1
|
Wang S, Zheng N, An Q, Li X, Ji Y, Li Y, Chen C, Xiu Z. The effect of tris (1,3-dichloro-2-propyl) phosphate on the early embryonic heart development of Oryzias melastigma. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177313. [PMID: 39486542 DOI: 10.1016/j.scitotenv.2024.177313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
The flame retardant tri (1, 3-dichloro-2-propyl) phosphate (TDCIPP) is widely present in environmental media and organisms. People have paid much attention to the growth and developmental toxicity of TDCIPP, but there is little information about its cardiotoxicity and potential mechanisms. In this study, marine medaka (Oryzias melastigma) embryos were exposed to TDCIPP solutions (0, 0.05, 0.5, 5, and 50 μg/L) for 21 days to investigate the adverse effects of TDCIPP on cardiac development. The results showed that TDCIPP exposure altered the heart rate at different stages of embryonic development. In addition, 50 μg/L TDCIPP resulted in increased sinus venosus (SV)-bulbus arteriosus (BA) distance, pericardial cysts, and cardiac linearization in newly hatched fish. During embryonic development, the expression level of key genes regulating cardiac development is disturbed. The early stage of cardiac development is the sensitive window period for the toxic effects of TDCIPP. Oxidative stress was observed in newly hatched juveniles, but no significant lipid peroxidation damage was observed. In addition, vitellogenin (VTG) levels in juvenile fish were significantly reduced. Our results show that TDCIPP exposure induces cardiotoxicity in marine medaka embryos, which is induced in the early stages and promotes heart defects by amplifying inflammatory responses at a later stage.
Collapse
Affiliation(s)
- Sujing Wang
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China
| | - Na Zheng
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China.
| | - Qirui An
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China
| | - Xiaoqian Li
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China
| | - Yining Ji
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China
| | - Yunyang Li
- Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Changcheng Chen
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China
| | - Zhifei Xiu
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China
| |
Collapse
|
2
|
Ran H, Li Z, Yang F, Fan Z, Xu C, Han F, Farhadi A, Li E, Chen H. Molecular pathways of osmoregulation in response to salinity stress in the gills of the scalloped spiny lobster (Panulirus homarus) within survival salinity. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101308. [PMID: 39137604 DOI: 10.1016/j.cbd.2024.101308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
Scalloped spiny lobster (Panulirus homarus) aquaculture is the preferred strategy to resolve the conflict between supply and demand for lobster. Environmental conditions, such as salinity, are key to the success of lobster aquaculture. However, physiological responses of P. homarus to salinity stress have not been well studied. This study investigated the gill histology, osmoregulation and gill transcriptome of the early juvenile P. homarus (weight 19.04 ± 3.95 g) cultured at salinity 28 (control), 18, and 38 for 6 weeks. The results showed that the gill filaments of P. homarus exposed to low salinity showed severe separation of the cuticle and epithelial cells due to water absorption and swelling, as well as the dissolution and thinning of the cuticle and the rupture of the septum that separates the afferent and efferent channels. The serum osmolarity of P. homarus varied proportionately with external medium salinity and remained consistently above ambient osmolarity. The serum Na+, Cl-, K+, and Mg2+ concentrations P. homarus exhibited a pattern similar to that of serum osmolality, while the concentration of Ca2+ remained unaffected at salinity 18 but significantly increased at salinity 38. Gill Na+/K+-ATPase activity of P. homarus increased (p < 0.05) under the both salinity stress. Salinity 18 significantly increased Glutamate dehydrogenase (GDH) and Glutamicpyruvic transaminase (GPT) activity in the hepatopancreas of P. homarus (p < 0.05). According to transcriptome analysis, versus control group (salinity 28), 929 and 1095 differentially expressed genes (DEGs) were obtained in the gills of P. homarus at salinity 18 and 38, respectively, with these DEGs were mainly involved in energy metabolism, transmembrane transport and oxidative stress and substance metabolism. In addition, the expression patterns of 8 key DEGs mainly related to amino acid metabolism, transmembrane transport and oxidative stress were verified by quantitative real-time PCR (RT-qPCR). The present study suggests that salinity 18 has a greater impact on P. homarus than salinity 38, and P. homarus demonstrates effective osmoregulation and handle with salinity fluctuations (18 to 38) through physiological and functional adaptations. This study provides an improved understanding of the physiological response strategies of P. homarus facing salinity stress, which is crucial for optimizing aquaculture practices for this species.
Collapse
Affiliation(s)
- Hongmei Ran
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Fisheries, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Hainan 570228, China
| | - Zecheng Li
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Fisheries, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Hainan 570228, China
| | - Fan Yang
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Fisheries, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Hainan 570228, China
| | - Zihan Fan
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Fisheries, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Hainan 570228, China
| | - Chang Xu
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Fisheries, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Hainan 570228, China
| | - Fenglu Han
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Fisheries, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Hainan 570228, China
| | - Ardavan Farhadi
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Fisheries, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Hainan 570228, China
| | - Erchao Li
- School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Hu Chen
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Fisheries, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Hainan 570228, China.
| |
Collapse
|
3
|
Fiori SM, Simonetti P, La Colla NS, Giménez J, Otegui MBP, Palacios P, Orazi M, Arias AH, Ronda AC, Botté SE. Assessment of coastal pollutants and health status of Pacific oysters (Magallana gigas) in the Bahía Blanca Estuary and adjacent beaches (Argentina). MARINE POLLUTION BULLETIN 2024; 205:116652. [PMID: 38943897 DOI: 10.1016/j.marpolbul.2024.116652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 06/11/2024] [Accepted: 06/22/2024] [Indexed: 07/01/2024]
Abstract
This study assessed the effects of pollutants on Magallana gigas along a coastal zone with different levels of human activity: a highly impacted zone in the Bahía Blanca Estuary and a less impacted zone on the adjacent sandy beaches. Oysters collected in 2021 were analyzed for various factors, including metals, polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides, microplastics, oxidative stress and histology. Oysters of both environments exhibited detectable concentrations of all these pollutants in their tissues. However, the estuarine oysters showed higher concentrations of Zn, Cu and As and total PAHs than the beach oysters. Banned organochlorine pesticides were detected only in beach oysters. Estuarine oysters displayed morphological changes in their digestive gland including a reduction in the mean epithelial thickness of the tubule and elevated lipid peroxidation levels, indicating cellular damage. This study underscores the widespread presence of pollutants in M. gigas, indicating the need for effective strategies to safeguard coastal ecosystem health.
Collapse
Affiliation(s)
- Sandra M Fiori
- Instituto Argentino de Oceanografía (IADO-CONICET/UNS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Buenos Aires, Argentina; Departamento de Biología, Bioquímica y Farmacia (DBByF), Universidad Nacional del Sur (UNS), Bahía Blanca, Buenos Aires, Argentina.
| | - Pia Simonetti
- Instituto Argentino de Oceanografía (IADO-CONICET/UNS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Buenos Aires, Argentina.
| | - Noelia S La Colla
- Instituto Argentino de Oceanografía (IADO-CONICET/UNS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Buenos Aires, Argentina; Departamento de Biología, Bioquímica y Farmacia (DBByF), Universidad Nacional del Sur (UNS), Bahía Blanca, Buenos Aires, Argentina.
| | - Juliana Giménez
- Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires (UBA), CABA, Argentina; Instituto de Biodiversidad y Biología Experimental y Aplicada (UBA-CONICET), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CABA, Argentina.
| | - Mariana B P Otegui
- Instituto de Biodiversidad y Biología Experimental y Aplicada (UBA-CONICET), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CABA, Argentina
| | - Pilar Palacios
- Instituto Argentino de Oceanografía (IADO-CONICET/UNS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Buenos Aires, Argentina; Departamento de Química, Universidad Nacional del Sur (UNS), Bahía Blanca, Buenos Aires, Argentina.
| | - Melina Orazi
- Instituto Argentino de Oceanografía (IADO-CONICET/UNS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Buenos Aires, Argentina; Departamento de Biología, Bioquímica y Farmacia (DBByF), Universidad Nacional del Sur (UNS), Bahía Blanca, Buenos Aires, Argentina
| | - Andrés H Arias
- Instituto Argentino de Oceanografía (IADO-CONICET/UNS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Buenos Aires, Argentina; Departamento de Química, Universidad Nacional del Sur (UNS), Bahía Blanca, Buenos Aires, Argentina.
| | - Ana C Ronda
- Instituto Argentino de Oceanografía (IADO-CONICET/UNS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Buenos Aires, Argentina; Departamento de Biología, Bioquímica y Farmacia (DBByF), Universidad Nacional del Sur (UNS), Bahía Blanca, Buenos Aires, Argentina.
| | - Sandra E Botté
- Instituto Argentino de Oceanografía (IADO-CONICET/UNS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Buenos Aires, Argentina; Departamento de Biología, Bioquímica y Farmacia (DBByF), Universidad Nacional del Sur (UNS), Bahía Blanca, Buenos Aires, Argentina.
| |
Collapse
|
4
|
Gong J, Xu F, Li Y, He Y, Liang Z, Chen X, Zhang X, Liu L, Zhou L, Huang X. Metagenomic analysis of intestinal microbial function and key genes responsive to acute high-salinity stress in Nile tilapia (Oreochromis niloticus). Gene 2024; 913:148371. [PMID: 38485034 DOI: 10.1016/j.gene.2024.148371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/26/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
The intestinal microbiota is increasingly recognized as playing an important role in aquatic animals. To investigate the functional roles and mechanisms of the intestinal microbial genes/enzymes responding to salinity stress or osmotic pressure in fish, metagenomic analysis was carried out to evaluate the response of intestinal microbiota and especially their functional genes/enzymes from freshwater (the control group) to acute high salinity stress (the treatment group) in Nile tilapia. Our results showed that at the microbial community level, the intestinal microbiota in Nile tilapia generally underwent significant changes in diversity after acute high salinity stress. Among them, the shift in the bacterial community (mainly from Actinobacteria to Proteobacteria) dominated and had a large impact, the fungal community showed a very limited response, and other microbiota, such as phages, likely had a negligible response. At the functional level, the intestinal bacteriadecreased the normal physiological demand and processes, such as those of the digestive system and nervous system, but enhanced energy metabolism. Furthermore, at the gene level, some gene biomarkers, such as glutathione S-transferase, myo-inositol-1(or 4)-monophosphatase, glycine betaine/proline transport system permease protein, and some families of carbohydrate-active enzymes (GT4, GT2), were significantly enriched. However, GH15, GH23 and so on were significantly reduced. Exploring the functional details of the intestinal microbial genes/enzymes that respond to salinity stress in Nile tilapia sheds light on the mechanism of action of the intestinal microbiota with respect to the salinity adaptation of fish.
Collapse
Affiliation(s)
- Jiayi Gong
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Fengmeng Xu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China; Guangzhou Fishtech Biotechnology Co., Ltd., Guangzhou 510640, China
| | - Yao Li
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Yiyong He
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Zhizheng Liang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Xiao Chen
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Xiaoyong Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Li Liu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Lei Zhou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.
| | - Xiande Huang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
5
|
Seong T, Onizuka D, Satuito G, Kim HJ. Impact of nano- and micro-sized polystyrene beads on larval survival and growth of the Pacific oyster Crassostrea gigas. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133952. [PMID: 38447367 DOI: 10.1016/j.jhazmat.2024.133952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/08/2024]
Abstract
This study successionally monitored how nano- and micro-sized polystyrene beads (MNPs) influence larval mortality, growth, and attachment behavior of the Pacific oyster Crassostrea gigas related to MNP diameter and concentration. D-shaped larvae were sequentially exposed to three-diameter MNPs (0.55, 3.00, 6.00 µm) at five concentrations (0, 0.1, 1.0, 10, 20 μg/mL), and their mortality, growth stages and attachment were observed daily until they die. In addition, MNP intake and accumulation in larvae at each growth stage were determined using fluorescent beads. Deterioration in larval growth and survival was observed under all the exposure conditions, while significant negative effects on the growth parameters were defined with smaller MNPs at lower concentrations. Fluorescent signals were detected in larval digestive tracts at all except D-shaped larval stage, and on the mantle and foot in pediveligers. Therefore, MNP intake adversely affects larval physiological conditions by the synchronal effects of MNP size and concentration. Our findings highlight the implications of MNP characteristics on Pacific oyster larvae, emphasizing the interplay between size, concentration, and physiological responses, crucial for mitigating nanoparticle pollution in marine ecosystems.
Collapse
Affiliation(s)
- Taekyoung Seong
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo, Nagasaki 852-8521, Japan
| | - Daiki Onizuka
- Faculty of Fisheries, Nagasaki University, 1-14 Bunkyo, Nagasaki 852-8521, Japan
| | - Glenn Satuito
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo, Nagasaki 852-8521, Japan; Faculty of Fisheries, Nagasaki University, 1-14 Bunkyo, Nagasaki 852-8521, Japan
| | - Hee-Jin Kim
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo, Nagasaki 852-8521, Japan; Faculty of Fisheries, Nagasaki University, 1-14 Bunkyo, Nagasaki 852-8521, Japan.
| |
Collapse
|
6
|
Willems DJ, Kumar A, Nguyen TV, Beale DJ, Nugegoda D. Environmentally relevant concentrations of chemically complex shale gas wastewater led to reduced fitness of water fleas (Daphnia carinata): Multiple lines of evidence approach. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132839. [PMID: 37926015 DOI: 10.1016/j.jhazmat.2023.132839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/07/2023]
Abstract
Shale gas hydraulic fracturing generates flowback waters that pose a threat to aquatic organisms if released into the environment. In order to prevent adverse effects on aquatic ecosystems, multiple lines of evidence are needed to guide better decisions and management actions. This study employed a multi-disciplinary approach, combining direct toxicity assessment (DTA) on the water flea Daphnia carinata and LC-MS metabolomics analysis to determine the impact of a major ion salinity control (SC) and a cumulative flowback shale gas wastewater (SGW) from a well in the Beetaloo Sub-basin, Northern Territory, Australia. The exposures included a culture water control, simply further referred to as 'control', SC at 1% and 2% (v/v) and SGW at 0.125, 0.25, 0.5, 1% and 2% (v/v). The results showed that reproduction was significantly increased at SGW 0.5%, and significantly decreased when exposed to SC 2%. SGW 2% was found to be acutely toxic for the D. carinata (< 48-h). Second generation (F1) of D. carinata exposed to 0.125-1% SGW generally saw reduced activity in four oxidative biomarkers: glutathione S-transferase, lipid peroxidation, reactive oxygen species, and superoxide dismutase. At the metabolomics level, we observed significant changes in 103 metabolites in Daphnia exposed to both SGW and elevated salinity, in comparison to the control group. These changes indicate a range of metabolic disturbances induced by SGW and salinity, such as lipid metabolism, amino acid metabolism, nucleotide synthesis, energy production, and the biosynthesis of crucial molecules like hormones and pigments. These multiple lines of evidence approach not only highlights the complexities of SGW's impact on aquatic ecosystems but also underscores the importance of informed decision-making and management practices to safeguard the environment and its inhabitants.
Collapse
Affiliation(s)
- Daniel J Willems
- Ecotoxicology Research Group, School of Science, Bundoora West Campus, Royal Melbourne Institute of Technology University, Bundoora, Victoria, Australia; Environment Business Unit, Commonwealth Scientific and Industrial Research Organisation, Urrbrae 5064, South Australia, Australia.
| | - Anupama Kumar
- Environment Business Unit, Commonwealth Scientific and Industrial Research Organisation, Urrbrae 5064, South Australia, Australia
| | - Thao V Nguyen
- Environment Business Unit, Commonwealth Scientific and Industrial Research Organisation, Ecosciences Precinct, Dutton Park 4102, Queensland, Australia; NTT Institute of High Technology, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh 700000, VietNam
| | - David J Beale
- Environment Business Unit, Commonwealth Scientific and Industrial Research Organisation, Ecosciences Precinct, Dutton Park 4102, Queensland, Australia
| | - Dayanthi Nugegoda
- Ecotoxicology Research Group, School of Science, Bundoora West Campus, Royal Melbourne Institute of Technology University, Bundoora, Victoria, Australia
| |
Collapse
|
7
|
Guerreiro FDC, Alves TC, Saldaña-Serrano M, Gomes CHADM, Lima DD, Bastolla CLV, Ferreira CP, Bitschinski D, Rutkoski CF, Grott SC, Israel NG, Lüchmann KH, Marques MRF, Melo CMRD, Bainy ACD, Almeida EAD. Integrating pollutant levels and biochemical biomarkers in oysters (Crassostrea rhizophorae and Crassostrea gasar) indicates anthropic impacts on marine environments along the coast of Santa Catarina state, Brazil. MARINE ENVIRONMENTAL RESEARCH 2024; 194:106309. [PMID: 38169221 DOI: 10.1016/j.marenvres.2023.106309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/25/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024]
Abstract
This study aimed to carry out a general diagnosis of the contamination of the coastal marine environment of the Santa Catarina state (SC, Brazil) by different classes of environmental pollutants, as well as to evaluate possible adverse effects of the contaminants on biochemical biomarkers of oysters, Crassostrea gasar and Crassostrea rhizophorae. 107 chemicals were evaluated in water, sediment and oyster samples from nine sites along the coastline of SC. We also examined various biochemical biomarkers in the oysters' gills and digestive glands to assess potential effects of contaminants. In general, the northern and central regions of the littoral of SC presented higher occurrences and magnitudes of contaminants than the southern region, which is probably related to higher urbanization of center and northern areas of the littoral. The biomarker analysis in the oysters reflected these contamination patterns, with more significant alterations observed in regions with higher levels of pollutants. Our results may serve as a first baseline for future and more extensive monitoring actions and follow-up of the degree of contamination in the state, allowing for inspection actions and management of areas most affected by marine pollutants.
Collapse
Affiliation(s)
- Fernando de Campos Guerreiro
- Programa de Pós-Graduação em Biodiversidae, Centro de Estudos em Ecotoxicologia Aquática (CETAq)., Universidade Regional de Blumenau (FURB), Blumenau, SC, Brazil
| | - Thiago Caíque Alves
- Programa de Pós-Graduação em Biodiversidae, Centro de Estudos em Ecotoxicologia Aquática (CETAq)., Universidade Regional de Blumenau (FURB), Blumenau, SC, Brazil
| | - Miguel Saldaña-Serrano
- Laboratório de Biomarcadores de Contaminação Aquática e Imunoquímica - LABCAI, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brazil
| | | | - Daína de Lima
- Laboratório de Biomarcadores de Contaminação Aquática e Imunoquímica - LABCAI, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brazil
| | - Camila Lisarb Velasquez Bastolla
- Laboratório de Biomarcadores de Contaminação Aquática e Imunoquímica - LABCAI, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brazil
| | - Clarissa Pellegrini Ferreira
- Departamento de Engenharia de Pesca e Ciências Biológicas - DEPB, Universidade do Estado de Santa Catarina - UDESC, Laguna, Brazil
| | - Daiane Bitschinski
- Programa de Pós-Graduação em Biodiversidae, Centro de Estudos em Ecotoxicologia Aquática (CETAq)., Universidade Regional de Blumenau (FURB), Blumenau, SC, Brazil
| | - Camila Fatima Rutkoski
- Programa de Pós-Graduação em Biodiversidae, Centro de Estudos em Ecotoxicologia Aquática (CETAq)., Universidade Regional de Blumenau (FURB), Blumenau, SC, Brazil
| | - Suelen Cristina Grott
- Programa de Pós-Graduação em Biodiversidae, Centro de Estudos em Ecotoxicologia Aquática (CETAq)., Universidade Regional de Blumenau (FURB), Blumenau, SC, Brazil
| | - Nicole Grasmuk Israel
- Programa de Pós-Graduação em Biodiversidae, Centro de Estudos em Ecotoxicologia Aquática (CETAq)., Universidade Regional de Blumenau (FURB), Blumenau, SC, Brazil
| | - Karim Hahn Lüchmann
- Departamento de Engenharia de Pesca e Ciências Biológicas - DEPB, Universidade do Estado de Santa Catarina - UDESC, Laguna, Brazil
| | - Maria Risoleta Freire Marques
- Laboratório de Biomarcadores de Contaminação Aquática e Imunoquímica - LABCAI, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brazil
| | | | - Afonso Celso Dias Bainy
- Laboratório de Biomarcadores de Contaminação Aquática e Imunoquímica - LABCAI, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brazil
| | - Eduardo Alves de Almeida
- Programa de Pós-Graduação em Biodiversidae, Centro de Estudos em Ecotoxicologia Aquática (CETAq)., Universidade Regional de Blumenau (FURB), Blumenau, SC, Brazil; Departamento de Ciências Naturais, Universidade Regional de Blumenau (FURB), Blumenau, SC, Brazil.
| |
Collapse
|
8
|
Zhang W, Liu J, Li Q, Xiao Y, Zhang Y, Lei N, Wang Q. Effects of combined exposure of PVC and PFOA on the physiology and biochemistry of Microcystis aeruginosa. CHEMOSPHERE 2023; 338:139476. [PMID: 37451644 DOI: 10.1016/j.chemosphere.2023.139476] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Microplastics (MPs) and per- and polyfluoroalkyl substances (PFASs) have drawn significant attention as emerging threats to aquatic ecosystems. There are currently just a few investigations on the combined toxicity of PFAS and MP on freshwater microalgae. In this research, the combined toxicity of polyvinyl chloride (PVC) and perfluorooctanoic acid (PFOA) to Microcystis aeruginosa was investigated. The results indicated that the combination of these pollutants inhibited the growth of M. aeruginosa and promoted the synthesis and release of Microcystin-LR (MC-LR). Individual and combined exposure caused different responses to cellular oxidative stress. Under the Individual exposure of PFOA, when the concentration was greater than 20.0 mg/L, the catalase (CAT) activity increased significantly, and when it was greater than 100.0 mg/L, the malondialdehyde (MDA) content increased significantly, but there is no significant change under combined exposure. PVC and PFOA exposure also caused physical damage to the algal cells and reduced the content of extracellular polymer substances (EPS) based on analysis of cell morphology. Metabolic analysis revealed that carbohydrate metabolism and amino acid metabolism of the algae were affected. The current study offers a fresh theoretical framework for MPs and PFASs environmental risk evaluations.
Collapse
Affiliation(s)
- Weizhen Zhang
- School of Ecological Environment, Chengdu University of Technology, Chengdu, 610059, China
| | - Jing Liu
- School of Ecological Environment, Chengdu University of Technology, Chengdu, 610059, China
| | - Qi Li
- School of Ecological Environment, Chengdu University of Technology, Chengdu, 610059, China.
| | - Yunxing Xiao
- School of Ecological Environment, Chengdu University of Technology, Chengdu, 610059, China
| | - Yumiao Zhang
- School of Ecological Environment, Chengdu University of Technology, Chengdu, 610059, China
| | - Ningfei Lei
- School of Ecological Environment, Chengdu University of Technology, Chengdu, 610059, China
| | | |
Collapse
|
9
|
Nogueira L, Garcia D, Cortez FS, Pereira CDS, de Almeida EA. Combined effects of diesel and air exposure on oxidative stress parameters of mussels Perna perna (Mytilidae, Bivalvia). MARINE POLLUTION BULLETIN 2023; 195:115559. [PMID: 37738876 DOI: 10.1016/j.marpolbul.2023.115559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/11/2023] [Accepted: 09/16/2023] [Indexed: 09/24/2023]
Abstract
This study aimed to assess the combined effect of hypoxia and exposure to diesel on biochemical parameters of Perna perna mussels. Mussels previously kept for 48 h in clean seawater were submitted to hypoxia for 24 h followed by reoxygenation in clean seawater for 48 h. The same procedure was done but using seawater containing 0.01 mL/L of diesel, before and after hypoxia. Antioxidant enzymes as well as levels of glutathione and lipid peroxidation were measured in gills and digestive glands. The neutral red retention time assay was also evaluated in hemocytes. Results showed that cycles of air exposure and reoxygenation caused oxidative stress and antioxidant modulation in both the gills and digestive glands. The presence of diesel in water triggered additional modulation of antioxidants under hypoxia and reoxygenation stress, apparently enhancing the capacity of mussels to avoid lipid peroxidation.
Collapse
Affiliation(s)
- Lílian Nogueira
- Laboratório de Biomarcadores de Contaminação Aquática, Universidade Estadual Paulista, UNESP, campus São José do Rio Preto, SP, Brazil
| | - Danielly Garcia
- Laboratório de Biomarcadores de Contaminação Aquática, Universidade Estadual Paulista, UNESP, campus São José do Rio Preto, SP, Brazil
| | - Fernando Sanzi Cortez
- Laboratório de Ecotoxicologia, Universidade Santa Cecília, UNISANTA, Santos, SP, Brazil
| | - Camilo Dias Seabra Pereira
- Laboratório de Ecotoxicologia, Universidade Santa Cecília, UNISANTA, Santos, SP, Brazil; Departamento de Ciências do Mar, Universidade Federal de São Paulo, UNIFESP, campus Baixada Santista, Santos, SP, Brazil
| | | |
Collapse
|
10
|
Turja R, Benito D, Ahvo A, Izagirre U, Lekube X, Stankevičiūtė M, Butrimavičienė L, Soto M, Lehtonen KK. Biomarker responses in mussels (Mytilus trossulus) from the Baltic Sea exposed to water-accommodated fraction of crude oil and a dispersant at different salinities. MARINE POLLUTION BULLETIN 2023; 192:115100. [PMID: 37276711 DOI: 10.1016/j.marpolbul.2023.115100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/07/2023]
Abstract
Oil spills pose significant environmental risks, particularly in cold seas. In the Baltic Sea, the low salinity (from 0 to 2 up to 18) affects the behaviour of the spilled oil as well as the efficiency and ecological impacts of oil spill response methods such as mechanical collection and the use of dispersants. In the present study, mussels (Mytilus trossulus) were exposed under winter conditions (5 °C) to the water-accommodated fraction (WAF) of Naphthenic North Atlantic crude oil prepared by mechanical dispersion or to the chemically enhanced fraction (CEWAF) obtained using the dispersant Finasol OSR 51 at salinities of 5.6 and 15.0. Especially at the lower salinity, high bioaccumulation of polycyclic aromatic hydrocarbons was recorded in mussels in the CEWAF treatments, accompanied by increased biomarker responses. In the WAF treatments these impacts were less evident. Thus, the use of dispersants in the Baltic Sea still needs to be carefully considered.
Collapse
Affiliation(s)
- Raisa Turja
- Finnish Environment Institute, Marine and Freshwater Solutions, Latokartanonkaari 11, FI-00790 Helsinki, Finland.
| | - Denis Benito
- CBET Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, Research Centre for Experimental Marine Biology and Biotechnology PIE, University of the Basque Country UPV/EHU, Sarriena z/g, Leioa, Basque Country, Spain
| | - Aino Ahvo
- Finnish Environment Institute, Marine and Freshwater Solutions, Latokartanonkaari 11, FI-00790 Helsinki, Finland
| | - Urtzi Izagirre
- CBET Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, Research Centre for Experimental Marine Biology and Biotechnology PIE, University of the Basque Country UPV/EHU, Sarriena z/g, Leioa, Basque Country, Spain
| | - Xabier Lekube
- CBET Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, Research Centre for Experimental Marine Biology and Biotechnology PIE, University of the Basque Country UPV/EHU, Sarriena z/g, Leioa, Basque Country, Spain
| | - Milda Stankevičiūtė
- Nature Research Centre, Institute of Ecology, Akademijos str. 2, LT-08412 Vilnius, Lithuania
| | - Laura Butrimavičienė
- Nature Research Centre, Institute of Ecology, Akademijos str. 2, LT-08412 Vilnius, Lithuania
| | - Manu Soto
- CBET Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, Research Centre for Experimental Marine Biology and Biotechnology PIE, University of the Basque Country UPV/EHU, Sarriena z/g, Leioa, Basque Country, Spain
| | - Kari K Lehtonen
- Finnish Environment Institute, Marine and Freshwater Solutions, Latokartanonkaari 11, FI-00790 Helsinki, Finland
| |
Collapse
|
11
|
Saldaña-Serrano M, Bastolla CLV, Mattos JJ, Lima D, Freire TB, Nogueira DJ, De-la-Torre GE, Righetti BPH, Zacchi FL, Gomes CHAM, Taniguchi S, Bícego MC, Bainy ACD. Microplastics and linear alkylbenzene levels in oysters Crassostrea gigas driven by sewage contamination at an important aquaculture area of Brazil. CHEMOSPHERE 2022; 307:136039. [PMID: 35985385 DOI: 10.1016/j.chemosphere.2022.136039] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/25/2022] [Accepted: 08/08/2022] [Indexed: 05/25/2023]
Abstract
The levels of linear alkylbenzenes (LABs) and the occurrence of microplastics (MPs) in the oysters Crassostrea gigas were evaluated in six farming areas in southern Brazil. The results revealed higher concentrations of LABs in oyster tissue from the Serraria (1977 ± 497.7 ng g-1) and Imaruim (1038 ± 409.9 ng g-1) sites. Plastic microfibers were found in oysters from all locations with values from 0.33 to 0.75 MPs per oyster (0.27-0.64 MPs per gram) showing the ubiquitous presence of this contaminant in the marine environment, which could be considered a threat to farming organisms. In addition, elements such as Ti, Al, Ba, V, Rb, Cr, and Cu were found in the chemical composition of the microfibers, suggesting MPs as vectors of inorganic compounds. A positive correlation between LABs and thermotolerant coliforms suggests that sewage discharges are the main source of contamination in these oysters cultured for human consumption. The present study highlights the need for efficient wastewater treatment plants and the implementation of depuration techniques in oysters from farming areas.
Collapse
Affiliation(s)
- Miguel Saldaña-Serrano
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry-LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC, 88037-000, Brazil
| | - Camila L V Bastolla
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry-LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC, 88037-000, Brazil
| | - Jacó J Mattos
- Aquaculture Pathology Research Center-NEPAQ, Federal University of Santa Catarina, UFSC, Florianópolis, SC, 88034-257, Brazil
| | - Daína Lima
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry-LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC, 88037-000, Brazil
| | - Thaís B Freire
- Laboratory of Marine Mollusks-LMM, Department of Aquaculture, Center of Agricultural Science, Federal University of Santa Catarina, UFSC, Florianópolis, SC, 88040900, Brazil
| | - Diego José Nogueira
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry-LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC, 88037-000, Brazil
| | - Gabriel Enrique De-la-Torre
- Grupo de Investigación de Biodiversidad, Medio Ambiente y Sociedad, Universidad San Ignacio de Loyola, Lima, Peru
| | - Bárbara P H Righetti
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry-LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC, 88037-000, Brazil
| | - Flávia L Zacchi
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry-LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC, 88037-000, Brazil
| | - Carlos H A M Gomes
- Laboratory of Marine Mollusks-LMM, Department of Aquaculture, Center of Agricultural Science, Federal University of Santa Catarina, UFSC, Florianópolis, SC, 88040900, Brazil
| | - Satie Taniguchi
- Laboratory of Marine Organic Chemistry - LABQOM, Oceanographic Institute, University of São Paulo, São Paulo, 05508-120, Brazil
| | - Márcia C Bícego
- Laboratory of Marine Organic Chemistry - LABQOM, Oceanographic Institute, University of São Paulo, São Paulo, 05508-120, Brazil
| | - Afonso C D Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry-LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC, 88037-000, Brazil.
| |
Collapse
|
12
|
Lemos L, Gantiva L, Kaylor C, Sanchez A, Quinete N. American oysters as bioindicators of emerging organic contaminants in Florida, United States. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155316. [PMID: 35447178 DOI: 10.1016/j.scitotenv.2022.155316] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) and phthalate esters (PAEs) are emerging contaminants of higher concern due to their wide industrial and commercial use, toxicity, and potential adverse health effects. In this study, we assessed PFAS and PAEs exposure in American oysters collected in three study sites in Florida, USA. Potential physiological effects of these contaminants were assessed by collecting oyster biometric data, calculating condition indices, and assessing oxidative stress levels in these individuals. Finally, a human health risk assessment was conducted based on the concentrations found in the consumable Tampa Bay (TB) oysters. All PFAS and PAEs compounds assessed in this study were detected in at least one oyster in all study sites. Among all locations, ΣPFAS concentration range was 0.611-134.78 ng·g-1 and ΣPAEs <0.328-1021 ng·g-1. Despite the smaller size of Biscayne Bay (BB) oysters, they displayed the highest concentrations of most of the PFAS and PAEs compounds, which is likely associated with population size, and other sources in the area. Condition index (CI) III was smaller in BB oysters, likely indicating a stressed population. Even though BB oysters were the most affected individuals, Marco Island (MI) oysters displayed the highest levels of lipid peroxidation, which can also be associated with environmental factors and decreased food availability. Conversely, TB oysters exhibited the highest levels of hydrogen peroxide, likely indicating a better defense mechanism in TB oysters compared to MI oysters. The human health risk assessment for TB oysters indicated low risk from PFAS and PAEs exposure, but there is no reference dose for other compounds and the human diet is wider than only oysters. Therefore, the risk of contaminant exposure is likely higher. This study demonstrates the value of integrating data on contaminant exposure and physiological responses of bioindicator specimens to better understand how emerging contaminants are affecting marine wildlife.
Collapse
Affiliation(s)
- Leila Lemos
- Institute of Environment, Florida International University, North Miami, FL 33181, USA.
| | - Laura Gantiva
- Institute of Environment, Florida International University, North Miami, FL 33181, USA
| | - Catherine Kaylor
- Oceanography Department, Texas A&M University, College Station, TX 77843, USA
| | - Alessandra Sanchez
- Institute of Environment, Florida International University, North Miami, FL 33181, USA
| | - Natalia Quinete
- Institute of Environment, Florida International University, North Miami, FL 33181, USA; Department of Chemistry & Biochemistry, Florida International University, North Miami, FL 33181, USA.
| |
Collapse
|
13
|
Chen L, Shi H, Zhang X, Xue C, Nie C, Yang F, Shao Y, Xue Y, Zhang H, Li Z. The effect of depuration salinity on the survival, nutritional composition, biochemical responses and proteome of Pacific oyster (Crassostrea gigas) during anhydrous living-preservation. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Chen L, Shi H, Li Z, Yang F, Zhang X, Xue Y, Zhang H, Xue C. Molecular mechanism of protein dynamic change in Pacific oyster (Crassostrea gigas) during depuration at different salinities uncovered by mass spectrometry-based proteomics combined with bioinformatics. Food Chem 2022; 394:133454. [PMID: 35753254 DOI: 10.1016/j.foodchem.2022.133454] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/04/2022] [Accepted: 06/08/2022] [Indexed: 11/04/2022]
Abstract
Salinity stress during depuration of Pacific oysters (Crassostrea gigas) leads to degradation in quality; therefore, an understanding of the molecular mechanisms regulating dynamic changes during depuration is needed. Here, C. gigas was depurated for 72 h at salinities ranging from 26 to 38 g/L, a ± 10-20% fluctuation from that in the production area, and the gill proteomes were analyzed by sequential window acquisition of all theoretical fragment ion mass spectra (SWATH-MS). Of the 1218 proteins analyzed, 241 were differentiating proteins (DPs). Salinity stress led to increased levels of DPs associated with glycolysis and the extracellular matrix-receptor interaction pathway, and decreased levels of DPs associated with the citric acid cycle, lipid metabolism, genetic information processing, and cell transformation, especially in oysters exposed to 38 g/L salinity (+20%). Controlling salinity fluctuation within ± 10% of the production area during depuration was conducive to maintaining quality in C. gigas.
Collapse
Affiliation(s)
- Lipin Chen
- College of Food Science and Engineering, Ocean University of China, No. 5, Yu Shan Road, Qingdao, Shandong Province 266003, PR China
| | - Haohao Shi
- College of Food Science and Engineering, Ocean University of China, No. 5, Yu Shan Road, Qingdao, Shandong Province 266003, PR China
| | - Zhaojie Li
- College of Food Science and Engineering, Ocean University of China, No. 5, Yu Shan Road, Qingdao, Shandong Province 266003, PR China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, PR China
| | - Fan Yang
- College of Food Science and Engineering, Ocean University of China, No. 5, Yu Shan Road, Qingdao, Shandong Province 266003, PR China
| | - Xiaomei Zhang
- Food and Agricultural Products Testing Agency, Technology Center of Qingdao Customs District, Qingdao, Shandong Province, PR China
| | - Yong Xue
- College of Food Science and Engineering, Ocean University of China, No. 5, Yu Shan Road, Qingdao, Shandong Province 266003, PR China
| | - Hongwei Zhang
- Food and Agricultural Products Testing Agency, Technology Center of Qingdao Customs District, Qingdao, Shandong Province, PR China.
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, No. 5, Yu Shan Road, Qingdao, Shandong Province 266003, PR China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, PR China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for MarineScience and Technology (Qingdao), Qingdao 266237, Shandong Province, PR China.
| |
Collapse
|
15
|
Chen L, Yu F, Shi H, Wang Q, Xue Y, Xue C, Wang Y, Li Z. Effect of salinity stress on respiratory metabolism, glycolysis, lipolysis, and apoptosis in Pacific oyster (Crassostrea gigas) during depuration stage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2003-2011. [PMID: 34537961 DOI: 10.1002/jsfa.11539] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/06/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Depuration is an important process performed to ensure the safety of oyster consumption, and the effect of salinity stress on physiological and ecological characteristics of oyster remains unknow. In this study, the simulated depuration of Crassostrea gigas was performed with the salinities varying from ±10% to ±20% away from that of production area (26, 28, 32, 35, and 38 g L-1 ), as well as respiratory metabolism, glycolysis, lipolysis, and apoptosis were analyzed. RESULTS (i) The oxygen consumption rate, ammonia discharge rate and enzyme activities related to respiratory metabolism were decreased significantly at salinities of 38 g L-1 , indicating that salinity stress triggered the abnormal respiratory metabolism of C. gigas, further, glycolysis was enhanced. (ii) Glycogen decomposition, lactic acid increase, and fatty acid composition modifications were caused by adenosine monophosphate (AMP)-activated protein kinase (AMPK) -mediated during salinity stress. (iii) There was a clear decrease of the condition index and meat yield of C. gigas after 72 h of depuration, especially in salinity 38 g L-1 . (iv) Salinity stress would lead to the increase of cytochrome c levels, then cause apoptosis of C. gigas, while heat shock protein 70 (HSP70) would interfere with this process. CONCLUSION Salinity stress had a significant effect on the physiological and ecological response of C. gigas during the depuration process, including respiratory metabolism, glycolysis, lipolysis, and apoptosis. In general, the low depuration salinity fluctuation (±10%) is helpful to maintain quality of C. gigas, as well as the optimal depuration time was 48 h. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lipin Chen
- College of Food Science and Engineering, Ocean University of China, Qingdao, P.R. China
| | - Fanqianhui Yu
- College of Food Science and Engineering, Ocean University of China, Qingdao, P.R. China
| | - Haohao Shi
- College of Food Science and Engineering, Ocean University of China, Qingdao, P.R. China
| | - Qi Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, P.R. China
| | - Yong Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, P.R. China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, P.R. China
- Qingdao National Laboratory for Marine Science and Technology, Laboratory of Marine Drugs and Biological Products, Qingdao, P.R. China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P.R. China
| | - Yuming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, P.R. China
| | - Zhaojie Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, P.R. China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P.R. China
| |
Collapse
|
16
|
Lopes J, Coppola F, Soares AMVM, Meucci V, Pretti C, Polese G, Freitas R. How temperature rise will influence the toxic impacts of 17 α-ethinylestradiol in Mytilus galloprovincialis? ENVIRONMENTAL RESEARCH 2022; 204:112279. [PMID: 34699762 DOI: 10.1016/j.envres.2021.112279] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/23/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Pharmaceutical drugs are Contaminants of Emerging Concern (CECs) and are continuously discharged into the environment. As a result of human and veterinary use, these substances are reaching aquatic coastal systems, with limited information regarding the toxic effects of these compounds towards inhabiting organisms. Among CECs are pharmaceuticals like 17 α-ethinylestradiol (EE2), which is a synthetic hormone with high estrogenic potency. EE2 has been increasingly found in different aquatic systems but few studies addressed its potential toxicity to marine wildlife, in particular to bivalves. Therefore, the aim of the present study was to evaluate the influence of temperature (17 °C-control and 21 °C) on the potential effects of EE2 on the mussel Mytilus galloprovincialis. For this purpose, mussels were exposed to different concentrations of EE2 (5.0; 25.0; 125.0 and 625 ng/L), resembling low to highly polluted sites. Mussels exposed to each concentration were maintained under two temperatures, 17 and 21 °C, which represent actual and predicted warming conditions, respectively. After 28 days, oxidative stress status, metabolism related parameters, neurotoxicity and histopathological alterations were measured. The results obtained clearly showed an interactive effect of increased temperature and EE2, with limited antioxidant and biotransformation capacity when both stressors were acting together, leading to higher cellular damage. The combination of both stressors also enhanced mussels' metabolic capacity and neurotoxic effects. Nevertheless, loss of redox balance was confirmed by the strong decrease of the ratio between reduce glutathione (GSH) and oxidized glutathione (GSSG) in contaminated mussels, regardless the temperature. Histopathological indexes in contaminated mussels were significantly different from the control group, indicating impacts in gills and digestive glands of mussels due to EE2, with higher values observed at 21 °C. Overall, this study demonstrates that of EE2 represents a threat to mussels and predicted warming conditions will enhance the impacts, which in a near future might result in impairments at the population and community levels.
Collapse
Affiliation(s)
- Joel Lopes
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Francesca Coppola
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | | | - Carlo Pretti
- Dipartimento di Scienze Veterinarie, Università di Pisa, Italy; Consorzio per il Centro Interuniversitario di Biologia Marina ed Ecologia Applicata "G. Bacci" (CIBM), Livorno, Italy
| | - Gianluca Polese
- Department of Biology, University of Naples Federico II, 80126, Italy
| | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
17
|
Mauduit F, Segarra A, Mandic M, Todgham AE, Baerwald MR, Schreier AD, Fangue NA, Connon RE. Understanding risks and consequences of pathogen infections on the physiological performance of outmigrating Chinook salmon. CONSERVATION PHYSIOLOGY 2022; 10:coab102. [PMID: 35492407 PMCID: PMC9040276 DOI: 10.1093/conphys/coab102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 10/20/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
The greatest concentration of at-risk anadromous salmonids is found in California (USA)-the populations that have been negatively impacted by the degradation of freshwater ecosystems. While climate-driven environmental changes threaten salmonids directly, they also change the life cycle dynamics and geographic distribution of pathogens, their resulting host-pathogen interactions and potential for disease progression. Recent studies have established the correlation between pathogen detection and salmonid smolt mortality during their migration to the ocean. The objective of the present study was to screen for up to 47 pathogens in juvenile Chinook salmon (Oncorhynchus tshawytscha) that were held in cages at two key sites of the Sacramento River (CA, USA) and measure potential consequences on fish health. To do so, we used a combination of transcriptomic analysis, enzymatic assays for energy metabolism and hypoxia and thermal tolerance measures. Results revealed that fish were infected by two myxozoan parasites: Ceratonova shasta and Parvicapsula minibicornis within a 2-week deployment. Compared to the control fish maintained in our rearing facility, infected fish displayed reduced body mass, depleted hepatic glycogen stores and differential regulation of genes involved in the immune and general stress responses. This suggests that infected fish would have lower chances of migration success. In contrast, hypoxia and upper thermal tolerances were not affected by infection, suggesting that infection did not impair their capacity to cope with acute abiotic stressors tested in this study. An evaluation of long-term consequences of the observed reduced body mass and hepatic glycogen depletion is needed to establish a causal relationship between salmon parasitic infection and their migration success. This study highlights that to assess the potential sublethal effects of a stressor, or to determine a suitable management action for fish, studies need to consider a combination of endpoints from the molecular to the organismal level.
Collapse
Affiliation(s)
- F Mauduit
- Corresponding author: Department of Anatomy, Physiology & Cell Biology, University of California Davis, 95616 Davis, CA, USA.
| | - A Segarra
- Department of Anatomy, Physiology & Cell Biology, University of California Davis, 95616 Davis, CA, USA
| | - M Mandic
- Department of Animal Science, University of California Davis, 95616 Davis, CA, USA
| | - A E Todgham
- Department of Animal Science, University of California Davis, 95616 Davis, CA, USA
| | - M R Baerwald
- California Department of Water Resources, Division of Environmental Services, 95814 Sacramento, CA, USA
| | - A D Schreier
- Department of Animal Science, University of California Davis, 95616 Davis, CA, USA
| | - N A Fangue
- Department of Wildlife, Fish, and Conservation Biology, University of California Davis, 95616 Davis, CA, USA
| | - R E Connon
- Department of Anatomy, Physiology & Cell Biology, University of California Davis, 95616 Davis, CA, USA
| |
Collapse
|
18
|
Matoo OB, Neiman M. Bringing Disciplines and People Together to Characterize the Plastic and Genetic Responses of Molluscs to Environmental Change. Integr Comp Biol 2021; 61:1689-1698. [PMID: 34435639 PMCID: PMC8699093 DOI: 10.1093/icb/icab186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Molluscs are remarkably diverse and are found across nearly all ecosystems, meaning that members of this ancient animal phylum provide a powerful means to study genomic-phenotype connections in a climate change framework. Recent advances in genomic sequencing technologies and genome assembly approaches finally allow the relatively cheap and tractable assembly of high-quality mollusc genome resources. After a brief review of these issues and advances, we use a case-study approach to provide some concrete examples of phenotypic plasticity and genomic adaptation in molluscs in response to environmental factors expected to be influenced by climate change. Our goal is to use molluscs as a "common currency" to demonstrate how organismal and evolutionary biologists can use natural systems to make phenotype-genotype connections in the context of changing environments. In parallel, we emphasize the critical need to collaborate and integrate findings across taxa and disciplines in order to use new data and information to advance our understanding of mollusc biology in the context of global environmental change. We end with a brief synthetic summary of the papers inspired by the 2021 SICB Symposium "Genomic Perspectives in Comparative Physiology of Molluscs: Integration across Disciplines".
Collapse
Affiliation(s)
- Omera B Matoo
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln 68588, NE, USA
| | - Maurine Neiman
- Department of Biology, University of Iowa, Iowa City 52242, IA, USA.,Department of Gender, Women's, and Sexuality Studies, University of Iowa, Iowa City 52242, IA, USA
| |
Collapse
|
19
|
Li Y, Lu G, Wang WX, Li H, You J. Temporal and spatial characteristics of PAHs in oysters from the Pearl River Estuary, China during 2015-2020. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148495. [PMID: 34166900 DOI: 10.1016/j.scitotenv.2021.148495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
Estuary connects the inland freshwater and open seawater, which may become a sink for pollutants from land-derived outflows, especially for persistent organic pollutants (e.g., polycyclic aromatic hydrocarbons, PAHs). Due to complex fluctuation in estuary, it's difficult to achieve a comprehensive assessment of the pollution characteristics by grabbed environmental samples. Oysters serve as efficient biomonitors of pollution status in highly dynamic and anthropogenically impacted estuaries, like the Pearl River Estuary (PRE), South China. Here, we investigated the annual, seasonal, and spatial variations of PAHs in the soft tissues of oysters from the PRE over the last six years (2015-2020) and quantitatively analyzed the influence of environmental factors on PAH occurrence in the oysters. The concentrations of Σ15PAH in oysters ranged from 74 to 1164 (337 ± 218) ng/g dry wt., with a peak occurrence in 2017. Highly seasonal and geographical variations in PAH pollution were documented in the PRE, with higher concentrations in oysters during the wet season than dry season, and in the eastern coast than western coast. Furthermore, geographical variation in PAH levels in the oysters was enhanced during the wet season, indicating a possible contribution of heavy rainfall flushing from the Pearl River. In addition to precipitation, water temperature and salinity also significantly influenced PAH levels in the oysters from the PRE by changing the bioavailability and biokinetics. Long-term biomonitoring using oysters in the current study reflected the pollution status and variation trends of PAHs in the highly dynamic PRE.
Collapse
Affiliation(s)
- Yang Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Guangyuan Lu
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Wen-Xiong Wang
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China; School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Huizhen Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China.
| | - Jing You
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| |
Collapse
|
20
|
Freitas R, Coppola F, Meucci V, Battaglia F, Soares AMVM, Pretti C, Faggio C. The influence of salinity on sodium lauryl sulfate toxicity in Mytilus galloprovincialis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 87:103715. [PMID: 34311115 DOI: 10.1016/j.etap.2021.103715] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
The influence of salinity on the effects of sodium lauryl sulfate (SLS) was evaluated using the Mediterranean mussel Mytilus galloprovincialis, exposed for 28 days to SLS (control-0.0 and 4.0 mg/L) under three salinity levels (Control-30, 25 and 35). The effects were monitored using biomarkers related to metabolism and energy reserves, defence mechanisms (antioxidant and biotransformation enzymes) and cellular damage. The results revealed that non-contaminated mussels tended to maintain their metabolic capacity regardless of salinity, without activation of antioxidant defence strategies. On the contrary, although contaminated mussels presented decreased metabolic capacity at salinities 25 and 35, they were able to activate their antioxidant mechanisms, preventing cellular damage. Overall, the present findings indicate that SLS, especially under stressful salinity levels, might potentially jeopardize population survival and reproduction success since reduced metabolism and alterations on mussels' antioxidant mechanisms will impair their biochemical and, consequently, physiological performance.
Collapse
Affiliation(s)
- Rosa Freitas
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Francesca Coppola
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Valentina Meucci
- Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado, PI, Italy
| | - Federica Battaglia
- Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado, PI, Italy
| | - Amadeu M V M Soares
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Carlo Pretti
- Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado, PI, Italy; Interuniversity Consortium of Marine Biology of Leghorn "G. Bacci", 57128, Livorno, Italy
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, S. Agata-Messina, Italy.
| |
Collapse
|
21
|
Kibria G, Nugegoda D, Rose G, Haroon AKY. Climate change impacts on pollutants mobilization and interactive effects of climate change and pollutants on toxicity and bioaccumulation of pollutants in estuarine and marine biota and linkage to seafood security. MARINE POLLUTION BULLETIN 2021; 167:112364. [PMID: 33933897 DOI: 10.1016/j.marpolbul.2021.112364] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
This article provides an overview of the impacts of climate change stressors (temperature, ocean acidification, sea-level rise, and hypoxia) on estuarine and marine biota (algae, crustaceans, molluscs, corals, and fish). It also assessed possible/likely interactive impacts (combined impacts of climate change stressors and pollutants) on pollutants mobilization, pollutants toxicity (effects on growth, reproduction, mortality) and pollutants bioaccumulation in estuarine and marine biota. An increase in temperature and extreme events may enhance the release, degradation, transportation, and mobilization of both hydrophobic and hydrophilic pollutants in the estuarine and marine environments. Based on the available pollutants' toxicity trend data and information it reveals that the toxicity of several high-risk pollutants may increase with increasing levels of climate change stressors. It is likely that the interactive effects of climate change and pollutants may enhance the bioaccumulation of pollutants in seafood organisms. There is a paucity of literature relating to realistic interactive effects of climate change and pollutants. Therefore, future research should be directed towards the combined effects of climate change stressors and pollutants on estuarine and marine bota. A sustainable solution for pollution control caused by both greenhouse gas emissions (that cause climate change) and chemical pollutants would be required to safeguard the estuarine and marine biota.
Collapse
Affiliation(s)
- Golam Kibria
- School of Science, RMIT University, Australia; Global Artificial Mussels Pollution Watch Programme, Australia.
| | | | - Gavin Rose
- Kinvara Scientific P/L, Kinvara, NSW 2478, Australia
| | - A K Yousuf Haroon
- Food and Agriculture Organisation of the UN (FAO), Dhaka, Bangladesh
| |
Collapse
|
22
|
Nilin J, Santana LMBM, Silva A, Costa-Lotufo LV. Biological responses of mangrove oysters (Crassostrea rhizophorae) and mercury contamination in an urban tropical estuary. MARINE POLLUTION BULLETIN 2021; 166:112233. [PMID: 33740657 DOI: 10.1016/j.marpolbul.2021.112233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/17/2021] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
This study aimed to assess the biological responses of oysters from an urban estuary in Northeast Brazil, through the evaluation of biochemical and physiological biomarkers, and integrate these responses with the investigation of mercury seasonal contamination. Oysters and sediment were collected from three sites in the estuary of the Ceará River during dry and rainy seasons. Biomarkers (AchE, CaE, GST, CAT, and Condition Index) were analyzed in different tissues. Hg bioaccumulation was higher in animals sampled in the rainy season, with increases varying from 5% to 136%, compared to the dry season. The changes in biomarkers highlight already elevated stresses for the organisms at the inner portion of the estuary, near the confluence with the Maranguapinho River, mainly during the rainy season, corroborating other studies that showed ecotoxicological effects with water and sediment samples. Finally, no correlation between Hg in sediment/oyster and biomarker results was observed.
Collapse
Affiliation(s)
- Jeamylle Nilin
- Instituto de Biologia, Universidade Federal de Uberlândia, Av. Ceará, s/n Bloco D sala 28, 38405-302 Uberlândia, Minas Gerais, Brazil.
| | - Lígia M B M Santana
- Instituto de Ciências do Mar (Labomar) Universidade Federal do Ceará, Av. Abolição 3205, 60165-081 Fortaleza, Ceará, Brazil; Center for Environmental and Marine Studies (CESAM), Aveiro University (UA), 3810-193 Aveiro, Portugal
| | - Allyson Silva
- Instituto de Ciências do Mar (Labomar) Universidade Federal do Ceará, Av. Abolição 3205, 60165-081 Fortaleza, Ceará, Brazil
| | - Leticia Veras Costa-Lotufo
- Departamento de Farmacologia, Instituto de Ciências Biomédicas (ICB), Universidade de São Paulo (USP), Av. Lineu Prestes 1524, Prédio Biomédicas I, sala 213 Butantã, 05508900 São Paulo, SP, Brazil
| |
Collapse
|
23
|
Meeting the Salinity Requirements of the Bivalve Mollusc Crassostrea gigas in the Depuration Process and Posterior Shelf-Life Period to Improve Food Safety and Product Quality. WATER 2021. [DOI: 10.3390/w13081126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Microbiological contamination of bivalve molluscs is one of the major concerns inherent to food safety, thus depuration is frequently needed to assure food safety levels associated with their consumption. Salinity plays an important role in the metabolic activity of bivalves and as such can influence their depuration capacity. This study aimed to evaluate the effect of salinity (25, 30, 35 and 40) on the efficiency of the depuration process, along with the quality and shelf-life of Crassostrea gigas. For this, a 24-h depuration was carried out, followed by a storage period at 5 ± 1 °C for six days. Microbiological analyses and biochemical parameters related to oxidative stress response were analysed. Escherichia coli load was reduced in only 24 h, disregarding the salinity of the system. After the shelf-life period, the activity of the antioxidant defences at salinities 35 and 40 is higher but is still not sufficient to avoid lipid peroxidation. Over time, there is a decrease in oyster metabolism probably due to being chilled and to the action of exposure to air. In sum, this study suggests salinities between 25 and 30 as preferential for the depuration process of C. gigas and subsequent quality during shelf-life.
Collapse
|
24
|
Bal A, Panda F, Pati SG, Das K, Agrawal PK, Paital B. Modulation of physiological oxidative stress and antioxidant status by abiotic factors especially salinity in aquatic organisms. Comp Biochem Physiol C Toxicol Pharmacol 2021; 241:108971. [PMID: 33421636 DOI: 10.1016/j.cbpc.2020.108971] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/10/2020] [Accepted: 12/29/2020] [Indexed: 12/19/2022]
Abstract
Exposure to a variety of environmental factors such as temperature, pH, oxygen and salinity may influence the oxidative status in aquatic organisms. The present review article focuses on the modulation of oxidative stress with reference to the generation of reactive oxygen species (ROS) in aquatic animals from different phyla. The focus of the review article is to explore the plausible mechanisms of physiological changes occurring in aquatic animals due to altered salinity in terms of oxidative stress. Apart from the seasonal variations in salinity, global warming and anthropogenic activities have also been found to influence oxidative health status of aquatic organisms. These effects are discussed with an objective to develop precautionary measures to protect the diversity of aquatic species with sustainable conservation. Comparative analyses among different aquatic species suggest that salinity alone or in combination with other abiotic factors are intricately associated with modulation in oxidative stress in a species-specific manner in aquatic animals. Osmoregulation under salinity stress in relation to energy demand and supply are also discussed. The literature survey of >50 years (1960-2020) indicates that oxidative stress status and comparative analysis of redox modulation have evolved from the analysis of various biotic and/or abiotic factors to the study of cellular signalling pathways in these aquatic organisms.
Collapse
Affiliation(s)
- Abhipsa Bal
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar-751003, India
| | - Falguni Panda
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar-751003, India
| | - Samar Gourav Pati
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar-751003, India
| | - Kajari Das
- Department of Biotechnology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar-751003, India
| | - Pawan Kumar Agrawal
- Main Building, Odisha University of Agriculture and Technology, Bhubaneswar-751003, India
| | - Biswaranjan Paital
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar-751003, India.
| |
Collapse
|
25
|
DeLorenzo ME, Key PB, Chung KW, Aaby K, Hausman D, Jean C, Pennington PL, Pisarski EC, Wirth EF. Multi-stressor Effects of Ultraviolet Light, Temperature, and Salinity on Louisiana Sweet Crude Oil Toxicity in Larval Estuarine Organisms. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 80:461-473. [PMID: 33528594 DOI: 10.1007/s00244-021-00809-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 01/02/2021] [Indexed: 06/12/2023]
Abstract
When oil is spilled into the environment its toxicity is affected by abiotic conditions. The cumulative and interactive stressors of chemical contaminants and environmental factors are especially relevant in estuaries where tidal fluctuations cause wide variability in salinity, temperature, and ultraviolet (UV) light penetration, which is an important modifying factor for polycyclic aromatic hydrocarbon (PAH) toxicity. Characterizing the interactions of multiple stressors on oil toxicity will improve prediction of environmental impacts under various spill scenarios. This study examined changes in crude oil toxicity with temperature, salinity, and UV light. Oil exposures included high-energy, water-accommodated fractions (HEWAFs) and thin oil sheens. Larval (24-48 h post hatch) estuarine species representing different trophic levels and habitats were evaluated. Mean 96 h LC50 values for oil prepared as a HEWAF and tested under standard conditions (20 ppt, 25 °C, No-UV) were 62.5 µg/L tPAH50 (mud snails), 198.5 µg/L (grass shrimp), and 774.5 µg/L (sheepshead minnows). Thin oil sheen 96 h LC50 values were 5.3 µg/L tPAH50 (mud snails), 14.7 µg/L (grass shrimp), and 22.0 µg/L (sheepshead minnows) under standard conditions. UV light significantly increased the toxicity of oil in all species tested. Oil toxicity also was greater under elevated temperature and lower salinity. Multi-stressor (oil combined with either increased temperature, decreased salinity, or both) LC50 values were reduced to 3 µg/L tPAH50 for HEWAFs and < 1.0 µg/L tPAH50 for thin oil sheens. Environmental conditions at the time of an oil spill will significantly influence oil toxicity and organismal response and should be taken into consideration in toxicity testing and oil spill damage assessments.
Collapse
Affiliation(s)
- Marie E DeLorenzo
- National Oceanic and Atmospheric Administration (NOAA), National Ocean Service, National Centers for Coastal Ocean Science, 219 Fort Johnson Rd., Charleston, SC, 29412, USA.
| | - Peter B Key
- National Oceanic and Atmospheric Administration (NOAA), National Ocean Service, National Centers for Coastal Ocean Science, 219 Fort Johnson Rd., Charleston, SC, 29412, USA
| | - Katy W Chung
- CSS, Inc. Under Contract to NOAA, National Centers for Coastal Ocean Science, Charleston, SC, USA
| | - Kaitlin Aaby
- St. Mary's College of Maryland, St. Mary's City, MD, USA
| | | | | | - Paul L Pennington
- National Oceanic and Atmospheric Administration (NOAA), National Ocean Service, National Centers for Coastal Ocean Science, 219 Fort Johnson Rd., Charleston, SC, 29412, USA
| | - Emily C Pisarski
- CSS, Inc. Under Contract to NOAA, National Centers for Coastal Ocean Science, Charleston, SC, USA
| | - Edward F Wirth
- National Oceanic and Atmospheric Administration (NOAA), National Ocean Service, National Centers for Coastal Ocean Science, 219 Fort Johnson Rd., Charleston, SC, 29412, USA
| |
Collapse
|
26
|
Liu Y, Yang M, Zheng L, Nguyen H, Ni L, Song S, Sui Y. Antioxidant responses of triangle sail mussel Hyriopsis cumingii exposed to toxic Microcystis aeruginosa and thermal stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140754. [PMID: 32758840 DOI: 10.1016/j.scitotenv.2020.140754] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/20/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
Harmful algal blooms (HABs) and thermal stress as climate changes become more common in global water ecosystem, especially under eutrophic habitats. Here our study examined the combined impacts of bloom forming cyanobacteria Microcystis aeruginosa and thermal stress on the antioxidant responses of the ecologically important species triangle sail mussel Hyriopsis cumingii. The differential responses of a series of enzymes, e.g. superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione-S-transferase (GST), as well as signal metabolites including reactive oxygen species (ROS), malondialdehyde (MDA) and glutathione (GSH) involved in antioxidant defense mechanisms were analyzed during 14 d exposure to toxic cyanobacterium M. aeruginosa and 7 d depuration period. The activities of SOD and GPx as well as the content of ROS and MDA in H. cumingii increased, while CAT activity reduced due to M. aeruginosa exposure. Thermal stress resulted in decrease of CAT, the accumulation of GSH and the enhance of GST and SOD. Meanwhile, the interactive effects among M. aeruginosa, thermal stress and time were also observed on most parameters except for GST activity. The total amount of microcystins (MC) in sail mussels increased with concentrations of exposed M. aeruginosa, independently of the presence or absence of thermal stress. Although around 50% of MC in mussels dropped in the depuration period, most parameters showed alterations because of cyanobacteria exposure and thermal stress. Overall, these findings suggested that toxic cyanobacteria or thermal stress induces oxidative stress and severely affects the enzymes activities and intermediates level associated with antioxidant defense mechanisms in sail mussels respectively. More importantly, the toxic impacts on sail mussels could be intensified by their combination.
Collapse
Affiliation(s)
- Yimeng Liu
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Min Yang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Liang Zheng
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Haidang Nguyen
- Research Institute for Aquaculture No.1, Bac Ninh 16315, Viet Nam
| | - Liangping Ni
- Yueqing Guangyu Biological Technology Co., LTD, Wenzhou 325608, China
| | - Shanshan Song
- King Abdullah University of Science and Technology, Thuwal 239556, Saudi Arabia.
| | - Yanming Sui
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; Department of Ocean Technology, College of Chemistry and Biology Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| |
Collapse
|
27
|
Zhou Y, Zhao Y, Xu R, Pan L. Study on the AhR signaling pathway and phase II detoxification metabolic enzymes isoforms in scallop Chlamys farreri exposed to single and mixtures of PAHs. ENVIRONMENTAL RESEARCH 2020; 190:109980. [PMID: 32800894 DOI: 10.1016/j.envres.2020.109980] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/11/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
This study aimed to investigate the detoxification metabolism responses in scallop Chlamys farreri exposed to phenanthrene (PHE), chrysene (CHR), benzo[a]pyrene (B[a]P) and PHE + CHR + B[a]P for 15 days under laboratory conditions. The mRNA expression levels of AhR signaling pathway (AhR, HSP90, XAP2 and ARNT), detoxification system (phase I: CYP1A1 and CYP1B1; phase II: SULTs, UGT and GSTs) and ATP-binding cassette transporters (phase 0: ABCB1 and phase III: ABCC1, ABCG2) in digestive glands of scallops exposed to PHE (0.7, 2.1 μg/L), CHR (0.7, 2.1 μg/L), B[a]P (0.7, 2.1 μg/L), and PHE + CHR + B[a]P (0.7 + 0.7 +0.7, 2.1 + 2.1 + 2.1 μg/L) were detected. In present study, key genes (AhR, HSP90, XAP2 and ARNT) of the AhR signaling pathway can be significantly induced by pollutants, suggesting that the AhR/ARNT signaling pathway plays a role directly or indirectly. AhR, HSP90 and ARNT reached the maximum value on day 6, which can be preliminarily understood as the synchronization of their functions. Besides, the results also indicated that different genes had specific response to different pollution exposure. CYP1B1, GST-2, GST-omega and GST-microsomal could be potional indexes to PHE, ARNT, GST-sigma 2 and GST-3 were sensitive to CHR exposure, HSP90, GST-theta and ABCG2 were considered as potional indexes to BaP while CYP1A1 and UGT were possible to be indexes for monitoring the mix exposure of these three PAHs. These findings in C. farreri suggested that phase II detoxification metabolic enzymes isoforms played an essential role in detoxification mechanisms and mRNA expression levels of specific SULTs, UGTs and GSTs were potentially to be ideal indexes in PAHs pollution research. In summary, this study provides more valuable information for the risk assessments of different rings of PAHs.
Collapse
Affiliation(s)
- Yueyao Zhou
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Yanan Zhao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Ruiyi Xu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China.
| |
Collapse
|
28
|
Cruz Santiago O, Ilizaliturri Hernández CA, Mejía Saavedra JDJ, Espinosa Reyes G, Alfaro de la Torre MC, González Mille DJ. Evaluación preliminar de biomarcadores enzimáticos en caracoles de agua dulce (<i>Pachychilus</i> sp.) del humedal “Ciénaga de Tamasopo”, México. ACTA BIOLÓGICA COLOMBIANA 2020. [DOI: 10.15446/abc.v25n1.75095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Se determinó la actividad de la enzima acetilcolinesterasa (AChE), el rango de conjugación de glutatión s-transferasa (GST) y la presencia de malondialdehído (MDA), como biomarcadores de exposición a plaguicidas, durante dos temporadas (secas y post-lluvias) en tejidos de macroinvertebrados acuáticos (caracoles de agua dulce -Pachychilus sp.-) residentes del humedal Ciénega de Tamasopo (San Luis Potosí, México). Esto se acompañó con un monitoreo de los parámetros fisicoquímicos en agua del humedal con una sonda multiparamétrica. La actividad de los biomarcadores se determinó en la fracción S12 (fracción post-mitocondrial) de tejidos de Pachychilus sp. mediante métodos de espectrofotometría UV-Visible en un lector de microplacas. Se encontró una menor actividad de AChE (39,0%) y un mayor rango de conjugación de GST (28,5%) seguido de una menor presencia (25,0%) de peroxidación lipídica (MDA) en la temporada de secas en el tejido de los caracoles. Además, se encontraron asociaciones significativas entre el rango de conjugación de GST con el resto los biomarcadores en ambas temporadas, lo cual es el resultado de procesos de desintoxicación en los caracoles. La actividad de los biomarcadores podría estar modulada por la salinidad regulando así la producción de enzimas antioxidantes y la toxicidad de los plaguicidas usados en las áreas agrícolas cercanas a este humedal. Los caracoles del género Pachychilus sp. pueden ser utilizados como como bioindicadores del estado de la salud de los humedales, lo cual puede derivar en el diseño de medidas de gestión para la conservación y manejo sustentable de estos ecosistemas.
Collapse
|
29
|
Freitas R, Silvestro S, Coppola F, Meucci V, Battaglia F, Intorre L, Soares AMVM, Pretti C, Faggio C. Combined effects of salinity changes and salicylic acid exposure in Mytilus galloprovincialis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 715:136804. [PMID: 32006781 DOI: 10.1016/j.scitotenv.2020.136804] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/27/2019] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
Pharmaceuticals and Personal care products (PPCPs) are frequently released into several marine matrices, representing significant environmental and ecotoxicological risks. Among the widest spread PPCPs in aquatic systems is Salicylic acid (SA), with known negative effects on marine and freshwater species. Nevertheless, the toxicity resulting from these emerging pollutants, including SA, together with climate change has still received little attention up to date. Among climate change related factors salinity is one that most affects aquatic organisms. To better understand the combined impacts of SA and salinity, the present study evaluated the biochemical alterations induced in Mytilus galloprovincialis mussels exposed to SA and different salinity levels, acting individually and in combination. The effects observed clearly highlighted that cellular damages were mainly observed at higher salinity (35), with no additive or synergistic effects derived from the combined presence of SA. Higher antioxidant capacity of mussels in the presence of SA may prevent increased LPO levels in comparison to uncontaminated mussels. Nevertheless, in the presence of SA mussels revealed loss of redox balance, regardless of the salinity level. Furthermore, mussels exposed to SA at control salinity showed increased metabolic capacity which decreased when exposed to salinities 25 and 35. These findings may indicate the protective capacity of mussels towards higher stressful conditions, with lower energy reserves expenditure when in the presence of SA and salinities out of their optimal range. Although limited cellular damages were observed, changes on mussel's redox balance, antioxidant mechanisms and metabolism derived from the combined exposure to SA and salinity changes may compromise mussel's growth and reproduction. Overall, the present study highlights the need to investigate the impacts induced by pollutants under present and future climate change scenarios, towards a more realistic environmental risk assessment.
Collapse
Affiliation(s)
- Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | - Serena Silvestro
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Francesca Coppola
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | | | | | - Luigi Intorre
- Dipartimento di Scienze Veterinarie, Università di Pisa, Italy
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Carlo Pretti
- Dipartimento di Scienze Veterinarie, Università di Pisa, Italy; Consorzio per il Centro Interuniversitario di Biologia Marina ed Ecologia Applicata "G. Bacci" (CIBM), Livorno, Italy
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| |
Collapse
|
30
|
Chan CY, Wang WX. Biomarker responses in oysters Crassostrea hongkongensis in relation to metal contamination patterns in the Pearl River Estuary, southern China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:264-276. [PMID: 31082611 DOI: 10.1016/j.envpol.2019.04.140] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/25/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
The Pearl River Estuary (PRE) is the third largest estuary in China, where estuarine organisms are under metal stress at various biological levels. Based on the metal concentrations measured in oyster Crassostrea hongkongensis, we documented a change in dominance of metal contamination from Cd, Cr, Cu, Ni and Zn to Ag, Cd, Cu and Zn. In general, metal concentrations were higher in upstream stations and displayed a clear up-downstream gradient. Compared to the historical values, we noted the reductions in Cd, Cr and Ni concentrations, and the changing inputs due to evolving industrial activities were responsible for shaping the metal contamination profile in the PRE region. Along with metal concentrations, a suite of biomarkers was analyzed. Among the metals measured in the oyster tissues, Ag, Cd, Cu, Ni and Zn showed the strongest associations with pro-oxidant and oxidative stress responses (superoxide dismutase, lipid peroxidation and lysosomal membrane destabilization) and detoxification responses (glutathione and metallothionein), suggesting that the present metal contamination still exerts significant amount of stress in biota in the PRE. Metal contamination in estuaries in China is still severe compared to other countries, therefore continuous efforts should be taken to monitor the changing metal profiles with necessary control and remediation measures.
Collapse
Affiliation(s)
- Cheuk Yan Chan
- HKUST Shenzhen Research Institute, Shenzhen, 518 057, State Key Laboratory of Marine Pollution, Department of Ocean Science, HKUST, Clear Water Bay, Kowloon, Hong Kong, China
| | - Wen-Xiong Wang
- HKUST Shenzhen Research Institute, Shenzhen, 518 057, State Key Laboratory of Marine Pollution, Department of Ocean Science, HKUST, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
31
|
Bouzahouane H, Barour C, Sleimi N, Ouali K. Multi-biomarkers approach to the assessment of the southeastern Mediterranean Sea health status: Preliminary study on Stramonita haemastoma used as a bioindicator for metal contamination. CHEMOSPHERE 2018; 207:725-741. [PMID: 29859485 DOI: 10.1016/j.chemosphere.2018.05.118] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/18/2018] [Accepted: 05/20/2018] [Indexed: 06/08/2023]
Abstract
The present study aimed to evaluate the responses of different biochemicals parameters associated with environmental pollution in the digestive gland of the gastropod mollusc Stramonita haemastoma. Physiochemical parameters and trace metal elements (Copper (Cu), Zinc (Zn), Chromium (Cr), Cadmium (Cd) and Lead (Pb)) were measured in seawater. Spatiotemporal variations in reduced glutathione (GSH), malondialdehyde (MDA) and metallothionein (Mt) as well as the specific activities of glutathione S-transferase (GST) and catalase (CAT) were evaluated in digestive gland of this species during a one-year period in 2013-2014. Samples collection was conducted at three sites. The results obtained showed seasonal fluctuations in GST and CAT activities and in the rate of Mt content. In addition, intersite variations in GSH, MDA, Mt and CAT were recorded in individuals. Also, trace metal elements concentrations determined by season in the digestive gland revealed spatial and temporal variations for Cu and Zn but they are below the limit of detection for Cd and Pb. The highest values were generally recorded in spring for Cu and in winter for Zn. In this first regional study using in S. haemastoma as a model, the biomarkers measured were seen to be inducible parameters to evaluate the health state of the organism and the overall quality of the study sites.
Collapse
Affiliation(s)
- Hana Bouzahouane
- Department of Biology, Faculty of Natural and Life Sciences, Mohamed Cherif Messaâdia University, Souk-Ahras, 41000, Algeria; Laboratory of Environmental Biosurveillance, Department of Biology, Faculty of Sciences, Badji Mokhtar University, BP 12, El Hadjar, Annaba 23000, Algeria.
| | - Choukri Barour
- Department of Biology, Faculty of Natural and Life Sciences, Mohamed Cherif Messaâdia University, Souk-Ahras, 41000, Algeria
| | - Noomene Sleimi
- UR: Matériaux, Nanomatériaux et Ecosystèmes, Faculté des Sciences de Bizerte, Université de Carthage, Tunisia
| | - Kheireddine Ouali
- Laboratory of Environmental Biosurveillance, Department of Biology, Faculty of Sciences, Badji Mokhtar University, BP 12, El Hadjar, Annaba 23000, Algeria
| |
Collapse
|
32
|
Moreira A, Figueira E, Libralato G, Soares AMVM, Guida M, Freitas R. Comparative sensitivity of Crassostrea angulata and Crassostrea gigas embryo-larval development to As under varying salinity and temperature. MARINE ENVIRONMENTAL RESEARCH 2018; 140:135-144. [PMID: 29910029 DOI: 10.1016/j.marenvres.2018.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/29/2018] [Accepted: 06/04/2018] [Indexed: 06/08/2023]
Abstract
Oysters are a diverse group of marine bivalves that inhabit coastal systems of the world's oceans, providing a variety of ecosystem services, and represent a major socioeconomic resource. However, oyster reefs have become inevitably impacted from habitat destruction, overfishing, pollution and disease outbreaks that have pushed these structures to the break of extinction. In addition, the increased frequency of climate change related events promise to further challenge oyster species survival worldwide. Oysters' early embryonic development is likely the most vulnerable stage to climate change related stressors (e.g. salinity and temperature shifts) as well as to pollutants (e.g. arsenic), and therefore can represent the most important bottleneck that define populations' survival in a changing environment. In light of this, the present study aimed to assess two important oyster species, Crassostrea angulata and Crassostrea gigas embryo-larval development, under combinations of salinity (20, 26 and 33), temperature (20, 24 and 28 °C) and arsenic (As) exposure (0, 30, 60, 120, 240, 480, 960 and 1920 μg. As L-1), to infer on different oyster species capacity to cope with these environmental stressors under the eminent threat of climate change and increase of pollution worldwide. Results showed differences in each species range of salinity and temperature for successful embryonic development. For C angulata, embryo-larval development was successful at a narrower range of both salinity and temperature, compared to C. gigas. Overall, As induced higher toxicity to C. angulata embryos, with calculated EC50 values at least an order of magnitude lower than those calculated for C. gigas. The toxicity of As (measured as median effective concentration, EC50) showed to be influenced by both salinity and temperature in both species. Nonetheless, salinity had a greater influence on embryos' sensitivity to As. This pattern was mostly noticed for C. gigas, with lower salinity inducing higher sensitivity to As. Results were discussed considering the existing literature and suggest that C. angulata populations are likely to become more vulnerable under near future predictions for temperature rise, salinity shifts and pollution.
Collapse
Affiliation(s)
- Anthony Moreira
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Etelvina Figueira
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Giovanni Libralato
- Department of Biology, University of Naples Federico II, via Cinthia ed. 7, 80126, Naples, Italy
| | - Amadeu M V M Soares
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Marco Guida
- Department of Biology, University of Naples Federico II, via Cinthia ed. 7, 80126, Naples, Italy
| | - Rosa Freitas
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal.
| |
Collapse
|
33
|
Sifi K, Soltani N. Seasonal changes of two biomarkers of oxidative stress (LDH, MDA) in the edible mollusc Donax trunculus (Mollusca: Bivalvia) from the Gulf of Annaba (Algeria): correlation with carbohydrate and lipid contents. MOLLUSCAN RESEARCH 2018. [DOI: 10.1080/13235818.2018.1499389] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Karima Sifi
- Laboratory of Applied Animal Biology, Faculty of Sciences, Department of Biology, University Badji Mokhtar of Annaba, Annaba, Algeria
| | - Noureddine Soltani
- Laboratory of Applied Animal Biology, Faculty of Sciences, Department of Biology, University Badji Mokhtar of Annaba, Annaba, Algeria
| |
Collapse
|
34
|
Rivera-Ingraham GA, Lignot JH. Osmoregulation, bioenergetics and oxidative stress in coastal marine invertebrates: raising the questions for future research. ACTA ACUST UNITED AC 2018; 220:1749-1760. [PMID: 28515169 DOI: 10.1242/jeb.135624] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Osmoregulation is by no means an energetically cheap process, and its costs have been extensively quantified in terms of respiration and aerobic metabolism. Common products of mitochondrial activity are reactive oxygen and nitrogen species, which may cause oxidative stress by degrading key cell components, while playing essential roles in cell homeostasis. Given the delicate equilibrium between pro- and antioxidants in fueling acclimation responses, the need for a thorough understanding of the relationship between salinity-induced oxidative stress and osmoregulation arises as an important issue, especially in the context of global changes and anthropogenic impacts on coastal habitats. This is especially urgent for intertidal/estuarine organisms, which may be subject to drastic salinity and habitat changes, leading to redox imbalance. How do osmoregulation strategies determine energy expenditure, and how do these processes affect organisms in terms of oxidative stress? What mechanisms are used to cope with salinity-induced oxidative stress? This Commentary aims to highlight the main gaps in our knowledge, covering all levels of organization. From an energy-redox perspective, we discuss the link between environmental salinity changes and physiological responses at different levels of biological organization. Future studies should seek to provide a detailed understanding of the relationship between osmoregulatory strategies and redox metabolism, thereby informing conservation physiologists and allowing them to tackle the new challenges imposed by global climate change.
Collapse
Affiliation(s)
| | - Jehan-Hervé Lignot
- UMR 9190 MARBEC, Université de Montpellier, Place Eugène Bataillon, Montpellier 34095, France
| |
Collapse
|
35
|
Moreira A, Freitas R, Figueira E, Volpi Ghirardini A, Soares AMVM, Radaelli M, Guida M, Libralato G. Combined effects of arsenic, salinity and temperature on Crassostrea gigas embryotoxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 147:251-259. [PMID: 28846930 DOI: 10.1016/j.ecoenv.2017.08.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/14/2017] [Accepted: 08/17/2017] [Indexed: 06/07/2023]
Abstract
The combined effects of different salinity and temperature levels on the toxicity of Arsenic (As) were studied on the embryonic development of the oyster Crassostrea gigas. A standardized embryotoxicity test was performed to assess the interactive effects of these stressors, in a full factorial design experiment including a range of salinities (15, 19, 24, 28 and 32), temperatures (16, 20, 24, 28 and 32°C) and As concentrations (100, 300, 600, 1200, 2400µgL-1). The embryotoxicity endpoint was about the determination of normal larvae development rates at various conditions, and median effect concentration (EC50) determination for each As exposure condition. Results showed that toxicity induced by As was characterized by retardation of embryonic development observing toxic effects at lower concentrations than previously reported studies. The presence of As in seawater resulted in a narrower range of tolerance to both salinity and temperature. These findings bring new insights on the impacts of a common contaminant on an important shellfish species having a planktonic early life stage development, with potential implications for population survival and ecosystem functioning in a changing environment.
Collapse
Affiliation(s)
- Anthony Moreira
- Departmento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Departmento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Etelvina Figueira
- Departmento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Annamaria Volpi Ghirardini
- Department of Environmental Sciences, Informatics and Statistics, University Cà Foscari Venice, Via Torino 155, 30172 Venezia-Mestre, Italy
| | - Amadeu M V M Soares
- Departmento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Marta Radaelli
- Department of Environmental Sciences, Informatics and Statistics, University Cà Foscari Venice, Via Torino 155, 30172 Venezia-Mestre, Italy
| | - Marco Guida
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, Via Cinthia ed. 7, 80126 Naples, Italy
| | - Giovanni Libralato
- Department of Environmental Sciences, Informatics and Statistics, University Cà Foscari Venice, Via Torino 155, 30172 Venezia-Mestre, Italy; Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, Via Cinthia ed. 7, 80126 Naples, Italy.
| |
Collapse
|
36
|
Le Grand A, Maxime V, Kedzierski M, Duval H, Douzenel P, Sire O, Le Tilly V. Assessment and monitoring of water quality of the gulf of Morbihan, a littoral ecosystem under high anthropic pressure. MARINE POLLUTION BULLETIN 2017; 124:74-81. [PMID: 28705631 DOI: 10.1016/j.marpolbul.2017.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/26/2017] [Accepted: 07/02/2017] [Indexed: 06/07/2023]
Abstract
This field study is intended to propose a global methodology to assess and monitor the water quality of the gulf of Morbihan, a littoral ecosystem under increasing anthropic pressure. To this end, the Locmariaquer site, where Crassostrea gigas is extensively cultivated, was selected to perform a one-year follow-up of tissular glutathione S-transferase and acetylcholinesterase specific activities in this filter feeder organism. Calculation of an integrated index, corresponding to the ratio of the two enzymes activities, allowed to discriminate from the environmental noise, several clusters which could be representative environmental stress, potentially latent pollution. Moreover, the estrogenic activity was assessed in water samples collected at Locmariaquer and other strategic sites of the gulf. The results evidenced a low estrogenic-disrupting compound contamination of waters. Overall, this methodology produced an accurate outlook of a basal state for the gulf and could be developed in the context of a chronic monitoring of this site.
Collapse
Affiliation(s)
- A Le Grand
- Université Bretagne Sud, IRDL, FRE CNRS 3744, 56017 Vannes, France
| | - V Maxime
- Université Bretagne Sud, IRDL, FRE CNRS 3744, 56017 Vannes, France.
| | - M Kedzierski
- Université Bretagne Sud, IRDL, FRE CNRS 3744, 56017 Vannes, France
| | - H Duval
- Université Bretagne Sud, IRDL, FRE CNRS 3744, 56017 Vannes, France
| | - P Douzenel
- Université Bretagne Sud, IRDL, FRE CNRS 3744, 56017 Vannes, France
| | - O Sire
- Université Bretagne Sud, IRDL, FRE CNRS 3744, 56017 Vannes, France
| | - V Le Tilly
- Université Bretagne Sud, IRDL, FRE CNRS 3744, 56017 Vannes, France.
| |
Collapse
|
37
|
DeLorenzo ME, Evans BN, Chung KW, Key PB, Fulton MH. Effects of salinity on oil dispersant toxicity in the eastern mud snail, Ilyanassa obsoleta. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:21476-21483. [PMID: 28748435 DOI: 10.1007/s11356-017-9784-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 07/19/2017] [Indexed: 06/07/2023]
Abstract
Chemical dispersants can be a beneficial method for breaking up oil slicks; however, their use in mitigation could pose potential toxic effects on the marine ecosystem. Dispersants may be transported to lower salinity habitats, where toxicity data for aquatic species have not been established. This study examined the effect of salinity on oil dispersant toxicity in the eastern mud snail, Ilyanassa obsoleta, using two dispersants authorized for oil spill response, Corexit® 9500A and Finasol® OSR 52. Median lethal toxicity values (LC50) and sublethal effects were examined at 10, 20, and 30 ppt salinity in adult and larval mud snails. Two biomarkers (lipid peroxidation and acetylcholinesterase) were used to measure sublethal effects. The 96-h static renewal LC50 values indicated significant differences in toxicity between dispersants and salinities. Larval snails were significantly more sensitive than adult snails to both dispersants, and both life stages were significantly more sensitive to Finasol than to Corexit. Larval snails were more sensitive to dispersants at lower salinity, but adult snails were more sensitive at higher salinities. Dispersants increased lipid peroxidation and decreased acetylcholinesterase activity. These results demonstrate that dispersant toxicity varies among compounds and organism life stages, and that physicochemical properties of the environment, such as salinity, can affect the potential toxicity to estuarine species.
Collapse
Affiliation(s)
- Marie E DeLorenzo
- National Oceanic and Atmospheric Administration/National Ocean Service/National Centers for Coastal Ocean Science, 219 Fort Johnson Rd, Charleston, SC, 29412, USA.
| | | | - Katy W Chung
- National Oceanic and Atmospheric Administration/National Ocean Service/National Centers for Coastal Ocean Science, 219 Fort Johnson Rd, Charleston, SC, 29412, USA
- JHT, Inc., Charleston, SC, USA
| | - Peter B Key
- National Oceanic and Atmospheric Administration/National Ocean Service/National Centers for Coastal Ocean Science, 219 Fort Johnson Rd, Charleston, SC, 29412, USA
| | - Michael H Fulton
- National Oceanic and Atmospheric Administration/National Ocean Service/National Centers for Coastal Ocean Science, 219 Fort Johnson Rd, Charleston, SC, 29412, USA
| |
Collapse
|
38
|
Perić L, Nerlović V, Žurga P, Žilić L, Ramšak A. Variations of biomarkers response in mussels Mytilus galloprovincialis to low, moderate and high concentrations of organic chemicals and metals. CHEMOSPHERE 2017; 174:554-562. [PMID: 28193588 DOI: 10.1016/j.chemosphere.2017.01.138] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/11/2017] [Accepted: 01/29/2017] [Indexed: 06/06/2023]
Abstract
The changes of acetylcholinesterase activity (AChE), metallothioneins content (MTs), catalase activity (CAT) and lipid peroxidation (LPO) were assessed after 4 days exposure of mussels Mytilus galloprovincialis to a wide range of sublethal concentrations of chlorpyrifos (CHP, 0.03-100 μg/L), benzo(a)pyrene (B(a)P, 0.01-100 μg/L), cadmium (Cd, 0.2-200 μg/L) and copper (Cu, 0.2-100 μg/L). The activity of AChE in the gills decreased after exposure to CHP and Cu, whereas no change of activity was detected after exposure to B(a)P and Cd. Both induction and decrease of MTs content in digestive gland occurred after exposure to CHP and B(a)P, while a marked increase was evident at highest exposure concentrations of Cd. The content of MTs progressively decreased of MTs with increasing concentration of Cu. CAT activity and LPO in the gills did not change after exposure to any of the chemicals. The results demonstrate different response profile in relation to the type of chemical compound, and highlight the potential implications for evaluation of biological effect of contaminants in marine environment. Furthermore, the AChE activity in the gills and MTs content in the digestive gland could be modulated by CHP and Cu at environmentally relevant concentrations indicating the potential risks of short-term transient mussels exposure that may occur due to run-off from land or accidental releases.
Collapse
Affiliation(s)
- Lorena Perić
- Center for Marine Research, Ruđer Bošković Institute, Rovinj, Croatia.
| | - Vedrana Nerlović
- Center for Marine Research, Ruđer Bošković Institute, Rovinj, Croatia
| | - Paula Žurga
- Teaching Institute of Public Health of Primorsko-goranska County, Rijeka, Croatia
| | - Luka Žilić
- Marine Sciences, Juraj Dobrila University of Pula, Pula, Croatia
| | - Andreja Ramšak
- National Institute of Biology, Marine Biology Station Piran, Piran, Slovenia
| |
Collapse
|
39
|
Zacchi FL, de Lima D, Flores-Nunes F, Mattos JJ, Lüchmann KH, de Miranda Gomes CHA, Bícego MC, Taniguchi S, Sasaki ST, Dias Bainy AC. Transcriptional changes in oysters Crassostrea brasiliana exposed to phenanthrene at different salinities. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 183:94-103. [PMID: 28040644 DOI: 10.1016/j.aquatox.2016.12.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 12/15/2016] [Accepted: 12/17/2016] [Indexed: 06/06/2023]
Abstract
Euryhaline animals from estuaries, such as the oyster Crassostrea brasiliana, show physiological mechanisms of adaptation to tolerate salinity changes. These ecosystems receive constant input of xenobiotics from urban areas, including polycyclic aromatic hydrocarbons (PAHs), such as phenanthrene (PHE). In order to understand the influence of salinity on the molecular responses of C. brasiliana exposed to PHE, oysters were acclimatized to different salinities (35, 25 and 10) for 15days and then exposed to 100μgL-1 PHE for 24h and 96h. Control groups were kept at the same salinities without PHE. Oysters were sampled for chemical analysis and the gills were excised for mRNA quantification by qPCR. Transcript levels of different genes were measured, including some involved in oxidative stress pathways, phases I and II of the xenobiotic biotransformation systems, amino acid metabolism, fatty acid metabolism and aryl hydrocarbon receptor nuclear translocator putative gene. Higher transcript levels of Sulfotransferase-like gene (SULT-like) were observed in oysters exposed to PHE at salinity 10 compared to control (24h and 96h); cytochrome P450 isoforms (CYP2AU1, CYP2-like1) were more elevated in oysters exposed for 24h and CYP2-like2 after 96h of oysters exposed to PHE at salinity 10 compared to control. These results are probably associated to an enhanced Phase I biotransformation activity required for PHE detoxification under hyposmotic stress. Higher transcript levels of CAT-like, SOD-like, GSTm-like (96h) and GSTΩ-like (24h) in oysters kept at salinity 10 compared to organisms at salinities 25 and/or 35 are possibly related to enhaced ROS production. The transcription of these genes were not affected by PHE exposure. Amino acid metabolism-related genes (GAD-like (24h), GLYT-like, ARG-like (96h) and TAUT-like at 24h and 96h) also showed different transcription levels among organisms exposed to different salinities, suggesting their important role for oyster salinity adaptation, which is not affected by exposure to these levels of PHE.
Collapse
Affiliation(s)
- Flávia Lucena Zacchi
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University Santa Catarina, Florianópolis, Brazil
| | - Daína de Lima
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University Santa Catarina, Florianópolis, Brazil
| | - Fabrício Flores-Nunes
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University Santa Catarina, Florianópolis, Brazil
| | - Jacó Joaquim Mattos
- Aquaculture Pathology Research Center - NEPAQ, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Karim Hahn Lüchmann
- Laboratory of Biochemistry and Molecular Biology - LBBM, Fishery Engineering Department, Santa Catarina State University, Laguna, Brazil
| | | | - Márcia Caruso Bícego
- Laboratory of Marine Organic Chemistry - LABQOM, Oceanographic Institute, University of São Paulo, São Paulo, Brazil
| | - Satie Taniguchi
- Laboratory of Marine Organic Chemistry - LABQOM, Oceanographic Institute, University of São Paulo, São Paulo, Brazil
| | - Silvio Tarou Sasaki
- Laboratory of Marine Organic Chemistry - LABQOM, Oceanographic Institute, University of São Paulo, São Paulo, Brazil
| | - Afonso Celso Dias Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University Santa Catarina, Florianópolis, Brazil.
| |
Collapse
|
40
|
DeLorenzo ME, Eckmann CA, Chung KW, Key PB, Fulton MH. Effects of salinity on oil dispersant toxicity in the grass shrimp, Palaemonetes pugio. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 134P1:256-263. [PMID: 27639699 DOI: 10.1016/j.ecoenv.2016.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 09/06/2016] [Accepted: 09/07/2016] [Indexed: 06/06/2023]
Abstract
Chemical dispersants can be a useful tool to mitigate oil spills, but the potential risks to sensitive estuarine species should be carefully considered. To improve the decision making process, more information is needed regarding the effects of oil spill dispersants on the health of coastal ecosystems under variable environmental conditions such as salinity. The effects of salinity on the toxicity of two oil dispersants, Corexit® 9500 and Finasol® OSR 52, were examined in this study. Corexit® 9500 was the primary dispersant used during the 2010 Deepwater Horizon oil spill event, while Finasol® OSR 52 is another dispersant approved for oil spill response in the U.S., yet considerably less is known regarding its toxicity to estuarine species. The grass shrimp, Palaemonetes pugio, was used as a model estuarine species. It is a euryhaline species that tolerates salinities from brackish to full strength seawater. Adult and larval life stages were tested with each dispersant at three salinities, 5, 20, and 30 ppt. Median acute lethal toxicity thresholds and oxidative stress responses were determined. The toxicity of both dispersants was significantly influenced by salinity, with greatest toxicity observed at the lowest salinity tested. Larval shrimp were significantly more sensitive than adult shrimp to both dispersants, and both life stages were significantly more sensitive to Finasol than to Corexit. Oxidative stress in adult shrimp, as measured by increased lipid peroxidation activity, occurred with exposure to both dispersants. These data will assist environmental managers in making informed decisions regarding dispersant use in future oil spills.
Collapse
Affiliation(s)
- M E DeLorenzo
- NOAA/National Ocean Service/National Centers for Coastal Ocean Science, 219 Fort Johnson Rd., 29412 Charleston, SC, USA.
| | - C A Eckmann
- University of South Carolina, Columbia, SC, USA
| | - K W Chung
- NOAA/National Ocean Service/National Centers for Coastal Ocean Science, 219 Fort Johnson Rd., 29412 Charleston, SC, USA
| | - P B Key
- NOAA/National Ocean Service/National Centers for Coastal Ocean Science, 219 Fort Johnson Rd., 29412 Charleston, SC, USA
| | - M H Fulton
- NOAA/National Ocean Service/National Centers for Coastal Ocean Science, 219 Fort Johnson Rd., 29412 Charleston, SC, USA
| |
Collapse
|
41
|
Ben Naceur C, Maxime V, Ben Mansour H, Le Tilly V, Sire O. Oyster's cells regulatory volume decrease: A new tool for evaluating the toxicity of low concentration hydrocarbons in marine waters. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 133:327-333. [PMID: 27490815 DOI: 10.1016/j.ecoenv.2016.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 07/15/2016] [Accepted: 07/19/2016] [Indexed: 06/06/2023]
Abstract
Human activities require fossil fuels for transport and energy, a substantial part of which can accidentally or voluntarily (oil spillage) flow to the marine environment and cause adverse effects in human and ecosystems' health. This experiment was designed to estimate the suitability of an original cellular biomarker to early quantify the biological risk associated to hydrocarbons pollutants in seawater. Oocytes and hepatopancreas cells, isolated from oyster (Crassostrea gigas), were tested for their capacity to regulate their volume following a hypo-osmotic challenge. Cell volumes were estimated from cell images recorded at regular time intervals during a 90min-period. When exposed to diluted seawater (osmolalities from 895 to 712mosmkg(-1)), both cell types first swell and then undergo a shrinkage known as Regulatory Volume Decrease (RVD). This process is inversely proportional to the magnitude of the osmotic shock and is best fitted using a first-order exponential decay model. The Recovered Volume Factor (RVF) calculated from this model appears to be an accurate tool to compare cells responses. As shown by an about 50% decrease in RVF, the RVD process was significantly inhibited in cells sampled from oysters previously exposed to a low concentration of diesel oil (8.4mgL(-1) during 24h). This toxic effect was interpreted as a decreased permeability of the cell membranes resulting from an alteration of their lipidic structure by diesel oil compounds. In contrast, the previous contact of oysters with diesel did not induce any rise in the gills glutathione S-transferase specific activity. Therefore, this work demonstrates that the study of the RVD process of cells selected from sentinel animal species could be an alternative bioassay for the monitoring of hydrocarbons and probably, of various chemicals in the environment liable to alter the cellular regulations. Especially, given the high sensitivity of this biomarker compared with a proven one, it could become a relevant and accurate tool to estimate the biological hazards of micropollutants in the water.
Collapse
Affiliation(s)
- Chiraz Ben Naceur
- Institut Supérieur des Sciences Appliquées et de Technologie de Mahdia, Université de Monastir, Tunisia
| | - Valérie Maxime
- Université Bretagne Sud, FRE CNRS 3744, IRDL, 56017 Vannes, France
| | - Hedi Ben Mansour
- Institut Supérieur des Sciences Appliquées et de Technologie de Mahdia, Université de Monastir, Tunisia
| | | | - Olivier Sire
- Université Bretagne Sud, FRE CNRS 3744, IRDL, 56017 Vannes, France
| |
Collapse
|
42
|
Toledo-Ibarra G, Díaz Resendiz K, Ventura-Ramón G, Romero-Bañuelos C, Medina-Díaz I, Rojas-García A, Vega-López A, Girón-Pérez M. Assessment of pollution of the Boca de Camichin Estuary in Nayarit (Mexico) and its influence on oxidative stress in Crassostrea corteziensis oysters. Comp Biochem Physiol A Mol Integr Physiol 2016; 200:47-55. [DOI: 10.1016/j.cbpa.2016.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 04/22/2016] [Accepted: 05/02/2016] [Indexed: 10/21/2022]
|
43
|
Moreira A, Figueira E, Soares AMVM, Freitas R. Salinity influences the biochemical response of Crassostrea angulata to Arsenic. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 214:756-766. [PMID: 27149153 DOI: 10.1016/j.envpol.2016.04.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/05/2016] [Accepted: 04/10/2016] [Indexed: 06/05/2023]
Abstract
The increasing rate of occurrence and persistence of climatic events causing salinity shifts, in combination with contamination, may further challenge organisms response to environmental stress. Hence, we studied the effects of different salinity levels (10, 20, 30 and 40) on the response of the oyster Crassostrea angulata to Arsenic (As) exposure (4 mg L(-1)). Total As, Na(+) and K(+) concentrations in oyster tissues were determined. Biochemical analysis were performed to assess osmotic regulation (CA), metabolism (ETS), enzymatic (SOD, CAT and GSTs) and non-enzymatic (GSH/GSSG and LPO) markers of oxidative stress. Results obtained showed significantly higher metabolic activities in oysters maintained in low salinity (10) exposure, coupled with higher As accumulation, as well as higher SOD and CAT activities, compared to higher salinities (30 and 40). GSTs activity and LPO levels were higher in oysters exposed to As at salinities 20, 30 and 40, compared to the same conditions without As. From our findings we concluded that the response of C. angulata to As is influenced by salinity. At the lowest salinity (10) oysters accumulated higher As concentrations, here attributed to higher metabolic rate involved in physiological osmoregulation, also stimulating antioxidant related enzymes activity (SOD and CAT) and thus preventing increased LPO (higher ETS activity also observed without As). On the contrary, at salinities 30 and 40 with As, antioxidant SOD and CAT were inhibited, enabling for LPO generation. Given our results, the effects of As on the oysters antioxidant capacity appears to be more deleterious under higher salinities (20, 30 and 40), comparing to salinity 10. The differentiated responses demonstrated in the present study in C. angulata oysters exposed to As under different salinities, bring new insights on the mechanisms of environmental adaptability of this species, namely to salinity shifts, and the interactions between such alterations and As exposure.
Collapse
Affiliation(s)
- Anthony Moreira
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | - Etelvina Figueira
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | | | - Rosa Freitas
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
44
|
Durrieu G, Pham QK, Foltête AS, Maxime V, Grama I, Tilly VL, Duval H, Tricot JM, Naceur CB, Sire O. Dynamic extreme values modeling and monitoring by means of sea shores water quality biomarkers and valvometry. ENVIRONMENTAL MONITORING AND ASSESSMENT 2016; 188:401. [PMID: 27286974 DOI: 10.1007/s10661-016-5403-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 06/01/2016] [Indexed: 06/06/2023]
Abstract
Water quality can be evaluated using biomarkers such as tissular enzymatic activities of endemic species. Measurement of molluscs bivalves activity at high frequency (e.g., valvometry) during a long time period is another way to record the animal behavior and to evaluate perturbations of the water quality in real time. As the pollution affects the activity of oysters, we consider the valves opening and closing velocities to monitor the water quality assessment. We propose to model the huge volume of velocity data collected in the framework of valvometry using a new nonparametric extreme values statistical model. The objective is to estimate the tail probabilities and the extreme quantiles of the distribution of valve closing velocity. The tail of the distribution function of valve closing velocity is modeled by a Pareto distribution with parameter 𝜃 t,τ , beyond a threshold τ according to the time t of the experiment. Our modeling approach reveals the dependence between the specific activity of two enzymatic biomarkers (Glutathione-S-transferase and acetylcholinesterase) and the continuous recording of oyster valve velocity, proving the suitability of this tool for water quality assessment. Thus, valvometry allows in real-time in situ analysis of the bivalves behavior and appears as an effective early warning tool in ecological risk assessment and marine environment monitoring.
Collapse
Affiliation(s)
- Gilles Durrieu
- Laboratoire de Mathématiques de Bretagne Atlantique LMBA, Université Bretagne Sud, UMR CNRS 6205, 56000, Vannes, France.
| | - Quang-Khoai Pham
- Department of Mathematics, Forestry University of Hanoi, Hanoi, Vietnam
| | - Anne-Sophie Foltête
- Institut de Recherche Dupuy de Lôme IRDL, Université Bretagne Sud, FRE CNRS 3744, 56000, Vannes, France
| | - Valérie Maxime
- Institut de Recherche Dupuy de Lôme IRDL, Université Bretagne Sud, FRE CNRS 3744, 56000, Vannes, France
| | - Ion Grama
- Laboratoire de Mathématiques de Bretagne Atlantique LMBA, Université Bretagne Sud, UMR CNRS 6205, 56000, Vannes, France
| | - Véronique Le Tilly
- Institut de Recherche Dupuy de Lôme IRDL, Université Bretagne Sud, FRE CNRS 3744, 56000, Vannes, France
| | - Hélène Duval
- Institut de Recherche Dupuy de Lôme IRDL, Université Bretagne Sud, FRE CNRS 3744, 56000, Vannes, France
| | - Jean-Marie Tricot
- Laboratoire de Mathématiques de Bretagne Atlantique LMBA, Université Bretagne Sud, UMR CNRS 6205, 56000, Vannes, France
| | - Chiraz Ben Naceur
- Institut de Recherche Dupuy de Lôme IRDL, Université Bretagne Sud, FRE CNRS 3744, 56000, Vannes, France
| | - Olivier Sire
- Institut de Recherche Dupuy de Lôme IRDL, Université Bretagne Sud, FRE CNRS 3744, 56000, Vannes, France
| |
Collapse
|
45
|
Trevisan R, Mello DF, Delapedra G, Silva DGH, Arl M, Danielli NM, Metian M, Almeida EA, Dafre AL. Gills as a glutathione-dependent metabolic barrier in Pacific oysters Crassostrea gigas: Absorption, metabolism and excretion of a model electrophile. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 173:105-119. [PMID: 26859778 DOI: 10.1016/j.aquatox.2016.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/21/2016] [Accepted: 01/23/2016] [Indexed: 06/05/2023]
Abstract
The mercapturic acid pathway (MAP) is a major phase II detoxification route, comprising the conjugation of electrophilic substances to glutathione (GSH) in a reaction catalyzed by glutathione S-transferase (GST) enzymes. In mammals, GSH-conjugates are exported from cells, and the GSH-constituent amino acids (Glu/Gly) are subsequently removed by ectopeptidases. The resulting Cys-conjugates are reabsorbed and, finally, a mercapturic acid is generated through N-acetylation. This pathway, though very well characterized in mammals, is poorly studied in non-mammalian biological models, such as bivalve mollusks, which are key organisms in aquatic ecosystems, aquaculture activities and environmental studies. In the present work, the compound 1-chloro-2,4-dinitrobenzene (CDNB) was used as a model electrophile to study the MAP in Pacific oysters Crassostrea gigas. Animals were exposed to 10μM CDNB and MAP metabolites were followed over 24h in the seawater and in oyster tissues (gills, digestive gland and hemolymph). A rapid decay was detected for CDNB in the seawater (half-life 1.7h), and MAP metabolites peaked in oyster tissues as soon as 15min for the GSH-conjugate, 1h for the Cys-conjugate, and 4h for the final metabolite (mercapturic acid). Biokinetic modeling of the MAP supports the fast CDNB uptake and metabolism, and indicated that while gills are a key organ for absorption, initial biotransformation, and likely metabolite excretion, hemolymph is a possible milieu for metabolite transport along different tissues. CDNB-induced GSH depletion (4h) was followed by increased GST activity (24h) in the gills, but not in the digestive gland. Furthermore, the transcript levels of glutamate-cysteine ligase, coding for the rate limiting enzyme in GSH synthesis, and two phase II biotransformation genes (GSTpi and GSTo), presented a fast (4h) and robust (∼6-70 fold) increase in the gills. Waterborne exposure to electrophilic compounds affected gills, but not digestive gland, while intramuscular exposure was able to modulate biochemical parameters in both tissues. This study is the first evidence of a fully functional and interorgan MAP pathway in bivalves. Hemolymph was shown to be responsible for the metabolic interplay among tissues, and gills, acting as a powerful GSH-dependent metabolic barrier against waterborne electrophilic substances, possibly also participating in metabolite excretion into the sea water. Altogether, experimental and modeled data fully agree with the existence of a classical mechanism for phase II xenobiotic metabolism and excretion in bivalves.
Collapse
Affiliation(s)
- Rafael Trevisan
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil; Department of Aquaculture, Federal University of Santa Catarina, 88034-001 Florianópolis, Brazil.
| | - Danielle F Mello
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil
| | - Gabriel Delapedra
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil
| | - Danilo G H Silva
- Department of Chemistry and Environmental Sciences, São Paulo State University, 15054-000 São José do Rio Preto, Brazil
| | - Miriam Arl
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil
| | - Naissa M Danielli
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil
| | - Marc Metian
- International Atomic Energy Agency-Environment Laboratories (IAEA-EL), 4a Quai Antoine 1er, MC-98000 Principality of Monaco, Monaco
| | - Eduardo A Almeida
- Department of Chemistry and Environmental Sciences, São Paulo State University, 15054-000 São José do Rio Preto, Brazil
| | - Alcir L Dafre
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil
| |
Collapse
|
46
|
Pie HV, Schott EJ, Mitchelmore CL. Investigating physiological, cellular and molecular effects in juvenile blue crab, Callinectus sapidus, exposed to field-collected sediments contaminated by oil from the Deepwater Horizon Incident. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 532:528-539. [PMID: 26100732 DOI: 10.1016/j.scitotenv.2015.06.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 06/04/2015] [Accepted: 06/05/2015] [Indexed: 06/04/2023]
Abstract
Juvenile blue crabs, Callinectus sapidus, were exposed for 31 days to six different sediments collected within the Pass a Loutre State Wildlife Management Area approximately 6 months or 1.5 years post-capping of the Macondo-252 well-head following the Deepwater Horizon (DWH) Incident. Based on forensic analysis to fingerprint for DWH oil, these sediments differed in their levels of DWH oil contamination, and included one reference sediment collected from a location with no detectable DWH oil present. The concentration of 50 individual parent and alkylation group polycyclic aromatic hydrocarbons (PAHs), saturated hydrocarbons (37 total), and total extractable hydrocarbons were determined in each sediment, as were biologically relevant metals, grain size distribution, percent total organic carbon, and percent total solids. Total concentrations of 50 PAHs (TPAH50) of initial treatment sediments ranged from 187 μg kg(-1) (reference site) to 2,086,458 μg kg(-1) (the highest DWH oil contaminated site). Multiple biological endpoints were measured including mortality, growth, and ecdysis. Additionally, early biomarkers of biological stress were examined in the hemolymph and hepatopancreas of crabs, including DNA damage (Comet assay) and expression of genes encoding Cu-metallothionein (CuMT), glutathione-S-transferase (GST), and manganese superoxide dismutase (MnSOD). Over the 31 day exposure, there were no treatment related mortalities in juvenile blue crabs. The overall growth and molting of the crabs were not substantially different between the various sediment exposures over the exposure period. Additionally, none of the early biomarkers of biological stress were correlated with PAH concentrations. Overall, juvenile blue crabs did not appear to be negatively impacted during the 31 day exposure by DWH oil contaminated sediments collected at least 6 months post-capping of the Macondo-252 well-head.
Collapse
Affiliation(s)
- Hannah V Pie
- University of Maryland-Baltimore, Graduate Program of Life Sciences, Program in Toxicology, 660W. Redwood St., Rm. 134, Howard Hall, Baltimore, MD 21201 USA; University of Maryland Center for Environmental Science, Chesapeake Biological Laboratory, P.O. Box 38, 146 Williams Street, Solomons, MD 20688 USA
| | - Eric J Schott
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, 701 East Pratt Street, Baltimore, MD 21202 USA
| | - Carys L Mitchelmore
- University of Maryland Center for Environmental Science, Chesapeake Biological Laboratory, P.O. Box 38, 146 Williams Street, Solomons, MD 20688 USA.
| |
Collapse
|
47
|
Zhang G, Li L, Meng J, Qi H, Qu T, Xu F, Zhang L. Molecular Basis for Adaptation of Oysters to Stressful Marine Intertidal Environments. Annu Rev Anim Biosci 2015; 4:357-81. [PMID: 26515272 DOI: 10.1146/annurev-animal-022114-110903] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Oysters that occupy estuarine and intertidal habitats have well-developed stress tolerance mechanisms to tolerate harsh and dynamically changing environments. In this review, we summarize common pathways and genomic features in oyster that are responsive to environmental stressors such as temperature, salinity, hypoxia, air exposure, pathogens, and anthropogenic pollutions. We first introduce the key genes involved in several pathways, which constitute the molecular basis for adaptation to stress. We use genome analysis to highlight the strong cellular homeostasis system, a unique adaptive characteristic of oysters. Next, we provide a global view of features of the oyster genome that contribute to stress adaptation, including oyster-specific gene expansion, highly inducible expression, and functional divergence. Finally, we review the consequences of interactions between oysters and the environment from ecological and evolutionary perspectives by discussing mass mortality and adaptive divergence among populations and related species of the genus Crassostrea. We conclude with prospects for future study.
Collapse
Affiliation(s)
- Guofan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, 266071 China;
| | - Li Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, 266071 China;
| | - Jie Meng
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, 266071 China;
| | - Haigang Qi
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, 266071 China;
| | - Tao Qu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, 266071 China;
| | - Fei Xu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, 266071 China;
| | - Linlin Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, 266071 China;
| |
Collapse
|
48
|
Nogueira L, Garcia D, Trevisan R, Sanches ALM, da Silva Acosta D, Dafre AL, Oliveira TYK, de Almeida EA. Biochemical responses in mussels Perna perna exposed to diesel B5. CHEMOSPHERE 2015; 134:210-216. [PMID: 25950138 DOI: 10.1016/j.chemosphere.2015.04.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 03/27/2015] [Accepted: 04/15/2015] [Indexed: 06/04/2023]
Abstract
In Brazil B5 blend (5% biodiesel and 95% diesel oil) has been adopted as mandatory fuel since 2010 for automotive vehicles. Since little is known about the effects of B5 exposure can promote on antioxidant system of marine biota this study aimed to assess if B5 can generate modifications in antioxidant parameters of mussels Perna perna. To address this question mussels were exposed to two concentrations of B5 (0.01 mL L(-1) and 0.1 mL L(-1)) for 6h, 12h, 48 h and 168 h. Then the activity of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST) and glutathione reductase (GR) were evaluated in gills and digestive gland as well as the contents of glutathione (GSH) and lipid peroxidation by measuring the malondialdehyde concentration (MDA). In the gills, GST activity decreased after 48 h and GR after 12h of exposure to B5. In digestive glands, the activities of SOD, GPx and GR were changed due to treatments. GSH concentration increased in digestive gland after 6h and 12h and in gills after 48 h for B5 0.1 mL L(-1) and after 168 h in the digestive gland for B5 0.01 mL L(-1) treatment. No lipid peroxidation was detected. The integrated biomarker response index (IBR) evidenced a B5 effect in the digestive gland after 168 h of exposure. Regarding the experimental conditions and species used in this study, long-term exposure to B5 is apparently more likely to affect the parameters tested in P. perna mussels.
Collapse
Affiliation(s)
- Lílian Nogueira
- Laboratório de Biomarcadores de Contaminação Aquática, Departamento de Química e Ciências Ambientais, Universidade Estadual Paulista (IBILCE/UNESP), 15054-000 São José do Rio Preto, SP, Brazil.
| | - Danielly Garcia
- Laboratório de Biomarcadores de Contaminação Aquática, Departamento de Química e Ciências Ambientais, Universidade Estadual Paulista (IBILCE/UNESP), 15054-000 São José do Rio Preto, SP, Brazil.
| | - Rafael Trevisan
- Laboratório de Defesas Celulares, Departamento de Bioquímica, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil.
| | - Ana Letícia Madeira Sanches
- Laboratório de Biomarcadores de Contaminação Aquática, Departamento de Química e Ciências Ambientais, Universidade Estadual Paulista (IBILCE/UNESP), 15054-000 São José do Rio Preto, SP, Brazil.
| | - Daiane da Silva Acosta
- Laboratório de Defesas Celulares, Departamento de Bioquímica, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil.
| | - Alcir Luiz Dafre
- Laboratório de Defesas Celulares, Departamento de Bioquímica, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil.
| | | | - Eduardo Alves de Almeida
- Laboratório de Biomarcadores de Contaminação Aquática, Departamento de Química e Ciências Ambientais, Universidade Estadual Paulista (IBILCE/UNESP), 15054-000 São José do Rio Preto, SP, Brazil.
| |
Collapse
|
49
|
Feijó de Oliveira M, Rodrigues E, Suda CNK, Vani GS, Donatti L, Rodrigues E, Lavrado HP. Interactions of temperature, salinity and diesel oil on antioxidant defense enzymes of the limpet Nacella concinna. MARINE POLLUTION BULLETIN 2015; 97:451-459. [PMID: 26077159 DOI: 10.1016/j.marpolbul.2015.05.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 06/04/2023]
Abstract
The intertidal and subtidal environments in the Antarctic Peninsula are vulnerable to pollutants, such as diesel oil, a commonly used fuel. Nacella concinna is capable of accumulating polycyclic aromatic hydrocarbons and is a potential biomonitor of diesel oil contamination. This work investigates the interaction of diesel oil, temperature and salinity on the activity of antioxidants enzymes defense of the gills, foot muscle and digestive glands. Upregulation of superoxide dismutase occurred in the three tissues by warming. The foot muscle catalase and the gill glutathione reductase were upregulated only by diesel. The inability to upregulate catalase and glutathione S-transferase in the digestive gland, as well as the increase of lipoperoxidation, suggested that this gland is more susceptible to the deleterious effects from oxidative stress.
Collapse
Affiliation(s)
- Mariana Feijó de Oliveira
- Department of Cell Biology, Federal University of Paraná, Centro Politécnico s/No, Curitiba, PR 81.530-130, Brazil; Basic Bioscience Institute, University of Taubaté, Av. Tiradentes, 500-Centro, Taubaté, SP 12030-180, Brazil.
| | - Edson Rodrigues
- Department of Cell Biology, Federal University of Paraná, Centro Politécnico s/No, Curitiba, PR 81.530-130, Brazil; Basic Bioscience Institute, University of Taubaté, Av. Tiradentes, 500-Centro, Taubaté, SP 12030-180, Brazil.
| | - Cecília N K Suda
- Basic Bioscience Institute, University of Taubaté, Av. Tiradentes, 500-Centro, Taubaté, SP 12030-180, Brazil.
| | - Gannabathula S Vani
- Basic Bioscience Institute, University of Taubaté, Av. Tiradentes, 500-Centro, Taubaté, SP 12030-180, Brazil.
| | - Lucélia Donatti
- Department of Cell Biology, Federal University of Paraná, Centro Politécnico s/No, Curitiba, PR 81.530-130, Brazil.
| | - Edson Rodrigues
- Basic Bioscience Institute, University of Taubaté, Av. Tiradentes, 500-Centro, Taubaté, SP 12030-180, Brazil.
| | - Helena P Lavrado
- Department of Marine Biology, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373-CCS-Bloco A-Sala 89, Rio de Janeiro, RJ 21941-902, Brazil.
| |
Collapse
|
50
|
Sun S, Xuan F, Fu H, Zhu J, Ge X, Gu Z. Transciptomic and histological analysis of hepatopancreas, muscle and gill tissues of oriental river prawn (Macrobrachium nipponense) in response to chronic hypoxia. BMC Genomics 2015; 16:491. [PMID: 26138936 PMCID: PMC4490754 DOI: 10.1186/s12864-015-1701-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 06/15/2015] [Indexed: 12/22/2022] Open
Abstract
Background Oriental river prawn, Macrobrachium nipponense, is a commercially important species found in brackish and fresh waters throughout China. Chronic hypoxia is a major physiological challenge for prawns in culture, and the hepatopancreas, muscle and gill tissues play important roles in adaptive processes. However, the effects of dissolved oxygen availability on gene expression and physiological functions of those tissues of prawns are unknown. Adaptation to hypoxia is a complex process, to help us understand stress-sensing mechanism and ultimately permit selection for hypoxia- tolerant prawns, we performed transcriptomic analysis of juvenile M. nipponense hepatopancreas, gill and muscle tissues by RNA-Seq. Results Approximately 46,472,741; 52,773,612 and 58,195,908 raw sequence reads were generated from hepatopancreas, muscle and gill tissues, respectively. A total of 62,722 unigenes were generated, of the assembled unigenes, we identified 8,892 genes that were significantly up-regulated, while 5,760 genes were significantly down-regulated in response to chronic hypoxia. Genes from well known functional categories and signaling pathways associated with stress responses and adaptation to extreme environments were significantly enriched, including genes in the functional categories “response to stimulus”, “transferase activity” and “oxidoreductase activity”, and the signaling pathways “oxidative phosphorylation”, “glycolysis/gluconeogenesis” and “MAPK signaling”. The expression patterns of 18 DEGs involved in hypoxic regulation of M. nipponense were validated by quantitative real-time reverse-transcriptase polymerase chain reactions (qRT-PCR; average correlation coefficient = 0.94). In addition, the hepatopancreas and gills exhibited histological differences between hypoxia and normoxia groups. These structural alterations could affect the vital physiological functions of prawns in response to chronic hypoxia, which could adversely affect growth and survival of M. nipponense. Conclusions Gene expression changes in tissues from the oriental river prawn provide a preliminary basis to better understand the molecular responses of M. nipponense to chronic hypoxia. The differentially expressed genes (DEGs) identified in M. nipponense under hypoxia stress may be important for future genetic improvement of cultivated prawns or other crustaceans through transgenic approaches aimed at increasing hypoxia tolerance. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1701-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shengming Sun
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, People's Republic of China.
| | - Fujun Xuan
- Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Yancheng City, Jiangsu Province, 224002, People's Republic of China.
| | - Hongtuo Fu
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, People's Republic of China.
| | - Jian Zhu
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, People's Republic of China.
| | - Xianping Ge
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, People's Republic of China.
| | - Zhimin Gu
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, People's Republic of China.
| |
Collapse
|