1
|
Wu J, Qiu Y, Yang H, Chen J, Chen S, Li F. GLDA exhibits advantages in the phytoextraction of Cd and Ni in land-applied municipal sludge. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:51921-51933. [PMID: 39134793 DOI: 10.1007/s11356-024-34657-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 08/03/2024] [Indexed: 09/06/2024]
Abstract
Landscape utilization is a green and environment-friendly way of disposing of compost sludge. Garden plants can extract heavy metals from the sludge of land use, but the effect is not enough to be widely used. Chelating agents have been found to facilitate the extraction of heavy metals from plants and are expected to be popularized if they are also environmentally friendly. In this study, the effects of methylglycinediacetic acid trisodium salt (MGDA), tetrasodium glutamate diacetate (GLDA), and ethylene diamine tetraacetate (EDTA) on the extraction of Ni and Cd from compost sludge by Symphytum officinale L. were studied through the pot experiment. Compared with the control group, the application of 5-10 mmol kg-1 MGDA and 1-9 mmol kg-1 GLDA promoted plant growth, while the application of 3-4 mmol kg-1 EDTA inhibited plant growth. The highest Ni content in shoots appeared in 4 mmol kg-1 GLDA treatment, which was 4.2 times that of the CK group. The highest shoot Cd concentration appeared in 4 mmol kg-1 EDTA treatment, 6.5 times that of CK. The promotion effects of the three reagents on the acid-extractable state of Cd were similar, while that of GLDA on the acid-extractable state of Ni was outstanding. The results of this study suggested that S. officinale could be a potential phytoextraction plant for Cd and Ni, and GLDA could friendly promote the Ni phytoextraction ability of the plant. The study provides a new and efficient method for phytoremediation of heavy metals in soil.
Collapse
Affiliation(s)
- Jiahao Wu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Yuehua Qiu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Hongfei Yang
- Zhongce Vocational School, Hangzhou, 310014, People's Republic of China
| | - Jing Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Shiyu Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Feili Li
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China.
| |
Collapse
|
2
|
Fine P, Engal O, Beriozkin A. EDTA biodegradability and assisted phytoextraction efficiency in a large-scale field simulation: Is EDTA phasing out justified? JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120133. [PMID: 38308985 DOI: 10.1016/j.jenvman.2024.120133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 02/05/2024]
Abstract
Enhanced phytoextraction of metal-polluted soils using EDTA is phasing out in favor of biodegradable chelants. However, these are too short-lived to be effective in the acclimated biodegrading soil environment established in long-term phytoextraction operations. We hypothesize that full-scale EDTA-enhanced phytoextraction can be both effective and environmentally safe, provided that soil leaching is prevented while EDTA persists in the soil profile. This was tested for 4 years in two sealed, well-monitored constructed lagoons (70-m3 each) packed with Cd-contaminated dredged sediment. Fast-growing, high-biomass, salinity-resistant eucalypts were planted in June 2010. Under controlled deficit irrigation, the 3-year average EC was 14.2 dS m-1. Summer leakage accounted for ∼1.2 % of the overall irrigation water and was prescribed for monitoring the composition of the soil solution. Altogether, 486 leachate and 261 suction-cap solutions were collected at average intervals of 5.5 days. EDTA was intermittently applied with summer irrigation, in multiple low doses at average seasonal concentrations of 1.1-9.2 mM. The soil solution EDTA biodegraded quickly after those applications were stopped. This cessation was timed well before the start of the rainy season. Spontaneous EDTA leaching during the three winters accounted for <0.02 % of the total 423 mol/basin applied. Prescribed summer leaching constituted ∼1 % of this total. Peak heavy metal (HM) concentrations in the leachate and suction-cap solutions (e.g., Cd, up to 18.5 and 14 mg L-1, respectively) were observed soon after EDTA application. Winter HM concentrations were not significantly different from the background. As the amounts of EDTA diminished, HM also disappeared from the soil solution, probably by adsorption. Eucalyptus occidentalis was by far the most efficient Cd sink of the five species tested,. The results of this study strongly support our hypothesis that EDTA-enhanced phytoextraction can be both effective and environmentally safe.
Collapse
Affiliation(s)
- Pinchas Fine
- Institute of Soil, Water and Environmental Sciences, Volcani Center, ARO, P.O. Box 15159, Rishon Lezion, 7528809, Israel.
| | - Oz Engal
- Institute of Soil, Water and Environmental Sciences, Volcani Center, ARO, P.O. Box 15159, Rishon Lezion, 7528809, Israel; Origene Seeds Ltd., P.O.Box 699, Rehovot, 7610602, Israel.
| | - Anna Beriozkin
- Institute of Soil, Water and Environmental Sciences, Volcani Center, ARO, P.O. Box 15159, Rishon Lezion, 7528809, Israel.
| |
Collapse
|
3
|
Rassaei F. EDDS and polystyrene interactions: implications for soil health and management practices. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:504-523. [PMID: 37667464 DOI: 10.1080/15226514.2023.2250464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Ethylenediamine-N,N'-disuccinic acid (EDDS) has been studied extensively for its potential use as an amendment in agriculture due to its numerous beneficial properties. The widespread usage of microplastics (MPs) poses a growing threat to plant growth. This study investigated the effects of Polystyrene MPs (PSMPs) and EDDS on soil pH, EC, organic matter (OM), available nutrients, and maize (Zea mays L.) growth in a calcareous soil. Results showed that both PS and EDDS had significant effects on soil pH, with higher concentrations leading to a decrease in pH. PSMPs negatively impacted soil health by increasing EC and decreasing OM, nitrogen (N), phosphorus (P), and potassium (K). EDDS had potential applications in soil remediation and phytoremediation by decreasing EC and increasing N, P, and K. The interaction between EDDS and PSMPs suggests that their effects on soil pH may be modulated by each other. The study highlights the potential negative impacts of high concentrations of PS on soil health and the potential benefits of using EDDS at lower concentrations in soil remediation and phytoremediation. However, further research is needed to understand the mechanisms and environmental impacts of EDDS and the combined effects of EDDS and PSMPs on soil properties and plant growth.
Collapse
Affiliation(s)
- Farzad Rassaei
- Department of Soil Science, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| |
Collapse
|
4
|
López-Rayo S, Valverde S, Lucena JJ. [ S,S]-EDDS Ligand as a Soil Solubilizer of Fe, Mn, Zn, and Cu to Improve Plant Nutrition in Deficient Soils. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37314888 DOI: 10.1021/acs.jafc.3c02057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The deficiencies of iron, manganese, zinc, and copper in calcareous soils are a worldwide problem affecting plant growth and fruit quality, usually minimized by the application of recalcitrant synthetic metal chelates. Biodegradable ligand [S,S]-EDDS is an eco-friendly substitute. This study investigates the capacity of [S,S]-EDDS to mobilize micronutrients from agronomic soils and improve plant nutrition. A batch and a plant experiment (Phaseolus vulgaris cv. Black Pole) with three agronomic soils was conducted to monitor the micronutrients solubilized by [S,S]-EDDS, the ligand degradation, and plant uptake. The results demonstrated the high capacity of [S,S]-EDDS to solubilize Fe and other micronutrients related to its chemical behavior and the enhancement of plant nutrition. The best results were shown in sandy-clay soil with low Fe, typically found in the Mediterranean areas. The results support the direct application of the ligand to soils and a possible biotechnological application of the ligand-producer bacteria.
Collapse
Affiliation(s)
- Sandra López-Rayo
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Silvia Valverde
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Juan José Lucena
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
5
|
Zhou M, Kiamarsi Z, Han R, Kafi M, Lutts S. Effect of NaCl and EDDS on Heavy Metal Accumulation in Kosteletzkya pentacarpos in Polymetallic Polluted Soil. PLANTS (BASEL, SWITZERLAND) 2023; 12:1656. [PMID: 37111879 PMCID: PMC10146522 DOI: 10.3390/plants12081656] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/25/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
The ability of plants to accumulate heavy metals is a crucial factor in phytoremediation. This study investigated the effect of NaCl and S,S-ethylenediaminesuccinic acid (EDDS) on heavy metal accumulation in Kosteletzkya pentacarpos in soil polluted with arsenic, cadmium, lead, and zinc. The addition of NaCl reduced the bioavailability of arsenic and cadmium, while EDDS increased the bioavailability of arsenic and zinc. The toxicity of the polymetallic pollutants inhibited plant growth and reproduction, but NaCl and EDDS had no significant positive effects. NaCl reduced the accumulation of all heavy metals in the roots, except for arsenic. In contrast, EDDS increased the accumulation of all heavy metals. NaCl reduced the accumulation of arsenic in both the main stem (MS) and lateral branch (LB), along with a decrease in cadmium in the leaves of the main stem (LMS) and zinc in the leaves of the lateral branch (LLB). Conversely, EDDS increased the accumulation of all four heavy metals in the LB, along with an increase in arsenic and cadmium in the LMS and LLB. Salinity significantly decreased the bioaccumulation factor (BF) of all four heavy metals, while EDDS significantly increased it. NaCl had different effects on heavy metals in terms of the translocation factor (TFc), increasing it for cadmium and decreasing it for arsenic and lead, with or without EDDS. EDDS reduced the accumulation of all heavy metals, except for zinc, in the presence of NaCl in polluted soil. The polymetallic pollutants also modified the cell wall constituents. NaCl increased the cellulose content in the MS and LB, whereas EDDS had little impact. In conclusion, salinity and EDDS have different effects on heavy metal bioaccumulation in K. pentacarpos, and this species has the potential to be a candidate for phytoremediation in saline environments.
Collapse
Affiliation(s)
- Mingxi Zhou
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, 37005 Ceske Budejovice, Czech Republic
| | - Zahar Kiamarsi
- Department of Agrotechnology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Ruiming Han
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Mohammad Kafi
- Department of Agrotechnology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Stanley Lutts
- Groupe de Recherche en Physiologie Vegetale (GRPV), Earth and Life Institute-Agronomy (ELIA), Universite Catholique de Louvain, 5 (Bte 7.07.13) Place Croix du Sud, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
6
|
Gidudu B, Chirwa EMN. The Role of pH, Electrodes, Surfactants, and Electrolytes in Electrokinetic Remediation of Contaminated Soil. Molecules 2022; 27:7381. [PMID: 36364207 PMCID: PMC9657640 DOI: 10.3390/molecules27217381] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 08/01/2023] Open
Abstract
Electrokinetic remediation has, in recent years, shown great potential in remediating polluted environments. The technology can efficiently remove heavy metals, chlorophenols, polychlorinated biphenyls, phenols, trichloroethane, benzene, toluene, ethylbenzene, and xylene (BTEX) compounds and entire petroleum hydrocarbons. Electrokinetic remediation makes use of electrolysis, electroosmosis, electrophoresis, diffusion, and electromigration as the five fundamental processes in achieving decontamination of polluted environments. These five processes depend on pH swings, voltage, electrodes, and electrolytes used in the electrochemical system. To apply this technology at the field scale, it is necessary to pursue the design of effective processes with low environmental impact to meet global sustainability standards. It is, therefore, imperative to understand the roles of the fundamental processes and their interactions in achieving effective and sustainable electrokinetic remediation in order to identify cleaner alternative solutions. This paper presents an overview of different processes involved in electrokinetic remediation with a focus on the effect of pH, electrodes, surfactants, and electrolytes that are applied in the remediation of contaminated soil and how these can be combined with cleaner technologies or alternative additives to achieve sustainable electrokinetic remediation. The electrokinetic phenomenon is described, followed by an evaluation of the impact of pH, surfactants, voltage, electrodes, and electrolytes in achieving effective and sustainable remediation.
Collapse
|
7
|
Wang Y, Lu Y, Lu J, Yang ZN, Yang Z. Research Progress on the Biosynthesis and Bioproduction of the Biodegradable Chelating Agent (S,S)-EDDS. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Ju W, Duan C, Liu L, Jin X, Bravo-Ruiseco G, Mei Y, Fang L. Reduction of Cu and nitrate leaching risk associated with EDDS-enhanced phytoextraction process by exogenous inoculation of plant growth promoting rhizobacteria. CHEMOSPHERE 2022; 287:132288. [PMID: 34555581 DOI: 10.1016/j.chemosphere.2021.132288] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 05/09/2023]
Abstract
Biodegradable chelant (S,S)-N,N'-ethylenediaminedisuccinic acid (EDDS) has the more advantages of enhanced metal mobility, rapid degradation, environmental friendliness, and ammonium release. However, the risk of metal and/or nitrate residues and leaching within EDDS biodegradation remains as the bottleneck for the widespread application of EDDS-induced phytoremediation. This study aims to explore if the inoculation of plant growth-promoting rhizobacteria (PGPRs) can eliminate the risk associated with the short-term application of EDDS by investigating Cu phytoextraction and soil nitrate content. Results showed that EDDS application significantly increased the copper (Cu) concentration in shoots, soil total Cu, NH4+-N and NO3--N content, but decreased plant biomass. The inoculation of PGPRs in the soil showed a strong ability to increase plant biomass, Cu phytoextraction and soil NH4+-N content, and decrease soil Cu and NO3--N content. Moreover, bacterial dominant taxa were found to be the largest contributors to soil NH4+-N and NO3--N variation, and the abundance of denitrifying bacteria (Bacteroidetes and Stenotrophomonas) decreased in the treatment with PGPRs. The risk of residual Cu and nitrate leaching was reduced by the inoculation of PGPRs without significantly changing the stability of the bacterial community. These new findings indicate that the exogenous application of beneficial rhizobacteria can provide an effective strategy to reduce the risk in metal-contaminated soils of chelant-assisted phytoextraction.
Collapse
Affiliation(s)
- Wenliang Ju
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 712100, China; School of Environment, Tsinghua University, Beijing, 100084, China
| | - Chengjiao Duan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 712100, China
| | - Lei Liu
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| | - Xiaolian Jin
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 712100, China
| | - Gabriela Bravo-Ruiseco
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| | - Yuxia Mei
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Linchuan Fang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 712100, China; CAS Center for Excellence in Quaternary Science and Global Change, Chinese Academy of Sciences, Xi'an, 710061, China.
| |
Collapse
|
9
|
Application of Soil Washing and Thermal Desorption for Sustainable Remediation and Reuse of Remediated Soil. SUSTAINABILITY 2021. [DOI: 10.3390/su132212523] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Global governance of soil resources as well as revitalizations and remediation of degraded areas seem to be necessary actions for sustainable development. A great deal of effort has gone into developing remediation technologies to remove or reduce the impact of these contaminants in the environment. However, contaminated soil remediations in stringent conditions deteriorate soil properties and functions and create the need for efficient soil revitalization measures. Soil washing (SW) and thermal desorption (TD) are commonly used to remediate contaminated soil and can significantly reduce the contaminant, sometimes to safe levels where reuse can be considered; however, the effects of treatment on soil quality must be understood in order to support redevelopment after remediation. In this review, we discussed the effects of SW and TD on soil properties, including subsequent soil quality and health. Furthermore, the importance of these techniques for remediation and reclamation strategies was discussed. Some restoration strategies were also proposed for the recovery of soil quality. In addition, remediated and revitalized soil can be reused for various purposes, which can be accepted as an implementation of sustainable remediation. This review concludes with an outlook of future research efforts that will further shift SW and TD toward sustainable remediation.
Collapse
|
10
|
Kaurin A, Gluhar S, Maček I, Kastelec D, Lestan D. Demonstrational gardens with EDTA-washed soil. Part II: Soil quality assessment using biological indicators. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148522. [PMID: 34187712 DOI: 10.1016/j.scitotenv.2021.148522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
In this study, we evaluated the impact of washing of Pb, Zn and Cd contaminated soil using EDTA-based technology (ReSoil®) on soil biological properties by measuring some of the most commonly used/sensitive biological indicators of soil perturbation. We estimated the temporal dynamics of the soil respiration, the activities of soil enzymes (dehydrogenase, β-glucosidase, urease, acid and alkaline phosphatase), and the effect of the remediation process on arbuscular mycorrhizal (AM) fungi in original (Orig), remediated (Rem) and remediated vitalized (Rem+V) soils during a more than one-year garden experiment. ReSoil® technology initially affected the activity level of soil microbial respiration and all enzyme activities except urease and reduced AM fungal potential in the soil. However, after one year of vegetable cultivation and standard gardening practices, soil microbial respiration, acid and alkaline phosphatase in the Rem and Rem+V reached similar activities as in the Orig. Only the activities of dehydrogenase and β-glucosidase remained lower in the remediated soil compared to the Orig. The frequency of arbuscular mycorrhiza in the root system, arbuscular density in the colonized root fragment, and the intensity of mycorrhizal colonization in the colonized root fragments in the remediated treatments increased with time; at the end of the experiment, no consistent differences in these parameters of mycorrhizal colonization were found among the treatments. Our results suggest a restored biological functioning of the remediated soil after one year of vegetable cultivation. In general, no differences were found between the Rem and Rem+V treatments, indicating that simple common garden practices are sufficient to restore soil functioning after remediation.
Collapse
Affiliation(s)
- Anela Kaurin
- Biotechnical faculty, University of Ljubljana, Slovenia
| | | | - Irena Maček
- Biotechnical faculty, University of Ljubljana, Slovenia; Faculty of Mathematics, Natural Sciences and Information Technologies (FAMNIT), University of Primorska, Glagoljaska 8, 6000 Koper, Slovenia
| | | | - Domen Lestan
- Biotechnical faculty, University of Ljubljana, Slovenia; Envit Ltd., Slovenia.
| |
Collapse
|
11
|
Wang Y, Xu Y, Qin X, Zhao L, Huang Q, Liang X. Effects of S,S-ethylenediamine disuccinic acid on the phytoextraction efficiency of Solanum nigrum L. and soil quality in Cd-contaminated alkaline wheat soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:42959-42974. [PMID: 33830419 DOI: 10.1007/s11356-021-13764-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Degradable chelating agent-assisted phytoextraction is a promising method for the remediation of Cd-contaminated agricultural soil. However, there are limited studies that have examined the effect of chelating agents on soil solutions and soil quality in alkaline soil. In this study, the effects of S,S-ethylenediamine disuccinic acid (EDDS) on the growth and phytoextraction of Solanum nigrum L. (S. nigrum) were studied using pot experiments. The influence of EDDS on the soil solutions, heavy metal contents, and soil enzyme activities was evaluated. EDDS application increased the height of S. nigrum by 7.25-29.25 cm and increased the biomass of stem and leaf by 4.26-14.95 and 1.14-10.78 g/pot, respectively. The Cd concentrations in the leaves and berries of S. nigrum were 1.21-2.17 and 1.7-9.47 times higher than that of the control, respectively, and the Cd extraction amount in the shoots of S. nigrum increased by 22.78-256.16 μg/pot after EDDS application. The chelation of EDDS on heavy metals reached a peak after 7 days of application, decreased gradually with the degradation of EDDS, and disappeared after 30 days of application. Soil pH, available metals, metal speciation, and soil urease were significantly related to the application time of EDDS. Importantly, EDDS application 45 days before S. nigrum harvest treatments decreased the available metal concentrations and improved soil pH and urease activity. However, when EDDS was applied 15 days before S. nigrum harvest, the available Cd and Pb concentrations significantly increased and caused additional Pb pollution. Considering the chelation and degradation effects, the environmental implication, and the cost of EDDS, the results of this study showed that one application of EDDS was better than two applications, a 45-day application before harvest was preferred to a 15-day application, and application of 1-3 mM EDDS 30-45 days before S. nigrum harvest was the most promising application method for the remediation of Cd-contaminated alkaline soil.
Collapse
Affiliation(s)
- Yale Wang
- Innovation Team of Remediation for Heavy Metal Contaminated Farmlands, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China
- Key Laboratory of Original Environmental Pollution Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China
| | - Yingming Xu
- Innovation Team of Remediation for Heavy Metal Contaminated Farmlands, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China.
- Key Laboratory of Original Environmental Pollution Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China.
| | - Xu Qin
- Innovation Team of Remediation for Heavy Metal Contaminated Farmlands, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China
- Key Laboratory of Original Environmental Pollution Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China
| | - Lijie Zhao
- Innovation Team of Remediation for Heavy Metal Contaminated Farmlands, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China
- Key Laboratory of Original Environmental Pollution Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China
| | - Qingqing Huang
- Innovation Team of Remediation for Heavy Metal Contaminated Farmlands, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China
- Key Laboratory of Original Environmental Pollution Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China
| | - Xuefeng Liang
- Innovation Team of Remediation for Heavy Metal Contaminated Farmlands, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China
- Key Laboratory of Original Environmental Pollution Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China
| |
Collapse
|
12
|
Diarra I, Kotra KK, Prasad S. Assessment of biodegradable chelating agents in the phytoextraction of heavy metals from multi-metal contaminated soil. CHEMOSPHERE 2021; 273:128483. [PMID: 33129560 DOI: 10.1016/j.chemosphere.2020.128483] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 05/24/2023]
Abstract
A pot incubation experiment under natural conditions was designed to investigate the effects of three biodegradable chelating agents, namely; the [S,S]-isomer of ethylenediamine disuccinate (EDDS), citric acid (CA), and tetrasodium N,N-Bis(carboxymethyl)-L-glutamate acid (GLDA), on two plant species (Brassica juncea and Brassica rapa) in terms of plant foliar growth, dry matter yield, and heavy metal (HM) accumulation. Both plant species exhibited diminished growth and symptoms of phytotoxicity under HM stress. The application of EDDS and CA affected plant foliar growth, biomass production, and led to the development of chlorotic lesions on leaves. EDDS and CA also decreased the shoot length by 38.5% and 45.2% in B. juncea, and 60.1% and 100% in B. rapa, respectively. In contrast, GLDA relieved HM stress by significantly increasing plant growth (P > 0.05) and was shown to be well tolerated (tolerance index [TI]; B. juncea = 99% and B. rapa = 123%). Among both plants, B. juncea displayed the ability to accumulate a wider range of HMs at higher concentrations. Amongst the three chelators, EDDS induced the highest bioconcentration (BCF) of Pb (2.45), Zn (2.68), and Cd (3.36) while CA achieved better results for Ni (4.01) and Cr (1.45). However, the current results showed that even with the application of chelating agents, HMs were predominantly accumulated in roots and translocation factor was generally <1. The findings of this investigation emphasize that chelate-assisted phytoextraction with Brassica spp. is highly limited in multi-metal settings, making it an unsuitable option for severely contaminated sites.
Collapse
Affiliation(s)
- Ivan Diarra
- School of Biological and Chemical Sciences, Faculty of Science, Technology and Environment, The University of the South Pacific, Laucala Campus, Suva, Fiji
| | - Krishna Kumar Kotra
- School of Biological and Chemical Sciences, Faculty of Science, Technology and Environment, The University of the South Pacific, Emalus Campus, Port Vila, Vanuatu
| | - Surendra Prasad
- School of Biological and Chemical Sciences, Faculty of Science, Technology and Environment, The University of the South Pacific, Laucala Campus, Suva, Fiji.
| |
Collapse
|
13
|
Tammam A, El-Aggan W, Abou-Shanab R, Mubarak M. Improved of growth and phytostabilization potential of lead (Pb) in Glebionis coronaria L. under the effect of IAA and GA 3 alone and in combination with EDTA by altering biochemical attributes of stressed plants. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 23:958-968. [PMID: 33455425 DOI: 10.1080/15226514.2020.1870928] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This study evaluated the effect of EDTA, IAA and GA3 alone and in combination in improving plant growth, Pb accumulation, and management of effective mechanisms associated with alleviation of Pb-induced adverse effect in Glebionis coronaria L. grown on industrial area in Alexandria. In this regards, 10-week-old plants were subjected to IAA and GA3 as a foliar spray and EDTA was supplied in two doses 50 and 200mgkg-1 soil. EDTA significantly reduced the plant growth and dry biomass, whereas GA3 and IAA foliar spray increased growth significantly when compared with control (uncontaminated soil). In combined treatments of EDTA + GA3 +IAA, the biomass was restored, which shows that GA3 and IAA did compensate the negative effect of EDTA on plant growth and increased the Pb uptake significantly into roots. There were high GSH contents parallel with the increase of glutathione-S-transferase activity and induction of the antioxidant enzymes (SOD, CAT, APX, GR) as well as oxidized glutathione and ascorbic acid contents in leaves and roots when compared to control plants. This study suggests that G. coronaria is promising species for decontamination of Pb -contaminated soil and the application of EDTA together with IAA and GA3 could be a useful strategy for enhancing the phytostabilization capability of Glebionis coronaria L. to eliminate Pb from contaminated soils. Novelty statement: The objective of this paper is to investigate the physiological performance of Glebionis coronaria as a new native for phytoremediation by phytostabilization mechanism of Pb after treatment with EDTA and phytohormones. Chemical additives of EDTA and GA3 as well as IAA are promising alternatives to provide added benefits due to their individual credentials in improving the overall phytostabilization effectiveness and better immobilization efficiency in treating Pb contaminated soils by altering biochemical attributes of stressed plants. Currently these additives are not employed widely in large-scale field implementations, so field applications of these additives using Glebionis coronaria are essential for Phytoremediation of Pb-contaminated soils.
Collapse
Affiliation(s)
- Amel Tammam
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Chataby, Alexandria, Egypt
| | - Weam El-Aggan
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Chataby, Alexandria, Egypt
| | - Reda Abou-Shanab
- Department of Environmental Biotechnology, City of Scientific Research and Technology Applications, New Borg El Arab City, Egypt
| | - Mahmoud Mubarak
- Department of Botany and Microbiology, Faculty of Science, Damanhour University, Damanhour, Egypt
| |
Collapse
|
14
|
Kaurin A, Gluhar S, Tilikj N, Lestan D. Soil washing with biodegradable chelating agents and EDTA: Effect on soil properties and plant growth. CHEMOSPHERE 2020; 260:127673. [PMID: 32693264 DOI: 10.1016/j.chemosphere.2020.127673] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
Soils contaminated with Pb, Zn and Cd are hazardous. Persistent EDTA and biodegradable GLDA, EDDS and IDS have been used as chelators in the ReSoil soil washing technology, which recycles chelator and curbs toxic emissions. The washed soils supported similar growth of buckwheat (F. esculentum) and better growth of Chinese cabbage (B. rapa) compared with the original (not-remediated) soil. The growth of buckwheat on EDDS-washed soil was an exception and was 67% suppressed. The activities of enzymes of the plant antioxidant preventive system were assessed in roots and leaves of Chinese cabbage on all soils. Similar activities were measured, confirming that washed soils are not harmful to the plants. Plant uptake of potentially toxic elements was reduced from all washed soils, i.e. buckwheat grown on GLDA-washed soils accumulated up to 27 and 83 times less Pb and Cd than in the original soil. The initial Pb emissions in leachate from GLDA and IDS washed soils were up to 89 and 92% higher than those of the original soil, respectively. The latter emissions ceased to the levels measured in original, EDTA and EDDS washed soils. Soil physical properties (water holding capacity, aggregate stability) and soil functionality, assessed as soil respiration and activity of enzymes indicative for soil C, N and P cycle, were similar in all soils after 10 weeks of plant growth experiment. The overall results indicate a low impact of the remediation on soil quality. Soils washed with EDTA performed slightly better compared to GLDA-, EDDS- and IDS-washed soils.
Collapse
Affiliation(s)
- Anela Kaurin
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Simon Gluhar
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia; Envit Ltd., Trzaska Cesta 330, 1000, Ljubljana, Slovenia
| | - Natasha Tilikj
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Domen Lestan
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia; Envit Ltd., Trzaska Cesta 330, 1000, Ljubljana, Slovenia.
| |
Collapse
|
15
|
Zhao YP, Cui JL, Chan TS, Chen YH, Li XD. Mechanistic insight into the interactions of EDDS with copper in the rhizosphere of polluted soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115453. [PMID: 33254714 DOI: 10.1016/j.envpol.2020.115453] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/25/2020] [Accepted: 08/15/2020] [Indexed: 06/12/2023]
Abstract
The biodegradable S,S-ethylenediaminedisuccinic acid (EDDS) is a promising chelant for chelant-assisted phytoextraction of trace metals in polluted soil. The interactions between EDDS and trace metals/major elements in the soil affect the metal bioavailability and their subsequent phytoextraction efficiency. This study aimed to investigate the macroscopic and molecular-level interactions of EDDS with Cu in the rhizosphere and non-rhizosphere of a Cu-polluted agricultural soil. A multi-interlayer rhizobox planted with ryegrass was used to simulate the transport of EDDS and Cu from the non-rhizosphere to rhizosphere soils. The results showed that EDDS (5 mM kg-1) significantly dissociated Cu (285-690 fold), Fe (by 3.47-60.2 fold), and Al (2.43-5.31 fold) from the soil in comparison with a control group. A combination of micro-X-ray fluorescence, X-ray absorption near-edge structure spectroscopy, and sequential extraction analysis revealed that EDDS primarily chelated the adsorbed fraction of Cu by facilitating the dissolution of goethite. Moreover, as facilitated by ryegrass transpiration, CuEDDS was moved from the non-rhizosphere to rhizosphere and accumulated in ryegrass. In situ processes of Cu extraction and transport by EDDS in the rhizosphere were further elucidated with chemical speciation analysis and geochemical modeling methods.
Collapse
Affiliation(s)
- Yan-Ping Zhao
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Jin-Li Cui
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Ting-Shan Chan
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu, 30076, Taiwan
| | - Ya-Hua Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiang-Dong Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
16
|
Gul I, Manzoor M, Kallerhoff J, Arshad M. Enhanced phytoremediation of lead by soil applied organic and inorganic amendments: Pb phytoavailability, accumulation and metal recovery. CHEMOSPHERE 2020; 258:127405. [PMID: 32947677 DOI: 10.1016/j.chemosphere.2020.127405] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
Chelation of lead (Pb) is an important factor in enhancing the Pb mobility thereby improving availability to promote phytoremediation of Pb from contaminated soil. The study was conducted to evaluate the effect of amendments in enhancing the phytoremediation of Pb in soil. For this purpose, soil was spiked to obtain desired Pb concentrations (0-1500 mg kg-1) and pots were filled. One month old and uniform seedlings of Pelargonium hortoum were transplanted into each pot. Five different amendments i.e. compost (0-10%), ammonium nitrate (0-10 mmol kg-1), TiO2NPs (0-100 mg kg-1), citric acid (0-10 mmol kg-1) and EDTA (0-5 mmol kg-1), were applied. Overall, ammonium nitrate, EDTA and citric acid application increased the Pb concentration, however, compost and TiO2NPs decreased the concentration in roots and shoots. At 1500 mg Pb kg-1, Pb concentration in shoots was increased by 0.9-, 0.6- & 0.8-folds and in roots by 1.8-, 1.3- & 1.7-folds upon EDTA, ammonium nitrate and citric acid application, respectively. TiO2NPs and compost application decreased Pb concentration by 29% & 35% in shoots and 25% & 51% in roots, respectively. At the highest level of Pb (1500 mg kg-1), plant biomass was increased by 26.6%, 19.5%, 17.9% and 18.4% upon application of compost, TiO2 NPs, ammonium nitrate and citric acid, respectively. However, EDTA reduced the plant dry biomass by 28.4%. The accumulated Pb content was recovered as Pb-nanoparticles, which were in anatase phase, size ranged between 98 and 276 nm. Among all the studied amendments, citric acid efficiently increased Pb phytoaccumulation without any toxicity.
Collapse
Affiliation(s)
- Iram Gul
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology, Islamabad, Pakistan.
| | - Maria Manzoor
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology, Islamabad, Pakistan
| | | | - Muhammad Arshad
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology, Islamabad, Pakistan.
| |
Collapse
|
17
|
Li F, Yang F, Chen Y, Jin H, Leng Y, Wang J. Chemical reagent-assisted phytoextraction of heavy metals by Bryophyllum laetivirens from garden soil made of sludge. CHEMOSPHERE 2020; 253:126574. [PMID: 32278903 DOI: 10.1016/j.chemosphere.2020.126574] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/16/2020] [Accepted: 03/19/2020] [Indexed: 06/11/2023]
Abstract
Making municipal sludge into garden soil is a challenging issue in land using due to the high content of heavy metals, however phytoremediation can reduce the heavy metal pollution in the soil. Three artificial regulators were used in combination to improve phytoremediation of heavy metals by Bryophyllum laetivirens from municipal sludge made garden (MSMG) soil. Results showed that B. laetivirens grew well in MSMG soil and bioaccumulated Cu, Pb, Zn, Cd, and Ni by 2.16-11.0 times higher than those grew in local common garden soil. The application of ethylenediaminetetraacetic acid (EDTA), indole-3-acetic acid (IAA) and microbial liquid (BL) promoted the bioaccumulation of heavy metals of plants in MSMG soil, with 2.1-6.8 times than the control group. The optimum dose for the phytoremediation of B. laetivirens was the combining treatment of 3 mmol kg-1 EDTA, 10-10 M IAA, and 5 ml kg-1 BL, which has been successfully applied in MSMG soil. EDTA treatment is more direct and effective in facilitating HM uptake of root, while the other two treatments play important roles in promoting the transport of HMs in plants.
Collapse
Affiliation(s)
- Feili Li
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China.
| | - Feng Yang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Yihao Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Hui Jin
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Yaling Leng
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Jiade Wang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China.
| |
Collapse
|
18
|
Wei H, Liu Y, Chao Y, Tsang DCW, Zhao N, Liu K, Zhang W, Qiu R. Recovery of the biological function of ethylenediaminetetraacetic acid-washed soils: Roles of environmental variations and microbes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 715:137032. [PMID: 32041005 DOI: 10.1016/j.scitotenv.2020.137032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/29/2020] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
To understand the recovery of the biological functions of washed soil, we studied changes in the microbial communities of soils washed with 10 or 60 mmol kg-1 ethylenediaminetetraacetic acid (EDTA) for 90 d of incubation. The relative abundance of tolerant or degrading species decreased, while that of microorganisms with chemical autotrophic ability increased as the incubation time increased. The changes in the enzyme activity followed different trends. As an intracellular enzyme, dehydrogenase was initially most severely damaged by the washing process but could recover over time, while the activity of urease increased after washing with EDTA, which may be related to the use of N as a nutrient source by microorganisms. Phosphatase did not significantly change over time. The redundancy discriminant analyses indicated that there were distinct factors driving such changes in the soils washed with different EDTA dosages. For the soil washed with 10 mmol kg-1 EDTA, bacteria with tolerance or degradation capacity of toxic pollutants, such as Nocardioidaceae, played a more important role in the recovery of soil functions; therefore, the EDTA stress indicator was the main driving factor. However, in the soil washed with 60 mmol kg-1 EDTA, chemolithoautotrophic bacteria, such as Nitrososphaeraceae, exerted a greater influence on the recovery of biological functions due to the higher loss of nutrients and EDTA residue; therefore, the main driving factor was the nutrients supply.
Collapse
Affiliation(s)
- Hang Wei
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Ye Liu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuanqing Chao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Guangzhou 510275, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Nan Zhao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Kunyuan Liu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Weihua Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Guangzhou 510275, China.
| | - Rongliang Qiu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Guangzhou 510275, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agriculture University, Guangzhou 510642, China
| |
Collapse
|
19
|
Nagy A, Magyar T, Juhász C, Tamás J. Phytoremediation of acid mine drainage using by-product of lysine fermentation. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 81:1507-1517. [PMID: 32616702 DOI: 10.2166/wst.2020.240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The main point of this research is to assess the applicability of condensed molasses soluble (CMS), which is an organic by-product of lysine fermentation, as an environmentally friendly complexing agent in rhizofiltration of heavy metal contaminated acid mine drainage (AMD). First, the ecotoxicological properties (growth inhibition, seed germination) of CMS were examined with often applied indicator plant species such as duckweed (Lemna minor) and lettuce (Lactuca sativa) so as to define the possible applicable CMS concentration. Then the heavy metal accumulation and translocation properties of root accumulator plant species, i.e. common reed (Phragmites australis) and sedge (Carex flacca), were studied to optimize CMS concentration for rhizofiltration. Due to the CMS application, significant increase in bioaccumulation was detected in the case of every examined heavy metal (As, Cd, Cu, Pb and Zn) at the end of the experiment. Results also showed that CMS increased the heavy metal concentration in shoots, but did not affect the root accumulation characteristics of the plants. Furthermore, CMS treated plants accumulated heavy metals at higher rates in their roots compared to control. The results suggest that CMS is a viable additive and a complexing agent to aid rhizofiltration of heavy metal contaminated AMD.
Collapse
Affiliation(s)
- Attila Nagy
- Institute of Water and Environmental Management, University of Debrecen, Böszörményi str. 138., 4032 Debrecen, Hungary E-mail:
| | - Tamás Magyar
- Institute of Water and Environmental Management, University of Debrecen, Böszörményi str. 138., 4032 Debrecen, Hungary E-mail:
| | - Csaba Juhász
- Institute of Water and Environmental Management, University of Debrecen, Böszörményi str. 138., 4032 Debrecen, Hungary E-mail:
| | - János Tamás
- Institute of Water and Environmental Management, University of Debrecen, Böszörményi str. 138., 4032 Debrecen, Hungary E-mail:
| |
Collapse
|
20
|
Ahile UJ, Wuana RA, Itodo AU, Sha'Ato R, Dantas RF. A review on the use of chelating agents as an alternative to promote photo-Fenton at neutral pH: Current trends, knowledge gap and future studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 710:134872. [PMID: 31923651 DOI: 10.1016/j.scitotenv.2019.134872] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/03/2019] [Accepted: 10/05/2019] [Indexed: 06/10/2023]
Abstract
In this review, we have critically examined the alternatives to conventional photo-Fenton process such as the strategies to perform it in circumneutral pH in the so-called photo-Fenton like process. They include iron chelation, iron replacement with another metal and use of iron immobilized on surfaces of solid materials, use of iron oxides, among others. The use of such strategies can be employed to overcome the challenges identified in conventional photo-Fenton, moreover, advantages and drawback of each technique must be clarified and the recent achievements should be shared with the scientific community. The use of a chelating agent to make iron soluble at circumneutral pH presents many advantages when compared to other current techniques. However, the correct understanding of the chelating process, complex activity and the complex resistance along with the mechanism of radical production should be taken into account to prepare an effective photo-Fenton with complexed iron. The review also identifies the current trends in chelate assisted photo-Fenton process and the unexplored areas in this field of study. A discussion about the environmental and safety issues in the application of these methods, with emphasis to the Fe chelation strategy, was also considered with detailed review over the past ten years.
Collapse
Affiliation(s)
- Ungwanen J Ahile
- Department of Chemistry, Benue State University, PMB 102119, Makurdi, Nigeria
| | - Raymond A Wuana
- Department of Chemistry, University of Agriculture, PMB 2373, Makurdi, Nigeria
| | - Adams U Itodo
- Department of Chemistry, University of Agriculture, PMB 2373, Makurdi, Nigeria
| | - Rufus Sha'Ato
- Department of Chemistry, University of Agriculture, PMB 2373, Makurdi, Nigeria
| | - Renato F Dantas
- School of Technology, University of Campinas - UNICAMP, Paschoal Marmo 1888, 13484332, Limeira, SP, Brazil.
| |
Collapse
|
21
|
Mu’azu ND, Essa MH, Haladu SA, Ali SA, Jarrah N, Zubair M, Mohamed IA. Removal zinc ions from contaminated soil using biodegradable polyaspartate via soil washing process. ACTA ACUST UNITED AC 2019. [DOI: 10.1088/1742-6596/1349/1/012146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
22
|
Doğaroğlu ZG, Eren A, Baran MF. Effects of ZnO Nanoparticles and Ethylenediamine- N, N'-Disuccinic Acid on Seed Germination of Four Different Plants. GLOBAL CHALLENGES (HOBOKEN, NJ) 2019; 3:1800111. [PMID: 31565395 PMCID: PMC6733394 DOI: 10.1002/gch2.201800111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 06/10/2019] [Indexed: 06/10/2023]
Abstract
The release of nanoparticles and biodegradable chelating agents into the environment may cause toxicological and ecotoxicological effects. The aim of this study is to determine the ecotoxic effects of zinc oxide (ZnO) nanoparticles and ethylenediamine disuccinic acid (EDDS) on most cultured four plants. The durum wheat, bread wheat, barley, and rye are exposed to 5 mL 10 mg L-1 ZnO nanoparticles and 10 mg L-1 EDDS in the seed germination stage. Results show that these different plant species have different responses to ZnO nanoparticles and EDDS. The germination percentage of bread wheat and rye decreases in the application of ZnO nanoparticles while the germination of durum wheat and barley increases as much as in radicle elongation and seedling vigor. While ZnO treatment causes a decrease in bread wheat and rye germinated rat in the range of 33-14.3%, respectively, there is no change in germination rate of these plants at EDDS treatment. In addition, EDDS treatment positively affects barley germination rate. In conclusion, it is clear that ZnO nanoparticles have more toxic effects on bread wheat and rye than EDDS, while barley is positively affected by ZnO nanoparticles and EDDS.
Collapse
Affiliation(s)
| | - Abdullah Eren
- Vocational College of KızıltepeArtuklu University47200MardinTurkey
| | - M. Fırat Baran
- Medical Laboratory TechniquesVocational Higher School of Healthcare StudiesArtuklu University47200MardinTurkey
| |
Collapse
|
23
|
Liang Y, Zhou C, Guo Z, Huang Z, Peng C, Zeng P, Xiao X, Xian Z. Removal of cadmium, lead, and zinc from multi-metal-contaminated soil using chelate-assisted Sedum alfredii Hance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:28319-28327. [PMID: 31372951 DOI: 10.1007/s11356-019-06041-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
Biodegradable chelator-assisted phytoextraction is an effective method to enhance remediation efficiency of heavy metals. A greenhouse experiment was conducted to investigate the effects of S,S-ethylenediamine disuccinic acid (EDDS), citric acid (CA), and oxalic acid (OA) application before planting on the biomass and physiological characteristics of hyperaccumulator Sedum alfredii Hance, and its cadmium (Cd), lead (Pb), and zinc (Zn) uptake. The results showed that EDDS and CA slightly inhibited the plant growth, while the 1.0 mmol kg-1 (OA-1) and 2.5 mmol kg-1 OA (OA-2.5) addition produced 55.3% and 35.2% greater shoot biomass compared with the control, which may be related to that OA can produce higher leaf chlorophyll and soluble protein contents, as well as lower concentrations of malondialdehyde. At the same time, the concentrations of Pb and Zn in leaf after OA-2.5 treatment significantly increased by 127% and 28.4%, and the Cd, Pb, and Zn uptake by shoot was obviously enhanced by 21.5%, 117%, and 44.9% for OA-1 addition and by 39.1%, 80.0%, and 58.3% for OA-2.5 addition, respectively, in comparison with the control (P < 0.05). The reductions in available contents of Cd, Pb, and Zn in soil were observed after phytoextraction by Sedum alfredii Hance when OA was treated. These findings imply that OA was suitable for facilitating Sedum alfredii Hance to remove Cd, Pb, and Zn in co-contaminated soil.
Collapse
Affiliation(s)
- Yuqin Liang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Cong Zhou
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Zhaohui Guo
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Zhongting Huang
- Hunan Province Environmental Monitoring Centre, Changsha, 410004, China
| | - Chi Peng
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Peng Zeng
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Xiyuan Xiao
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China.
| | - Zhenfen Xian
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| |
Collapse
|
24
|
K. J, N. S, S. M, K. R, J. P, S. S, Dhakal N, Shahnaz T, N. S. Optimization of EDTA enriched phytoaccumulation of zinc by Ophiopogon japonicus: Comparison of Response Surface, Artificial Neural Network and Random Forest models. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2019.100265] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
25
|
Mai X, Luo D, Wei L, Liu Y, Huang X, Wu Q, Yao G, Liu G, Liu L. Evaluation method for the measuring comprehensive suitability of chelating agents: a study of the temporal dynamics of heavy metal activation. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 21:1415-1422. [PMID: 31272190 DOI: 10.1080/15226514.2019.1633262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The effects of chelating agents on heavy metal activation in Cd- and Pb-contaminated soils were studied through a dynamic activation experiment. An evaluation method for the measuring comprehensive suitability of chelating agent was established by calculating indexes for the degree of activation effect suitability and activated heavy metals' half-life suitability. The following results were obtained: in Cd- and Pb-contaminated soils, heavy metal activation effects reached or approached maximum activating effects within 1 d and subsequently showed different levels of decline in all chelating agent treatment conditions. Declines in activation effects similarly subjected to the law of exponents over time and to the goodness of fit in DTPA, NTA, and GLDA ranged from 0.80 to 0.98. For Cd- and Pb-contaminated soils, chelating agents' levels of comprehensive suitability (H) were recorded as follows: NTA(1.40) > GLDA(1.31) > DTPA(1.14) > EDTA(1.00) > EDDS(0.14) > CA(0.06) and GLDA(1.56) > DTPA(1.48) > EDTA(1.00) > NTA(0.78) > EDDS(0.26) > CA (0.02). GLDA and DTPA are both suitable for Cd and Pb phytoextraction. Moreover, NTA and GLDA are optimal chelating agents for Cd and Pb phytoextraction, respectively.
Collapse
Affiliation(s)
- Xiaotao Mai
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, PR China
| | - Dinggui Luo
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, PR China
- Linköping University - Guangzhou University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou, PR China
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, PR China
| | - Lezhang Wei
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, PR China
- Linköping University - Guangzhou University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou, PR China
| | - Yu Liu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, PR China
- Linköping University - Guangzhou University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou, PR China
| | - Xuexia Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, PR China
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, PR China
| | - Qihang Wu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, PR China
| | - Guangchao Yao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, PR China
| | - Guowei Liu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, PR China
| | - Lirong Liu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, PR China
| |
Collapse
|
26
|
Liang Y, Wang X, Guo Z, Xiao X, Peng C, Yang J, Zhou C, Zeng P. Chelator-assisted phytoextraction of arsenic, cadmium and lead by Pteris vittata L. and soil microbial community structure response. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 21:1032-1040. [PMID: 31020854 DOI: 10.1080/15226514.2019.1594685] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Using biodegradable chelators to assist in phytoextraction may be an effective approach to enhance the heavy-metal remediation efficiencies of plants. A pot experiment was conducted to investigate the effects of ethylenediamine disuccinic acid (EDDS), citric acid (CA), and oxalic acid (OA) on the growth of the arsenic (As) hyperaccumulator Pteris vittata L., its arsenic (As), cadmium (Cd), and lead (Pb) uptake and accumulation, and soil microbial responses in multi-metal(loid)-contaminated soil. The addition of 2.5-mmol kg-1 OA (OA-2.5) produced 26.7 and 14.9% more rhizoid and shoot biomass, respectively compared with the control, while EDDS and CA treatments significantly inhibited plant growth. The As accumulation in plants after the OA-2.5 treatment increased by 44.2% and the Cd and Pb accumulation in plants after a 1-mmol kg-1 EDDS treatment increased by 24.5 and 19.6%, respectively. Soil urease enzyme activities in OA-2.5 treatment were significantly greater than those in the control and other chelator treatments (p < 0.05). A PCR-denatured gradient gel electrophoresis analysis revealed that with the addition of EDDS, CA and OA enhanced soil microbial diversity. It was concluded that the addition of OA-2.5 was suitable for facilitating phytoremediation of soil As and did not have negative effects on the microbial community.
Collapse
Affiliation(s)
- Yuqin Liang
- a School of Metallurgy and Environment, Central South University , Changsha , China
| | - Xiaohui Wang
- a School of Metallurgy and Environment, Central South University , Changsha , China
| | - Zhaohui Guo
- a School of Metallurgy and Environment, Central South University , Changsha , China
| | - Xiyuan Xiao
- a School of Metallurgy and Environment, Central South University , Changsha , China
| | - Chi Peng
- a School of Metallurgy and Environment, Central South University , Changsha , China
| | - Jun Yang
- b Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences , Beijing , China
| | - Cong Zhou
- a School of Metallurgy and Environment, Central South University , Changsha , China
| | - Peng Zeng
- a School of Metallurgy and Environment, Central South University , Changsha , China
| |
Collapse
|
27
|
Duo L, Yin L, Zhang C, Zhao S. Ecotoxicological responses of the earthworm Eisenia fetida to EDTA addition under turfgrass growing conditions. CHEMOSPHERE 2019; 220:56-60. [PMID: 30579174 DOI: 10.1016/j.chemosphere.2018.12.106] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/12/2018] [Accepted: 12/14/2018] [Indexed: 06/09/2023]
Abstract
As a commonly used chelator, ethylenediaminetetraacetic acid (EDTA) enters soil environment inevitably and has the potential to cause negative effects on soil organisms. The objective of the current study was to investigate the effects of EDTA on earthworm growth, survival and activities of antioxidant enzymes. The assessment for EDTA toxicity toward earthworms (Eisenia fetida) was conducted on day 14 and 35 after exposure to four concentrations (0, 5, 10, 15 mmol kg-1) of EDTA under turfgrass growing conditions. Exposure to EDTA resulted in a significant decrease of earthworm growth and survival. The toxicity of EDTA increased with the increase in concentration and exposure duration. The activities of antioxidant enzymes increased at low concentration and decreased at high concentration, which indicates that oxidative stress was induced by EDTA addition. These results suggest EDTA is highly toxic and ecologically dangerous to earthworms.
Collapse
Affiliation(s)
- Lian Duo
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, PR China
| | - Lijia Yin
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, PR China
| | - Cancan Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, PR China
| | - Shulan Zhao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, PR China.
| |
Collapse
|
28
|
Xu Y, Seshadri B, Bolan N, Sarkar B, Ok YS, Zhang W, Rumpel C, Sparks D, Farrell M, Hall T, Dong Z. Microbial functional diversity and carbon use feedback in soils as affected by heavy metals. ENVIRONMENT INTERNATIONAL 2019; 125:478-488. [PMID: 30771648 DOI: 10.1016/j.envint.2019.01.071] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 01/26/2019] [Accepted: 01/28/2019] [Indexed: 06/09/2023]
Abstract
Soil microorganisms are an important indicator of soil fertility and health. However, our state of knowledge about soil microbial activities, community compositions and carbon use patterns under metal contaminations is still poor. This study aimed to evaluate the influences of heavy metals (Cd and Pb) on soil microorganisms by investigating the microbial community composition and carbon use preferences. Metal pollution was approached both singly and jointly with low (25 and 2500 mg kg-1) and high (50 and 5000 mg kg-1) concentrations of Cd and Pb, respectively, in an artificially contaminated soil. In a laboratory incubation experiment, bio-available and potentially bio-available metal concentrations, selected soil properties (pH, electrical conductivity, total organic carbon and total nitrogen), and microbial parameters (microbial activity as basal respiration, microbial biomass carbon (MBC) and microbial functional groups) were determined at two sampling occasions (7 and 49 days). Metal contamination had no effect on the selected soil properties, while it significantly inhibited both microbial activity and MBC formation. Contaminated soils had higher microbial quotient (qCO2), suggesting there was higher energy demand with less microbially immobilized carbon as MBC. Notably, the efficiency of microbial carbon use was repressed as the metal concentration increased, yet no difference was observed between metal types (p > 0.05). Based on the microbial phospholipid fatty acids (PLFA) analysis, total PLFAs decreased significantly under metal stress at the end of incubation. Heavy metals had a greater negative influence on the fungal population than bacteria with respective 5-35 and 8-32% fall in abundances. The contaminant-driven (metal concentrations and types) variation of soil PLFA biomarkers demonstrated that the heavy metals led to the alteration of soil microbial community compositions and their activities, which consequently had an adverse impact on soil microbial carbon immobilization.
Collapse
Affiliation(s)
- Yilu Xu
- Global Center for Environmental Remediation, University of Newcastle, Callaghan, NSW 2308, Australia; College of Engineering, Swansea University, Bay Campus, Swansea SA1 8EN, UK
| | - Balaji Seshadri
- Global Center for Environmental Remediation, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Nanthi Bolan
- Global Center for Environmental Remediation, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Binoy Sarkar
- Department of Animal and Plant Sciences, The University of Sheffield, Sheffield S10 2TN, UK; Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Yong Sik Ok
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Wei Zhang
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia; School of Natural and Built Environment, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Cornelia Rumpel
- CNRS, Institute of Ecology and Environment Paris, IEES, CNRS-INRA-UPMC-UPEC-IRD, Thiverval-Grignon 78850, France
| | - Donald Sparks
- Department of Plant and Soil Sciences, Delaware Environmental Institute, University of Delaware, Newark 19711, USA
| | - Mark Farrell
- CSIRO Agriculture & Food, Locked Bag 2, Glen Osmond, SA 5064, Australia
| | - Tony Hall
- Sprigg Geobiology Centre & Department of Earth Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Zhaomin Dong
- School of Space and Environment, Beihang University, Beijing 100191, PR China.
| |
Collapse
|
29
|
Epelde L, Lanzén A, Martín I, Virgel S, Mijangos I, Besga G, Garbisu C. The microbiota of technosols resembles that of a nearby forest soil three years after their establishment. CHEMOSPHERE 2019; 220:600-610. [PMID: 30597368 DOI: 10.1016/j.chemosphere.2018.12.164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 11/26/2018] [Accepted: 12/22/2018] [Indexed: 06/09/2023]
Abstract
Technosols can be used to rehabilitate degraded land and reuse wastes. Ideally, these newly formed soils should also fulfil the main soil functions. In this study, initially, we characterized the physicochemical and microbial properties of different formulations and their ingredients (i.e., dirt from a waste recovery plant, recycled bentonite, sewage sludge). When these technosols were then used for the rehabilitation of a quarry, the evolution of such properties was monitored for three consecutive years. Physicochemical and microbial properties were compared to those of a reference soil from a nearby forest. Diversity and composition of prokaryotes and eukaryotes were determined using 16S and 18S rRNA amplicon sequencing. Three years after establishment, as much as 78.8% and 63.9% of the prokaryotic and eukaryotic orders, respectively, were shared between the technosols and the reference forest soil. Although technosols initially showed lower values of CO2 emission, compaction and functional diversity (Biolog EcoPlates™), at the end of the study these values were similar to those observed in the reference forest soil. It was concluded that the microbiota of the studied technosols resembles that of the nearby forest soil after just three years of establishment.
Collapse
Affiliation(s)
- Lur Epelde
- NEIKER-Basque Institute of Agricultural Research and Development, c/ Berreaga 1, E-48160 Derio, Spain.
| | - Anders Lanzén
- NEIKER-Basque Institute of Agricultural Research and Development, c/ Berreaga 1, E-48160 Derio, Spain
| | - Iker Martín
- NEIKER-Basque Institute of Agricultural Research and Development, c/ Berreaga 1, E-48160 Derio, Spain
| | - Susana Virgel
- NEIKER-Basque Institute of Agricultural Research and Development, c/ Berreaga 1, E-48160 Derio, Spain
| | - Iker Mijangos
- NEIKER-Basque Institute of Agricultural Research and Development, c/ Berreaga 1, E-48160 Derio, Spain
| | - Gerardo Besga
- NEIKER-Basque Institute of Agricultural Research and Development, c/ Berreaga 1, E-48160 Derio, Spain
| | - Carlos Garbisu
- NEIKER-Basque Institute of Agricultural Research and Development, c/ Berreaga 1, E-48160 Derio, Spain
| |
Collapse
|
30
|
Kaurin A, Lestan D. Multi-substrate induced microbial respiration, nitrification potential and enzyme activities in metal-polluted, EDTA-washed soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:238-245. [PMID: 30176497 DOI: 10.1016/j.envpol.2018.08.079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/25/2018] [Accepted: 08/23/2018] [Indexed: 06/08/2023]
Abstract
Efficiency and the preservation of soil functions are key requirements for sustainable remediation of contaminated soil. Microbial decomposition and conversion of substrates is a fundamental soil function. Pilot-scale EDTA-based soil washing recycled chelant generated no wastewater and removed 78% of Pb from acidic farmland soil with 860 mg kg-1 Pb and 60% of Pb from calcareous garden soil with 1030 mg kg-1 Pb. Remediation had an insignificant effect on microbial respiration in acidic soil induced by sequential additions of glucose, micro-cellulose, starch and alfa-alfa sprout powder (mimicking litter components, C-cycle). In contrast, remediation of calcareous soil reduced cumulative CO2 production after glucose (simple) and alfalfa (complex substrate) addition, by up to 40%. Remediation reduced the nitrification rate (denoting the N-cycle) in acidic soil by 30% and halved nitrification in calcareous soil. Remediation in both soils slightly or positively affected dehydrogenase and β-glucosidase activity (associated with C-cycle), and decreased urease activity (N-cycle). Generally, EDTA remediation modestly interfered with substrate utilisation in acidic soil. A more prominent effect of remediation on the functioning of calcareous soil could largely be attributed to the use of a higher EDTA dose (30 vs. 100 mmol kg-1, respectively).
Collapse
Affiliation(s)
- Anela Kaurin
- University of Ljubljana, Biotechnical Faculty, Agronomy Department, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Domen Lestan
- University of Ljubljana, Biotechnical Faculty, Agronomy Department, Jamnikarjeva 101, 1000, Ljubljana, Slovenia.
| |
Collapse
|
31
|
Hosseini SS, Lakzian A, Halajnia A, Hammami H. The effect of olive husk extract compared to the edta on Pb availability and some chemical and biological properties in a Pb-contaminated soil. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2018; 20:643-649. [PMID: 29039991 DOI: 10.1080/15226514.2017.1365352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
It was found that using chelating agents increases the efficiency of heavy metal extraction, however, they may have negative effects on soil ecosystem quality. A pot experiment was conducted in a completely randomized design with three replications in order to evaluate the effect of EDTA and Olive Husk Extract (OHE) on some chemical and biological properties of the Pb-contaminated soil. The experimental treatments included EDTA (2 g Na2EDTA salt per kg soil), OHE (2 g TDS of OHE per kg soil) and control (without the chelating agent). The results revealed that the EDTA and OHE treatments increased the Pb availability by 17.7% and 5.5% in comparison to the control treatment, respectively. Although EDTA was more effective in increasing the Pb availability but decreased the soil biological quality index (SBQI). The EDTA treatment significantly decreased the dehydrogenase (DH) activity and germination index (GI). The OHE application significantly increased the available-P, available-K, total N and organic carbon content by 339.92%, 40.79%, 20.9%, and 29.7% compared with control treatment, respectively. Furthermore, OHE considerably increased SBQI from 18.96 to 53.48. Compared to the control treatment higher values of soil respiration activity, DH activity, and carbon availability index (CAI) were observed in OHE treatment.
Collapse
Affiliation(s)
- Seyed Sajjad Hosseini
- a Department of Soil Science , Faculty of Agriculture, Ferdowsi University of Mashhad , Mashhad , Iran
| | - Amir Lakzian
- a Department of Soil Science , Faculty of Agriculture, Ferdowsi University of Mashhad , Mashhad , Iran
| | - Akram Halajnia
- a Department of Soil Science , Faculty of Agriculture, Ferdowsi University of Mashhad , Mashhad , Iran
| | - Hossein Hammami
- b Department of Agronomy and Plant Breeding , College of Agriculture, University of Birjand , Birjand , Iran
| |
Collapse
|
32
|
Wang G, Zhang S, Zhong Q, Xu X, Li T, Jia Y, Zhang Y, Peijnenburg WJGM, Vijver MG. Effect of soil washing with biodegradable chelators on the toxicity of residual metals and soil biological properties. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 625:1021-1029. [PMID: 29996399 DOI: 10.1016/j.scitotenv.2018.01.019] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/02/2018] [Accepted: 01/03/2018] [Indexed: 06/08/2023]
Abstract
Soil washing with chelators is a promising and efficient method of remediating metals-contaminated soils. However, the toxicity of residual metals and the effects on soil microbial properties have remained largely unknown after washing. In this study, we employed four biodegradable chelators for removal of metals from contaminated soils: iminodisuccinic acid (ISA), glutamate-N,N-diacetic acid (GLDA), glucomonocarbonic acid (GCA), and polyaspartic acid (PASP). The maximum removal efficiencies for Cd, Pb, and Zn of 85, 55, and 64% and 45, 53, and 32% were achieved from farmland soil and mine soil using biodegradable chelators, respectively. It was found that the capacity of ISA and GLDA to reduce the labile fraction of Cd, Pb, and Zn was similar to that of the conventional non-biodegradable chelator ethylenediaminetetraacetic acid (EDTA). The leachability, mobility, and bioaccessibility of residual metals after washing decreased notably in comparison to the original soils, thus mitigating the estimated environmental and human health risks. Soil β-glucosidase activity, urease activity, acid phosphatase activity, microbial biomass nitrogen, and microbial biomass phosphorus decreased in the treated soils. However, compared with EDTA treatment, soil enzyme activities distinctly increased by 5-94% and overall microbial biomass slightly improved in the remediated soils, which would facilitate reuse of the washed soils. Based on soil toxicity tests that employed wheat seed germination as the endpoint of assessment, the washed soils exhibited only slight effects especially after ISA and GLDA treatments, following high-efficiency metal removal. Hence, ISA and GLDA appear to possess the greatest potential to rehabilitate polluted soils with limited toxicity remaining.
Collapse
Affiliation(s)
- Guiyin Wang
- College of Environmental Science, Sichuan Agricultural University, Wenjiang 611130, China; Institute of Environmental Sciences (CML), Leiden University, P. O. Box 9518, 2300 RA Leiden, The Netherlands
| | - Shirong Zhang
- College of Environmental Science, Sichuan Agricultural University, Wenjiang 611130, China.
| | - Qinmei Zhong
- College of Environmental Science, Sichuan Agricultural University, Wenjiang 611130, China
| | - Xiaoxun Xu
- College of Environmental Science, Sichuan Agricultural University, Wenjiang 611130, China
| | - Ting Li
- College of Resources, Sichuan Agricultural University, Wenjiang 611130, China
| | - Yongxia Jia
- College of Resources, Sichuan Agricultural University, Wenjiang 611130, China
| | - Yanzong Zhang
- College of Environmental Science, Sichuan Agricultural University, Wenjiang 611130, China
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, P. O. Box 9518, 2300 RA Leiden, The Netherlands; National Institute of Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven, The Netherlands
| | - Martina G Vijver
- Institute of Environmental Sciences (CML), Leiden University, P. O. Box 9518, 2300 RA Leiden, The Netherlands
| |
Collapse
|
33
|
Soil Washing Optimization, Recycling of the Solution, and Ecotoxicity Assessment for the Remediation of Pb-Contaminated Sites Using EDDS. SUSTAINABILITY 2018. [DOI: 10.3390/su10030636] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Kaurin A, Cernilogar Z, Lestan D. Revitalisation of metal-contaminated, EDTA-washed soil by addition of unpolluted soil, compost and biochar: Effects on soil enzyme activity, microbial community composition and abundance. CHEMOSPHERE 2018; 193:726-736. [PMID: 29175400 DOI: 10.1016/j.chemosphere.2017.11.082] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 11/14/2017] [Accepted: 11/16/2017] [Indexed: 06/07/2023]
Abstract
Soil remediation mitigates hazards from contaminants but could deprive soils of initial biota and enzymes. Historically contaminated acidic soil from Arnoldstein (Austria) and calcareous soil from Meza (Slovenia) were washed with 30 and 100 mmol kg-1 ethylenediaminetetraacetate (EDTA) to remove 78 and 60% of Pb as a main pollutant. Remediation of the Arnoldstein soil decreased urease activity and increased β-glucosidase activity, measured in a 15-week experiment. The dehydrogenase activity and microbial gene abundances were not significantly impeded compared to the original soil. Conversely, the use of a high dose of EDTA in the Meza soil, necessary for effective remediation of calcareous soils, resulted in pronouncedly decreased enzyme activities (3.2 times on average) and repressed fungal ITS and increased bacterial 16S rRNA gene abundance. Remediation shifted the microbial community composition in both soils. For revitalisation, the remediated soils were amended with compost, inocula of un-contaminated soil and (Arnoldstein soil) biochar enriched with soil extract. Amendments inconsistently affected the Arnoldstein soil: compost increased the dehydrogenase activity and altered the microbial community composition, biochar enhanced the β-glucosidase activity, and all amendments decreased the microbial abundance (1.6 times on average). In contrast, amendments efficiently revitalised the remediated Meza soil; compost and soil inoculum returned the enzyme activities back to the baseline in the original soil, increased the fungal abundance above that in the original soil and restored the microbial community composition.
Collapse
Affiliation(s)
- Anela Kaurin
- University of Ljubljana, Biotechnical Faculty, Agronomy Department, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Zarja Cernilogar
- University of Ljubljana, Biotechnical Faculty, Agronomy Department, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Domen Lestan
- University of Ljubljana, Biotechnical Faculty, Agronomy Department, Jamnikarjeva 101, 1000 Ljubljana, Slovenia.
| |
Collapse
|
35
|
Mu'azu ND, Haladu SA, Jarrah N, Zubair M, Essa MH, Ali SA. Polyaspartate extraction of cadmium ions from contaminated soil: Evaluation and optimization using central composite design. JOURNAL OF HAZARDOUS MATERIALS 2018; 342:58-68. [PMID: 28822250 DOI: 10.1016/j.jhazmat.2017.08.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/03/2017] [Accepted: 08/06/2017] [Indexed: 06/07/2023]
Abstract
The occurrences of heavy metal contaminated sites and soils and the need for devising environmentally friendly solutions have become global issues of serious concern. In this study, polyaspartate (a highly biodegradable agent) was synthesized using L-Aspartic acid via a new modified thermal procedure and employed for extraction of cadmium ions (Cd) from contaminated soil. Response surface methodology approach using 35 full faced centered central composite design was employed for modeling, evaluating and optimizing the influence of polyaspartate concentration (36-145mM), polyaspartate/soil ratio (5-25), initial heavy metal concentration (100-500mg/kg), initial pH (3-6) and extraction time (6-24h) on Cd ions extracted into the polyaspartate solution and its residual concentration in the treated soil. The Cd extraction efficacy obtained reached up to 98.8%. Increase in Cd extraction efficiency was associated with increase in the polyaspartate and Cd concentration coupled with lower polyaspertate/soil ratio and initial pH. Under the optimal conditions characterized with minimal utilization of the polyaspartate and high Cd ions removal, the extractible Cd in the polyaspartate solution reached up to 84.4mg/L which yielded 85% Cd extraction efficacy. This study demonstrates the suitability of using polyaspartate as an effective environmentally friendly chelating agent for Cd extraction from contaminated soils.
Collapse
Affiliation(s)
- Nuhu Dalhat Mu'azu
- Department of Environmental Engineering, University of Dammam, 31451, Dammam, Saudi Arabia.
| | | | - Nabeel Jarrah
- Department of Environmental Engineering, University of Dammam, 31451, Dammam, Saudi Arabia; Department of Chemical Engineering, Mutah University, Karak, 61710, Jordan
| | - Mukarram Zubair
- Department of Environmental Engineering, University of Dammam, 31451, Dammam, Saudi Arabia
| | - Mohammad H Essa
- Department of Civil & Environmental Engineering, King Fahd University of Petroleum and Minerals, 31261, Dhahran, Saudi Arabia
| | - Shaikh A Ali
- Department of Chemistry, King Fahd University of Petroleum and Minerals, 31261, Dhahran, Saudi Arabia
| |
Collapse
|
36
|
Tahmasbian I, Safari Sinegani AA, Nguyen TTN, Che R, Phan TD, Hosseini Bai S. Application of manures to mitigate the harmful effects of electrokinetic remediation of heavy metals on soil microbial properties in polluted soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:26485-26496. [PMID: 28948525 DOI: 10.1007/s11356-017-0281-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 09/19/2017] [Indexed: 06/07/2023]
Abstract
Ethylenediaminetetraacetic acid (EDTA) used with electrokinetic (EK) to remediate heavy metal-polluted soils is a toxic chelate for soil microorganisms. Therefore, this study aimed to evaluate the effects of alternative organic chelates to EDTA on improving the microbial properties of a heavy metal-polluted soil subjected to EK. Cow manure extract (CME), poultry manure extract (PME) and EDTA were applied to a lead (Pb) and zinc (Zn)-polluted calcareous soil which were subjected to two electric intensities (1.1 and 3.3 v/cm). Soil carbon pools, microbial activity, microbial abundance (e.g., fungal, actinomycetes and bacterial abundances) and diethylenetriaminepentaacetic acid (DTPA)-extractable Pb and Zn (available forms) were assessed in both cathodic and anodic soils. Applying the EK to soil decreased all the microbial variables in the cathodic and anodic soils in the absence or presence of chelates. Both CME and PME applied with two electric intensities decreased the negative effect of EK on soil microbial variables. The lowest values of soil microbial variables were observed when EK was combined with EDTA. The following order was observed in values of soil microbial variables after treating with EK and chelates: EK + CME or EK + PME > EK > EK + EDTA. The CME and PME could increase the concentrations of available Pb and Zn, although the increase was less than that of EDTA. Overall, despite increasing soil available Pb and Zn, the combination of EK with manures (CME or PME) mitigated the negative effects of using EK on soil microbial properties. This study suggested that the synthetic chelates such as EDTA could be replaced with manures to alleviate the environmental risks of EK application.
Collapse
Affiliation(s)
- Iman Tahmasbian
- Environmental Future Research Institute, School of Biomolecular and Physical Science, Griffith University, Nathan, QLD, Australia.
| | | | - Thi Thu Nhan Nguyen
- Genecology, School of Science, Health, Education and Engineering, University of the Sunshine Coast, QLD, Maroochydore DC, 4558, Australia
| | - Rongxiao Che
- Environmental Future Research Institute, School of Biomolecular and Physical Science, Griffith University, Nathan, QLD, Australia
| | - Thuc D Phan
- Australian River Institute, Griffith School of Environment, Griffith University, QLD, Nathan, 4111, Australia
| | - Shahla Hosseini Bai
- Environmental Future Research Institute, School of Biomolecular and Physical Science, Griffith University, Nathan, QLD, Australia
- Genecology, School of Science, Health, Education and Engineering, University of the Sunshine Coast, QLD, Maroochydore DC, 4558, Australia
| |
Collapse
|
37
|
Fang L, Wang M, Cai L, Cang L. Deciphering biodegradable chelant-enhanced phytoremediation through microbes and nitrogen transformation in contaminated soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:14627-14636. [PMID: 28452034 DOI: 10.1007/s11356-017-9029-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 04/11/2017] [Indexed: 06/07/2023]
Abstract
Biodegradable chelant-enhanced phytoremediation offers an alternative treatment technique for metal contaminated soils, but most studies to date have addressed on phytoextraction efficiency rather than comprehensive understanding of the interactions among plant, soil microbes, and biodegradable chelants. In the present study, we investigated the impacts of biodegradable chelants, including nitrilotriacetate, S,S-ethylenediaminedisuccinic acid (EDDS), and citric acid on soil microbes, nitrogen transformation, and metal removal from contaminated soils. The EDDS addition to soil showed the strongest ability to promote the nitrogen cycling in soil, ryegrass tissue, and microbial metabolism in comparison with other chelants. Both bacterial community-level physiological profiles and soil mass specific heat rates demonstrated that soil microbial activity was inhibited after the EDDS application (between day 2 and 10), but this effect completely vanished on day 30, indicating the revitalization of microbial activity and community structure in the soil system. The results of quantitative real-time PCR revealed that the EDDS application stimulated denitrification in soil by increasing nitrite reductase genes, especially nirS. These new findings demonstrated that the nitrogen release capacity of biodegradable chelants plays an important role in accelerating nitrogen transformation, enhancing soil microbial structure and activity, and improving phytoextraction efficiency in contaminated soil.
Collapse
Affiliation(s)
- Linchuan Fang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 712100, China
| | - Mengke Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Lin Cai
- Environmental Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Long Cang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| |
Collapse
|
38
|
Burges A, Epelde L, Blanco F, Becerril JM, Garbisu C. Ecosystem services and plant physiological status during endophyte-assisted phytoremediation of metal contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 584-585:329-338. [PMID: 28040210 DOI: 10.1016/j.scitotenv.2016.12.146] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/21/2016] [Accepted: 12/21/2016] [Indexed: 05/06/2023]
Abstract
Mining sites shelter a characteristic biodiversity with large potential for the phytoremediation of metal contaminated soils. Endophytic plant growth-promoting bacteria were isolated from two metal-(hyper)accumulator plant species growing in a metal contaminated mine soil. After characterizing their plant growth-promoting traits, consortia of putative endophytes were used to carry out an endophyte-assisted phytoextraction experiment using Noccaea caerulescens and Rumex acetosa (singly and in combination) under controlled conditions. We evaluated the influence of endophyte-inoculated plants on soil physicochemical and microbial properties, as well as plant physiological parameters and metal concentrations. Data interpretation through the grouping of soil properties within a set of ecosystem services was also carried out. When grown together, we observed a 41 and 16% increase in the growth of N. caerulescens and R. acetosa plants, respectively, as well as higher values of Zn phytoextraction and soil microbial biomass and functional diversity. Inoculation of the consortia of putative endophytes did not lead to higher values of plant metal uptake, but it improved the plants' physiological status, by increasing the content of chlorophylls and carotenoids by up to 28 and 36%, respectively, indicating a reduction in the stress level of plants. Endophyte-inoculation also stimulated soil microbial communities: higher values of acid phosphatase activity (related to the phosphate solubilising traits of the endophytes), bacterial and fungal abundance, and structural diversity. The positive effects of plant growth and endophyte inoculation on soil properties were reflected in an enhancement of some ecosystem services (biodiversity, nutrient cycling, water flow regulation, water purification and contamination control).
Collapse
Affiliation(s)
- Aritz Burges
- NEIKER, Department of Conservation of Natural Resources, Soil Microbial Ecology Group, c/ Berreaga 1, E-48160 Derio, Spain
| | - Lur Epelde
- NEIKER, Department of Conservation of Natural Resources, Soil Microbial Ecology Group, c/ Berreaga 1, E-48160 Derio, Spain.
| | - Fernando Blanco
- NEIKER, Department of Conservation of Natural Resources, Soil Microbial Ecology Group, c/ Berreaga 1, E-48160 Derio, Spain
| | - José M Becerril
- University of the Basque Country (UPV/EHU), Department of Plant Biology and Ecology, P.O. Box 644, E-48080 Bilbao, Spain
| | - Carlos Garbisu
- NEIKER, Department of Conservation of Natural Resources, Soil Microbial Ecology Group, c/ Berreaga 1, E-48160 Derio, Spain
| |
Collapse
|
39
|
Bloem E, Haneklaus S, Haensch R, Schnug E. EDTA application on agricultural soils affects microelement uptake of plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 577:166-173. [PMID: 28327292 DOI: 10.1016/j.scitotenv.2016.10.153] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/19/2016] [Accepted: 10/19/2016] [Indexed: 05/08/2023]
Abstract
Chelates such as ethylenediaminetetraacetic acid (EDTA) enter soils via various sources but their effect on agricultural crops is mostly unknown. Sources of EDTA include industry, households, sewage water and agricultural practices. In a field experiment EDTA was applied in its free form at different rates (0, 150, 550, 1050kgha-1) to study its translocation in the soil profile and to evaluate its effect on yield and mineral composition of the cultivated crop, both in the year of application (oilseed rape) and in the following year (winter wheat). The results indicate that EDTA was translocated from the soil surface to deeper soil layers in the time-frame of the experiment. EDTA was still detectable in the rooting zone 19months after application, indicating its persistence in the soil. Only the highest EDTA rate (1050kgha-1) reduced vegetative growth of oilseed rape until stem elongation, but seed yield was not affected by EDTA application. EDTA application changed the mineral composition of plants. Higher phosphorus (P), sulphur (S), iron (Fe) and manganese (Mn) and lower cadmium (Cd) concentrations were determined in the seeds of oilseed rape. No yield effects of residual EDTA were observed for the following crop, winter wheat, but the Cd content in seeds was still lower in plots where EDTA had been applied in the previous year. Data show that EDTA application affects the mineral uptake of cultivated crops under field conditions.
Collapse
Affiliation(s)
- Elke Bloem
- Institute for Crop and Soil Science, Federal Research Centre for Cultivated Plants (JKI), Bundesallee 50, D-38116 Braunschweig, Germany.
| | - Silvia Haneklaus
- Institute for Crop and Soil Science, Federal Research Centre for Cultivated Plants (JKI), Bundesallee 50, D-38116 Braunschweig, Germany
| | - Robert Haensch
- Institute for Plant Biology, Technical University Braunschweig, Humboldtstraße 1, D-38106 Braunschweig, Germany
| | - Ewald Schnug
- Institute for Crop and Soil Science, Federal Research Centre for Cultivated Plants (JKI), Bundesallee 50, D-38116 Braunschweig, Germany
| |
Collapse
|
40
|
Pramanik P, Kim PJ. Contrasting effects of EDTA applications on the fluxes of methane and nitrous oxide emissions from straw-treated rice paddy soils. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:278-283. [PMID: 27010126 DOI: 10.1002/jsfa.7727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 03/15/2016] [Accepted: 03/17/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Submerged rice paddy soils are the major anthropogenic source of methane (CH4 ) emission to the atmosphere. Straw incorporation for sustaining soil organic C pool increases CH4 emission flux from rice paddy soils. Though the rate of nitrous oxide (N2 O) emission is much less than CH4 , the former has 298 times higher global warming potential (GWP) than equivalent quantity of carbon dioxide. The effect of chelating agents, such as EDTA, on N2 O emission and on GWP due to CH4 and N2 O emissions has not been evaluated before. RESULTS The emission of CH4 gas from submerged soil may be mitigated by EDTA application; however, it also increases concentration of nitrate-N in soil, the precursor of N2 O gas formation under anaerobic condition. In this experiment, irrespective of straw application, EDTA-treated soils emitted less CH4 to the atmosphere than the corresponding control. Though N2 O emission was increased from soil due to EDTA applications, total GWP was at least 15% reduced in EDTA treated soils during rice cultivation. The plant growth and rice grain yield was not affected by EDTA application. CONCLUSION EDTA application at 5.0 ppm might be used to reduce total global warming potential during rice cultivation. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Prabhat Pramanik
- Soils Department, Tocklai Experimental Station, Tea Research Association, Jorhat, 785008, Assam, India
| | - Pil Joo Kim
- Division of Applied Life Science (BK 21 Program), Gyeongsang National University, Jinju, 660701, South Korea
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 660701, South Korea
| |
Collapse
|
41
|
Gomes MADC, Hauser-Davis RA, de Souza AN, Vitória AP. Metal phytoremediation: General strategies, genetically modified plants and applications in metal nanoparticle contamination. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 134P1:133-147. [PMID: 27611221 DOI: 10.1016/j.ecoenv.2016.08.024] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 08/26/2016] [Accepted: 08/28/2016] [Indexed: 05/18/2023]
Abstract
The accumulation of metals in different environmental compartments poses a risk to both the environment and biota health. In particular, the continuous increase of these elements in soil ecosystems is a major worldwide concern. Phytoremediation has been gaining more attention in this regard. This approach takes advantage of the unique and selective uptake capabilities of plant root systems, and applies these natural processes alongside the translocation, bioaccumulation, and contaminant degradation abilities of the entire plant and, although it is a relatively recent technology, beginning in the 90's, it is already considered a green alternative solution to the problem of metal pollution, with great potential. This review focuses on phytoremediation of metals from soil, sludge, wastewater and water, the different strategies applied, the biological and physico-chemical processes involved and the advantages and limitations of each strategy. Special note is given to the use of transgenic species and phytoremediation of metallic nanoparticles.
Collapse
Affiliation(s)
- Maria Angélica da Conceição Gomes
- Laboratório de Ciências Ambientais (LCA), Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense ''Darcy Ribeiro'' (UENF), Av. Alberto Lamego, 2000, Parque Califórnia, Campos dos Goytacazes, RJ 28013-602, Brazil.
| | - Rachel Ann Hauser-Davis
- Universidade Federal do Estado do Rio de Janeiro - UNIRIO, Av. Pasteur, 458, Urca, CEP: 22290-240, Rio de Janeiro, RJ, Brasil.
| | - Adriane Nunes de Souza
- Universidade Estácio de Sá - Estácio, Av. 28 de Março, 423 - Centro - Campos dos Goytacazes CEP: 28020-740, Rio de Janeiro, RJ, Brasil
| | - Angela Pierre Vitória
- Laboratório de Ciências Ambientais (LCA), Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense ''Darcy Ribeiro'' (UENF), Av. Alberto Lamego, 2000, Parque Califórnia, Campos dos Goytacazes, RJ 28013-602, Brazil
| |
Collapse
|
42
|
Zhang H, Guo Q, Yang J, Ma J, Chen G, Chen T, Zhu G, Wang J, Zhang G, Wang X, Shao C. Comparison of chelates for enhancing Ricinus communis L. phytoremediation of Cd and Pb contaminated soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 133:57-62. [PMID: 27414256 DOI: 10.1016/j.ecoenv.2016.05.036] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 05/28/2016] [Accepted: 05/31/2016] [Indexed: 06/06/2023]
Abstract
We studied chelate effects on castor bean (Ricinus communis L.) growth. These effects included Cd and Pb accumulation in plant tissues and the chemical behavior of Cd and Pb in the plant rhizosphere and non-rhizosphere. Tests were conducted in a glasshouse using the rhizobag method. Two castor bean cultivars (Zibo-3 and Zibo-9) were grown in soil contaminated with 3.53mg/kg Cd and 274mg/kg Pb. The soil was treated with citric acid (CA), ethylenediamine disuccinic acid (EDDS) or ethylenediamine tetraacetic acid (EDTA) (5mmol/kg). EDDS-treated soil produced 28.8% and 59.4% greater biomass for Zibo-3 and Zibo-9 respectively. In contrast, CA and EDTA inhibited the growth of the two cultivars. Zibo-9 had greater tolerance than Zibo-3 to chelate toxicity. Based on Cd and Pb plant uptake, EDDS could substitute for EDTA for phytoremediation of Cd in soil. EDTA was the most effective of the three chelates for Pb phytoremediation but it is less suitable for field use due to toxicology environmental persistence. Acid extractable Cd and Pb in the rhizosphere or reducible Cd and Pb in the non-rhizosphere of soil were the main influences on Cd and Pb accumulation in castor bean.
Collapse
Affiliation(s)
- Hanzhi Zhang
- Shenyang Academy of Environmental Sciences, China; Center for Environmental Remediation, Institute of Geographical Sciences and Natural Resources, Chinese Academy of Sciences, Beijing 100101, China.
| | - Qingjun Guo
- Center for Environmental Remediation, Institute of Geographical Sciences and Natural Resources, Chinese Academy of Sciences, Beijing 100101, China.
| | - Junxing Yang
- Center for Environmental Remediation, Institute of Geographical Sciences and Natural Resources, Chinese Academy of Sciences, Beijing 100101, China
| | - Jie Ma
- Center for Environmental Remediation, Institute of Geographical Sciences and Natural Resources, Chinese Academy of Sciences, Beijing 100101, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| | - Gang Chen
- Shenyang Academy of Environmental Sciences, China
| | - Tongbin Chen
- Center for Environmental Remediation, Institute of Geographical Sciences and Natural Resources, Chinese Academy of Sciences, Beijing 100101, China
| | - Guangxu Zhu
- The State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guizhou 550002, China
| | - Jian Wang
- Shenyang Academy of Environmental Sciences, China
| | - Guangxin Zhang
- Center for Environmental Remediation, Institute of Geographical Sciences and Natural Resources, Chinese Academy of Sciences, Beijing 100101, China
| | - Xin Wang
- Shenyang Academy of Environmental Sciences, China
| | - Chunyan Shao
- Shenyang Academy of Environmental Sciences, China
| |
Collapse
|
43
|
Wen J, McLaughlin MJ, Stacey SP, Kirby JK. Aseptic hydroponics to assess rhamnolipid-Cd and rhamnolipid-Zn bioavailability for sunflower (Helianthus annuus): a phytoextraction mechanism study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:21327-21335. [PMID: 27502457 DOI: 10.1007/s11356-016-7367-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 08/01/2016] [Indexed: 06/06/2023]
Abstract
The availability of cadmium (Cd) and zinc (Zn) to sunflower (Helianthus annuus) was investigated in rhamnolipid- and ethylenediaminetetraacetic acid (EDTA)-buffered solutions in order to evaluate the influence of aqueous speciation of the metals on their uptake by the plant, in relation to predictions of uptake by the free ion activity model (FIAM). Free metal ion activity was estimated using the chemical equilibrium program MINTEQ or measured by Donnan dialysis. The uptake of Cd followed the FIAM for the EDTA-buffered solution at EDTA concentrations below 0.4 μM; for the rhamnolipid-buffered solution, the uptake of both metals in roots was not markedly affected by increasing rhamnolipid concentrations in solution. This suggests rhamnolipid enhanced metal accumulation in plant roots (per unit free metal in solution) possibly through formation and uptake of lipophilic complexes. The addition of normal Ca concentrations (low millimetre range) to the rhamnolipid uptake solutions reduced Cd accumulation in shoots by inhibiting Cd translocation, whereas it significantly increased Zn accumulation in shoots. This study confirms that although rhamnolipid could enhance accumulation of Cd in plants roots at low Ca supply, it is not suitable for Cd phytoextraction in contaminated soil environments where Ca concentrations in soil solution are orders of magnitude greater than those of Cd.
Collapse
Affiliation(s)
- Jia Wen
- Soil Science, School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Glen Osmond, SA, 5064, Australia.
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China.
| | - Mike J McLaughlin
- Soil Science, School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Glen Osmond, SA, 5064, Australia
- CSIRO Land and Water, Agricultural Sustainable Flagship, Environmental Biogeochemistry Program, Waite Campus, Urrbrae, SA, 5064, Australia
| | - Samuel P Stacey
- Soil Science, School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Glen Osmond, SA, 5064, Australia
- Everris Australia Pty Ltd, Baulkham Hills, Bella Vista, NSW, Australia
| | - Jason K Kirby
- CSIRO Land and Water, Agricultural Sustainable Flagship, Environmental Biogeochemistry Program, Waite Campus, Urrbrae, SA, 5064, Australia
| |
Collapse
|
44
|
Vigliotta G, Matrella S, Cicatelli A, Guarino F, Castiglione S. Effects of heavy metals and chelants on phytoremediation capacity and on rhizobacterial communities of maize. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 179:93-102. [PMID: 27219351 DOI: 10.1016/j.jenvman.2016.04.055] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 04/19/2016] [Accepted: 04/29/2016] [Indexed: 06/05/2023]
Abstract
Heavy metals (HMs) are one of the major ecological problem related to human activities. Phytoremediation is a promising "green technology" for soil and water reclamation, and it can be improved by means of the use of chelants. In the past particular attention was paid on the effects of HMs and/or chelants on plant health, but much less on their effects on rhizosphere communities. To shed light on the interaction among plant-HM-chelant-rhizobacterial community a pot experiment was set up. Maize plants were grown on uncontaminated, multi-metal (copper and zinc) contaminated and chelants artificially amended soils. A high concentration of HMs was detected in the different maize organs; chelants improved the accumulation capacity of the maize plants. The rhizosphere bacterial community isolated from control plants showed the largest biodiversity in terms of bacterial genera. However, the addition of HMs reduced the number of taxa to three: Bacillus, Lysinibacillus and Pseudomonas. The effects of HM treatment were counteracted by the addition of chelants in terms of the genetic biodiversity. Furthermore, several bacterial strains particularly resistant to HMs and chelants were isolated and selected. Our study suggests that the combined use of resistant bacteria and chelants could improve the phytoremediation capacity of maize.
Collapse
Affiliation(s)
- Giovanni Vigliotta
- Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Simona Matrella
- Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Angela Cicatelli
- Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Francesco Guarino
- Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Stefano Castiglione
- Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy.
| |
Collapse
|
45
|
Ali N, Hadi F. Phytoremediation of cadmium improved with the high production of endogenous phenolics and free proline contents in Parthenium hysterophorus plant treated exogenously with plant growth regulator and chelating agent. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:13305-18. [PMID: 25940488 DOI: 10.1007/s11356-015-4595-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 04/23/2015] [Indexed: 05/21/2023]
Abstract
Pot experiments were conducted to evaluate the effects of gibberellic acid (GA3) and ethylenediaminetetraacetic acid (EDTA) on growth parameters, cadmium (Cd) phytoextraction, total phenolics, free proline and chlorophyll content of Parthenium hysterophorus plant grown in Cd-contaminated (100 mg/kg) soil. GA3 was applied as foliar spray (10(-2), 10(-4) and 10(-6) M) while EDTA (40 mg/kg soil) was added to soil as single and in split doses. Results showed decrease in growth parameters due to Cd stress but P. hysterophorus plant demonstrated Cd hyperaccumulator potential based on bioconcentration factor (BCF). Lower concentration of GA3 (10(-6) M) showed highest significant increase in the growth parameters while Cd concentration, accumulation (1.97 ± 0.11 mg/DBM) and bioconcentration (9.75 ± 0.34) was significantly higher in the treatment T11 (GA3 10(-2) + split doses of EDTA). Cadmium significantly increased the root free proline while total phenolic concentration was significantly high in all parts of the plant. Chlorophyll contents were significantly reduced by Cd. GA3 showed significant increase in phenolic and chlorophyll contents in plant. Cadmium accumulation in plant tissues showed positive correlation with free proline (R (2) = 0.527, R (2) = 0.630) and total phenolics (R (2) = 0.554, R (2) = 0.723) in roots and leaves, respectively. Cd contents negatively correlated with biomass, chlorophyll and total water contents. Proline and phenolic contents showed positive correlation with dry biomass of plant. These findings suggest further investigation to study the role of endogenous phenolics and proline in heavy metal phytoremediation.
Collapse
Affiliation(s)
- Nasir Ali
- Department of Biotechnology, Faculty of Biological Sciences, University of Malakand, 18800, Chakdara, Khyber Pakhtunkhwa, Pakistan
| | | |
Collapse
|
46
|
Liu D, Li S, Islam E, Chen JR, Wu JS, Ye ZQ, Peng DL, Yan WB, Lu KP. Lead accumulation and tolerance of Moso bamboo (Phyllostachys pubescens) seedlings: applications of phytoremediation. J Zhejiang Univ Sci B 2015; 16:123-30. [PMID: 25644467 PMCID: PMC4322423 DOI: 10.1631/jzus.b1400107] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 09/17/2014] [Indexed: 11/11/2022]
Abstract
A hydroponics experiment was aimed at identifying the lead (Pb) tolerance and phytoremediation potential of Moso bamboo (Phyllostachys pubescens) seedlings grown under different Pb treatments. Experimental results indicated that at the highest Pb concentration (400 μmol/L), the growth of bamboo seedlings was inhibited and Pb concentrations in leaves, stems, and roots reached the maximum of 148.8, 482.2, and 4282.8 mg/kg, respectively. Scanning electron microscopy revealed that the excessive Pb caused decreased stomatal opening, formation of abundant inclusions in roots, and just a few inclusions in stems. The ultrastructural analysis using transmission electron microscopy revealed that the addition of excessive Pb caused abnormally shaped chloroplasts, disappearance of endoplasmic reticulum, shrinkage of nucleus and nucleolus, and loss of thylakoid membranes. Although ultrastructural analysis revealed some internal damage, even the plants exposed to 400 µmol/L Pb survived and no visual Pb toxicity symptoms such as necrosis and chlorosis were observed in these plants. Even at the highest Pb treatment, no significant difference was observed for the dry weight of stem compared with controls. It is suggested that use of Moso bamboo as an experimental material provides a new perspective for remediation of heavy metal contaminated soil owing to its high metal tolerance and greater biomass.
Collapse
Affiliation(s)
- Dan Liu
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, School of Environmental and Resource Sciences, Zhejiang A & F University, Lin’an 311300, China
| | - Song Li
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, School of Environmental and Resource Sciences, Zhejiang A & F University, Lin’an 311300, China
| | - Ejazul Islam
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad 38000, Pakistan
| | - Jun-ren Chen
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, School of Environmental and Resource Sciences, Zhejiang A & F University, Lin’an 311300, China
| | - Jia-sen Wu
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, School of Environmental and Resource Sciences, Zhejiang A & F University, Lin’an 311300, China
| | - Zheng-qian Ye
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, School of Environmental and Resource Sciences, Zhejiang A & F University, Lin’an 311300, China
| | - Dan-li Peng
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, School of Environmental and Resource Sciences, Zhejiang A & F University, Lin’an 311300, China
| | - Wen-bo Yan
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, School of Environmental and Resource Sciences, Zhejiang A & F University, Lin’an 311300, China
| | - Kou-ping Lu
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, School of Environmental and Resource Sciences, Zhejiang A & F University, Lin’an 311300, China
| |
Collapse
|
47
|
Bolobajev J, Öncü NB, Viisimaa M, Trapido M, Balcıoğlu I, Goi A. Column experiment on activation aids and biosurfactant application to the persulphate treatment of chlorophene-contaminated soil. ENVIRONMENTAL TECHNOLOGY 2015; 36:348-357. [PMID: 25514136 DOI: 10.1080/09593330.2014.948493] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
An innovative strategy integrating the use of biosurfactant (BS) and persulphate activated by chelated iron for the decontamination of soil from an emerging pollutant chlorophene was studied in laboratory down-flow columns along with other persulphate activation aids including combined application of persulphate and hydrogen peroxide, and persulphate activation with sodium hydroxide. Although BS addition improved chlorophene removal by the persulphate treatment, the addition of chelated iron did not have a significant influence. Combined application of persulphate with hydrogen peroxide resulted in a significant (p≤.05) overall improvement of chlorophene removal compared with treatment with persulphate only. The highest removal rate (71%) of chlorophene was achieved with the base-activated persulphate, but only in the upper part (of 0.0-3.5 cm in depth) of the column. The chemicals at the applied dosages did not substantially influence the Daphnia magna toxicity of the effluent. Dehydrogenase activity (DHA) measurements indicated no substantial changes in the microbial activity during the persulphate treatment. The highest oxygen consumption and a slight increase in DHA were observed with the BS addition. The combined application of persulphate and BS at natural soil pH is a promising method for chlorophene-contaminated soil remediation. Hydroquinone was identified among the by-products of chlorophene degradation.
Collapse
Affiliation(s)
- J Bolobajev
- a Department of Chemical Engineering , Tallinn University of Technology , Ehitajate tee 5, Tallinn 19086 , Estonia
| | | | | | | | | | | |
Collapse
|
48
|
Lai HY. Negative effects of chelants on soil qualities of five soil series. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2015; 17:228-234. [PMID: 25397980 DOI: 10.1080/15226514.2014.883493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Due to the low phytoavailability of some heavy metals (HMs), a prolonged period is required when phytoextraction is used to remove these HMs from contaminated soils. The use of chelants and other chemical compounds are often used to increase the phytoavailability of the HMs for plant uptake. Negative effects of chemical agents on the soil and groundwater have rarely been reported during chemical-enhanced phytoextraction. This research applied chelants to various soil series with different characteristics to assess their impacts on soil quality. The experimental results showed that the application of 5 mmol kg(-1) of all chelants had a negative effect on the soil quality. This was especially true for electrical conductivity (EC) when diethylene trinitrilo pentaacetic acid (DTPA) was used as the chemical extracting agent.
Collapse
Affiliation(s)
- Hung-Yu Lai
- a Department of Post-Modern Agriculture , MingDao University , Changhua , Taiwan
| |
Collapse
|
49
|
Lee J, Sung K. Effects of chelates on soil microbial properties, plant growth and heavy metal accumulation in plants. ECOLOGICAL ENGINEERING 2014; 73:386-394. [PMID: 0 DOI: 10.1016/j.ecoleng.2014.09.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
|
50
|
De Stefano C, Lando G, Pettignano A, Sammartano S. Evaluation of the sequestering ability of different complexones towards Ag+ ion. J Mol Liq 2014. [DOI: 10.1016/j.molliq.2014.07.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|