1
|
Qi X, Yu X, Wei L, Jiang H, Dong J, Li H, Wei Y, Zhao L, Deng W, Guo W, Hu X, Li T. Novel α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor (AMPAR) potentiator LT-102: A promising therapeutic agent for treating cognitive impairment associated with schizophrenia. CNS Neurosci Ther 2024; 30:e14713. [PMID: 38615362 PMCID: PMC11016348 DOI: 10.1111/cns.14713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 03/07/2024] [Accepted: 03/23/2024] [Indexed: 04/16/2024] Open
Abstract
AIMS We aimed to evaluate the potential of a novel selective α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor (AMPAR) potentiator, LT-102, in treating cognitive impairments associated with schizophrenia (CIAS) and elucidating its mechanism of action. METHODS The activity of LT-102 was examined by Ca2+ influx assays and patch-clamp in rat primary hippocampal neurons. The structure of the complex was determined by X-ray crystallography. The selectivity of LT-102 was evaluated by hERG tail current recording and kinase-inhibition assays. The electrophysiological characterization of LT-102 was characterized by patch-clamp recording in mouse hippocampal slices. The expression and phosphorylation levels of proteins were examined by Western blotting. Cognitive function was assessed using the Morris water maze and novel object recognition tests. RESULTS LT-102 is a novel and selective AMPAR potentiator with little agonistic effect, which binds to the allosteric site formed by the intradimer interface of AMPAR's GluA2 subunit. Treatment with LT-102 facilitated long-term potentiation in mouse hippocampal slices and reversed cognitive deficits in a phencyclidine-induced mouse model. Additionally, LT-102 treatment increased the protein level of brain-derived neurotrophic factor and the phosphorylation of GluA1 in primary neurons and hippocampal tissues. CONCLUSION We conclude that LT-102 ameliorates cognitive impairments in a phencyclidine-induced model of schizophrenia by enhancing synaptic function, which could make it a potential therapeutic candidate for CIAS.
Collapse
Affiliation(s)
- Xueyu Qi
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain MedicineZhejiang University School of MedicineHangzhouChina
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain‐Machine Integration, State Key Laboratory of Brain‐Machine IntelligenceZhejiang UniversityHangzhouChina
- NHC and CAMS Key Laboratory of Medical NeurobiologyZhejiang UniversityHangzhouChina
| | - Xueli Yu
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain MedicineZhejiang University School of MedicineHangzhouChina
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain‐Machine Integration, State Key Laboratory of Brain‐Machine IntelligenceZhejiang UniversityHangzhouChina
- NHC and CAMS Key Laboratory of Medical NeurobiologyZhejiang UniversityHangzhouChina
| | - Long Wei
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain MedicineZhejiang University School of MedicineHangzhouChina
| | - Han Jiang
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain MedicineZhejiang University School of MedicineHangzhouChina
| | - Jiangwen Dong
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain MedicineZhejiang University School of MedicineHangzhouChina
| | - Hongxing Li
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain MedicineZhejiang University School of MedicineHangzhouChina
| | - Yingying Wei
- The Psychiatric Laboratory, the State Key Laboratory of BiotherapyWest China Hospital of Sichuan UniversityChengduSichuanChina
| | - Liansheng Zhao
- The Psychiatric Laboratory, the State Key Laboratory of BiotherapyWest China Hospital of Sichuan UniversityChengduSichuanChina
| | - Wei Deng
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain MedicineZhejiang University School of MedicineHangzhouChina
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain‐Machine Integration, State Key Laboratory of Brain‐Machine IntelligenceZhejiang UniversityHangzhouChina
- NHC and CAMS Key Laboratory of Medical NeurobiologyZhejiang UniversityHangzhouChina
| | - Wanjun Guo
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain MedicineZhejiang University School of MedicineHangzhouChina
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain‐Machine Integration, State Key Laboratory of Brain‐Machine IntelligenceZhejiang UniversityHangzhouChina
- NHC and CAMS Key Laboratory of Medical NeurobiologyZhejiang UniversityHangzhouChina
| | - Xun Hu
- The Clinical Research Center and Department of Pathology, The Second Affiliated HospitalZhejiang University School of MedicineZhejiangHangzhouChina
| | - Tao Li
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain MedicineZhejiang University School of MedicineHangzhouChina
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain‐Machine Integration, State Key Laboratory of Brain‐Machine IntelligenceZhejiang UniversityHangzhouChina
- NHC and CAMS Key Laboratory of Medical NeurobiologyZhejiang UniversityHangzhouChina
| |
Collapse
|
2
|
Omidsalar AA, McCullough CG, Xu L, Boedijono S, Gerke D, Webb MG, Manojlovic Z, Sequeira A, Lew MF, Santorelli M, Serrano GE, Beach TG, Limon A, Vawter MP, Hjelm BE. Common mitochondrial deletions in RNA-Seq: evaluation of bulk, single-cell, and spatial transcriptomic datasets. Commun Biol 2024; 7:200. [PMID: 38368460 PMCID: PMC10874445 DOI: 10.1038/s42003-024-05877-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 01/31/2024] [Indexed: 02/19/2024] Open
Abstract
Common mitochondrial DNA (mtDNA) deletions are large structural variants in the mitochondrial genome that accumulate in metabolically active tissues with age and have been investigated in various diseases. We applied the Splice-Break2 pipeline (designed for high-throughput quantification of mtDNA deletions) to human RNA-Seq datasets and describe the methodological considerations for evaluating common deletions in bulk, single-cell, and spatial transcriptomics datasets. A robust evaluation of 1570 samples from 14 RNA-Seq studies showed: (i) the abundance of some common deletions detected in PCR-amplified mtDNA correlates with levels observed in RNA-Seq data; (ii) RNA-Seq library preparation method has a strong effect on deletion detection; (iii) deletions had a significant, positive correlation with age in brain and muscle; (iv) deletions were enriched in cortical grey matter, specifically in layers 3 and 5; and (v) brain regions with dopaminergic neurons (i.e., substantia nigra, ventral tegmental area, and caudate nucleus) had remarkable enrichment of common mtDNA deletions.
Collapse
Affiliation(s)
- Audrey A Omidsalar
- Department of Translational Genomics, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Carmel G McCullough
- Department of Translational Genomics, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Lili Xu
- Department of Translational Genomics, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Stanley Boedijono
- Department of Translational Genomics, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Daniel Gerke
- Department of Translational Genomics, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Michelle G Webb
- Department of Translational Genomics, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Zarko Manojlovic
- Department of Translational Genomics, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Adolfo Sequeira
- Department of Psychiatry and Human Behavior, University of California - Irvine (UCI) School of Medicine, Irvine, CA, USA
| | - Mark F Lew
- Department of Neurology, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Marco Santorelli
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Geidy E Serrano
- Banner Sun Health Research Institute (BSHRI), Sun City, AZ, USA
| | - Thomas G Beach
- Banner Sun Health Research Institute (BSHRI), Sun City, AZ, USA
| | - Agenor Limon
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, School of Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Marquis P Vawter
- Department of Psychiatry and Human Behavior, University of California - Irvine (UCI) School of Medicine, Irvine, CA, USA
| | - Brooke E Hjelm
- Department of Translational Genomics, Keck School of Medicine of USC, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Nomiya H, Sakurai K, Miyamoto Y, Oka M, Yoneda Y, Hikida T, Yamada M. A Kpna1-deficient psychotropic drug-induced schizophrenia model mouse for studying gene-environment interactions. Sci Rep 2024; 14:3376. [PMID: 38336912 PMCID: PMC10858057 DOI: 10.1038/s41598-024-53237-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
KPNA1 is a mediator of nucleocytoplasmic transport that is abundantly expressed in the mammalian brain and regulates neuronal differentiation and synaptic function. De novo mutations in Kpna1 have been identified using genome-wide association studies in humans with schizophrenia; however, it remains unclear how KPNA1 contributes to schizophrenia pathogenesis. Recent studies have suggested a complex combination of genetic and environmental factors that are closely related to psychiatric disorders. Here, we found that subchronic administration of phencyclidine, a psychotropic drug, induced vulnerability and behavioral abnormalities consistent with the symptoms of schizophrenia in Kpna1-deficient mice. Microarray assessment revealed that the expression levels of dopamine d1/d2 receptors, an RNA editing enzyme, and a cytoplasmic dynein component were significantly altered in the nucleus accumbens brain region in a gene-environment (G × E) interaction-dependent manner. Our findings demonstrate that Kpna1-deficient mice may be useful as a G × E interaction mouse model for psychiatric disorders and for further investigation into the pathogenesis of such diseases and disorders.
Collapse
Affiliation(s)
- Hirotaka Nomiya
- Department of Cell Biology and Biochemistry, Division of Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan
| | - Koki Sakurai
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Yoichi Miyamoto
- Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
| | - Masahiro Oka
- Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
| | - Yoshihiro Yoneda
- The Research Foundation for Microbial Diseases Osaka University, Integrated Life Science Building, Osaka University, 3-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Takatoshi Hikida
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka, 565-0871, Japan.
- Department of Research and Drug Discovery, Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8397, Japan.
| | - Masami Yamada
- Department of Cell Biology and Biochemistry, Division of Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan.
- Life Science Innovation Center, University of Fukui, 3-9-1, Bunkyo, Fukui-City, Fukui, 910-8507, Japan.
| |
Collapse
|
4
|
Certain N, Gan Q, Bennett J, Hsieh H, Wollmuth LP. Differential regulation of tetramerization of the AMPA receptor glutamate-gated ion channel by auxiliary subunits. J Biol Chem 2023; 299:105227. [PMID: 37673338 PMCID: PMC10558804 DOI: 10.1016/j.jbc.2023.105227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/08/2023] Open
Abstract
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) auxiliary subunits are specialized, nontransient binding partners of AMPARs that modulate AMPAR channel gating properties and pharmacology, as well as their biogenesis and trafficking. The most well-characterized families of auxiliary subunits are transmembrane AMPAR regulatory proteins (TARPs), cornichon homologs (CNIHs), and the more recently discovered GSG1-L. These auxiliary subunits can promote or reduce surface expression of AMPARs (composed of GluA1-4 subunits) in neurons, thereby impacting their functional role in membrane signaling. Here, we show that CNIH-2 enhances the tetramerization of WT and mutant AMPARs, presumably by increasing the overall stability of the tetrameric complex, an effect that is mainly mediated by interactions with the transmembrane domain of the receptor. We also find CNIH-2 and CNIH-3 show receptor subunit-specific actions in this regard with CNIH-2 enhancing both GluA1 and GluA2 tetramerization, whereas CNIH-3 only weakly enhances GluA1 tetramerization. These results are consistent with the proposed role of CNIHs as endoplasmic reticulum cargo transporters for AMPARs. In contrast, TARP γ-2, TARP γ-8, and GSG1-L have no or negligible effect on AMPAR tetramerization. On the other hand, TARP γ-2 can enhance receptor tetramerization but only when directly fused with the receptor at a maximal stoichiometry. Notably, surface expression of functional AMPARs was enhanced by CNIH-2 to a greater extent than TARP γ-2, suggesting that this distinction aids in maturation and membrane expression. These experiments define a functional distinction between CNIHs and other auxiliary subunits in the regulation of AMPAR biogenesis.
Collapse
Affiliation(s)
- Noele Certain
- Graduate Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, New York, USA
| | - Quan Gan
- Graduate Program in Neuroscience, Stony Brook University, Stony Brook, New York, USA
| | - Joseph Bennett
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, New York, USA
| | - Helen Hsieh
- Department of Surgery, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA; Center for Nervous System Disorders, Stony Brook University, Stony Brook, New York, USA
| | - Lonnie P Wollmuth
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, New York, USA; Center for Nervous System Disorders, Stony Brook University, Stony Brook, New York, USA; Department of Biochemistry & Cell Biology, Stony Brook University, Stony Brook, New York, USA.
| |
Collapse
|
5
|
Asraf K, Zaidan H, Natoor B, Gaisler-Salomon I. Synergistic, long-term effects of glutamate dehydrogenase 1 deficiency and mild stress on cognitive function and mPFC gene and miRNA expression. Transl Psychiatry 2023; 13:248. [PMID: 37419882 DOI: 10.1038/s41398-023-02534-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 07/09/2023] Open
Abstract
Glutamate abnormalities in the medial prefrontal cortex (mPFC) are associated with cognitive deficits. We previously showed that homozygous deletion of CNS glutamate dehydrogenase 1 (Glud1), a metabolic enzyme critical for glutamate metabolism, leads to schizophrenia-like behavioral abnormalities and increased mPFC glutamate; mice heterozygous for CNS Glud1 deletion (C-Glud1+/- mice) showed no cognitive or molecular abnormalities. Here, we examined the protracted behavioral and molecular effects of mild injection stress on C-Glud1+/- mice. We found spatial and reversal learning deficits, as well as large-scale mPFC transcriptional changes in pathways associated with glutamate and GABA signaling, in stress-exposed C-Glud1+/- mice, but not in their stress-naïve or C-Glud1+/+ littermates. These effects were observed several weeks following stress exposure, and the expression levels of specific glutamatergic and GABAergic genes differentiated between high and low reversal learning performance. An increase in miR203-5p expression immediately following stress may provide a translational regulatory mechanism to account for the delayed effect of stress exposure on cognitive function. Our findings show that chronic glutamate abnormalities interact with acute stress to induce cognitive deficits, and resonate with gene x environment theories of schizophrenia. Stress-exposed C-Glud1+/- mice may model a schizophrenia high-risk population, which is uniquely sensitive to stress-related 'trigger' events.
Collapse
Affiliation(s)
- Kfir Asraf
- School of Psychological Sciences, Department of Psychology, University of Haifa, Haifa, 3498838, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, 3498838, Israel
| | - Hiba Zaidan
- School of Psychological Sciences, Department of Psychology, University of Haifa, Haifa, 3498838, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, 3498838, Israel
| | - Baylasan Natoor
- School of Psychological Sciences, Department of Psychology, University of Haifa, Haifa, 3498838, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, 3498838, Israel
| | - Inna Gaisler-Salomon
- School of Psychological Sciences, Department of Psychology, University of Haifa, Haifa, 3498838, Israel.
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, 3498838, Israel.
| |
Collapse
|
6
|
Scaduto P, Lauterborn JC, Cox CD, Fracassi A, Zeppillo T, Gutierrez BA, Keene CD, Crane PK, Mukherjee S, Russell WK, Taglialatela G, Limon A. Functional excitatory to inhibitory synaptic imbalance and loss of cognitive performance in people with Alzheimer's disease neuropathologic change. Acta Neuropathol 2023; 145:303-324. [PMID: 36538112 PMCID: PMC9925531 DOI: 10.1007/s00401-022-02526-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 11/12/2022] [Accepted: 11/27/2022] [Indexed: 12/24/2022]
Abstract
Individuals at distinct stages of Alzheimer's disease (AD) show abnormal electroencephalographic activity, which has been linked to network hyperexcitability and cognitive decline. However, whether pro-excitatory changes at the synaptic level are observed in brain areas affected early in AD, and if they are emergent in MCI, is not clearly known. Equally important, it is not known whether global synaptic E/I imbalances correlate with the severity of cognitive impairment in the continuum of AD. Measuring the amplitude of ion currents of human excitatory and inhibitory synaptic receptors microtransplanted from the hippocampus and temporal cortex of cognitively normal, mildly cognitively impaired and AD individuals into surrogate cells, we found regional differences in pro-excitatory shifts of the excitatory to inhibitory (E/I) current ratio that correlates positively with toxic proteins and degree of pathology, and impinges negatively on cognitive performance scores. Using these data with electrophysiologically anchored analysis of the synapto-proteome in the same individuals, we identified a group of proteins sustaining synaptic function and those related to synaptic toxicity. We also found an uncoupling between the function and expression of proteins for GABAergic signaling in the temporal cortex underlying larger E/I and worse cognitive performance. Further analysis of transcriptomic and in situ hybridization datasets from an independent cohort across the continuum of AD confirm regional differences in pro-excitatory shifts of the E/I balance that correlate negatively with the most recent calibrated composite scores for memory, executive function, language and visuospatial abilities, as well as overall cognitive performance. These findings indicate that early shifts of E/I balance may contribute to loss of cognitive capabilities in the continuum of AD clinical syndrome.
Collapse
Affiliation(s)
- Pietro Scaduto
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Julie C Lauterborn
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, USA
| | - Conor D Cox
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, USA
| | - Anna Fracassi
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Tommaso Zeppillo
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Berenice A Gutierrez
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - C Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Paul K Crane
- Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - William K Russell
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, USA
| | - Giulio Taglialatela
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Agenor Limon
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch at Galveston, Galveston, TX, USA.
| |
Collapse
|
7
|
Kato H, Kimura H, Kushima I, Takahashi N, Aleksic B, Ozaki N. The genetic architecture of schizophrenia: review of large-scale genetic studies. J Hum Genet 2023; 68:175-182. [PMID: 35821406 DOI: 10.1038/s10038-022-01059-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/12/2022] [Accepted: 06/20/2022] [Indexed: 11/09/2022]
Abstract
Schizophrenia is a complex and often chronic psychiatric disorder with high heritability. Diagnosis of schizophrenia is still made clinically based on psychiatric symptoms; no diagnostic tests or biomarkers are available. Pathophysiology-based diagnostic scheme and treatments are also not available. Elucidation of the pathogenesis is needed for development of pathology-based diagnostics and treatments. In the past few decades, genetic research has made substantial advances in our understanding of the genetic architecture of schizophrenia. Rare copy number variations (CNVs) and rare single-nucleotide variants (SNVs) detected by whole-genome CNV analysis and whole-genome/-exome sequencing analysis have provided the great advances. Common single-nucleotide polymorphisms (SNPs) detected by large-scale genome-wide association studies have also provided important information. Large-scale genetic studies have been revealed that both rare and common genetic variants play crucial roles in this disorder. In this review, we focused on CNVs, SNVs, and SNPs, and discuss the latest research findings on the pathogenesis of schizophrenia based on these genetic variants. Rare variants with large effect sizes can provide mechanistic hypotheses. CRISPR-based genetics approaches and induced pluripotent stem cell technology can facilitate the functional analysis of these variants detected in patients with schizophrenia. Recent advances in long-read sequence technology are expected to detect variants that cannot be detected by short-read sequence technology. Various studies that bring together data from common variant and transcriptomic datasets provide biological insight. These new approaches will provide additional insight into the pathophysiology of schizophrenia and facilitate the development of pathology-based therapeutics.
Collapse
Affiliation(s)
- Hidekazu Kato
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroki Kimura
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan
| | - Nagahide Takahashi
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Branko Aleksic
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan.,Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan
| |
Collapse
|
8
|
Piromalli Girado D, Miranda M, Giachero M, Weisstaub N, Bekinschtein P. Endocytosis is required for consolidation of pattern-separated memories in the perirhinal cortex. Front Syst Neurosci 2023; 17:1043664. [PMID: 36911226 PMCID: PMC9995888 DOI: 10.3389/fnsys.2023.1043664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction The ability to separate similar experiences into differentiated representations is proposed to be based on a computational process called pattern separation, and it is one of the key characteristics of episodic memory. Although pattern separation has been mainly studied in the dentate gyrus of the hippocampus, this cognitive function if thought to take place also in other regions of the brain. The perirhinal cortex is important for the acquisition and storage of object memories, and in particular for object memory differentiation. The present study was devoted to investigating the importance of the cellular mechanism of endocytosis for object memory differentiation in the perirhinal cortex and its association with brain-derived neurotrophic factor, which was previously shown to be critical for the pattern separation mechanism in this structure. Methods We used a modified version of the object recognition memory task and intracerebral delivery of a peptide (Tat-P4) into the perirhinal cortex to block endocytosis. Results We found that endocytosis is necessary for pattern separation in the perirhinal cortex. We also provide evidence from a molecular disconnection experiment that BDNF and endocytosis-related mechanisms interact for memory discrimination in both male and female rats. Discussion Our experiments suggest that BDNF and endocytosis are essential for consolidation of separate object memories and a part of a time-restricted, protein synthesis-dependent mechanism of memory stabilization in Prh during storage of object representations.
Collapse
Affiliation(s)
- Dinka Piromalli Girado
- Laboratory of Memory and Molecular Cognition, Instituto de Neurociencia Cognitiva y Traslacional (Consejo Nacional de Investigaciones Científicas y Técnicas-Fundación INECO-Universidad Favaloro), Buenos Aires, Argentina
| | - Magdalena Miranda
- Laboratory of Memory and Molecular Cognition, Instituto de Neurociencia Cognitiva y Traslacional (Consejo Nacional de Investigaciones Científicas y Técnicas-Fundación INECO-Universidad Favaloro), Buenos Aires, Argentina
| | - Marcelo Giachero
- Laboratory of Memory and Molecular Cognition, Instituto de Neurociencia Cognitiva y Traslacional (Consejo Nacional de Investigaciones Científicas y Técnicas-Fundación INECO-Universidad Favaloro), Buenos Aires, Argentina
| | - Noelia Weisstaub
- Laboratory of Memory and Molecular Cognition, Instituto de Neurociencia Cognitiva y Traslacional (Consejo Nacional de Investigaciones Científicas y Técnicas-Fundación INECO-Universidad Favaloro), Buenos Aires, Argentina
| | - Pedro Bekinschtein
- Laboratory of Memory and Molecular Cognition, Instituto de Neurociencia Cognitiva y Traslacional (Consejo Nacional de Investigaciones Científicas y Técnicas-Fundación INECO-Universidad Favaloro), Buenos Aires, Argentina
| |
Collapse
|
9
|
Miller B, Moreno N, Gutierrez BA, Limon A. Microtransplantation of Postmortem Native Synaptic mGluRs Receptors into Xenopus Oocytes for Their Functional Analysis. MEMBRANES 2022; 12:931. [PMID: 36295690 PMCID: PMC9609105 DOI: 10.3390/membranes12100931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 05/13/2023]
Abstract
Metabotropic glutamate receptors (mGluRs) are membrane receptors that play a central role in the modulation of synaptic transmission and neuronal excitability and whose dysregulation is implicated in diverse neurological disorders. Most current understanding about the electrophysiological properties of such receptors has been determined using recombinant proteins. However, recombinant receptors do not necessarily recapitulate the properties of native receptors due to the lack of obligated accessory proteins, some of which are differentially expressed as function of developmental stage and brain region. To overcome this limitation, we sought to microtransplant entire synaptosome membranes from frozen rat cortex into Xenopus oocytes, and directly analyze the responses elicited by native mGluRs. We recorded ion currents elicited by 1 mM glutamate using two electrodes voltage clamp. Glutamate produced a fast ionotropic response (6 ± 0.3 nA) in all microtransplanted oocytes (n = 218 oocytes) and a delayed oscillatory response (52 ± 7 nA) in 73% of them. The participation of Group 1 mGluRs was confirmed by the presence of metabotropic oscillations during the administration of (±)-1-Aminocyclopentane-trans-1,3-dicarboxylic acid (ACPD; Group 1 mGluR agonist), and the absence of oscillations during co-administration of N-(1-adamantyl)quinoxaline-2-carboxamide (NPS 2390; Group 1 mGluR antagonist). Since both mGluR1 and mGluR5 belong to Group 1 mGluRs, further investigation revealed that mGluR1 antagonism with LY 456236 has little effect on metabotropic oscillations, while mGluR5 antagonism with 100 µM AZD 9272 has significant reduction of metabotropic currents elicited by ACPD and glutamate. We confirmed the expression of mGluR1 and mGluR5 in native synaptosomes by immunoblots, both of which are enhanced when compared to their counterpart proteins in rat cortex tissue lysates. Finally, these results demonstrate the merit of using microtransplantation of native synaptosomes for the study of mGluRs and the contribution of mGluR5 to the metabotropic glutamate signaling, providing a better tool for the understanding of the role of these receptors in neurological disorders.
Collapse
Affiliation(s)
| | | | | | - Agenor Limon
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
10
|
Das SC, Hjelm BE, Rollins BL, Sequeira A, Morgan L, Omidsalar AA, Schatzberg AF, Barchas JD, Lee FS, Myers RM, Watson SJ, Akil H, Bunney WE, Vawter MP. Mitochondria DNA copy number, mitochondria DNA total somatic deletions, Complex I activity, synapse number, and synaptic mitochondria number are altered in schizophrenia and bipolar disorder. Transl Psychiatry 2022; 12:353. [PMID: 36042222 PMCID: PMC9427957 DOI: 10.1038/s41398-022-02127-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/15/2022] Open
Abstract
Mitochondrial dysfunction is a neurobiological phenomenon implicated in the pathophysiology of schizophrenia and bipolar disorder that can synergistically affect synaptic neurotransmission. We hypothesized that schizophrenia and bipolar disorder share molecular alterations at the mitochondrial and synaptic levels. Mitochondria DNA (mtDNA) copy number (CN), mtDNA common deletion (CD), mtDNA total deletion, complex I activity, synapse number, and synaptic mitochondria number were studied in the postmortem human dorsolateral prefrontal cortex (DLPFC), superior temporal gyrus (STG), primary visual cortex (V1), and nucleus accumbens (NAc) of controls (CON), and subjects with schizophrenia (SZ), and bipolar disorder (BD). The results showed (i) the mtDNA CN is significantly higher in DLPFC of both SZ and BD, decreased in the STG of BD, and unaltered in V1 and NAc of both SZ and BD; (ii) the mtDNA CD is significantly higher in DLPFC of BD while unaltered in STG, V1, and NAc of both SZ and BD; (iii) The total deletion burden is significantly higher in DLPFC in both SZ and BD while unaltered in STG, V1, and NAc of SZ and BD; (iv) Complex I activity is significantly lower in DLPFC of both SZ and BD, which is driven by the presence of medications, with no alteration in STG, V1, and NAc. In addition, complex I protein concentration, by ELISA, was decreased across three cortical regions of SZ and BD subjects; (v) The number of synapses is decreased in DLPFC of both SZ and BD, while the synaptic mitochondria number was significantly lower in female SZ and female BD compared to female controls. Overall, these findings will pave the way to understand better the pathophysiology of schizophrenia and bipolar disorder for therapeutic interventions.
Collapse
Affiliation(s)
- Sujan C. Das
- grid.266093.80000 0001 0668 7243Functional Genomics Laboratory, Department of Psychiatry & Human Behavior, University of California, Irvine, CA USA
| | - Brooke E. Hjelm
- grid.42505.360000 0001 2156 6853Department of Translational Genomics, Keck School of Medicine, University of Southern California, Health Sciences Campus, Los Angeles, CA USA
| | - Brandi L. Rollins
- grid.266093.80000 0001 0668 7243Functional Genomics Laboratory, Department of Psychiatry & Human Behavior, University of California, Irvine, CA USA
| | - Adolfo Sequeira
- grid.266093.80000 0001 0668 7243Functional Genomics Laboratory, Department of Psychiatry & Human Behavior, University of California, Irvine, CA USA
| | - Ling Morgan
- grid.266093.80000 0001 0668 7243Functional Genomics Laboratory, Department of Psychiatry & Human Behavior, University of California, Irvine, CA USA
| | - Audrey A. Omidsalar
- grid.42505.360000 0001 2156 6853Department of Translational Genomics, Keck School of Medicine, University of Southern California, Health Sciences Campus, Los Angeles, CA USA
| | - Alan F. Schatzberg
- grid.168010.e0000000419368956Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA USA
| | - Jack D. Barchas
- grid.5386.8000000041936877XDepartment of Psychiatry, Weill Cornell Medical College, Ithaca, NJ USA
| | - Francis S. Lee
- grid.5386.8000000041936877XDepartment of Psychiatry, Weill Cornell Medical College, Ithaca, NJ USA
| | - Richard M. Myers
- grid.417691.c0000 0004 0408 3720HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806 USA
| | - Stanley J. Watson
- grid.214458.e0000000086837370The Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI USA
| | - Huda Akil
- grid.214458.e0000000086837370The Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI USA
| | - William E. Bunney
- grid.266093.80000 0001 0668 7243Department of Psychiatry & Human Behavior, University of California, Irvine, CA USA
| | - Marquis P. Vawter
- grid.266093.80000 0001 0668 7243Functional Genomics Laboratory, Department of Psychiatry & Human Behavior, University of California, Irvine, CA USA
| |
Collapse
|
11
|
Miller B, Powell A, Gutierrez BA, Limon A. Microtransplantation of Synaptic Membranes to Reactivate Human Synaptic Receptors for Functional Studies. J Vis Exp 2022:10.3791/64024. [PMID: 35938847 PMCID: PMC10729793 DOI: 10.3791/64024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Excitatory and inhibitory ionotropic receptors are the major gates of ion fluxes that determine the activity of synapses during physiological neuronal communication. Therefore, alterations in their abundance, function, and relationships with other synaptic elements have been observed as a major correlate of alterations in brain function and cognitive impairment in neurodegenerative diseases and mental disorders. Understanding how the function of excitatory and inhibitory synaptic receptors is altered by disease is of critical importance for the development of effective therapies. To gain disease-relevant information, it is important to record the electrical activity of neurotransmitter receptors that remain functional in the diseased human brain. So far this is the closest approach to assess pathological alterations in receptors' function. In this work, a methodology is presented to perform microtransplantation of synaptic membranes, which consists of reactivating synaptic membranes from snap frozen human brain tissue containing human receptors, by its injection and posterior fusion into the membrane of Xenopus laevis oocytes. The protocol also provides the methodological strategy to obtain consistent and reliable responses of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and γ-aminobutyric acid (GABA) receptors, as well as novel detailed methods that are used for normalization and rigorous data analysis.
Collapse
Affiliation(s)
- Brice Miller
- The Mitchell Center for Neurodegenerative Diseases, Department of Neurology, University of Texas Medical Branch
| | - Ashli Powell
- The Mitchell Center for Neurodegenerative Diseases, Department of Neurology, University of Texas Medical Branch
| | - Berenice A Gutierrez
- The Mitchell Center for Neurodegenerative Diseases, Department of Neurology, University of Texas Medical Branch
| | - Agenor Limon
- The Mitchell Center for Neurodegenerative Diseases, Department of Neurology, University of Texas Medical Branch;
| |
Collapse
|
12
|
Ursino M, Cesaretti N, Pirazzini G. A model of working memory for encoding multiple items and ordered sequences exploiting the theta-gamma code. Cogn Neurodyn 2022; 17:489-521. [PMID: 37007198 PMCID: PMC10050512 DOI: 10.1007/s11571-022-09836-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 02/25/2022] [Accepted: 05/27/2022] [Indexed: 11/24/2022] Open
Abstract
AbstractRecent experimental evidence suggests that oscillatory activity plays a pivotal role in the maintenance of information in working memory, both in rodents and humans. In particular, cross-frequency coupling between theta and gamma oscillations has been suggested as a core mechanism for multi-item memory. The aim of this work is to present an original neural network model, based on oscillating neural masses, to investigate mechanisms at the basis of working memory in different conditions. We show that this model, with different synapse values, can be used to address different problems, such as the reconstruction of an item from partial information, the maintenance of multiple items simultaneously in memory, without any sequential order, and the reconstruction of an ordered sequence starting from an initial cue. The model consists of four interconnected layers; synapses are trained using Hebbian and anti-Hebbian mechanisms, in order to synchronize features in the same items, and desynchronize features in different items. Simulations show that the trained network is able to desynchronize up to nine items without a fixed order using the gamma rhythm. Moreover, the network can replicate a sequence of items using a gamma rhythm nested inside a theta rhythm. The reduction in some parameters, mainly concerning the strength of GABAergic synapses, induce memory alterations which mimic neurological deficits. Finally, the network, isolated from the external environment (“imagination phase”) and stimulated with high uniform noise, can randomly recover sequences previously learned, and link them together by exploiting the similarity among items.
Collapse
Affiliation(s)
- Mauro Ursino
- Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi”, University of Bologna, Campus of Cesena Area di Campus Cesena Via Dell’Università 50, 47521 Cesena, FC Italy
| | - Nicole Cesaretti
- Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi”, University of Bologna, Campus of Cesena Area di Campus Cesena Via Dell’Università 50, 47521 Cesena, FC Italy
| | - Gabriele Pirazzini
- Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi”, University of Bologna, Campus of Cesena Area di Campus Cesena Via Dell’Università 50, 47521 Cesena, FC Italy
| |
Collapse
|
13
|
Suhas S, Mehta UM. A redux of schizophrenia research in 2021. Schizophr Res 2022; 243:458-461. [PMID: 35300898 PMCID: PMC8919807 DOI: 10.1016/j.schres.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/06/2022] [Indexed: 11/19/2022]
Affiliation(s)
- Satish Suhas
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bangalore 560029, India
| | - Urvakhsh Meherwan Mehta
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bangalore 560029, India.
| |
Collapse
|
14
|
AMPA receptors in schizophrenia: A systematic review of postmortem studies on receptor subunit expression and binding. Schizophr Res 2022; 243:98-109. [PMID: 35247795 DOI: 10.1016/j.schres.2022.02.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/04/2021] [Accepted: 02/26/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND While altered expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) type receptor has been reported in postmortem studies of schizophrenia, these findings are inconsistent. Therefore, we aimed to systematically review postmortem studies that investigated AMPA receptor expressions in schizophrenia. METHODS A systematic literature search was conducted for postmortem studies that measured AMPA receptor subunit expressions or receptor bindings in schizophrenia compared to healthy individuals on February 3, 2021, using Medline and Embase. RESULTS A total of 39 relevant articles were identified from 1360 initial reports. The dorsolateral prefrontal cortex (DLPFC) was the most investigated region (15 studies), followed by the medial temporal lobe (8 studies). For the DLPFC, 4/15 studies (26.7%) showed increased AMPA receptor binding or subunit expression in patients with schizophrenia compared to that in controls, especially in GRIA1 and GRIA4, 2/15 studies (13.3%) reported a decrease, particularly in GRIA2, and 8/15 studies (56.7%) found no significant differences. A decreased expression or receptor binding was observed in 6/8 studies (75.0%) in the subregions of the hippocampus in patients with schizophrenia compared to that in controls, whereas the other two studies found no significant differences. CONCLUSION Published data have reported decreased subunit expression or receptor binding in the hippocampus in schizophrenia. These findings were inconsistent in other brain regions, which might be due to the heterogeneity of this population, various study design, physiological changes after death, and limited number of studies. Future in vivo studies are warranted to examine AMPA receptor expressions in human brains, together with their comprehensive clinical characterization.
Collapse
|
15
|
Analysis of mRNA and Protein Levels of CAP2, DLG1 and ADAM10 Genes in Post-Mortem Brain of Schizophrenia, Parkinson's and Alzheimer's Disease Patients. Int J Mol Sci 2022; 23:ijms23031539. [PMID: 35163460 PMCID: PMC8835961 DOI: 10.3390/ijms23031539] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 12/22/2022] Open
Abstract
Schizophrenia (SCZ) is a mental illness characterized by aberrant synaptic plasticity and connectivity. A large bulk of evidence suggests genetic and functional links between postsynaptic abnormalities and SCZ. Here, we performed quantitative PCR and Western blotting analysis in the dorsolateral prefrontal cortex (DLPFC) and hippocampus of SCZ patients to investigate the mRNA and protein expression of three key spine shapers: the actin-binding protein cyclase-associated protein 2 (CAP2), the sheddase a disintegrin and metalloproteinase 10 (ADAM10), and the synapse-associated protein 97 (SAP97). Our analysis of the SCZ post-mortem brain indicated increased DLG1 mRNA in DLPFC and decreased CAP2 mRNA in the hippocampus of SCZ patients, compared to non-psychiatric control subjects, while the ADAM10 transcript was unaffected. Conversely, no differences in CAP2, SAP97, and ADAM10 protein levels were detected between SCZ and control individuals in both brain regions. To assess whether DLG1 and CAP2 transcript alterations were selective for SCZ, we also measured their expression in the superior frontal gyrus of patients affected by neurodegenerative disorders, like Parkinson’s and Alzheimer’s disease. Interestingly, also in Parkinson’s disease patients, we found a selective reduction of CAP2 mRNA levels relative to controls but unaltered protein levels. Taken together, we reported for the first time altered CAP2 expression in the brain of patients with psychiatric and neurological disorders, thus suggesting that aberrant expression of this gene may contribute to synaptic dysfunction in these neuropathologies.
Collapse
|
16
|
Reis-de-Oliveira G, Smith BJ, Martins-de-Souza D. Postmortem Brains: What Can Proteomics Tell us About the Sources of Schizophrenia? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1400:1-13. [DOI: 10.1007/978-3-030-97182-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
17
|
Büki A, Kekesi G, Horvath G, Vécsei L. A Potential Interface between the Kynurenine Pathway and Autonomic Imbalance in Schizophrenia. Int J Mol Sci 2021; 22:10016. [PMID: 34576179 PMCID: PMC8467675 DOI: 10.3390/ijms221810016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023] Open
Abstract
Schizophrenia is a neuropsychiatric disorder characterized by various symptoms including autonomic imbalance. These disturbances involve almost all autonomic functions and might contribute to poor medication compliance, worsened quality of life and increased mortality. Therefore, it has a great importance to find a potential therapeutic solution to improve the autonomic disturbances. The altered level of kynurenines (e.g., kynurenic acid), as tryptophan metabolites, is almost the most consistently found biochemical abnormality in schizophrenia. Kynurenic acid influences different types of receptors, most of them involved in the pathophysiology of schizophrenia. Only few data suggest that kynurenines might have effects on multiple autonomic functions. Publications so far have discussed the implication of kynurenines and the alteration of the autonomic nervous system in schizophrenia independently from each other. Thus, the coupling between them has not yet been addressed in schizophrenia, although their direct common points, potential interfaces indicate the consideration of their interaction. The present review gathers autonomic disturbances, the impaired kynurenine pathway in schizophrenia, and the effects of kynurenine pathway on autonomic functions. In the last part of the review, the potential interaction between the two systems in schizophrenia, and the possible therapeutic options are discussed.
Collapse
Affiliation(s)
- Alexandra Büki
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 10., H-6720 Szeged, Hungary; (A.B.); (G.K.); (G.H.)
| | - Gabriella Kekesi
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 10., H-6720 Szeged, Hungary; (A.B.); (G.K.); (G.H.)
| | - Gyongyi Horvath
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 10., H-6720 Szeged, Hungary; (A.B.); (G.K.); (G.H.)
| | - László Vécsei
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6., H-6725 Szeged, Hungary
- MTA-SZTE Neuroscience Research Group, H-6725 Szeged, Hungary
- Interdisciplinary Excellence Center, Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6., H-6725 Szeged, Hungary
| |
Collapse
|
18
|
Boczek T, Mackiewicz J, Sobolczyk M, Wawrzyniak J, Lisek M, Ferenc B, Guo F, Zylinska L. The Role of G Protein-Coupled Receptors (GPCRs) and Calcium Signaling in Schizophrenia. Focus on GPCRs Activated by Neurotransmitters and Chemokines. Cells 2021; 10:cells10051228. [PMID: 34067760 PMCID: PMC8155952 DOI: 10.3390/cells10051228] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 01/13/2023] Open
Abstract
Schizophrenia is a common debilitating disease characterized by continuous or relapsing episodes of psychosis. Although the molecular mechanisms underlying this psychiatric illness remain incompletely understood, a growing body of clinical, pharmacological, and genetic evidence suggests that G protein-coupled receptors (GPCRs) play a critical role in disease development, progression, and treatment. This pivotal role is further highlighted by the fact that GPCRs are the most common targets for antipsychotic drugs. The GPCRs activation evokes slow synaptic transmission through several downstream pathways, many of them engaging intracellular Ca2+ mobilization. Dysfunctions of the neurotransmitter systems involving the action of GPCRs in the frontal and limbic-related regions are likely to underly the complex picture that includes the whole spectrum of positive and negative schizophrenia symptoms. Therefore, the progress in our understanding of GPCRs function in the control of brain cognitive functions is expected to open new avenues for selective drug development. In this paper, we review and synthesize the recent data regarding the contribution of neurotransmitter-GPCRs signaling to schizophrenia symptomology.
Collapse
Affiliation(s)
- Tomasz Boczek
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, 92215 Lodz, Poland; (T.B.); (J.M.); (M.S.); (J.W.); (M.L.); (B.F.)
| | - Joanna Mackiewicz
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, 92215 Lodz, Poland; (T.B.); (J.M.); (M.S.); (J.W.); (M.L.); (B.F.)
| | - Marta Sobolczyk
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, 92215 Lodz, Poland; (T.B.); (J.M.); (M.S.); (J.W.); (M.L.); (B.F.)
| | - Julia Wawrzyniak
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, 92215 Lodz, Poland; (T.B.); (J.M.); (M.S.); (J.W.); (M.L.); (B.F.)
| | - Malwina Lisek
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, 92215 Lodz, Poland; (T.B.); (J.M.); (M.S.); (J.W.); (M.L.); (B.F.)
| | - Bozena Ferenc
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, 92215 Lodz, Poland; (T.B.); (J.M.); (M.S.); (J.W.); (M.L.); (B.F.)
| | - Feng Guo
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, China;
| | - Ludmila Zylinska
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, 92215 Lodz, Poland; (T.B.); (J.M.); (M.S.); (J.W.); (M.L.); (B.F.)
- Correspondence:
| |
Collapse
|
19
|
Lauterborn JC, Scaduto P, Cox CD, Schulmann A, Lynch G, Gall CM, Keene CD, Limon A. Increased excitatory to inhibitory synaptic ratio in parietal cortex samples from individuals with Alzheimer's disease. Nat Commun 2021; 12:2603. [PMID: 33972518 PMCID: PMC8110554 DOI: 10.1038/s41467-021-22742-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 03/24/2021] [Indexed: 02/08/2023] Open
Abstract
Synaptic disturbances in excitatory to inhibitory (E/I) balance in forebrain circuits are thought to contribute to the progression of Alzheimer's disease (AD) and dementia, although direct evidence for such imbalance in humans is lacking. We assessed anatomical and electrophysiological synaptic E/I ratios in post-mortem parietal cortex samples from middle-aged individuals with AD (early-onset) or Down syndrome (DS) by fluorescence deconvolution tomography and microtransplantation of synaptic membranes. Both approaches revealed significantly elevated E/I ratios for AD, but not DS, versus controls. Gene expression studies in an independent AD cohort also demonstrated elevated E/I ratios in individuals with AD as compared to controls. These findings provide evidence of a marked pro-excitatory perturbation of synaptic E/I balance in AD parietal cortex, a region within the default mode network that is overly active in the disorder, and support the hypothesis that E/I imbalances disrupt cognition-related shifts in cortical activity which contribute to the intellectual decline in AD.
Collapse
Affiliation(s)
- Julie C Lauterborn
- Department of Anatomy and Neurobiology, University of California at Irvine, Irvine, CA, USA.
| | - Pietro Scaduto
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases. School of Medicine, University of Texas Medical Branch at Galveston, Galveston, USA
| | - Conor D Cox
- Department of Anatomy and Neurobiology, University of California at Irvine, Irvine, CA, USA
| | - Anton Schulmann
- National Institute of Mental Health, Human Genetics Branch, Bethesda, MD, USA
| | - Gary Lynch
- Department of Anatomy and Neurobiology, University of California at Irvine, Irvine, CA, USA
- Department of Psychiatry & Human Behavior, University of California at Irvine, Irvine, CA, 92697, USA
| | - Christine M Gall
- Department of Anatomy and Neurobiology, University of California at Irvine, Irvine, CA, USA
| | - C Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Agenor Limon
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases. School of Medicine, University of Texas Medical Branch at Galveston, Galveston, USA.
| |
Collapse
|
20
|
Afridi R, Seol S, Kang HJ, Suk K. Brain-immune interactions in neuropsychiatric disorders: Lessons from transcriptome studies for molecular targeting. Biochem Pharmacol 2021; 188:114532. [PMID: 33773976 DOI: 10.1016/j.bcp.2021.114532] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022]
Abstract
Understanding the pathophysiological mechanisms of neuropsychiatric disorders has been a challenging quest for neurobiologists. Recent years have witnessed enormous technological advances in the field of neuroimmunology, blurring boundaries between the central nervous system and the periphery. Consequently, the discipline has expanded to cover interactions between the nervous and immune systems in health and diseases. The complex interplay between the peripheral and central immune pathways in neuropsychiatric disorders has recently been documented in various studies, but the genetic determinants remain elusive. Recent transcriptome studies have identified dysregulated genes involved in peripheral immune cell activation, blood-brain barrier integrity, glial cell activation, and synaptic plasticity in major depressive disorder, bipolar disorder, autism spectrum disorder, and schizophrenia. Herein, the key transcriptomic techniques applied in investigating differentially expressed genes and pathways responsible for altered brain-immune interactions in neuropsychiatric disorders are discussed. The application of transcriptomics that can aid in identifying molecular targets in various neuropsychiatric disorders is highlighted.
Collapse
Affiliation(s)
- Ruqayya Afridi
- Department of Pharmacology, Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Sihwan Seol
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Hyo Jung Kang
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea.
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|