1
|
Calixto C, Soldatelli MD, Li B, Pierotich L, Gholipour A, Warfield SK, Karimi D. White matter tract crossing and bottleneck regions in the fetal brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.20.603804. [PMID: 39091823 PMCID: PMC11291018 DOI: 10.1101/2024.07.20.603804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
There is a growing interest in using diffusion MRI to study the white matter tracts and structural connectivity of the fetal brain. Recent progress in data acquisition and processing suggests that this imaging modality has a unique role in elucidating the normal and abnormal patterns of neurodevelopment in utero. However, there have been no efforts to quantify the prevalence of crossing tracts and bottleneck regions, important issues that have been extensively researched for adult brains. In this work, we determined the brain regions with crossing tracts and bottlenecks between 23 and 36 gestational weeks. We performed probabilistic tractography on 59 fetal brain scans and extracted a set of 51 distinct white tracts, which we grouped into 10 major tract bundle groups. We analyzed the results to determine the patterns of tract crossings and bottlenecks. Our results showed that 20-25% of the white matter voxels included two or three crossing tracts. Bottlenecks were more prevalent. Between 75-80% of the voxels were characterized as bottlenecks, with more than 40% of the voxels involving four or more tracts. The results of this study highlight the challenge of fetal brain tractography and structural connectivity assessment and call for innovative image acquisition and analysis methods to mitigate these problems.
Collapse
Affiliation(s)
- Camilo Calixto
- Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Matheus D Soldatelli
- Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Bo Li
- Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Lana Pierotich
- Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ali Gholipour
- Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Simon K Warfield
- Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Davood Karimi
- Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Calixto C, Soldatelli MD, Jaimes C, Warfield SK, Gholipour A, Karimi D. A detailed spatio-temporal atlas of the white matter tracts for the fetal brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.590815. [PMID: 38712296 PMCID: PMC11071632 DOI: 10.1101/2024.04.26.590815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
This study presents the construction of a comprehensive spatiotemporal atlas detailing the development of white matter tracts in the fetal brain using diffusion magnetic resonance imaging (dMRI). Our research leverages data collected from fetal MRI scans conducted between 22 and 37 weeks of gestation, capturing the dynamic changes in the brain's microstructure during this critical period. The atlas includes 60 distinct white matter tracts, including commissural, projection, and association fibers. We employed advanced fetal dMRI processing techniques and tractography to map and characterize the developmental trajectories of these tracts. Our findings reveal that the development of these tracts is characterized by complex patterns of fractional anisotropy (FA) and mean diffusivity (MD), reflecting key neurodevelopmental processes such as axonal growth, involution of the radial-glial scaffolding, and synaptic pruning. This atlas can serve as a useful resource for neuroscience research and clinical practice, improving our understanding of the fetal brain and potentially aiding in the early diagnosis of neurodevelopmental disorders. By detailing the normal progression of white matter tract development, the atlas can be used as a benchmark for identifying deviations that may indicate neurological anomalies or predispositions to disorders.
Collapse
Affiliation(s)
- Camilo Calixto
- Computational Radiology Laboratory (CRL), Boston Children's Hospital, Harvard Medical School
| | | | - Camilo Jaimes
- Massachusetts General Hospital, 55 Fruit St, Boston, MA 02114, USA
| | - Simon K Warfield
- Computational Radiology Laboratory (CRL), Boston Children's Hospital, Harvard Medical School
| | - Ali Gholipour
- Computational Radiology Laboratory (CRL), Boston Children's Hospital, Harvard Medical School
| | - Davood Karimi
- Computational Radiology Laboratory (CRL), Boston Children's Hospital, Harvard Medical School
| |
Collapse
|
3
|
Dornelles E, Correia DT. The Neurobiology of Formal Thought Disorder. Curr Top Med Chem 2024; 24:1773-1783. [PMID: 38243933 DOI: 10.2174/0115680266272521240108102354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 01/22/2024]
Abstract
The concept of Formal Thought Disorder (FTD) is an ambiguous and disputed one, even though it has endured as a core psychopathological construct in clinical Psychiatry. FTD can be summarized as a multidimensional construct, reflecting difficulties or idiosyncrasies in thinking, language, and communication in general and is usually subdivided into positive versus negative. In this article, we aim to explore the putative neurobiology of FTD, ranging from changes in neurotransmitter systems to alterations in the functional anatomy of the brain. We also discuss recent critiques of the operationalist view of FTD and how they might fit in its biological underpinnings. We conclude that FTD might be the observable phenotype of many distinct underlying alterations in different proportions.
Collapse
Affiliation(s)
- Erik Dornelles
- Clínica Universitária de Psicologia e Psiquiatria, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Psiquiatria, Centro Hospitalar Universitário Lisboa Norte, Lisboa, Portugal
| | - Diogo Telles Correia
- Clínica Universitária de Psicologia e Psiquiatria, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Psiquiatria, Centro Hospitalar Universitário Lisboa Norte, Lisboa, Portugal
| |
Collapse
|
4
|
Omlor W, Rabe F, Fuchs S, Cecere G, Homan S, Surbeck W, Kallen N, Georgiadis F, Spiller T, Seifritz E, Weickert T, Bruggemann J, Weickert C, Potkin S, Hashimoto R, Sim K, Rootes-Murdy K, Quide Y, Houenou J, Banaj N, Vecchio D, Piras F, Piras F, Spalletta G, Salvador R, Karuk A, Pomarol-Clotet E, Rodrigue A, Pearlson G, Glahn D, Tomecek D, Spaniel F, Skoch A, Kirschner M, Kaiser S, Kochunov P, Fan FM, Andreassen OA, Westlye LT, Berthet P, Calhoun VD, Howells F, Uhlmann A, Scheffler F, Stein D, Iasevoli F, Cairns MJ, Carr VJ, Catts SV, Di Biase MA, Jablensky A, Green MJ, Henskens FA, Klauser P, Loughland C, Michie PT, Mowry B, Pantelis C, Rasser PE, Schall U, Scott R, Zalesky A, de Bartolomeis A, Barone A, Ciccarelli M, Brunetti A, Cocozza S, Pontillo G, Tranfa M, Di Giorgio A, Thomopoulos SI, Jahanshad N, Thompson PM, van Erp T, Turner J, Homan P. Estimating multimodal brain variability in schizophrenia spectrum disorders: A worldwide ENIGMA study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.22.559032. [PMID: 37961617 PMCID: PMC10634976 DOI: 10.1101/2023.09.22.559032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Objective Schizophrenia is a multifaceted disorder associated with structural brain heterogeneity. Despite its relevance for identifying illness subtypes and informative biomarkers, structural brain heterogeneity in schizophrenia remains incompletely understood. Therefore, the objective of this study was to provide a comprehensive insight into the structural brain heterogeneity associated with schizophrenia. Methods This meta- and mega-analysis investigated the variability of multimodal structural brain measures of white and gray matter in individuals with schizophrenia versus healthy controls. Using the ENIGMA dataset of MRI-based brain measures from 22 international sites with up to 6139 individuals for a given brain measure, we examined variability in cortical thickness, surface area, folding index, subcortical volume and fractional anisotropy. Results We found that individuals with schizophrenia are distinguished by higher heterogeneity in the frontotemporal network with regard to multimodal structural measures. Moreover, individuals with schizophrenia showed higher homogeneity of the folding index, especially in the left parahippocampal region. Conclusions Higher multimodal heterogeneity in frontotemporal regions potentially implies different subtypes of schizophrenia that converge on impaired frontotemporal interaction as a core feature of the disorder. Conversely, more homogeneous folding patterns in the left parahippocampal region might signify a consistent characteristic of schizophrenia shared across subtypes. These findings underscore the importance of structural brain variability in advancing our neurobiological understanding of schizophrenia, and aid in identifying illness subtypes as well as informative biomarkers.
Collapse
|
5
|
Functional connectivity signatures of NMDAR dysfunction in schizophrenia-integrating findings from imaging genetics and pharmaco-fMRI. Transl Psychiatry 2023; 13:59. [PMID: 36797233 PMCID: PMC9935542 DOI: 10.1038/s41398-023-02344-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Both, pharmacological and genome-wide association studies suggest N-methyl-D-aspartate receptor (NMDAR) dysfunction and excitatory/inhibitory (E/I)-imbalance as a major pathophysiological mechanism of schizophrenia. The identification of shared fMRI brain signatures of genetically and pharmacologically induced NMDAR dysfunction may help to define biomarkers for patient stratification. NMDAR-related genetic and pharmacological effects on functional connectivity were investigated by integrating three different datasets: (A) resting state fMRI data from 146 patients with schizophrenia genotyped for the disease-associated genetic variant rs7191183 of GRIN2A (encoding the NMDAR 2 A subunit) as well as 142 healthy controls. (B) Pharmacological effects of the NMDAR antagonist ketamine and the GABA-A receptor agonist midazolam were obtained from a double-blind, crossover pharmaco-fMRI study in 28 healthy participants. (C) Regional gene expression profiles were estimated using a postmortem whole-brain microarray dataset from six healthy donors. A strong resemblance was observed between the effect of the genetic variant in schizophrenia and the ketamine versus midazolam contrast of connectivity suggestive for an associated E/I-imbalance. This similarity became more pronounced for regions with high density of NMDARs, glutamatergic neurons, and parvalbumin-positive interneurons. From a functional perspective, increased connectivity emerged between striato-pallido-thalamic regions and cortical regions of the auditory-sensory-motor network, while decreased connectivity was observed between auditory (superior temporal gyrus) and visual processing regions (lateral occipital cortex, fusiform gyrus, cuneus). Importantly, these imaging phenotypes were associated with the genetic variant, the differential effect of ketamine versus midazolam and schizophrenia (as compared to healthy controls). Moreover, the genetic variant was associated with language-related negative symptomatology which correlated with disturbed connectivity between the left posterior superior temporal gyrus and the superior lateral occipital cortex. Shared genetic and pharmacological functional connectivity profiles were suggestive of E/I-imbalance and associated with schizophrenia. The identified brain signatures may help to stratify patients with a common molecular disease pathway providing a basis for personalized psychiatry.
Collapse
|
6
|
Chang X, Zhao W, Kang J, Xiang S, Xie C, Corona-Hernández H, Palaniyappan L, Feng J. Language abnormalities in schizophrenia: binding core symptoms through contemporary empirical evidence. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:95. [PMID: 36371445 PMCID: PMC9653408 DOI: 10.1038/s41537-022-00308-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Both the ability to speak and to infer complex linguistic messages from sounds have been claimed as uniquely human phenomena. In schizophrenia, formal thought disorder (FTD) and auditory verbal hallucinations (AVHs) are manifestations respectively relating to concrete disruptions of those abilities. From an evolutionary perspective, Crow (1997) proposed that "schizophrenia is the price that Homo sapiens pays for the faculty of language". Epidemiological and experimental evidence points to an overlap between FTD and AVHs, yet a thorough investigation examining their shared neural mechanism in schizophrenia is lacking. In this review, we synthesize observations from three key domains. First, neuroanatomical evidence indicates substantial shared abnormalities in language-processing regions between FTD and AVHs, even in the early phases of schizophrenia. Second, neurochemical studies point to a glutamate-related dysfunction in these language-processing brain regions, contributing to verbal production deficits. Third, genetic findings further show how genes that overlap between schizophrenia and language disorders influence neurodevelopment and neurotransmission. We argue that these observations converge into the possibility that a glutamatergic dysfunction in language-processing brain regions might be a shared neural basis of both FTD and AVHs. Investigations of language pathology in schizophrenia could facilitate the development of diagnostic tools and treatments, so we call for multilevel confirmatory analyses focused on modulations of the language network as a therapeutic goal in schizophrenia.
Collapse
Affiliation(s)
- Xiao Chang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- Zhangjiang Fudan International Innovation Center, Shanghai, China
| | - Wei Zhao
- MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha, PR China
| | - Jujiao Kang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
- Shanghai Center for Mathematical Sciences, Shanghai, China
| | - Shitong Xiang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Chao Xie
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Hugo Corona-Hernández
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Lena Palaniyappan
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada.
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada.
- Lawson Health Research Institute, London, Ontario, Canada.
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China.
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
- Zhangjiang Fudan International Innovation Center, Shanghai, China.
- Shanghai Center for Mathematical Sciences, Shanghai, China.
- Department of Computer Science, University of Warwick, Coventry, UK.
| |
Collapse
|
7
|
Barattieri di San Pietro C, Barbieri E, Marelli M, de Girolamo G, Luzzatti C. Processing Argument Structure and Syntactic Complexity in People with Schizophrenia Spectrum Disorders. JOURNAL OF COMMUNICATION DISORDERS 2022; 96:106182. [PMID: 35065337 DOI: 10.1016/j.jcomdis.2022.106182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 12/14/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
INTRODUCTION Deficits in language comprehension and production have been repeatedly observed in Schizophrenia Spectrum Disorders (SSD). However, the characterization of the language profile of this population is far from complete, and the relationship between language deficits, impaired thinking and cognitive functions is widely debated. OBJECTIVE The aims of the present study were to assess production and comprehension of verbs with different argument structures, as well as production and comprehension of sentences with canonical and non-canonical word order in people with SSD. In addition, the study investigated the relationship between language deficits and cognitive functions. METHODS Thirty-four participants with a diagnosis of SSD and a group of healthy control participants (HC) were recruited and evaluated using the Italian version of the Northwestern Assessment of Verbs and Sentences (NAVS, Cho-Reyes & Thompson, 2012; Barbieri et al., 2019). RESULTS Results showed that participants with SSD were impaired - compared to HC - on both verb and sentence production, as well as on comprehension of syntactically complex (but not simple) sentences. While verb production was equally affected by verb-argument structure complexity in both SSD and HC, sentence comprehension was disproportionately more affected by syntactic complexity in SSD than in HC. In addition, in the SSD group, verb production deficits were predicted by performance on a measure of visual attention, while sentence production and comprehension deficits were explained by performance on measures of executive functions and working memory, respectively. DISCUSSION Our findings support the hypothesis that language deficits in SSD may be one aspect of a more generalized, multi-domain, cognitive impairment, and are consistent with previous findings pointing to reduced inter- and intra-hemispheric connectivity as a possible substrate for such deficits. The study provides a systematic characterization of lexical and syntactic deficits in SSD and demonstrates that psycholinguistically-based assessment tools may be able to capture language deficits in this population.
Collapse
Affiliation(s)
| | - Elena Barbieri
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA
| | - Marco Marelli
- Department of Psychology, University of Milano-Bicocca, Milan, Italy; Milan Center for Neuroscience, NeuroMI
| | - Giovanni de Girolamo
- Psychiatric Epidemiology and Evaluation Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Claudio Luzzatti
- Department of Psychology, University of Milano-Bicocca, Milan, Italy; Milan Center for Neuroscience, NeuroMI
| |
Collapse
|
8
|
Chen S, Tang Y, Fan X, Qiao Y, Wang J, Wen H, Wang W, Wang H, Yang F, Sheng J. The role of white matter abnormality in the left anterior corona radiata: In relation to formal thought disorder in patients with schizophrenia. Psychiatry Res 2022; 307:114302. [PMID: 34890908 DOI: 10.1016/j.psychres.2021.114302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 12/27/2022]
Abstract
White matter abnormality has been widely reported in patients with schizophrenia (Sz). However, few studies have focused on the relationship between the white matter deficit and formal thought disorder (FTD). Moreover, the role of genetic high risk in FTD-related white matter deficit remains unclear. The present study recruited 46 Sz patients, 18 unaffected first-degree relatives of Sz patients, and 29 healthy controls. There was a widespread fractional anisotropy (FA) reduction in Sz. In addition, reduced FA in the left anterior corona radiata was related to more severe FTD symptoms in Sz. However, the genetic high-risk group only showed lower mean FA in the left anterior limb of the internal capsule than healthy controls. Our findings suggest that abnormality in the left anterior corona radiata may only occur in Sz but not in the genetic high-risk group. Such an abnormality might be associated with the severity of FTD symptoms. Meanwhile, genetic vulnerability may contribute to the abnormality in the left anterior limb of the internal capsule. Better analytical methods are needed to validate our results.
Collapse
Affiliation(s)
- Shan Chen
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China
| | - Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorders,Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Department of EEG and Imaging, Shanghai Mental Health Center, Shanghai JiaoTong University School of Medicine, Shanghai 200030, China
| | - Xiaoduo Fan
- UMass Memorial Health Care & University of Massachusetts Medical School, Worcester, MA 01605, United States
| | - Yi Qiao
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders,Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Department of EEG and Imaging, Shanghai Mental Health Center, Shanghai JiaoTong University School of Medicine, Shanghai 200030, China
| | - Hun Wen
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China
| | - Wenzheng Wang
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China
| | - Hongyan Wang
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China
| | - Fuzhong Yang
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China.
| | - Jianhua Sheng
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China.
| |
Collapse
|
9
|
Sasabayashi D, Takahashi T, Takayanagi Y, Suzuki M. Anomalous brain gyrification patterns in major psychiatric disorders: a systematic review and transdiagnostic integration. Transl Psychiatry 2021; 11:176. [PMID: 33731700 PMCID: PMC7969935 DOI: 10.1038/s41398-021-01297-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 02/14/2021] [Accepted: 02/24/2021] [Indexed: 01/31/2023] Open
Abstract
Anomalous patterns of brain gyrification have been reported in major psychiatric disorders, presumably reflecting their neurodevelopmental pathology. However, previous reports presented conflicting results of patients having hyper-, hypo-, or normal gyrification patterns and lacking in transdiagnostic consideration. In this article, we systematically review previous magnetic resonance imaging studies of brain gyrification in schizophrenia, bipolar disorder, major depressive disorder, and autism spectrum disorder at varying illness stages, highlighting the gyral pattern trajectory for each disorder. Patients with each psychiatric disorder may exhibit deviated primary gyri formation under neurodevelopmental genetic control in their fetal life and infancy, and then exhibit higher-order gyral changes due to mechanical stress from active brain changes (e.g., progressive reduction of gray matter volume and white matter integrity) thereafter, representing diversely altered pattern trajectories from those of healthy controls. Based on the patterns of local connectivity and changes in neurodevelopmental gene expression in major psychiatric disorders, we propose an overarching model that spans the diagnoses to explain how deviated gyral pattern trajectories map onto clinical manifestations (e.g., psychosis, mood dysregulation, and cognitive impairments), focusing on the common and distinct gyral pattern changes across the disorders in addition to their correlations with specific clinical features. This comprehensive understanding of the role of brain gyrification pattern on the pathophysiology may help to optimize the prediction and diagnosis of psychiatric disorders using objective biomarkers, as well as provide a novel nosology informed by neural circuits beyond the current descriptive diagnostics.
Collapse
Affiliation(s)
- Daiki Sasabayashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan. .,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan.
| | - Tsutomu Takahashi
- grid.267346.20000 0001 2171 836XDepartment of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan ,grid.267346.20000 0001 2171 836XResearch Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Yoichiro Takayanagi
- grid.267346.20000 0001 2171 836XDepartment of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan ,Arisawabashi Hospital, Toyama, Japan
| | - Michio Suzuki
- grid.267346.20000 0001 2171 836XDepartment of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan ,grid.267346.20000 0001 2171 836XResearch Center for Idling Brain Science, University of Toyama, Toyama, Japan
| |
Collapse
|
10
|
Abnormal semantic processing of threat words associated with excitement and hostility symptoms in schizophrenia. Schizophr Res 2021; 228:394-402. [PMID: 33549981 PMCID: PMC7988509 DOI: 10.1016/j.schres.2020.12.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 12/14/2020] [Accepted: 12/31/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Schizophrenia (SZ) is associated with devastating emotional, cognitive and language impairments. Understanding the deficits in each domain and their interactions is important for developing novel, targeted psychotherapies. This study tested whether negative-threat word processing is altered in individuals with SZ compared to healthy controls (HC), in relation to SZ symptom severity across domains. METHODS Thirty-one SZ and seventeen HC subjects were scanned with functional magnetic resonance imaging while silently reading negative-threat and neutral words. Post-scan, subjects rated the valence of each word. The effects of group (SZ, HC), word type (negative, neutral), task period (early, late), and severity of clinical symptoms (positive, negative, excitement/hostility, cognitive, depression/anxiety), on word valence ratings and brain activation, were analyzed. RESULTS SZ and HC subjects rated negative versus neutral words as more negative. The SZ subgroup with severe versus mild excitement/hostility symptoms rated the negative words as more negative. SZ versus HC subjects hyperactivated left language areas (angular gyrus, middle/inferior temporal gyrus (early period)) and the amygdala (early period) to negative words, and the amygdala (late period) to neutral words. In SZ, activation to negative versus neutral words in left dorsal temporal pole and dorsal anterior cingulate was positively correlated with excitement/hostility scores. CONCLUSIONS A negatively-biased behavioral response to negative-threat words was seen in SZ with severe versus mild excitement/hostility symptoms. The biased behavioral response was mediated by hyperactivation of brain networks associated with semantic processing of emotion concepts. Thus, word-level semantic processing may be a relevant psychotherapeutic target in SZ.
Collapse
|
11
|
Dey A, Dempster K, MacKinley M, Jeon P, Das T, Khan A, Gati J, Palaniyappan L. Conceptual disorganization and redistribution of resting-state cortical hubs in untreated first-episode psychosis: A 7T study. NPJ SCHIZOPHRENIA 2021; 7:4. [PMID: 33500416 PMCID: PMC7838254 DOI: 10.1038/s41537-020-00130-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/12/2020] [Indexed: 01/30/2023]
Abstract
Network-level dysconnectivity has been studied in positive and negative symptoms of schizophrenia. Conceptual disorganization (CD) is a symptom subtype that predicts impaired real-world functioning in psychosis. Systematic reviews have reported aberrant connectivity in formal thought disorder, a construct related to CD. However, no studies have investigated whole-brain functional correlates of CD in psychosis. We sought to investigate brain regions explaining the severity of CD in patients with first-episode psychosis (FEPs) compared with healthy controls (HCs). We computed whole-brain binarized degree centrality maps of 31 FEPs, 25 HCs, and characterized the patterns of network connectivity in the 2 groups. In FEPs, we related these findings to the severity of CD. We also studied the effect of positive and negative symptoms on altered network connectivity. Compared to HCs, reduced centrality of a right superior temporal gyrus (rSTG) cluster was observed in the FEPs. In patients exhibiting high CD, increased centrality of a medial superior parietal (mSPL) cluster was observed, compared to patients exhibiting low CD. This cluster was strongly correlated with CD scores but not with other symptom scores. Our observations are congruent with previous findings of reduced but not increased centrality. We observed increased centrality of mSPL suggesting that cortical reorganization occurs to provide alternate routes for information transfer. These findings provide insight into the underlying neural processes mediating the presentation of symptoms in untreated FEP. Longitudinal tracking of the symptom course will be useful to assess the mechanisms underlying these compensatory changes.
Collapse
Affiliation(s)
- Avyarthana Dey
- grid.39381.300000 0004 1936 8884Robarts Research Institute, London, ON Canada ,grid.39381.300000 0004 1936 8884Department of Psychiatry, University of Western Ontario, London, ON Canada
| | - Kara Dempster
- grid.39381.300000 0004 1936 8884Robarts Research Institute, London, ON Canada ,grid.39381.300000 0004 1936 8884Department of Psychiatry, University of Western Ontario, London, ON Canada ,grid.415847.b0000 0001 0556 2414Lawson Health Research Institute, London, ON Canada ,grid.55602.340000 0004 1936 8200Present Address: Department of Psychiatry, Dalhousie University, Halifax, NS Canada
| | - Michael MacKinley
- grid.39381.300000 0004 1936 8884Robarts Research Institute, London, ON Canada ,grid.39381.300000 0004 1936 8884Department of Psychiatry, University of Western Ontario, London, ON Canada ,grid.415847.b0000 0001 0556 2414Lawson Health Research Institute, London, ON Canada
| | - Peter Jeon
- grid.415847.b0000 0001 0556 2414Lawson Health Research Institute, London, ON Canada ,grid.39381.300000 0004 1936 8884Department of Medical Biophysics, University of Western Ontario, London, ON Canada
| | - Tushar Das
- grid.39381.300000 0004 1936 8884Robarts Research Institute, London, ON Canada ,grid.39381.300000 0004 1936 8884Department of Psychiatry, University of Western Ontario, London, ON Canada
| | - Ali Khan
- grid.39381.300000 0004 1936 8884Robarts Research Institute, London, ON Canada ,grid.39381.300000 0004 1936 8884Department of Medical Biophysics, University of Western Ontario, London, ON Canada ,grid.39381.300000 0004 1936 8884The Brain and Mind Institute, University of Western Ontario, London, ON Canada
| | - Joe Gati
- grid.39381.300000 0004 1936 8884Robarts Research Institute, London, ON Canada ,grid.39381.300000 0004 1936 8884Department of Medical Biophysics, University of Western Ontario, London, ON Canada
| | - Lena Palaniyappan
- grid.39381.300000 0004 1936 8884Robarts Research Institute, London, ON Canada ,grid.39381.300000 0004 1936 8884Department of Psychiatry, University of Western Ontario, London, ON Canada ,grid.415847.b0000 0001 0556 2414Lawson Health Research Institute, London, ON Canada ,grid.39381.300000 0004 1936 8884Department of Medical Biophysics, University of Western Ontario, London, ON Canada ,grid.39381.300000 0004 1936 8884The Brain and Mind Institute, University of Western Ontario, London, ON Canada
| |
Collapse
|
12
|
Surbeck W, Hänggi J, Scholtes F, Viher PV, Schmidt A, Stegmayer K, Studerus E, Lang UE, Riecher-Rössler A, Strik W, Seifritz E, Borgwardt S, Quednow BB, Walther S. Anatomical integrity within the inferior fronto-occipital fasciculus and semantic processing deficits in schizophrenia spectrum disorders. Schizophr Res 2020; 218:267-275. [PMID: 31948896 DOI: 10.1016/j.schres.2019.12.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/25/2019] [Accepted: 12/20/2019] [Indexed: 01/08/2023]
Abstract
The core symptoms of schizophrenia spectrum disorders (SSD) include abnormal semantic processing which may rely on the ventral language stream of the human brain. Thus, structural disruption of the ventral language stream may play an important role in semantic deficits observed in SSD patients. Therefore, we compared white matter tract integrity in SSD patients and healthy controls using diffusion tensor imaging combined with probabilistic fiber tractography. For the ventral language stream, we assessed the inferior fronto-occipital fasciculus [IFOF], inferior longitudinal fasciculus, and uncinate fasciculus. The arcuate fasciculus and corticospinal tract were used as control tracts. In SSD patients, the relationship between semantic processing impairments and tract integrity was analyzed separately. Three-dimensional tract reconstructions were performed in 45/44 SSD patients/controls ("Bern sample") and replicated in an independent sample of 24/24 SSD patients/controls ("Basel sample"). Multivariate analyses of fractional anisotropy, mean, axial, and radial diffusivity of the left IFOF showed significant differences between SSD patients and controls (p(FDR-corr) < 0.001, ηp2 = 0.23) in the Bern sample. Axial diffusivity (AD) of the left UF was inversely correlated with semantic impairments (r = -0.454, p(FDR-corr) = 0.035). In the Basel sample, significant group differences for the left IFOF were replicated (p < .01, ηp2 = 0.29), while the correlation between AD of the left IFOF and semantic processing decline (r = -0.376, p = .09) showed a statistical trend. No significant effects were found for the dorsal language stream. This is direct evidence for the importance of the integrity of the ventral language stream, in particular the left IFOF, in semantic processing deficits in SSD.
Collapse
Affiliation(s)
- Werner Surbeck
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital of the University of Zurich, Zurich, Switzerland; Department of Neuroanatomy, Faculty of Medicine, University of Liège, Liège, Belgium; Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital of the University of Zurich, Zurich, Switzerland.
| | - Jürgen Hänggi
- Division Neuropsychology, Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Felix Scholtes
- Department of Neuroanatomy, Faculty of Medicine, University of Liège, Liège, Belgium; Department of Neurosurgery, University Hospital of Liège, Liège, Belgium
| | - Petra V Viher
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - André Schmidt
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| | - Katharina Stegmayer
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Erich Studerus
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| | - Udine E Lang
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| | | | - Werner Strik
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital of the University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University and ETH, Zurich, Switzerland
| | - Stefan Borgwardt
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland; Department of Psychiatry and Psychotherapy, University of Lübeck, Germany
| | - Boris B Quednow
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital of the University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University and ETH, Zurich, Switzerland
| | - Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| |
Collapse
|
13
|
Hong W, Zhao Z, Shen Z, Sun B, Li S, Mekbib DB, Xu Y, Huang M, Xu D. Uncoupled relationship in the brain between regional homogeneity and attention function in first-episode, drug-naïve schizophrenia. Psychiatry Res Neuroimaging 2019; 294:110990. [PMID: 31706152 DOI: 10.1016/j.pscychresns.2019.110990] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/15/2019] [Accepted: 10/22/2019] [Indexed: 01/04/2023]
Abstract
The relationship between the cognitive impairment and the structural and functional abnormalities in the brains of patients with schizophrenia (SZ) is not yet clear. This study aims to investigate the relationship, thereby exploring the neuromechanism underlying SZ. We collected multimodal MRI data from 68 first-episode, drug-naïve patients with SZ, and 64 well-matched healthy controls, and used regional homogeneity (ReHo) and gray matter volume (GMV) to assess the functional and structural integrity of the brains, respectively. We then evaluated in the entire brain the correlations between ReHo/GMV and the participants' neuropsychological assessment scores for each group using a partial correlation analysis controlling for age and sex. We found significant uncoupling between attention performance and mean ReHo in the left middle frontal gyrus, right superior/inferior parietal lobe (IPL), right angular gyrus (AG) and right middle/inferior temporal lobe (ITG) in SZ compared with healthy controls. Moreover, we found that the SZ group showed decreased GMV in the right IPL and AG, and a significant coupling between ReHo and GMV in the right ITG. Our findings suggest that the attention dysfunction found in SZ may be associated with the structural and functional abnormalities as well as the structure-function interrelation in several SZ-related brain regions.
Collapse
Affiliation(s)
- Wenjun Hong
- Department of Rehabilitation Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Zhiyong Zhao
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, China; Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China; Columbia University & New York State Psychiatric Institute, New York 10032, USA
| | - Zhe Shen
- College of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Bin Sun
- College of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Shangda Li
- College of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Destaw B Mekbib
- Zhejiang University Interdisciplinary Institute of Neuroscience and Technology, Hangzhou 310003, China
| | - Yi Xu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, The Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou 310003, China
| | - Manli Huang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, The Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou 310003, China.
| | - Dongrong Xu
- Columbia University & New York State Psychiatric Institute, New York 10032, USA.
| |
Collapse
|
14
|
Dynamics of impaired humour processing in schizophrenia - An EEG effective connectivity study. Schizophr Res 2019; 209:113-128. [PMID: 31103215 DOI: 10.1016/j.schres.2019.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 02/01/2019] [Accepted: 05/05/2019] [Indexed: 11/23/2022]
Abstract
Specific language and communication abilities, such as humour comprehension, are commonly impaired in schizophrenia. The present study investigates the dynamics of the humour-related neural network underlying this deficit. Specifically, we focused on the abnormalities of information flow in schizophrenia within the fronto-temporo-parietal circuit. We estimated the direction and strength of cortical information flow in the time course of humour processing by the EEG Directed Transfer Function. The study included 40 schizophrenia outpatients and 40 healthy controls (age-sex-education matched) assessed with an EEG punchline-based humour comprehension task (written and cartoon jokes). The linear mixed models procedure was used to test group effects across three processes: 1. incongruity detection, 2. incongruity resolution and elaboration, 3. complete humour processing. Conjunction maps for both types of jokes were created to investigate fundamental between-group differences, beyond the context of modality. Clinical subjects indicated a lower level of understanding of the funny punchlines, indicated absurd punchlines as more understandable and gave higher funniness ratings to both absurd and neutral punchlines. The EEG effective connectivity results revealed that humour processing in schizophrenia engages alternative circuits, exhibiting a pronounced abnormal leftward shifted lateralization related to diminished activity of the right hemisphere in fronto-temporo-parietal regions. In conclusion, the present paper presents the dynamics of cortical propagation of information in the humour-related circuit as a neural substrate of humour impairment in schizophrenia.
Collapse
|
15
|
A Human Induced Pluripotent Stem Cell-Derived Tissue Model of a Cerebral Tract Connecting Two Cortical Regions. iScience 2019; 14:301-311. [PMID: 31006610 PMCID: PMC6489017 DOI: 10.1016/j.isci.2019.03.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 12/13/2018] [Accepted: 03/11/2019] [Indexed: 11/25/2022] Open
Abstract
Cerebral tracts connect separated regions within a brain and serve as fundamental structures that support integrative brain functions. However, understanding the mechanisms of cerebral tract development, macro-circuit formation, and related disorders has been hampered by the lack of an in vitro model. Here, we developed a human stem cell-derived model of cerebral tracts, which is composed of two spheroids of cortical neurons and a robust fascicle of axons linking these spheroids reciprocally. In a microdevice, two spheroids of cerebral neurons extended axons into a microchannel between the spheroids and spontaneously formed an axon fascicle, mimicking a cerebral tract. We found that the formation of axon fascicle was significantly promoted when two spheroids extended axons toward each other compared with axons extended from only one spheroid. The two spheroids were able to communicate electrically through the axon fascicle. This model tissue could facilitate studies of cerebral tract development and diseases. A cerebral tract model was generated from iPS cell-derived cortical spheroids Two spheroids were spontaneously connected with an axon fascicle in a microdevice An axon fascicle electrically connected two cortical spheroids Knockdown of L1CAM disrupted axon fascicle formation in the model tissue
Collapse
|
16
|
Altered white matter connectivity in patients with schizophrenia: An investigation using public neuroimaging data from SchizConnect. PLoS One 2018; 13:e0205369. [PMID: 30300425 PMCID: PMC6177186 DOI: 10.1371/journal.pone.0205369] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 09/23/2018] [Indexed: 01/01/2023] Open
Abstract
Several studies have produced extensive evidence on white matter abnormalities in schizophrenia (SZ). However, optimum consistency and reproducibility have not been achieved, and reported low white matter tract integrity in patients with SZ varies between studies. A whole-brain imaging study with a large sample size is needed. This study aimed to investigate white matter integrity in the corpus callosum and connections between regions of interests (ROIs) in the same hemisphere in 122 patients with SZ and 129 healthy controls with public neuroimaging data from SchizConnect. For each diffusion-weighted image (DWI), two-tensor full-brain tractography was performed; DWIs were parcellated by processing and registering T1 images with FreeSurfer and Advanced Normalization Tools. White matter query language was used to extract white matter fiber tracts. We evaluated group differences in means of diffusion measures between the patients and controls, and correlations of diffusion measures with the severity of clinical symptoms and cognitive impairment in the patients using the Positive and Negative Syndrome Scale (PANSS), a letter-number sequencing (LNS) test, vocabulary test, letter fluency test, category fluency test, and trail-making test, part A. To correct for multiple comparisons, a false discovery rate of q < 0.05 was applied. In patients with SZ, we observed significant radial diffusivity (RD) and trace (TR) increases in left thalamo-occipital tracts and the right uncinate fascicle, and a significant RD increase in the right middle longitudinal fascicle (MDLF) and the right superior longitudinal fascicle ii. Correlations were present between TR of left thalamo-occipital tracts, and the letter fluency test and the LNS test, and RD in the right MDLF and PANSS positive subscale score. However, these correlations were not significant after correction for multiple comparisons. These results indicated widespread white matter fiber tract abnormalities in patients with SZ, contributing to SZ pathophysiology.
Collapse
|
17
|
Cavelti M, Winkelbeiner S, Federspiel A, Walther S, Stegmayer K, Giezendanner S, Laimböck K, Dierks T, Strik W, Horn H, Homan P. Formal thought disorder is related to aberrations in language-related white matter tracts in patients with schizophrenia. Psychiatry Res Neuroimaging 2018; 279:40-50. [PMID: 29861197 DOI: 10.1016/j.pscychresns.2018.05.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 04/20/2018] [Accepted: 05/21/2018] [Indexed: 12/14/2022]
Abstract
This study examined the hypothesis that a fronto-temporal disconnection in the language network underpins formal thought disorder (FTD) in schizophrenia. Forty-nine patients with a schizophrenia spectrum disorder (27 with mild FTD, 22 with severe FTD) and 26 healthy controls (HC) were included. Overall psychopathology and FTD were assessed by the Positive and Negative Syndrome Scale and the Thought, Language, and Communication scale, respectively. White matter (WM) microstructure was analysed using Tract-Based Spatial Statistics. In patients, severity of overall FTD (TLC Sum Score) was predicted by decreased fractional anisotropy (FA) in the right superior longitudinal fasciculus (SLF), and severity of negative FTD (TLC Emptiness subscale) was predicted by increased FA in the left SLF and arcuate fasciculus (AF). Notably, these results were no longer significant after correction for multiple comparisons. Compared with HC, patients showed lower FA in all the investigated language-related WM tracts as well as across the whole WM skeleton. No difference in FA was found between patients with severe and patients with mild FTD. Our results are compatible with earlier studies reporting impairments in widely spread WM tracts including those related to language processing in patients with schizophrenia.
Collapse
Affiliation(s)
- Marialuisa Cavelti
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern 60 3000 Switzerland; Orygen, The National Centre of Excellence in Youth Mental Health & Centre for Youth Mental Health, University of Melbourne, Parkville, VIC 3052, Australia.
| | - Stephanie Winkelbeiner
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern 60 3000 Switzerland
| | - Andrea Federspiel
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern 60 3000 Switzerland
| | - Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern 60 3000 Switzerland
| | - Katharina Stegmayer
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern 60 3000 Switzerland
| | | | - Karin Laimböck
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern 60 3000 Switzerland
| | - Thomas Dierks
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern 60 3000 Switzerland
| | - Werner Strik
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern 60 3000 Switzerland
| | - Helge Horn
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern 60 3000 Switzerland; Institute for Psychiatry and Psychotherapy Bern, Waisenhausplatz 25, Bern 3011, Switzerland
| | - Philipp Homan
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern 60 3000 Switzerland; Center for Psychiatric Neuroscience, The Feinstein Institute for Medical Research, Hofstra Northwell School of Medicine, New York, NY, USA
| |
Collapse
|
18
|
Cavelti M, Kircher T, Nagels A, Strik W, Homan P. Is formal thought disorder in schizophrenia related to structural and functional aberrations in the language network? A systematic review of neuroimaging findings. Schizophr Res 2018; 199:2-16. [PMID: 29510928 DOI: 10.1016/j.schres.2018.02.051] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 12/20/2017] [Accepted: 02/25/2018] [Indexed: 12/29/2022]
Abstract
Formal thought disorder (FTD) is a core feature of schizophrenia, a marker of illness severity and a predictor of outcome. The underlying neural mechanisms are still a matter of debate. This study aimed at 1) reviewing the literature on the neural correlates of FTD in schizophrenia, and 2) testing the hypothesis that FTD correlates with structural and functional aberrations in the language network. Medline, PsychInfo, and Embase were searched for neuroimaging studies, which applied a clinical measure to assess FTD in adults with schizophrenia and were published in English or German in peer-reviewed journals until December 2016. Of 412 articles identified, 61 studies were included in the review. Volumetric studies reported bilateral grey matter deficits (L > R) to be associated with FTD in the inferior frontal gyrus, the superior temporal gyrus and the inferior parietal lobe. The same regions showed hyperactivity in resting state functional magnetic resonance imaging (fMRI) studies and both hyper- and hypoactivity in fMRI studies that employed semantic processing or free speech production tasks. Diffusion tensor imaging studies demonstrated white matter aberrations in fibre tracts that connect the frontal and temporo-parietal regions. FTD in schizophrenia was found to be associated with structural and functional aberrations in the language network. However, there are studies that did not find an association between FTD and neural aberrations of the language network and regions not included in the language network have been associated with FTD. Thus, future research is needed to clarify the specificity of the language network for FTD in schizophrenia.
Collapse
Affiliation(s)
- Marialuisa Cavelti
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, 3000 Bern 60, Switzerland; Orygen, The National Centre of Excellence in Youth Mental Health & Centre for Youth Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, University of Marburg, Rudolf-Bultmann-Strasse 8, 35039 Marburg, Germany
| | - Arne Nagels
- Johannes Gutenberg University, General Linguistics, 55099 Mainz, Germany
| | - Werner Strik
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, 3000 Bern 60, Switzerland
| | - Philipp Homan
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, 3000 Bern 60, Switzerland; Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Hofstra Northwell School of Medicine, 350 Community Drive, Manhasset, NY 11030, USA.
| |
Collapse
|
19
|
Kircher T, Bröhl H, Meier F, Engelen J. Formal thought disorders: from phenomenology to neurobiology. Lancet Psychiatry 2018; 5:515-526. [PMID: 29678679 DOI: 10.1016/s2215-0366(18)30059-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 11/27/2017] [Accepted: 12/07/2017] [Indexed: 01/15/2023]
Abstract
Formal thought disorder (FTD) is present in most psychiatric disorders and in some healthy individuals. In this Review, we present a comprehensive, integrative, and multilevel account of what is known about FTD, covering genetic, cellular, and neurotransmitter effects, environmental influences, experimental psychology and neuropsychology, brain imaging, phenomenology, linguistics, and treatment. FTD is a dimensional, phenomenologically defined construct, which can be clinically subdivided into positive versus negative and objective versus subjective symptom clusters. Because FTDs have been traditionally linked to schizophrenia, studies in other diagnoses are scarce. Aetiologically, FTD is the only symptom under genetic influence in schizophrenia as shown in linkage studies, but familial communication patterns (allusive thinking) have also been associated with the condition. Positive FTDs are related to synaptic rarefication in the glutamate system of the superior and middle lateral temporal cortices. Cortical volume of the left superior temporal gyrus is decreased in patients with schizophrenia who have positive FTD in structural MRI studies and shows reversed hemispheric (right more than left) activation in functional MRI experiments during speech production. Semantic network dysfunction in positive FTD has been demonstrated in experiments of indirect semantic hyperpriming (reaction time). In acute positive FTD, antipsychotics are effective, but a subgroup of patients have treatment-resistant, chronic, positive or negative FTD. Specific psychotherapy as treatment for FTD has not yet been developed. With this solid data on the pathogenesis of FTD, we can now implement clinical studies to treat this condition.
Collapse
Affiliation(s)
- Tilo Kircher
- Department of Psychiatry and Psychotherapy, Marburg University, Marburg, Germany.
| | - Henrike Bröhl
- Department of Psychiatry and Psychotherapy, Marburg University, Marburg, Germany
| | - Felicitas Meier
- Department of Psychiatry and Psychotherapy, Marburg University, Marburg, Germany
| | - Jennifer Engelen
- Department of Psychiatry and Psychotherapy, Marburg University, Marburg, Germany
| |
Collapse
|
20
|
White matter correlates of the disorganized speech dimension in schizophrenia. Eur Arch Psychiatry Clin Neurosci 2018; 268:99-104. [PMID: 28032254 DOI: 10.1007/s00406-016-0753-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 12/13/2016] [Indexed: 01/15/2023]
Abstract
Disorganized speech is related to functional abnormalities in schizophrenia. To test the association between formal thought disorders (FTDs) and white matter microstructure, we applied a behavioral rating and diffusion tensor imaging in 61 patients with schizophrenia spectrum disorders. The Bern Psychopathology Scale was used to rate the dimension of language abnormalities ranging from negative FTDs, basically unaltered speech, to positive FTDs. Tract-based spatial statistics indicated increased fractional anisotropy in left hemispheric pathways of the language system in patients with negative FTDs. Thus, altered white matter properties in relevant fiber tracts may represent vulnerability to specific formal thought disorders.
Collapse
|
21
|
Sasabayashi D, Takayanagi Y, Takahashi T, Koike S, Yamasue H, Katagiri N, Sakuma A, Obara C, Nakamura M, Furuichi A, Kido M, Nishikawa Y, Noguchi K, Matsumoto K, Mizuno M, Kasai K, Suzuki M. Increased Occipital Gyrification and Development of Psychotic Disorders in Individuals With an At-Risk Mental State: A Multicenter Study. Biol Psychiatry 2017; 82:737-745. [PMID: 28709499 DOI: 10.1016/j.biopsych.2017.05.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 05/17/2017] [Accepted: 05/18/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Anomalies of brain gyrification have been reported in schizophrenia, possibly reflecting its neurodevelopmental pathology. However, it remains elusive whether individuals at risk for psychotic disorders exhibit deviated gyrification patterns, and whether such findings, if present, are predictive of transition to psychotic disorders. METHODS This multicenter magnetic resonance imaging study investigated brain gyrification and its relationship to later transition to psychotic disorders in a large sample of at-risk mental state (ARMS) individuals. T1-weighted magnetic resonance imaging scans were obtained from 104 ARMS individuals, of whom 21 (20.2%) exhibited the transition to psychotic disorders during clinical follow-up (mean = 4.9 years, SD = 2.6 years), and 104 healthy control subjects at 4 different sites. The local gyrification index (LGI) of the entire cortex was compared across the groups using FreeSurfer software. RESULTS Compared with the control subjects, ARMS individuals showed a significantly higher LGI in widespread cortical areas, including the bilateral frontal, temporal, parietal, and occipital regions, which was partly associated with prodromal symptomatology. ARMS individuals who exhibited the transition to psychotic disorders showed a significantly higher LGI in the left occipital region compared with individuals without transition. CONCLUSIONS These findings suggested that increased LGI in diverse cortical regions might represent vulnerability to psychopathology, while increased LGI in the left occipital cortex might be related to subsequent manifestation of florid psychotic disorders as a possible surrogate marker.
Collapse
Affiliation(s)
- Daiki Sasabayashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.
| | - Yoichiro Takayanagi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Shinsuke Koike
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hidenori Yamasue
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Naoyuki Katagiri
- Department of Neuropsychiatry, Toho University School of Medicine, Tokyo, Japan
| | - Atsushi Sakuma
- Department of Psychiatry, Tohoku University Hospital, Sendai, Japan
| | - Chika Obara
- Department of Psychiatry, Tohoku University Hospital, Sendai, Japan
| | - Mihoko Nakamura
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Atsushi Furuichi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Mikio Kido
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Yumiko Nishikawa
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Kyo Noguchi
- Department of Radiology, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Kazunori Matsumoto
- Department of Psychiatry, Tohoku University Hospital, Sendai, Japan; Department of Psychiatry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masafumi Mizuno
- Department of Neuropsychiatry, Toho University School of Medicine, Tokyo, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Michio Suzuki
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| |
Collapse
|
22
|
Makris N, Zhu A, Papadimitriou GM, Mouradian P, Ng I, Scaccianoce E, Baselli G, Baglio F, Shenton ME, Rathi Y, Dickerson B, Yeterian E, Kubicki M. Mapping temporo-parietal and temporo-occipital cortico-cortical connections of the human middle longitudinal fascicle in subject-specific, probabilistic, and stereotaxic Talairach spaces. Brain Imaging Behav 2017; 11:1258-1277. [PMID: 27714552 PMCID: PMC5382125 DOI: 10.1007/s11682-016-9589-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Originally, the middle longitudinal fascicle (MdLF) was defined as a long association fiber tract connecting the superior temporal gyrus and temporal pole with the angular gyrus. More recently its description has been expanded to include all long postrolandic cortico-cortical association connections of the superior temporal gyrus and dorsal temporal pole with the parietal and occipital lobes. Despite its location and size, which makes MdLF one of the most prominent cerebral association fiber tracts, its discovery in humans is recent. Given the absence of a gold standard in humans for this fiber tract, its precise and complete connectivity remains to be determined with certainty. In this study using high angular resolution diffusion MRI (HARDI), we delineated for the first time, six major fiber connections of the human MdLF, four of which are temporo-parietal and two temporo-occipital, by examining morphology, topography, cortical connections, biophysical measures, volume and length in seventy brains. Considering the cortical affiliations of the different connections of MdLF we suggested that this fiber tract may be related to language, attention and integrative higher level visual and auditory processing associated functions. Furthermore, given the extensive connectivity provided to superior temporal gyrus and temporal pole with the parietal and occipital lobes, MdLF may be involved in several neurological and psychiatric conditions such as primary progressive aphasia and other aphasic syndromes, some forms of behavioral variant of frontotemporal dementia, atypical forms of Alzheimer's disease, corticobasal degeneration, schizophrenia as well as attention-deficit/hyperactivity Disorder and neglect disorders.
Collapse
Affiliation(s)
- Nikos Makris
- Departments of Psychiatry and Neurology Services, Center for Morphometric Analysis, Center for Neural Systems Investigations, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Building 149, 13th Street, Charlestown, Boston, MA, 02129, USA.
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02215, USA.
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, 02215, USA.
- McLean Hospital, Harvard Medical School (Affiliated School/Hospital), Belmont, MA, 02478, USA.
| | - A Zhu
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02215, USA
- VA Boston Healthcare System, Boston, MA, 02130, USA
| | - G M Papadimitriou
- Departments of Psychiatry and Neurology Services, Center for Morphometric Analysis, Center for Neural Systems Investigations, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Building 149, 13th Street, Charlestown, Boston, MA, 02129, USA
| | - P Mouradian
- Departments of Psychiatry and Neurology Services, Center for Morphometric Analysis, Center for Neural Systems Investigations, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Building 149, 13th Street, Charlestown, Boston, MA, 02129, USA
| | - I Ng
- Departments of Psychiatry and Neurology Services, Center for Morphometric Analysis, Center for Neural Systems Investigations, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Building 149, 13th Street, Charlestown, Boston, MA, 02129, USA
| | - E Scaccianoce
- Department of Bioengineering, Politecnico di Milano, Milan, Italy
| | - G Baselli
- Department of Bioengineering, Politecnico di Milano, Milan, Italy
| | - F Baglio
- Department of Bioengineering, Politecnico di Milano, Milan, Italy
| | - M E Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02215, USA
- VA Boston Healthcare System, Boston, MA, 02130, USA
- Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02215, USA
| | - Y Rathi
- Departments of Psychiatry and Neurology Services, Center for Morphometric Analysis, Center for Neural Systems Investigations, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Building 149, 13th Street, Charlestown, Boston, MA, 02129, USA
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02215, USA
| | - B Dickerson
- Departments of Psychiatry and Neurology Services, Center for Morphometric Analysis, Center for Neural Systems Investigations, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Building 149, 13th Street, Charlestown, Boston, MA, 02129, USA
| | - E Yeterian
- Department of Psychology, Colby College, Waterville, ME, 04901, USA
| | - M Kubicki
- Departments of Psychiatry and Neurology Services, Center for Morphometric Analysis, Center for Neural Systems Investigations, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Building 149, 13th Street, Charlestown, Boston, MA, 02129, USA
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02215, USA
- Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02215, USA
| |
Collapse
|
23
|
Bopp MHA, Zöllner R, Jansen A, Dietsche B, Krug A, Kircher TTJ. White matter integrity and symptom dimensions of schizophrenia: A diffusion tensor imaging study. Schizophr Res 2017; 184:59-68. [PMID: 28012640 DOI: 10.1016/j.schres.2016.11.045] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 11/27/2016] [Accepted: 11/28/2016] [Indexed: 01/15/2023]
Abstract
Impaired fiber bundle connectivity between brain regions is a key neuropathological finding in schizophrenia. Symptom dimensions in schizophrenia can be clustered into factor models. Single syndromes have been related to grey and white matter brain structure alterations. We associated all core syndromes of schizophrenia in a single patient group with changes in white matter integrity. Diffusion weighted images (3T MRI) and SAPS/SANS scores were measured in 26 male patients and 26 healthy controls. First, group differences in fractional anisotropy (FA) were calculated with TBSS. Second, core symptom dimensions of schizophrenia were correlated with FA within these altered tracts. We found differences between groups in nine white matter tracts. Hallucinations were positively correlated with FA in the left uncinate fasciculus and left corticospinal tract. Ego-disturbances (passivity phenomena) showed a positive correlation with FA in the right anterior thalamic radiation. Positive formal thought disorders (FTD) corresponded negatively with FA in the right cingulum bundle. Negative symptoms were positively associated with the right anterior thalamic radiation and negatively with the right ventral cingulum bundle. For the first time, we analyzed the whole range of psychopathological factors in one schizophrenia patient group. We could validate our novel results for positive FTD and passivity phenomena by replicating findings for hallucinations and negative symptoms. Only those brain circuits which are most vulnerable at a given time during neurodevelopment are affected by a particular pathological impact (genetic, environmental). This scenario could explain the predominance of particular psychopathological syndromes related to specific white matter anomalies.
Collapse
Affiliation(s)
- Miriam H A Bopp
- Department of Psychiatry and Psychotherapy, University of Marburg, Rudolf-Bultmann-Strasse 8, 35039 Marburg, Germany; Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany; International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 65691 Brno, Czech Republic.
| | - Rebecca Zöllner
- Department of Psychiatry and Psychotherapy, University of Marburg, Rudolf-Bultmann-Strasse 8, 35039 Marburg, Germany
| | - Andreas Jansen
- Department of Psychiatry and Psychotherapy, University of Marburg, Rudolf-Bultmann-Strasse 8, 35039 Marburg, Germany; Core Facility Brain Imaging, University of Marburg, Rudolf-Bultmann-Strasse 8, 35039 Marburg, Germany
| | - Bruno Dietsche
- Department of Psychiatry and Psychotherapy, University of Marburg, Rudolf-Bultmann-Strasse 8, 35039 Marburg, Germany
| | - Axel Krug
- Department of Psychiatry and Psychotherapy, University of Marburg, Rudolf-Bultmann-Strasse 8, 35039 Marburg, Germany
| | - Tilo T J Kircher
- Department of Psychiatry and Psychotherapy, University of Marburg, Rudolf-Bultmann-Strasse 8, 35039 Marburg, Germany
| |
Collapse
|
24
|
Viher PV, Stegmayer K, Giezendanner S, Federspiel A, Bohlhalter S, Vanbellingen T, Wiest R, Strik W, Walther S. Cerebral white matter structure is associated with DSM-5 schizophrenia symptom dimensions. NEUROIMAGE-CLINICAL 2016; 12:93-99. [PMID: 27408794 PMCID: PMC4925890 DOI: 10.1016/j.nicl.2016.06.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 06/09/2016] [Accepted: 06/15/2016] [Indexed: 12/21/2022]
Abstract
Diffusion tensor imaging (DTI) studies have provided evidence of widespread white matter (WM) abnormalities in schizophrenia. Although these abnormalities appear clinically significant, the relationship to specific clinical symptoms is limited and heterogeneous. This study examined the association between WM microstructure and the severity of the five main DSM-5 schizophrenia symptom dimensions. DTI was measured in forty patients with schizophrenia spectrum disorders. Using Tract-Based Spatial Statistics controlling for age, gender and antipsychotic dosage, our analyses revealed significant negative relationships between WM microstructure and two DSM-5 symptom dimensions: Whereas abnormal psychomotor behavior was particularly related to WM of motor tracts, negative symptoms were associated with WM microstructure of the prefrontal and right temporal lobes. However, we found no associations between WM microstructure and delusions, hallucinations or disorganized speech. These data highlight the relevance of characteristic WM disconnectivity patterns as markers for negative symptoms and abnormal psychomotor behavior in schizophrenia and provide evidence for relevant associations between brain structure and aberrant behavior. DTI study of brain-behavior associations of the new DSM-5 schizophrenia dimensions. The severity of the DSM-5 abnormal psychomotor behavior dimension is related to white matter microstructure in motor tracts. Associations of the DSM-5 negative symptom dimension with white matter microstructure are found in prefrontal and temporal clusters. Characteristic patterns of white matter microstructure argue for relevant associations between brain structure and aberrant behavior in schizophrenia.
Collapse
Affiliation(s)
- Petra V Viher
- Translational Research Center, University Hospital of Psychiatry, Bern, Switzerland
| | - Katharina Stegmayer
- Translational Research Center, University Hospital of Psychiatry, Bern, Switzerland
| | | | - Andrea Federspiel
- Translational Research Center, University Hospital of Psychiatry, Bern, Switzerland
| | - Stephan Bohlhalter
- Department of Clinical Research, Inselspital, Bern, Switzerland; Neurology and Neurorehabilitation Center, Luzerner Kantonsspital, Luzern, Switzerland
| | - Tim Vanbellingen
- Department of Clinical Research, Inselspital, Bern, Switzerland; Neurology and Neurorehabilitation Center, Luzerner Kantonsspital, Luzern, Switzerland
| | - Roland Wiest
- Support Center of Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern, Switzerland
| | - Werner Strik
- Translational Research Center, University Hospital of Psychiatry, Bern, Switzerland
| | - Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry, Bern, Switzerland
| |
Collapse
|
25
|
Sasabayashi D, Takayanagi Y, Nishiyama S, Takahashi T, Furuichi A, Kido M, Nishikawa Y, Nakamura M, Noguchi K, Suzuki M. Increased Frontal Gyrification Negatively Correlates with Executive Function in Patients with First-Episode Schizophrenia. Cereb Cortex 2016; 27:2686-2694. [DOI: 10.1093/cercor/bhw101] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
26
|
The white matter query language: a novel approach for describing human white matter anatomy. Brain Struct Funct 2016; 221:4705-4721. [PMID: 26754839 DOI: 10.1007/s00429-015-1179-4] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 12/19/2015] [Indexed: 10/22/2022]
Abstract
We have developed a novel method to describe human white matter anatomy using an approach that is both intuitive and simple to use, and which automatically extracts white matter tracts from diffusion MRI volumes. Further, our method simplifies the quantification and statistical analysis of white matter tracts on large diffusion MRI databases. This work reflects the careful syntactical definition of major white matter fiber tracts in the human brain based on a neuroanatomist's expert knowledge. The framework is based on a novel query language with a near-to-English textual syntax. This query language makes it possible to construct a dictionary of anatomical definitions that describe white matter tracts. The definitions include adjacent gray and white matter regions, and rules for spatial relations. This novel method makes it possible to automatically label white matter anatomy across subjects. After describing this method, we provide an example of its implementation where we encode anatomical knowledge in human white matter for ten association and 15 projection tracts per hemisphere, along with seven commissural tracts. Importantly, this novel method is comparable in accuracy to manual labeling. Finally, we present results applying this method to create a white matter atlas from 77 healthy subjects, and we use this atlas in a small proof-of-concept study to detect changes in association tracts that characterize schizophrenia.
Collapse
|
27
|
Altamura AC, Caletti E, Paoli RA, Cigliobianco M, Zugno E, Grillo P, Prunas C, Caldiroli A, Zago S. Correlation between neuropsychological and social cognition measures and symptom dimensions in schizophrenic patients. Psychiatry Res 2015; 230:172-80. [PMID: 26350702 DOI: 10.1016/j.psychres.2015.08.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 07/23/2015] [Accepted: 08/17/2015] [Indexed: 12/22/2022]
Abstract
Neurocognitive and social cognition deficits have been largely reported in Schizophrenia (SKZ) but their association with psychopathology remains uncertain. Our purpose was to explore the relationship between symptom dimensions and neuropsychological performances. We enrolled 35 stabilized schizophrenic outpatients of the Department of Psychiatry of Policlinico Hospital, University of Milan, who completed psychiatric Rating Scales, the Brief Assessment of Cognition in Schizophrenia (BACS) and the Executive and Social Cognition Battery (ESCB). Disorganized dimension seems to have the most significant impact on cognition, being associated with performance in several BACS subtests (verbal memory, working memory, motor speed, symbol coding, Tower of London) and ESCB tasks (MET and Hotel task number of tasks attempted, number of broken MET rules, sum of deviations in Hotel Task). Positive dimension correlated with performance in verbal fluency, negative dimension with IOWA Test results, cognitive dimension with MET number of inefficiencies and Eyes test score. Impulsive-aggressive and depressive dimensions weakly correlated only with Faux Pas test. Our study supports the existence of a specific disorganized dimension in SKZ, separated from cognitive dimension evaluated through clinical instruments (e.g. PANSS), but capable of influencing cognitive abilities. Furthermore, it strengthens the validity of ecological tasks in evaluating cognition in SKZ.
Collapse
Affiliation(s)
- A Carlo Altamura
- Psychiatric Clinic, Department of Neuroscience and Mental Health, University of Milan, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Elisabetta Caletti
- Psychiatric Clinic, Department of Neuroscience and Mental Health, University of Milan, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Riccardo Augusto Paoli
- Psychiatric Clinic, Department of Neuroscience and Mental Health, University of Milan, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Michela Cigliobianco
- Psychiatric Clinic, Department of Neuroscience and Mental Health, University of Milan, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.
| | - Elisa Zugno
- Psychiatric Clinic, Department of Neuroscience and Mental Health, University of Milan, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Paolo Grillo
- Epidemiology Unit, Department of Preventive Medicine, University of Milan, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Cecilia Prunas
- Psychiatric Clinic, Department of Neuroscience and Mental Health, University of Milan, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Alice Caldiroli
- Psychiatric Clinic, Department of Neuroscience and Mental Health, University of Milan, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefano Zago
- Neurologic Clinic, Department of Neuroscience and Mental Health, University of Milan, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
28
|
Xu L, Qin W, Zhuo C, Zhu J, Liu H, Liu X, Xu Y, Yu C. Selective Functional Disconnection of the Dorsal Subregion of the Temporal Pole in Schizophrenia. Sci Rep 2015; 5:11258. [PMID: 26058049 PMCID: PMC4460906 DOI: 10.1038/srep11258] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 05/19/2015] [Indexed: 01/16/2023] Open
Abstract
Although extensive resting-state functional connectivity (rsFC) changes have been reported in schizophrenia, rsFC changes in the temporal pole (TP) remain unknown. The TP contains several subregions with different connection patterns; however, it is not known whether TP subregions are differentially affected in schizophrenia. Sixty-six schizophrenia patients and 76 healthy comparison subjects underwent resting-state fMRI using a sensitivity-encoded spiral-in (SENSE-SPIRAL) imaging sequence to reduce susceptibility-induced signal loss and distortion. The TP was subdivided into the dorsal (TPd) and ventral (TPv) subregions. Mean fMRI time series were extracted for each TP subregion and entered into a seed-based rsFC analysis. Direct between-group comparisons revealed reduced rsFC between the right TPd and brain regions involved in language processing and multisensory integration in schizophrenia, including the left superior temporal gyrus, left mid-cingulate cortex, and right insular cortex. The rsFC changes of the right TPd in schizophrenia were independent of the grey matter reduction of this subregion. Moreover, these rsFC changes were unrelated to illness severity, duration of illness and antipsychotic medication dosage. No significant group differences were observed in the rsFC of the left TPd and bilateral TPv subregions. These findings suggest a selective (the right TPd) functional disconnection of TP subregions in schizophrenia.
Collapse
Affiliation(s)
- Lixue Xu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Chuanjun Zhuo
- 1] Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China [2] Tianjin Anding Hospital (Tianjin Mental Health Center), Tianjin City 300222, China [3] Tianjin Anning Hospital, Tianjin City 300300, China
| | - Jiajia Zhu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Huaigui Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xingyun Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yongjie Xu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
29
|
Goekoop R, Goekoop JG. A network view on psychiatric disorders: network clusters of symptoms as elementary syndromes of psychopathology. PLoS One 2014; 9:e112734. [PMID: 25427156 PMCID: PMC4245101 DOI: 10.1371/journal.pone.0112734] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 10/14/2014] [Indexed: 12/13/2022] Open
Abstract
Introduction The vast number of psychopathological syndromes that can be observed in clinical practice can be described in terms of a limited number of elementary syndromes that are differentially expressed. Previous attempts to identify elementary syndromes have shown limitations that have slowed progress in the taxonomy of psychiatric disorders. Aim To examine the ability of network community detection (NCD) to identify elementary syndromes of psychopathology and move beyond the limitations of current classification methods in psychiatry. Methods 192 patients with unselected mental disorders were tested on the Comprehensive Psychopathological Rating Scale (CPRS). Principal component analysis (PCA) was performed on the bootstrapped correlation matrix of symptom scores to extract the principal component structure (PCS). An undirected and weighted network graph was constructed from the same matrix. Network community structure (NCS) was optimized using a previously published technique. Results In the optimal network structure, network clusters showed a 89% match with principal components of psychopathology. Some 6 network clusters were found, including "DEPRESSION", "MANIA", “ANXIETY”, "PSYCHOSIS", "RETARDATION", and "BEHAVIORAL DISORGANIZATION". Network metrics were used to quantify the continuities between the elementary syndromes. Conclusion We present the first comprehensive network graph of psychopathology that is free from the biases of previous classifications: a ‘Psychopathology Web’. Clusters within this network represent elementary syndromes that are connected via a limited number of bridge symptoms. Many problems of previous classifications can be overcome by using a network approach to psychopathology.
Collapse
Affiliation(s)
- Rutger Goekoop
- Department of Mood Disorders, PsyQ Psychomedical Programs, The Hague, The Netherlands
- Parnassia Group, The Hague, The Netherlands
- * E-mail:
| | - Jaap G. Goekoop
- Department of Psychiatry, Leiden University Medical Center, Leiden University, Leiden, The Netherlands
| |
Collapse
|
30
|
Makris N, Preti MG, Wassermann D, Rathi Y, Papadimitriou GM, Yergatian C, Dickerson BC, Shenton ME, Kubicki M. Human middle longitudinal fascicle: segregation and behavioral-clinical implications of two distinct fiber connections linking temporal pole and superior temporal gyrus with the angular gyrus or superior parietal lobule using multi-tensor tractography. Brain Imaging Behav 2014; 7:335-52. [PMID: 23686576 DOI: 10.1007/s11682-013-9235-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The middle longitudinal fascicle (MdLF) is a major fiber connection running principally between the superior temporal gyrus and the parietal lobe, neocortical regions of great biological and clinical interest. Although one of the most prominent cerebral association fiber tracts, it has only recently been discovered in humans. In this high angular resolution diffusion imaging (HARDI) MRI study, we delineated the two major fiber connections of the human MdLF, by examining morphology, topography, cortical connections, biophysical measures, volume and length in seventy-four brains. These two fiber connections course together through the dorsal temporal pole and the superior temporal gyrus maintaining a characteristic topographic relationship in the mediolateral and ventrodorsal dimensions. As these pathways course towards the parietal lobe, they split to form separate fiber pathways, one following a ventrolateral trajectory and connecting with the angular gyrus and the other following a dorsomedial route and connecting with the superior parietal lobule. Based on the functions of their cortical affiliations, we suggest that the superior temporal-angular connection of the MdLF, i.e., STG(MdLF)AG plays a role in language and attention, whereas the superior temporal-superior parietal connection of the MdLF, i.e., STG(MdLF)SPL is involved in visuospatial and integrative audiovisual functions. Furthermore, the MdLF may have clinical implications in neurodegenerative disorders such as primary progressive aphasia, frontotemporal dementia, posterior cortical atrophy, corticobulbar degeneration and Alzheimer's disease as well as attention-deficit/hyperactivity disorder and schizophrenia.
Collapse
Affiliation(s)
- N Makris
- Departments of Psychiatry and Neurology Services, Center for Neural Systems Investigations, Center for Morphometric Analysis, Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General Hospital, Building 149, 13th Street, Charlestown, MA, 02129, USA,
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Konishi J, Asami T, Hayano F, Yoshimi A, Hayasaka S, Fukushima H, Whitford TJ, Inoue T, Hirayasu Y. Multiple white matter volume reductions in patients with panic disorder: relationships between orbitofrontal Gyrus volume and symptom severity and social dysfunction. PLoS One 2014; 9:e92862. [PMID: 24663245 PMCID: PMC3963974 DOI: 10.1371/journal.pone.0092862] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 02/26/2014] [Indexed: 12/11/2022] Open
Abstract
Numerous brain regions are believed to be involved in the neuropathology of panic disorder (PD) including fronto-limbic regions, thalamus, brain stem, and cerebellum. However, while several previous studies have demonstrated volumetric gray matter reductions in these brain regions, there have been no studies evaluating volumetric white matter changes in the fiber bundles connecting these regions. In addition, although patients with PD typically exhibit social, interpersonal and occupational dysfunction, the neuropathologies underlying these dysfunctions remain unclear. A voxel-based morphometry study was conducted to evaluate differences in regional white matter volume between 40 patients with PD and 40 healthy control subjects (HC). Correlation analyses were performed between the regional white matter volumes and patients' scores on the Panic Disorder Severity Scale (PDSS) and the Global Assessment of Functioning (GAF). Patients with PD demonstrated significant volumetric reductions in widespread white matter regions including fronto-limbic, thalamo-cortical and cerebellar pathways (p<0.05, FDR corrected). Furthermore, there was a significant negative relationship between right orbitofrontal gyrus (OFG) white matter volume and the severity of patients' clinical symptoms, as assessed with the PDSS. A significant positive relationship was also observed between patients' right OFG volumes and their scores on the GAF. Our results suggest that volumetric reductions in widespread white matter regions may play an important role in the pathology of PD. In particular, our results suggest that structural white matter abnormalities in the right OFG may contribute to the social, personal and occupational dysfunction typically experienced by patients with PD.
Collapse
Affiliation(s)
- Jun Konishi
- Department of Psychiatry, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Takeshi Asami
- Department of Psychiatry, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Fumi Hayano
- Department of Psychiatry, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Asuka Yoshimi
- Department of Psychiatry, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Shunsuke Hayasaka
- Department of Psychiatry, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Hiroshi Fukushima
- Department of Psychiatry, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Thomas J. Whitford
- School of Psychology, University of New South Wales, Sydney, New South Wales, Australia
| | - Tomio Inoue
- Department of Radiology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Yoshio Hirayasu
- Department of Psychiatry, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| |
Collapse
|
32
|
Zhang R, Wei Q, Kang Z, Zalesky A, Li M, Xu Y, Li L, Wang J, Zheng L, Wang B, Zhao J, Zhang J, Huang R. Disrupted brain anatomical connectivity in medication-naïve patients with first-episode schizophrenia. Brain Struct Funct 2014; 220:1145-59. [PMID: 24449342 DOI: 10.1007/s00429-014-0706-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 01/04/2014] [Indexed: 01/16/2023]
Abstract
Previous studies suggested that the topological properties of brain anatomical networks may be aberrant in schizophrenia (SCZ), and most of them focused on the chronic and antipsychotic-medicated SCZ patients which may introduce various confounding factors due to antipsychotic medication and duration of illness. To avoid those potential confounders, a desirable approach is to select medication-naïve, first-episode schizophrenia (FE-SCZ) patients. In this study, we acquired diffusion tensor imaging datasets from 30 FE-SCZ patients and 34 age- and gender-matched healthy controls. Taking a distinct gray matter region as a node, inter-regional connectivity as edge and the corresponding streamline counts as edge weight, we constructed whole-brain anatomical networks for both groups, calculated their topological parameters using graph theory, and compared their between-group differences using nonparametric permutation tests. In addition, network-based statistic method was utilized to identify inter-regional connections which were impaired in the FE-SCZ patients. We detected only significantly decreased inter-regional connections in the FE-SCZ patients compared to the controls. These connections were primarily located in the frontal, parietal, occipital, and subcortical regions. Although small-worldness was conserved in the FE-SCZ patients, we found that the network strength and global efficiency as well as the degree were significantly decreased, and shortest path length was significantly increased in the FE-SCZ patients compared to the controls. Most of the regions that showed significantly decreased nodal parameters belonged to the top-down control, sensorimotor, basal ganglia, and limbic-visual system systems. Correlation analysis indicated that the nodal efficiency in the sensorimotor system was negatively correlated with the severity of psychosis symptoms in the FE-SCZ patients. Our results suggest that the network organization is changed in the early stages of the SCZ disease process. Our findings provide useful information for further understanding the brain white matter dysconnectivity of schizophrenia.
Collapse
Affiliation(s)
- Ruibin Zhang
- Brain Imaging Center, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for the Study of Applied Psychology, School of Psychology, South China Normal University, Guangzhou, 510631, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Wassermann D, Makris N, Rathi Y, Shenton M, Kikinis R, Kubicki M, Westin CF. On describing human white matter anatomy: the white matter query language. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION : MICCAI ... INTERNATIONAL CONFERENCE ON MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION 2013; 16:647-54. [PMID: 24505722 PMCID: PMC4029160 DOI: 10.1007/978-3-642-40811-3_81] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The main contribution of this work is the careful syntactical definition of major white matter tracts in the human brain based on a neuroanatomist's expert knowledge. We present a technique to formally describe white matter tracts and to automatically extract them from diffusion MRI data. The framework is based on a novel query language with a near-to-English textual syntax. This query language allows us to construct a dictionary of anatomical definitions describing white matter tracts. The definitions include adjacent gray and white matter regions, and rules for spatial relations. This enables automated coherent labeling of white matter anatomy across subjects. We use our method to encode anatomical knowledge in human white matter describing 10 association and 8 projection tracts per hemisphere and 7 commissural tracts. The technique is shown to be comparable in accuracy to manual labeling. We present results applying this framework to create a white matter atlas from 77 healthy subjects, and we use this atlas in a proof-of-concept study to detect tract changes specific to schizophrenia.
Collapse
Affiliation(s)
- Demian Wassermann
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Nikos Makris
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Yogesh Rathi
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Martha Shenton
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Ron Kikinis
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Marek Kubicki
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|