistent with brain development failures have been observed in patients' left prefrontal cortex (PFC). A striatal dopaminergic functional disturbance is also commonly acknowledged in schizophrenia and could be related to a dysfunctioning of dopamine-glutamate interactions. Non-competitive NMDA antagonists, such as ketamine, can induce psychotic symptoms in healthy individuals and worsen these symptoms in patients with schizophrenia. Our study set out to investigate the consequences of neonatal functional blockade of the PFC for dopaminergic and behavioral reactivity to ketamine in adult rats. Following tetrodotoxin (TTX) inactivation of the left PFC at postnatal day 8, dopaminergic responses induced by ketamine (5 mg/kg, 10 mg/kg, 20 mg/kg sc) were monitored using in vivo voltammetry in the left part of the dorsal striatum in freely moving adult rats. Dopaminergic responses and locomotor activity were followed in parallel. Compared to PBS animals, in rats microinjected with TTX, ketamine challenge induced a greater release of dopamine in the dorsal striatum for the highest dose (20 mg/kg sc) and the intermediate dose (10mg/kg sc). A higher increase in locomotor activity in TTX animals was observed only for the highest dose of ketamine (20 mg/kg sc). These data suggest transient inactivation of the PFC during early development results in greater behavioral and striatal dopaminergic reactivity to ketamine in adulthood. Our study provides an anatomo-functional framework that may contribute toward a better understanding of the involvement of NMDA glutamatergic receptors in schizophrenia.
Collapse
|