1
|
Aju CD, Achu AL, Mohammed MP, Raicy MC, Gopinath G, Reghunath R. Groundwater quality prediction and risk assessment in Kerala, India: A machine-learning approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122616. [PMID: 39326075 DOI: 10.1016/j.jenvman.2024.122616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 08/12/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
Despite its critical importance for health, agriculture, and the economy, and its key role in supporting climate change adaptation, groundwater quality remains vulnerable to contamination and is often neglected until significant deterioration. The groundwater resources of Kerala, one of the southernmost states of India, are under escalating stress and scarcity, despite a high well density with 62% of the population relying on groundwater from approximately 6.5 million open wells. This study investigates the detailed hydrogeochemistry and predicts groundwater quality zones of the state using machine-learning techniques viz, extreme gradient boosting (XGBoost), support vector regression (SVR), artificial neural network (ANN) and random forest (RF) regression. The hydrogeochemical analysis reveals varying groundwater quality across the state. Among the different machine learning models, RF shows higher goodness of fit (R2: 0.922) with minimal prediction error (root mean square error: 6.29 and mean absolute error: 3.12). The predicted groundwater quality was validated using the spatially distributed stiff diagrams, visually representing water composition trends of each well. The very good, good, moderate and poor groundwater quality zones occupy 31.7%, 40.4%, 20.4%, and 7.4% of the state aligning accurately with the groundwater quality scenario of the state. Additionally, groundwater drinking risk assessment was conducted, considering that 7.4% of the state experiences poor-quality groundwater. Integrating groundwater quality maps with population data, the study assessed potential health risks due to consuming untreated water. Nearly 0.59 million people across 252 local self-government bodies (LSGs) are susceptible to consuming poor quality groundwater, which may pose potential health risks. This observation provides valuable insights for sustainable groundwater management and public health safeguarding and the findings of the present study are useful for achieving sustainable development goal (SGD) 6 (clean water and sanitation) and long-term groundwater management in Kerala.
Collapse
Affiliation(s)
- C D Aju
- Department of Climate Variability and Aquatic Ecosystems, Kerala University of Fisheries and Ocean Studies (KUFOS), Kochi, 682 508, Kerala, India; Centre for Climate Change Research, Indian Institute of Tropical Meteorology, Pune, India
| | - A L Achu
- Department of Climate Variability and Aquatic Ecosystems, Kerala University of Fisheries and Ocean Studies (KUFOS), Kochi, 682 508, Kerala, India.
| | - Maharoof P Mohammed
- PG Department of Applied Geology, GEMS Arts and Science College, Kadungapuram, Malappuram, 679 321, Kerala, India; Hydrology and Climatology Research Group, Centre for Water Resources Development and Management (CWRDM), Kunnamangalam, Kozhikode, 673 570, Kerala, India
| | - M C Raicy
- Hydrology and Climatology Research Group, Centre for Water Resources Development and Management (CWRDM), Kunnamangalam, Kozhikode, 673 570, Kerala, India
| | - Girish Gopinath
- Department of Climate Variability and Aquatic Ecosystems, Kerala University of Fisheries and Ocean Studies (KUFOS), Kochi, 682 508, Kerala, India
| | - Rajesh Reghunath
- Department of Geology, University of Kerala, Thiruvananthapuram, 695 581, Kerala, India
| |
Collapse
|
2
|
Bartos M, Gallegos CE, Mónaco N, Lencinas I, Dominguez S, Bras C, Del Carmen Esandi M, Bouzat C, Gumilar F. Developmental exposure to arsenic reduces anxiety levels and leads to a depressive-like behavior in female offspring rats: Molecular changes in the prefrontal cortex. Neurotoxicology 2024; 104:85-94. [PMID: 39079579 DOI: 10.1016/j.neuro.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 07/18/2024] [Accepted: 07/27/2024] [Indexed: 08/05/2024]
Abstract
Exposure to inorganic arsenic (iAs) detrimentally affects the structure and function of the central nervous system. In-utero and postnatal exposure to iAs has been connected to adverse effects on cognitive development. Therefore, this investigation explores neurobehavioral and neurochemical effects of 0.05 and 0.10 mg/L iAs exposure during gestation and lactation periods on 90-day-old female offspring rats. The assessment of anxiety- and depressive-like behaviors was conducted through the application of an elevated plus maze and a forced swim test. The neurochemical changes were evaluated in the prefrontal cortex (PFC) through the determination of enzyme activities and α1 GABAA subunit expression levels. Our findings revealed a notable impact of iAs exposure on anxiety and the induction of depressive-like behavior in 90-day-old female offspring. Furthermore, the antioxidant status within the PFC exhibited discernible alterations in exposed rats. Notably, the activities of acetylcholinesterase and glutamate pyruvate transaminase demonstrated an increase, while glutamate oxaloacetate transaminase activity displayed a decrease within the PFC due to the iAs treatment. Additionally, a distinct downregulation in the mRNA expression of the α1GABAA receptor was observed in this neuronal region. These findings strongly suggest that iAs exposure during early stages of rat development causes significant modifications in brain oxidative stress markers and perturbs the activity of enzymes associated with cholinergic and glutamatergic systems. In parallel, it elicits a discernible reduction in the level of GABA receptors within the PFC. These molecular alterations may play a role in the diminished anxiety levels and the depressive-like behavior outlined in the current investigation.
Collapse
Affiliation(s)
- Mariana Bartos
- Laboratorio de Toxicología, Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR) Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca CP8000, Argentina
| | - Cristina E Gallegos
- Laboratorio de Toxicología, Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR) Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca CP8000, Argentina
| | - Nina Mónaco
- Laboratorio de Toxicología, Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR) Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca CP8000, Argentina
| | - Ileana Lencinas
- Laboratorio de Toxicología, Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR) Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca CP8000, Argentina
| | - Sergio Dominguez
- Laboratorio de Toxicología, Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR) Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca CP8000, Argentina
| | - Cristina Bras
- Laboratorio de Toxicología, Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR) Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca CP8000, Argentina
| | - María Del Carmen Esandi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-CONICET, Bahía Blanca, Buenos Aires 8000, Argentina
| | - Cecilia Bouzat
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-CONICET, Bahía Blanca, Buenos Aires 8000, Argentina
| | - Fernanda Gumilar
- Laboratorio de Toxicología, Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR) Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca CP8000, Argentina.
| |
Collapse
|
3
|
Ansari AH, Das A, Sonker A, Ansari NG, Ansari MA, Morthekai P. Assessment of the health risks associated with heavy metal contamination in the groundwaters of the Leh district, Ladakh. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:369. [PMID: 39167338 DOI: 10.1007/s10653-024-02149-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024]
Abstract
There has been a significant rise in cancer-related mortality in the Ladakh region during the past 10 years. The most common type of case is gastrointestinal cancer, which has been linked in theory by medical research to lifestyle factors, high altitude conditions, and the prevalence of Helicobacter pylori bacteria brought on by poor hygiene. Nevertheless, the precise cause of the rise in cancer cases is still unknown. Concurrently, there has been a significant change in Ladakh's water use practices due to development, improved basic utilities, and related vocational shifts. The local population has become increasingly reliant on groundwater since it provides a year-round, continuous water supply for home and agricultural uses. In this study, we assessed heavy metal contamination in groundwaters and associated human health risks. The results indicate that 46-96% of the groundwater samples have heavy metal pollution with a health hazard index > 1, which means using these groundwaters for drinking, food preparation, and agriculture is likely to result in carcinogenic and non-carcinogenic health hazards. The main heavy metal contaminants found in the groundwater of the Leh district include Cr, As, Hg, and U. According to the health risk assessment, 46-76% of the groundwater samples contain unsafe levels of Cr and As. Prolonged exposure to these levels is likely to cause gastrointestinal cancer in the local population. Acute to chronic exposure to U and Hg concentrations present in some groundwater samples is likely to result in various non-carcinogenic health risks.
Collapse
Affiliation(s)
- A H Ansari
- Birbal Sahni Institute of Palaeosciences, 53 University Road, Lucknow, Uttar Pradesh, 226007, India.
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India.
| | - Arunaditya Das
- Birbal Sahni Institute of Palaeosciences, 53 University Road, Lucknow, Uttar Pradesh, 226007, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| | - Archana Sonker
- Birbal Sahni Institute of Palaeosciences, 53 University Road, Lucknow, Uttar Pradesh, 226007, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| | - Nasreen Ghazi Ansari
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
- CSIR-Indian Institute of Toxicology Research, 31 Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India
| | - Mohammad Arif Ansari
- Birbal Sahni Institute of Palaeosciences, 53 University Road, Lucknow, Uttar Pradesh, 226007, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| | - P Morthekai
- Birbal Sahni Institute of Palaeosciences, 53 University Road, Lucknow, Uttar Pradesh, 226007, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| |
Collapse
|
4
|
Leiva-Tafur D, Rascón J, Corroto de la Fuente F, Goñas M, Gamarra Torres OA, Oliva-Cruz M. Spatio-temporal evaluation of metals and metalloids in the water of high Andean livestock micro-watersheds, Amazonas, Peru. Heliyon 2024; 10:e33013. [PMID: 38948038 PMCID: PMC11211900 DOI: 10.1016/j.heliyon.2024.e33013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/13/2024] [Accepted: 06/08/2024] [Indexed: 07/02/2024] Open
Abstract
Cattle ranching is a fundamental economic activity in northern Peru, where proper management of water resources is crucial. This study, a pioneer in the region, evaluated water quality and its suitability for human consumption, vegetable irrigation, and livestock production. It is also the first study to document the presence of metals and metalloids in vulnerable areas because they are located at the headwaters of river watersheds. The spatiotemporal evaluation of physicochemical parameters, metals, and metalloids was performed in five micro-watersheds (Cabildo, Timbambo, Pomacochas, Atuen, and Ventilla) from water samples collected in the dry season (October 2017) and wet season (March 2018). The parameters were analyzed using microwave plasma atomic emission spectrometry. The results were contrasted with international and Peruvian quality standards related to dairy cow production. The highest values of pH, total dissolved solids, and electrical conductivity were reported during the dry season, and the highest turbidity during the wet season. Of the metals evaluated, arsenic (As) was omnipresent in all the micro-watersheds, followed by lead (Pb). In contrast to World Health Organization regulations, concentrations of As, cadmium (Cd), Pb, and iron represent a risk; according to Peruvian regulations, As and Pb exceed the concentrations established for use in animal drinking water and vegetable irrigation, and according to water guidelines for dairy cattle, concentrations of As, Pb, Cd, and Al exceed the permitted limits. The high concentrations of these metals in the study area are attributable to a synergy between natural factors, such as Andean geology and livestock activity. The data reported will allow for proper water resource management, pollution prevention, and the design and adoption of mitigation measures.
Collapse
Affiliation(s)
- Damaris Leiva-Tafur
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Peru
| | - Jesús Rascón
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Peru
| | | | - Malluri Goñas
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Peru
- Centro Experimental Yanayacu, Instituto Nacional de Innovación Agraria, Jaén, 06801, Cajamarca, Peru
| | - Oscar Andrés Gamarra Torres
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Peru
| | - Manuel Oliva-Cruz
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Peru
| |
Collapse
|
5
|
Scheverin VN, Diaz EM, Horst MF, Lassalle VL. Synthesis of novel magnetic hydroxyapatite-biomass nanocomposite for arsenic and fluoride adsorption. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:190. [PMID: 38695943 DOI: 10.1007/s10653-024-01981-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/03/2024] [Indexed: 06/17/2024]
Abstract
A magnetic nanocomposite of hydroxyapatite and biomass (HAp-CM) was synthesized through a combined ultrasonic and hydrothermal method, aiming for efficient adsorption of arsenic (As) and fluoride (F-) from drinking water in natural environments. The characterization of HAp-CM was carried out using TG, FTIR, XRD, SEM, SEM-EDS, and TEM techniques, along with the determination of pHpzc charge. FTIR analysis suggested that coordinating links are the main interactions that allow the formation of the nanocomposite. XRD data indicated that the crystalline structure of the constituent materials remained unaffected during the formation of HAp-CM. SEM-EDS analysis revelated a Ca/P molar ratio of 1.78. Adsorption assays conducted in batches demonstrated that As and F- followed a PSO kinetic model. Furthermore, As adsorption fitting well to the Langmuir model, while F- adsorption could be explained by both Langmuir and Freundlich models. The maximum adsorption capacity of HAp-CM was found to be 5.0 mg g-1 for As and 10.2 mg g-1 for F-. The influence of sorbent dosage, pH, and the presence of coexisting species on adsorption capacity was explored. The pH significantly affected the nanocomposite's efficiency in removing both pollutants. The presence of various coexisting species had different effects on F- removal efficiency, while As adsorption efficiency was generally enhanced, except in the case of PO43-. The competitive adsorption between F- and As on HAp-CM was also examined. The achieved results demonstrate that HAp-CM has great potential for use in a natural environment, particularly in groundwater remediation as a preliminary treatment for water consumption.
Collapse
Affiliation(s)
- V N Scheverin
- Instituto de Química del Sur (INQUISUR), CONICET/UNS, CCT-BB, Av. Alem 1253, B8000, Bahía Blanca, Buenos Aires, Argentina.
- Departamento de Química, Universidad Nacional del Sur (UNS), Av. Alem 1253, B8000, Bahía Blanca, Buenos Aires, Argentina.
| | - E M Diaz
- Instituto de Química del Sur (INQUISUR), CONICET/UNS, CCT-BB, Av. Alem 1253, B8000, Bahía Blanca, Buenos Aires, Argentina
| | - M F Horst
- Instituto de Química del Sur (INQUISUR), CONICET/UNS, CCT-BB, Av. Alem 1253, B8000, Bahía Blanca, Buenos Aires, Argentina
- Departamento de Química, Universidad Nacional del Sur (UNS), Av. Alem 1253, B8000, Bahía Blanca, Buenos Aires, Argentina
| | - V L Lassalle
- Instituto de Química del Sur (INQUISUR), CONICET/UNS, CCT-BB, Av. Alem 1253, B8000, Bahía Blanca, Buenos Aires, Argentina
- Departamento de Química, Universidad Nacional del Sur (UNS), Av. Alem 1253, B8000, Bahía Blanca, Buenos Aires, Argentina
| |
Collapse
|
6
|
Alam MA, Mukherjee A, Bhattacharya P, Bundschuh J. An appraisal of the principal concerns and controlling factors for Arsenic contamination in Chile. Sci Rep 2023; 13:11168. [PMID: 37429943 DOI: 10.1038/s41598-023-38437-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023] Open
Abstract
Although geogenic Arsenic (As) contamination is well-recognized in northern Chile, it is not restricted to this part of the country, as the geological conditions favoring As release to the human environment exist across the country as well, although not at the same level, based on comparatively fewer studies in central and southern Chile. The present work provides a critical evaluation of As sources, pathways, and controls with reports and case studies from across the country based on an exhaustive bibliographic review of its reported geogenic sources and processes that affect its occurrence, systematization, and critical revision of this information. Arc magmatism and associated geothermal activities, identified as the primary As sources, are present across the Chilean Andes, except for the Pampean Flat Slab and Patagonian Volcanic Gap. Metal sulfide ore zones, extending from the country's far north to the south-central part, are the second most important geogenic As source. While natural leaching of As-rich mineral deposits contaminates the water in contact, associated mining, and metallurgical activities result in additional As release into the human environment through mining waste and tailings. Moreover, crustal thickness has been suggested as a principal controlling factor for As release, whose southward decrease has been correlated with lower As values.
Collapse
Affiliation(s)
- Mohammad Ayaz Alam
- Departamento de Ingeniería Geoespacial y Ambiental, Facultad de Ingeniería, Universidad de Santiago de Chile, Enrique Kirberg Baltiansky n° 03, Estación Central, Santiago, Región Metropolitana, Chile.
| | - Abhijit Mukherjee
- Department of Geology and Geophysics, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Prosun Bhattacharya
- KTH-International Groundwater Arsenic Research Group, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Jochen Bundschuh
- School of Engineering, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, Queensland, Australia
| |
Collapse
|
7
|
Bartos M, Gumilar F, Baier CJ, Dominguez S, Bras C, Cancela LM, Minetti A, Gallegos CE. Rat developmental fluoride exposure affects retention memory, leads to a depressive-like behavior, and induces biochemical changes in offspring rat brains. Neurotoxicology 2022; 93:222-232. [DOI: 10.1016/j.neuro.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/12/2022] [Accepted: 10/07/2022] [Indexed: 11/15/2022]
|
8
|
Ligate F, Lucca E, Ijumulana J, Irunde R, Kimambo V, Mtamba J, Ahmad A, Hamisi R, Maity JP, Mtalo F, Bhattacharya P. Geogenic contaminants and groundwater quality around Lake Victoria goldfields in northwestern Tanzania. CHEMOSPHERE 2022; 307:135732. [PMID: 35872057 DOI: 10.1016/j.chemosphere.2022.135732] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/22/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Geogenic contamination of groundwater is frequently associated with gold mining activities and related to drinking water quality problems worldwide. In Tanzania, elevated levels of trace elements (TEs) have been reported in drinking water sources within the Lake Victoria Basin, posing a serious health risk to communities. The present study aims to assess the groundwater quality with a focus on the concentration levels of geogenic contaminants in groundwater around the Lake Victoria goldfields in Geita and Mara districts. The water samples were collected from community drinking water sources and were analysed for physiochemical parameters (pH, EC, Eh), major ions, and trace elements. The analysed major ions included Na+, K+, Ca2+, Mg2+, SO42-, HCO3- and Cl- whereas the trace elements were As, Al, Li, Ba, B, Ti, V, U, Zr, Sr, Si, Mn Mo, Fe, Ni, Zn, Cr, Pb, Cd, and V. The present study revealed that the concentration levels of the major ions were mostly within the World Health Organization (WHO) drinking water standards in the following order of their relative abundance; for cations, Ca2+∼Na+>Mg2+>K+ and for anions was HCO3- > SO42- > NO3-, Cl- > PO43-. Statistical and geochemical modelling software such as 'R Studio', IBM SPSS, geochemical workbench, visual MINTEQ were used to understand the groundwater chemistry and evaluate its suitability for drinking purpose. The concentration of As in groundwater sources varies between below detection limit (bdl) and 300 μg/L, with highest levels in streams followed by shallow wells and boreholes. In approximately 48% of the analysed samples, As concentration exceeded the WHO drinking water guideline and Tanzania Bureau of Standards (TBS) guideline for drinking water value of 10 μg/L. The concentration of the analyzed TEs and mean values of physicochemical parameters were below the guideline limits based on WHO and TBS standards. The Canadian Council of Ministries of the Environment Water Quality Index (CCME WQI) shows that the overall water quality is acceptable with minimum threats of deviation from natural conditions. We recommend further geochemical exploration and the periodic risk assessment of groundwater in mining areas where high levels of As were recorded.
Collapse
Affiliation(s)
- Fanuel Ligate
- KTH-International Groundwater Arsenic Research Group, Department of Sustainable Development, Environmental Science and Engineering, KTHRoyal Institute of Technology, Teknikringen 10B, Stockholm, SE-100 44, Sweden; DAFWAT Research Group, Department of Water Resources Engineering, College of Engineering and Technology, University of Dar Es Salaam, Dar Es Salaam, Tanzania; Department of Chemistry, Mkwawa University College of Education, University of Dar Es Salaam, 2513, Iringa, Tanzania.
| | - Enrico Lucca
- Department of Agricultural, Food, Environmental and Forestry Sciences and Technologies, The University of Florence, Cascine, Florence, 18 50144, Italy
| | - Julian Ijumulana
- KTH-International Groundwater Arsenic Research Group, Department of Sustainable Development, Environmental Science and Engineering, KTHRoyal Institute of Technology, Teknikringen 10B, Stockholm, SE-100 44, Sweden; DAFWAT Research Group, Department of Water Resources Engineering, College of Engineering and Technology, University of Dar Es Salaam, Dar Es Salaam, Tanzania
| | - Regina Irunde
- KTH-International Groundwater Arsenic Research Group, Department of Sustainable Development, Environmental Science and Engineering, KTHRoyal Institute of Technology, Teknikringen 10B, Stockholm, SE-100 44, Sweden; DAFWAT Research Group, Department of Water Resources Engineering, College of Engineering and Technology, University of Dar Es Salaam, Dar Es Salaam, Tanzania
| | - Vivian Kimambo
- KTH-International Groundwater Arsenic Research Group, Department of Sustainable Development, Environmental Science and Engineering, KTHRoyal Institute of Technology, Teknikringen 10B, Stockholm, SE-100 44, Sweden; DAFWAT Research Group, Department of Water Resources Engineering, College of Engineering and Technology, University of Dar Es Salaam, Dar Es Salaam, Tanzania; Department of Chemistry, College of Natural and Mathematical Sciences, The University of Dodoma, Tanzania
| | - Joseph Mtamba
- DAFWAT Research Group, Department of Water Resources Engineering, College of Engineering and Technology, University of Dar Es Salaam, Dar Es Salaam, Tanzania
| | - Arslan Ahmad
- KWR Water Cycle Research Institute, Groningenhaven 7, 3433 PE Nieuwegein, the Netherlands; SIBELCO Ankerpoort NV, Op de Bos 300, 6223 EP Maastricht, the Netherlands; Department of Environmental Technology, Wageningen University and Research (WUR), Droevendaalsesteeg 4, 6708, PB Wageningen, the Netherlands
| | - Rajabu Hamisi
- KTH-International Groundwater Arsenic Research Group, Department of Sustainable Development, Environmental Science and Engineering, KTHRoyal Institute of Technology, Teknikringen 10B, Stockholm, SE-100 44, Sweden
| | - Jyoti Prakash Maity
- Department of Chemistry, School of Applied Sciences, KIIT Deemed to Be University, Bhubaneswar, Odisha, 751024, India
| | - Felix Mtalo
- DAFWAT Research Group, Department of Water Resources Engineering, College of Engineering and Technology, University of Dar Es Salaam, Dar Es Salaam, Tanzania
| | - Prosun Bhattacharya
- KTH-International Groundwater Arsenic Research Group, Department of Sustainable Development, Environmental Science and Engineering, KTHRoyal Institute of Technology, Teknikringen 10B, Stockholm, SE-100 44, Sweden; KWR Water Cycle Research Institute, Groningenhaven 7, 3433 PE Nieuwegein, the Netherlands
| |
Collapse
|
9
|
Dong S, Liu B, Chen Y, Ma M, Liu X, Wang C. Hydro-geochemical control of high arsenic and fluoride groundwater in arid and semi-arid areas: A case study of Tumochuan Plain, China. CHEMOSPHERE 2022; 301:134657. [PMID: 35447201 DOI: 10.1016/j.chemosphere.2022.134657] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 03/19/2022] [Accepted: 04/16/2022] [Indexed: 06/14/2023]
Abstract
Globally, groundwater with high fluoride and arsenic receives extensive concern because of its wide distribution and great harm to human health caused by drinking water. In this paper, taking Tumochuan Plain in China as an example, based on hydrogeological investigation, groundwater flow system theory and hydro-chemical analysis methods were applied to reveal the mechanism of high fluoride and high arsenic in arid and semi-arid regions. In unconfined and confined groundwater of Tumochuan Plain, the highest concentration of fluoride is 7.2 and 11.2 mg/L respectively, and the highest concentration of total arsenic is 200.3 and 162.3 μg/L respectively. Fluoride in groundwater is mainly derived from the soluble fluoride in soil and aquifer medium. Because of the water-rock interaction, the alkaline environment caused by the hydrolysis of feldspar minerals in the central part of the plain has an important influence on the accumulation of F and As in this area. High fluoride water is formed in the alkaline environment (high pH values) of high concentration of Na+ and low concentration of Ca2+. The high arsenic groundwater is distributed in the alkaline reducing environment that the content of soluble salt in aquifer media is high (>200 mg/100 g dry soil). The reductive dissolution of iron and manganese oxides and competitive adsorption of HCO3- all contribute to a high level of arsenic in both unconfined and confined aquifers. The research results have important guiding significance for water supply safety and water quality improvement in arid-semiarid areas in the world with high fluoride and high arsenic groundwater distribution.
Collapse
Affiliation(s)
- Shaogang Dong
- School of Ecology and Environment, Inner Mongolia University, Hohhot, Inner Mongolia, 010021, China
| | - Baiwei Liu
- Academic Affair Office, Inner Mongolia University, Hohhot, Inner Mongolia, 010021, China.
| | - Yue Chen
- School of Ecology and Environment, Inner Mongolia University, Hohhot, Inner Mongolia, 010021, China
| | - Mingyan Ma
- School of Ecology and Environment, Inner Mongolia University, Hohhot, Inner Mongolia, 010021, China
| | - Xiaobo Liu
- School of Ecology and Environment, Inner Mongolia University, Hohhot, Inner Mongolia, 010021, China
| | - Chao Wang
- School of Ecology and Environment, Inner Mongolia University, Hohhot, Inner Mongolia, 010021, China
| |
Collapse
|
10
|
Zhang X, Zhao R, Wu X, Mu W, Wu C. Delineating the controlling mechanisms of arsenic release into groundwater and its associated health risks in the Southern Loess Plateau, China. WATER RESEARCH 2022; 219:118530. [PMID: 35533622 DOI: 10.1016/j.watres.2022.118530] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 06/14/2023]
Abstract
The mechanisms controlling arsenic (As) enrichment and mobilization associated with human health risk assessment of groundwater in the Longdong Basin, located in the southern part of the Loess Plateau, China, have been yet unexplained. This uncertainty is partly attributed to a poor understanding of groundwater arsenic management. To address this problem, this study investigated the occurrence and spatial distribution of As in unconfined groundwater (UG) and confined groundwater (CG) in the study area, integrated Self-Organizing Maps (SOM) and geochemical modeling to elucidate the mechanisms controlling As release and mobilization in groundwater, and conducted a health risk assessment of groundwater As. The results showed that 13.6% of UG samples (n = 66) and 22.4% of CG samples (n = 98) exceeded the WHO guideline limit of As (10 μg/L). The detailed hydrogeochemical studies showed that As-enrichment groundwater is dominated by Cl-Na type, and Gaillardet diagram indicated that evaporites weathering may contribute to As mobilization in CG. The SOM analysis combined with Spearman's correlation coefficient quantified the negative correlation between As and redox potential, dissolved oxygen, SO42-, NO3-, and the positive correlation between As and HCO3-, Mn in UG. In CG, As is positively correlated to pH and negatively to electrical conductivity, SO42-, Fe and Mn. The saturation indices of the mineral phases indicates an insignificant relationship between As and Fe. We conclude that under oxidizing conditions, evaporative controls and the desorption of Fe-oxides under alkaline and high salinity conditions are the dominant mechanisms controlling As release and mobilization in groundwater. In addition, exposure to groundwater As through drinking water posed potential risk of carcinogenic and non-carcinogenic effects on children and adults. This study contributes to groundwater As management and sustainable safe groundwater supply.
Collapse
Affiliation(s)
- Xiao Zhang
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Rong Zhao
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Xiong Wu
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China.
| | - Wenping Mu
- School of Engineering and Technology, China University of Geosciences (Beijing), Beijing 100083, China
| | - Chu Wu
- Department of Water Resources, China Institute of Water Resources and Hydropower Research, Beijing 100083, China
| |
Collapse
|
11
|
Aljubran MA, Ali Z, Wang Y, Alonso E, Puspasari T, Cherviakouski K, Pinnau I. Highly efficient size-sieving-based removal of arsenic(III) via defect-free interfacially-polymerized polyamide thin-film composite membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Cantera CG, Tufo AE, Scasso RA, Dos Santos Afonso M. Geochemical characterization and the assessment of trace element retention in sediments of the Reconquista River, Argentina. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:729-747. [PMID: 34047883 DOI: 10.1007/s10653-021-00970-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
The mineralogical and geochemical characterization of sediments of the Reconquista River allows analyzing the geochemical partition of trace elements in one of the most polluted water courses of Argentina. The low dissolved oxygen and high ammonia contents, together with the high chemical oxygen demand, attest to the poor water quality. Ammonia, Cd and Cu content in surficial water exceeds the maximum guidelines for freshwater in Argentina. The recent sediments of the uppermost bed are enriched in organic matter (OM), sulfur, Zn, Cu and Pb. The enrichment factor is moderate, and the geoaccumulation index (Igeo) for Cu and Pb indicates uncontaminated to moderately contaminated sediments. The positive and significant correlation between As, Cr, Pb and Zn with the iron content suggests that their retention is controlled by the amount of iron oxy (hydr)oxides in the sediments, probably combined with the silt + clay abundance. In comparison with its tributary, the Las Catonas Stream, the Reconquista River, has less OM and trace elements in the sediments and more dissolved trace elements in the interstitial water. We interpret that OM is the main sorbent of the trace element. In the absence of OM, the iron oxy (hydr)oxides and the silt + clay fraction are a less efficient substitute. Consequently, the interstitial waters of the Reconquista River are enriched in these elements. Therefore, minor changes in the environmental conditions may generate significant release of hazardous trace elements from the sediments to the interstitial water and, in turn, to the surficial water of the river. As most of the big cities and the agricultural activities of Argentina are developed on the loessic substrate, the understanding of its interaction with polluted waters is crucial.
Collapse
Affiliation(s)
- Cecilia Gisela Cantera
- Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires (IGEBA), CONICET- Universidad de Buenos Aires, Ciudad Universitaria Pabellón II 1er Piso, Int. Guiraldes 2160, C1428EHA, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ana Elisabeth Tufo
- Instituto de Investigación e Ingeniería Ambiental (3iA), Universidad Nacional de San Martín, Campus Miguelete, 25 de Mayo y Francia, San Martín 1650, Buenos Aires, Argentina
| | - Roberto Adrián Scasso
- Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires (IGEBA), CONICET- Universidad de Buenos Aires, Ciudad Universitaria Pabellón II 1er Piso, Int. Guiraldes 2160, C1428EHA, Ciudad Autónoma de Buenos Aires, Argentina
- Departamento de Ciencias Geológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pabellón II 1er Piso, Int. Guiraldes 2160, C1428EHA, Ciudad Autónoma de Buenos Aires, Argentina
| | - Maria Dos Santos Afonso
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET-Universidad de Buenos Aires, Ciudad Universitaria Pabellón II 3er Piso, Universidad de Buenos Aires, Int. Guiraldes 2160, C1428EHA, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
13
|
Kirilovsky ER, Anguiano OL, Bongiovanni GA, Ferrari A. Effects of acute arsenic exposure in two different populations of Hyalella curvispina amphipods from North Patagonia Argentina. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:71-88. [PMID: 34496719 DOI: 10.1080/15287394.2021.1975589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Arsenic (As) is a toxic metalloid present in high levels in diverse regions of Argentina. The aim of this study was to determine acute As-mediated toxicity in two different populations of autochthonous Hyalella curvispina amphipods from a reference site (LB) and an agricultural one (FO) within North Patagonia Argentina. Previously, both populations exhibited significant differences in pesticide susceptibility. Lab assays were performed to determine acute lethal concentrations, as well as some biochemical parameters. Lethal concentration (LC50) values obtained after 48 and 96 hr As exposure were not significantly different between these populations, although FO amphipods appeared slightly less susceptible. LC50-48 hr values were 3.33 and 3.92 mg/L As, while LC50-96 hr values were 1.76 and 2.14 mg/L As for LB and FO amphipods. The no observed effect concentration (NOEC) values were 0.5 mg/L As. Cholinesterase (ChE) activity was significantly diminished by As acute exposure (0.5-1.5 mg/L As), indicative of a significant neurotoxic action for this metalloid in both amphipod populations. Activities of catalase (CAT) and glutathione S-transferase (GST) and levels of reduced glutathione (GSH) were differentially altered following As exposure. CAT activity was increased after 96 hr As exposure. GST activity and GSH levels were significantly elevated followed by either a decrease or a return to control values after 96 hr treatment. However, additional studies are necessary to understand the mechanisms underlying the As-mediated oxidative effects in H. curvispina. Our findings suggest that measurement of ChE activity in H. curvispina amphipods might serve as a useful biomarker of As exposure and effect.
Collapse
Affiliation(s)
- Eva R Kirilovsky
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas, PROBIEN, (CONICET- UNCo), Neuquén, Argentina
- Facultad De Ciencias Médicas, Universidad Nacional Del Comahue (UNCo), Río Negro, Argentina
| | - Olga L Anguiano
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas, PROBIEN, (CONICET- UNCo), Neuquén, Argentina
- Facultad De Ingeniería, Universidad Nacional Del Comahue (UNCo), Neuquén, Argentina
| | - Guillermina A Bongiovanni
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas, PROBIEN, (CONICET- UNCo), Neuquén, Argentina
- Facultad De Ciencias Agrarias, Universidad Nacional Del Comahue (UNCo), Neuquén, Argentina
| | - Ana Ferrari
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas, PROBIEN, (CONICET- UNCo), Neuquén, Argentina
- Facultad De Ciencias Médicas, Universidad Nacional Del Comahue (UNCo), Río Negro, Argentina
| |
Collapse
|
14
|
Adsorption of As(III) from aqueous solutions using MnO2 strengthened WTRs-chitosan beads made by homogenous method with freeze-drying. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.105016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Abstract
Arsenic is a naturally occurring metalloid and one of the few metals that can be metabolized inside the human body. The pervasive presence of arsenic in nature and anthropogenic sources from agricultural and medical use have perpetuated human exposure to this toxic and carcinogenic element. Highly exposed individuals are susceptible to various illnesses, including skin disorders; cognitive impairment; and cancers of the lung, liver, and kidneys. In fact, across the globe, approximately 200 million people are exposed to potentially toxic levels of arsenic, which has prompted substantial research and mitigation efforts to combat this extensive public health issue. This review provides an up-to-date look at arsenic-related challenges facing the global community, including current sources of arsenic, global disease burden, arsenic resistance, and shortcomings of ongoing mitigation measures, and discusses potential next steps.
Collapse
Affiliation(s)
- Qiao Yi Chen
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Max Costa
- Department of Environmental Medicine, New York University School of Medicine, New York, New York 10010, USA;
| |
Collapse
|
16
|
Boussouga YA, Mohankumar MB, Gopalakrishnan A, Welle A, Schäfer AI. Removal of arsenic(III) via nanofiltration: contribution of organic matter interactions. WATER RESEARCH 2021; 201:117315. [PMID: 34198199 DOI: 10.1016/j.watres.2021.117315] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/22/2021] [Accepted: 05/26/2021] [Indexed: 06/13/2023]
Abstract
The removal of arsenic(III) (As(III)) with nanofiltration (NF) was investigated with emphasis on the role of salinity, pH and organic matter on retention mechanisms. While no measurable impact of salinity on As(III) retention with NF membranes (NF270 and NF90) was observed, a significant increase in As(III) retention occurred from pH 9 to pH 12. This was explained by As(III) deprotonation at pH > 9 that enhanced Donnan (charge) exclusion. Of the five different organic matter types investigated at 10 mgC/L, only humic acid (HA) increased As(III) retention by up to 10%. Increasing HA concentration to 100 mgC/L enhanced As(III) retention by 40%, which was attributed to As(III)-HA complexation. Complexation was confirmed by field-flow fractionation inductively coupled plasma mass spectrometry (FFF-ICP-MS) measurements, which showed that the bound As(III) increased with HA concentration. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) showed that NF90, which exhibited lower permeability reduction than NF270, has accumulated a lower amount of As(III) in the presence of HA, where As(III)-HA complex was formed in the feed solution. This finding implies that As(III) retention with NF technology can be enhanced by complexation, instead of using other methods such as oxidation or pH adjustement.
Collapse
Affiliation(s)
- Youssef-Amine Boussouga
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | - Malini Bangalore Mohankumar
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Akhil Gopalakrishnan
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Alexander Welle
- Institute of Functional Interfaces (IFG), KIT, 76344 Eggenstein-Leopoldshafen, Germany; Karlsruhe Nano Micro Facility (KNMF), KIT, 76344 Eggenstein-Leopoldshafen, Germany
| | - Andrea I Schäfer
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
17
|
Bundschuh J, Schneider J, Alam MA, Niazi NK, Herath I, Parvez F, Tomaszewska B, Guilherme LRG, Maity JP, López DL, Cirelli AF, Pérez-Carrera A, Morales-Simfors N, Alarcón-Herrera MT, Baisch P, Mohan D, Mukherjee A. Seven potential sources of arsenic pollution in Latin America and their environmental and health impacts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146274. [PMID: 34030289 DOI: 10.1016/j.scitotenv.2021.146274] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/25/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
This review presents a holistic overview of the occurrence, mobilization, and pathways of arsenic (As) from predominantly geogenic sources into different near-surface environmental compartments, together with the respective reported or potential impacts on human health in Latin America. The main sources and pathways of As pollution in this region include: (i) volcanism and geothermalism: (a) volcanic rocks, fluids (e.g., gases) and ash, including large-scale transport of the latter through different mechanisms, (b) geothermal fluids and their exploitation; (ii) natural lixiviation and accelerated mobilization from (mostly sulfidic) metal ore deposits by mining and related activities; (iii) coal deposits and their exploitation; (iv) hydrocarbon reservoirs and co-produced water during exploitation; (v) solute and sediment transport through rivers to the sea; (vi) atmospheric As (dust and aerosol); and (vii) As exposure through geophagy and involuntary ingestion. The two most important and well-recognized sources and mechanisms for As release into the Latin American population's environments are: (i) volcanism and geothermalism, and (ii) strongly accelerated As release from geogenic sources by mining and related activities. Several new analyses from As-endemic areas of Latin America emphasize that As-related mortality and morbidity continue to rise even after decadal efforts towards lowering As exposure. Several public health regulatory institutions have classified As and its compounds as carcinogenic chemicals, as As uptake can affect several organ systems, viz. dermal, gastrointestinal, peptic, neurological, respiratory, reproductive, following exposure. Accordingly, ingesting large amounts of As can damage the stomach, kidneys, liver, heart, and nervous system; and, in severe cases, may cause death. Moreover, breathing air with high As levels can cause lung damage, shortness of breath, chest pain, and cough. Further, As compounds, being corrosive, can also cause skin lesions or damage eyes, and long-term exposure to As can lead to cancer development in several organs.
Collapse
Affiliation(s)
- Jochen Bundschuh
- UNESCO Chair on Groundwater Arsenic within the 2030 Agenda for Sustainable Development, University of Southern Queensland, West Street, Toowoomba 4350, Queensland, Australia.
| | - Jerusa Schneider
- Department of Geology and Natural Resources, Institute of Geosciences, University of Campinas, 13083-855 Campinas, SP, Brazil; Faculty of Agricultural Sciences, Federal University of Grande Dourados, João Rosa Góes St., 1761, Dourados, Mato Grosso do Sul, 79804-970, Brazil
| | - Mohammad Ayaz Alam
- Departamento de Geología, Facultad de Ingeniería, Universidad de Atacama, Avenida Copayapu 485, Copiapó, Región de Atacama, Chile
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Indika Herath
- UNESCO Chair on Groundwater Arsenic within the 2030 Agenda for Sustainable Development, University of Southern Queensland, West Street, Toowoomba 4350, Queensland, Australia
| | - Faruque Parvez
- Department of Environmental Health Sciences, Columbia University, 60 Haven Ave, B-1, New York, NY 10032, USA
| | - Barbara Tomaszewska
- AGH University of Science and Technology, Mickiewicza 30 Av., 30-059 Kraków, Poland
| | | | - Jyoti Prakash Maity
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Dina L López
- Department of Geological Sciences, Ohio University, 316 Clippinger Laboratories, Athens, OH, USA
| | - Alicia Fernández Cirelli
- University of Buenos Aires, Faculty of Veterinary Sciences, Instituto de Investigaciones en Producción Animal (UBA-CONICET), Centro de Estudios, Transdiciplinarios del Agua (UBA), Av. Chorroarín 280, CABA C1427CWO, Argentina
| | - Alejo Pérez-Carrera
- University of Buenos Aires, Faculty of Veterinary Sciences, Centro de Estudios Transdiciplinarios del Agua (UBA), Instituto de Investigaciones en Producción Animal (UBA-CONICET), Cátedra de Química Orgánica de Biomoléculas, Av. Chorroarín 280, CABA C1427CWO, Argentina
| | - Nury Morales-Simfors
- UNESCO Chair on Groundwater Arsenic within the 2030 Agenda for Sustainable Development, University of Southern Queensland, West Street, Toowoomba 4350, Queensland, Australia; RISE Research Institutes of Sweden, Division ICT-RISE SICS East, Linköping SE-581.83, Sweden
| | - Maria Teresa Alarcón-Herrera
- Departamento de Ingeniería Sustentable, Centro de Investigación en Materiales Avanzados SC Unidad Durango, C. CIMAV # 110, Ejido Arroyo Seco, Durango, Dgo., Mexico
| | - Paulo Baisch
- Laboratório de Oceanografia Geológica, Instituto de Oceanografia, Universidade Federal do Rio Grande (FURG), Campus Carreiros, CP 474, CEP 96203-900 Rio Grande, RS, Brazil
| | - Dinesh Mohan
- UNESCO Chair on Groundwater Arsenic within the 2030 Agenda for Sustainable Development, University of Southern Queensland, West Street, Toowoomba 4350, Queensland, Australia; School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Abhijit Mukherjee
- Department of Geology and Geophysics, Indian Institute of Technology (IIT), Kharagpur, West Bengal 721302, India
| |
Collapse
|
18
|
Baba A, Uzelli T, Sozbilir H. Distribution of geothermal arsenic in relation to geothermal play types: A global review and case study from the Anatolian plate (Turkey). JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125510. [PMID: 33652224 DOI: 10.1016/j.jhazmat.2021.125510] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 02/07/2021] [Accepted: 02/21/2021] [Indexed: 06/12/2023]
Abstract
Arsenic has a natural cycle as it travels underground. It can mix with geothermal fluid in different ways under the control of magmatic and tectonic processes. Geogenic arsenic is present in many geothermal fields in the world at concentrations above the limits set for human health. The arsenic content of geothermal fluids is also related to the concept of geothermal play type, which forms geothermal systems, because the natural processes that form the geothermal system also control the arsenic cycle. In this study, an attempt is made to explain the relationship between the geothermal play type concept and geothermal arsenic circulation. For this purpose, geothermal field examples are given from around the world and Turkey. The result shows that arsenic concentrations can reach significant levels along with plate tectonic boundaries in the world. When arsenic concentrations were evaluated, the effect of major faults on the Anatolian Plate was clearly seen. Also, in the Anatolian plate where volcano-sedimentary units are common, geothermal fluids caused more effective alteration along with structural control and increased arsenic concentrations in geothermal systems. This interaction between structural elements, geothermal fluid, and the arsenic cycle shows that the concept of play type in geothermal systems should also be taken into consideration. It was determined that the places with high arsenic values are located within the convective-non-magmatic extensional geothermal play types such as Western Anatolian Extensional System and the North Anatolian Fault. The concept of play type in geothermal systems includes all systematic and external factors that make up these processes. For this reason, it is very important to evaluate the play type classification together with the arsenic cycle.
Collapse
Affiliation(s)
- Alper Baba
- Department of International Water Sources, Izmir Institute of Technology, Izmir, Turkey.
| | - Taygun Uzelli
- Geothermal Energy Research and Application Center, Izmir Institute of Technology, Izmir, Turkey
| | - Hasan Sozbilir
- Engineering Faculty, Department of Geological Engineering, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
19
|
Zeng H, Xu K, Wang F, Sun S, Li D, Zhang J. Preparation of adsorbent based on water treatment residuals and chitosan by homogeneous method with freeze-drying and its As(V) removal performance. Int J Biol Macromol 2021; 184:313-324. [PMID: 34118290 DOI: 10.1016/j.ijbiomac.2021.06.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/03/2021] [Accepted: 06/05/2021] [Indexed: 11/16/2022]
Abstract
Although the chitosan-WTRs particulate adsorbent prepared by embedding method has been proved to have arsenic adsorption capacity, the capacity of it is greatly weakened compared with the original water treatment residuals (WTRs). In this study, WTRs and chitosan were used as raw materials to prepare a new kind of adsorbent beads by a homogeneous method. At the same time, in order to enhance the adsorption capacity and reduce the limitation of kinetics, freeze-drying method was chosen to dry the adsorbent. The WTRs-chitosan beads by homogeneous method (WCB) were characterized by SEM, XRD, XPS and other methods. According to the characterization results, there are regularly arranged pores inside the particles, and the iron in the particles mainly exists in the form of amorphous iron oxyhydroxide. According to the results of batch experiment, the pseudo-second-order kinetic model has a higher degree of fit, indicating that the WCB adsorbs As(V) mainly by chemical adsorption. The maximum adsorption capacity estimated from the Langmuir isotherm model is 42.083 mg/g, which is almost same as the WTRs. Weak acid and neutral conditions are conducive to adsorption, while alkaline conditions have a significant inhibitory effect on arsenic adsorption.
Collapse
Affiliation(s)
- Huiping Zeng
- Key Laboratory of Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Ke Xu
- Key Laboratory of Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Fanshuo Wang
- Key Laboratory of Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Siqi Sun
- Key Laboratory of Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Dong Li
- Key Laboratory of Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Jie Zhang
- Key Laboratory of Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
20
|
Maity JP, Chen CY, Bhattacharya P, Sharma RK, Ahmad A, Patnaik S, Bundschuh J. Advanced application of nano-technological and biological processes as well as mitigation options for arsenic removal. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:123885. [PMID: 33183836 DOI: 10.1016/j.jhazmat.2020.123885] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/19/2020] [Accepted: 08/30/2020] [Indexed: 05/04/2023]
Abstract
Arsenic (As) removal is a huge challenge, since several million people are potentially exposed (>10 μg/L World Health Organization guideline limit) through As contaminated drinking water worldwide. Review attempts to address the present situation of As removal, considering key topics on nano-technological and biological process and current progress and future perspectives of possible mitigation options have been evaluated. Different physical, chemical and biological methods are available to remove As from contaminated water/soil/wastes, where removal efficiency mainly depends on absorbent type, initial adsorbate concentration, speciation and interfering species. Oxidation is an important pretreatment step in As removal, which is generally achieved by several media such as O2/O3, HClO, KMnO4 and H2O2. The Fe-based-nanomaterials (α/β/γ-FeOOH, Fe2O3/Fe3O4-γ-Fe2O3), Fe-based-composite-compounds, activated-Al2O3, HFO, Fe-Al2O3, Fe2O3-impregnated-graphene-aerogel, iron-doped-TiO2, aerogel-based- CeTiO2, and iron-oxide-coated-manganese are effective to remove As from contaminated water. Biological processes (phytoremediation/microbiological) are effective and ecofriendly for As removal from water and/or soil environment. Microorganisms remove As from water, sediments and soil by metabolism, detoxification, oxidation-reduction, bio-adsorption, bio-precipitation, and volatilization processes. Ecofriendly As mitigation options can be achieved by utilizing an alternative As-safe-aquifer, surface-water or rainwater-harvesting. Application of hybrid (biological with chemical and physical process) and Best-Available-Technologies (BAT) can be the most effective As removal strategy to remediate As contaminated environments.
Collapse
Affiliation(s)
- Jyoti Prakash Maity
- Department of Earth and Environmental Sciences, Center for Innovative Research on Aging Society, AIM-HI, National Chung Cheng University, 168 University Road, Min- Hsiung, Chiayi County 62102, Taiwan; School of Applied Science, KIIT University, Bhubaneswar, 751024, India
| | - Chien-Yen Chen
- Department of Earth and Environmental Sciences, Center for Innovative Research on Aging Society, AIM-HI, National Chung Cheng University, 168 University Road, Min- Hsiung, Chiayi County 62102, Taiwan.
| | - Prosun Bhattacharya
- KTH-International Groundwater Arsenic Research Group, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 76, SE-100 44 Stockholm, Sweden; UNESCO Chair on Groundwater Arsenic Within the 2030 Agenda for Sustainable Development, University of Southern Queensland (USQ), West Street, Toowoomba, QLD 4350, Australia
| | - Raju Kumar Sharma
- Department of Earth and Environmental Sciences, Center for Innovative Research on Aging Society, AIM-HI, National Chung Cheng University, 168 University Road, Min- Hsiung, Chiayi County 62102, Taiwan; Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Arslan Ahmad
- KTH-International Groundwater Arsenic Research Group, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 76, SE-100 44 Stockholm, Sweden; KWR Water Research Institute, Groningenhaven 7 3433 PE Nieuwegein, The Netherlands; Department of Environmental Technology, Wageningen University and Research (WUR), Wageningen, The Netherlands; SIBELCO Ankerpoort NV, Op de Bos 300, 6223 EP Maastricht, The Netherlands
| | - Sneha Patnaik
- School of Public Health, KIMS Medical College, KIIT University, Bhubaneswar, 751024, India
| | - Jochen Bundschuh
- UNESCO Chair on Groundwater Arsenic Within the 2030 Agenda for Sustainable Development, University of Southern Queensland (USQ), West Street, Toowoomba, QLD 4350, Australia.
| |
Collapse
|
21
|
Hussain MM, Wang J, Bibi I, Shahid M, Niazi NK, Iqbal J, Mian IA, Shaheen SM, Bashir S, Shah NS, Hina K, Rinklebe J. Arsenic speciation and biotransformation pathways in the aquatic ecosystem: The significance of algae. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:124027. [PMID: 33265048 DOI: 10.1016/j.jhazmat.2020.124027] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/29/2020] [Accepted: 09/15/2020] [Indexed: 06/12/2023]
Abstract
The contamination of aquatic systems with arsenic (As) is considered to be an internationally-important health and environmental issue, affecting over 115 countries globally. Arsenic contamination of aquatic ecosystems is a global threat as it can enter the food chain from As-rich water and cause harmful impacts on the humans and other living organisms. Although different factors (e.g., pH, redox potential, iron/manganese oxides, and microbes) control As biogeochemical cycling and speciation in water systems, the significance of algal species in biotransformation of As is poorly understood. The overarching attribute of this review is to briefly elaborate various As sources and its distribution in water bodies and factors affecting As biogeochemical behavior in aqueous ecosystems. This review elucidates the intriguing role of algae in biotransformation/volatilization of As in water bodies under environmentally-relevant conditions. Also, we critically delineate As sorption, uptake, oxidation and reduction pathways of As by algae and their possible role in bioremediation of As-contaminated water (e.g., drinking water, wastewater). The current review provides the updated and useful framework for government and water treatment agencies to implement algae in As remediation programs globally.
Collapse
Affiliation(s)
- Muhammad Mahroz Hussain
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Jianxu Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550082, PR China; University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, Wuppertal 42285, Germany; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, PR China
| | - Irshad Bibi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan.
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari 61100, Pakistan
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; School of Civil Engineering and Surveying, University of Southern Queensland, Toowoomba 4350, Queensland, Australia.
| | - Jibran Iqbal
- College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, United Arab Emirates
| | - Ishaq Ahmad Mian
- Department of Soil and Environmental Sciences, The University of Agriculture Peshawar, Pakistan
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, Wuppertal 42285, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, Jeddah 21589, Kingdom of Saudi Arabia; Department of Soil and Water Sciences, Faculty of Agriculture, University of Kafrelsheikh, Kafr El-Sheikh 33516, Egypt
| | - Safdar Bashir
- University of Agriculture Faisalabad, Sub-campus Depalpur, Okara 56130, Pakistan
| | - Noor Samad Shah
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari 61100, Pakistan
| | - Kiran Hina
- Department of Environmental Sciences, University of Gujrat, Gujrat, Pakistan
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, Wuppertal 42285, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, Seoul 05006, South Korea
| |
Collapse
|
22
|
|
23
|
Shi L, Hu X, Wang N, Liang H, Wu C, Cao H. Histopathological examination and transcriptome analyses to assess the acute toxic effects of arsenite exposure on rare minnows (Gobiocypris rarus). ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:613-624. [PMID: 32385600 DOI: 10.1007/s10646-020-02222-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/25/2020] [Indexed: 06/11/2023]
Abstract
Arsenic is ubiquitously present in the aquatic environment. We investigated the acute toxic effects of arsenite [As(III)] exposure on rare minnows (Gobiocypris rarus) in vivo. The 96-h LC50 value for exposure to As(III) was 13.73 mg/L. As(III) bioaccumulation in different tissues was measured using inductively-coupled plasma mass spectrometry, and the extent of As(III) accumulation was, from greatest to least, liver > intestine > gills > muscle > kidney > testis > brain. Histological examination revealed that in As(III)-treated fish, numerous cellular and tissue alterations were present in the gill, liver, and intestine tissues. Moreover, transmission electron microscopy showed ultrastructural alterations in hepatocytes. We also performed transcriptome analyses to investigate As(III)-induced toxicity response in the liver of As(III)-treated fish; various oxidative-related genes were differentially expressed, and their expression levels were further validated using qPCR. This study is one of the many steps we aim to take on the way to promote the rare minnow to an international standard laboratory animal.
Collapse
Affiliation(s)
- Lixia Shi
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Lab of Freshwater Biodiversity Conservation Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, CAFS, Wuhan, 430223, China
- School of Life Sciences, Huizhou University, Huizhou, 516007, China
| | - Xudong Hu
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nenghan Wang
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chenxi Wu
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Hong Cao
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
- Key Lab of Freshwater Biodiversity Conservation Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, CAFS, Wuhan, 430223, China.
| |
Collapse
|
24
|
Machado I, Falchi L, Bühl V, Mañay N. Arsenic levels in groundwater and its correlation with relevant inorganic parameters in Uruguay: A medical geology perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 721:137787. [PMID: 32179354 DOI: 10.1016/j.scitotenv.2020.137787] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/05/2020] [Accepted: 03/05/2020] [Indexed: 06/10/2023]
Abstract
The aim of this work was to perform a groundwater quality monitoring in Uruguay, from the Medical Geology perspective, focusing attention on arsenic levels and its correlations with other relevant inorganic parameters. For this purpose, a total of 46 groundwater samples from private wells, out of the scope of the state-run water utility company, were analyzed. The accuracy of the analytical methods was ensured by using certified reference materials. Arsenic concentration range was 1.72-120.5 μg L-1, half of the samples being above the limit of 10 μg L-1 recommended by WHO for drinking water, with the corresponding risks for human health. Pearson correlations were performed, resulting in strong positive correlations for the pairs As/Cl-, As/F-, As/Na and As/V. These relationships between arsenic and other inorganic parameters in groundwater should be deeply studied, to prevent long-term health effects.
Collapse
Affiliation(s)
- Ignacio Machado
- Analytical Chemistry, DEC, Faculty of Chemistry, Universidad de la República, Gral. Flores 2124, Montevideo, Uruguay.
| | - Lucía Falchi
- Analytical Chemistry, DEC, Faculty of Chemistry, Universidad de la República, Gral. Flores 2124, Montevideo, Uruguay
| | - Valery Bühl
- Analytical Chemistry, DEC, Faculty of Chemistry, Universidad de la República, Gral. Flores 2124, Montevideo, Uruguay
| | - Nelly Mañay
- Toxicology, DEC, Faculty of Chemistry, Universidad de la República, Gral. Flores 2124, Montevideo, Uruguay
| |
Collapse
|
25
|
Villalba E, Tanjal C, Borzi G, Páez G, Carol E. Geogenic arsenic contamination of wet-meadows associated with a geothermal system in an arid region and its relevance for drinking water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137571. [PMID: 32135286 DOI: 10.1016/j.scitotenv.2020.137571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
Arsenic (As) is an important component in thermal springs, which can reach water sources constituting an important hazard for both the environment and people. For this reason, the aim of this paper is to analyze the geologic and geochemical processes that determine the presence and concentration of As in wet-meadows associated to a geothermal field in Patagonia (Argentina) which is used as water supply. To achieve this, during field surveys temperature, pH and electrical conductivity were measured and water and rock samples were taken. Major ions and stable isotopes were determined in water samples while As content was analyzed in both water and rock samples. Due to geological control and chemical analyses, three areas were recognized with respect to major streams in the geothermal field: wet-meadows at headwaters, thermal springs at mid basin and wet-meadows at down basin. Even though, water in wet-meadows have the same origin the obtained results evidence how thermal springs at mid-basin influence the chemistry of these wetlands, particularly those at down basin. In the latter, As raises over two orders of magnitude than the ones at headwaters which surpasses the reference limit, proving that thermal springs are also responsible for the increase of the As content in water changing its quality as a source of potable water. The concentration of this metalloid could be higher but it is retained in travertine and sinter deposits formed near the geothermal discharge area. Understanding processes controlling water quality and the chemistry of As in this type of wetlands is of vital importance, mainly in an arid region where water supply sources are scarce.
Collapse
Affiliation(s)
- Esteban Villalba
- Centro de Investigaciones Geológicas, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CIG-UNLP-CONICET), Diagonal 113 #275, La Plata, Argentina.
| | - Carolina Tanjal
- Centro de Investigaciones Geológicas, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CIG-UNLP-CONICET), Diagonal 113 #275, La Plata, Argentina
| | - Guido Borzi
- Centro de Investigaciones Geológicas, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CIG-UNLP-CONICET), Diagonal 113 #275, La Plata, Argentina
| | - Gerardo Páez
- Instituto de Recursos Minerales, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (INREMI-UNLP-CONICET), Belize
| | - Eleonora Carol
- Centro de Investigaciones Geológicas, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CIG-UNLP-CONICET), Diagonal 113 #275, La Plata, Argentina.
| |
Collapse
|
26
|
Abstract
In the Main Ethiopian Rift (MER) area, rural populations often use water that exceeds the World Health Organization thresholds for fluoride (F–) and arsenic (As), two elements that are hazardous for human health. In this study, twenty-nine water samples were collected from lakes and hot and cold springs in southern MER to investigate source(s) and health-risk of the F– and As contamination. According to major ion and trace element analyses, only cold spring water is safe for consumption, whereas hot spring water is the most contaminated. Leaching tests performed with the MER rhyolitic volcanic rocks and their weathered products (fluvio-lacustrine sediments) demonstrate that the main cause of the F– and As release is geogenic, i.e., not related to anthropogenic activities. The weathering of volcanic glass and minerals (apatites, clays, hydro-oxides) by CO2-bearing alkaline water induces the mobilisation of F– and As from solid to liquid phase. This process is particularly fast, when fluvio-lacustrine sediments are involved, and can be further enhanced by hot groundwater leaching. This study, investigating the distribution, sources, and mechanisms of F– and As release in MER water, could be of interest also for other sectors of the East African Rift and other similar volcano-tectonic settings.
Collapse
|
27
|
Delgado Quezada V, Altamirano Espinoza M, Bundschuh J. Arsenic in geoenvironments of Nicaragua: Exposure, health effects, mitigation and future needs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 716:136527. [PMID: 32074937 DOI: 10.1016/j.scitotenv.2020.136527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/31/2019] [Accepted: 01/03/2020] [Indexed: 06/10/2023]
Abstract
In contrast to other Latin American countries, where the presence of arsenic (As) in drinking water sources and related adverse human health impacts are well-known, little is internationally known from Nicaragua. However, the As problem is of high relevance as numerous assessments by national research, governmental and non-governmental institutions have proven. To assess for the first time and globally disseminate this predominantly nationally originated information is the aim of this review. In Nicaragua, >1000 water samples have been analyzed for total As from 1991 to 2017. By today, 144 communities distributed within 12 departments and one autonomous region (RACCS) are impacted with As. At least 55,700 people are exposed to drinking water with As (n = 173; range: 10-1320 μg/L, mean: 48.30 μg/L; 21.95%). Arsenic in surface water ranged from 0.99 to 2650 μg/L (n = 124, mean: 65.62 μg/L, 62.9% < 10 μg/L); and in groundwater from 0.10 to 1320 μg/L [n = 624, mean: 20.86 μg/L (70.7% < 10 μg/L)]. The highest As concentration was recorded from a well of the El Zapote community in 1996 (1320 μg/L), alerting national authorities and academic's to research As in water sources and health risks. Since then, 10 μg As/L has been the national regulatory limit for drinking water supplies. Occurrence of high As levels is linked to three geoenvironments: (i) Paleocene-Mesozoic metamorphic rocks (Northern Highlands) where As is present in epithermal veins, (ii) Tertiary volcanic rocks (Central Plateau) where As is related to fossil hydrothermal/volcanic systems, (iii) Quaternary rocks (Nicaragua Depression) where As is caused by active geothermal/volcanic activities. No mitigation measures have been implemented. Incipient water treatment efforts (Kanchan filters activated carbon) have failed because they were not socially accepted. More integrated, cross-sectorial research on genesis, health impacts and problem mitigation is needed. Provision of water treatment units for As removal on a single-household and community scale is needed, calling for the cooperation of national entities with communities in problem detection and solving.
Collapse
Affiliation(s)
- Valeria Delgado Quezada
- UNESCO Chair on Groundwater Arsenic within the 2030 Agenda for Sustainable Development, University of Southern Queensland, West Street, Toowoomba, Queensland 4350, Australia; Centro para la Investigación en Recursos Acuáticos de Nicaragua (CIRA/UNAN-Managua). Universidad Nacional Autónoma de Nicaragua. Del Hospital Monte España 300 metros al Norte, Managua, Nicaragua
| | - Maximina Altamirano Espinoza
- Centro para la Investigación en Recursos Acuáticos de Nicaragua (CIRA/UNAN-Managua). Universidad Nacional Autónoma de Nicaragua. Del Hospital Monte España 300 metros al Norte, Managua, Nicaragua
| | - Jochen Bundschuh
- UNESCO Chair on Groundwater Arsenic within the 2030 Agenda for Sustainable Development, University of Southern Queensland, West Street, Toowoomba, Queensland 4350, Australia.
| |
Collapse
|
28
|
Morales-Simfors N, Bundschuh J, Herath I, Inguaggiato C, Caselli AT, Tapia J, Choquehuayta FEA, Armienta MA, Ormachea M, Joseph E, López DL. Arsenic in Latin America: A critical overview on the geochemistry of arsenic originating from geothermal features and volcanic emissions for solving its environmental consequences. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 716:135564. [PMID: 31918910 DOI: 10.1016/j.scitotenv.2019.135564] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 11/04/2019] [Accepted: 11/15/2019] [Indexed: 06/10/2023]
Abstract
Geothermal fluids and volcanic emissions are important sources of arsenic (As), resulting in elevated concentrations of As in ground-, surface-water and soil, which may adversely affect the environment. Arsenic originating from geothermal features and volcanic activities is common in Latin America forming a serious threat to the livelihoods of millions of people. This review attempts to provide a critical overview of the geochemistry of As originating from these sources in Latin America to understand what information exists about and what future research needs to be undertaken. This study evaluated 15 countries in Latin America. In total, 423 sites were characterized with As originating from geothermal sources, mostly related to present volcanic activity (0.001 < As<73 mg/L, mean: 36.5 mg/L) and the transboundary Guarani Aquifer System (0.001 < As<0.114 mg/L, mean: 0.06 mg/L). Many of the geothermal systems and volcanoes discussed in this study are close to densely populated cities, including Bogota, Managua, San José, Guatemala City and Mexico City, where total As concentrations in natural ground- and surface- water exceed the safe drinking water guideline of 0.01 mg/L, recommended by the World Health Organization (WHO). However, the wide geographical occurrence of As in geothermal fluids and volcanic emissions of this region is by far not fully understood, so that development of geographical maps based on geographic information system (GIS) is an urgent necessity to understand the real nature of the problem. The assessment of environmental risks and the potential impacts on human health both inadequate and scarce and hence, these gaps need to be addressed by future research. The present holistic assessment of As originating from geothermal features and volcanic emissions would be a driving force to formulate a plan for establishing a sustainable As mitigation in vulnerable areas of Latin America in the near future. An assessment of the geochemistry, mobility and distribution of As would augment the effectiveness of the plan.
Collapse
Affiliation(s)
- Nury Morales-Simfors
- RISE Research Institutes of Sweden, Division ICT-RISE SICS East, Linköping SE-581.83, Sweden; School of Civil Engineering and Surveying, University of Southern Queensland, West Street, Toowoomba, 4350, Queensland, Australia; UNESCO Chair on Groundwater Arsenic within the 2030 Agenda for Sustainable Development, University of Southern Queensland, West Street, Toowoomba, 4350, Queensland, Australia
| | - Jochen Bundschuh
- School of Civil Engineering and Surveying, University of Southern Queensland, West Street, Toowoomba, 4350, Queensland, Australia; UNESCO Chair on Groundwater Arsenic within the 2030 Agenda for Sustainable Development, University of Southern Queensland, West Street, Toowoomba, 4350, Queensland, Australia.
| | - Indika Herath
- School of Civil Engineering and Surveying, University of Southern Queensland, West Street, Toowoomba, 4350, Queensland, Australia; UNESCO Chair on Groundwater Arsenic within the 2030 Agenda for Sustainable Development, University of Southern Queensland, West Street, Toowoomba, 4350, Queensland, Australia
| | - Claudio Inguaggiato
- Departamento de Geología, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Ensenada-Tijuana, 3918, Ensenada, Baja California, Mexico
| | - Alberto T Caselli
- Instituto de Investigación en Paleobiología y Geología, Universidad Nacional de Rio Negro, 8332, Av. Gral. Julio Argentino Roca, Rio Negro, Argentina
| | - Joseline Tapia
- Escuela de Geología, Facultad de Ingeniería, Universidad de Santo Tomás, Av. Ejército Libertador # 146, Torre A, Santiago, Chile
| | | | - María Aurora Armienta
- Instituto de Geofísica, Universidad Nacional Autónoma de México, C.U., 04150 Ciudad de México, Mexico
| | - Mauricio Ormachea
- Instituto de Investigaciones Químicas, Universidad Mayor de San Andrés, Campus Universitario, Calle 27 Cota Cota, Casilla 303, La Paz, Bolivia
| | - Erouscilla Joseph
- The UWI Seismic Research Centre, University of West Indies, Gordon St., Trinidad and Tobago
| | - Dina L López
- Department of Geological Sciences, Ohio University, 316 Clippinger Laboratories, Athens, OH, USA
| |
Collapse
|
29
|
Aullón Alcaine A, Schulz C, Bundschuh J, Jacks G, Thunvik R, Gustafsson JP, Mörth CM, Sracek O, Ahmad A, Bhattacharya P. Hydrogeochemical controls on the mobility of arsenic, fluoride and other geogenic co-contaminants in the shallow aquifers of northeastern La Pampa Province in Argentina. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 715:136671. [PMID: 32050319 DOI: 10.1016/j.scitotenv.2020.136671] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 01/07/2020] [Accepted: 01/11/2020] [Indexed: 06/10/2023]
Abstract
Elevated Arsenic (As) and Fluoride (F) concentrations in groundwater have been studied in the shallow aquifers of northeastern of La Pampa province, in the Chaco-Pampean plain, Argentina. The source of As and co-contaminants is mainly geogenic, from the weathering of volcanic ash and loess (rhyolitic glass) that erupted from the Andean volcanic range. In this study we have assessed the groundwater quality in two semi-arid areas of La Pampa. We have also identified the spatial distribution of As and co-contaminants in groundwater and determined the major factors controlling the mobilization of As in the shallow aquifers. The groundwater samples were circum-neutral to alkaline (7.4 to 9.2), oxidizing (Eh ~0.24 V) and characterized by high salinity (EC = 456-11,400 μS/cm) and Na+-HCO3- water types in recharge areas. Carbonate concretions ("tosca") were abundant in the upper layers of the shallow aquifer. The concentration of total As (5.6 to 535 μg/L) and F (0.5 to 14.2 mg/L) were heterogeneous and exceeded the recommended WHO Guidelines and the Argentine Standards for drinking water. The predominant As species were arsenate As(V) oxyanions, determined by thermodynamic calculations. Arsenic was positively correlated with bicarbonate (HCO3-), fluoride (F), boron (B) and vanadium (V), but negatively correlated with iron (Fe), aluminium (Al), and manganese (Mn), which were present in low concentrations. The highest amount of As in sediments was from the surface of the dry lake. The mechanisms for As mobilization are associated with multiple factors: geochemical reactions, hydrogeological characteristics of the local aquifer and climatic factors. Desorption of As(V) at high pH, and ion competition for adsorption sites are considered the principal mechanisms for As mobilization in the shallow aquifers. In addition, the long-term consumption of the groundwater could pose a threat for the health of the local community and low cost remediation techniques are required to improve the drinking water quality.
Collapse
Affiliation(s)
- Anna Aullón Alcaine
- KTH-International Groundwater Arsenic Research Group, Department of Sustainable Development, Environmental Science and Engineering, Teknikringen 10B, SE-100 44 Stockholm, Sweden.
| | - Carlos Schulz
- Universidad Nacional de La Pampa (UNLPam), Facultad de Ciencias Exactas y Naturales, Av. Uruguay 151, L6300 Santa Rosa, La Pampa, Argentina
| | - Jochen Bundschuh
- UNESCO Chair on Groundwater Arsenic within the 2030 Agenda for Sustainable Development & Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, 4350 Queensland, Australia
| | - Gunnar Jacks
- KTH-International Groundwater Arsenic Research Group, Department of Sustainable Development, Environmental Science and Engineering, Teknikringen 10B, SE-100 44 Stockholm, Sweden
| | - Roger Thunvik
- KTH-International Groundwater Arsenic Research Group, Department of Sustainable Development, Environmental Science and Engineering, Teknikringen 10B, SE-100 44 Stockholm, Sweden
| | - Jon-Petter Gustafsson
- KTH-International Groundwater Arsenic Research Group, Department of Sustainable Development, Environmental Science and Engineering, Teknikringen 10B, SE-100 44 Stockholm, Sweden
| | - Carl-Magnus Mörth
- Department of Geology and Geochemistry, Stockholm University, Stockholm, Sweden
| | - Ondra Sracek
- Department of Geology, Faculty of Science, Palacky University, 17. listopadu 12, 7771 46 Olomouc, Czech Republic
| | - Arslan Ahmad
- KTH-International Groundwater Arsenic Research Group, Department of Sustainable Development, Environmental Science and Engineering, Teknikringen 10B, SE-100 44 Stockholm, Sweden; KWR Water Cycle Research Institute, Groningenhaven 7, 3433 PE Nieuwegein, The Netherlands.
| | - Prosun Bhattacharya
- KTH-International Groundwater Arsenic Research Group, Department of Sustainable Development, Environmental Science and Engineering, Teknikringen 10B, SE-100 44 Stockholm, Sweden; UNESCO Chair on Groundwater Arsenic within the 2030 Agenda for Sustainable Development & Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, 4350 Queensland, Australia.
| |
Collapse
|
30
|
Tomaszewska B, Bundschuh J, Pająk L, Dendys M, Delgado Quezada V, Bodzek M, Armienta MA, Muñoz MO, Kasztelewicz A. Use of low-enthalpy and waste geothermal energy sources to solve arsenic problems in freshwater production in selected regions of Latin America using a process membrane distillation - Research into model solutions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 714:136853. [PMID: 32018985 DOI: 10.1016/j.scitotenv.2020.136853] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 01/14/2020] [Accepted: 01/20/2020] [Indexed: 06/10/2023]
Abstract
The challenge for many communities in Latin America is to find adequate solutions which are feasible given the local economic and technical conditions and which enable them to source water with arsenic concentrations below the WHO guideline value for drinking water (<10 μg/L) of arsenic (As) pollution, suitable for human consumption and the irrigation of crops. Three regions where geothermal fields are present were selected for study out of the several hundred locations in Latin America where the water environment is contaminated with As and where there is a critical water shortage problem. These are Cerro Prieto in Mexico, Momotombo in Nicaragua and Lake Poopó in Bolivia. The paper presents the results of research on the use of low-enthalpy geothermal energy sources and waste heat from geothermal power plants in membrane distillation (MD) processes, which is the only heat-powered membrane technology, in order to obtain potable water and/or water for crop irrigation. It was concluded that MD could be considered as a solution for obtaining water of good quality with a high retention of toxic solutes such as As as well as other different species found in groundwater. In addition, it is not only geothermal energy, but also the geothermal water itself that can be considered as a source of freshwater produced through the MD process, a process which is most suitable to be used in areas where cheap sources of heat are available.
Collapse
Affiliation(s)
- Barbara Tomaszewska
- AGH University of Science and Technology, Mickiewicza 30 Av., 30-059 Kraków, Poland.
| | - Jochen Bundschuh
- Faculty of Health, Engineering and Sciences, University of Southern Queensland, Toowoomba, West Street, 4350, QLD, Australia; UNESCO Chair on Groundwater Arsenic within the 2030 Agenda for Sustainable Development, University of Southern Queensland, West Street, Toowoomba, 4350, Queensland, Australia.
| | - Leszek Pająk
- AGH University of Science and Technology, Mickiewicza 30 Av., 30-059 Kraków, Poland.
| | - Marta Dendys
- AGH University of Science and Technology, Mickiewicza 30 Av., 30-059 Kraków, Poland.
| | - Valeria Delgado Quezada
- Centro para la Investigación en Recursos Acuáticos de Nicaragua (CIRA/UNAN-Managua), Universidad Nacional Autónoma de Nicaragua, Del Hospital Monte España 300 metros al Norte, Managua, Nicaragua.
| | - Michał Bodzek
- Institute of Environmental Engineering of the Polish Academy of Sciences, Zabrze, Poland.
| | - Maria Aurora Armienta
- Universidad Nacional Autonoma de Mexico, Instituto de Geofisica, C.U., CDMX 04510, Mexico
| | - Mauricio Ormachea Muñoz
- Instituto de Investigaciones Químicas, Universidad Mayor de San Andrés, Campus Universitario, Calle 27 Cota Cota, Casilla 303, La Paz, Bolivia
| | - Aleksandra Kasztelewicz
- Mineral and Energy Economy Research Institute, Polish Academy of Sciences, Wybickiego 7 str., 31-261 Kraków, Poland.
| |
Collapse
|
31
|
Murray J, Romero Orué M, López EDLM, García VH, Kirschbaum A. Geological-geomorphological and geochemical control on low arsenic concentration in the Lerma valley groundwater between the two high arsenic geologic provinces of Chaco-Pampean plain and Puna. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 699:134253. [PMID: 31654834 DOI: 10.1016/j.scitotenv.2019.134253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 08/31/2019] [Accepted: 09/01/2019] [Indexed: 06/10/2023]
Abstract
Argentina is known for having one of the most extensive areas with high arsenic (As) concentration in groundwater in the world. These areas correspond to two geological provinces, the Altiplano-Puna plateau and the Chaco-Pampean plain. In this large territory, there are some specific environments where the As concentration in groundwater is lower, and in some cases within the recommended limits for drinking water. In our study, we analyze and interpret the low As concentrations reported for the Lerma valley, the easternmost intermontane basin of the Cordillera Oriental, located between the aforementioned high‑arsenic areas. The groundwater from this valley is used for the consumption of >600.000 inhabitants in the city of Salta and nearby towns. The incipient geological development of the valley since the late Miocene and the subsequent tectonic and climatic evolution favored low As concentrations with respect to the Altiplano-Puna plateau and the Chaco-Pampean plain. The high-energy sedimentary environments that characterized the area during Plio-Quaternary times and the composition of the sediments have controlled the characteristics of the multilayered aquifer. Moreover, the absence of geogenic As sources, climate, high rain infiltration rate, near neutral pH, redox conditions, and wells construction with screens settled in coarse productive layers favor groundwater of good quality. The geological and tectonic evolution of the Lerma valley could be extrapolated to other similar valleys in NW Argentina and can be a useful tool for exploration of good quality groundwater. This is of high importance in Latin American territories with high As concentration in groundwater such as Argentina.
Collapse
Affiliation(s)
- Jesica Murray
- Instituto de Bio y Geo Ciencias del Noroeste Argentino, Universidad Nacional de Salta - CONICET, 4405 Rosario de Lerma, Argentina; Laboratory of Hydrology and Geochemistry of Strasbourg (LHyGeS UMR 7517), University of Strasbourg, CNRS, 67084 Strasbourg Cedex, France.
| | - María Romero Orué
- Instituto de Bio y Geo Ciencias del Noroeste Argentino, Universidad Nacional de Salta - CONICET, 4405 Rosario de Lerma, Argentina
| | - Emilce de Las Mercedes López
- Instituto de Investigaciones en Energía no Convencional, Universidad Nacional de Salta - CONICET, 4400 Salta, Argentina
| | - Víctor Hugo García
- La.Te. Andes SA, GEOMAP-CONICET, 4401 Vaqueros, Salta, Argentina; Institut für Geowissenschaften, Universität Potsdam, 14476 Potsdam, Germany
| | - Alicia Kirschbaum
- Instituto de Bio y Geo Ciencias del Noroeste Argentino, Universidad Nacional de Salta - CONICET, 4405 Rosario de Lerma, Argentina; Cátedra de Geoquímica, Facultad de Ciencias Naturales, Universidad Nacional de Salta, 4400 Salta, Argentina
| |
Collapse
|
32
|
Zeng H, Yu Y, Wang F, Zhang J, Li D. Arsenic(V) removal by granular adsorbents made from water treatment residuals materials and chitosan. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124036] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
33
|
Vezza ME, Olmos Nicotra MF, Agostini E, Talano MA. Biochemical and molecular characterization of arsenic response from Azospirillum brasilense Cd, a bacterial strain used as plant inoculant. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:2287-2300. [PMID: 31776908 DOI: 10.1007/s11356-019-06959-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
Azospirillum brasilense Cd is a bacterial strain widely used as an inoculant of several crops due to its plant growth promoting properties. However, its beneficial effects depend on its viability and functionality under adverse environmental conditions, including the presence of arsenic (As) in agricultural soils. Therefore, the aim of this work was to evaluate the response of A. brasilense Cd to arsenate (AsV) and arsenite (AsIII). This bacterium was tolerant to As concentrations frequently found in soils. Moreover, properties related to roots colonization (motility, biofilm, and exopolymers) and plant growth promotion (auxin, siderophore production, and N2 fixation) were not significantly affected by the metalloid. In order to deepen the understanding on As responses of A. brasilense Cd, As resistance genes were sequenced and characterized for the first time in this work. These genes could mediate the redox As transformation and its extrusion outside the cell, so they could have direct association with the As tolerance observed. In addition, its As oxidation/reduction capacity could contribute to change the AsV/AsIII ratio in the environment. In conclusion, the results allowed to elucidate the As response of A. brasilense Cd and generate interest for its potential use in polluted environments.
Collapse
Affiliation(s)
- Mariana Elisa Vezza
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto (UNRC), Ruta Nacional 36 Km 601, 5800, Río Cuarto, Córdoba, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Maria Florencia Olmos Nicotra
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto (UNRC), Ruta Nacional 36 Km 601, 5800, Río Cuarto, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Elizabeth Agostini
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto (UNRC), Ruta Nacional 36 Km 601, 5800, Río Cuarto, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Melina Andrea Talano
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto (UNRC), Ruta Nacional 36 Km 601, 5800, Río Cuarto, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
34
|
Murray J, Nordstrom DK, Dold B, Romero Orué M, Kirschbaum A. Origin and geochemistry of arsenic in surface and groundwaters of Los Pozuelos basin, Puna region, Central Andes, Argentina. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 697:134085. [PMID: 31487590 DOI: 10.1016/j.scitotenv.2019.134085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 06/10/2023]
Abstract
Los Pozuelos is a closed basin in the Puna region of NW Argentina, Central Andes. This is a semi-arid region where closed basins are the most important feature for the hydrologic systems. The center of the basin is occupied by a fluctuating playa lake called Los Pozuelos lagoon, which constitutes a UNESCO Biosphere Reserve. This is one of the most populated closed basins in the Argentinian Puna and residents use groundwater for drinking and cooking. Lowest concentrations of As and dissolved solids are in the headwaters of the rivers (1.46-27 μg/L) and the highest concentrations are in the lagoon (43.7-200.3 μg/L). In groundwater, arsenic concentrations increase from the outer ring aquifer (3.82-29.7 μg/L) composed of alluvial-alluvial fan sediments to the inner lacustrine aquifer (10-113 μg/L) that surround the playa lake. Moreover, high concentrations of As during the dry season (90.2 and 113 μg/L), Na/K mass ratios (0.2 and 0.3), and formation of Na-rich efflorescent salts suggest that high evaporation rates increases As concentration, while rainwater dilutes the concentration during the wet season. As(V) is the dominant species in all the water types, except for the lagoon, where As(III) occasionally dominates because of organic matter buildup. There are at least three potential sources for As in water i) oxidation of As sulfides in Pan de Azúcar mine wastes, and acid mine drainage discharging into the basin; ii) weathering and erosion of mineralized shales; iii) weathering of volcanic eruptive non-mineralized rocks. Because it is a closed basin, the arsenic released from the natural and anthropogenic sources is transported in solution and in fluvial sediments and finally accumulates in the center of the basin where the concentration in water increases by evaporation with occasional enhancement by organic matter interaction in the lagoon.
Collapse
Affiliation(s)
- Jesica Murray
- Instituto de Bio y Geo Ciencias del Noroeste Argentino, Universidad Nacional de Salta - CONICET, 4405 Rosario de Lerma, Argentina; Laboratoire d'Hydrologie et de Géochimie de Strasbourg, Université de Strasbourg, EOST, CNRS, 67084 Strasbourg, France.
| | - D Kirk Nordstrom
- United States Geological Survey, Boulder, CO 80303, United States of America
| | - Bernhard Dold
- Division of Geosciences and Environmental engineering, Luleå University of Technology, 971 87 Luleå, Sweden
| | - Maria Romero Orué
- Instituto de Bio y Geo Ciencias del Noroeste Argentino, Universidad Nacional de Salta - CONICET, 4405 Rosario de Lerma, Argentina
| | - Alicia Kirschbaum
- Instituto de Bio y Geo Ciencias del Noroeste Argentino, Universidad Nacional de Salta - CONICET, 4405 Rosario de Lerma, Argentina
| |
Collapse
|
35
|
Sosa NN, Kulkarni HV, Datta S, Beilinson E, Porfido C, Spagnuolo M, Zárate MA, Surber J. Occurrence and distribution of high arsenic in sediments and groundwater of the Claromecó fluvial basin, southern Pampean plain (Argentina). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 695:133673. [PMID: 31425994 DOI: 10.1016/j.scitotenv.2019.133673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 07/15/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
Occurrences of high arsenic (As) in sediments and groundwaters were investigated in the Claromecó fluvial basin, southern Pampean plain, Argentina. This investigation includes sedimentology, mineralogy, and hydrogeochemistry of the Neogene and Quaternary aquifers to determine possible sources and transport mechanisms for As in the Claromecó basin. Characterization of the sediments revealed homogeneous mineralogy in both Neogene highlands and Quaternary floodplains with abundant plagioclase, volcanic glass shards (VGS), K-feldspar, quartz, clay minerals and minor concentrations of clinopyroxenes, orthopyroxenes, hornblende, epidote, Fe-(oxy)hydroxides and fluorapatite. The sedimentary As concentrations ranged between 2.8 and 31 mg kg-1 in both aquifers. The average total dissolved As (dissolved AsT) concentrations was 47.2 ± 30.8 μg L-1 (15.3-110 μg L-1) in groundwater in Neogene aquifer (GW1), while it was 97.1 ± 30.6 μg L-1 (45-144 μg L-1) in Quaternary floodplain aquifer (GW2), with all samples exceeding WHO's guideline for dissolved AsT in safe drinking water of 10 μg L-1. Some GW1 (33%) and all GW2 samples contained high levels of fluoride (F-) ranging from 0.6 to 2.6 mg L-1 (1.37 ± 0.59 mg L-1) in GW1 and 2 to 5 mg L-1 (3.2 ± 0.9 mg L-1) in GW2 which also exceeded WHO's guideline for F- in safe drinking water of 1.5 mg L-1. Elevated concentrations of Na+, Cl- and SO42- in the Quaternary flood plain groundwater (GW2) could indicated some degree of sea water mixing as well as some contribution from inland processes (e.g. high evapotranspiration rates, long residence time and soil-water interactions). Dissolution of As bearing VGS or Fe-(oxy)hydroxides, alkaline desorption or competitive desorption with HCO3- from Fe-(oxy)hydroxides appear to be dominating processes of As mobilization, while desorption from fluorapatite elevate dissolved F- levels. This study provides valuable insights on As mobilization processes in Neogene and near coast Quaternary floodplain aquifer.
Collapse
Affiliation(s)
- Numa N Sosa
- Centro de Investigaciones Geológicas (CONICET - UNLP), Diag.113 # 275, La Plata 1900, Argentina.
| | - Harshad V Kulkarni
- Department of Geology, Kansas State University (KSU) - Manhattan, Kansas, 66506, USA; Department of Geological Sciences, University of Texas at San Antonio (UTSA), San Antonio, 78249, USA
| | - Saugata Datta
- Department of Geology, Kansas State University (KSU) - Manhattan, Kansas, 66506, USA; Department of Geological Sciences, University of Texas at San Antonio (UTSA), San Antonio, 78249, USA.
| | - Elisa Beilinson
- Centro de Investigaciones Geológicas (CONICET - UNLP), Diag.113 # 275, La Plata 1900, Argentina
| | - Carlo Porfido
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti (Di.S.S.P.A.), Universitá degli Studi di Bari, Bari 70126, Italy
| | - Matteo Spagnuolo
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti (Di.S.S.P.A.), Universitá degli Studi di Bari, Bari 70126, Italy
| | - Marcelo A Zárate
- Instituto de Ciencias de la Tierra y Ambientales de la Pampa (CONICET - UNLPam), Avenida Uruguay 151, Santa Rosa 6300, Argentina
| | - James Surber
- Department of Geology, Kansas State University (KSU) - Manhattan, Kansas, 66506, USA
| |
Collapse
|
36
|
Richter L, Hernández AH, Pessôa GS, Arruda MAZ, Rezende-Filho AT, de Almeida RB, Menezes HA, Valles V, Barbiero L, Fostier AH. Dissolved arsenic in the upper Paraguay River basin and Pantanal wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 687:917-928. [PMID: 31412495 DOI: 10.1016/j.scitotenv.2019.06.147] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 06/07/2019] [Accepted: 06/09/2019] [Indexed: 06/10/2023]
Abstract
Although high levels of dissolved arsenic were detected in surface and ground waters of Nhecolândia, a sub-region of the vast Pantanal wetlands in Brazil, the possible sources have not been clearly identified and the potential release from the wetland to the draining rivers has not been investigated. In this study we measured the dissolved As content in all the rivers and small streams that supply the southern Pantanal region, as well as in the two main rivers draining the wetland, i.e., the Cuiaba and Paraguay rivers and tributaries. In addition, Arsenic in surface waters, perched water-table, soils and sediments from 3 experimental sites located in the heart of Nhecolândia were compared. On the one hand, the results show the absence of As contamination in rivers that supply the Pantanal floodplain, as well as a lack of significant release from the floodplain to the main drains. The As contents in the rivers are <2 μg L-1, with variations that depend on the lithology and on the geomorphology at the collection point (uplands or floodplain). On the other hand, they confirm the regional extension of As contamination in Nhecolândia's alkaline waters with some values above 3 mg L-1. Arsenic is mainly in the arsenate form, and increases with the evaporation process estimated from sodium ion concentrations. The pH of soil solution and surface water increases rapidly during evapo-concentration up to values above 9 or 10, preventing adsorption processes on oxides and clay minerals and promoting the retention of dissolved arsenic in solution. Solutions from organic soil horizons show higher As contents in relation to Na, attributed to the formation of ternary complex As-(Fe/Al)-OM. In this alkaline pH range, despite high levels of dissolved As, soil horizons and lake sediments in contact with these waters show As values that correspond to uncontaminated environments.
Collapse
Affiliation(s)
- Larissa Richter
- University of Campinas, Chemistry Institute, Campinas, SP, Brazil
| | | | - Gustavo S Pessôa
- University of Campinas, Chemistry Institute, Campinas, SP, Brazil
| | | | | | | | - Hebert A Menezes
- Federal University of South Mato Grosso (FAENG), Campo Grande, MS, Brazil
| | - Vincent Valles
- Université d'Avignon et des Pays de Vaucluse (UAPV), France
| | - Laurent Barbiero
- University of Campinas, Chemistry Institute, Campinas, SP, Brazil; Institut de Recherche pour le Développement (IRD), GET, Toulouse, France; São Carlos Federal University (UFSCar), Sorocaba, SP, Brazil; São Paulo University (CENA-USP), Piracicaba, SP, Brazil.
| | | |
Collapse
|
37
|
Lamela PA, Navoni JA, Pérez RD, Pérez CA, Vodopivez CL, Curtosi A, Bongiovanni GA. Analysis of occurrence, bioaccumulation and molecular targets of arsenic and other selected volcanic elements in Argentinean Patagonia and Antarctic ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 681:379-391. [PMID: 31108358 DOI: 10.1016/j.scitotenv.2019.05.096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 06/09/2023]
Abstract
In Latin America, the high proportion of arsenic (As) in many groundwaters and phreatic aquifers is related to the volcanism of the Andean Range. Nevertheless, there is still very little published research on As and other elements occurrence, and/or transference to biota in Southern regions such as Argentinean Patagonia and the South Shetland Islands in Antarctica, where there are active volcanoes and geothermal processes. Therefore, this study was aimed to describe water quality from the main rivers of Argentinean Northern Patagonia through physicochemical analysis. The Patagonian and Antarctic biota (including samples of animal, plants, algae and bacteria) was characterized through the analysis of their As and other elemental concentrations (P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Se, Br, Rb and Sr), by synchrotron radiation x-ray fluorescence spectroscopy (SRXRF). Finally, the analysis of metal and As-proteins associations in As-accumulating organisms was performed by SRXRF after sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). A wide range of metal concentration including As (up to 950 μg/L As) was found in water samples from Patagonian rivers. A hierarchical cluster analysis revealed that the elemental concentration of analysed biological samples was related to volcanic environments and their place in the trophic chain. Moreover, the results suggest that Se, Co, Cu, Br, and Cl are strong predictors of As in biota. On the other hand, As was not detected in proteins from the studied samples, suggesting biotransformation into soluble As-organic compounds. This is the first study to describe environmental pollution as a consequence of active volcanism, and its influence on water quality and elemental composition of biota in Argentinean Northern Patagonia and Antarctica.
Collapse
Affiliation(s)
- Paula A Lamela
- PROBIEN (Institute of Research and Development in Process Engineering, Biotechnology and Alternative Energies), CONICET-CCT Northern Patagonia, National University of Comahue, Neuquén, Argentina
| | - Julio A Navoni
- PRODEMA (Post-Graduate Program in Development and Environment, Biosciences Center), Federal University of Rio Grande do Norte, Natal, RN, Brazil; PPgUSRN (Post-Graduate Program in Sustainable Use of Natural Resources), Federal Institute of Rio Grande do Norte, Natal, RN, Brazil
| | - Roberto D Pérez
- IFEG (Institute of Physic Enrique Gaviola), CONICET-UNC, School of Mathematics, Astronomy and Physics, National University of Córdoba, Córdoba, Argentina
| | - Carlos A Pérez
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | | | - Antonio Curtosi
- IAA (Argentinean Antarctic Institute), Buenos Aires, Argentina
| | - Guillermina A Bongiovanni
- PROBIEN (Institute of Research and Development in Process Engineering, Biotechnology and Alternative Energies), CONICET-CCT Northern Patagonia, National University of Comahue, Neuquén, Argentina; School of Agricultural Sciences, National University of Comahue, Río Negro, Argentina.
| |
Collapse
|
38
|
Tapia J, Murray J, Ormachea M, Tirado N, Nordstrom DK. Origin, distribution, and geochemistry of arsenic in the Altiplano-Puna plateau of Argentina, Bolivia, Chile, and Perú. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 678:309-325. [PMID: 31075598 DOI: 10.1016/j.scitotenv.2019.04.084] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/17/2019] [Accepted: 04/06/2019] [Indexed: 05/06/2023]
Abstract
Elevated concentrations of arsenic in water supplies represent a worldwide health concern. In at least 14 countries of South America, high levels have been detected relative to international standards and guidelines. Within these countries, the high plateau referred to as the "Altiplano-Puna", encompassing areas of Argentina, Bolivia, Chile, and Perú, exhibits high arsenic concentrations that could be affecting 3 million inhabitants. The origins of arsenic in the Altiplano-Puna plateau are diverse and are mainly natural in origin. Of the natural sources, the most important correspond to mineral deposits, brines, hot springs, and volcanic rocks, whereas anthropogenic sources are related to mining activities and the release of acid mine drainage (AMD). Arsenic is found in all water types of the Altiplano-Puna plateau over a wide range of concentrations (0.01 mg·L-1 < As in water > 10 mg·L-1) which in decreasing order correspond to: AMD, brines, saline waters, hot springs, rivers affected by AMD, rivers and lakes, and groundwater. Despite the few studies which report As speciation, this metalloid appears mostly in its oxidized form (As[V]) and its mobility is highly susceptible to the influence of dry and wet seasons. Once arsenic is released from its natural sources, it also precipitates in secondary minerals where it is generally stable in the form of saline precipitates and Fe oxides. In relation to human health, arsenic adaptation has been detected in some aboriginal communities of the Puna together with an efficient metabolism of this metalloid. Also, the inefficient methylation of inorganic As in women of the Altiplano might lead to adverse health effects such as cancer. Despite the health risks of living in this arsenic-rich environment with limited water resources, not all of the Altiplano-Puna is properly characterized and there exists a lack of information regarding the basic geochemistry of arsenic in the region.
Collapse
Affiliation(s)
- J Tapia
- Escuela de Geología, Facultad de Ingeniería, Universidad Santo Tomás, Santiago, Chile.
| | - J Murray
- Instituto de Bio y Geo Ciencias del NOA (IBIGEO), Universidad Nacional de Salta - CONICET, Av. 9 de Julio 14, Rosario de Lerma, Salta, Argentina; Laboratoire d'Hydrologie et de Géochimie de Strasbourg, Université de Strasbourg/EOST-CNRS UMR 7517, 1 Rue Blessig, 67084 Strasbourg, France
| | - M Ormachea
- Instituto de Investigaciones Químicas, Universidad Mayor de San Andrés, Campus Universitario, Calle 27 Cota Cota, Casilla 303, La Paz, Bolivia
| | - N Tirado
- Instituto de Genética-Facultad de Medicina, Universidad Mayor de San Andrés, Av. Saavedra No 2246, La Paz, Bolivia
| | | |
Collapse
|
39
|
Erickson ML, Malenda HF, Berquist EC, Ayotte JD. Arsenic concentrations after drinking water well installation: Time-varying effects on arsenic mobilization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 678:681-691. [PMID: 31078859 DOI: 10.1016/j.scitotenv.2019.04.362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/24/2019] [Accepted: 04/24/2019] [Indexed: 05/04/2023]
Abstract
Chronic exposure to geogenic arsenic via drinking water is a worldwide health concern. However, effects of well installation and operation on arsenic concentrations and mobilization are not well understood. This knowledge gap impacts both reliable detection of arsenic in drinking water and effective public health recommendations to reduce exposure to arsenic. This study examines changes in arsenic and redox geochemistry over one year following installation of 254 new domestic water wells in three regions of the north-central USA that commonly have elevated arsenic concentrations. Our regions' geologic settings share some important characteristics with other high-arsenic aquifers: igneous bedrock aquifers; or late Pleistocene-age glacial sand and gravel aquifers interbedded with aquitards. Over the study, arsenic concentrations increased by 16% or more in 25% of wells in glacial aquifer regions, and the redox conditions changed towards more reducing. In wells in the bedrock region, there was no significant change in arsenic concentrations, and redox conditions changed towards more oxidizing. Our findings illustrate the importance of understanding short- to moderate-term impacts of well installation and operation on arsenic and aqueous chemistry, as it relates to human exposure. Our study informs water quality sampling requirements, which currently do not consider the implications sampling timing with respect to well installation. Evaluating arsenic concentrations in samples from new wells in the context of general regional pH and redox conditions can provide information regarding the degree of disequilibrium created by well drilling. Our analysis approach may be transferable and scalable to similar aquifer settings across the globe.
Collapse
Affiliation(s)
- Melinda L Erickson
- U.S. Geological Survey, Upper Midwest Water Science Center, Minnesota office, 2280 Woodale Dr., Mounds View, MN 55112, United States.
| | - Helen F Malenda
- Colorado School of Mines, 1500 Illinois St., Golden, CO 80401, United States
| | - Emily C Berquist
- Minnesota Department of Health, 625 Robert Street North, St. Paul, MN 55155, United States
| | - Joseph D Ayotte
- U.S. Geological Survey, New England Water Science Center, New Hampshire - Vermont Office, 331 Commerce Way, Pembroke, NH 03301, United States
| |
Collapse
|
40
|
Vital M, Martínez DE, Babay P, Quiroga S, Clément A, Daval D. Control of the mobilization of arsenic and other natural pollutants in groundwater by calcium carbonate concretions in the Pampean Aquifer, southeast of the Buenos Aires province, Argentina. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 674:532-543. [PMID: 31022543 DOI: 10.1016/j.scitotenv.2019.04.151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
The water supply for human consumption in the Chaco-Pampean region in Argentina is restricted by the low quality of groundwater due to elevated concentrations of arsenic and other trace elements. Previous studies indicated a complex concurrence of factors and processes that are believed responsible to control the distribution of arsenic in groundwater. For a better understanding of the origin of trace elements in the Pampean aquifer, flow-through experiments with loess and calcrete samples representative of the sediments that constitute the aquifer were carried out in continuous flow reactors. The aqueous solutions were collected and the concentrations of SiO2(aq), Ca2+, SO42-, Na+, Cl-, F- and trace elements (Ba, Sr, V, and As) were measured by inductively coupled plasma atomic emission spectroscopy (ICP-AES), high performance liquid chromatography (HPLC) and capillary electrophoresis. The experiments showed differences in the release rate of elements to the solution according to the type of sediment. The highest concentrations of V, Ba, and As were measured in experiments conducted with loess, and these elements were released quickly to the solution in the first minute of the test. In the case of loess, V and As are suggested to be adsorbed on the solid particles surface. Conversely, the experiments conducted with calcrete showed a lower but continuous release of those elements. This last result may indicate that the trace elements were coprecipitated in the calcite. In addition, it was demonstrated that F did not come from the dissolution of minerals such as fluorapatite, but both desorption from solid surface and dissolution from calcite minerals account for the release of F. This study support that both dissolution and adsorption-desorption processes can control the mobility of trace elements, with an emphasis on the role of calcrete in the retention and the mobilization of trace elements in the Pampean aquifer.
Collapse
Affiliation(s)
- M Vital
- Instituto de Geología de Costas y Cuaternario (UNMDP-CIC) - Instituto de Investigaciones Marinas y Costeras (CONICET-UNMDP), Mar del Plata, Argentina.
| | - D E Martínez
- Instituto de Geología de Costas y Cuaternario (UNMDP-CIC) - Instituto de Investigaciones Marinas y Costeras (CONICET-UNMDP), Mar del Plata, Argentina
| | - P Babay
- Comisión Nacional de Energía Atómica, Centro Atómico Constituyentes, Av. Gral. Paz 1499, B1650 Villa Maipú, Pcia de Buenos Aires, Argentina
| | - S Quiroga
- Departamento de Química, Universidad Nacional de Mar del Plata, Argentina
| | - A Clément
- Université de Strasbourg/EOST, CNRS, Laboratoire d'Hydrologie et de Géochimie de Strasbourg, 1 rue Blessig, F-67084 Strasbourg Cedex, France
| | - D Daval
- Université de Strasbourg/EOST, CNRS, Laboratoire d'Hydrologie et de Géochimie de Strasbourg, 1 rue Blessig, F-67084 Strasbourg Cedex, France
| |
Collapse
|
41
|
Bartos M, Gumilar F, Gallegos CE, Bras C, Dominguez S, Cancela LM, Minetti A. Effects of Perinatal Fluoride Exposure on Short- and Long-Term Memory, Brain Antioxidant Status, and Glutamate Metabolism of Young Rat Pups. Int J Toxicol 2019; 38:405-414. [PMID: 31220985 DOI: 10.1177/1091581819857558] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Exposure to fluoride (F) during the development affects central nervous system of the offspring rats which results in the impairment of cognitive functions. However, the exact mechanisms of F neurotoxicity are not clearly defined. To investigate the effects of perinatal F exposure on memory ability of young rat offspring, dams were exposed to 5 and 10 mg/L F during gestation and lactation. Additionally, we evaluated the possible underlying neurotoxic mechanisms implicated. The results showed that the memory ability declined in 45-day-old offspring, together with a decrease of catalase and glutamate transaminases activity in specific brain areas. The present study reveals that exposure to F in early stages of rat development leads to impairment of memory in young offspring, highlighting the alterations of oxidative stress markers as well as the activity of enzymes involved in the glutamatergic system as a possible mechanisms of neurotoxicity.
Collapse
Affiliation(s)
- Mariana Bartos
- Toxicology Lab. INBIOSUR, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-CONICET, Buenos Aires, Argentina
| | - Fernanda Gumilar
- Toxicology Lab. INBIOSUR, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-CONICET, Buenos Aires, Argentina
| | - Cristina E Gallegos
- Toxicology Lab. INBIOSUR, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-CONICET, Buenos Aires, Argentina
| | - Cristina Bras
- Toxicology Lab. INBIOSUR, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-CONICET, Buenos Aires, Argentina
| | - Sergio Dominguez
- Toxicology Lab. INBIOSUR, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-CONICET, Buenos Aires, Argentina
| | - Liliana M Cancela
- IFEC, Departamento de Farmacología, Universidad Nacional de Córdoba-CONICET, Córdoba, Argentina
| | - Alejandra Minetti
- Toxicology Lab. INBIOSUR, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-CONICET, Buenos Aires, Argentina
| |
Collapse
|
42
|
Londonio A, Morzán E, Smichowski P. Determination of toxic and potentially toxic elements in rice and rice-based products by inductively coupled plasma-mass spectrometry. Food Chem 2019; 284:149-154. [DOI: 10.1016/j.foodchem.2019.01.104] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/18/2019] [Accepted: 01/20/2019] [Indexed: 11/29/2022]
|
43
|
Dehbandi R, Abbasnejad A, Karimi Z, Herath I, Bundschuh J. Hydrogeochemical controls on arsenic mobility in an arid inland basin, Southeast of Iran: The role of alkaline conditions and salt water intrusion. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 249:910-922. [PMID: 30965543 DOI: 10.1016/j.envpol.2019.03.082] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 03/06/2019] [Accepted: 03/20/2019] [Indexed: 06/09/2023]
Abstract
Elevated inorganic arsenic concentrations in groundwater has become a major public and environmental health concern in different parts of the world. Currently, As-contaminated groundwater issue in many countries and regions is a major topic for publications at global level. However, there are many regions worldwide where the problem has still not been resolved or fully understood due to inadequate hydrogeochemical investigations. Hence, this study evaluates for the first time the hydrogeochemical behavior of the arid and previously unexplored inland basin of Sirjan Plain, south east (SE) Iran, in order to assess the controlling factors which influence arsenic (As) mobility and its distribution through groundwater resources. Total inorganic arsenic concentration was measured using inductive-coupled plasma optical emission spectrometry (ICP-OES). Arsenic content in groundwater of this region ranged between 2.4 and 545.8 μg/L (mean value: 86.6 μg/L) and 50% of the samples exceeded the World Health Organization (WHO) guideline value of 10 μg/L in drinking water. Groundwater was mainly of Na-Cl type and alkaline due to silicate weathering, ion exchange and evaporation in arid conditions. Elevated As concentrations were generally observed under weakly alkaline to alkaline conditions (pH > 7.4). Multivariate statistical analysis including cluster analysis and bi-plot grouped As with pH and HCO3 and demonstrated that the secondary minerals including oxyhydroxides of Fe are the main source of As in groundwater in this region. The desorption of As from these mineral phases occurs under alkaline conditions in oxidizing arid environments thereby leading to high levels of As in groundwater. Moreover, evaporation, ion exchange and saltwater intrusion were the secondary processes accelerating As release and its mobility in groundwater. Based on the results of this study, desorption of As from metal oxy-hydroxides surfaces under alkaline conditions, evaporation and intrusion of As-rich saline water are considered to be the major factors causing As enrichment in arid inland basins such as those in southeast Iran. This study proposes the regular monitoring and proper groundwater management practices to mitigate high levels of arsenic in groundwater and related drinking water wells of Sirjan Plain.
Collapse
Affiliation(s)
- Reza Dehbandi
- Department of Environmental Health Engineering, Faculty of Health and Health Science Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahmad Abbasnejad
- Department of Geology, Faculty of Sciences, Shahid Bahonar University of Kerman, Iran.
| | - Zohreh Karimi
- Department of Geology, Faculty of Sciences, Shahid Bahonar University of Kerman, Iran
| | - Indika Herath
- School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, 4350, Queensland, Australia
| | - Jochen Bundschuh
- UNESCO Chair on Groundwater Arsenic within the 2030 Agenda for Sustainable Development, University of Southern Queensland, West Street, Toowoomba, 4350, Queensland, Australia
| |
Collapse
|
44
|
Juncos R, Arcagni M, Squadrone S, Rizzo A, Arribére M, Barriga JP, Battini MA, Campbell LM, Brizio P, Abete MC, Ribeiro Guevara S. Interspecific differences in the bioaccumulation of arsenic of three Patagonian top predator fish: Organ distribution and arsenic speciation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 168:431-442. [PMID: 30399542 DOI: 10.1016/j.ecoenv.2018.10.077] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 10/09/2018] [Accepted: 10/22/2018] [Indexed: 06/08/2023]
Abstract
Interspecific differences in arsenic bioaccumulation and organ distribution (muscle, liver, kidney and gills) in three predator fish (creole perch, rainbow trout and brown trout) from a Patagonian lake impacted by volcanic eruptions were studied. Arsenic in fish organs were compared analyzing: 1) temporal (before and after volcanic eruption) and spatial (near and far from the volcano) influence of Puyehue-Cordón Caulle volcanic complex activity on arsenic concentrations; 2) the influence of growth (as total length), organ type and their interactions over arsenic accumulation; and 3) arsenic speciation and total arsenic relationship with carbon to nitrogen ratios (C:N), as a proxy of lipid presence, in fish muscle. In general, total arsenic concentrations in creole perch organs were 2-7 times higher than those recorded in the corresponding organs of salmonids. Arsenic was preferentially accumulated in liver and kidney in the three fish species. The influence of the volcanic activity over arsenic concentrations was more evident in creole perch: organs from creole perch captured closest to the volcano exhibited higher arsenic concentrations. Temporal variations were not so consistent. No clear relationship between arsenic and fish length was observed. Positive and linear relationship between arsenic in all pair of organs was found in creole perch, while rainbow trout showed a quadratic relationship between muscle and the remaining organs, indicating different arsenic assimilation-elimination relationships between organs and fish. The arsenic liver:muscle ratio in the three fish species was greater than 1, suggesting some level of arsenic stress. Arsenobetaine (AB) and dimethylarsinic acid (DMA) were the dominant arsenic species in muscle of these fish, having creole perch 3-4 times higher AB than rainbow trout. A positive relationship between C:N ratio and total arsenic concentrations was found, with higher C:N in creole perchs near the volcano. In terms of food safety, no inorganic arsenic compound were detected, therefore arsenic levels in fish from Lake Nahuel Huapi does not represent any health risk to consumers.
Collapse
Affiliation(s)
- R Juncos
- Laboratorio de Análisis por Activación Neutrónica (LAAN), Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, Av. Bustillo 9500, 8400 Bariloche, Argentina; Centro Científico Tecnológico - CONICET - Patagonia Norte, Av. de los Pioneros 2350, 8400 Bariloche, Argentina.
| | - M Arcagni
- Laboratorio de Análisis por Activación Neutrónica (LAAN), Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, Av. Bustillo 9500, 8400 Bariloche, Argentina; Centro Científico Tecnológico - CONICET - Patagonia Norte, Av. de los Pioneros 2350, 8400 Bariloche, Argentina
| | - S Squadrone
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e valle d'Aosta via Bologna 148, 10154 Torino, Italy
| | - A Rizzo
- Laboratorio de Análisis por Activación Neutrónica (LAAN), Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, Av. Bustillo 9500, 8400 Bariloche, Argentina; Centro Científico Tecnológico - CONICET - Patagonia Norte, Av. de los Pioneros 2350, 8400 Bariloche, Argentina
| | - M Arribére
- Laboratorio de Análisis por Activación Neutrónica (LAAN), Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, Av. Bustillo 9500, 8400 Bariloche, Argentina
| | - J P Barriga
- Grupo de Ecología y Fisiología de Peces, Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA) - CONICET, Universidad Nacional del Comahue, Quintral 1250, 8400 Bariloche, Argentina
| | - M A Battini
- Istituto Andino Patagónico en Tecnologías Biológicas y Geoambientales (IPATEC), Universidad Nacional del Comahue, Quintral 1250, 8400 Bariloche, Argentina
| | - L M Campbell
- Department of Environmental Science, Saint Mary's University, 923 Robie St., Halifax, NS B3H 3C3, Canada
| | - P Brizio
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e valle d'Aosta via Bologna 148, 10154 Torino, Italy
| | - M C Abete
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e valle d'Aosta via Bologna 148, 10154 Torino, Italy
| | - S Ribeiro Guevara
- Laboratorio de Análisis por Activación Neutrónica (LAAN), Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, Av. Bustillo 9500, 8400 Bariloche, Argentina
| |
Collapse
|
45
|
Jia Y, Xi B, Jiang Y, Guo H, Yang Y, Lian X, Han S. Distribution, formation and human-induced evolution of geogenic contaminated groundwater in China: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 643:967-993. [PMID: 29960233 DOI: 10.1016/j.scitotenv.2018.06.201] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 06/04/2018] [Accepted: 06/16/2018] [Indexed: 06/08/2023]
Abstract
The sustainability of groundwater usage faces quality problem caused by anthropogenic activity as well as geogenic contamination. With varied climate zones, geomorphology and geological background, China faces a variety of geogenic contaminated groundwater (GCG) reported known as high TDS, Fe, Mn, As, F, I, NH4+, U, Cr and low I, Se, etc., may still exist some others not fully known yet. The problem of GCG is more significant in northern China due to extensive groundwater usage, arid climate and widespread Holocene strata. High salinity groundwater is mainly distributed in semi-arid/arid northwestern inland basins and coastal areas. Elevated Fe and Mn are frequently concomitant and controlled by redox potential, prevailing in the Sanjiang Plain, Yellow River Basin, and middle and lower reaches of the Yangtze River Basin. High As groundwater occurs in reducing aquifer is mainly distributed in the Yellow River, Yangtze River and Huai River Basins as well as the Songnen Plain and Xinjiang. Fluoride is characterized by its areal distribution in northern China in comparison with scatter occurrence in the south. The dissolution of F-bearing minerals as well as evaporation effect both contribute to elevated F. High iodine groundwater mainly distributed in the Yellow-Huai-Hai River Basin and low iodine prevailing in piedmont areas both pose health issues. Iodine is related to decomposition of organic matter (OC) as well as marine origin. Contributed by OC mineralization naturally-occurring NH4+ was found in reducing aquifers. The GCG triggers endemic disease in addition to reduce groundwater resource. The co-occurrence like high TDS and F, As and F are frequently observed posing major challenges for mitigation. Anthropogenic influence like abstraction and pollutant infiltration would alter groundwater flow and the redox condition causing the further evolution of GCG. Identification of GCG should be made in rural areas where private wells prevail to ensure resident's health.
Collapse
Affiliation(s)
- Yongfeng Jia
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Yonghai Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Huaming Guo
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Yu Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Xinying Lian
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Shuangbao Han
- Center for Hydrogeology and Environmental Geology, China Geological Survey, Baoding 071051, PR China
| |
Collapse
|
46
|
Wang Y, Li P, Jiang Z, Liu H, Wei D, Wang H, Wang Y. Diversity and abundance of arsenic methylating microorganisms in high arsenic groundwater from Hetao Plain of Inner Mongolia, China. ECOTOXICOLOGY (LONDON, ENGLAND) 2018; 27:1047-1057. [PMID: 29951795 DOI: 10.1007/s10646-018-1958-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/07/2018] [Indexed: 06/08/2023]
Abstract
Arsenic methylation is regarded as an effective way of arsenic detoxification. Current knowledge about arsenic biomethylation in high arsenic groundwater remains limited. In the present study, 16 high arsenic groundwater samples from deep wells of the Hetao Plain were investigated using clone library and quantitative polymerase chain reaction (qPCR) analyses of arsM genes as well as geochemical analysis. The concentrations of methylated arsenic (including monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA)) varied from 2.40 to 16.85 μg/L. Both bacterial and archaeal arsenic methylating populations were detected in the high arsenic aquifer. They were dominated by Proteobacteria, Firmicutes, Gemmatimonadetes, Nitrospirae, Methanomicrobia and a large unidentified group. The abundances of predominant populations were correlated positively to either total organic carbon or total arsenic and arsenite concentrations. The arsM gene abundances in high arsenic groundwater ranged from below detection to 5.71 × 106 copies/L and accounted for 0-3.32‰ of total bacterial and archaeal 16S rRNA genes. The arsM gene copies in high arsenic groundwater showed closely positive correlations with methylated arsenic concentrations. The overall results implied that arsenic methylating microorganisms were abundant and diverse in high arsenic groundwater. This was the first study of arsenic methylating microbial communities in high arsenic groundwater aquifers and might provide useful information for arsenic bioremediation in groundwater systems.
Collapse
Affiliation(s)
- Yanhong Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Ping Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China.
| | - Zhou Jiang
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Han Liu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Dazhun Wei
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Helin Wang
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Yanxin Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China.
- School of Environmental Studies, China University of Geosciences, Wuhan, China.
| |
Collapse
|
47
|
Bartos M, Gumilar F, Gallegos CE, Bras C, Dominguez S, Mónaco N, Esandi MDC, Bouzat C, Cancela LM, Minetti A. Alterations in the memory of rat offspring exposed to low levels of fluoride during gestation and lactation: Involvement of the α7 nicotinic receptor and oxidative stress. Reprod Toxicol 2018; 81:108-114. [PMID: 30009953 DOI: 10.1016/j.reprotox.2018.07.078] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 07/03/2018] [Accepted: 07/12/2018] [Indexed: 10/28/2022]
Abstract
Daily exposure to fluoride (F) depends mainly on the intake of this element with drinking water. When administered during gestation and lactation, F has been associated with cognitive deficits in the offspring. However, the mechanisms underlying the neurotoxicity of F remain obscure. In the current study, we investigated the effects of oral exposure to low levels of F during the gestational and lactation periods, on the memory of adult female rat offspring. We also considered a possible underlying neurotoxic mechanism. Our results showed that this exposure reduced step-down latency in the inhibitory avoidance task, and decreased both mRNA expression of the α7 nicotinic receptor (nAChR) and catalase activity in hippocampus. Our data indicates that low F concentrations administrated during gestation and lactation decrease the memory of 90-day-old female offspring. This suggests that the mechanism might be connected with an α7 nAChR deficit in the hippocampus, induced by oxidative stress.
Collapse
Affiliation(s)
- Mariana Bartos
- Toxicology Laboratory, INBIOSUR, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-CONICET, 8000 Bahía Blanca, Buenos Aires, Argentina.
| | - Fernanda Gumilar
- Toxicology Laboratory, INBIOSUR, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-CONICET, 8000 Bahía Blanca, Buenos Aires, Argentina
| | - Cristina E Gallegos
- Toxicology Laboratory, INBIOSUR, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-CONICET, 8000 Bahía Blanca, Buenos Aires, Argentina
| | - Cristina Bras
- Toxicology Laboratory, INBIOSUR, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-CONICET, 8000 Bahía Blanca, Buenos Aires, Argentina
| | - Sergio Dominguez
- Toxicology Laboratory, INBIOSUR, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-CONICET, 8000 Bahía Blanca, Buenos Aires, Argentina
| | - Nina Mónaco
- Toxicology Laboratory, INBIOSUR, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-CONICET, 8000 Bahía Blanca, Buenos Aires, Argentina
| | - María Del Carmen Esandi
- INIBIBB, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-CONICET, 8000 Bahía Blanca, Buenos Aires, Argentina
| | - Cecilia Bouzat
- INIBIBB, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-CONICET, 8000 Bahía Blanca, Buenos Aires, Argentina
| | - Liliana M Cancela
- IFEC, Departamento de Farmacología, Universidad Nacional de Córdoba-CONICET, 5000, Córdoba, Argentina
| | - Alejandra Minetti
- Toxicology Laboratory, INBIOSUR, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-CONICET, 8000 Bahía Blanca, Buenos Aires, Argentina
| |
Collapse
|
48
|
Mushtaq N, Younas A, Mashiatullah A, Javed T, Ahmad A, Farooqi A. Hydrogeochemical and isotopic evaluation of groundwater with elevated arsenic in alkaline aquifers in Eastern Punjab, Pakistan. CHEMOSPHERE 2018; 200:576-586. [PMID: 29505930 DOI: 10.1016/j.chemosphere.2018.02.154] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/23/2018] [Accepted: 02/25/2018] [Indexed: 06/08/2023]
Abstract
Geochemical investigation was carried out for delineating factors responsible for the mobilization of arsenic (As) from aquifer material into the groundwater. Four sites along Ravi River, (Samada, Sarai Chimba, Kot Maiga and Chah Fatehwala), were selected based on the blanket survey. Groundwater-rock interaction and evaporation were the key phenomena controlling groundwater chemistry, as shown by the hydrogeochemical data. Groundwater was predominantly Na-Cl type, with other principle facies being Na-HCO3, Na-Ca-HCO3 and Ca-Mg-Cl. The groundwater As concentration ranged between below detection level (2 μg/L) to 548 μg/L with 59% samples exceeding the World Health Organization (WHO) guidelines for As in drinking water (10 μg/L) and 31% having higher concentrations than the National Environmental Quality Standard (NEQS, 50 μg/L). Moderate to high concentrations of SO4-2 averaged at 244 mg/L and moderate NO3- concentrations averaged at 8 mg/L, together with alkaline pH (7.3-8.8) and high Eh values (113-402 mV) suggest partial oxidizing nature of the aquifers. The values for δ 18O and δ 2H in groundwater varied between -9.14 and -5.51‰, and -56.57 to -39.5‰ respectively, and suggests meteoric origin of the groundwater with some evaporative loss. This effect could be partly responsible for elevated levels of pH and salinity in groundwater. Based on geochemical and isotopic composition of groundwater, desorption of As from metal surfaces under alkaline environment might be the factor causing As enrichment in study area.
Collapse
Affiliation(s)
- Nisbah Mushtaq
- Environmental Geochemistry Laboratory, Faculty of Biological Sciences, Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ayesha Younas
- Environmental Geochemistry Laboratory, Faculty of Biological Sciences, Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Azhar Mashiatullah
- Isotope Application Division, Pakistan Institute of Nuclear Science and Technology (PINSTECH), Nilore, Islamabad, Pakistan
| | - Tariq Javed
- Isotope Application Division, Pakistan Institute of Nuclear Science and Technology (PINSTECH), Nilore, Islamabad, Pakistan
| | - Arslan Ahmad
- KWR Water Cycle Research Institute, 3433 PE Nieuwegein, The Netherlands
| | - Abida Farooqi
- Environmental Geochemistry Laboratory, Faculty of Biological Sciences, Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
49
|
Shakoor MB, Bibi I, Niazi NK, Shahid M, Nawaz MF, Farooqi A, Naidu R, Rahman MM, Murtaza G, Lüttge A. The evaluation of arsenic contamination potential, speciation and hydrogeochemical behaviour in aquifers of Punjab, Pakistan. CHEMOSPHERE 2018; 199:737-746. [PMID: 29475162 DOI: 10.1016/j.chemosphere.2018.02.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/13/2018] [Accepted: 02/01/2018] [Indexed: 06/08/2023]
Abstract
In this study, we tested 123 groundwater wells from five different areas of Punjab, Pakistan for arsenic (As) contamination level and species, as well as delineated hydrogeochemical behaviour of As in aquifers. Results revealed that 75% and 41% of the groundwater wells exceeded the safe As limit of World Health Organisation (WHO, 10 μg L-1) and Pakistan-EPA (50 μg L-1), respectively. Arsenite (As(III)) and arsenate (As(V)) spanned 0-80% and 20-100% of total As (1.2-206 μg L-1), respectively. The mean As content (5.2 μg L-1) of shallow wells at 9-40 m depth did not exceed the WHO safe limit, representing a safe aquifer zone for pumping of groundwater compared to deeper wells at 41-90 m (51 μg L-1) and >90 m (23 μg L-1) depths. Piper-plot elucidated that the aqueous chemistry was dominated with Na-SO4, Na-Ca-SO4, Na-Mg-SO4 type saline water. Principal component analysis grouped As concentration with well depth, pH, salinity, Fe and CO3, exhibiting that these hydrogeochemical factors could have potential role in controlling As release/sequestration into the aquifers of study area. Geochemical modeling showed positive saturation indices only for iron (Fe) oxide-phases, indicating Fe oxides as the major carriers of As. Overall, this study provides insights to tackle emerging As threat to the communities in Punjab, Pakistan, as well as help develop suitable management/mitigation strategies - based on the baseline knowledge of As levels/species and factors governing As contamination in the study area.
Collapse
Affiliation(s)
- Muhammad Bilal Shakoor
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan; Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Irshad Bibi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan; MARUM and Department of Geosciences, University of Bremen, Bremen, D-28359, Germany
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan; MARUM and Department of Geosciences, University of Bremen, Bremen, D-28359, Germany; Southern Cross GeoScience, Southern Cross University, Lismore, 2480, NSW, Australia.
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari, Pakistan
| | - Muhammad Farrakh Nawaz
- Department of Forestry and Range Management, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Abida Farooqi
- Environmental Geochemistry Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Ghulam Murtaza
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Andreas Lüttge
- MARUM and Department of Geosciences, University of Bremen, Bremen, D-28359, Germany
| |
Collapse
|
50
|
Jaafar M, Marcilla AL, Felipe-Sotelo M, Ward NI. Effect of food preparation using naturally-contaminated groundwater from La Pampa, Argentina: Estimation of elemental dietary intake from rice and drinking water. Food Chem 2018; 246:258-265. [DOI: 10.1016/j.foodchem.2017.11.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/03/2017] [Accepted: 11/06/2017] [Indexed: 10/18/2022]
|