1
|
Hassen HK, Mekasha YT, Tegegne AA, Ozalp Y. A narrative review on problems in product quality, regulatory system constraints, and the concept of quality by design as a solution for quality assurance of African medicines. Front Med (Lausanne) 2024; 11:1472495. [PMID: 39421861 PMCID: PMC11484627 DOI: 10.3389/fmed.2024.1472495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/06/2024] [Indexed: 10/19/2024] Open
Abstract
Background The provision of medicines with confirmed quality and efficacy is critical for maintaining the public health and building confidence in the healthcare systems. However, the presence of poor-quality medicines still presents a significant challenge in the pharmaceutical landscape across the African regions. This is further exacerbated by the lack of consistency or discrepancy in the current regulatory framework. As a consequence, given the current constraints, a robust regulatory structure that can guarantee the supply chains attainment of the intended medicinal product requirements are required. Objective The review aimed to provide a detailed analysis of the quality issues in the pharmaceutical supply in Africa, highlighting the challenges and proposing potential solutions for its mitigation. Methods The review was conducted from May 2023 to April 2024. This narrative review examined poor-quality medicines, regulatory challenges, and mitigation strategies in the African pharmaceutical industry. The review utilized databases such as Google Scholar, PubMed, and Web of Science. The search strategy was customized to include open-access articles published in peer-reviewed scientific journals in English and focused exclusively on studies conducted in African countries. Results The review portrays the prevalence of poor-quality medicinal products in various regions of Africa. Among various categories of findings, 42% of the reports on poor-quality medicinal products come from the African region, as per the WHO report. Furthermore, separate findings on substandard medicinal products from many African countries were encountered. The presence of problems in the regulatory system, such as the absence of any pharmacopeia belonging to any African country and variation/inconsistency in each country's regulatory set-up, was indicated. Other factors for the inability to enforce regulatory law, such as insufficient skilled and committed human resources, the presence of corruption, as well as financial resource scarcity, were revealed in the review. From the situational analysis, the possibility of building a robust quality assurance system in the near future through a quality by design approach under existing resource limitations was discussed. Conclusion The pharmaceutical sector in Africa faces significant challenges, including the prevalence of poor-quality medicines and weak regulatory enforcement. Tackling these challenges are vital for enhancing health outcomes throughout the continent through the provision of high-quality medicines. Trending toward quality by design in the quality assurance system under prevailing financial scarcity can be very beneficial.
Collapse
Affiliation(s)
- Hassen Kebede Hassen
- Veterinary Drug and Feed Control Administration and Control Authority, Addis Ababa, Ethiopia
| | - Yesuneh Tefera Mekasha
- Pharmaceutical Sciences, Pharmaceutical Quality Assurance, and Regulatory Affairs, University of Gondar, Gondar, Ethiopia
| | - Addisu Afrassa Tegegne
- Pharmaceutical Sciences, Pharmaceutical Quality Assurance, and Regulatory Affairs, University of Gondar, Gondar, Ethiopia
| | - Yildiz Ozalp
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Near East University, Nicosia, Cyprus
| |
Collapse
|
2
|
Algahtani MS, Ahmad J, Mohammed AA, Ahmad MZ. Extrusion-based 3D printing for development of complex capsular systems for advanced drug delivery. Int J Pharm 2024; 663:124550. [PMID: 39103062 DOI: 10.1016/j.ijpharm.2024.124550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/16/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
This review explores the feasibility of extrusion-based 3D printing techniques for producing complex dosage forms (such as capsular shells/devices) that provide controlled drug release and targeted delivery. The current discussion explores how extrusion-based 3D printing techniques, particularly Fused Deposition Modelling (FDM) and Pressure-Assisted Modelling (PAM), offer significant advantages in fabricating such complex dosage forms. This technology enables the fabrication of single-, dual-, or multi-compartment capsular systems with customized designs/geometry of the capsular shell to achieve delayed, sustained, or pulsatile drug release. The impact of customized design/geometry on the biopharmaceutical performances of loaded therapeutics is comprehensively discussed. The potential of 3D printing techniques for different specialized drug delivery purposes like gastric floating, implants, suppositories, and printfills are also addressed. This technique has the potential to significantly improve the therapeutic outcomes, and patient adherence to medication regimens, and pave the way for personalized medicine.
Collapse
Affiliation(s)
- Mohammed S Algahtani
- Department of Pharmaceutics, College of Pharmacy, Najran University, Saudi Arabia.
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Saudi Arabia
| | - Abdul Aleem Mohammed
- Department of Pharmaceutics, College of Pharmacy, Najran University, Saudi Arabia
| | - Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Saudi Arabia
| |
Collapse
|
3
|
Levy RM, Mekhail NA, Kapural L, Gilmore CA, Petersen EA, Goree JH, Pope JE, Costandi SJ, Kallewaard JW, Thomson S, Gilligan C, AlFarra T, Broachwala MY, Chopra H, Hunter CW, Rosen SM, Amirdelfan K, Falowski SM, Li S, Scowcroft J, Lad SP, Sayed D, Antony A, Deer TR, Hayek SM, Guirguis MN, Boeding RB, Calodney AK, Bruel B, Buchanan P, Soliday N, Duarte RV, Leitner A, Staats PS. Maximal Analgesic Effect Attained by the Use of Objective Neurophysiological Measurements With Closed-Loop Spinal Cord Stimulation. Neuromodulation 2024:S1094-7159(24)00655-X. [PMID: 39254621 DOI: 10.1016/j.neurom.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/26/2024] [Accepted: 07/16/2024] [Indexed: 09/11/2024]
Abstract
OBJECTIVES Spinal cord stimulation (SCS) has been challenged by the lack of neurophysiologic data to guide therapy optimization. Current SCS programming by trial-and-error results in suboptimal and variable therapeutic effects. A novel system with a physiologic closed-loop feedback mechanism using evoked-compound action potentials enables the optimization of physiologic neural dose by consistently and accurately activating spinal cord fibers. We aimed to identify neurophysiologic dose metrics and their ranges that resulted in clinically meaningful treatment responses. MATERIALS AND METHODS Subjects from 3 clinical studies (n = 180) with baseline back and leg pain ≥60 mm visual analog scale and physical function in the severe to crippled category were included. Maximal analgesic effect (MAE) was operationally defined as the greatest percent reduction in pain intensity or as the greatest cumulative responder score (minimal clinically important differences [MCIDs]) obtained within the first 3 months of SCS implant. The physiologic metrics that produced the MAE were analyzed. RESULTS We showed that a neural dose regimen with a high neural dose accuracy of 2.8μV and dose ratio of 1.4 resulted in a profound clinical benefit to chronic pain patients (MAE of 79 ± 1% for pain reduction and 12.5 ± 0.4 MCIDs). No differences were observed for MAE or neurophysiological dose metrics between the trial phase and post-implant MAE visit. CONCLUSION For the first time, an evidence-based neural dose regimen is available for a neurostimulation intervention as a starting point to enable optimization of clinical benefit, monitoring of adherence, and management of the therapy.
Collapse
Affiliation(s)
- Robert M Levy
- Neurosurgical Services, Clinical Research, Anesthesia Pain Care Consultants, Tamarac, FL, USA.
| | - Nagy A Mekhail
- Evidence-Based Pain Management Research, Neurologic Institute, Cleveland Clinic, Cleveland Ohio, OH, USA
| | - Leonardo Kapural
- Center for Clinical Research, Carolinas Pain Institute, Winston-Salem, NC, USA
| | | | - Erika A Petersen
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Johnathan H Goree
- Department of Anesthesiology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Shrif J Costandi
- Evidence-Based Pain Management Research, Neurologic Institute, Cleveland Clinic, Cleveland Ohio, OH, USA
| | - Jan Willem Kallewaard
- Department of Anaesthesiology and Pain Management, Rijnstate Hospital, Elst, The Netherlands; Department of Anesthesiology and Pain Medicine, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Simon Thomson
- Pain Medicine and Neuromodulation, Mid & South Essex University Hospitals, Essex, UK
| | | | - Tariq AlFarra
- Department of Physical Medicine & Rehabilitation, Mount Sinai Hospital, New York, NY, USA
| | - Mustafa Y Broachwala
- Department of Physical Medicine & Rehabilitation, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Harman Chopra
- Department of Physical Medicine & Rehabilitation, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Corey W Hunter
- Ainsworth Institute of Pain Management, New York, NY, USA
| | - Steven M Rosen
- Delaware Valley Pain and Spine Institute, Trevose, PA, USA
| | | | | | - Sean Li
- National Spine and Pain Centers, Shrewsbury, NJ, USA
| | | | - Shivanand P Lad
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Dawood Sayed
- Department of Anesthesiology, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Ajay Antony
- The Orthopaedic Institute, Gainesville, FL, USA
| | - Timothy R Deer
- The Spine and Nerve Center of the Virginias, Charleston, WV, USA
| | - Salim M Hayek
- Division of Pain Medicine, University Hospitals, Cleveland Medical Center, Cleveland, OH, USA
| | | | | | | | - Brian Bruel
- Department of Physical Medicine and Rehabilitation, McGovern Medical School and Cy Pain and Spine PLLC, Houston, TX, USA
| | - Patrick Buchanan
- Spanish Hills Interventional Pain Specialists, Camarillo, CA, USA
| | - Nicole Soliday
- Saluda Medical Pty Ltd, Macquarie Park, New South Wales, Australia
| | - Rui V Duarte
- Saluda Medical Pty Ltd, Macquarie Park, New South Wales, Australia; Department of Health Data Science, University of Liverpool, Liverpool, UK
| | - Angela Leitner
- Saluda Medical Pty Ltd, Macquarie Park, New South Wales, Australia
| | | |
Collapse
|
4
|
Kovačević M, Gašperlin M, Pobirk AZ. Lipid-based systems with precipitation inhibitors as formulation approach to improve the drug bioavailability and/or lower its dose: a review. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2024; 74:201-227. [PMID: 38815207 DOI: 10.2478/acph-2024-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/14/2024] [Indexed: 06/01/2024]
Abstract
Lipid-based systems, such as self-microemulsifying systems (SMEDDS) are attracting strong attention as a formulation approach to improve the bioavailability of poorly water-soluble drugs. By applying the "spring and parachute" strategy in designing supersaturable SMEDDS, it is possible to maintain the drug in the supersaturated state long enough to allow absorption of the complete dose, thus improving the drug's bio-availability. As such an approach allows the incorporation of larger amounts of the drug in equal or even lower volumes of SMEDDS, it also enables the production of smaller final dosage forms as well as decreased gastrointestinal irritation, being of particular importance when formulating dosage forms for children or the elderly. In this review, the technological approaches used to prolong the drug supersaturation are discussed regarding the type and concentration of polymers used in liquid and solid SMEDDS formulation. The addition of hypromellose derivatives, vinyl polymers, polyethylene glycol, polyoxyethylene, or polymetacrylate copolymers proved to be effective in inhibiting drug precipitation. Regarding the available literature, hypromellose has been the most commonly used polymeric precipitation inhibitor, added in a concentration of 5 % (m/m). However, the inhibiting ability is mainly governed not only by the physicochemical properties of the polymer but also by the API, therefore the choice of optimal precipitation inhibitor is recommended to be evaluated on an individual basis.
Collapse
Affiliation(s)
- Mila Kovačević
- 1University of Ljubljana, Faculty of Pharmacy 1000 Ljubljana Slovenia
| | - Mirjana Gašperlin
- 1University of Ljubljana, Faculty of Pharmacy 1000 Ljubljana Slovenia
| | | |
Collapse
|
5
|
Tao T, Rehman SU, Xu S, Zhang J, Xia H, Guo Z, Li Z, Ma K, Wang J. A biomimetic camouflaged metal organic framework for enhanced siRNA delivery in the tumor environment. J Mater Chem B 2024; 12:4080-4096. [PMID: 38577851 DOI: 10.1039/d3tb02827e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Gene silencing through RNA interference (RNAi), particularly using small double-stranded RNA (siRNA), has been identified as a potent strategy for targeted cancer treatment. Yet, its application faces challenges such as nuclease degradation, inefficient cellular uptake, endosomal entrapment, off-target effects, and immune responses, which have hindered its effective delivery. In the past few years, these challenges have been addressed significantly by using camouflaged metal-organic framework (MOF) nanocarriers. These nanocarriers protect siRNA from degradation, enhance cellular uptake, and reduce unintended side effects by effectively targeting desired cells while evading immune detection. By combining the properties of biomimetic membranes and MOFs, these nanocarriers offer superior benefits such as extended circulation times, enhanced stability, and reduced immune responses. Moreover, through ligand-receptor interactions, biomimetic membrane-coated MOFs achieve homologous targeting, minimizing off-target adverse effects. The MOFs, acting as the core, efficiently encapsulate and protect siRNA molecules, while the biomimetic membrane-coated surface provides homologous targeting, further increasing the precision of siRNA delivery to cancer cells. In particular, the biomimetic membranes help to shield the MOFs from the immune system, avoiding unwanted immune responses and improving their biocompatibility. The combination of siRNA with innovative nanocarriers, such as camouflaged-MOFs, presents a significant advancement in cancer therapy. The ability to deliver siRNA with precision and effectiveness using these camouflaged nanocarriers holds great promise for achieving more personalized and efficient cancer treatments in the future. This review article discusses the significant progress made in the development of siRNA therapeutics for cancer, focusing on their effective delivery through novel nanocarriers, with a particular emphasis on the role of metal-organic frameworks (MOFs) as camouflaged nanocarriers.
Collapse
Affiliation(s)
- Tongxiang Tao
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.
- University of Science and Technology of China, Hefei 230036, Anhui, P. R. China
| | - Sajid Ur Rehman
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.
| | - Shuai Xu
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.
- Hefei Cancer Hospital, Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, P. R. China
| | - Jing Zhang
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.
- Hefei Cancer Hospital, Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, P. R. China
| | - Haining Xia
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.
- Hefei Cancer Hospital, Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, P. R. China
| | - Zeyong Guo
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.
- Hefei Cancer Hospital, Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, P. R. China
| | - Zehua Li
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.
- Hefei Cancer Hospital, Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, P. R. China
| | - Kun Ma
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.
| | - Junfeng Wang
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.
- University of Science and Technology of China, Hefei 230036, Anhui, P. R. China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, Anhui, P. R. China
| |
Collapse
|
6
|
Hoang KD, Chen JH, Huang TW, Kang YN, Chen C. Oral aspirin for preventing colorectal adenoma recurrence: A systematic review and network meta-analysis of randomized controlled trials. PLoS One 2024; 19:e0279784. [PMID: 38483854 PMCID: PMC10939266 DOI: 10.1371/journal.pone.0279784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 09/11/2023] [Indexed: 03/17/2024] Open
Abstract
Colorectal adenomas have the potential of malignant transformation if left untreated. Multiple randomized controlled trials have been performed to evaluate the efficacy of aspirin in preventing colorectal adenoma recurrence in a population with a history of colorectal adenoma but not colorectal cancer, however, the relationship between aspirin dose and colorectal adenoma recurrence remains unclear. We conducted pairwise meta-analysis, meta-regression, trial sequential analysis, and network meta-analysis of all eligible studies. The ROB 2.0 tool was used to assess the risk of bias in the studies. The confidence in network meta-analysis (CINeMA) approach was used to evaluate the confidence of the network meta-analysis results. The network meta-analysis included eight RCTs (nine reports), comprising four on aspirin (low or high dose) alone and four on aspirin combined with another medication, all compared with placebo. In the network meta-analysis, low-dose aspirin (LDA <300 mg per day) was more effective than high-dose aspirin (HDA ≥300 mg per day) and placebo, with risk ratios of 0.76 (95% CI: 0.58 to 0.99) and 0.7 (95% CI: 0.54 to 0.91), respectively. LDA was the optimal treatment relative to HDA and placebo (P-score = 0.99). In the trial sequential analysis, LDA was only more effective than placebo when the number of included participants exceeded the optimal information size; this was not the case for HDA. LDA has statistically significant efficacy for colorectal adenoma prevention, but compared with HDA, its efficacy remains uncertain. Further trials are therefore required.
Collapse
Affiliation(s)
- Khanh Dinh Hoang
- International Master’s Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Histopathology, Hai Phong University of Medicine and Pharmacy, Hai Phong, Vietnam
| | - Jin-Hua Chen
- Graduate Institute of Data Science, Taipei Medical University, Taipei, Taiwan
| | - Tsai-Wei Huang
- School of Nursing, Taipei Medical University, Taipei, Taiwan
- Cochrane Taiwan, Taipei Medical University, Taipei, Taiwan
| | - Yi-No Kang
- Cochrane Taiwan, Taipei Medical University, Taipei, Taiwan
- Research Center of the Big Data and Meta-Analysis Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Institute of Health Policy & Management, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Chiehfeng Chen
- Cochrane Taiwan, Taipei Medical University, Taipei, Taiwan
- Department of Public Health, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Plastic Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
7
|
Patki A. Role of Dydrogesterone for Luteal Phase Support in Assisted Reproduction. Reprod Sci 2024; 31:17-29. [PMID: 37488405 DOI: 10.1007/s43032-023-01302-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 07/10/2023] [Indexed: 07/26/2023]
Abstract
Clinical outcomes of in vitro fertilization (IVF) have significantly improved over the years with the advent of the frozen-thawed embryo transfer (FET) technique. Ovarian hyperstimulation during IVF cycles causes luteal phase deficiency, a condition of insufficient progesterone. Intramuscular or vaginal progesterone and dydrogesterone are commonly used for luteal phase support in FET. Oral dydrogesterone has a higher bioavailability than progesterone and has high specificity for progesterone receptors. Though micronized vaginal progesterone has been the preferred option, recent data suggest that oral dydrogesterone might be an alternative therapeutic option for luteal phase support to improve clinical outcomes of IVF cycles. Dydrogesterone has a good safety profile and is well tolerated. Its efficacy has been evaluated in several clinical studies and demonstrated to be non-inferior to micronized vaginal progesterone in large-scale clinical trials. Oral dydrogesterone may potentially become a preferred drug for luteal phase support in millions of women undergoing IVF.
Collapse
Affiliation(s)
- Ameet Patki
- Fertility Associates Khar, 4Th Floor, Gupte House, 81 SV Road, Khar West, Mumbai, 400052, Maharashtra, India.
- Hinduja Group of Hospitals, Khar West, Mumbai, India.
- Surya Hospital Mumbai, Mumbai, India.
| |
Collapse
|
8
|
Hoerder S, Habermann IV, Hahn K, Meyer-Hamme G, Ortiz M, Grabowska W, Roll S, Willich SN, Schroeder S, Brinkhaus B, Dietzel J. Acupuncture in diabetic peripheral neuropathy-neurological outcomes of the randomized acupuncture in diabetic peripheral neuropathy trial. World J Diabetes 2023; 14:1813-1823. [PMID: 38222786 PMCID: PMC10784801 DOI: 10.4239/wjd.v14.i12.1813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/02/2023] [Accepted: 11/14/2023] [Indexed: 12/14/2023] Open
Abstract
BACKGROUND Diabetic peripheral neuropathy (DPN) is a common complication of diabetes mellitus and can lead to serious complications. Therapeutic strategies for pain control are available but there are few approaches that influence neurological deficits such as numbness. AIM To investigate the effectiveness of acupuncture on improving neurological deficits in patients suffering from type 2 DPN. METHODS The acupuncture in DPN (ACUDPN) study was a two-armed, randomized, controlled, parallel group, open, multicenter clinical trial. Patients were randomized in a 1:1 ratio into two groups: The acupuncture group received 12 acupuncture treatments over 8 wk, and the control group was on a waiting list during the first 16 wk, before it received the same treatment as the other group. Both groups received routine care. Outcome parameters were evaluated after 8, 16 and 24 wk and included neurological scores, such as an 11-point numeric rating scale (NRS) 11 for hypesthesia, neuropathic pain symptom inventory (NPSI), neuropathy deficit score (NDS), neuropathy symptom score (NSS); nerve conduction studies (NCS) were assessed with a handheld point-of-care device. RESULTS Sixty-two participants were included. The NRS for numbness showed a difference of 2.3 (P < 0.001) in favor of the acupuncture group, the effect persisted until week 16 with a difference of 2.2 (P < 0.001) between groups and 1.8 points at week 24 compared to baseline. The NPSI was improved in the acupuncture group by 12.6 points (P < 0.001) at week 8, the NSS score at week 8 with a difference of 1.3 (P < 0.001); the NDS and the TNSc score improved for the acupuncture group in week 8, with a difference of 2.0 points (P < 0.001) compared to the control group. Effects were persistent in week 16 with a difference of 1.8 points (P < 0.05). The NCS showed no meaningful changes. In both groups only minor side effects were reported. CONCLUSION Study results suggest that acupuncture may be beneficial in type 2 diabetic DPN and seems to lead to a reduction in neurological deficits. No serious adverse events were recorded and the adherence to treatment was high. Confirmatory randomized sham-controlled clinical studies with adequate patient numbers are needed to confirm the results.
Collapse
Affiliation(s)
- Sebastian Hoerder
- Institute of Social Medicine, Epidemiology and Health Economics, Charité Universitätsmedizin, Berlin 10117, Germany
| | - Isabel Valentina Habermann
- Institute of Social Medicine, Epidemiology and Health Economics, Charité Universitätsmedizin, Berlin 10117, Germany
| | - Katrin Hahn
- Department of Neurology, Charité Universitätsmedizin, Charitéplatz 1, Berlin 10117, Germany
| | - Gesa Meyer-Hamme
- HanseMerkur Center of Traditional Chinese Medicine at University Hospital Eppendorff, Martinistr 52, Hamburg 20246, Germany
| | - Miriam Ortiz
- Institute of Social Medicine, Epidemiology and Health Economics, Charité Universitätsmedizin, Berlin 10117, Germany
| | - Weronika Grabowska
- Institute of Social Medicine, Epidemiology and Health Economics, Charité Universitätsmedizin, Berlin 10117, Germany
| | - Stephanie Roll
- Institute of Social Medicine, Epidemiology and Health Economics, Charité Universitätsmedizin, Berlin 10117, Germany
| | - Stefan N. Willich
- Institute of Social Medicine, Epidemiology and Health Economics, Charité Universitätsmedizin, Berlin 10117, Germany
| | - Sven Schroeder
- HanseMerkur Center of Traditional Chinese Medicine at University Hospital Eppendorff, Martinistr 52, Hamburg 20246, Germany
| | - Benno Brinkhaus
- Institute of Social Medicine, Epidemiology and Health Economics, Charité Universitätsmedizin, Berlin 10117, Germany
| | - Joanna Dietzel
- Institute of Social Medicine, Epidemiology and Health Economics, Charité Universitätsmedizin, Berlin 10117, Germany
| |
Collapse
|
9
|
Subramanian A, Saravanan M, Rajasekhar B, Chakraborty S, Sivagami K, Tamizhdurai P, Mangesh VL, Selvaraj M, Kumar NS, Al-Fatesh AS. Comparative risk assessment studies estimating the hazard posed by long-term consumption of PPCPs in river water. Food Chem Toxicol 2023; 182:114169. [PMID: 37940032 DOI: 10.1016/j.fct.2023.114169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/14/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023]
Abstract
This study assesses the risk due to Emerging Contaminants (ECs), present in Indian rivers - Ganga (650 million inhabitants), Yamuna (57 million inhabitants), and Musi (7,500,000 inhabitants), 13 ECs in total, have been used for risk assessment studies. Their concentrations (e.g., Fluconazole: 236950 μg/l, Ciprofloxacin: 31000 μg/l, Caffeine: 21.57 μg/l, etc.) were higher than the threshold concentrations for safe consumption (e.g. Fluconazole allowable level is 3.8 μg/l, and Ciprofloxacin allowable level is 0.51 μg/l). Three different pathways of emerging contaminants (ECs) transfer (oral water ingestion, oral fish ingestion, and dermal water contact) have been considered and the study is carried out in 2 ways: (i) deterministic and (ii) probabilistic approaches (using Monte Carlo iterative methods with 10000 simulations) with the aid of a software - Risk (version 7.5). The risk value, quantified by Hazard Quotient (HQ) is higher than the allowable limit of 1 for several compounds in the three rivers like Fluconazole (HQ = 18276.713), Ciprofloxacin (HQ = 278.675), Voriconazole (HQ = 14.578), Cetirizine (HQ = 1006.917), Moxifloxacin (HQ = 8.076), Caffeine (HQ = 55.150), and Ibuprofen (HQ = 9.503). Results show that Fluconazole and Caffeine pose the maximum risk in the rivers via the "oral pathway" that allows maximum transfer of the ECs present in the river (93% and 82% contribution to total risk). The risk values vary from nearly 25 times to 19000 times the United States Environmental Protection Agency (USEPA) threshold limit of 1 (e.g., Caffeine Infant Risk = 25.990 and Fluconazole Adult Risk = 18276.713). The most susceptible age group, from this study, is "Adults" (19-70 years old), who stand the chance of experiencing the adverse health hazards associated with prolonged over-exposure to the ECs present in the river waters. Musi has the maximum concentration of pollutants and requires immediate remediation measures. Further, both methods indicate that nearly 60-70% of the population in all the three study areas are at risk of developing health hazards associated with over-exposure to ECs regularly, making the areas inhabitable.
Collapse
Affiliation(s)
- Aishwarya Subramanian
- Industrial Ecology Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, India
| | - Mridula Saravanan
- Industrial Ecology Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, India
| | - Bokam Rajasekhar
- Research Associate, Environmental and Water Resources Engineering Division, Department of Civil Engineering, Indian Institute of Technology, Madras, Chennai, India
| | - Samarshi Chakraborty
- Industrial Ecology Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, India
| | - Krishanasamy Sivagami
- Industrial Ecology Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, India.
| | - Perumal Tamizhdurai
- Department of Chemistry, Dwaraka Doss Goverdhan Doss Vaishnav College (Autonomous) (Affiliated to the University of Madras, Chennai), 833, Gokul Bagh, E.V.R. Periyar Road, Arumbakkam, Chennai, 600 106, Tamil Nadu, India.
| | - V L Mangesh
- Department of Marine Engineering, Indian Maritime University, 600119, India
| | - Manickam Selvaraj
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia; Research Centre for Advanced Materials Science (RCAMS), King Khalid University, PO Box 9004, Abha, 61413, Saudi Arabia
| | - Nadavala Siva Kumar
- Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh, 11421, Saudi Arabia
| | - Ahmed S Al-Fatesh
- Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh, 11421, Saudi Arabia
| |
Collapse
|
10
|
Sun F, Shen H, Liu Q, Chen Y, Guo W, Du W, Xu C, Wang B, Xing G, Jin Z, Lam JWY, Sun J, Ye R, Kwok RTK, Chen J, Tang BZ. Powerful Synergy of Traditional Chinese Medicine and Aggregation-Induced Emission-Active Photosensitizer in Photodynamic Therapy. ACS NANO 2023; 17:18952-18964. [PMID: 37729494 DOI: 10.1021/acsnano.3c04342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Breast cancer (BC) remains a significant global health challenge for women despite advancements in early detection and treatment. Isoliquiritigenin (ISL), a compound derived from traditional Chinese medicine, has shown potential as an anti-BC therapy, but its low bioavailability and poor water solubility restrict its effectiveness. In this study, we created theranostic nanoparticles consisting of ISL and a near-infrared (NIR) photosensitizer, TBPI, which displays aggregation-induced emission (AIE), with the goal of providing combined chemo- and photodynamic therapies (PDT) for BC. Initially, we designed an asymmetric organic molecule, TBPI, featuring a rotorlike triphenylamine as the donor and 1-methylpyridinium iodide as the acceptor, which led to the production of reactive oxygen species in mitochondria. We then combined TBPI with ISL and encapsulated them in DSPE-PEG-RGD nanoparticles to produce IT-PEG-RGD nanoparticles, which showed high affinity for BC, better intersystem crossing (ISC) efficiency, and Förster resonance energy transfer (FRET) between TBPI and ISL. In both 4T1 BC cell line and a 4T1 tumor-bearing BC mouse model, the IT-PEG-RGD nanoparticles demonstrated excellent drug delivery, synergistic antitumor effects, enhanced tumor-killing efficacy, and reduced drug dosage and side effects. Furthermore, we exploited the optical properties of TBPI with ISL to reveal the release process and distribution of nanoparticles in cells. This study provides a valuable basis for further exploration of IT-PEG-RGD nanoparticles and their anticancer mechanisms, highlighting the potential of theranostic nanoparticles in BC treatment.
Collapse
Affiliation(s)
- Feiyi Sun
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science & Technology, Hong Kong 999077, China
| | - Hanchen Shen
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science & Technology, Hong Kong 999077, China
| | - Qingqing Liu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Yuyang Chen
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science & Technology, Hong Kong 999077, China
| | - Weihua Guo
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong 999077, China
| | - Wutong Du
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science & Technology, Hong Kong 999077, China
| | - Changhuo Xu
- MOE Frontiers Science Center for Precision Oncology, Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Bingzhe Wang
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau 999078, China
| | - Guichuan Xing
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau 999078, China
| | - Zhuwei Jin
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science & Technology, Hong Kong 999077, China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science & Technology, Hong Kong 999077, China
| | - Jianwei Sun
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science & Technology, Hong Kong 999077, China
| | - Ruquan Ye
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong 999077, China
| | - Ryan T K Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science & Technology, Hong Kong 999077, China
| | - Jianping Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science & Technology, Hong Kong 999077, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| |
Collapse
|
11
|
Yuan Y, Wang K, Liu Y, Jiang M, Jiang Y, Qiu J. Isolation and Characterization of the Wastewater Micropollutant Phenacetin-Degrading Bacterium Rhodococcus sp. Strain PNT-23. Microorganisms 2023; 11:1962. [PMID: 37630522 PMCID: PMC10458748 DOI: 10.3390/microorganisms11081962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Phenacetin, an antipyretic and analgesic drug, poses a serious health risk to both humans and aquatic organisms, which is of concern since this micropollutant is frequently detected in various aquatic environments. However, rare pure bacterial cultures have been reported to degrade phenacetin. Therefore, in this study, the novel phenacetin-degrading strain PNT-23 was isolated from municipal wastewater and identified as a Rhodococcus sp. based on its morphology and 16S rRNA gene sequencing. The isolated strain could completely degrade 100 mg/L phenacetin at an inoculum concentration of OD600 1.5 within 80 h, utilizing the micropollutant as its sole carbon source for growth. Strain PNT-23 exhibited optimal growth in LB medium at 37 °C and a pH of 7.0 with 1% NaCl, while the optimal degradation conditions in minimal medium were 30 °C and a pH of 7.0 with 1% NaCl. Two key intermediates were identified during phenacetin biodegradation by the strain PNT-23: N-acetyl-4-aminophenol and 4-aminophenol. This study provides novel insights into the biodegradation of phenacetin using a pure bacterium culture, expands the known substrate spectra of Rhodococcus strains and presents a potential new candidate for the microbial removal of phenacetin in a diverse range of environments.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiguo Qiu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
12
|
Palladino S, Perrone V, Giacomini E, Sangiorgi D, Premoli E, Valsecchi D, Degli Esposti L, Suter MB. Real-world analysis of the economic and therapeutic burden in advanced breast cancer patients in Italy. Expert Rev Pharmacoecon Outcomes Res 2023; 23:1041-1048. [PMID: 37459247 DOI: 10.1080/14737167.2023.2234637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 06/29/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND This real-world analysis evaluated drug utilization focusing on wastage and healthcare costs for treatment of patients with advanced breast cancer (aBC) hormone receptor-positive (HR+)/human epidermal growth factor receptor-2 negative (HER2-) in Italy. METHODS A retrospective analysis was conducted on administrative data covering about 13.3 million health-assisted individuals. Across January/2017-June/2021, all patients with HR+/HER2-aBC were identified by ≥ 1 prescription for cyclin-dependent kinase 4/6 inhibitors (CDK 4/6i). Cost analysis was performed and updated referring to the prices of November 2021. RESULTS Overall, 3,647 HR+/HER2-aBC patients were included (2,627 palbociclib treated, 729 ribociclib treated, and 291 abemaciclib treated). After 12 months of follow-up, 35% of palbociclib patients had a dose reduction (on average 8.9 wasted pills/patient), 44.7% of abemaciclib patients had a dose reduction (on average 6.7 wasted pills/patient), 22.1% of ribociclib patients had a dose reduction (no wasted pills). Therapy wastage added up to 528,716€ for palbociclib-treated patients (524€/patient) and 5,738€ in abemaciclib-treated patients (151€/patient). No wastage was attributed to ribociclib. CONCLUSIONS Dose reduction was associated with drug wastage in palbociclib and abemaciclib-treated patients, but not in ribociclib-treated ones. These findings might be helpful to policy decision-makers who, for healthcare strategies implementation, among several variables should consider the possible restraining of drug wastage.
Collapse
Affiliation(s)
| | - Valentina Perrone
- CliCon S.r.l. Società Benefit Health, Economics & Outcomes Research, Bologna, Italy
| | - Elisa Giacomini
- CliCon S.r.l. Società Benefit Health, Economics & Outcomes Research, Bologna, Italy
| | - Diego Sangiorgi
- CliCon S.r.l. Società Benefit Health, Economics & Outcomes Research, Bologna, Italy
| | | | | | - Luca Degli Esposti
- CliCon S.r.l. Società Benefit Health, Economics & Outcomes Research, Bologna, Italy
| | | |
Collapse
|
13
|
Awale GM, Barajaa MA, Kan HM, Seyedsalehi A, Nam GH, Hosseini FS, Ude CC, Schmidt TA, Lo KWH, Laurencin CT. Regenerative engineering of long bones using the small molecule forskolin. Proc Natl Acad Sci U S A 2023; 120:e2219756120. [PMID: 37216527 PMCID: PMC10235978 DOI: 10.1073/pnas.2219756120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/10/2023] [Indexed: 05/24/2023] Open
Abstract
Bone grafting procedures have become increasingly common in the United States, with approximately 500,000 cases occurring each year at a societal cost exceeding $2.4 billion. Recombinant human bone morphogenetic proteins (rhBMPs) are therapeutic agents that have been widely used by orthopedic surgeons to stimulate bone tissue formation alone and when paired with biomaterials. However, significant limitations such as immunogenicity, high production cost, and ectopic bone growth from these therapies remain. Therefore, efforts have been made to discover and repurpose osteoinductive small-molecule therapeutics to promote bone regeneration. Previously, we have demonstrated that a single-dose treatment with the small-molecule forskolin for just 24 h induces osteogenic differentiation of rabbit bone marrow-derived stem cells in vitro, while mitigating adverse side effects attributed with prolonged small-molecule treatment schemes. In this study, we engineered a composite fibrin-PLGA [poly(lactide-co-glycolide)]-sintered microsphere scaffold for the localized, short-term delivery of the osteoinductive small molecule, forskolin. In vitro characterization studies showed that forskolin released out of the fibrin gel within the first 24 h and retained its bioactivity toward osteogenic differentiation of bone marrow-derived stem cells. The forskolin-loaded fibrin-PLGA scaffold was also able to guide bone formation in a 3-mo rabbit radial critical-sized defect model comparable to recombinant human bone morphogenetic protein-2 (rhBMP-2) treatment, as demonstrated through histological and mechanical evaluation, with minimal systemic off-target side effects. Together, these results demonstrate the successful application of an innovative small-molecule treatment approach within long bone critical-sized defects.
Collapse
Affiliation(s)
- Guleid M. Awale
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, Storrs, CT06269
- Department of Chemical Engineering, University of Connecticut, Storrs, CT06269
| | - Mohammed A. Barajaa
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, Storrs, CT06269
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT06030
- Department of Biomedical Engineering, Imam Abdulrahman Bin Faisal University,31451Dammam, Saudi Arabia
| | - Ho-Man Kan
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, Storrs, CT06269
| | - Amir Seyedsalehi
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, Storrs, CT06269
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT06030
| | - Ga Hie Nam
- Department of Pathology and Laboratory Medicine, UConn Health, Farmington, CT06030
| | - Fatemeh S. Hosseini
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, Storrs, CT06269
- Department of Skeletal Biology and Regeneration, UConn Health, Farmington, CT06030
| | - Chinedu C. Ude
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, Storrs, CT06269
| | - Tannin A. Schmidt
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT06030
| | - Kevin W.-H. Lo
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, Storrs, CT06269
- Division of Endocrinology, Department of Medicine, UConn Health, Farmington, CT06030
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT06030
| | - Cato T. Laurencin
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, Storrs, CT06269
- Department of Chemical Engineering, University of Connecticut, Storrs, CT06269
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT06030
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT06030
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT06269
| |
Collapse
|
14
|
Kauppinen A, Helander P, Viitala M, Puranen T, Vainikka T, Lassila I, Hæggström E, Sandler N. UV-visible absorption spectroscopy for in-line API concentration measurement in nanoparticle production process using controlled expansion of supercritical solutions (CESS®). J Pharm Biomed Anal 2023; 224:115169. [PMID: 36462249 DOI: 10.1016/j.jpba.2022.115169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
Most new small drug molecules in pharmaceutical development require improvement of solubility. The controlled expansion of supercritical solutions (CESS®) process is a nanoparticle production technology, dedicated to enhancing the dissolution rate of active pharmaceutical ingredients (APIs) suffering from poor solubility and enabling novel drug delivery opportunities. In this process, the API is dissolved in supercritical carbon dioxide (scCO2) and nanoparticles are formed through controlled pressure reduction. To improve process visibility and control, ultraviolet-visible (UV-Vis) spectroscopy was incorporated into CESS® process as a process analytical technology (PAT) tool. The tool quantifies the amount of API dissolved in scCO2 during the solubilization phase of the process. Sample interfacing of the UV-Vis spectrometer was done with a custom-made pressure and temperature rated transmission flow-through cell. In-process calibration was developed to correlate the UV-Vis absorption spectra to the API concentration. Due to the density-dependent molar absorption coefficient of API in scCO2, the calibration was done for each combination of temperature and pressure. The developed PAT tool provides insight into the process enabling real-time API quantity estimation. It also facilitates process development through Quality by Design (QbD) and offers a system for enhanced process control and troubleshooting. For instance, the in-line API concentration data allows one to study the solubilization behavior of the API in the process and to optimize the process parameters in order to maximize throughput.
Collapse
Affiliation(s)
- Ari Kauppinen
- Nanoform Finland Plc, Viikinkaari 4, 00790 Helsinki, Finland.
| | | | - Mikael Viitala
- Nanoform Finland Plc, Viikinkaari 4, 00790 Helsinki, Finland
| | - Tuomas Puranen
- Nanoform Finland Plc, Viikinkaari 4, 00790 Helsinki, Finland
| | - Tuomas Vainikka
- Nanoform Finland Plc, Viikinkaari 4, 00790 Helsinki, Finland
| | - Ilkka Lassila
- Nanoform Finland Plc, Viikinkaari 4, 00790 Helsinki, Finland
| | | | - Niklas Sandler
- Nanoform Finland Plc, Viikinkaari 4, 00790 Helsinki, Finland
| |
Collapse
|
15
|
Wu J, Wang B, Qu H, Wang F, Duan L, Yu G. Acid-washed zero-valent aluminum as a highly efficient persulfate activator for degradation of phenacetin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:19439-19449. [PMID: 36229732 DOI: 10.1007/s11356-022-23473-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Phenacetin (PNT) is one of the most frequently detected nonsteroidal anti-inflammatory drugs in the water ecosystems, which poses a potential risk to environmental aquatic organisms. Acid-washed zero-valent aluminum (ZVAl) as a highly efficient activator for persulfate (PS) process was investigated to degrade PNT from the aqueous solution. The results indicated that acid-washed pretreatment for ZVAl could efficiently increase the degradation efficiency of PNT in the PS treatment. The degradation efficiency of PNT (50 μM) was up to 90% in 4 hours with the addition of 0.2 g/L acid-washed ZVAl and 8 mM PS at pH 6.8 and 25 °C. The PNT degradation followed pseudo-first order kinetics in the present system. High activator dosage, PS concentration, and reaction temperature could enhance the PNT degradation. The presence of inorganic anions (i.e., NO3-, HCO3-) and humic acid (HA) showed inhibitory effects on the PNT degradation. The reuse results illustrated the acid-washed ZVAl material would have continuous and efficient activation performance for PS to degrade the PNT. Radical scavenger experiments and electron paramagnetic resonance indicated that both SO4•- and •OH were major reactive species during the PNT degradation. The possible degradation pathways of PNT mainly included the break of C-N and C-O bonds and further oxidation.
Collapse
Affiliation(s)
- Junxue Wu
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Tsinghua University, Beijing, 100084, China
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, China
| | - Bin Wang
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Tsinghua University, Beijing, 100084, China.
| | - Han Qu
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Tsinghua University, Beijing, 100084, China
| | - Fang Wang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Lei Duan
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Tsinghua University, Beijing, 100084, China
| | - Gang Yu
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Tsinghua University, Beijing, 100084, China
| |
Collapse
|
16
|
Li S, Wu Y, Zheng H, Li H, Zheng Y, Nan J, Ma J, Nagarajan D, Chang JS. Antibiotics degradation by advanced oxidation process (AOPs): Recent advances in ecotoxicity and antibiotic-resistance genes induction of degradation products. CHEMOSPHERE 2023; 311:136977. [PMID: 36309060 DOI: 10.1016/j.chemosphere.2022.136977] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/09/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Antibiotic contamination could cause serious risks of ecotoxicity and resistance gene induction. Advanced oxidation processes (AOPs) such as Fenton, photocatalysis, activated persulfate, electrochemistry and other AOPs technologies have been proven effective in the degradation of high-risk, refractory organic pollutants such as antibiotics. However, due to the limited mineralization ability, a large number of degradation intermediates will be produced in the oxidation process. The residual or undiscovered ecological risks of degradation products are potential safety hazards and problems necessitating comprehensive studies. In-depth investigations especially on the full assessments of ecotoxicity and resistance genes induction capability of antibiotic degradation products are important issues in reducing the environmental problems of antibiotics. Therefore, this review presents an overview of the current knowledge on the efficiency of different AOPs systems in reducing antibiotics toxicity and antibiotic resistance.
Collapse
Affiliation(s)
- Shuo Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China; Urban Water Resources Development and Northern National Engineering Research Center, Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yanan Wu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
| | - Heshan Zheng
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China.
| | - Hongbin Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
| | - Yongjie Zheng
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
| | - Jun Nan
- Urban Water Resources Development and Northern National Engineering Research Center, Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jun Ma
- Urban Water Resources Development and Northern National Engineering Research Center, Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Dillirani Nagarajan
- Department of Chemical Engineering, National Cheng-Kung University, Tainan, Taiwan
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng-Kung University, Tainan, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung, 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, 407, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taiwan.
| |
Collapse
|
17
|
CFD simulation and experimental study of antisolvent precipitation through impinging jets for synthesis of nanodrug particles. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Raut H, Jadhav C, Shetty K, Laxane N, Nijhawan HP, Rao GSNK, Alavala RR, Joshi G, Patro CN, Soni G, Yadav KS. Sorafenib tosylate novel drug delivery systems: implications of nanotechnology in both approved and unapproved indications. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
19
|
Awale GM, Barajaa MA, Kan HM, Lo KWH, Laurencin CT. Single-Dose Induction of Osteogenic Differentiation of Mesenchymal Stem Cells Using a Cyclic AMP Activator, Forskolin. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2022. [DOI: 10.1007/s40883-022-00262-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
20
|
Hassani M, Tahghighi A, Rohani M, Hekmati M, Ahmadian M, Ahmadvand H. Robust antibacterial activity of functionalized carbon nanotube- levofloxacine conjugate based on in vitro and in vivo studies. Sci Rep 2022; 12:10064. [PMID: 35710710 PMCID: PMC9203521 DOI: 10.1038/s41598-022-14206-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 06/02/2022] [Indexed: 01/28/2023] Open
Abstract
A new nano-antibiotic was synthesized from the conjugation of multi-walled carbon nanotubes with levofloxacin (MWCNT-LVX) through covalent grafting of drug with surface-modified carbon nanotubes in order to achieve an effective, safe, fast-acting nano-drug with the minimal side effects. This study is the first report on the evaluation of in vitro cell viability and antibacterial activity of nano-antibiotic along in addition to the in vivo antibacterial activity in a burn wound model. The drug-loading and release profile at different pH levels was determined using an ultraviolet–visible spectrometer. MWCNT-LVX was synthesized by a simple, reproducible and cost-effective method for the first time and characterized using various techniques, such as scanning electron microscope, transmission electron microscopy, and Brunauer–Emmett–Teller analysis, and so forth. The noncytotoxic nano-antibiotic showed more satisfactory in vitro antibacterial activity against Staphylococcus aureus compared to Pseudomona aeruginosa. The novel synthetic nano-drug possessed high loading capacity and pH-sensitive release profile; resultantly, it exhibited very potent bactericidal activity in a mouse S. aureus wound infection model compared to LVX. Based on the results, the antibacterial properties of the drug enhanced after conjugating with surface-modified MWCNTs. The nano-antibiotic has great industrialization potential for the simple route of synthesis, no toxicity, proper drug loading and release, low effective dose, and strong activity against wound infections. In virtue of unique properties, MWCNTs can serve as a controlled release and delivery system for drugs. The easy penetration to biological membranes and barriers can also increase the drug delivery at lower doses compared to the main drug alone, which can lead to the reduction of its side effects. Hence, MWCNTs can be considered a promising nano-carrier of LVX in the treatment of skin infections.
Collapse
Affiliation(s)
- Marzieh Hassani
- Medicinal Chemistry Laboratory, Clinical Research Department, Pasteur Institute of Iran, Tehran, Iran.,Department of Medical Biotechnology, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Azar Tahghighi
- Medicinal Chemistry Laboratory, Clinical Research Department, Pasteur Institute of Iran, Tehran, Iran.
| | - Mahdi Rohani
- Department of Microbiology, Pasteur Institute of Iran, Tehran, Iran
| | - Malak Hekmati
- Department of Organic Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Ahmadian
- Department of Biostatistics, School of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Ahmadvand
- Department of Biochemistry, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
21
|
Wong HL, Bu Y, Chan YK, Shih KC. Lycium barbarum polysaccharide promotes corneal Re-epithelialization after alkaline injury. Exp Eye Res 2022; 221:109151. [PMID: 35714698 DOI: 10.1016/j.exer.2022.109151] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/23/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022]
Abstract
Chemical injury of the cornea results in epithelial defect and subsequent stromal scarring and infection. Our study aims to evaluate the effectiveness of pre-treatment of Lycium barbarum polysaccharide (LBP) in promoting corneal re-epithelialization after alkaline burn. The corneas of C57BL/6J mice were pre-treated with topical phosphate-buffered saline or LBP (0.2/2/20 mg/mL) for 7 days, following by 0.1M sodium hydroxide injury for 30 s and washing with distilled water for another 30 s. Area of epithelial defect and thickness of cornea were evaluated. Inflammatory cytokines and water channel expression levels were assessed using immunohistochemistry and Western blot. Compared to the injury group, mice with 2 mg/mL LBP pre-treatment revealed a significant decrease in fluorescein stained area after injury (p = 0.025), with increased epithelial layer thickness (p = 0.004). The corneal opacity was significantly reduced in the group with 2 mg/mL LBP pre-treatment followed by injury (p = 0.02). The expression of matrix metalloproteinase 12 (p = 0.033), platelet derived growth factor-BB (p = 0.031), and aquaporin 5 (p = 0.022) resulted in a decrease in expression level in group with 2 mg/mL LBP pre-treatment. Our results showed that 2 mg/mL LBP, with no apoptotic effect on corneal cells, promoted corneal epithelial growth and minimized disruption of the collagen architecture after injury in vivo. We suggest that LBP, as a natural Traditional Chinese Medicine, may potentially be a novel topical pre-treatment option for patients highly susceptible to ocular injury.
Collapse
Affiliation(s)
- Ho Lam Wong
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Yashan Bu
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Yau Kei Chan
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region.
| | - Kendrick Co Shih
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
22
|
Narayanan M, El-Sheekh M, Ma Y, Pugazhendhi A, Natarajan D, Kandasamy G, Raja R, Saravana Kumar RM, Kumarasamy S, Sathiyan G, Geetha R, Paulraj B, Liu G, Kandasamy S. Current status of microbes involved in the degradation of pharmaceutical and personal care products (PPCPs) pollutants in the aquatic ecosystem. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 300:118922. [PMID: 35114308 DOI: 10.1016/j.envpol.2022.118922] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Contamination of aquatic systems with pharmaceuticals, personal care products, steroid hormones, and agrochemicals has been an immense problem for the earth's ecosystem and health impacts. The environmental issues of well-known persistence pollutants, their metabolites, and other micro-pollutants in diverse aquatic systems around the world were collated and exposed in this review assessment. Waste Water Treatment Plant (WWTP) influents and effluents, as well as industrial, hospital, and residential effluents, include detectable concentrations of known and undiscovered persistence pollutants and metabolites. These components have been found in surface water, groundwater, drinking water, and natural water reservoirs receiving treated and untreated effluents. Several studies have found that these persistence pollutants, and also similar recalcitrant pollutants, are hazardous to a variety of non-targeted creatures in the environment. In human and animals, they can also have severe and persistent harmful consequences. Because these pollutants are harmful to aquatic organisms, microbial degradation of these persistence pollutants had the least efficiency. Fortunately, only a few wild and Genetically Modified (GMOs) microbial species have the ability to degrade these PPCPs contaminants. Hence, researchers have been studying the degradation competence of microbial communities in persistence pollutants of Pharmaceutical and Personal Care Products (PPCPs) and respective metabolites for decades, as well as possible degradation processes in various aquatic systems. As a result, this review provides comprehensive information about environmental issues and the degradation of PPCPs and their metabolites, as well as other micro-pollutants, in aquatic systems.
Collapse
Affiliation(s)
- Mathiyazhagan Narayanan
- PG and Research Centre in Biotechnology, MGR College, Adhiyamaan Educational and Research Institutions (AERI), Hosur, Krishnagiri, Tamil Nadu, 635 130, India.
| | - Mostafa El-Sheekh
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Ying Ma
- College of Resources and Environment, Southwest University, Chongqing, China
| | | | | | - Gajendiran Kandasamy
- Department of Microbiology, MGR College, Adhiyamaan Educational and Research Institutions (AERI), Hosur, Krishnagiri, Tamil Nadu, 635 130, India
| | - Rathinam Raja
- Central Research Laboratory, Research and Development Wing, Sree Balaji Medical College and Hospital (SBMCH) - BIHER, Chromepet, Chennai, 600 044, India
| | - R M Saravana Kumar
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105, Tamil Nadu, India
| | - Suresh Kumarasamy
- PG and Research Centre in Biotechnology, MGR College, Adhiyamaan Educational and Research Institutions (AERI), Hosur, Krishnagiri, Tamil Nadu, 635 130, India
| | - Govindasamy Sathiyan
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105, Tamil Nadu, India
| | - R Geetha
- Department of Electrical and Electronics Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105, Tamil Nadu, India
| | - Balaji Paulraj
- PG and Research Centre in Biotechnology, MGR College, Adhiyamaan Educational and Research Institutions (AERI), Hosur, Krishnagiri, Tamil Nadu, 635 130, India
| | - Guanglong Liu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sabariswaran Kandasamy
- Department of Biomass and Energy Conversion, Institute of Energy and Environmental Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai - 602 105, India.
| |
Collapse
|
23
|
Effects on bone regeneration of single-dose treatment with osteogenic small molecules. Drug Discov Today 2022; 27:1538-1544. [DOI: 10.1016/j.drudis.2022.02.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/08/2022] [Accepted: 02/22/2022] [Indexed: 12/23/2022]
|
24
|
Huang PJ, Chiu CC, Hsiao MH, Yow JL, Tzang BS, Hsu TC. Potential of antiviral drug oseltamivir for the treatment of liver cancer. Int J Oncol 2021; 59:109. [PMID: 34859259 PMCID: PMC8651232 DOI: 10.3892/ijo.2021.5289] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/26/2021] [Indexed: 12/11/2022] Open
Abstract
Liver cancer is a leading cause of cancer‑related mortality globally. Since hepatitis virus infections have been strongly associated with the incidence of liver cancer, studies concerning the effects of antiviral drugs on liver cancer have attracted great attention in recent years. The present study investigated the effects of two anti‑hepatitis virus drugs, lamivudine and ribavirin, and one anti‑influenza virus drug, oseltamivir, on liver cancer cells to assess alternative methods for treating liver cancer. MTT assays, wound healing assays, Τranswell assays, flow cytometry, immunoblotting, ELISA, immunofluorescence staining and a xenograft animal model were adopted to verify the effects of lamivudine, ribavirin and oseltamivir on liver cancer cells. Treatment with ribavirin and oseltamivir for 24 and 48 h significantly decreased the viability of both Huh-7 and HepG2 cells compared with that of THLE‑3 cells in a dose‑dependent manner. The subsequent investigations focused on oseltamivir, considering the more serious clinical adverse effects of ribavirin than those of oseltamivir. Significantly decreased migration and invasion were observed in both Huh-7 and HepG2 cells that were treated with oseltamivir for 24 and 48 h. In addition, oseltamivir significantly increased autophagy in Huh‑7 cells, as revealed by the significantly higher ratios of LC3‑II/LC3‑I, increased expression of Beclin‑1, and decreased expression of p62, whereas no significant increases in the expression of apoptosis‑related proteins, including Apaf‑1, cleaved caspase‑3, and cleaved PARP‑1, were detected. Notably, apoptosis and autophagy were significantly increased in HepG2 cells in the presence of oseltamivir, as revealed by the significant increases in the expression of Apaf‑1, cleaved caspase‑3, and cleaved PARP‑1, the higher ratios of LC3‑II/LC3‑I, the increased expression of Beclin‑1, and the decreased expression of p62. Additionally, significant inhibitory effects of oseltamivir on xenografted Huh‑7 cells in athymic nude mice were observed. The present study, for the first time to the best of our knowledge, reported the differential effects of oseltamivir on inducing liver cancer cell death both in vitro and in vivo and may provide an alternative approach for treating liver cancer.
Collapse
Affiliation(s)
- Pei-Ju Huang
- Department of Family Medicine, Changhua Christian Hospital, Changhua 500, Taiwan, R.O.C
| | - Chun-Ching Chiu
- Department of Neurology and Department of Medical Intensive Care Unit, Changhua Christian Hospital, Changhua 500, Taiwan, R.O.C
| | - Min-Hua Hsiao
- Institute of Medicine, College of Medicine, Chung Shan Medical University, Taichung 402, Taiwan, R.O.C
| | - Jia Le Yow
- Institute of Medicine, College of Medicine, Chung Shan Medical University, Taichung 402, Taiwan, R.O.C
| | - Bor-Show Tzang
- Institute of Medicine, College of Medicine, Chung Shan Medical University, Taichung 402, Taiwan, R.O.C
| | - Tsai-Ching Hsu
- Institute of Medicine, College of Medicine, Chung Shan Medical University, Taichung 402, Taiwan, R.O.C
| |
Collapse
|
25
|
Khurana P, Pulicharla R, Kaur Brar S. Antibiotic-metal complexes in wastewaters: fate and treatment trajectory. ENVIRONMENT INTERNATIONAL 2021; 157:106863. [PMID: 34534786 DOI: 10.1016/j.envint.2021.106863] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Unregulated usage, improper disposal, and leakage from pharmaceutical use and manufacturing sites have led to high detection levels of antibiotic residues in wastewater and surface water. The existing water treatment technologies are insufficient for removing trace antibiotics and these residual antibiotics tend to interact with co-existing metal ions and form antibiotic-metal complexes (AMCs) with altered bioactivity profile and physicochemical properties. Typically, antibiotics, including tetracyclines, fluoroquinolones, and sulphonamides, interact with heavy metals such as Fe2+, Co2+, Cu2+, Ni2+, to form AMCs which are more persistent and toxic than parent compounds. Although many studies have reported antibiotics detection, determination, distribution and risks associated with their environmental persistence, very few investigations are published on understanding the chemistry of these complexes in the wastewater and sludge matrix. This review, therefore, summarizes the structural features of both antibiotics and metals that facilitate complexation in wastewater. Further, this work critically appraises the treatment methods employed for antibiotic removal, individually and combined with metals, highlights the knowledge gaps, and delineates future perspectives for their treatment.
Collapse
Affiliation(s)
- Pratishtha Khurana
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada
| | - Rama Pulicharla
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada
| | - Satinder Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada.
| |
Collapse
|
26
|
Chakravarthy K, Reddy R, Al-Kaisy A, Yearwood T, Grider J. A Call to Action Toward Optimizing the Electrical Dose Received by Neural Targets in Spinal Cord Stimulation Therapy for Neuropathic Pain. J Pain Res 2021; 14:2767-2776. [PMID: 34522135 PMCID: PMC8434932 DOI: 10.2147/jpr.s323372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/16/2021] [Indexed: 12/20/2022] Open
Abstract
Spinal cord stimulation has seen unprecedented growth in new technology in the 50 years since the first subdural implant. As we continue to grow our understanding of spinal cord stimulation and relevant mechanisms of action, novel questions arise as to electrical dosing optimization. Programming adjustment — dose titration — is often a process of trial and error that can be time-consuming and frustrating for both patient and clinician. In this report, we review the current preclinical and clinical knowledge base in order to provide insights that may be helpful in developing more rational approaches to spinal cord stimulation dosing. We also provide key conclusions that may help in directing future research into electrical dosing, given the advent of newer waveforms outside traditional programming parameters.
Collapse
Affiliation(s)
- Krishnan Chakravarthy
- Department of Anesthesiology and Pain Medicine, University of California San Diego Health Sciences, San Diego, CA, USA.,VA San Diego Healthcare System, San Diego, Ca, USA
| | - Rajiv Reddy
- Department of Anesthesiology and Pain Medicine, University of California San Diego Health Sciences, San Diego, CA, USA
| | - Adnan Al-Kaisy
- Pain Management and Neuromodulation Centre at Guy's and St. Thomas' NHS Trust, London, UK
| | - Thomas Yearwood
- Pain Management and Neuromodulation Centre at Guy's and St. Thomas' NHS Trust, London, UK
| | - Jay Grider
- Division of Pain Medicine, Department of Anesthesiology, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| |
Collapse
|
27
|
Narayanan M, Deepika M, Ma Y, Nasif O, Alharbi SA, Srinivasan R, Natarajan D. Phyto-fabrication, characterization, and biomedical activity of silver nanoparticles mediated from an epiphytic plant Luisia tenuifolia Blume. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-02022-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
28
|
Deer T, Wilson D, Schultz D, Falowski S, Tavel E, Moore G, Heros R, Patterson D, Fahey M, Capobianco R, Anitescu M. Ultra-Low Energy Cycled Burst Spinal Cord Stimulation Yields Robust Outcomes in Pain, Function, and Affective Domains: A Subanalysis From Two Prospective, Multicenter, International Clinical Trials. Neuromodulation 2021; 25:137-144. [PMID: 34315191 DOI: 10.1111/ner.13507] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 10/20/2022]
Abstract
INTRODUCTION DeRidder's burst stimulation design has become a key spinal cord stimulation (SCS) waveform because it reduces the intensity of pain as well as its associated emotional distress. The brain pathways underlying these outcomes may also allow for the effects of stimulation to carry over after stimulation is turned off, making it amenable to intermittent application. Here, the utility of intermittently cycled burst was evaluated using data from two large real-world prospective studies (TRIUMPH, REALITY). MATERIALS AND METHODS Subjects used intermittent dosing in a 1:3 ratio (30 sec on, 90 sec off; N = 100) in TRIUMPH and 1:12 ratio in REALITY (30-sec on, 360-sec off; N = 95) for six months. Pain intensity (0-10 numeric rating scale), pain-related emotions on the pain catastrophizing scale (PCS), and physical function on PROMIS questionnaires were compared with preimplant baseline ratings and by group. RESULTS In both groups, mean pain intensity decreased by nearly 50% relative to baseline, PCS scores significantly decreased, and physical function improved. Importantly, no differences between the 1:3 and 1:12 groups were identified. A high proportion, 80% and 77% of the 1:3 and 1:12 groups, respectively, were considered responders on a multiple measures. No adverse events were associated with intermittent stimulation. DISCUSSION Intermittent cycling of burst SCS lowers the overall electric charge delivered to the spinal cord and preserves battery consumption, without compromising pain relief and associated symptoms.
Collapse
Affiliation(s)
- Timothy Deer
- The Spine and Nerve Center of the Virginias, Charleston, WV, USA
| | - Derron Wilson
- Goodman Campbell Brain and Spine, St. Vincent Health, Indianapolis, IN, USA
| | | | | | - Ed Tavel
- Pain Specialists of Charleston, Charleston, SC, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Kasiram MZ, Hapidin H, Abdullah H, Ahmad A, Sulong S. Combination Therapy of Cisplatin and other Agents for Osteosarcoma: A Review. CURRENT CANCER THERAPY REVIEWS 2021. [DOI: 10.2174/1573394716999201016160946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Background:
Osteosarcoma is the most common type of primary bone tumor in children
and adolescents, which is associated with rapid progression and poor prognosis. Multimodal
therapy is the most common approach utilized for osteosarcoma management, such as the application
of chemotherapy in combination with surgery or radiation therapy. Cisplatin is one of the predominantly
used chemotherapeutic agents for osteosarcoma. Optimally, it is employed in combination
with other chemotherapeutic drugs along with surgery or radiation therapy. Despite the availability
of numerous treatment approaches, the patient survival rate has not definitively improved
over the past three decades.
Methods:
We have summarized all findings regarding the combination of cisplatin with other chemotherapeutic
agents as well as with phytochemical compounds.
Results:
A combination of cisplatin with a phytochemical compound synergistically enhances the
killing effect of cisplatin on osteosarcoma cells with fewer side effects compared to combination
with other chemotherapeutic agents.
Conclusion:
Conclusively, a combination of cisplatin with selected chemotherapeutic drugs has
been shown to be effective. However, the unchanged survival rate has posed an urge to search for a
new combination regimen. As a collaborative effort to substantiate the therapeutic efficacy, the
combination with phytochemical compounds shows a promising response both in vitro as well as
in the preclinical study.
Collapse
Affiliation(s)
- Mohamad Z. Kasiram
- School of Health Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Hermizi Hapidin
- School of Health Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Hasmah Abdullah
- School of Health Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Azlina Ahmad
- School of Dental Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Sarina Sulong
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
30
|
Ahmad MZ, Ahmad J, Aslam M, Khan MA, Alasmary MY, Abdel-Wahab BA. Repurposed drug against COVID-19: nanomedicine as an approach for finding new hope in old medicines. NANO EXPRESS 2021. [DOI: 10.1088/2632-959x/abffed] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract
The coronavirus disease 2019 (COVID-19) has become a threat to global public health. It is caused by the novel severe acute respiratory syndrome coronavirus (SARS-CoV-2) and has triggered over 17 lakh causalities worldwide. Regrettably, no drug or vaccine has been validated for the treatment of COVID-19 and standard treatment for COVID-19 is currently unavailable. Most of the therapeutics moieties which were originally intended for the other disease are now being evaluated for the potential to be effective against COVID-19 (re-purpose). Nanomedicine has emerged as one of the most promising technologies in the field of drug delivery with the potential to deal with various diseases efficiently. It has addressed the limitations of traditional repurposed antiviral drugs including solubility and toxicity. It has also imparted enhanced potency and selectivity to antivirals towards viral cells. This review emphasizes the scope of repositioning of traditional therapeutic approaches, in addition to the fruitfulness of nanomedicine against COVID-19.
Collapse
|
31
|
Vatovec C, Kolodinsky J, Callas P, Hart C, Gallagher K. Pharmaceutical pollution sources and solutions: Survey of human and veterinary medication purchasing, use, and disposal. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 285:112106. [PMID: 33588165 DOI: 10.1016/j.jenvman.2021.112106] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 01/13/2021] [Accepted: 01/31/2021] [Indexed: 05/26/2023]
Abstract
Human and veterinary pharmaceuticals offer many benefits, but they also pose risks to both the environment and public health. Life-cycle stewardship of medications offers multiple strategies for minimizing the risks posed by pharmaceuticals, and further insight is required for developing best practices for pharmaceutical management. The goal of this study was to clarify points of intervention for minimizing environmental and public health risks associated with pharmaceuticals. Specifically, our objectives were to provide insight on purchasing, use, and disposal behaviors associated with human and veterinary medications. This study used a state-wide representative sample of Vermont adults (n = 421) to survey both human and veterinary pharmaceuticals as potential sources of the unintended consequences of prescribed and over-the-counter (OTC) medications. The majority (93%) of respondents had purchased some form of medication within the past twelve months, including OTC (85%), prescription (74%), and veterinary (41%) drugs. Leftover drugs of any kind were reported by 59% of respondents. While 56% of people were aware of drug take-back programs, the majority reported never being told what to do with leftover medications by their physician (78%), pharmacist (76%), or veterinarian (53%). Among all respondents, take-back programs were the most common disposal method (22%), followed by trash (19%), and flushing (9%), while 26% of respondents reported keeping unused drugs. Awareness of pharmaceutical pollution in the environment and having received information about proper disposal were both significantly associated with participation in take-back programs. These findings indicate that a large volume of drugs are going unused annually, and that only a portion of leftover medications are returned to take-back programs where they can be appropriately disposed. Our results warrant further investigation of clinical interventions that support lower dose prescribing and dispensing practices in order to reduce the unintended environmental and public health consequences of pharmaceuticals within the consumer sphere. In addition, our findings suggest that directed efforts to raise awareness of proper disposal may be more effective than broad awareness campaigns, and we recommend research on the efficacy of providing disposal instructions on drug packaging.
Collapse
Affiliation(s)
- Christine Vatovec
- Gund Institute for Environment & Larner College of Medicine, University of Vermont, Burlington, VT, USA.
| | - Jane Kolodinsky
- Community Development and Applied Economics, University of Vermont, Burlington, VT, USA
| | - Peter Callas
- Department of Mathematics & Statistics, University of Vermont, Burlington, VT, USA
| | - Christine Hart
- Rubenstein School of Environment & Natural Resources, University of Vermont, Burlington, VT, USA
| | - Kati Gallagher
- Community Development and Applied Economics, University of Vermont, Burlington, VT, USA
| |
Collapse
|
32
|
Corominas L, Gimeno P, Constantino C, Daldorph P, Comas J. Can source control of pharmaceuticals decrease the investment needs in urban wastewater infrastructure? JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124375. [PMID: 33213978 DOI: 10.1016/j.jhazmat.2020.124375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/05/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
The source control of pharmaceuticals involves influencing the everyday consumption volume and compound choice. This paper evaluates how source control contributes to protecting the environmental health and decreasing the investment needs in urban wastewater infrastructure. Different levels of reduction in diclofenac consumption (as recommended by the European Medicines Agency) compensated by equivalent increases in naproxen consumption (a less environmentally harmful compound) are evaluated. The different loads of compounds are fed into a microcontaminant fate and transport model of the Llobregat river basin (Spain) to assess the investment needs in tertiary treatment to reach diclofenac and naproxen concentrations below environmental quality standards. The results show that, despite the implementation of source control measures, tertiary treatment upgrades are still required in every scenario evaluated. Even though source control of pharmaceuticals decreases the investment needs in urban wastewater infrastructure, apparent concentrations reductions (i.e. statistically significant differences relative to the reference situation) are only observed in drastic substitutions of diclofenac by naproxen (a reduction in the total diclofenac consumption by 73% and a corresponding increase in naproxen consumption). The results also show that Spain is on good track with regards to the substitution of diclofenac by naproxen (among the top 5 in Europe), and this paper shows how positive this substitution can be for the environment.
Collapse
Affiliation(s)
- Lluís Corominas
- ICRA, Catalan Institute for Water Research, Carrer Emili Grahit 101, E-17003 Girona, Spain; Universitat de Girona, Girona, Spain.
| | - Pau Gimeno
- ICRA, Catalan Institute for Water Research, Carrer Emili Grahit 101, E-17003 Girona, Spain; Universitat de Girona, Girona, Spain
| | - Carlos Constantino
- Atkins, (The Hub) 500 Park Avenue, Aztec West, Almondsbury, Bristol BS32 4RZ, UK
| | - Peter Daldorph
- Atkins, (The Hub) 500 Park Avenue, Aztec West, Almondsbury, Bristol BS32 4RZ, UK
| | - Joaquim Comas
- ICRA, Catalan Institute for Water Research, Carrer Emili Grahit 101, E-17003 Girona, Spain; Universitat de Girona, Girona, Spain; Laboratory of Chemical and Environmental Engineering (LEQUIA), Institute of the Environment, University of Girona, E-17003 Girona, Spain
| |
Collapse
|
33
|
An Optimized Method for 3D Magnetic Navigation of Nanoparticles inside Human Arteries. FLUIDS 2021. [DOI: 10.3390/fluids6030097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A computational method for optimum magnetic navigation of nanoparticles that are coated with anticancer drug inside the human vascular system is presented in this study. For this reason a 3D carotid model is employed. The present model use Computational Fluid Dynamics (CFD) and Discrete Element Method (DEM) techniques along with Covariance Matrix Adaptation (CMA) evolution strategy for the evaluation of the optimal values of the gradient magnetic field. Under the influence of the blood flow the model evaluates the effect of different values of the gradient magnetic field in order to minimize the distance of particles from a pre-described desired trajectory. Results indicate that the diameter of particles is a crucial parameter for an effective magnetic navigation. The present numerical model can navigate nanoparticles with diameter above 500 nm with an efficiency of approximately 99%. It is found that the velocity of the blood seems to play insignificant role in the navigation process. A reduction of 25% in the inlet velocity leads the particles only 3% closer to the desired trajectory. Finally, the computational method is more efficient as the diameter of the vascular system is minimized because of the weak convective flow. Under a reduction of 50% in the diameter of the carotid artery the computational method navigate the particles approximately 75% closer to the desired trajectory. The present numerical model can be used as a tool for the determination of the parameters that mostly affect the magnetic navigation method.
Collapse
|
34
|
Gao YQ, Zhou JQ, Zhang J, Li C, Gao NY, Yin DQ. Factors affecting UV/persulfate treatment of phenacetin and its disinfection byproduct formation potential. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117819] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
Ahiwale RJ, Chellampillai B, Pawar AP. Investigation of novel sorafenib tosylate loaded biomaterial based nano-cochleates dispersion system for treatment of hepatocellular carcinoma. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.1878034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Raj J. Ahiwale
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth University, Pune, Maharashtra, India
| | - Bothiraja Chellampillai
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth University, Pune, Maharashtra, India
| | - Atmaram P. Pawar
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth University, Pune, Maharashtra, India
| |
Collapse
|
36
|
Freynhagen R, Baron R, Kawaguchi Y, Malik RA, Martire DL, Parsons B, Rey RD, Schug SA, Jensen TS, Tölle TR, Ushida T, Whalen E. Pregabalin for neuropathic pain in primary care settings: recommendations for dosing and titration. Postgrad Med 2021; 133:1-9. [PMID: 33423590 DOI: 10.1080/00325481.2020.1857992] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Pregabalin is one of the first-line treatments approved for the management of neuropathic pain (NeP). While many patients benefit from treatment with pregabalin, they are often treated with suboptimal doses, possibly due to unfamiliarity around prescribing the drug and/or side effects that can occur with up-titration. This narrative review discusses key aspects of initiating, titrating, and managing patients prescribed pregabalin therapy, and addresses concerns around driving and the potential for abuse, as well as when to seek specialist opinion. To ensure that patients derive maximum therapeutic benefit from the drug, we suggest a 'low and slow' dosing approach to limit common side effects and optimize tolerability alongside patients' expectations. When requiring titration to higher doses, we recommend initiating 'asymmetric dosing,' with the larger dose in the evening. Fully engaging patients in order for them to understand the expected timeline for efficacy and side effects (including their resolution), can also help determine the optimal titration tempo for each individual patient. The 'low and slow' approach also recognizes that patients with NeP are heterogeneous in terms of their optimal therapeutic dose of pregabalin. Hence, it is recommended that general practitioners closely monitor patients and up-titrate according to pain relief and side effects to limit suboptimal dosing or premature discontinuation.
Collapse
Affiliation(s)
- Rainer Freynhagen
- Center for Anaesthesiology, Intensive Care, Pain Medicine & Palliative Medicine, Benedictus Hospital, Feldafing, Germany
| | - Ralf Baron
- Department of Anaesthesiology, Technische Universtät München, Munich, Germany
| | - Yoshiharu Kawaguchi
- Division of Neurological Pain Research and Therapy, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Rayaz A Malik
- Department of Orthopaedic Surgery, Toyama University Hospital, Toyama, Japan; eWeill Cornell Medicine, Qatar, Doha, Qatar
| | | | | | | | - Stephan A Schug
- Argentine Institute for Neurological Research (IADIN), Buenos Aires, Argentina
| | | | - Thomas R Tölle
- Anaesthesiology and Pain Medicine, Medical School, University of Western Australia, Perth, WA, Australia
| | - Takahiro Ushida
- Department of Neurology and Diabetic Neuropathy Consortium, Aarhus University Hospital, Aarhus, Denmark
| | - Ed Whalen
- Department of Neurology, Technische Universität München, Munich, Germany.,Multidisciplinary Pain Center, Aichi Medical University Hospital, Nagakute, Japan
| |
Collapse
|
37
|
d'Orey P, Cordeiro T, Lourenço MAO, Matos I, Danède F, Sotomayor JC, Fonseca IM, Ferreira P, Correia NT, Dionísio M. How Molecular Mobility, Physical State, and Drug Distribution Influence the Naproxen Release Profile from Different Mesoporous Silica Matrices. Mol Pharm 2021; 18:898-914. [PMID: 33461296 DOI: 10.1021/acs.molpharmaceut.0c00908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aiming to evaluate how the release profile of naproxen (nap) is influenced by its physical state, molecular mobility, and distribution in the host, this pharmaceutical drug was loaded in three different mesoporous silicas differing in their architecture and surface composition. Unmodified and partially silylated MCM-41 matrices, respectively MCM-41 and MCM-41sil, and a biphenylene-bridged periodic mesoporous organic matrix, PMOBph, were synthetized and used as drug carriers, having comparable pore sizes (∼3 nm) and loading percentages (∼30% w/w). The loaded guest was investigated by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, powder X-ray diffraction (XRD), differential scanning calorimetry (DSC), and dielectric relaxation spectroscopy (DRS). DSC and XRD confirmed amorphization of a nap fraction incorporated inside the pores. A narrower glass transition was detected for PMOBph_nap, taken as an indication of the impact of host ordering, which also hinders the guest molecular mobility inside the pores as probed by DRS. While the PMOBph matrix is highly hydrophobic, the unmodified MCM-41 readily adsorbs water, accelerating the nap relaxation rate in the respective composite. In the dehydrated state, the faster dynamics was found for the silylated matrix since guest-host hydrogen bond interactions were inhibited to some extent by methylation. Nevertheless, in all the prepared composites, bulk-like crystalline drug deposits outside pores in a greater extent in PMOBph_nap. The DRS measurements analyzed in terms of conductivity show that, upon melting, nap easily migrates into pores in MCM-41-based composites, while it stays in the outer surface in the ordered PMOBph, determining a faster nap delivery from the latter matrix. On the other side, the mobility enhancement in the hydrated state controls the drug delivery in the unmodified MCM-41 matrix vs the silylated one. Therefore, DRS proved to be a suitable technique to disclose the influence of the ordering of the host surface and its chemical modification on the guest behavior, and, through conductivity depletion, it provides a mean to monitor the guest entrance inside the pores, easily followed even by untrained spectroscopists.
Collapse
Affiliation(s)
- Piedade d'Orey
- LAQV-REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia - Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Teresa Cordeiro
- LAQV-REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia - Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Mirtha A O Lourenço
- CICECO, Department of Materials and Ceramic Engineering, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.,Istituto Italiano di Tecnologia - IIT, Center for Sustainable Future Technologies (CSFT), Via Livorno 60, 10144 Torino, Italy
| | - Inês Matos
- LAQV-REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia - Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Florence Danède
- CICECO, Department of Materials and Ceramic Engineering, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - João C Sotomayor
- LAQV-REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia - Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Isabel M Fonseca
- LAQV-REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia - Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Paula Ferreira
- CICECO, Department of Materials and Ceramic Engineering, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Natália T Correia
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, F-59000 Lille, France
| | - Madalena Dionísio
- LAQV-REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia - Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
38
|
Mary YS, Mary YS. Utilization of doped/undoped graphene quantum dots for ultrasensitive detection of duphaston, a SERS platform. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 244:118865. [PMID: 32889339 DOI: 10.1016/j.saa.2020.118865] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 06/11/2023]
Abstract
Recently nanocluster based drug delivery systems have become the most skillful to study. Interaction mechanism of duphaston (DPH) over graphene (G), carboxyl substituted graphene (COG) and doped COG-X (X = O/S/N/B) were investigated. We studied different spectroscopic properties of adsorbed DPH with nanoclusters. To study effect adsorption of DPH with nanoclusters, the adsorption energies were measured. To track DPH, surface enhanced Raman scattering is used since it is an efficient approach to vibrational spectroscopy. The DPH detection was investigated using GQDs SERS property. For the adsorption of DPH with COG-B nanocluster maximum energy interaction is determined. DPH works on the electrophilic site of nanoclusters as donor of electrons and adsorbs. Charge transfer is higher for to COG-B nanocluster than for other nanoclusters. Variations in chemical descriptors are also noted to understand sensing property of DPH molecule-nanoclusters. The analysis of different properties demonstrates enhancement effect which makes it significant in detecting DPH in other products.
Collapse
Affiliation(s)
- Y Sheena Mary
- Department of Physics, Fatima Mata National College (Autonomous), Kollam, Kerala, India.
| | - Y Shyma Mary
- Department of Physics, Fatima Mata National College (Autonomous), Kollam, Kerala, India
| |
Collapse
|
39
|
Gao YQ, Rao YY, Ning H, Yin DQ, Gao NY. MoS 2-assisted Fe 2+/peroxymonosulfate oxidation for the abatement of phenacetin: efficiency, mechanisms and toxicity evaluation. RSC Adv 2021; 11:33149-33159. [PMID: 35493592 PMCID: PMC9042310 DOI: 10.1039/d1ra05892d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/04/2021] [Indexed: 11/30/2022] Open
Abstract
In this study, molybdenum disulfide (MoS2) was chosen as a co-catalyst to enhance the removal efficiency of phenacetin (PNT) in water by a ferrous ion-activated peroxymonosulfate (Fe2+/PMS) process. Operating parameters, such as the initial solution pH and chemical dose on PNT degradation efficiency were investigated and optimized. Under an initial pH of 3, an Fe2+ dose of 25 μM, a PMS dose of 125 μM and a MoS2 dose of 0.1 g L−1, the degradation efficiency of PNT reached 94.3%, within 15 min. The presence of common water constituents including Cl−, HCO3−, SO42− and natural organic matter (NOM) will inhibit degradation of PNT in the MoS2/Fe2+/PMS system. Radical quenching tests combined with electron paramagnetic resonance (EPR) results indicated that in addition to free radical species (˙OH, SO4˙− and O2˙−), nonradical reactive species (1O2) were also crucial for PNT degradation. The variations in the composition and crystalline structure of the MoS2 before and after the reaction were characterized by XPS and XRD. Further, the degradation pathways of PNT were proposed according to the combined results of LC/TOF/MS and DFT calculations, and primarily included hydroxylation of the aromatic ring, cleavage of the C–N bond of the acetyl-amino group, and cleavage of the C–O bond of the ethoxy group. Finally, toxicity assessment of PNT and its products was predicted using the ECOSAR program. Performance, mechanisms and toxicity evaluation of PNT degradation by the MoS2/Fe2+/PMS system were investigated.![]()
Collapse
Affiliation(s)
- Yu-qiong Gao
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yan-yan Rao
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Han Ning
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Da-qiang Yin
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Nai-yun Gao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
40
|
Acuña V, Bregoli F, Font C, Barceló D, Corominas L, Ginebreda A, Petrovic M, Rodríguez-Roda I, Sabater S, Marcé R. Management actions to mitigate the occurrence of pharmaceuticals in river networks in a global change context. ENVIRONMENT INTERNATIONAL 2020; 143:105993. [PMID: 32738769 DOI: 10.1016/j.envint.2020.105993] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Human consumption of pharmaceuticals leads to high concentrations of pharmaceuticals in wastewater, which is usually not or insufficiently collected and treated before release into freshwater ecosystems. There, pharmaceuticals may pose a threat to aquatic biota. Unfortunately, occurrence data of pharmaceuticals in freshwaters at the global scale is scarce and unevenly distributed, thus preventing the identification of hotspots, the prediction of the impact of Global Change (particularly streamflow and population changes) on their occurrence, and the design of appropriate mitigation actions. Here, we use diclofenac (DCL) as a typical pharmaceutical contaminant, and a global model of DCL chemical fate based on wastewater sanitation, population density and hydrology to estimate current concentrations in the river network, the impact of future changes in runoff and population, and potential mitigation actions in line with the Sustainable Development Goals. Our model is calibrated against measurements available in the literature. We estimate that 2.74 ± 0.63% of global river network length has DCL concentrations exceeding the proposed EU Watch list limit (100 ng L-1). Furthermore, many rivers downstream from highly populated areas show values beyond 1000 ng L-1, particularly those associated to megacities in Asia lacking sufficient wastewater treatment. This situation will worsen with Global Change, as streamflow changes and human population growth will increase the proportion of the river network above 100 ng L-1 up to 3.10 ± 0.72%. Given this background, we assessed feasible source and end-of-pipe mitigation actions, including per capita consumption reduction through eco-directed sustainable prescribing (EDSP), the implementation of the United Nations Sustainable Development Goal (SDG) 6 of halving the proportion of population without access to safely managed sanitation services, and improvement of wastewater treatment plants up to the Swiss standards. Among the considered end-of-pipe mitigation actions, implementation of SDG 6 was the most effective, reducing the proportion of the river network above 100 ng L-1 down to 2.95 ± 0.68%. However, EDSP brought this proportion down to 2.80 ± 0.64%. Overall, our findings indicate that the sole implementation of technological improvements will be insufficient to prevent the expected increase in pharmaceuticals concentration, and that technological solution need to be combined with source mitigation actions.
Collapse
Affiliation(s)
- V Acuña
- Catalan Institute for Water Research (ICRA), Carrer Emili Grahit 101, 17003 Girona, Spain; University of Girona, Plaça de Sant Domenec 3, 17003 Girona, Spain
| | - F Bregoli
- Catalan Institute for Water Research (ICRA), Carrer Emili Grahit 101, 17003 Girona, Spain; IHE Delft Institute for Water Education, Westvest 7, 2601 DA Delft, the Netherlands
| | - C Font
- Catalan Institute for Water Research (ICRA), Carrer Emili Grahit 101, 17003 Girona, Spain; University of Girona, Plaça de Sant Domenec 3, 17003 Girona, Spain
| | - D Barceló
- Catalan Institute for Water Research (ICRA), Carrer Emili Grahit 101, 17003 Girona, Spain; University of Girona, Plaça de Sant Domenec 3, 17003 Girona, Spain; Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Carrer Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Ll Corominas
- Catalan Institute for Water Research (ICRA), Carrer Emili Grahit 101, 17003 Girona, Spain; University of Girona, Plaça de Sant Domenec 3, 17003 Girona, Spain
| | - A Ginebreda
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Carrer Jordi Girona 18-26, 08034 Barcelona, Spain
| | - M Petrovic
- Catalan Institute for Water Research (ICRA), Carrer Emili Grahit 101, 17003 Girona, Spain; ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - I Rodríguez-Roda
- Catalan Institute for Water Research (ICRA), Carrer Emili Grahit 101, 17003 Girona, Spain; University of Girona, Plaça de Sant Domenec 3, 17003 Girona, Spain; Laboratory of Chemical and Environmental Engineering (LEQUiA), University of Girona, 17071 Girona, Spain
| | - S Sabater
- Catalan Institute for Water Research (ICRA), Carrer Emili Grahit 101, 17003 Girona, Spain; Institute of Aquatic Ecology, University of Girona, Campus Montilivi, 17071 Girona, Spain
| | - R Marcé
- Catalan Institute for Water Research (ICRA), Carrer Emili Grahit 101, 17003 Girona, Spain; University of Girona, Plaça de Sant Domenec 3, 17003 Girona, Spain.
| |
Collapse
|
41
|
Wang J, Li S, He B. Chinese physicians' attitudes toward eco-directed sustainable prescribing from the perspective of ecopharmacovigilance: a cross-sectional study. BMJ Open 2020; 10:e035502. [PMID: 32487575 PMCID: PMC7265008 DOI: 10.1136/bmjopen-2019-035502] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Eco-directed sustainable prescribing (EDSP) is an effective upstream way to reduce the environmental footprints of active pharmaceutical ingredients (APIs), a kind of emerging contaminants, from the patients' excretion. EDSP is one of the key steps in the programme of ecopharmacovigilance (EPV), a drug administration route on API pollution. OBJECTIVE To assess the attitudes of physicians prescribing medicines regarding EDSP from the perspective of EPV. DESIGN A cross-sectional study conducted from March 2019 to June 2019. SETTING 5 government general hospitals in Hubei province, China. PARTICIPANTS 405 physicians were randomly selected and 262 valid questionnaires were obtained. OUTCOME MEASURES A self-developed questionnaire, which inquired about the participant characteristics, perceptions and attitudes toward API pollution, EPV and EDSP from an EPV perspective, was emailed to collect data from physicians. RESULTS Most physicians agreed the existence of APIs in environment, worried about the potential environmental and ecological risks of API residues, supported the effectiveness and necessity of EDSP under an EPV perspective in decreasing environmental exposure of excreted APIs, and showed their willingness to participate in the EDSP practices. Nevertheless, no respondent identified the environmental impacts as the aspects regarding medicines affecting his(her) prescription decision, none was satisfied with knowledge on EDSP and showed confidence toward EDSP. The most important barrier to the effective implementation of EDSP was identified as 'poor awareness of EDSP and EPV'. Most responding physicians (97%) reported that they held the wait-and-see or conservative attitudes towards EDSP practice. The biggest concerns in low-dose prescribing and prescribing of drugs possessing environment-friendly excretion profiles, two EDSP approaches, were the possible negative impact on therapeutic outcomes and too complicated and professional drug evaluation process, respectively. CONCLUSIONS Chinese physicians had positive attitudes towards EDSP from the perspective of EPV. However, their environmental consciousness during prescribing and the related education were insufficient.
Collapse
Affiliation(s)
- Jun Wang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Shulan Li
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Bingshu He
- Orthopedic Surgery, Hubei Province Woman and Child Hospital, Wuhan, Hubei, China
| |
Collapse
|
42
|
Bilal M, Mehmood S, Rasheed T, Iqbal HM. Antibiotics traces in the aquatic environment: persistence and adverse environmental impact. CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH 2020. [DOI: 10.1016/j.coesh.2019.11.005] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
43
|
Nemcova M, Pikula J, Zukal J, Seidlova V. Diclofenac-induced cytotoxicity in cultured carp leukocytes. Physiol Res 2020; 69:S607-S618. [PMID: 33646004 DOI: 10.33549/physiolres.934609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Diclofenac is a drug commonly used in human and veterinary medicine for the treatment of diseases associated with inflammation and pain. Medicinal products enter waste and surface waters on an everyday basis and contaminate the aquatic environment. Fish are therefore permanently exposed to these chemicals dissolved in their aquatic environment. To simulate variable environmental conditions, the aim of our study was to examine adverse effects of diclofenac under different temperatures of cell incubation (18, 21, 24, 27 and 30 °C). Cyto-toxic and -static effects of diclofenac in concentrations of 0.001 mcg/ml, 0.01 microg/ml, 0.1 mcg/ml, 1 mcg/ml, 10 mcg/ml and 100 mcg/ml for the carp (Cyprinuscarpio) cultured leukocytes were quantified using detection of lactate dehydrogenase released from damaged cells. Overall DCF cytotoxicity was relatively low and its impact was pronounced at higher temperature and DCF concentration. Cells growth inhibition is changing more rapidly but it is high mainly at the highest concentration from low temperature. DNA fragmentation was not detected in tested leukocyte cell line. CYP450 increased diclofenac cytotoxicity only at the highest concentration but at incubation temperatures 18 and 27 °C. Leukocyte viability is essential for immune functions and any change can lead to reduction of resistance against pathogens, mainly in cold year seasons, when the immune system is naturally suppressed.
Collapse
Affiliation(s)
- M Nemcova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno,Czech Republic.
| | | | | | | |
Collapse
|
44
|
Connelly S, Fanelli B, Hasan NA, Colwell RR, Kaleko M. Low dose oral beta-lactamase protects the gut microbiome from oral beta-lactam-mediated damage in dogs. AIMS Public Health 2019; 6:477-487. [PMID: 31909068 PMCID: PMC6940571 DOI: 10.3934/publichealth.2019.4.477] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/05/2019] [Indexed: 01/02/2023] Open
Abstract
Antibiotics, while lifesaving, damage the gut microbiome and can precipitate proliferation of pathobionts. A strategy to preserve gut microbiome integrity is to eliminate biologically active antimicrobials excreted into the gastrointestinal tract (GI) without negatively affecting antibiotic therapeutic efficacy. Clinical proof of concept was achieved with SYN-004 (ribaxamase), a beta-lactamase enzyme formulated for oral delivery with intravenous penicillins and cephalosporins. Ribaxamase inactivated intestinal ceftriaxone, protected the gut microbiome, and significantly reduced the incidence of Clostridioides difficile disease. For use with oral beta-lactam antibiotics, a delayed release formulation of ribaxamase, SYN-007, was engineered for dissolution in the lower small intestine distal to the site of oral antibiotic absorption. In dogs that received oral amoxicillin, SYN-007 reduced microbiome disruption without interfering with amoxicillin systemic absorption. Here, a study to determine the lowest effective dose of SYN-007 was performed. Dogs received amoxicillin (40 mg/kg, PO, TID) +/− SYN-007 (PO, TID) at three doses, 10 mg, 3 mg, or 1 mg for five days. Serum amoxicillin levels, measured after the first and last antibiotic doses, were not significantly different +/−SYN-007 at all dose levels indicating that SYN-007 did not interfere with amoxicillin systemic absorption. Microbiome analyses demonstrated that amoxicillin significantly reduced bacteria richness and microbiome diversity resulting in altered microbiome composition. However, with all doses of SYN-007, microbiome richness and diversity were not significantly different from pretreatment and changes in microbiome composition were attenuated. These data demonstrate that effective SYN-007 doses can be reduced at least 10-fold while maintaining gut microbiome preservation. The potential to employ low SYN-007 doses to protect the gut microbiota has important implications for enhancing therapeutic outcomes for patients receiving oral beta-lactam antibiotics while simultaneously reducing cost per dose and ultimately, healthcare expenses.
Collapse
Affiliation(s)
| | | | - Nur A Hasan
- CosmosID, Inc., Rockville, MD, United States
| | - Rita R Colwell
- CosmosID, Inc., Rockville, MD, United States.,University of Maryland Institute for Advanced Computer Studies, College Park, MD, United States
| | | |
Collapse
|
45
|
Sharp CN, Linder MW, Valdes R. Polypharmacy: a healthcare conundrum with a pharmacogenetic solution. Crit Rev Clin Lab Sci 2019:1-20. [PMID: 31680605 DOI: 10.1080/10408363.2019.1678568] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The use of multiple medications is growing at an alarming rate with some reports documenting an average of 12-22 prescriptions being used by individuals ≥50 years of age. The indirect consequences of polypharmacy include exacerbation of drug-drug interactions, adverse drug reactions, increased likelihood of prescribing cascades, chronic dependence, and hospitalizations - all of which have significant health and economic burden. While many practical solutions for reducing polypharmacy have been proposed, they have been met with limited efficacy. This highlights the need for a new systematic approach for fine-tuning dispensing of medications. Pharmacogenetic testing provides an empirical and scientifically rigorous approach for guiding appropriate selection of medicines, with the potential to reduce unnecessary polypharmacy while improving clinical outcomes. The goal of this review article is to provide healthcare providers with an understanding of polypharmacy, its adverse effects on the healthcare system and highlight how pharmacogenetic information can be used to avoid polypharmacy in patients.
Collapse
Affiliation(s)
- Cierra N Sharp
- Department of Pathology and Laboratory Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| | - Mark W Linder
- Department of Pathology and Laboratory Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| | - Roland Valdes
- Department of Pathology and Laboratory Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|
46
|
Piper sarmentosum Leaves Aqueous Extract Attenuates Vascular Endothelial Dysfunction in Spontaneously Hypertensive Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:7198592. [PMID: 31485247 PMCID: PMC6710744 DOI: 10.1155/2019/7198592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/03/2019] [Accepted: 07/14/2019] [Indexed: 02/05/2023]
Abstract
Piper sarmentosum is a tropical plant in Southeast Asia known for its traditional use in curing various ailments including hypertension. Previous research works have provided evidence for the herb's antihypertensive property. However, the exact mechanisms involved are still in question. The present study investigated the effects of Piper sarmentosum leaves aqueous extract (PSAE) treatment on vascular endothelin system in spontaneously hypertensive rats (SHRs). Four groups of SHRs were treated for 28 consecutive days, with negative and positive control groups receiving distilled water and 3 mg/kg perindopril, respectively. Another two groups are the treatment groups, which received PSAE and combination of 1.5 mg/kg perindopril and PSAE. Weekly measurements of blood pressure showed that PSAE significantly reduced the systolic, diastolic, and mean arterial pressures (P < 0.05) of the rats. PSAE also increased mesenteric artery nitric oxide (NO) level (P < 0.05) and reduced endothelin-1 (ET-1) level (P < 0.05) in the treatment groups. Our results demonstrate that oral administration of PSAE reduced blood pressure in SHRs by reducing the ET-1 level while increasing NO production.
Collapse
|
47
|
Quadra GR, Silva PSA, Paranaíba JR, Josué IIP, Souza H, Costa R, Fernandez M, Vilas-Boas J, Roland F. Investigation of medicines consumption and disposal in Brazil: A study case in a developing country. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 671:505-509. [PMID: 30933805 DOI: 10.1016/j.scitotenv.2019.03.334] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/28/2019] [Accepted: 03/22/2019] [Indexed: 06/09/2023]
Abstract
The incorrect disposal of medicines can be harmful to the environment. Here, we aim to understand the consumption and disposal of medicines in Brazil using online forms. 64% of the respondents have the habit to self-medicate. 66% of respondents dispose the disused or expired medicines in the garbage. 71.9% of respondents never receive any information about correct disposal of medicines. 95.2% of respondents believe that residues of medicines can be harmful to the environment. Environmental education can provide information to the population and help to mitigate pharmaceuticals pollution.
Collapse
Affiliation(s)
- Gabrielle R Quadra
- Laboratório de Ecologia Aquática, Programa de Pós-Graduação em Ecologia, Universidade Federal de Juiz de Fora, 36036-900, Brazil.
| | - Pâmela S A Silva
- Departamento de Farmacologia, Universidade Federal de Juiz de Fora, 36036-900, Brazil
| | - José R Paranaíba
- Laboratório de Ecologia Aquática, Programa de Pós-Graduação em Ecologia, Universidade Federal de Juiz de Fora, 36036-900, Brazil
| | - Iollanda I P Josué
- Laboratório de Limnologia, Programa de Pós-Graduação em Ecologia, Universidade Federal do Rio de Janeiro, 21941-590, Brazil
| | - Helena Souza
- Programa de Pós-Graduação em Meio Ambiente, Universidade Estadual do Rio de Janeiro, 20550-900, Brazil
| | - Rafaela Costa
- Programa de Pós-Graduaçãoem Desenvolvimento e Meiio Ambiente, Universidade Federal do Rio Grande do Norte, 59064-741, Brazil
| | - Marcos Fernandez
- Laboratório de Ecotoxicologia Marinha, Departamento de Oceanografia Química, Universidade Estadual do Rio de Janeiro, 20550-900, Brazil
| | - Jéssica Vilas-Boas
- Laboratório de Protozoologia, Programa de Pós-Graduação em Ecologia, Universidade Federal de Juiz de Fora, 36036-900, Brazil
| | - Fábio Roland
- Laboratório de Ecologia Aquática, Programa de Pós-Graduação em Ecologia, Universidade Federal de Juiz de Fora, 36036-900, Brazil
| |
Collapse
|
48
|
Fronza MG, Baldinotti R, Martins MC, Goldani B, Dalberto BT, Kremer FS, Begnini K, Pinto LDS, Lenardão EJ, Seixas FK, Collares T, Alves D, Savegnago L. Rational design, cognition and neuropathology evaluation of QTC-4-MeOBnE in a streptozotocin-induced mouse model of sporadic Alzheimer's disease. Sci Rep 2019; 9:7276. [PMID: 31086208 PMCID: PMC6513848 DOI: 10.1038/s41598-019-43532-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 04/23/2019] [Indexed: 11/28/2022] Open
Abstract
Alzheimer’s disease (AD) is a multifactorial pathology characterized by amyloid deposits, neurofibrillary formation, oxidative stress and cholinergic system dysfunction. In this sense, here we report the rational design of a multi-target directed ligand (MTDL) for AD based on virtual screening and bioinformatic analyses, exploring the molecular targets β-secretase (BACE-1), glycogen synthase kinase-3β (GSK-3β) and acetylcholinesterase (AChE). After this screening, the compound with higher molecular docking affinity was selected, the 1-(7-chloroquinolin-4-yl)-N-(4-methoxybenzyl)-5-methyl-1H-1,2,3-triazole-4 carboxamide(QTC-4-MeOBnE). To further our studies, the protective effect of QTC-4-MeOBnE (0.1 and 1 mg/kg for 20 days) on STZ-induced sporadic AD mice was determined. QTC-4-MeOBnE pretreatment attenuated cognitive and memory deficit induced by STZ in an object recognition test, Y-maze, social recognition test and step-down passive avoidance. The mechanisms underlying this action might be attributed to the reduction of lipid peroxidation and reactive species formation in the prefrontal cortex and hippocampus of mice submitted to STZ. In addition, QTC-4-MeOBnE pretreatment abolished the up-regulation of AChE activity and the overexpression of GSK 3β and genes involved in amyloid cascade such as BACE-1, protein precursor amyloid, у-secretase, induced by STZ. Moreover, toxicological parameters were not modified by QTC-4-MeOBnE chronic treatment. This evidence suggests that QTC-4-MeOBnE exerts its therapeutic effect through multiple pathways involved in AD.
Collapse
Affiliation(s)
- Mariana G Fronza
- Research Group on Neurobiotechnology - GPN, CDTec, Federal University of Pelotas, UFPel, Pelotas, RS, Brazil
| | - Rodolfo Baldinotti
- Research Group on Neurobiotechnology - GPN, CDTec, Federal University of Pelotas, UFPel, Pelotas, RS, Brazil
| | - Maria Clara Martins
- Research Group on Neurobiotechnology - GPN, CDTec, Federal University of Pelotas, UFPel, Pelotas, RS, Brazil
| | - Bruna Goldani
- Laboratory of Clean Organic Synthesis - LASOL, CCQFA, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Bianca Thaís Dalberto
- Laboratory of Clean Organic Synthesis - LASOL, CCQFA, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Frederico Schmitt Kremer
- Laboratory of Bioinformatics and Proteomics - BIOPRO-LAB, CDTec, Federal University of Pelotas, UFPel, Pelotas, RS, Brazil
| | - Karine Begnini
- Oncology Research Group - GPO, CDTec, Federal University of Pelotas, UFPel, Pelotas, RS, Brazil
| | - Luciano da Silva Pinto
- Laboratory of Bioinformatics and Proteomics - BIOPRO-LAB, CDTec, Federal University of Pelotas, UFPel, Pelotas, RS, Brazil
| | - Eder João Lenardão
- Laboratory of Clean Organic Synthesis - LASOL, CCQFA, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Fabiana K Seixas
- Oncology Research Group - GPO, CDTec, Federal University of Pelotas, UFPel, Pelotas, RS, Brazil
| | - Tiago Collares
- Oncology Research Group - GPO, CDTec, Federal University of Pelotas, UFPel, Pelotas, RS, Brazil
| | - Diego Alves
- Laboratory of Clean Organic Synthesis - LASOL, CCQFA, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Lucielli Savegnago
- Research Group on Neurobiotechnology - GPN, CDTec, Federal University of Pelotas, UFPel, Pelotas, RS, Brazil.
| |
Collapse
|
49
|
Moon C, Watts AB, Lu X, Su Y, Williams RO. Enhanced Aerosolization of High Potency Nanoaggregates of Voriconazole by Dry Powder Inhalation. Mol Pharm 2019; 16:1799-1812. [PMID: 30925839 DOI: 10.1021/acs.molpharmaceut.8b00907] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Invasive pulmonary aspergillosis is a deadly fungal infection with a high mortality rate, particularly in patients having undergone transplant surgery. Voriconazole, a triazole antifungal pharmaceutical product, is considered as a first-line therapy for invasive pulmonary aspergillosis, and exhibits efficacy even for patients who have failed other antifungal drug therapies. The objective of this study is to develop high potency nanoaggregates of crystalline voriconazole composition for dry powder inhalation using the particle engineering process, thin film freezing. In this study, mannitol at low concentrations acted as a surface texture-modifying agent, and we evaluated the physicochemical and aerodynamic properties of the voriconazole formulations containing different amounts of mannitol. In vitro aerosol performance data demonstrated that powder formulations consisting of 90 to 97% (w/w) voriconazole were the optimum for inhalation with a fine particle fraction (% of delivered dose) as high as 73.6 ± 3.2% and mass median aerodynamic diameter of 3.03 ± 0.17 μm when delivered by a commercially available device. The thin film freezing process enabled phase-separated submicron crystalline mannitol to be oriented such as to modify the surface texture of the crystalline voriconazole nanoaggregates, thus enhancing their aerosolization. Addition of as low as 3% (w/w) mannitol significantly increased the fine particle fraction (% of metered dose) of voriconazole nanoaggregates when compared to compositions without mannitol (40.8% vs 24.6%, respectively). The aerosol performance of the voriconazole nanoaggregates with 5% (w/w) mannitol was maintained for 13 months at 25 °C/60% RH. Therefore, voriconazole nanoaggregates having low amounts of surface texture-modifying mannitol made by thin film freezing are a feasible local treatment option for invasive pulmonary aspergillosis with high aerosolization efficiency and drug loading for dry powder inhalation.
Collapse
Affiliation(s)
- Chaeho Moon
- College of Pharmacy , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Alan B Watts
- College of Pharmacy , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Xingyu Lu
- Merck Research Laboratories , Merck & Co., Inc., Kenilworth , New Jersey 07033 , United States
| | - Yongchao Su
- Merck Research Laboratories , Merck & Co., Inc., Kenilworth , New Jersey 07033 , United States
| | - Robert O Williams
- College of Pharmacy , The University of Texas at Austin , Austin , Texas 78712 , United States
| |
Collapse
|
50
|
Azuma T, Otomo K, Kunitou M, Shimizu M, Hosomaru K, Mikata S, Mino Y, Hayashi T. Removal of pharmaceuticals in water by introduction of ozonated microbubbles. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.11.059] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|