1
|
Shangase KB, Luvuno M, Mabandla M. Effects of combined postweaning social isolation and ketamine administration on schizophrenia-like behaviour in male Sprague Dawley rats. Behav Brain Res 2025; 476:115214. [PMID: 39182622 DOI: 10.1016/j.bbr.2024.115214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/08/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
The pathophysiology behind negative and cognitive symptoms of schizophrenia is not well understood, thus limiting the effectiveness of treatment on these symptoms. Developing reliable animal model of schizophrenia is vital to advance our understanding on the neurobiological basis of the disorder. Double hit is used to refer to the use of two schizophrenia inducing interventions viz ketamine exposure and social isolation. In this study we aim to investigate the robustness of double hit model of schizophrenia in inducing negative and cognitive symptoms of schizophrenia. On postnatal day (PND) 23, thirty-two male Sprague Dawley rats were randomly grouped into four equal groups as follows: group housed + saline (GH), group housed + ketamine (GHK), isolated + saline (SI), and isolated + ketamine (SIK). A single ketamine dose (16 mg/kg) was administered 3 times a week for four weeks. Isolated animals were housed singly throughout the study. The following behavioural tests were carried out: elevated plus maze, three chamber social interaction, resident intruder tests, and novel object recognition (NOR). The SIK group exhibited high anxiety levels, with increased ACTH, corticosterone and norepinephrine concentration when compared to the other groups. The SIK animals also presented with reduced social interaction and decreased oxytocin concentration. SIK rats were more aggressive towards a juvenile intruder but had low testosterone concentration. The SIK group or double hit model showed impaired visual learning and memory and increased expression of proinflammatory cytokines. This suggest that the double hit model is more robust in inducing negative and cognitive symptoms of schizophrenia than each treatment alone.
Collapse
Affiliation(s)
- Khanyiso Bright Shangase
- Department of Human Physiology, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa.
| | - Mluleki Luvuno
- Department of Human Physiology, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Musa Mabandla
- Department of Human Physiology, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| |
Collapse
|
2
|
Oginga FO, Mpofana T. Understanding the role of early life stress and schizophrenia on anxiety and depressive like outcomes: An experimental study. Behav Brain Res 2024; 470:115053. [PMID: 38768688 DOI: 10.1016/j.bbr.2024.115053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Adverse experiences due to early life stress (ELS) or parental psychopathology such as schizophrenia (SZ) have a significant implication on individual susceptibility to psychiatric disorders in the future. However, it is not fully understood how ELS affects social-associated behaviors as well as the developing prefrontal cortex (PFC). OBJECTIVE The aim of this study was to investigate the impact of ELS and ketamine induced schizophrenia like symptoms (KSZ) on anhedonia, social behavior and anxiety-like behavior. METHODS Male and female Sprague-Dawley rat pups were allocated randomly into eight experimental groups, namely control, gestational stress (GS), GS+KSZ, maternal separation (MS), MS+KSZ pups, KSZ parents, KSZ parents and Pups and KSZ pups only. ELS was induced by subjecting the pups to GS and MS, while schizophrenia like symptoms was induced through subcutaneous administration of ketamine. Behavioral assessment included sucrose preference test (SPT) and elevated plus maze (EPM), followed by dopamine testing and analysis of astrocyte density. Statistical analysis involved ANOVA and post hoc Tukey tests, revealing significant group differences and yielding insights into behavioral and neurodevelopmental impacts. RESULTS GS, MS, and KSZ (dams) significantly reduced hedonic response and increased anxiety-like responses (p < 0.05). Notably, the presence of normal parental mental health demonstrated a reversal of the observed decline in Glial Fibrillary Acidic Protein-positive astrocytes (GFAP+ astrocytes) (p < 0.05) and a reduction in anxiety levels, implying its potential protective influence on depressive-like symptoms and PFC astrocyte functionality. CONCLUSION The present study provides empirical evidence supporting the hypothesis that exposure to ELS and KSZ on dams have a significant impact on the on development of anxiety and depressive like symptoms in Sprague Dawley rats, while positive parenting has a reversal effect.
Collapse
Affiliation(s)
- Fredrick Otieno Oginga
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, University of Kwa-Zulu Natal, Durban 4001, South Africa; Department of Clinical Medicine, School of Medicine and Health Science, Kabarak University, Nakuru 20157, Kenya.
| | - Thabisile Mpofana
- Department of Human Physiology, Faculty of Health Sciences North West University, Potchefstroom campus, 11 Hoffman St., Potchefstroom 2531, South Africa
| |
Collapse
|
3
|
Santos TB, de Oliveira Coelho CA, Kramer-Soares JC, Frankland PW, Oliveira MGM. Reactivation of encoding ensembles in the prelimbic cortex supports temporal associations. Neuropsychopharmacology 2024; 49:1296-1308. [PMID: 38454052 PMCID: PMC11224261 DOI: 10.1038/s41386-024-01825-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/14/2024] [Accepted: 02/05/2024] [Indexed: 03/09/2024]
Abstract
Fear conditioning is encoded by strengthening synaptic connections between the neurons activated by a conditioned stimulus (CS) and those activated by an unconditioned stimulus (US), forming a memory engram, which is reactivated during memory retrieval. In temporal associations, activity within the prelimbic cortex (PL) plays a role in sustaining a short-term, transient memory of the CS, which is associated with the US after a temporal gap. However, it is unknown whether the PL has only a temporary role, transiently representing the CS, or is part of the neuronal ensembles that support the retrieval, i.e., whether PL neurons support both transient, short-term memories and stable, long-term memories. We investigated neuronal ensembles underlying temporal associations using fear conditioning with a 5-s interval between the CS and US (CFC-5s). Controls were trained in contextual fear conditioning (CFC), in which the CS-US overlaps. We used Robust Activity Marking (RAM) to selectively manipulate PL neurons activated by CFC-5s learning and Targeted Recombination in Active Populations (TRAP2) mice to label neurons activated by CFC-5s learning and reactivated by memory retrieval in the amygdala, medial prefrontal cortex, hippocampus, perirhinal cortices (PER) and subiculum. We also computed their co-reactivation to generate correlation-based networks. The optogenetic reactivation or silencing of PL encoding ensembles either promoted or impaired the retrieval of CFC-5s but not CFC. CFC-5s retrieval reactivated encoding ensembles in the PL, PER, and basolateral amygdala. The engram network of CFC-5s had higher amygdala and PER centralities and interconnectivity. The same PL neurons support learning and stable associative memories.
Collapse
Affiliation(s)
- Thays Brenner Santos
- Departamento de Psicobiologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, 04023-062, Brazil.
| | | | - Juliana Carlota Kramer-Soares
- Departamento de Psicobiologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, 04023-062, Brazil
- Universidade Cruzeiro do Sul - UNICSUL, São Paulo, 08060-070, Brazil
| | - Paul W Frankland
- Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Physiology, University of Toronto, Toronto, ON, M5G 1X8, Canada
- Department of Psychology, University of Toronto, Toronto, ON, M5G 1X8, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, M5G 1X8, Canada
- Child & Brain Development Program, Canadian Institute for Advanced Research, Toronto, ON, M5G 1M1, Canada
| | | |
Collapse
|
4
|
Haikonen J, Szrinivasan R, Ojanen S, Rhee JK, Ryazantseva M, Sulku J, Zumaraite G, Lauri SE. GluK1 kainate receptors are necessary for functional maturation of parvalbumin interneurons regulating amygdala circuit function. Mol Psychiatry 2024:10.1038/s41380-024-02641-2. [PMID: 38942774 DOI: 10.1038/s41380-024-02641-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 06/30/2024]
Abstract
Parvalbumin expressing interneurons (PV INs) are key players in the local inhibitory circuits and their developmental maturation coincides with the onset of adult-type network dynamics in the brain. Glutamatergic signaling regulates emergence of the unique PV IN phenotype, yet the receptor mechanisms involved are not fully understood. Here we show that GluK1 subunit containing kainate receptors (KARs) are necessary for development and maintenance of the neurochemical and functional properties of PV INs in the lateral and basal amygdala (BLA). Ablation of GluK1 expression specifically from PV INs resulted in low parvalbumin expression and loss of characteristic high firing rate throughout development. In addition, we observed reduced spontaneous excitatory synaptic activity at adult GluK1 lacking PV INs. Intriguingly, inactivation of GluK1 expression in adult PV INs was sufficient to abolish their high firing rate and to reduce PV expression levels, suggesting a role for GluK1 in dynamic regulation of PV IN maturation state. The PV IN dysfunction in the absence of GluK1 perturbed the balance between evoked excitatory vs. inhibitory synaptic inputs and long-term potentiation (LTP) in LA principal neurons, and resulted in aberrant development of the resting-state functional connectivity between mPFC and BLA. Behaviorally, the absence of GluK1 from PV INs associated with hyperactivity and increased fear of novelty. These results indicate a critical role for GluK1 KARs in regulation of PV IN function across development and suggest GluK1 as a potential therapeutic target for pathologies involving PV IN malfunction.
Collapse
Affiliation(s)
- Joni Haikonen
- HiLife Neuroscience Center and Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Rakenduvadhana Szrinivasan
- HiLife Neuroscience Center and Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Simo Ojanen
- HiLife Neuroscience Center and Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Jun Kyu Rhee
- HiLife Neuroscience Center and Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Maria Ryazantseva
- HiLife Neuroscience Center and Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Janne Sulku
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Gabija Zumaraite
- HiLife Neuroscience Center and Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Sari E Lauri
- HiLife Neuroscience Center and Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
5
|
Xiao L, Wei Y, Yang H, Fan W, Jiang L, Ye Y, Qin Y, Wang X, Ma C, Liao L. Proteomic Characteristics of the Prefrontal Cortex and Hippocampus in Mice with Chronic Ketamine-Induced Anxiety and Cognitive Impairment. Neuroscience 2024; 541:23-34. [PMID: 38266908 DOI: 10.1016/j.neuroscience.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 01/26/2024]
Abstract
Schizophrenia, a complex psychiatric disorder with diverse symptoms, has been linked to ketamine, known for its N-methyl-D-aspartate (NMDA) receptor antagonistic properties. Understanding the distinct roles and mechanisms of ketamine is crucial, especially regarding its induction of schizophrenia-like symptoms. Recent research highlights the impact of ketamine on key brain regions associated with schizophrenia, specifically the prefrontal cortex (PFC) and hippocampus (Hip). This study focused on these regions to explore proteomic changes related to anxiety and cognitive impairment in a chronic ketamine-induced mouse model of schizophrenia. After twelve consecutive days of ketamine administration, brain tissues from these regions were dissected and analyzed. Using tandem mass tag (TMT) labeling quantitative proteomics techniques, 34,797 and 46,740 peptides were identified in PFC and Hip, corresponding to 5,668 and 6,463 proteins, respectively. In the PFC, a total of 113 proteins showed differential expression, primarily associated with the immuno-inflammatory process, calmodulin, postsynaptic density protein, and mitochondrial function. In the Hip, 129 differentially expressed proteins were screened, mainly related to synaptic plasticity proteins and mitochondrial respiratory chain complex-associated proteins. Additionally, we investigated key proteins within the glutamatergic synapse pathway and observed decreased expression levels of phosphorylated CaMKII and CREB. Overall, the study unveiled a significant proteomic signature in the chronic ketamine-induced schizophrenia mouse model, characterized by anxiety and cognitive impairment in both the PFC and Hip, and this comprehensive proteomic dataset may not only enhance our understanding of the molecular mechanisms underlying ketamine-related mental disorders but also offer valuable insights for future disease treatments.
Collapse
Affiliation(s)
- Li Xiao
- Department of Forensic Toxicological Analysis, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Ying Wei
- College of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Hong Yang
- Department of Forensic Toxicological Analysis, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Weihao Fan
- Department of Forensic Toxicological Analysis, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Linzhi Jiang
- Department of Forensic Toxicological Analysis, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Yi Ye
- Department of Forensic Toxicological Analysis, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Yongping Qin
- Clinical Pharmacology Laboratory, Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xia Wang
- Department of Immunology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Chunling Ma
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang, China.
| | - Linchuan Liao
- Department of Forensic Toxicological Analysis, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China.
| |
Collapse
|
6
|
Oginga FO, Mpofana T. The impact of early life stress and schizophrenia on motor and cognitive functioning: an experimental study. Front Integr Neurosci 2023; 17:1251387. [PMID: 37928003 PMCID: PMC10622780 DOI: 10.3389/fnint.2023.1251387] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/22/2023] [Indexed: 11/07/2023] Open
Abstract
Background Early life stress (ELS) and parental psychopathology, such as schizophrenia (SZ), have been associated with altered neurobiological and behavioral outcomes later in life. Previous studies have investigated the effects of ELS and parental SZ on various aspects of behavior, however, we have studied the combined effects of these stressors and how they interact, as individuals in real-life situations may experience multiple stressors simultaneously. Objective The aim of this study was to investigate the impact of ELS and schizophrenia on locomotor activity, anxiety-like behavior, exploratory tendencies, and spatial memory in Sprague Dawley (SD) rats. Methods Male and female SD pups were randomly assigned to eight groups: control, ELS, schizophrenia, and ELS + schizophrenia. ELS was induced by prenatal stress (maternal stress) and maternal separation (MS) during the first 2 weeks of life, while SZ was induced by subcutaneous administration of ketamine. Behavioral tests included an open field test (OFT) for motor abilities and a Morris water maze (MWM) for cognitive abilities. ANOVA and post hoc Tukey tests were utilized to analyze the data. Results Our results show that ELS and parental psychopathology had enduring effects on SZ symptoms, particularly psychomotor retardation (p < 0.05). The OFT revealed increased anxiety-like behavior in the ELS group (p = 0.023) and the parental psychopathology group (p = 0.017) compared to controls. The combined ELS and parental psychopathology group exhibited the highest anxiety-like behavior (p = 0.006). The MWM analysis indicated impaired spatial memory in the ELS group (p = 0.012) and the combined ELS and parental psychopathology group (p = 0.003) compared to controls. Significantly, the exposure to ELS resulted in a decrease in the population of glial fibrillary acidic protein-positive (GFAP+) astrocytes. However, this effect was reversed by positive parental mental health. Conclusion Our findings highlight the interactive effects of ELS and parental psychopathology on anxiety-like behavior and spatial memory in rats. ELS was linked to increased anxiety-like behavior, while SZ was associated with anhedonia-like behavior. Positive parenting augments neuroplasticity, synaptic function, and overall cognitive capacities.
Collapse
Affiliation(s)
- Fredrick Otieno Oginga
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, University of Kwa-Zulu Natal, Durban, South Africa
| | - Thabisile Mpofana
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, University of Kwa-Zulu Natal, Durban, South Africa
- Department of Human Physiology, School of Bio-molecular & Chemical Sciences Mandela University, University Way, Summerstrand, Gqeberha, South Africa
| |
Collapse
|
7
|
Speers LJ, Sissons DJ, Cleland L, Bilkey DK. Hippocampal phase precession is preserved under ketamine, but the range of precession across a theta cycle is reduced. J Psychopharmacol 2023; 37:809-821. [PMID: 37515458 PMCID: PMC10399102 DOI: 10.1177/02698811231187339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
BACKGROUND Hippocampal phase precession, which depends on the precise spike timing of place cells relative to local theta oscillations, has been proposed to underlie sequential memory. N-methyl-D-asparate (NMDA) receptor antagonists such as ketamine disrupt memory and also reproduce several schizophrenia-like symptoms, including spatial memory impairments and disorganized cognition. It is possible that these impairments result from disruptions to phase precession. AIMS/METHODS We used an ABA design to test whether an acute, subanesthetic dose (7.5 mg/kg) of ketamine disrupted phase precession in CA1 of male rats as they navigated around a rectangular track for a food reward. RESULTS/OUTCOMES Ketamine did not affect the ability of CA1 place cells to precess despite changes to place cell firing rates, local field potential properties and locomotor speed. However, ketamine reduced the range of phase precession that occurred across a theta cycle. CONCLUSION Phase precession is largely robust to acute NMDA receptor antagonism by ketamine, but the reduced range of precession could have important implications for learning and memory.
Collapse
Affiliation(s)
| | - Daena J Sissons
- Psychology Department, Otago University Dunedin, New Zealand
- Psychology Department, University of Canterbury, Christchurch, New Zealand
| | - Lana Cleland
- Psychology Department, Otago University Dunedin, New Zealand
- Department Psychological Medicine, Otago University, Christchurch, New Zealand
- Department Population Health, Otago University, Christchurch, New Zealand
| | - David K Bilkey
- Psychology Department, Otago University Dunedin, New Zealand
| |
Collapse
|
8
|
Toxicity patterns associated with chronic ketamine exposure. TOXICOLOGIE ANALYTIQUE ET CLINIQUE 2023. [DOI: 10.1016/j.toxac.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
9
|
Sun W, Mei Y, Li X, Yang Y, An L. Maternal immune activation-induced proBDNF-mediated neural information processing dysfunction at hippocampal CA3-CA1 synapses associated with memory deficits in offspring. Front Cell Dev Biol 2022; 10:1018586. [PMID: 36438556 PMCID: PMC9691851 DOI: 10.3389/fcell.2022.1018586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/27/2022] [Indexed: 11/07/2023] Open
Abstract
Prenatal exposure to maternal infection increases the risk of offspring developing schizophrenia in adulthood. Current theories suggest that the consequences of MIA on mBDNF secretion may underlie the increased risk of cognitive disorder. There is little evidence for whether the expression of its precursor, proBDNF, is changed and how proBDNF-mediated signaling may involve in learning and memory. In this study, proBDNF levels were detected in the hippocampal CA1 and CA3 regions of male adult rats following MIA by prenatal polyI:C exposure. Behaviorally, learning and memory were assessed in contextual fear conditioning tasks. Local field potentials were recorded in the hippocampal CA3-CA1 pathway. The General Partial Directed Coherence approach was utilized to identify the directional alternation of neural information flow between CA3 and CA1 regions. EPSCs were recorded in CA1 pyramidal neurons to explore a possible mechanism involving the proBDNF-p75NTR signaling pathway. Results showed that the expression of proBDNF in the polyI:C-treated offspring was abnormally enhanced in both CA3 and CA1 regions. Meanwhile, the mBDNF expression was reduced in both hippocampal regions. Intra-hippocampal CA1 but not CA3 injection with anti-proBDNF antibody and p75NTR inhibitor TAT-Pep5 effectively mitigated the contextual memory deficits. Meanwhile, reductions in the phase synchronization between CA3 and CA1 and the coupling directional indexes from CA3 to CA1 were enhanced by the intra-CA1 infusions. Moreover, blocking proBDNF/p75NTR signaling could reverse the declined amplitude of EPSCs in CA1 pyramidal neurons, indicating the changes in postsynaptic information processing in the polyI:C-treated offspring. Therefore, the changes in hippocampal proBDNF activity in prenatal polyI:C exposure represent a potential mechanism involved in NIF disruption leading to contextual memory impairments.
Collapse
Affiliation(s)
- Wei Sun
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Yazi Mei
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoliang Li
- Department of Neurology, Jinan Geriatric/Rehabilitation Hospital, Jinan, China
| | - Yang Yang
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Lei An
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- Department of Neurology, Jinan Geriatric/Rehabilitation Hospital, Jinan, China
- Department of Neurology, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| |
Collapse
|
10
|
Grieco SF, Castrén E, Knudsen GM, Kwan AC, Olson DE, Zuo Y, Holmes TC, Xu X. Psychedelics and Neural Plasticity: Therapeutic Implications. J Neurosci 2022; 42:8439-8449. [PMID: 36351821 PMCID: PMC9665925 DOI: 10.1523/jneurosci.1121-22.2022] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Psychedelic drugs have reemerged as tools to treat several brain disorders. Cultural attitudes toward them are changing, and scientists are once again investigating the neural mechanisms through which these drugs impact brain function. The significance of this research direction is reflected by recent work, including work presented by these authors at the 2022 meeting of the Society for Neuroscience. As of 2022, there were hundreds of clinical trials recruiting participants for testing the therapeutic effects of psychedelics. Emerging evidence suggests that psychedelic drugs may exert some of their long-lasting therapeutic effects by inducing structural and functional neural plasticity. Herein, basic and clinical research attempting to elucidate the mechanisms of these compounds is showcased. Topics covered include psychedelic receptor binding sites, effects of psychedelics on gene expression, and on dendrites, and psychedelic effects on microcircuitry and brain-wide circuits. We describe unmet clinical needs and the current state of translation to the clinic for psychedelics, as well as other unanswered basic neuroscience questions addressable with future studies.
Collapse
Affiliation(s)
- Steven F Grieco
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, California 92697
| | - Eero Castrén
- Neuroscience Center-HiLIFE, University of Helsinki, Helsinki, Finland 00014
| | - Gitte M Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark 2200
| | - Alex C Kwan
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853
| | - David E Olson
- Department of Chemistry, University of California-Davis, Davis, California 95616
- Department of Biochemistry & Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, California 95817
- Center for Neuroscience, University of California-Davis, Davis, California 95618
| | - Yi Zuo
- Department of Molecular, Cell and Developmental Biology, University of California-Santa Cruz, Santa Cruz, California 95064
| | - Todd C Holmes
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California 92697
- Center for Neural Circuit Mapping, University of California-Irvine, Irvine, California 92697
| | - Xiangmin Xu
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, California 92697
- Center for Neural Circuit Mapping, University of California-Irvine, Irvine, California 92697
| |
Collapse
|
11
|
Li R, Zhang W, Zhang J, Zhang H, Chen H, Hu Z, Yao Z, Chen H, Hu B. Sustained Activity of Hippocampal Parvalbumin-Expressing Interneurons Supports Trace Eyeblink Conditioning in Mice. J Neurosci 2022; 42:8343-8360. [PMID: 36167784 PMCID: PMC9653279 DOI: 10.1523/jneurosci.0834-22.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/25/2022] [Accepted: 09/23/2022] [Indexed: 11/21/2022] Open
Abstract
Although recent studies have revealed an involvement of hippocampal interneurons in learning the association among time-separated events, its underlying cellular mechanisms remained not fully clarified. Here, we combined multichannel recording and optogenetics to elucidate how the hippocampal parvalbumin-expressing interneurons (PV-INs) support associative learning. To address this issue, we trained the mice (both sexes) to learn hippocampus-dependent trace eyeblink conditioning (tEBC) in which they associated a light flash conditioned stimulus (CS) with a corneal air puff unconditioned stimuli (US) separated by a 250 ms time interval. We found that the hippocampal PV-INs exhibited learning-associated sustained activity at the early stage of tEBC acquisition. Moreover, the PV-IN sustained activity was positively correlated with the occurrence of conditioned eyeblink responses at the early learning stage. Suppression of the PV-IN sustained activity impaired the acquisition of tEBC, whereas the PV-IN activity suppression had no effect on the acquisition of delay eyeblink conditioning, a hippocampus-independent learning task. Learning-associated augmentation in the excitatory pyramidal cell-to-PVIN drive may contribute to the formation of PV-IN sustained activity. Suppression of the PV-IN sustained activity disrupted hippocampal gamma but not theta band oscillation during the CS-US interval period. Gamma frequency (40 Hz) activation of the PV-INs during the CS-US interval period facilitated the acquisition of tEBC. Our current findings highlight the involvement of hippocampal PV-INs in tEBC acquisition and reveal insights into the PV-IN activity kinetics which are of key importance for the hippocampal involvement in associative learning.SIGNIFICANCE STATEMENT The cellular mechanisms underlying associative learning have not been fully clarified. Previous studies focused on the involvement of hippocampal pyramidal cells in associative learning, whereas the activity and function of hippocampal interneurons were largely neglected. We herein demonstrated the hippocampal PV-INs exhibited learning-associated sustained activity, which was required for the acquisition of tEBC. Furthermore, we showed evidence that the PV-IN sustained activity might have arisen from the learning-associated augmentation in excitatory pyramidal cell-to-PVIN drive and contributed to learning-associated augmentation in gamma band oscillation during tEBC acquisition. Our findings provide more mechanistic understanding of the cellular mechanisms underlying the hippocampal involvement in associative learning.
Collapse
Affiliation(s)
- Rongrong Li
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Weiwei Zhang
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Jie Zhang
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Haibo Zhang
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Hui Chen
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Zhian Hu
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Zhongxiang Yao
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Hao Chen
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Army Medical University, Chongqing 400038, China
| | - Bo Hu
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Army Medical University, Chongqing 400038, China
| |
Collapse
|
12
|
Nogo D, Nazal H, Song Y, Teopiz KM, Ho R, McIntyre RS, Lui LMW, Rosenblat JD. A review of potential neuropathological changes associated with ketamine. Expert Opin Drug Saf 2022; 21:813-831. [PMID: 35502632 DOI: 10.1080/14740338.2022.2071867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION : Ketamine is an established intervention for treatment resistant depression (TRD). However, long-term adverse effects with repeated doses remain insufficiently characterized. Although several animal models have shown N-methyl-D-aspartate glutamate receptor antagonists to produce various neuropathological reactions, attention surrounding the risk of brain lesions has been minimal. AREAS COVERED : The current review focuses on potential neuropathological changes associated with ketamine. Search terms included variations of ketamine, Olney lesions, tau hyperphosphorylation, and parvalbumin interneurons. EXPERT OPINION : Daily high-dose ketamine use in substance use disorder (SUD) populations was associated with clear neurotoxic effects, while no studies specifically evaluated effects of ketamine protocols used for TRD. It is difficult to discern effects directly attributable to ketamine due to methodological factors, such as comorbidities and dramatic differences in dose in SUD populations versus infrequent sub-anesthetic doses typically prescribed for TRD. Taken together, animal models and human ketamine SUD populations suggest potential neuropathology with chronic high-dose ketamine exposure exceeding those recommended for adults with TRD. It is unknown whether repeat sub-anesthetic dosing of ketamine in adults with TRD is associated with Olney lesions or other neuropathologies. In the interim, practitioners should be vigilant for this possibility recognizing that the condition itself is associated with neurodegenerative processes.
Collapse
Affiliation(s)
- Danica Nogo
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Canada
| | - Hana Nazal
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Canada.,McMaster University, Hamilton, Canada
| | - Yuetong Song
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Canada.,University of Toronto, Toronto, Canada
| | - Kayla M Teopiz
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Canada.,University of Toronto, Toronto, Canada.,Brain and Cognition Discovery Foundation, Toronto, Canada
| | - Roger Ho
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Canada.,University of Toronto, Toronto, Canada.,Brain and Cognition Discovery Foundation, Toronto, Canada
| | - Leanna M W Lui
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Canada.,University of Toronto, Toronto, Canada
| | - Joshua D Rosenblat
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Canada.,University of Toronto, Toronto, Canada.,Brain and Cognition Discovery Foundation, Toronto, Canada
| |
Collapse
|
13
|
Strous JFM, Weeland CJ, van der Draai FA, Daams JG, Denys D, Lok A, Schoevers RA, Figee M. Brain Changes Associated With Long-Term Ketamine Abuse, A Systematic Review. Front Neuroanat 2022; 16:795231. [PMID: 35370568 PMCID: PMC8972190 DOI: 10.3389/fnana.2022.795231] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/10/2022] [Indexed: 12/28/2022] Open
Abstract
Recently, the abuse of ketamine has soared. Therefore, it is of great importance to study its potential risks. The effects of prolonged ketamine on the brain can be observationally studied in chronic recreational users. We performed a systematic review of studies reporting functional and structural brain changes after repeated ketamine abuse. We searched the following electronic databases: Medline, Embase and PsycINFO We screened 11,438 records and 16 met inclusion criteria, totaling 440 chronic recreational ketamine users (2–9.7 years; mean use 2.4 g/day), 259 drug-free controls and 44 poly-drug controls. Long-term recreational ketamine use was associated with lower gray matter volume and less white matter integrity, lower functional thalamocortical and corticocortical connectivity. The observed differences in both structural and functional neuroanatomy between ketamine users and controls may explain some of its long-term cognitive and psychiatric side effects, such as memory impairment and executive functioning. Given the effect that long-term ketamine exposure may yield, an effort should be made to curb its abuse.
Collapse
Affiliation(s)
- Jurriaan F. M. Strous
- Department of Psychiatry, University Medical Center Groningen, Groningen, Netherlands
- *Correspondence: Jurriaan F. M. Strous
| | - Cees J. Weeland
- Amsterdam University Medical Center, Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | - Joost G. Daams
- Amsterdam University Medical Center, Location Academic Medical Center, Amsterdam, Netherlands
| | - Damiaan Denys
- Amsterdam University Medical Center, Location Academic Medical Center, Amsterdam, Netherlands
- Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Anja Lok
- Amsterdam University Medical Center, Location Academic Medical Center, Amsterdam, Netherlands
| | - Robert A. Schoevers
- Department of Psychiatry, University Medical Center Groningen, Groningen, Netherlands
| | - Martijn Figee
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
14
|
Riggs LM, An X, Pereira EFR, Gould TD. (R,S)-ketamine and (2R,6R)-hydroxynorketamine differentially affect memory as a function of dosing frequency. Transl Psychiatry 2021; 11:583. [PMID: 34772915 PMCID: PMC8590048 DOI: 10.1038/s41398-021-01685-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/21/2021] [Accepted: 09/29/2021] [Indexed: 12/14/2022] Open
Abstract
A single subanesthetic infusion of ketamine can rapidly alleviate symptoms of treatment-resistant major depression. Since repeated administration is required to sustain symptom remission, it is important to characterize the potential untoward effects of prolonged ketamine exposure. While studies suggest that ketamine can alter cognitive function, it is unclear to what extent these effects are modulated by the frequency or chronicity of treatment. To test this, male and female adolescent (postnatal day [PD] 35) and adult (PD 60) BALB/c mice were treated for four consecutive weeks, either daily or thrice-weekly, with (R,S)-ketamine (30 mg/kg, intraperitoneal) or its biologically active metabolite, (2R,6R)-hydroxynorketamine (HNK; 30 mg/kg, intraperitoneal). Following drug cessation, memory performance was assessed in three operationally distinct tasks: (1) novel object recognition to assess explicit memory, (2) Y-maze to assess working memory, and (3) passive avoidance to assess implicit memory. While drug exposure did not influence working memory performance, thrice-weekly ketamine and daily (2R,6R)-HNK led to explicit memory impairment in novel object recognition independent of sex or age of exposure. Daily (2R,6R)-HNK impaired implicit memory in the passive-avoidance task whereas thrice-weekly (2R,6R)-HNK tended to improve it. These differential effects on explicit and implicit memory possibly reflect the unique mechanisms by which ketamine and (2R,6R)-HNK alter the functional integrity of neural circuits that subserve these distinct cognitive domains, a topic of clinical and mechanistic relevance to their antidepressant actions. Our findings also provide additional support for the importance of dosing frequency in establishing the cognitive effects of repeated ketamine exposure.
Collapse
Affiliation(s)
- Lace M Riggs
- Program in Neuroscience and Training Program in Integrative Membrane Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Xiaoxian An
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Edna F R Pereira
- Department of Epidemiology and Public Health, Division of Translational Toxicology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Todd D Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Veterans Affairs Maryland Health Care System, Baltimore, MD, 21201, USA.
| |
Collapse
|
15
|
Klimczak P, Rizzo A, Castillo-Gómez E, Perez-Rando M, Gramuntell Y, Beltran M, Nacher J. Parvalbumin Interneurons and Perineuronal Nets in the Hippocampus and Retrosplenial Cortex of Adult Male Mice After Early Social Isolation Stress and Perinatal NMDA Receptor Antagonist Treatment. Front Synaptic Neurosci 2021; 13:733989. [PMID: 34630066 PMCID: PMC8493248 DOI: 10.3389/fnsyn.2021.733989] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/30/2021] [Indexed: 12/25/2022] Open
Abstract
Both early life aversive experiences and intrinsic alterations in early postnatal neurodevelopment are considered predisposing factors for psychiatric disorders, such as schizophrenia. The prefrontal cortex and the hippocampus have protracted postnatal development and are affected in schizophrenic patients. Interestingly, similar alterations have been observed in the retrosplenial cortex (RSC). Studies in patients and animal models of schizophrenia have found alterations in cortical parvalbumin (PV) expressing interneurons, making them good candidates to study the etiopathology of this disorder. Some of the alterations observed in PV+ interneurons may be mediated by perineuronal nets (PNNs), specialized regions of the extracellular matrix, which frequently surround these inhibitory neurons. In this study, we have used a double hit model (DHM) combining a single perinatal injection of an NMDAR antagonist (MK801) to disturb early postnatal development and post-weaning social isolation as an early life aversive experience. We have investigated PV expressing interneurons and PNNs in the hippocampus and the RSC of adult male mice, using unbiased stereology. In the CA1, but not in the CA3 region, of the hippocampus, the number of PNNs and PV + PNN+ cells was affected by the drug treatment, and a significant decrease of these parameters was observed in the groups of animals that received MK801. The percentage of PNNs surrounding PV+ cells was significantly decreased after treatment in both hippocampal regions; however, the impact of isolation was observed only in CA1, where isolated animals presented lower percentages. In the RSC, we observed significant effects of isolation, MK801 and the interaction of both interventions on the studied parameters; in the DHM, we observed a significantly lower number of PV+, PNNs, and PV+PNN+cells when compared to control mice. Similar significant decreases were observed for the groups of animals that were just isolated or treated with MK801. To our knowledge, this is the first report on such alterations in the RSC in an animal model combining neurodevelopmental alterations and aversive experiences during infancy/adolescence. These results show the impact of early-life events on different cortical regions, especially on the structure and plasticity of PV+ neurons and their involvement in the emergence of certain psychiatric disorders.
Collapse
Affiliation(s)
- Patrycja Klimczak
- Neurobiology Unit, Program in Neurosciences and Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain.,Spanish National Network for Research in Mental Health, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Arianna Rizzo
- Neurobiology Unit, Program in Neurosciences and Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain
| | - Esther Castillo-Gómez
- Neurobiology Unit, Program in Neurosciences and Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain.,Spanish National Network for Research in Mental Health, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain
| | - Marta Perez-Rando
- Neurobiology Unit, Program in Neurosciences and Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain.,Spanish National Network for Research in Mental Health, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain
| | - Yaiza Gramuntell
- Neurobiology Unit, Program in Neurosciences and Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain
| | - Marc Beltran
- Neurobiology Unit, Program in Neurosciences and Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain
| | - Juan Nacher
- Neurobiology Unit, Program in Neurosciences and Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain.,Spanish National Network for Research in Mental Health, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain
| |
Collapse
|
16
|
Chronic administration of ketamine induces cognitive deterioration by restraining synaptic signaling. Mol Psychiatry 2021; 26:4702-4718. [PMID: 32488127 DOI: 10.1038/s41380-020-0793-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 05/06/2020] [Accepted: 05/18/2020] [Indexed: 12/20/2022]
Abstract
The discovery of the rapid antidepressant effects of ketamine has arguably been the most important advance in depression treatment. Recently, it was reported that repeated long-term ketamine administration is effective in preventing relapse of depression, which may broaden the clinical use of ketamine. However, long-term treatment with ketamine produces cognitive impairments, and the underlying molecular mechanisms for these impairments are largely unknown. Here, we found that chronic in vivo exposure to ketamine for 28 days led to decreased expression of the glutamate receptor subunits GluA1, GluA2, GluN2A, and GluN2B; decreased expression of the synaptic proteins Syn and PSD-95; decreased dendrite spine density; impairments in long-term potentiation (LTP) and synaptic transmission in the hippocampal CA1 area; and deterioration of learning and memory in mice. Furthermore, the reduced glutamate receptor subunit and synaptic protein expression and the LTP deficits were still observed on day 28 after the last injection of ketamine. We found that the expression and phosphorylation of CaMKIIβ, ERK1/2, CREB, and NF-κB were inhibited by ketamine. The reductions in glutamate receptor subunit expression and dendritic spine density and the deficits in LTP, synaptic transmission, and cognition were alleviated by overexpression of CaMKIIβ. Our study indicates that inhibition of CaMKIIβ-ERK1/2-CREB/NF-κB signaling may mediate chronic ketamine use-associated cognitive impairments by restraining synaptic signaling. Hypofunction of the glutamatergic system might be the underlying mechanism accounting for chronic ketamine use-associated cognitive impairments. Our findings may suggest possible strategies to alleviate ketamine use-associated cognitive deficits and broaden the clinical use of ketamine in depression treatment.
Collapse
|
17
|
Zhan JQ, Chen CN, Wu SX, Wu HJ, Zou K, Xiong JW, Wei B, Yang YJ. Flavonoid fisetin reverses impaired hippocampal synaptic plasticity and cognitive function by regulating the function of AMPARs in a male rat model of schizophrenia. J Neurochem 2021; 158:413-428. [PMID: 33882624 DOI: 10.1111/jnc.15370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/19/2021] [Accepted: 04/09/2021] [Indexed: 12/21/2022]
Abstract
Cognitive deficits are the core feature of schizophrenia and effective treatment strategies are still missing. Previous studies have reported that fisetin promotes long-term potentiation (LTP) and cognitive function in normal rodents and other model animals of neurological diseases. The aim of this study was to assess the effect of fisetin on synaptic plasticity and cognitive deficits caused by a brief disruption of N-methyl-D-aspartate receptors (NMDARs) with dizocilpine (MK-801) during early development in rats. The cognitive performance was examined by the Morris water maze task and a fear conditioning test. Hippocampal synaptic plasticity was investigated by field potential recording. The expression of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs) and cognition-related proteins was measured by western blotting. We found that intraperitoneal administration of fisetin rescued hippocampus-dependent spatial and contextual fear memory in MK-801 rats. In parallel with these behavioral results, fisetin treatment in MK-801 rats reversed the impairment of hippocampal LTP. At the molecular level, fisetin treatment selectively increased the phosphorylation and surface expression of AMPA receptor subunit 1 (GluA1) in MK-801-treated rats. Moreover, fisetin restored the phosphorylation levels of calcium-calmodulin-dependent kinaseII (CaMKII), cAMP response element-binding protein (CREB), and the extracellular signal-regulated kinase (ERK1/2) in MK-801-treated rats. Collectively, our findings demonstrate that fisetin treatment can reverse the deficits of hippocampal synaptic plasticity and memory in a male rat model of schizophrenia by restoring the phosphorylation and surface expression of AMPAR GluA1 subunit, suggesting fisetin as a promising therapeutic candidate for schizophrenia-associated cognitive deficits.
Collapse
Affiliation(s)
- Jin-Qiong Zhan
- Medical Experimental Center, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, P.R. China
- Department of Psychiatry, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, P.R. China
- Jangxi Provincial Clinical Research Center on Mental Disorders, Nanchang, P.R. China
| | - Chun-Nuan Chen
- Department of Neurology, The Second Clinical Medical College, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, P.R. China
| | - Si-Xian Wu
- Medical Experimental Center, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, P.R. China
- Department of Psychology, Jiangxi Normal University, Nanchang, P.R. China
| | - Han-Jun Wu
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Ke Zou
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Jian-Wen Xiong
- Department of Psychiatry, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, P.R. China
| | - Bo Wei
- Medical Experimental Center, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, P.R. China
- Department of Psychiatry, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, P.R. China
- Jangxi Provincial Clinical Research Center on Mental Disorders, Nanchang, P.R. China
| | - Yuan-Jian Yang
- Medical Experimental Center, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, P.R. China
- Department of Psychiatry, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, P.R. China
- Jangxi Provincial Clinical Research Center on Mental Disorders, Nanchang, P.R. China
| |
Collapse
|
18
|
Fujikawa R, Yamada J, Jinno S. Subclass imbalance of parvalbumin-expressing GABAergic neurons in the hippocampus of a mouse ketamine model for schizophrenia, with reference to perineuronal nets. Schizophr Res 2021; 229:80-93. [PMID: 33229224 DOI: 10.1016/j.schres.2020.11.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/24/2020] [Accepted: 11/12/2020] [Indexed: 11/29/2022]
Abstract
Impairments of parvalbumin-expressing GABAergic neurons (PV+ neurons) and specialized extracellular structures called perineuronal nets (PNNs) have been found in schizophrenic patients. In this study, we examined potential alterations in four subclasses of PV+ neurons colocalized with PNNs in the hippocampus of a mouse ketamine model for schizophrenia. Because biosynthesis of human natural killer-1 (HNK-1) is shown to be associated with the risk of schizophrenia, here we used mouse monoclonal Cat-315 antibody, which recognizes HNK-1 glycans on PNNs. Once-daily intraperitoneal injections of ketamine for seven consecutive days induced hyper-locomotor activity in the open field tests. The prepulse inhibition (PPI) test showed that PPI scores declined in ketamine-treated mice compared to vehicle-treated mice. The densities of PV+ neurons and Cat-315+ PNNs declined in the CA1 region of ketamine-treated mice. Interestingly, the density of Cat-315+/PV+ neurons was lower in ketamine-treated mice than in vehicle-treated mice, whereas the density of Cat-315-/PV+ neurons was not affected by ketamine. Among the four subclasses of PV+ neurons, the densities of Cat-315+/PV+ basket cells and Cat-315-/PV+ axo-axonic cells were lower in ketamine-treated mice than in vehicle-treated mice, while the densities of Cat-315-/PV+ basket cells and Cat-315+/PV+ axo-axonic cells were not affected by ketamine. Taken together, PNNs may not play a simple neuroprotective role against ketamine. Because different subclasses of PV+ neurons are considered to play distinct roles in the hippocampal neuronal network, the ketamine-induced subclass imbalance of PV+ neurons may result in abnormal network activity, which underlies the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Risako Fujikawa
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Jun Yamada
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Shozo Jinno
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| |
Collapse
|
19
|
Ruden JB, Dugan LL, Konradi C. Parvalbumin interneuron vulnerability and brain disorders. Neuropsychopharmacology 2021; 46:279-287. [PMID: 32722660 PMCID: PMC7852528 DOI: 10.1038/s41386-020-0778-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/02/2020] [Accepted: 07/21/2020] [Indexed: 12/31/2022]
Abstract
Parvalbumin-expressing interneurons (PV-INs) are highly vulnerable to stressors and have been implicated in many neuro-psychiatric diseases such as schizophrenia, Alzheimer's disease, autism spectrum disorder, and bipolar disorder. We examined the literature about the current knowledge of the physiological properties of PV-INs and gathered results from diverse research areas to provide insight into their vulnerability to stressors. Among the factors that confer heightened vulnerability are the substantial energy requirements, a strong excitatory drive, and a unique developmental trajectory. Understanding these stressors and elaborating on their impact on PV-IN health is a step toward developing therapies to protect these neurons in various disease states and to retain critical brain functions.
Collapse
Affiliation(s)
- Jacob B Ruden
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Laura L Dugan
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Division of Geriatric Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christine Konradi
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
- Department of Psychiatry, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
20
|
Okubo Eneni AE, Ben-Azu B, Mayowa Ajayi A, Oladele Aderibigbe A. Diosmin attenuates schizophrenia-like behavior, oxidative stress, and acetylcholinesterase activity in mice. Drug Metab Pers Ther 2020; 0:/j/dmdi.ahead-of-print/dmdi-2020-0119/dmdi-2020-0119.xml. [PMID: 33055311 DOI: 10.1515/dmdi-2020-0119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/22/2020] [Indexed: 11/15/2022]
Abstract
Objectives Diosmin (DSM), commonly isolated from various plants, is a citrus nutrient that has been shown to increase intracellular antioxidant capacity and assuage symptoms associated with neurological disorders. Deficiency in the antioxidant system has been implicated in the pathogenesis of schizophrenia. The use of antioxidants as neuroprotectants to suppress schizophrenia pathology is increasingly being sought. Hence, this study investigated the effects of DSM on schizophrenia-like behavior and the underlying changes in biomarkers of oxidative stress and acetylcholinesterase (AChE) activity in mice. Methods The acute antipsychotic effect of DSM (25, 50, and 100 mg/kg, intraperitoneally [i.p.]), haloperidol (1 mg/kg, i.p.), and risperidone (RIS) (0.5 mg/kg, i.p.) was investigated on stereotyped behaviors induced by apomorphine (2 mg/kg, i.p.) and ketamine (10 mg/kg, i.p.). The effect of DSM on ketamine-induced hyperlocomotion, immobility enhancement, and its woodblock cataleptogenic potential was evaluated. Also, the subacute antipsychotic potential of DSM was assessed following intraperitoneal injection of DSM (25-100 mg/kg, i.p.) alone and in combination with ketamine (20 mg/kg, i.p.) for 10 days. The behaviors of the animals were assessed in the open-field, Y-maze, and forced swim tests. Brains of the animals were afterward processed for spectrophotometric assay of oxidative stress and AChE contents. Results DSM (25, 50, and 100 mg/kg) attenuated apormorphine-induced stereotypy and devoid of cataleptogenic effect. DSM and RIS reversed acute and subacute ketamine-induced schizophrenia-like behaviors. Disomin alone increased cognitive function and reduced despair-like phenotype. Furthermore, DSM increased superoxide dismutase and glutathione and decreased malondialdehyde and AChE levels in naïve and ketamine schizophrenic mice. Conclusions DSM prevents schizophrenia-like behavior, attenuates oxidative stress, and AChE activity in naïve and ketamine schizophrenic mice.
Collapse
Affiliation(s)
- Aya-Ebi Okubo Eneni
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Benneth Ben-Azu
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port Harcourt, Nigeria
| | - Abayomi Mayowa Ajayi
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Adegbuyi Oladele Aderibigbe
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| |
Collapse
|
21
|
Okubo Eneni AE, Ben-Azu B, Mayowa Ajayi A, Oladele Aderibigbe A. Diosmin attenuates schizophrenia-like behavior, oxidative stress, and acetylcholinesterase activity in mice. Drug Metab Pers Ther 2020; 35:dmpt-2020-0119. [PMID: 34704698 DOI: 10.1515/dmpt-2020-0119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/22/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Diosmin (DSM), commonly isolated from various plants, is a citrus nutrient that has been shown to increase intracellular antioxidant capacity and assuage symptoms associated with neurological disorders. Deficiency in the antioxidant system has been implicated in the pathogenesis of schizophrenia. The use of antioxidants as neuroprotectants to suppress schizophrenia pathology is increasingly being sought. Hence, this study investigated the effects of DSM on schizophrenia-like behavior and the underlying changes in biomarkers of oxidative stress and acetylcholinesterase (AChE) activity in mice. METHODS The acute antipsychotic effect of DSM (25, 50, and 100 mg/kg, intraperitoneally [i.p.]), haloperidol (1 mg/kg, i.p.), and risperidone (RIS) (0.5 mg/kg, i.p.) was investigated on stereotyped behaviors induced by apomorphine (2 mg/kg, i.p.) and ketamine (10 mg/kg, i.p.). The effect of DSM on ketamine-induced hyperlocomotion, immobility enhancement, and its woodblock cataleptogenic potential was evaluated. Also, the subacute antipsychotic potential of DSM was assessed following intraperitoneal injection of DSM (25-100 mg/kg, i.p.) alone and in combination with ketamine (20 mg/kg, i.p.) for 10 days. The behaviors of the animals were assessed in the open-field, Y-maze, and forced swim tests. Brains of the animals were afterward processed for spectrophotometric assay of oxidative stress and AChE contents. RESULTS DSM (25, 50, and 100 mg/kg) attenuated apormorphine-induced stereotypy and devoid of cataleptogenic effect. DSM and RIS reversed acute and subacute ketamine-induced schizophrenia-like behaviors. Disomin alone increased cognitive function and reduced despair-like phenotype. Furthermore, DSM increased superoxide dismutase and glutathione and decreased malondialdehyde and AChE levels in naïve and ketamine schizophrenic mice. CONCLUSIONS DSM prevents schizophrenia-like behavior, attenuates oxidative stress, and AChE activity in naïve and ketamine schizophrenic mice.
Collapse
Affiliation(s)
- Aya-Ebi Okubo Eneni
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Benneth Ben-Azu
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria.,Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port Harcourt, Nigeria
| | - Abayomi Mayowa Ajayi
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Adegbuyi Oladele Aderibigbe
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| |
Collapse
|
22
|
Martínez-Pinteño A, García-Cerro S, Mas S, Torres T, Boloc D, Rodríguez N, Lafuente A, Gassó P, Arnaiz JA, Parellada E. The positive allosteric modulator of the mGlu2 receptor JNJ-46356479 partially improves neuropathological deficits and schizophrenia-like behaviors in a postnatal ketamine mice model. J Psychiatr Res 2020; 126:8-18. [PMID: 32407891 DOI: 10.1016/j.jpsychires.2020.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/10/2020] [Accepted: 04/18/2020] [Indexed: 12/30/2022]
Abstract
Current antipsychotics have limited efficacy in controlling cognitive and negative symptoms of schizophrenia (SZ). Glutamatergic dysregulation has been implicated in the pathophysiology of SZ, based on the capacity of N-methyl-D-aspartate receptor (NMDAR) antagonists such as ketamine (KET) to induce SZ-like behaviors. This could be related to their putative neuropathological effect on gamma-aminobutyric (GABAergic) interneurons expressing parvalbumin (PV), which would lead to a hyperglutamatergic condition. Metabotropic glutamate receptor 2 (mGluR2) negatively modulates glutamate release and has been considered a potential clinical target for novel antipsychotics drugs. Our aim was to evaluate the efficacy of JNJ-46356479 (JNJ), a positive allosteric modulator (PAM) of the mGluR2, in reversing neuropathological and behavioral deficits induced in a postnatal KET mice model of SZ. These animals presented impaired spontaneous alternation in the Y-maze test, suggesting deficits in spatial working memory, and a decrease in social motivation and memory, assessed in both the Three-Chamber and the Five Trial Social Memory tests. Interestingly, JNJ treatment of adult mice partially reversed these deficits. Mice treated with KET also showed a reduction in PV+ in the mPFC and dentate gyrus together with an increase in c-Fos expression in this hippocampal area. Compared to the control group, mice treated with KET + JNJ showed a similar PV density and c-Fos activity pattern. Our results suggest that pharmacological treatment with a PAM of the mGluR2 such as JNJ could help improve cognitive and negative symptoms related to SZ.
Collapse
Affiliation(s)
| | - Susana García-Cerro
- Department of Basic Clinical Practice, Unit of Pharmacology, University of Barcelona, Spain
| | - Sergi Mas
- Department of Basic Clinical Practice, Unit of Pharmacology, University of Barcelona, Spain; The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Teresa Torres
- Department of Basic Clinical Practice, Unit of Pharmacology, University of Barcelona, Spain
| | - Daniel Boloc
- Department of Medicine, University of Barcelona, Spain
| | - Natalia Rodríguez
- Department of Basic Clinical Practice, Unit of Pharmacology, University of Barcelona, Spain
| | - Amalia Lafuente
- Department of Basic Clinical Practice, Unit of Pharmacology, University of Barcelona, Spain; The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Patricia Gassó
- Department of Basic Clinical Practice, Unit of Pharmacology, University of Barcelona, Spain; The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Joan Albert Arnaiz
- Department of Basic Clinical Practice, Unit of Pharmacology, University of Barcelona, Spain; The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain; Clinical Pharmacology Department, Hospital Clínic de Barcelona, Spain.
| | - Eduard Parellada
- The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; Department of Medicine, University of Barcelona, Spain; Barcelona Clinic Schizophrenia Unit (BCSU), Institute of Neuroscience, Hospital Clinic of Barcelona, University of Barcelona, Spain.
| |
Collapse
|
23
|
Ben-Azu B, Emokpae O, Ajayi AM, Jarikre TA, Orhode V, Aderibigbe AO, Umukoro S, Iwalewa EO. Repeated psychosocial stress causes glutamic acid decarboxylase isoform-67, oxidative-Nox-2 changes and neuroinflammation in mice: Prevention by treatment with a neuroactive flavonoid, morin. Brain Res 2020; 1744:146917. [PMID: 32474018 DOI: 10.1016/j.brainres.2020.146917] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 05/11/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022]
Abstract
Psychosocial stress and biological predispositions are linked to mood and personality disorders related to psychiatric behaviors. Targeting neuroinflammation and oxidative stress has been recognized as a potential strategy for the prevention of psychosocial stress-induced psychiatric disorders. Morin, a bioactive compound isolated from mulberry leaf has been shown to produce antiamnesic, antipsychotic and anti-inflammatory effects relative to ginseng, a well-known adaptogen. Hence, the present study investigated the effect of morin on social-defeat stress (SDS)-induced behavioral, neurochemical, neuroimmune and neurooxidative changes in mice using intruder-resident paradigm. The intruder male mice were distributed into 6 groups (n = 10). Groups 1 (normal-control) and 2 (SDS-control) received normal saline, groups 3-5 had morin (25-100 mg/kg) while group 6 received ginseng (50 mg/kg) intraperitoneally daily for 14 days. Thirty minutes after treatment from days 7-14 onwards, mice in groups 2-6 were exposed to SDS for 10 min physical and psychological confrontations respectively with aggressive-resident mice. Neurobehavioral effects (locomotor activity, cognitive performance, anxiety- and depressive-like behavior) were assessed on day 14. Biomarkers of oxidative/nitrergic stress and neuroinflammation; acetylcholinesterase (AChE) and glutamic-acid decarboxylase-67 (GAD67) were measured in the striatum, prefrontal-cortex and hippocampus. Behavioral deficits induced by SDS were attenuated by morin and ginseng. Both morin and ginseng decreasedmalondialdehyde, nitrite levels and increased glutathione concentrations in the brain regions. They also reduced inflammatory mediators (TNF-α, IL-6, COX-2 and NF-κB), AChE activity and Nox-2 expression in the specific brain regions. However, morin increased the levels of GAD67 in the striatum, prefrontal-cortex and hippocampus in contrast to ginseng. Our results suggest that morin mitigates SDS-induced neurobehavioral deficits through enhancement of GAD67, inhibition of AChE activity, oxidative stress, Nox-2 and neuroinflammatory pathways.
Collapse
Affiliation(s)
- Benneth Ben-Azu
- Department of Pharmacology, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port Harcourt, River States, Nigeria; Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria.
| | - Osagie Emokpae
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Abayomi Mayowa Ajayi
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Thiophilus Aghogho Jarikre
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Valiant Orhode
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Adegbuyi Oladele Aderibigbe
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Solomon Umukoro
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Ezekiel O Iwalewa
- Inflammatory and Immunopharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| |
Collapse
|
24
|
Xie R, Hong S, Ye Y, Wang X, Chen F, Yang L, Yan Y, Liao L. Ketamine Affects the Expression of ErbB4 in the Hippocampus and Prefrontal Cortex of Rats. J Mol Neurosci 2020; 70:962-967. [PMID: 32096126 DOI: 10.1007/s12031-020-01502-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 02/05/2020] [Indexed: 12/16/2022]
Abstract
Schizophrenia is a severe chronic neuropsychiatric disorder, and its exact pathogenesis remains unclear. This study investigated the effect of ketamine on the expression of ErbB4 (considered a schizophrenia candidate gene) in the hippocampus and prefrontal cortex of rats. Rats were randomly divided into four groups: control, low-dose, medium-dose and high-dose groups. The low-dose, medium-dose and high-dose groups were intraperitoneally injected with 15 mg/kg, 30 mg/kg and 60 mg/kg ketamine, respectively, twice a day (9:00 a.m. and 9:00 p.m.); the control group was administered normal saline. The treatment lasted 7 days. After treatment, rats were euthanized, and their brain tissues were collected and then analyzed by immunohistochemistry. The results of immunohistochemistry staining demonstrated that the ErbB4 protein was expressed exclusively in the CA3 region of the hippocampus and the Cg1 region of the prefrontal cortex. Ketamine administration significantly decreased the expression of ErbB4 in a dose-dependent manner. The high-dose ketamine treatment was found to be optimal for establishing a rat model for schizophrenia. Ketamine induced symptoms similar to schizophrenia in humans. The ketamine-induced rat model for schizophrenia constructed in this study provides novel insights to better understand the pathogenic mechanisms of schizophrenia and aid in drug discovery.
Collapse
Affiliation(s)
- Runfang Xie
- Department of Analytical Toxicology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, Kunming Medical University, Kunming, 650500, Yunnan, People's Republic of China
| | - Shijun Hong
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, Kunming Medical University, Kunming, 650500, Yunnan, People's Republic of China
| | - Yi Ye
- Department of Analytical Toxicology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xueyan Wang
- Department of Analytical Toxicology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Fan Chen
- Department of Analytical Toxicology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Lin Yang
- Department of Analytical Toxicology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Youyi Yan
- Department of Analytical Toxicology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Linchuan Liao
- Department of Analytical Toxicology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
25
|
Ji MH, Zhang L, Mao MJ, Zhang H, Yang JJ, Qiu LL. Overinhibition mediated by parvalbumin interneurons might contribute to depression-like behavior and working memory impairment induced by lipopolysaccharide challenge. Behav Brain Res 2020; 383:112509. [PMID: 31987933 DOI: 10.1016/j.bbr.2020.112509] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/21/2020] [Accepted: 01/24/2020] [Indexed: 12/13/2022]
Abstract
Systemic inflammation induces cognitive impairments via unclear mechanisms. Accumulating evidence has demonstrated that a subset of neurons that express parvalbumin (PV) play a critical role in regulation of cognitive and emotional behavior. Thus, the aim of the present study was to test whether disruption of PV interneuron mediates systemic inflammation-induced depression-like behavior and working memory impairment by lipopolysaccharide (LPS) challenge. Here we showed that LPS induces depression-like behavior and working memory impairment, coinciding with increased PV expression, enhanced GABAergic transmission, and impaired long-term potentiation (LTP) in the hippocampus. Notably, systemic administration of NMDA (N-methyl-D-aspartate) receptor (NMDAR) antagonist ketamine was able to interfere with PV expression and reverse depression-like behavior and working memory impairment, which is probably mediated by reversing impaired LTP. In addition, flumazenil, a competitive antagonist acting at the benzodiazepine binding site of the GABAA receptor, also ameliorated these abnormal behaviors. Collectively, our study added growing evidence to the limited studies that overinhibition mediated by PV interneurons might play a critical role in LPS-induced depression-like behavior and working memory impairment.
Collapse
Affiliation(s)
- Mu-Huo Ji
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, China
| | - Ling Zhang
- Department of Anesthesiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Ming-Jie Mao
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Hui Zhang
- Department of Anesthesiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Jiao-Jiao Yang
- Department of Anesthesiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Li-Li Qiu
- Department of Anesthesiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China.
| |
Collapse
|
26
|
Oberlander VC, Xu X, Chini M, Hanganu-Opatz IL. Developmental dysfunction of prefrontal-hippocampal networks in mouse models of mental illness. Eur J Neurosci 2019; 50:3072-3084. [PMID: 31087437 PMCID: PMC6851774 DOI: 10.1111/ejn.14436] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/18/2019] [Accepted: 05/08/2019] [Indexed: 12/28/2022]
Abstract
Despite inherent difficulties to translate human cognitive phenotype into animals, a large number of animal models for psychiatric disorders, such as schizophrenia, have been developed over the last decades. To which extent they reproduce common patterns of dysfunction related to mental illness and abnormal processes of maturation is still largely unknown. While the devastating symptoms of disease are firstly detectable in adulthood, they are considered to reflect profound miswiring of brain circuitry as result of abnormal development. To reveal whether different disease models share common dysfunction early in life, we investigate the prefrontal-hippocampal communication at neonatal age in (a) mice mimicking the abnormal genetic background (22q11.2 microdeletion, DISC1 knockdown), (b) mice mimicking the challenge by environmental stressors (maternal immune activation during pregnancy), (c) mice mimicking the combination of both aetiologies (dual-hit models) and pharmacological mouse models. Simultaneous extracellular recordings in vivo from all layers of prelimbic subdivision (PL) of prefrontal cortex (PFC) and CA1 area of intermediate/ventral hippocampus (i/vHP) show that network oscillations have a more fragmented structure and decreased power mainly in neonatal mice that mimic both genetic and environmental aetiology of disease. These mice also show layer-specific firing deficits in PL. Similar early network dysfunction was present in mice with 22q11.2 microdeletion. The abnormal activity patterns are accompanied by weaker synchrony and directed interactions within prefrontal-hippocampal networks. Thus, only severe genetic defects or combined genetic environmental stressors are disruptive enough for reproducing the early network miswiring in mental disorders.
Collapse
Affiliation(s)
- Victoria C Oberlander
- Developmental Neurophysiology, Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Xiaxia Xu
- Developmental Neurophysiology, Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mattia Chini
- Developmental Neurophysiology, Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ileana L Hanganu-Opatz
- Developmental Neurophysiology, Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
27
|
Ben-Azu B, Aderibigbe AO, Ajayi AM, Eneni AEO, Omogbiya IA, Owoeye O, Umukoro S, Iwalewa EO. Morin decreases cortical pyramidal neuron degeneration via inhibition of neuroinflammation in mouse model of schizophrenia. Int Immunopharmacol 2019; 70:338-353. [PMID: 30852289 DOI: 10.1016/j.intimp.2019.02.052] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 02/13/2019] [Accepted: 02/28/2019] [Indexed: 11/28/2022]
Abstract
Neuroinflammation plays a prominent role in the pathophysiology and progression of schizophrenia. Thus, suppression of neuroinflammation may retard the progression of the disease. This study was designed to investigate whether morin, a bioactive compound with antipsychotic-like activity could reduce biomarkers of neuroinflammation and neurodegeneration in lipopolysaccharide (LPS)- and ketamine (KET)-induced schizophrenic-like behavior in mice. Animals were treated once daily intraperitoneally with morin (100 mg/kg), haloperidol (1 mg/kg), risperidone (0.5 mg/kg), or saline (10 mL/kg) in combination with LPS (0.1 mg/kg) for 14 consecutive days. However, from days 8-14, overt schizophrenia-like episode was produced with i.p. injection of KET (20 mg/kg) once daily. Schizophrenic-like behaviors: positive (open-field test), negative (social-interaction and social-memory tests) and cognitive (Y-maze test) symptoms were assessed on day 14. Thereafter, the levels and expressions of biomarkers of neuroinflammation were estimated in the striatum (ST), prefrontal cortex (PFC) and hippocampus (HC) using spectrophotometry, ELISA and immunohistochemistry. The effects of morin on cortical pyramidal neurons were estimated using Golgi-impregnation staining technique. LPS in combination with KET significantly (p < 0.05) induced schizophrenia-like behaviors, which was attenuated by morin. Morin significantly (p < 0.05) decreased tumor necrosis factor-α, interleukine-6 levels and myeloperoxidase activity in the ST, PFC and HC of mice treated with LPS + KET. Moreover, morin reduced regional brain expressions of cyclooxygenase-2, inducible nitric oxide synthase and nuclear factor kappa-B, and also rescued loss of pyramidal neurons in the PFC. Taken together, these findings suggest that morin reduces schizophrenic-like symptoms induced by LPS + KET via mechanisms related to inhibition of the release of pro-inflammatory mediators and suppression of degeneration of cortical pyramidal neurons in mice.
Collapse
Affiliation(s)
- Benneth Ben-Azu
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria; Department of Pharmacology, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port Harcourt, Rivers State, Nigeria.
| | - Adegbuyi Oladele Aderibigbe
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Abayomi Mayowa Ajayi
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Aya-Ebi Okubo Eneni
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Itivere Adrian Omogbiya
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria; Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| | - Olatunde Owoeye
- Neurotrauma & Neuroregeneration Unit, Department of Anatomy, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Solomon Umukoro
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Ezekiel O Iwalewa
- Inflammatory and immunopharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| |
Collapse
|
28
|
Honeycutt JA, Chrobak JJ. Parvalbumin Loss Following Chronic Sub-Anesthetic NMDA Antagonist Treatment is Age-Dependent in the Hippocampus: Implications for Modeling NMDA Hypofunction. Neuroscience 2018; 393:73-82. [DOI: 10.1016/j.neuroscience.2018.09.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 09/23/2018] [Indexed: 01/02/2023]
|
29
|
Morin Attenuates Neurochemical Changes and Increased Oxidative/Nitrergic Stress in Brains of Mice Exposed to Ketamine: Prevention and Reversal of Schizophrenia-Like Symptoms. Neurochem Res 2018; 43:1745-1755. [PMID: 29956036 DOI: 10.1007/s11064-018-2590-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/20/2018] [Accepted: 06/24/2018] [Indexed: 12/22/2022]
Abstract
Previous studies have revealed that morin (MOR), a neuroactive bioflavonoid, with proven psychotropic and neuroprotective properties reduced schizophrenic-like behaviors in mice. This study further evaluated the ability of MOR to prevent and reverse ketamine-induced schizophrenic-like behaviors and the underlying neurochemical changes and increased oxidative/nitrergic stress in mice. In the preventive protocol, mice received intraperitoneal injection of MOR (100 mg/kg), reference antipsychotic drugs [haloperidol (1 mg/kg), risperidone (0.5 mg/kg)], or saline daily for 14 consecutive days prior to i.p. injection of ketamine (KET) (20 mg/kg/day) from the 8th to the 14th day. In the reversal protocol, the animals received KET or saline for 14 days prior to MOR, haloperidol, risperidone, or saline treatments. Schizophrenic-like behaviors: positive (open-field test), negative (social-interaction test) and cognitive (Y-maze test) symptoms were evaluated. Thereafter, the brain levels of dopamine, glutamate, 5-hydroxytryptamine and acetyl-cholinesterase, as well as biomarkers of oxidative/nitrergic stress were measured in the striatum, prefrontal-cortex (PFC) and hippocampus (HC). Morin prevented and reversed KET-induced hyperlocomotion, social and cognitive deficits. Also, MOR or risperidone attenuated altered dopaminergic, glutamatergic, 5-hydroxytryptaminergic and cholinergic neurotransmissions in brain region-dependent manner. The increased malondialdehyde and nitrite levels accompanied by decreased glutathione concentrations in the striatum, PFC and HC in KET-treated mice were significantly attenuated by MOR or risperidone. Taken together, these findings suggest that the anti-schizophrenic-like activity of MOR may be mediated via mechanisms related to attenuation of neurochemical changes and oxidative/nitrergic alterations in mice.
Collapse
|
30
|
Koh MT, Ahrens PS, Gallagher M. A greater tendency for representation mediated learning in a ketamine mouse model of schizophrenia. Behav Neurosci 2018; 132:106-113. [PMID: 29672108 DOI: 10.1037/bne0000238] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Representation mediated learning is a behavioral paradigm that could be used to potentially capture psychotic symptoms including hallucinations and delusions in schizophrenia. In studies of mediated learning, representations of prior experience can enter into current associations. Using a ketamine model of schizophrenia, we investigated whether mice exposed to ketamine during late adolescence subsequently showed an increased tendency to use a representation of a prior gustatory experience to form associations in learning. Mice were given prior experience of an odor and a taste presented together. The odor was subsequently presented alone with gastrointestinal illness induced by a lithium chloride injection. A consumption test was then given to assess whether the taste, despite its absence during conditioning, entered into an association with the induced illness. Such learning would be mediated via a representation of the taste activated by the odor. Our results showed that control mice displayed no aversion to the taste following the procedures just described, but mice that had been treated developmentally with ketamine exhibited a significant taste aversion, suggesting a greater propensity for mediated learning. Complementary to that finding, ketamine-exposed mice also showed a greater susceptibility to mediated extinction. Chronic treatment with the antipsychotic drug, risperidone, in ketamine-exposed mice attenuated mediated learning, a finding that may be related to its known efficacy in reducing the positive symptoms of schizophrenia. These data provide a setting with potential relevance to preclinical research on schizophrenia, to study the neural mechanisms underlying a propensity for aberrant associations and assessment of therapeutics. (PsycINFO Database Record
Collapse
|
31
|
Ben-Azu B, Aderibigbe AO, Ajayi AM, Eneni AEO, Umukoro S, Iwalewa EO. Involvement of GABAergic, BDNF and Nox-2 mechanisms in the prevention and reversal of ketamine-induced schizophrenia-like behavior by morin in mice. Brain Res Bull 2018; 139:292-306. [PMID: 29548911 DOI: 10.1016/j.brainresbull.2018.03.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 03/07/2018] [Accepted: 03/09/2018] [Indexed: 12/26/2022]
Abstract
GABAergic (Gamma-aminobutyric acid) and neurotrophic derangements have important implication in schizophrenia, a neuropsychiatric disease. Previous studies have shown that nicotinamide adenine dinucleotide phosphate oxidase (NADPH-oxidase) alters GABAergic and neurotrophic activities via inflammatory and oxidative pathways. Thus, it has been proposed that agents with anti-oxidant and anti-inflammatory properties might be beneficial for the treatment of the disease. Morin is neuroactive bioflavonoid compound, which has been reported to demonstrate antipsychotic and anti-oxidant/anti-inflammatory activities. In this study, we further evaluated its effects on the brain markers of GABAergic, neurotrophic and oxidative alterations in the preventive and reversal of schizophrenia-like behavior induced by ketamine (KET). In the prevention protocol, adult mice were treated intraperitoneally with morin (100 mg/kg/day), haloperidol (1 mg/kg/day), risperidone (0.5 mg/kg/day), or saline (10 mL/kg/day) for 14 consecutive days. In addition, the animals were administered KET (20 mg/kg/day) from the 8th to the 14th day. In the reversal protocol, the animals received KET or saline for 14 days. From 8th to 14th days mice were additionally treated with morin, haloperidol, risperidone or saline. Schizophrenic-like behaviors consisting of positive (stereotypy test), negative (behavioral despair in forced swim test) and cognitive (novel-object recognition test) symptoms were evaluated. Afterwards, brain levels of biomarkers of GABAergic (Glutamic acid decarboxylase-67, GAD67), neurotrophic (Brain-derived neurotrophic factor, BDNF) and oxidative [NADPH-oxidase, superoxide dismutase, (SOD) and catalase (CAT)] alterations were determined in the striatum, prefrontal cortex (PFC) and hippocampus, respectively. Morin significantly (p < 0.05) prevented and reversed KET-induced increased stereotypy, behavioral despair and deficit in cognitive functions when compared with KET-treated mice respectively. Also, morin and risperidone but not haloperidol, significantly (p < 0.05) prevented and reversed the decreases in expressions of GAD67 and BDNF immunoreactivity in the striatum, PFC and hippocampus caused by KET. Moreover, morin and risperidone significantly (p < 0.05) decreased regional brain expressions of NADPH-oxidase immunopositive cells and increased endogenous anti-oxidant enzymes (SOD and CAT) in the striatum, PFC and hippocampus relative to KET controls respectively. Taken together, these findings further suggest that the antipsychotic-like activity of morin may be mediated via mechanisms related to enhancement of GABAergic neurotransmission and neurotrophic factor, and suppression of NADPH-oxidase induced oxidative damage in mice.
Collapse
Affiliation(s)
- Benneth Ben-Azu
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria.
| | - Adegbuyi Oladele Aderibigbe
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Abayomi Mayowa Ajayi
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Aya-Ebi Okubo Eneni
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Solomon Umukoro
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Ezekiel O Iwalewa
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| |
Collapse
|
32
|
Koh MT, Shao Y, Rosenzweig-Lipson S, Gallagher M. Treatment with levetiracetam improves cognition in a ketamine rat model of schizophrenia. Schizophr Res 2018; 193. [PMID: 28634087 PMCID: PMC5733713 DOI: 10.1016/j.schres.2017.06.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Imbalance in neural excitation and inhibition is associated with behavioral dysfunction in individuals with schizophrenia and at risk for this illness. We examined whether targeting increased neural activity with the antiepileptic agent, levetiracetam, would benefit memory performance in a preclinical model of schizophrenia that has been shown to exhibit hyperactivity in the hippocampus. Adult rats exposed to ketamine subchronically during late adolescence showed impaired hippocampal-dependent memory performance. Treatment with levetiracetam dose-dependently improved memory performance of the ketamine-exposed rats. In contrast, the antipsychotic medication risperidone was not effective in this assessment. Levetiracetam remained effective when administered concurrently with risperidone, supporting potential viability of adjunctive therapy with levetiracetam to treat cognitive deficits in schizophrenia patients under concurrent antipsychotic therapy. In addition to its pro-cognitive effect, levetiracetam was also effective in attenuating amphetamine-induced augmentation of locomotor activity, compatible with the need for therapeutic treatment of positive symptoms in schizophrenia.
Collapse
Affiliation(s)
- Ming Teng Koh
- Department of Psychological and Brain Sciences, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA.
| | - Yi Shao
- Department of Psychological and Brain Sciences, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 USA
| | | | - Michela Gallagher
- Department of Psychological and Brain Sciences, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 USA,AgeneBio, Inc, 1101 E. 33rd Street, Suite C310, Baltimore, MD 21218, USA
| |
Collapse
|
33
|
Oxidative stress, prefrontal cortex hypomyelination and cognitive symptoms in schizophrenia. Transl Psychiatry 2017; 7:e1171. [PMID: 28934193 PMCID: PMC5538118 DOI: 10.1038/tp.2017.138] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/12/2017] [Accepted: 05/06/2017] [Indexed: 12/13/2022] Open
Abstract
Schizophrenia (SZ) is a neurodevelopmental disorder with a broad symptomatology, including cognitive symptoms that are thought to arise from the prefrontal cortex (PFC). The neurobiological aetiology of these symptoms remains elusive, yet both impaired redox control and PFC dysconnectivity have been recently implicated. PFC dysconnectivity has been linked to white matter, oligodendrocyte (OL) and myelin abnormalities in SZ patients. Myelin is produced by mature OLs, and OL precursor cells (OPCs) are exceptionally susceptible to oxidative stress. Here we propose a hypothesis for the aetiology of cognitive symptomatology in SZ: the redox-induced prefrontal OPC-dysfunctioning hypothesis. We pose that the combination of genetic and environmental factors causes oxidative stress marked by a build-up of reactive oxygen species that, during late adolescence, impair OPC signal transduction processes that are necessary for OPC proliferation and differentiation, and involve AMP-activated protein kinase, Akt-mTOR-P70S6K and peroxisome proliferator receptor alpha signalling. OPC dysfunctioning coincides with the relatively late onset of PFC myelination, causing hypomyelination and disruption of connectivity in this brain area. The resulting cognitive deficits arise in parallel with SZ onset. Hence, our hypothesis provides a novel neurobiological framework for the aetiology of SZ cognitive symptoms. Future research addressing our hypothesis could have important implications for the development of new (combined) antioxidant- and promyelination-based strategies to treat the cognitive symptoms in SZ.
Collapse
|
34
|
Lisek M, Ferenc B, Studzian M, Pulaski L, Guo F, Zylinska L, Boczek T. Glutamate Deregulation in Ketamine-Induced Psychosis-A Potential Role of PSD95, NMDA Receptor and PMCA Interaction. Front Cell Neurosci 2017; 11:181. [PMID: 28701926 PMCID: PMC5487377 DOI: 10.3389/fncel.2017.00181] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/13/2017] [Indexed: 12/22/2022] Open
Abstract
Ketamine causes psychotic episodes and is often used as pharmacological model of psychotic-like behavior in animals. There is increasing evidence that molecular mechanism of its action is more complicated than just N-methyl-D-aspartic acid (NMDA) receptor antagonism and involves interaction with the components of calcium homeostatic machinery, in particular plasma membrane calcium pump (PMCA). Therefore, in this study we aimed to characterize brain region-specific effects of ketamine on PMCA activity, interaction with NMDA receptor through postsynaptic density protein 95 (PSD95) scaffolding proteins and glutamate release from nerve endings. In our study, ketamine induced behavioral changes in healthy male rats consistent with psychotic effects. In the same animals, we were able to demonstrate significant inhibition of plasma membrane calcium ATPase (PMCA) activity in cerebellum, hippocampus and striatum. The expression level and isoform composition of PMCAs were also affected in some of these brain compartments, with possible compensatory effects of PMCA1 substituting for decreased expression of PMCA3. Expression of the PDZ domain-containing scaffold protein PSD95 was induced and its association with PMCA4 was higher in most brain compartments upon ketamine treatment. Moreover, increased PSD95/NMDA receptor direct interaction was also reported, strongly suggesting the formation of multiprotein complexes potentially mediating the effect of ketamine on calcium signaling. We further support this molecular mechanism by showing brain region-specific changes in PSD95/PMCA4 spatial colocalization. We also show that ketamine significantly increases synaptic glutamate release in cortex and striatum (without affecting total tissue glutamate content), inducing the expression of vesicular glutamate transporters and decreasing the expression of membrane glutamate reuptake pump excitatory amino acid transporters 2 (EAAT2). Thus, ketamine-mediated PMCA inhibition, by decreasing total Ca2+ clearing potency, may locally raise cytosolic Ca2+ promoting excessive glutamate release. Regional alterations in glutamate secretion can be further driven by PSD95-mediated spatial recruitment of signaling complexes including glutamate receptors and calcium pumps, representing a novel mechanism of psychogenic action of ketamine.
Collapse
Affiliation(s)
- Malwina Lisek
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical UniversityLodz, Poland
| | - Bozena Ferenc
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical UniversityLodz, Poland
| | - Maciej Studzian
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of LodzLodz, Poland
| | - Lukasz Pulaski
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of LodzLodz, Poland.,Laboratory of Transcriptional Regulation, Institute of Medical BiologyLodz, Poland
| | - Feng Guo
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical UniversityShenyang, China
| | - Ludmila Zylinska
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical UniversityLodz, Poland
| | - Tomasz Boczek
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical UniversityLodz, Poland.,Boston Children's Hospital and Harvard Medical SchoolBoston, MA, United States
| |
Collapse
|
35
|
Fear memory in a neurodevelopmental model of schizophrenia based on the postnatal blockade of NMDA receptors. Pharmacol Rep 2017; 69:71-76. [DOI: 10.1016/j.pharep.2016.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/14/2016] [Accepted: 10/14/2016] [Indexed: 01/12/2023]
|