1
|
Wang Y, Jiang L, Ali MM, Jiang J, Xu Y, Liu Z. Aquatic life criteria of hydrothermal liquefaction wastewater via ecotoxicity test and modeling. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134289. [PMID: 38663294 DOI: 10.1016/j.jhazmat.2024.134289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 05/12/2024]
Abstract
Wastewater resulting from hydrothermal liquefaction (HTL-AP) of biowaste is gaining attention as an emerging hazardous material. However, there is a lack of specific and systematic ecotoxicity studies on HTL-AP. This study addresses this gap by conducting acute toxicity tests on HTL-AP using typical aquatic species and integrating these results with predicted toxicity values from interspecies correlation estimation models to establish aquatic life criteria. HTL-AP exhibited significant toxicity with LC50 of 956.12-3645.4 mg/L, but demonstrated moderate toxicity compared to common freshwater pollutants like commercial microbicides, personal care products, and insect repellents. The resulting hazardous concentration for 5 % of species (HC5), the criterion maximum concentration, and the short-term water quality criteria for aquatic were 506.0, 253.0, and 168.7 mg/L, respectively. Notably, certain organisms like Misgurnus anguillicaudatus and Cipangopaludina chinensis showed high tolerance to HTL-AP, likely due to their metabolic capabilities on HTL-AP components. The significant decrease in HC5 values for some HTL-AP substances compared to pure compounds could indicate the synergistic inhibition effects among HTL-AP compositions. Furthermore, according to the established criteria, HTL-AP required significantly less diluted water (13 t) than carbendazim (1009 t) to achieve biosafety, indicating a safer release. This research establishes a preliminary water quality criterion for HTL-AP, offering a valuable reference for risk assessment and prediction in the utilization of HTL-AP within environmental contexts.
Collapse
Affiliation(s)
- Yueyao Wang
- Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment of Ministry of Agriculture and Rural Affairs, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Lei Jiang
- Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment of Ministry of Agriculture and Rural Affairs, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Mahmoud M Ali
- Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment of Ministry of Agriculture and Rural Affairs, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing 100083, China; Agricultural Engineering Research Institute, Agricultural Research Center, Giza 12311, Egypt
| | - Jinyue Jiang
- Water & Energy Technologies (WET) Lab, Department of Civil and Environmental Engineering, Princeton University, Princeton 08544, United States
| | - Yongdong Xu
- Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment of Ministry of Agriculture and Rural Affairs, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing 100083, China; Water & Energy Technologies (WET) Lab, Department of Civil and Environmental Engineering, Princeton University, Princeton 08544, United States.
| | - Zhidan Liu
- Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment of Ministry of Agriculture and Rural Affairs, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing 100083, China.
| |
Collapse
|
2
|
Williams-Clayson AM, Vane CH, Jones MD, Thomas R, Taylor C, Beriro DJ. Dermal absorption of high molecular weight parent and alkylated polycyclic aromatic hydrocarbons from manufactured gas plant soils using in vitro assessment. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133858. [PMID: 38493626 DOI: 10.1016/j.jhazmat.2024.133858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/19/2024]
Abstract
An enhanced in vitro human dermal bioavailability method was developed to measure the release of twenty parent and seven alkylated high molecular weight (HMW) polycyclic aromatic hydrocarbons (PAHs) from contaminated soils collected from five former manufactured Gas Plants (MGP) in England. GC-MS/MS was used to quantify HMW PAHs in soil, Strat-M artificial membrane representing skin, and synthetic receptor solution (RS) representing systemic circulation at 1-h, 10-h, and 24-h timesteps. Fluoranthene and pyrene exhibited the highest fluxes from soils to membrane (ranging from 9.5 - 281 ng/cm2/h) and soil to RS (
Collapse
|
3
|
Castel R, Tassistro V, Lebarillier S, Dupuy N, Noack Y, Orsière T, Malleret L. Chemical and genotoxic characterization of bioaccessible fractions as a comprehensive in vitro tool in assessing the health risk due to dust-bound contaminant ingestion. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33248-3. [PMID: 38691285 DOI: 10.1007/s11356-024-33248-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/04/2024] [Indexed: 05/03/2024]
Abstract
In the last two decades, awareness grew on the matter of the impact of environment on human health. Contaminants sorbed onto soil and settled dust can be ingested and thus represent a hazard, particularly to young children, who play on the ground and bring their hands and objects to their mouth. Metal(loid)s and polycyclic aromatic hydrocarbons (PAHs) are of concern as they are both carcinogenic to humans and ubiquitous in outdoor environments. The present study aims to assess the total and bioaccessible fractions of PAHs and metal(loid)s present in settled dust of four preschools located in industrial, urban, and suburban areas. On the one hand, children's incremental life cancer risks (ILCR) were calculated according to ingestion pathway. On the other hand, the genotoxicities of the bioaccessible dust-bonded contaminants were determined on gastric cells. PAH concentrations ranged from 50.9 to 2267.3 ng/g, and the bioaccessible fraction represented 10.7% of the total in average. Metal(loid) concentration ranged from 12,430 to 38,941 µg/g, and the mean bioaccessibility was of 40.1%. Cancer risk ranged from 2.8.105 to 8.6.105, indicating that there is a potential cancer risk for children linked to the ingestion of settled dust. The inorganic bioaccessible fraction induced little DNA (< 20%TailDNA) and chromosomal damages (30% increase in micronuclei), whereas the organic bioaccessible fraction induced higher DNA (17-63%TailDNA) and chromosomal damages (88% increase in micronuclei). Such experimental approach needs to be deepen, as a tool complementary to cancer risk calculation, since the latter only lays on a set of targeted contaminants with known toxicity values.
Collapse
Affiliation(s)
- Rebecca Castel
- Laboratoire Chimie Environnement, Aix Marseille University, CNRS, Marseille, France
- IMBE, Aix Marseille University, CNRS, IRD, AU, Marseille, France
| | | | | | - Nathalie Dupuy
- IMBE, Aix Marseille University, CNRS, IRD, AU, Marseille, France
| | - Yves Noack
- CEREGE, Aix Marseille University, CNRS, IRD, INRAE, Aix-en-Provence, France
| | - Thierry Orsière
- IMBE, Aix Marseille University, CNRS, IRD, AU, Marseille, France
| | - Laure Malleret
- Laboratoire Chimie Environnement, Aix Marseille University, CNRS, Marseille, France.
| |
Collapse
|
4
|
Chen XX, Li C, Selvaraj KK, Ji QS, Fang ZH, Yang SG, Li SY, Zhang LM, He H. Correlation analysis between the in vivo bioavailability and in vitro bioaccessibility of nitro PAHs in soil: Application of simplified FOREhST in vitro methods based on the Chinese pharmacopoeia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168722. [PMID: 38008317 DOI: 10.1016/j.scitotenv.2023.168722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/13/2023] [Accepted: 11/18/2023] [Indexed: 11/28/2023]
Abstract
In this study, the relative bioavailability (RBA) of nitrated polycyclic aromatic hydrocarbons (NPAHs) in soil samples (n = 30) was assessed using an in vivo mouse model. Based on the correlation between the bioaccessibility data obtained from the Tenax improved traditional Fed ORganic Estimation human Simulation Test (FOREhST) in vitro method (TITF) and the bioavailability data obtained from in vivo experiments, the TITF method was further optimized and simplified by referring to the "Pharmacopoeia of the People's Republic of China: Volume IV, 2020" to adjust the formulation and parameters of the gastrointestinal fluid (GIF) in order to establish a simpler and lower cost in vitro method for the determination of the bioaccessibilities of NPAHs. The dose-accumulation relationship of the in vivo experiment showed that the linear dose-response was better in adipose tissue (R2 = 0.77-0.93), and the accumulation of NPAHs in adipose tissue was higher than that in kidney or liver tissue. Depending on the mouse adipose model, the NPAHs-RBA ranged from 1.88 % to 73.92 %, and a strongly significant negative relationship (R2 = 0.94, p < 0.05) was found between the NPAHs-RBA and Log Kow. The simplified experiment of the TITF showed that the composition of the GIF medium had a significant effect on the bioaccessibilities of NPAHs. The NPAH bioaccessibilities measured by the Tenax improved simplified FOREhST method (TISF) (9.0-36.5 %) were higher than that of the traditional FOREhST method (6.8-22.8 %) but significantly lower than that of the TITF method (16.8-55.2 %). With an increase in the bile concentration in the GIF (from 6 to 10 g/L), the bioaccessibilities of NPAHs increased from 9.0 to 36.5 % to 12.9-42.4 %. The accuracies of the four in vitro methods for predicting the bioavailabilities of NPAHs was in the following order: Tenax improved simplified FOREhST method with increased bile concentration (TITF-IB) (R2 = 0.54-0.87) ≈ TITF (R2 = 0.55-0.85) > TISF (R2 = 0.41-0.77) > FOREhST (R2 = 0.02-0.68). These results indicated that the simple in vitro method could also effectively predict the bioavailabilities of NPAHs.
Collapse
Affiliation(s)
- Xian-Xian Chen
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing 210023, China; School of Geography, Nanjing Normal University, Nanjing 210023, China
| | - Chao Li
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing 210023, China
| | - Krishna Kumar Selvaraj
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing 210023, China
| | - Qing-Song Ji
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing 210023, China
| | - Zhi-Hong Fang
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing 210023, China
| | - Shao-Gui Yang
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing 210023, China
| | - Shi-Yin Li
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing 210023, China
| | - Li-Min Zhang
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing 210023, China; Green Economy Development Institute, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Huan He
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing 210023, China; College of Ecological and Resource Engineering, Fujian Provincial Key laboratory of Eco-Industrial Green Technology, Wuyi University, Wuyishan 354300, China.
| |
Collapse
|
5
|
Niu D, Xiao Y, Chen S, Du X, Qiu Y, Zhu Z, Yin D. Evaluation of the oral bioaccessibility of legacy and emerging brominated flame retardants in indoor dust. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:99735-99747. [PMID: 37620695 DOI: 10.1007/s11356-023-29304-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023]
Abstract
Indoor dust is the main source of human exposure to brominated flame retardants (BFRs). In this study, in vitro colon-extended physiologically-based extraction test (CE-PBET) with Tenax as a sorptive sink was applied to evaluate the oral bioaccessibility of twenty-two polybrominated diphenyl ethers (PBDEs) and seven novel BFRs (NBFRs) via indoor dust ingestion. The mean bioaccessibilities of two NBFRs pentabromotoluene (PBT) and 1,2-Bis(2,4,6-tribromophenoxy) ethane (BTBPE) were first proposed, reaching 36.0% and 26.7%, respectively. In order to maintain homeostasis of the gastrointestinal tract, 0.4 g Tenax was added in CE-PEBT, which increased BFRs bioaccessibility by up to a factor of 1.4-1.9. The highest bioaccessibility of legacy PBDEs was tri-BDEs (73.3%), while 2-ethylhexyl-tetrabromo-benzoate (EHTBB), one of penta-BDE alternatives, showed the highest (62.2%) among NBFRs. The influence of food nutrients, liquid to solid (L/S) ratio, and octanol-water partition coefficient (Kow) on bioaccessibility was assessed. The oral bioaccessibility of BFRs increased with existence of protein or carbohydrate while lipid did the opposite. The bioaccessibilities of PBDEs and NBFRs were relatively higher with 200:1 L/S ratio. PBDEs bioaccessibility generally decreased with increasing LogKow. No significant correlation was observed between NBFRs bioaccessibility and LogKow. This study comprehensively evaluated the bioaccessibilities of legacy and emerging BFRs via dust ingestion using Tenax-assisted CE-PBET, and highlighted the significance to fully consider potential influencing factors on BFRs bioaccessibility in further human exposure estimation.
Collapse
Affiliation(s)
- Dong Niu
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Yao Xiao
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Shiyan Chen
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Xinyu Du
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201206, China
| | - Yanling Qiu
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Zhiliang Zhu
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| |
Collapse
|
6
|
Wu J, Gao L, Jiang S, Jia N, Wang D, Wu J. Original and improved interspecies correlation estimation models in China for potential application in water quality criteria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:21654-21660. [PMID: 36272001 DOI: 10.1007/s11356-022-23612-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Fluoranthene (FLU) has gained much attention in recent years because of its continuous discharge in natural waters and toxicity to aquatic ecosystems. However, it is difficult to control and manage FLU pollution because of the lack of a rational and scientific water quality criteria (WQC) of FLU. To solve these data gaps, the US EPA established an interspecies correlation estimation (ICE) model, which can be utilized to develop the SSD and HC5 (hazardous concentration, 5th percentile). Moreover, an improved model was developed using a combination of North American ICE models supplemented with China-specific species. In this study, to verify the applicability of the two ICE models, measured acute toxicity data for FLU were obtained from 9 acute toxicity tests using indigenous Chinese aquatic species from different taxonomic levels. Original and improved ICE-based SSD curves, which were generated using 3 surrogate species (Daphnia magna, Oncorhynchus mykiss, and Lepomis macrochirus), were compared with SSD curves based on measured data. The results showed that HC5 was 1.838, 1.062, and 0.570 mg/L for the original ICE, improved ICE, and measured data, respectively. The improved ICE-based HC5 value for FLU was within twofold of the HC5 value based on measure data, while the original ICE-based HC5 value was threefold higher than the HC5 value based on measure data. This indicated that the improved ICE had better predictability in extrapolating data with acceptable deviation than the original ICE. Furthermore, their differences between HC5 derived from two SSD curves were not significant. Generally, the improved ICE model was verified as a valid approach for generating SSDs with limited toxicity data and for deriving WQC for FLU.
Collapse
Affiliation(s)
- Jiangyue Wu
- National Marine Hazard Mitigation Service, Ministry of Natural Resource of the People's Republic of China, Beijing, 100194, China
| | - Lin Gao
- National Marine Hazard Mitigation Service, Ministry of Natural Resource of the People's Republic of China, Beijing, 100194, China
| | - Songhua Jiang
- Ministry of Ecology and Environment, South China Institute of Environmental Science, Guangzhou, 510655, People's Republic of China
| | - Ning Jia
- National Marine Hazard Mitigation Service, Ministry of Natural Resource of the People's Republic of China, Beijing, 100194, China
| | - Dan Wang
- National Marine Hazard Mitigation Service, Ministry of Natural Resource of the People's Republic of China, Beijing, 100194, China
| | - Jin Wu
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing, 100124, China.
| |
Collapse
|
7
|
Wu J, Xu G, Xia F, Liu X, Zheng L. Comparison of the sensitivity between indigenous and exotic aquatic species for fluoranthene and derivation of water quality criteria (WQC). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:7617-7624. [PMID: 36044141 DOI: 10.1007/s11356-022-22755-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Fluoranthene (FLU) has shown relatively high toxicity to aquatic life as a priority polycyclic aromatic hydrocarbon (PAH). Considering the toxic effects of FLU on aquatic organisms and its high detection frequency in the aquatic environment, it is necessary and critical to derive FLU water quality criteria (WQC) for the protection of aquatic organisms and ecological risk assessment. However, due to the lack of toxicity data at different classification levels, there has been no research about the WQC of FLU. In this study, nine acute and three chronic toxicity tests were carried out on 9 Chinese indigenous aquatic species from different classification levels to obtain toxicity data. According to the US EPA guidelines, the criterion maximum concentration of 0.570 mg/L and the criterion continuous concentration of 0.174 mg/L were developed. There is no significant difference when comparing the species sensitivity distributions between indigenous and exotic species. Therefore, it is possible to use toxicity data from organisms in different areas for ecological risk assessment of FLU. CAPSULE: We compared the sensitivity between indigenous and exotic aquatic species for fluoranthene and derived its water quality criteria.
Collapse
Affiliation(s)
- Jiangyue Wu
- National Marine Hazard Mitigation Service, Ministry of Natural Resources of the People's Republic of China, Beijing, 100194, China
| | - Guodong Xu
- National Marine Hazard Mitigation Service, Ministry of Natural Resources of the People's Republic of China, Beijing, 100194, China
| | - Fang Xia
- School of Land Science and Technology, China University of Geosciences, Beijing, 100083, China
| | - Xunan Liu
- National Marine Hazard Mitigation Service, Ministry of Natural Resources of the People's Republic of China, Beijing, 100194, China
| | - Lei Zheng
- State Environmental Protection Key Laboratory of Dioxin Pollution, National Research Center of Environmental Analysis and Measurement, Sino-Japan Friendship Centre for Environmental Protection, Beijing, 100029, China.
| |
Collapse
|
8
|
Esmaeili A, Knox O, Leech C, Hasenohr S, Juhasz A, Wilson SC. Modelling polycyclic aromatic hydrocarbon bioavailability in historically contaminated soils with six in-vitro chemical extractions and three earthworm ecotypes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157265. [PMID: 35817096 DOI: 10.1016/j.scitotenv.2022.157265] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/27/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Accurate prediction of organic contaminant bioavailability for risk assessment in ecological applications is hindered by limited validation on relevant bioassay species. Here, six in-vitro chemical extraction methods (butanol, non-buffered and buffered hydroxypropyl-β-cyclodextrin (HPCD, Buf-HPCD), Tenax, potassium persulfate oxidation, polyoxymethylene solid phase extraction (POM)) were tested for PAH bioaccumulation prediction in three earthworm ecotypes with dissimilar exposures, Amynthas sp., Eisenia fetida, and Lumbricus terrestris, in historically contaminated soils from manufactured gas plant (MGP) sites. Extractions were compared directly and modelled in a calculation approach using equilibrium partitioning theory (EqPT) with a novel combination of different organic carbon/octanol-water partitioning parameters (KOC and KOW). In the direct comparison approach Buf-HPCD showed the closest prediction of accumulation for burrowing Amynthas sp. and L. terrestris (within 1.5 and 3.1, respectively), but Tenax and POM showed the closest approximation for E. fetida (within 1.1 and 0.9, respectively). The optimum method for predicting PAH bioaccumulation in the calculation approach depended on earthworm species and the partitioning parameters used in equations of the four models, but overall POM, which was independent of KOC, showed the closest approximation of accumulation, within a factor of 2.5 across all species. This work effectively identifies the optimum in-vitro based approaches for PAH bioavailability prediction in earthworms as a model soil health indicator for ecological risk assessment within regulatory and remediation decision frameworks.
Collapse
Affiliation(s)
- Atefeh Esmaeili
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia.
| | - Oliver Knox
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Calvin Leech
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Stefan Hasenohr
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Albert Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia.
| | - Susan C Wilson
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia.
| |
Collapse
|
9
|
Chen X, Li H, Kong X, Cheng X, Li C, He H, Selvaraj KK, Yang S, Li S, Zhang L. Evaluating the adsorption performance of Tenax TA® in different containers: An isolation tool to study the bioaccessibility of nitro-PAHs in spiked soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150429. [PMID: 34844299 DOI: 10.1016/j.scitotenv.2021.150429] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
The improved in vitro gastrointestinal simulation methods, with the addition of the adsorption sink, are considered as a promising tool for predicting the bioaccessibility of contaminants. However, the problem associated with the recovery of the adsorption sink from the complex matrix needs more understand. Although previous studies tried to solve this shortcoming by using the containers (a vessel to hold the adsorption sink), there is no systematic comparison study on the impact of containers on bioaccessibility till now, especially for nitro-polycyclic aromatic hydrocarbons (nitro-PAHs). In order to understand the problem, commonly used containers in previous studies (dialysis bags and stainless-steel screen) were selected and deployed in the Fed Organic Estimation Human Simulation Test (FOREhST) method to compare the effects of these containers on the bioaccessibility of nitro-PAHs desorbed from the five different types of soils into the gastrointestinal fluid (GIF). Results showed that in order to maintain a constant sorptive gradient for the high molecular weight (MW) nitro-PAHs, 0.25 g of Tenax TA® were required in FOREhST. Compared with Tenax TA® encapsulated in dialysis bag (Tenax-EDBG), the use of Tenax TA® encapsulated in dissolution basket (Tenax-EDBT) significantly increased the bioaccessibility of nitro-PAHs in the soil from 5.6-31.4% to 17.2-70.6%, due to the better diffusion performance. The bioaccessibility of nitro-PAHs by FOREhST extraction with Tenax-EDBT showed a significant negative correlation with soil total organic carbon (TOC), whereas a weak correlation with pH. This study provides the researchers with a more standardized in vitro method to quantify the bioaccessibility of PAHs and their derivatives in soil.
Collapse
Affiliation(s)
- Xianxian Chen
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, China
| | - Huiming Li
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, China
| | - Xiangcheng Kong
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, China
| | - Xinying Cheng
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, China
| | - Chao Li
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, China
| | - Huan He
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, China; College of Ecological and Resource Engineering, Fujian Provincial Key laboratory of Eco-Industrial Green Technology, Wuyi University, Wuyishan 354300, PR China.
| | - Krishna Kumar Selvaraj
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, China
| | - Shaogui Yang
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, China
| | - Shiyin Li
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, China
| | - Limin Zhang
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, China; Green Economy Development Institute, Nanjing University of Finance and Economics, Nanjing 210023, China
| |
Collapse
|
10
|
Kong Y, Li X, Chen Y, Cui X. Coupling polydimethylsiloxane vials with a physiologically based extraction test to predict bioavailability of hydrophobic organic contaminants in soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149557. [PMID: 34426349 DOI: 10.1016/j.scitotenv.2021.149557] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
As alternatives to in vivo assays, physiologically based in vitro methods have been developed to measure bioaccessibility of hydrophobic organic contaminants (HOCs) in soils. However, bioaccessibility can usually be underestimated since in vitro tests fail to provide sufficient affinity for HOCs. Sorption sink was therefore included to simulate intestinal cell absorption and to promote the mobilization of HOCs from soils. In this study, polydimethylsiloxane (PDMS) vials, widely used as passive dosing, were introduced as a sorption sink to improve the performance of physiologically based extraction test (PBET). The bioaccessibility of PCBs (representatives of HOCs) in 13 lab-spiked soils measured by PBET coupled with PDMS vials ranged from 56.5 ± 2.7% to 109.3 ± 1.5%. Correlation was conducted between the bioaccessibility and relative bioavailability (RBA) of PCBs assessed using an in vivo mouse model. A significant correlation (p < 0.001, R2 = 0.72, slope = 0.85 ± 0.16) was observed between in vitro and in vivo data, indicating that the proposed method here can be a robust in vitro method to predict PCB RBA in soils. The accuracy of this novel method was further shown by extracting one field contaminated soil with environmental relevant levels of PCBs. The relative standard deviation of bioaccessibility measured by PBET with PDMS vials was 1.2-9.8%, and much lower than those by PBET alone with values of 17.1-63.6%. In addition, the PDMS vials can be reusable as sorption sink, and no significant variation (p = 0.44) in PCB bioaccessibility was observed among 5 cycles of extracting soils with PBET coupled with PDMS vials. Due to the high sorption capacity of PDMS and flexibility of PDMS mass used for vials, the novel method here is expected to be applicable in soils with a wide range of contamination levels.
Collapse
Affiliation(s)
- Yi Kong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xinyu Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yi Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xinyi Cui
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
11
|
Chen X, Cheng X, Meng H, Selvaraj KK, Li H, He H, Du W, Yang S, Li S, Zhang L. Past, present, and future perspectives on the assessment of bioavailability/bioaccessibility of polycyclic aromatic hydrocarbons: A 20-year systemic review based on scientific econometrics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145585. [PMID: 33607432 DOI: 10.1016/j.scitotenv.2021.145585] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/15/2021] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
Bioaccessibility/bioavailability (bioac-bioav) is an important criterion in the risk assessment of polycyclic aromatic hydrocarbons (PAHs), especially in the restoration of contaminated sites. Although, the bioac-bioav concept is widely employed in PAH risk assessment for both humans and wildlife, their growth and integration in risk assessment models are seldom discussed. Consequently, the relevant literature listed on Web of Science (WOS)™ was retrieved and analyzed using the bibliometric software Citespace in order to gain a comprehensive understanding of this issue. Due to the limitations of the literature search software, we manually searched the articles about PAHs bioac-bioav that were published before 2000. This stage focuses on research on the distribution coefficient of PAHs between different environmental phases and laid the foundation for the adsorption-desorption of PAHs in subsequent studies of the bioac-bioav of PAHs. The research progress on PAH bioac-bioav from 2000 to the present was evaluated using the Citespace software based on country- and discipline-wise publication volumes and research hotspots. The development stages of PAH bioac-bioav after 2000 were divided into four time segments. The first three segments (2000-2005, 2006-2010, and 2011-2015) focused on the degradation of PAHs and their in vivo (bioavailability)-in vitro (bioaccessibility) evaluation method and risk assessment. Meanwhile, the current (2016-present) research focuses on the establishment of analytical methods for assessing PAH derivatives at environmental concentrations and the optimization of various in vitro digestion methods, including chemical optimization (sorptive sink) and biological optimization (Caco-2 cell). The contents are aimed at supplying researchers with a deeper understanding of the development of PAH bioac-bioav.
Collapse
Affiliation(s)
- Xianxian Chen
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, PR China
| | - Xinying Cheng
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, PR China
| | - Han Meng
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, PR China
| | - Kumar Krishna Selvaraj
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, PR China.
| | - Huiming Li
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, PR China
| | - Huan He
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, PR China; College of Ecological and Resource Engineering, Fujian Provincial Key laboratory of Eco-Industrial Green Technology, Wuyi University, Wuyishan, Fujian 354300, PR China.
| | - Wenchao Du
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, PR China
| | - Shaogui Yang
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, PR China
| | - Shiyin Li
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, PR China
| | - Limin Zhang
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, PR China; Green Economy Development Institute, Nanjing University of Finance and Economics, Nanjing 210023, PR China
| |
Collapse
|
12
|
Li MY, Chen XQ, Wang JY, Wang HT, Xue XM, Ding J, Juhasz AL, Zhu YG, Li HB, Ma LQ. Antibiotic exposure decreases soil arsenic oral bioavailability in mice by disrupting ileal microbiota and metabolic profile. ENVIRONMENT INTERNATIONAL 2021; 151:106444. [PMID: 33621917 DOI: 10.1016/j.envint.2021.106444] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/28/2021] [Accepted: 01/31/2021] [Indexed: 06/12/2023]
Abstract
Oral bioavailability of arsenic (As) determines levels of As exposure via ingestion of As-contaminated soil, however, the role of gut microbiota in As bioavailability has not evaluated in vivo although some in vitro studies have investigated this. Here, we made a comparison in As relative bioavailability (RBA) estimates for a contaminated soil (3913 mg As kg-1) using a mouse model with and without penicillin perturbing gut microbiota and metabolites. Compared to soil exposure alone (2% w/w soil in diets), addition of penicillin (100 or 1000 mg kg-1) reduced probiotic Lactobacillus and sulfate-reducing bacteria Desulfovibrio, enriched penicillin-resistant Enterobacter and Bacteroides, and decreased amino acid concentrations in ileum. With perturbed gut microbiota and metabolic profile, penicillin and soil co-exposed mice accumulated 2.81-3.81-fold less As in kidneys, excreted 1.02-1.35-fold less As in urine, and showed lower As-RBA (25.7-29.0%) compared to mice receiving diets amended with soil alone (56 ± 9.63%). One mechanism accounted for this is the decreased concentrations of amino acids arising from the gut microbiota shift which resulted in elevated iron (Fe) and As co-precipitation, leading to reduced As solubilization in the intestine. Another mechanism was conversion of bioavailable inorganic As to less bioavailable monomethylarsonic acid (MMAV) and dimethylarsinic acid (DMAV) by the antibiotic perturbed microflora. Based on in vivo mouse model, we demonstrated the important role of gut microbiota and gut metabolites in participating soil As solubilization and speciation transformation then affecting As oral bioavailability. Results are useful to better understand the role of gut bacteria in affecting As metabolism and the health risks of As-contaminated soils.
Collapse
Affiliation(s)
- Meng-Ya Li
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Xiao-Qiang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Jue-Yang Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Hong-Tao Wang
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, College of Environment and Planning, Henan University, Kaifeng 475004, People's Republic of China
| | - Xi-Mei Xue
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, People's Republic of China
| | - Jing Ding
- College of Environmental and Material Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, People's Republic of China
| | - Albert L Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, People's Republic of China
| | - Hong-Bo Li
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China.
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China.
| |
Collapse
|
13
|
Altunoğlu Y, Yemişçioğlu F. Determination of polycyclic aromatic hydrocarbons in olives exposed to three different industrial sources and in their respective oils. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2021; 38:439-451. [PMID: 33455560 DOI: 10.1080/19440049.2020.1861340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Atmospheric contamination of plant raw material with Polycyclic Aromatic Hydrocarbons (PAHs) helps explain their presence in edible vegetable oils. This study compared PAH contamination of Turkish olive fruits during their growing period on the tree and their respective oils from three different industrial sources (petroleum refinery, thermal power plant and heavy industry site). The method included liquid-liquid extraction solid-phase extraction for cleanup followed by HPLC with fluorescence detector. There were statistically significant differences between the three industrial sources in benzo[a]pyrene content, the sum of light, total PAHs and PAH4 (p˂0.05), but only slight differences in PAH profiles. The highest level of PAH compounds was measured in samples exposed to pollution from the petroleum refinery, nearly twice as high as samples exposed to the thermal power plant which showed the lowest contamination levels. None of the samples analysed exceeded the limits stipulated by current legislation. The transfer ratios of PAH compounds from olives to olive oil were 22.8-73.2%. This indicates that PAHs either diffuse directly from skin to oil within the fruit or transfer during oil extraction.
Collapse
Affiliation(s)
- Yeşim Altunoğlu
- Olive Research Institute, Republic of Turkey Ministry of Agriculture and Forestry Izmir, Izmir, Turkey
| | | |
Collapse
|
14
|
Lu M, Li G, Yang Y, Yu Y. A review on in-vitro oral bioaccessibility of organic pollutants and its application in human exposure assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:142001. [PMID: 32892057 DOI: 10.1016/j.scitotenv.2020.142001] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
Generally, human oral exposure assessments of contaminants have not considered the absorption factor in the human gastrointestinal tract, thus overestimating human exposure and associated health risk. Currently, more researchers are adding the absorption factor into human exposure assessment, and bioaccessibility measured by in-vitro methods is generally replacing bioavailability for estimation because of the cheap and rapid determination. However, no single unified in-vitro method is used for bioaccessibility measurement of organic pollutants, although several methods have been developed for these pollutants and have shown good in vitro-in vivo correlation between bioaccessibility and bioavailability. The present review has focused on the development of in-vitro methods, validation of these methods through in-vivo assays, determination of factors influencing bioaccessibility, application of bioaccessibility in human exposure assessment, and the challenges faced. Overall, most in-vitro methods were validated using bioavailability, and better in vitro-in vivo correlations were obtained when absorption sinks were added to the digestion solution to mimic dynamic absorption of organic chemicals by small intestine. Incorporating bioaccessibility into the estimation of human exposure by oral ingestion significantly decreases the estimated exposure dose. However, more investigations on bioaccessibility of hydrophobic organic compounds are urgently needed because many challenges for in-vitro methods remain to be overcome.
Collapse
Affiliation(s)
- Meijuan Lu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Synergy Innovation Institute of GDUT, Shantou 515041, PR China
| | - Yan Yang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Synergy Innovation Institute of GDUT, Shantou 515041, PR China
| | - Yingxin Yu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
15
|
Du X, Zhou Y, Li J, Wu Y, Zheng Z, Yin G, Qiu Y, Zhao J, Yuan G. Evaluating oral and inhalation bioaccessibility of indoor dust-borne short- and median-chain chlorinated paraffins using in vitro Tenax-assisted physiologically based method. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123449. [PMID: 32683154 DOI: 10.1016/j.jhazmat.2020.123449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/27/2020] [Accepted: 07/09/2020] [Indexed: 05/22/2023]
Abstract
Though ingestion and inhalation of dust have been suggested as important exposure routes contributing chlorinated paraffins (CPs) build-up in humans, the bioaccessibility of dust-borne CPs in the organ environment has not been well-studied, which may hinder an accurate estimation of exposure risks. In this study, the ingestion and inhalation bioaccessibility of dust-borne short- and median-chain CPs (SCCPs and MCCPs) was assessed using (colon-extended) physiologically based extraction test with the addition of Tenax. The ingestion bioaccessibility of SCCPs 51.5 %Cl, SCCPs 63 %Cl, MCCPs 42 %Cl, and MCCPs 57 %Cl was in ranges of 21.1-44.0 %, 11.7-45.8 %, 21.9-36.6 %, and 7.9-32.9 %, respectively. Multiple linear regression analysis demonstrated statistically significant associations of ingestion bioaccessibility with carbon chain length and chlorine substitution. The ingestion bioaccessibility of CPs also increased with co-existence of carbohydrate/protein. The inhalation bioaccessibility of SCCPs (16.7-38.7 % in artificial lysosomal fluid and 15.5-34.1 % in modified Gamble solution) was significantly higher than MCCPs (<5 %), and varied with dust particle size/total organic carbon content. Our study indicates that modest bioaccessible fractions of CPs in dust should be taken into account to refine the estimation of human exposure, and their bioaccessibility may be affected by CP molecular size, nutritional content and dust property.
Collapse
Affiliation(s)
- Xinyu Du
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China; School of the Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yihui Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Jun Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China; School of the Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China.
| | - Yan Wu
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN, 47405, United States
| | - Ziye Zheng
- Department of Chemistry, Umeå University, SE-901 87, Umeå, Sweden
| | - Ge Yin
- Shimadzu (China) Co., LTD, Shanghai, 200233, China
| | - Yanling Qiu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Jianfu Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Guoli Yuan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China; School of the Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China
| |
Collapse
|
16
|
Chen Y, Juhasz A, Li H, Li C, Ma LQ, Cui X. The Influence of Food on the In Vivo Bioavailability of DDT and Its Metabolites in Soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:5003-5010. [PMID: 32200627 DOI: 10.1021/acs.est.9b06697] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Incidental soil ingestion is considered to be an important route of exposure to hydrophobic organic contaminants (HOCs), such as dichlorodiphenyl-trichloroethane (DDT). Contaminant ingestion often occurs during food consumption; however, knowledge on the influence of food on DDT bioavailability remains limited. In this study, the relative bioavailability (RBA) of soil DDTr (i.e., DDT and metabolites) was determined using an in vivo mouse model in the presence of eight kinds of food including rice, egg, pork, pear, soybean, bread, spinach, and milk powder. The values of DDTr-RBA ranged from 19.8 ± 10.9 to 114 ± 25.1%. DDTr-RBA was positively correlated with fat (r = 0.71) and negatively correlated with fiber (r = 0.63) content in food. A mechanistic study showed that fat enhanced micellarization and promoted the formation of chylomicron, which facilitated the dissolution and transport of DDTr in the intestinal tract. Bioaccessibility of DDTr was determined using a physiologically based in vitro method. The addition of lipase significantly improved the ability of the method to predict DDTr-RBA, indicating that the "fasted state" in vitro method required optimization for food scenarios. To the best of our knowledge, this is the first study to explore the mechanistic influence of food on DDTr-RBA and provide important knowledge on dietary approaches for reducing exposure to HOCs.
Collapse
Affiliation(s)
- Yi Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Albert Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Hongbo Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Chao Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinyi Cui
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
17
|
Abstract
Oil pollutants, due to their toxicity, mutagenicity, and carcinogenicity, are considered a serious threat to human health and the environment. Petroleum hydrocarbons compounds, for instance, benzene, toluene, ethylbenzene, xylene, are among the natural compounds of crude oil and petrol and are often found in surface and underground water as a result of industrial activities, especially the handling of petrochemicals, reservoir leakage or inappropriate waste disposal processes. Methods based on the conventional wastewater treatment processes are not able to effectively eliminate oil compounds, and the high concentrations of these pollutants, as well as active sludge, may affect the activities and normal efficiency of the refinery. The methods of removal should not involve the production of harmful secondary pollutants in addition to wastewater at the level allowed for discharge into the environment. The output of sewage filtration by coagulation and dissolved air flotation (DAF) flocculation can be transferred to a biological reactor for further purification. Advanced coagulation methods such as electrocoagulation and flocculation are more advanced than conventional physical and chemical methods, but the major disadvantages are the production of large quantities of dangerous sludge that is unrecoverable and often repelled. Physical separation methods can be used to isolate large quantities of petroleum compounds, and, in some cases, these compounds can be recycled with a number of processes. The great disadvantage of these methods is the high demand for energy and the high number of blockages and clogging of a number of tools and equipment used in this process. Third-party refinement can further meet the objective of water reuse using methods such as nano-filtration, reverse osmosis, and advanced oxidation. Adsorption is an emergency technology that can be applied using minerals and excellent materials using low-cost materials and adsorbents. By combining the adsorption process with one of the advanced methods, in addition to lower sludge production, the process cost can also be reduced.
Collapse
|
18
|
Park JC, Choi BS, Kim MS, Shi H, Zhou B, Park HG, Lee JS. The genome of the marine rotifer Brachionus koreanus sheds light on the antioxidative defense system in response to 2-ethyl-phenanthrene and piperonyl butoxide. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 221:105443. [PMID: 32086058 DOI: 10.1016/j.aquatox.2020.105443] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 06/10/2023]
Abstract
BRACHIONUS: spp. (Rotifera: Monogononta) have been introduced as ecotoxicological model-organisms that are widely distributed in aquatic environments. Among the Brachionus spp., the monogonont rotifer Brachionus koreanus has been widely used for ecology, ecotoxicology, and evolution, thus, providing the whole genome data of B. koreanus is important for further understandings of in-depth molecular mechanisms. In this study, the completed assembly and characterization of the B. koreanus genome resulted in a total length of 85.7 Mb with 14,975 annotated genes. The final number of scaffolds was 567 with an N50 value and a GC content of 1.86 Mb and 24.35 %, respectively. Based on the fully constructed genome database, a total of 24 CYPs, 23 GSTs, two SODs, and a single CAT genes were identified and analyzed antioxidant activities (CAT, SOD, and GST), and transcriptional regulation of the entire CYPs, GSTs, SODs, and CAT in response to 2-ethyl-phenanthrene (2-ethyl-PHE) and piperonyl butoxide (PBO), to demonstrate the usefulness of the whole genome library of B. koreanus in response xenobiotic-induced oxidative stress. The assembled B. koreanus genome will provide a better understanding on the molecular ecotoxicology in the view of molecular mechanisms underlying toxicological responses, particularly on xenobiotic detoxification processes in the rotifer B. koreanus.
Collapse
Affiliation(s)
- Jun Chul Park
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | | | - Min-Sub Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Huahong Shi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Bingsheng Zhou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| | - Heum Gi Park
- Department of Marine Resource Development, College of Life Sciences, Gangneung-Wonju National University, Gangneung 25457, South Korea
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
19
|
Starr JM, Li W, Graham SE, Shen H, Waldron F. Is food type important for in vitro post ingestion bioaccessibility models of polychlorinated biphenyls sorbed to soil? THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135421. [PMID: 31806324 PMCID: PMC7051099 DOI: 10.1016/j.scitotenv.2019.135421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
Soils are sorbents for many organic compounds and children consume relatively large amounts of soil. To improve the estimated health risks from this exposure pathway, we examined the role of co-ingested foods in determining the post-ingestion bioaccessibility (mobilization) of 18 polychlorinated biphenyls (PCBs) sorbed to 10 characterized soils. The bioaccessibility test system (DIN 19738, 2004) was an in vitro, 3-compartment, digestive tract containing salts, protein, and bile. Each soil was fortified with PCBs, then, digestive fluids appropriate to each compartment, were added sequentially. Next, digestive fluid and soil were seperated and PCB concentrations in both media were measured. This complete test system was then reduced to assess contributions of individual endogenous digestive fluid constituents (water, salts, pancreatin, bile, and mucin) and representative foods: protein (bovine serum albumin (BSA)), sugar (glucose), and fat (oleic acid). Then, the influence of increasing concentrations of BSA, glucose, and oleic acid was evaluated (individually) complete test systems. In a subset of the samples, solid phase microextraction (SPME) was used to measure freely dissolved PCBs. Across all treatments, percent soil organic carbon was the most influential bioaccessibility determinant, accounting for ≥87% of the explained variation. When evaluated individually, pancreatin, mucin, BSA, bile, and oleic acid each effectively increased PCB bioaccessibility and reduced freely dissolved PCB concentrations. This suggests competitive sorption of PCBs by organic constituents of the digestive constituents. Without sink material, intra-PCB mobilization differences were observed as freely dissolved PCB concentrations inversely correlated (p < 0.05) with their respective log Kow's. When added to the complete digestive fluid, increasing oleic acid mass increased PCB bioaccessibility (p < 0.05), while adding more BSA or glucose did not (p > 0.05). This indicates that fat intake may be the sole consideration needed when modeling dietary contributions to bioaccessibility of soil sorbed PCBs.
Collapse
Affiliation(s)
- James M Starr
- United States Environmental Protection Agency, National Exposure Research Laboratory, Research Triangle Park, NC, USA.
| | - Weiwei Li
- Oak Ridge Institute for Science and Education Fellow at the United States Environmental Protection Agency, National Exposure Research Laboratory, Research Triangle Park, NC 27711, USA
| | - Stephen E Graham
- United States Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC, USA
| | - Haitao Shen
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, 310051 Hangzhou, China
| | - Faith Waldron
- Oak Ridge Institute for Science and Education Fellow at the United States Environmental Protection Agency, National Exposure Research Laboratory, Research Triangle Park, NC 27711, USA
| |
Collapse
|
20
|
Jin X, Liu Y, Qiao X, Guo R, Liu C, Wang X, Zhao X. Risk assessment of organochlorine pesticides in drinking water source of the Yangtze River. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109390. [PMID: 31276884 DOI: 10.1016/j.ecoenv.2019.109390] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 06/17/2019] [Accepted: 06/25/2019] [Indexed: 06/09/2023]
Abstract
Organochlorine pesticides have been banned for many years, but the residual trace amount of organochlorine in water may still pose ecotoxicological risk. Meanwhile, the potential risk of organochlorine pesticides released from sediments, especially into drinking water sources, is receiving increasing attention. The present study assessed the pollution and potential risk of drinking water sources along the midstream and downstream Yangtze River. Residues of organochlorine pesticides (OCPs) in water, suspended particle matter (SPM), and sediment were evaluated with isotope dilution HRGC/HRMS. The results indicated that OCPs in water, SPM, and sediment ranged in 0.52-92.97 ng/L, 0.10-4.10 ng/L, and 0.038-11.36 ng/g, respectively. The predominant OCPs in water, SPM, and sediment were β-HCH, p,p'-DDE and PeCB. At site Y1, 8, 13, 18, β-HCH has a higher proportion in sediment samples, while, α-HCH has a higher proportion in SPM samples. The industrial use of HCHs in the history was the main HCHs source for most water and sediment samples, which indicated an absence of fresh inputs of industrial HCHs. Meanwhile, the abundance of p,p'-DDE in water, sediment and SPM samples could be attributed to long-term aerobic degradation of DDTs. The values of ffsw of HCHs, DDTs and PeCB indicate the transfer from water to sediment. Risk assessment showed that HCHs and DDTs posed low ecotoxicological risk to the Yangtze River.
Collapse
Affiliation(s)
- Xiaoling Jin
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory of Drinking Water Source Protection, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yan Liu
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory of Drinking Water Source Protection, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaocui Qiao
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory of Drinking Water Source Protection, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Rui Guo
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory of Drinking Water Source Protection, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Chengyou Liu
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory of Drinking Water Source Protection, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xing Wang
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory of Drinking Water Source Protection, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xingru Zhao
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory of Drinking Water Source Protection, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
21
|
Tarafdar A, Sinha A. Discussion on the technical note entitled, "public health risk assessment following exposure to PAH-contaminated soils - specific considerations for bioaccessibility and other exposure parameters". THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 656:1448-1451. [PMID: 30580782 DOI: 10.1016/j.scitotenv.2018.12.231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 12/14/2018] [Indexed: 06/09/2023]
Abstract
This is a discussion on the technical note entitled, "Public Health Risk Assessment following Exposure to PAH-contaminated Soils - Specific Considerations for Bioaccessibility and Other Exposure Parameters". Presence of some serious issues in the technical note on understanding the scopes and concepts of the original research article have been highlighted. The prevailing unclear definition of bioaccessibility and bioavailability in the scientific community may have been caused the misunderstanding of the scope of our original study. On an effort to clear this idea we feel privileged to write this discussion.
Collapse
Affiliation(s)
- Abhrajyoti Tarafdar
- Division of Environmental Science and Ecological Engineering, Korea University, Republic of Korea; Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, India
| | - Alok Sinha
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, India.
| |
Collapse
|
22
|
Zagury GJ, Marin Villegas CA, Guney M. Public health risk assessment following exposure to PAH-contaminated soils - Specific considerations for bioaccessibility and other exposure parameters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 656:1043-1045. [PMID: 30625636 DOI: 10.1016/j.scitotenv.2018.11.412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 11/18/2018] [Accepted: 11/27/2018] [Indexed: 06/09/2023]
Affiliation(s)
- Gerald J Zagury
- Department of Civil, Geological and Mining Engineering, Polytechnique Montreal, H3C 3A7 Montréal, QC, Canada.
| | - Carlos A Marin Villegas
- Department of Civil, Geological and Mining Engineering, Polytechnique Montreal, H3C 3A7 Montréal, QC, Canada
| | - Mert Guney
- Department of Civil and Environmental Engineering, Nazarbayev University, 010000 Astana, Kazakhstan; The Environment and Resource Efficiency Cluster (EREC), Nazarbayev University, 010000 Astana, Kazakhstan
| |
Collapse
|
23
|
Kang Y, Zeng D, Man YB, Liu J, Yang Y, Li S, Situ K, Xiong W, Zeng L, Zhang Q, Luo J, Pan W, Jiang F, Wong MH. Comparison of sorption kinetics of PAHs by sorptive sinks and caco-2 cell and the correlation between bioaccessibility and bioavailability of PAHs in indoor dust. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 645:170-178. [PMID: 30021174 DOI: 10.1016/j.scitotenv.2018.07.102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/04/2018] [Accepted: 07/09/2018] [Indexed: 06/08/2023]
Abstract
Sorptive sinks are extensively used in the bioaccessibility of organic contaminants, but their suitability for simulating the intestinal cell is seldom reported. In the present study, the sorption efficiency of PAHs by sorptive sinks including silica, poly(ethylene-co-vinyl acetate) (polyE), tenax, and C18 were compared with that by caco-2 cells. The elimination rate constants of phenanthrene, fluoranthene, pyrene, benzo(a)pyrene by caco-2 cell were 0.0417 ± 0.006 min-1, 0.0411 ± 0.0074 min-1, 0.0362 ± 0.006 min-1, and 0.0526 ± 0.0037 min-1, respectively, which were more closely to that of silica and polyE compared to other materials. This indicated that these materials might be the preferable sorptive sinks to simulate absorption of PAHs by intestinal cells. The bioaccessibility of phenanthrene, fluoranthene, pyrene, benzo(a)pyrene in indoor dust ranged from 15.5-43.5%, 9.10-38.8%, 10.0-37.9%, and 6.00-21.9%, respectively, based on physiologically based extraction test (PBET) and the sorptive sinks added in the intestinal solution led to 1.17 to 8.47-fold enhancement of bioaccessibility. The correlation of in vivo PAHs relative bioavailability (RBA) and in vitro digestion bioaccessibility with or without the sorptive sinks of indoor dust were measured, and the results indicated that silica and polyE were more likely to predict PAHs RBA of indoor dust, which was consistent with the results of sorption kinetics assay. The present results indicate that silica and polyE have the potential to simulate caco-2 cell and the inclusion of these materials in the PBET is likely to predict PAHs RBA in indoor dust. Capsule: Silica and polyE were more likely to simulate absorption of PAHs by intestinal cells, and to predict PAHs RBA of indoor dust.
Collapse
Affiliation(s)
- Yuan Kang
- School of Chemistry and Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006,People's Republic of China; Guangdong Engineering Technology Research Center for Drinking Water Safety, and Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China.
| | - Diya Zeng
- School of Chemistry and Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006,People's Republic of China; Guangdong Engineering Technology Research Center for Drinking Water Safety, and Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
| | - Yu Bon Man
- Consortium on Health, Environment, Education and Research (CHEER), and Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong, China.
| | - Jing Liu
- School of Chemistry and Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006,People's Republic of China; Guangdong Engineering Technology Research Center for Drinking Water Safety, and Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
| | - Yang Yang
- School of Chemistry and Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006,People's Republic of China; Guangdong Engineering Technology Research Center for Drinking Water Safety, and Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
| | - Shuwei Li
- School of Chemistry and Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006,People's Republic of China; Guangdong Engineering Technology Research Center for Drinking Water Safety, and Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
| | - Kaiqiao Situ
- School of Chemistry and Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006,People's Republic of China; Guangdong Engineering Technology Research Center for Drinking Water Safety, and Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
| | - Wei Xiong
- School of Chemistry and Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006,People's Republic of China; Guangdong Engineering Technology Research Center for Drinking Water Safety, and Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
| | - Lixuan Zeng
- School of Chemistry and Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006,People's Republic of China; Guangdong Engineering Technology Research Center for Drinking Water Safety, and Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
| | - Qiuyun Zhang
- School of Chemistry and Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006,People's Republic of China; Guangdong Engineering Technology Research Center for Drinking Water Safety, and Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
| | - Jiwen Luo
- School of Chemistry and Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006,People's Republic of China; Guangdong Engineering Technology Research Center for Drinking Water Safety, and Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
| | - Weijian Pan
- School of Chemistry and Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006,People's Republic of China; Guangdong Engineering Technology Research Center for Drinking Water Safety, and Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
| | - Feng Jiang
- School of Chemistry and Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006,People's Republic of China; Guangdong Engineering Technology Research Center for Drinking Water Safety, and Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
| | - Ming Hung Wong
- Consortium on Health, Environment, Education and Research (CHEER), and Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong, China; School of Environment, Jinan University, Guangzhou, People's Republic of China.
| |
Collapse
|
24
|
Wang J, Lin K, Taylor A, Gan J. In vitro assessment of pyrethroid bioaccessibility via particle ingestion. ENVIRONMENT INTERNATIONAL 2018; 119:125-132. [PMID: 29957354 DOI: 10.1016/j.envint.2018.05.043] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 05/25/2018] [Accepted: 05/25/2018] [Indexed: 06/08/2023]
Abstract
Due to their intensive use in agricultural and residential pest control, human exposure to residues of multiple pyrethroids frequently occurs. Pyrethroids have exceptionally high affinity for solid particles, highlighting the need to understand human exposure through oral ingestion of contaminated soil or dust particles. In this study, we used artificial gastrointestinal fluids to measure the desorption or bioaccessibility of eight current-use pyrethroids in soil and dust samples. Tenax was further included as a sink in parallel treatments to simulate the effect of removal due to transfer of pyrethroids to lipid membranes. The use of 0.4 g of Tenax in 20 mL digestive fluids resulted in rapid and efficient trapping of pyrethroids, and further, greatly increased bioaccessibility. In the artificial digestive fluids without Tenax, 6.0-48.0% of pyrethroids were desorbed over 21 h, and the fractions increased by 1.6-4.1 folds to 21.5-79.3% with the Tenax sink. Therefore, 6.0-79.3% of soil or dust-borne pyrethroids may be considered bioavailable upon ingestion. While protein and sucrose increased the estimated bioaccessibility, co-presence of lipid (vegetable oil) decreased the bioaccessibility of pyrethroids, likely due to competitive phase partition. Pyrethroids were also found to be unstable in the artificial intestinal fluid containing pancreatin, further decreasing the potential bioaccessibility of pyrethroids on soil or dust particles. The limited bioaccessibility should be considered to refine the prediction of human exposure and risk through oral ingestion of pyrethroid residues.
Collapse
Affiliation(s)
- Jie Wang
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | - Kunde Lin
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry and Toxicology, College of the Environment and Ecology, Xiamen University, 361102 Xiamen, China
| | - Allison Taylor
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | - Jay Gan
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
25
|
He RW, Li YZ, Xiang P, Li C, Cui XY, Ma LQ. Impact of particle size on distribution and human exposure of flame retardants in indoor dust. ENVIRONMENTAL RESEARCH 2018; 162:166-172. [PMID: 29316461 DOI: 10.1016/j.envres.2017.12.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/21/2017] [Accepted: 12/15/2017] [Indexed: 06/07/2023]
Abstract
The effect of dust particle size on the distribution and bioaccessibility of flame retardants (FRs) in indoor dust remains unclear. In this study, we analyzed 20 FRs (including 6 organophosphate flame retardants (OPFRs), 8 polybrominated diphenyl ethers (PBDEs), 4 novel brominated flame retardants (NBFRs), and 2 dechlorane plus (DPs)) in composite dust samples from offices, public microenvironments (PME), and cars in Nanjing, China. Each composite sample (one per microenvironment) was separated into 6 size fractions (F1-F6: 200-2000µm, 150-200µm, 100-150µm, 63-100µm, 43-63µm, and <43µm). FRs concentrations were the highest in car dust, being 16 and 6 times higher than those in offices and PME. The distribution of FRs in different size fractions was Kow-dependent and affected by surface area (Log Kow=1-4), total organic carbon (Log Kow=4-9), and FR migration pathways into dust (Log Kow>9). Bioaccessibility of FRs was measured by the physiologically-based extraction test, with OPFR bioaccessibility being 1.8-82% while bioaccessible PBDEs, NBFRs, and DPs were under detection limits due to their high hydrophobicity. The OPFR bioaccessibility in 200-2000µm fraction was significantly higher than that of <43µm fraction, but with no difference among the other four fractions. Risk assessment was performed for the most abundant OPFR-tris(2-chloroethyl) phosphate. The average daily dose (ADD) values were the highest for the <43µm fraction for all three types of dust using total concentrations, but no consistent trend was found among the three types of dust if based on bioaccessible concentrations. Our results indicated that dust size impacted human exposure estimation of FRs due to their variability in distribution and bioaccessibility among different fractions. For future risk assessment, size selection for dust sampling should be standardized and bioaccessibility of FRs should not be overlooked.
Collapse
Affiliation(s)
- Rui-Wen He
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, People's Republic of China
| | - Yun-Zi Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, People's Republic of China
| | - Ping Xiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, People's Republic of China
| | - Chao Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, People's Republic of China
| | - Xin-Yi Cui
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, People's Republic of China.
| | - Lena Q Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, People's Republic of China; Soil and Water Science Department, University of Florida, Gainesville, FL 32611, United States.
| |
Collapse
|
26
|
Wei W, Bonvallot N, Gustafsson Å, Raffy G, Glorennec P, Krais A, Ramalho O, Le Bot B, Mandin C. Bioaccessibility and bioavailability of environmental semi-volatile organic compounds via inhalation: A review of methods and models. ENVIRONMENT INTERNATIONAL 2018; 113:202-213. [PMID: 29448239 DOI: 10.1016/j.envint.2018.01.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 05/06/2023]
Abstract
Semi-volatile organic compounds (SVOCs) present in indoor environments are known to cause adverse health effects through multiple routes of exposure. To assess the aggregate exposure, the bioaccessibility and bioavailability of SVOCs need to be determined. In this review, we discussed measurements of the bioaccessibility and bioavailability of SVOCs after inhalation. Published literature related to this issue is available for 2,3,7,8-tetrachlorodibenzo-p-dioxin and a few polycyclic aromatic hydrocarbons, such as benzo[a]pyrene and phenanthrene. Then, we reviewed common modeling approaches for the characterization of the gas- and particle-phase partitioning of SVOCs during inhalation. The models are based on mass transfer mechanisms as well as the structure of the respiratory system, using common computational techniques, such as computational fluid dynamics. However, the existing models are restricted to special conditions and cannot predict SVOC bioaccessibility and bioavailability in the whole respiratory system. The present review notes two main challenges for the estimation of SVOC bioaccessibility and bioavailability via inhalation in humans. First, in vitro and in vivo methods need to be developed and validated for a wide range of SVOCs. The in vitro methods should be validated with in vivo tests to evaluate human exposures to SVOCs in airborne particles. Second, modeling approaches for SVOCs need to consider the whole respiratory system. Alterations of the respiratory cycle period and human biological variability may be considered in future studies.
Collapse
Affiliation(s)
- Wenjuan Wei
- University of Paris-Est, Scientific and Technical Center for Building (CSTB), Health and Comfort Department, French Indoor Air Quality Observatory (OQAI), 84 Avenue Jean Jaurès, Champs sur Marne, 77447 Marne la Vallée Cedex 2, France.
| | - Nathalie Bonvallot
- EHESP-School of Public Health, Sorbonne Paris Cité, Rennes, France; INSERM-UMR 1085, Irset-Research Institute for Environmental and Occupational Health, Rennes, France
| | - Åsa Gustafsson
- Swetox, Karolinska Institute, Unit of Toxicology Sciences, Forskargatan 20, SE-151 36 Södertälje, Sweden; Department of Chemistry, Umeå University, Linnaeus väg 6, SE-901 87 Umeå, Sweden
| | - Gaëlle Raffy
- EHESP-School of Public Health, Sorbonne Paris Cité, Rennes, France; INSERM-UMR 1085, Irset-Research Institute for Environmental and Occupational Health, Rennes, France; LERES-Environment and Health Research Laboratory (Irset and EHESP Technologic Platform), Rennes, France
| | - Philippe Glorennec
- EHESP-School of Public Health, Sorbonne Paris Cité, Rennes, France; INSERM-UMR 1085, Irset-Research Institute for Environmental and Occupational Health, Rennes, France
| | - Annette Krais
- Swetox, Karolinska Institute, Unit of Toxicology Sciences, Forskargatan 20, SE-151 36 Södertälje, Sweden; Department of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, SE-221 85, Lund, Sweden
| | - Olivier Ramalho
- University of Paris-Est, Scientific and Technical Center for Building (CSTB), Health and Comfort Department, French Indoor Air Quality Observatory (OQAI), 84 Avenue Jean Jaurès, Champs sur Marne, 77447 Marne la Vallée Cedex 2, France
| | - Barbara Le Bot
- EHESP-School of Public Health, Sorbonne Paris Cité, Rennes, France; INSERM-UMR 1085, Irset-Research Institute for Environmental and Occupational Health, Rennes, France; LERES-Environment and Health Research Laboratory (Irset and EHESP Technologic Platform), Rennes, France
| | - Corinne Mandin
- University of Paris-Est, Scientific and Technical Center for Building (CSTB), Health and Comfort Department, French Indoor Air Quality Observatory (OQAI), 84 Avenue Jean Jaurès, Champs sur Marne, 77447 Marne la Vallée Cedex 2, France
| |
Collapse
|
27
|
James K, Peters RE, Cave MR, Wickstrom M, Siciliano SD. In vitro prediction of polycyclic aromatic hydrocarbon bioavailability of 14 different incidentally ingested soils in juvenile swine. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 618:682-689. [PMID: 29056386 DOI: 10.1016/j.scitotenv.2017.07.244] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/26/2017] [Accepted: 07/27/2017] [Indexed: 06/07/2023]
Abstract
Predicting mammalian bioavailability of PAH mixtures from in vitro bioaccessibility results has proven to be an elusive goal. In an attempt to improve in vitro predictions of PAH soil bioavailability we investigated how energetic input influences PAH bioaccessibility by using a high and low energetic shaking method. Co-inertia analysis (COIA), and Structural Equation Modeling (SEM) were also used to examine PAH-PAH interactions during ingestion. PAH bioaccessibility was determined from 14 historically contaminated soils using the fed organic estimation of the human simulation test (FOREhST) with inclusion of a silicone rod as a sorption sink and compared to bioavailability estimates from the juvenile swine model. Shaking method significantly affected PAH bioaccessibility in the FOREhST model, with PAH desorption from the high energy FOREhST almost an order of magnitude greater compared to the low energy FOREhST. PAH-PAH interactions significantly influenced PAH bioavailability and when these interactions were used in a linear model, the model predicted benzo(a)anthracene bioavailability with an slope of 1 and r2 of 0.66 and for benzo(a)pyrene bioavailability has a slope of 1 and r2 of 0.65. Lastly, to confirm the effects as determined by COIA and SEM, we spiked low levels of benzo(a)anthracene into historically contaminated soils, and observed a significant increase in benzo(a)pyrene bioaccessibility. By accounting for PAH interactions, and reducing the energetics of in vitro extractions, we were able to use bioaccessibility to predict bioavailability across 14 historically contaminated soils. Our work suggests that future work on PAH bioavailability and bioaccessibility should focus on the dynamics of how the matrix of PAHs present in the soil interact with mammalian systems. Such interactions should not only include the chemical interactions discussed here but also the interactions of PAH mixtures with mammalian uptake systems.
Collapse
Affiliation(s)
- Kyle James
- Department of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Toxicology Graduate Program, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Rachel E Peters
- Department of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Toxicology Graduate Program, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Mark R Cave
- British Geological Survey, Nottingham, United Kingdom
| | - Mark Wickstrom
- Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Steven D Siciliano
- Department of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
28
|
Cipullo S, Prpich G, Campo P, Coulon F. Assessing bioavailability of complex chemical mixtures in contaminated soils: Progress made and research needs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 615:708-723. [PMID: 28992498 DOI: 10.1016/j.scitotenv.2017.09.321] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/29/2017] [Accepted: 09/29/2017] [Indexed: 05/13/2023]
Abstract
Understanding the distribution, behaviour and interactions of complex chemical mixtures is key for providing the evidence necessary to make informed decisions and implement robust remediation strategies. Much of the current risk assessment frameworks applied to manage land contamination are based on total contaminant concentrations and the exposure assessments embedded within them do not explicitly address the partitioning and bioavailability of chemical mixtures. These oversights may contribute to an overestimation of both the eco-toxicological effects of the fractions and the mobility of contaminants. In turn, this may limit the efficacy of risk frameworks to inform targeted and proportionate remediation strategies. In this review we analyse the science surrounding bioavailability, its regulatory inclusion and the challenges of incorporating bioavailability in decision making process. While a number of physical and chemical techniques have proven to be valuable tools for estimating bioavailability of organic and inorganic contaminants in soils, doubts have been cast on its implementation into risk management soil frameworks mainly due to a general disagreement on the interchangeable use of bioavailability and bioaccessibility, and the associated methods which are still not standardised. This review focuses on the role of biotic and abiotic factors affecting bioavailability along with soil physicochemical properties and contaminant composition. We also included advantages and disadvantages of different extraction techniques and their implications for bioavailability quantitative estimation. In order to move forward the integration of bioavailability into site-specific risk assessments we should (1) account for soil and contaminant physicochemical characteristics and their effect on bioavailability; (2) evaluate receptor's potential exposure and uptake based on mild-extraction; (3) adopt a combined approach where chemical-techniques are used along with biological methods; (4) consider a simplified and cost-effective methodology to apply at regulatory and industry setting; (5) use single-contaminant exposure assessments to inform and predict complex chemical mixture behaviour and bioavailability.
Collapse
Affiliation(s)
- S Cipullo
- Cranfield University, School of Water, Energy and Environment, Cranfield MK43 0AL, UK
| | - G Prpich
- Cranfield University, School of Water, Energy and Environment, Cranfield MK43 0AL, UK
| | - P Campo
- Cranfield University, School of Water, Energy and Environment, Cranfield MK43 0AL, UK
| | - F Coulon
- Cranfield University, School of Water, Energy and Environment, Cranfield MK43 0AL, UK.
| |
Collapse
|
29
|
Zhang S, Li C, Li Y, Zhang R, Gao P, Cui X, Ma LQ. Bioaccessibility of PAHs in contaminated soils: Comparison of five in vitro methods with Tenax as a sorption sink. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 601-602:968-974. [PMID: 28582742 DOI: 10.1016/j.scitotenv.2017.05.234] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/24/2017] [Accepted: 05/25/2017] [Indexed: 06/07/2023]
Abstract
For hydrophobic organic contaminants, physiologically based in vitro methods may need to include a sorption sink to simulate in vivo intestinal uptake. We compared PAH bioaccessibility in contaminated soils using five in vitro methods including physiologically based extraction test (PBET), in vitro digestion assay (IVD), method from Deutsches Institut für Normung (DIN), unified bioaccessibility method (UBM), and fed organic estimation human simulation test (FOREhST) in the absence and presence of Tenax as a sorption sink. The PAH bioaccessibility without Tenax were pretty low with values ranging from below detection limit to 13.4%, indicating the limited capacity of these in vitro models to accommodate PAHs. With addition of Tenax, bioaccessibility increased to 0.59-75.5% for all PAH congeners. Even with the dominant effect of sorption sink, bioaccessibility values significantly varied among all the five methods with DIN result being the highest at 7.0-34.8%. Based on multiple linear regression, Tenax, incubation time, and bile contents are identified to be the most important factors in controlling bioaccessibility. The understanding of these key factors for bioaccessibility is highly necessary to standardize in vitro methods, which helps to refine the assessment of health risk through exposure to ingested contaminants.
Collapse
Affiliation(s)
- Shujun Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, People's Republic of China
| | - Chao Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, People's Republic of China
| | - Yunzi Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, People's Republic of China
| | - Ruirui Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, People's Republic of China
| | - Peng Gao
- Soil and Water Science Department, University of Florida, Gainesville, FL 32611, United States
| | - Xinyi Cui
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, People's Republic of China.
| | - Lena Q Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, People's Republic of China; Soil and Water Science Department, University of Florida, Gainesville, FL 32611, United States
| |
Collapse
|
30
|
Li C, Zhang R, Li Y, Zhang S, Gao P, Cui X, Ma LQ. Relative bioavailability and bioaccessibility of PCBs in soils based on a mouse model and Tenax-improved physiologically-based extraction test. CHEMOSPHERE 2017; 186:709-715. [PMID: 28820994 DOI: 10.1016/j.chemosphere.2017.08.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/06/2017] [Accepted: 08/07/2017] [Indexed: 06/07/2023]
Abstract
In this study, bioavailability of polychlorinated biphenyls (PCBs) in soil samples aged for various time intervals (7 days, 1 and 5 months) was assessed by in vivo tests using mice. The in vivo bioavailability of PCBs in soil ranged from 45% (PCB180 in soil aging for 5 month) to 119% (PCB52 in soil aging for 1 month), indicating that not all PCBs was available for absorption after ingestion of soil samples. The bioaccessibility was assessed using both physiologically-based extraction test (PBET) and Tenax improved PBET (TI-PBET). Acceptable in vivo-in vitro correlation (r2 = 0.70 and slope = 1.30 ± 0.20) was observed for TI-PBET, not for PBET. Due to dominant role played by Tenax and bile, the TI-PBET was further simplified to Tenax and Tenax-bile extraction methods. However, poor in vivo-in vitro correlation (r2 = 0.14 and 0.05) was observed for the two simplified methods, which may be attributed to the combined effect between sorption sink and components in PBET. Therefore, in order to simply TI-PBET or standardize in vitro methods, it is highly necessary to explore the mechanism about the interaction between in vitro method components and sorption sink, or to screen key factors for bioaccessibility results in the future studies.
Collapse
Affiliation(s)
- Chao Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Ruirui Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yunzi Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Shujun Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Peng Gao
- Soil and Water Science Department, University of Florida, Gainesville, FL 32611, USA
| | - Xinyi Cui
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Lena Q Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Soil and Water Science Department, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
31
|
Umeh AC, Duan L, Naidu R, Semple KT. Residual hydrophobic organic contaminants in soil: Are they a barrier to risk-based approaches for managing contaminated land? ENVIRONMENT INTERNATIONAL 2017; 98:18-34. [PMID: 27745947 DOI: 10.1016/j.envint.2016.09.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 06/06/2023]
Abstract
Risk-based approaches to managing contaminated land, rather than approaches based on complete contaminant removal, have gained acceptance as they are likely to be more feasible and cost effective. Risk-based approaches aim to minimise risks of exposure of a specified contaminant to humans. However, adopting a risk-based approach over alternative overly-conservative approaches requires that associated uncertainties in decision making are understood and minimised. Irrespective of the nature of contaminants, a critical uncertainty is whether there are potential risks associated with exposure to the residual contaminant fractions in soil to humans and other ecological receptors, and how they should be considered in the risk assessment process. This review focusing on hydrophobic organic contaminants (HOCs), especially polycyclic aromatic hydrocarbons (PAHs), suggests that there is significant uncertainty on the residual fractions of contaminants from risk perspectives. This is because very few studies have focused on understanding the desorption behaviour of HOCs, with few or no studies considering the influence of exposure-specific factors. In particular, it is not clear whether the exposure of soil-associated HOCs to gastrointestinal fluids and enzyme processes release bound residues. Although, in vitro models have been used to predict PAH bioaccessibility, and chemical extractions have been used to determine residual fractions in various soils, there are still doubts about what is actually being measured. Therefore it is not certain which bioaccessibility method currently represents the best choice, or provides the best estimate, of in vivo PAH bioavailability. It is suggested that the fate and behaviour of HOCs in a wide range of soils, and that consider exposure-specific scenarios, be investigated. Exposure-specific scenarios are important for validation purposes, which may be useful for the development of standardised methods and procedures for HOC bioaccessibility determinations. Research is needed to propose the most appropriate testing methods and for assessing potential risks posed by residual fractions of HOCs. Such investigations may be useful for minimising uncertainties associated with a risk-based approach, so that consideration may then be given to its adoption on a global scale. This review critically appraises existing information on the bioavailability of HOC residues in soil to establish whether there may be risks from highly sequestered contaminant residues.
Collapse
Affiliation(s)
- Anthony C Umeh
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; Co-operative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Luchun Duan
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; Co-operative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; Co-operative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Kirk T Semple
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| |
Collapse
|
32
|
Kang Y, Pan W, Liang S, Zeng L, Zhang Q, Luo J, Guo X. In vitro digestion and absorption of BDE-28, -47, -99 and -153 in indoor dust and its implication in risk assessment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 134P1:11-16. [PMID: 27573363 DOI: 10.1016/j.ecoenv.2016.08.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 06/06/2023]
Abstract
The bioaccessibility of polybrominated diphenyl ethers (PBDEs) in indoor dust was estimated by a series of in vitro digestion methods. However, the absorption of PBDEs by intestinal cells after in vitro digestion was seldom studied. In the present study, the bioaccessibility of BDE-28, 47, 99 and 153 in indoor dust was firstly investigated by using the in vitro digestion method. Bioaccessibility in intestinal phase (BDE-28: 24.5-30.1%; BDE-47: 6.99-13.0; BDE-99: 1.61-14.2%; and BDE-153 5.97-24.4%.) was higher than that in gastric phase (BDE-28: 38.3-58.0; BDE-47: 9.62-30.9%; BDE-99: 9.71-24.3%; and BDE-153: 13.8-57.4%). The organic matter contents in indoor dust showed variable influence on the bioaccessibility of PBDEs. For the Caco-2 uptake assay, the BDE-28 showed greatest transport rate from medium to cell (Kmc: 0.525h-1), followed by -47, -99 and -153. The Kmc of PBDEs was significantly negative correlated with its corresponding KOW value. Similar pattern was found for the maximum uptake flux (Ju, max) and the transport rate from cell to medium (Kcm). The combination of bioacessibility and the absorption factor by Caco-2 cells could be used to estimate human intake of PBDEs via indoor dust would avoid overestimate the health risk.
Collapse
Affiliation(s)
- Yuan Kang
- School of Chemistry and Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China; Guangdong Engineering Technology Research Center for Drinking Water Safety, School of Chemistry and Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China.
| | - Weijian Pan
- School of Chemistry and Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China; Guangdong Engineering Technology Research Center for Drinking Water Safety, School of Chemistry and Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
| | - Siyun Liang
- School of Chemistry and Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China; Guangdong Engineering Technology Research Center for Drinking Water Safety, School of Chemistry and Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
| | - Lixuan Zeng
- School of Chemistry and Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China; Guangdong Engineering Technology Research Center for Drinking Water Safety, School of Chemistry and Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China.
| | - Qiuyun Zhang
- School of Chemistry and Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China; Guangdong Engineering Technology Research Center for Drinking Water Safety, School of Chemistry and Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
| | - Jiwen Luo
- School of Chemistry and Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China; Guangdong Engineering Technology Research Center for Drinking Water Safety, School of Chemistry and Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
| | - Xinmei Guo
- School of Chemistry and Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China; Guangdong Engineering Technology Research Center for Drinking Water Safety, School of Chemistry and Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
| |
Collapse
|
33
|
Dumas AS, Taconnat L, Barbas E, Rigaill G, Catrice O, Bernard D, Benamar A, Macherel D, El Amrani A, Berthomé R. Unraveling the early molecular and physiological mechanisms involved in response to phenanthrene exposure. BMC Genomics 2016; 17:818. [PMID: 27769163 PMCID: PMC5073745 DOI: 10.1186/s12864-016-3133-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/27/2016] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Higher plants have to cope with increasing concentrations of pollutants of both natural and anthropogenic origin. Given their capacity to concentrate and metabolize various compounds including pollutants, plants can be used to treat environmental problems - a process called phytoremediation. However, the molecular mechanisms underlying the stabilization, the extraction, the accumulation and partial or complete degradation of pollutants by plants remain poorly understood. RESULTS Here, we determined the molecular events involved in the early plant response to phenanthrene, used as a model of polycyclic aromatic hydrocarbons. A transcriptomic and a metabolic analysis strongly suggest that energy availability is the crucial limiting factor leading to high and rapid transcriptional reprogramming that can ultimately lead to death. We show that the accumulation of phenanthrene in leaves inhibits electron transfer and photosynthesis within a few minutes, probably disrupting energy transformation. CONCLUSION This kinetic analysis improved the resolution of the transcriptome in the initial plant response to phenanthrene, identifying genes that are involved in primary processes set up to sense and detoxify this pollutant but also in molecular mechanisms used by the plant to cope with such harmful stress. The identification of first events involved in plant response to phenanthrene is a key step in the selection of candidates for further functional characterization, with the prospect of engineering efficient ecological detoxification systems for polycyclic aromatic hydrocarbons.
Collapse
Affiliation(s)
- Anne-Sophie Dumas
- Université de Rennes 1, CNRS/OSUR/UMR 6553, Ecosystèmes-Biodiversité-Evolution, campus de Beaulieu, Bâtiment 14A, 35042, Rennes cedex, France
| | - Ludivine Taconnat
- Institute of Plant Sciences Paris Saclay (IPS2), UMR 9213/UMR1403, Université Paris Sud, CNRS, INRA, Université d'Evry, Université Paris Diderot, Sorbonne Paris Cité, Bâtiment 630, 91405, Orsay, France
| | - Evangelos Barbas
- Institute of Plant Sciences Paris Saclay (IPS2), UMR 9213/UMR1403, Université Paris Sud, CNRS, INRA, Université d'Evry, Université Paris Diderot, Sorbonne Paris Cité, Bâtiment 630, 91405, Orsay, France
- Present Address: Laboratory of Forest Genetics and Tree Breeding, AUTH, University Campus, 54124, Thessaloniki, Greece
| | - Guillem Rigaill
- Institute of Plant Sciences Paris Saclay (IPS2), UMR 9213/UMR1403, Université Paris Sud, CNRS, INRA, Université d'Evry, Université Paris Diderot, Sorbonne Paris Cité, Bâtiment 630, 91405, Orsay, France
| | - Olivier Catrice
- Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR INRA 441/CNRS 2594, CS 52627, 31326, Castanet Tolosan cedex, France
| | - Delphine Bernard
- Université de Rennes 1, CNRS/OSUR/UMR 6553, Ecosystèmes-Biodiversité-Evolution, campus de Beaulieu, Bâtiment 14A, 35042, Rennes cedex, France
- Present Address: Laboratoire de Génétique Moléculaire et de Génétique Epidémiologique, INSERM U1078, 46, rue Felix Le Dantec, CS 51819, 29218, Brest Cedex 2, France
| | - Abdelilah Benamar
- Université d'Angers, UMR 1345, Institut de Recherche en Horticulture et Semences (IRHS), Bat ARES, 16 Boulevard Lavoisier, 49045, Angers cedex, France
| | - David Macherel
- Université d'Angers, UMR 1345, Institut de Recherche en Horticulture et Semences (IRHS), Bat ARES, 16 Boulevard Lavoisier, 49045, Angers cedex, France
| | - Abdelhak El Amrani
- Université de Rennes 1, CNRS/OSUR/UMR 6553, Ecosystèmes-Biodiversité-Evolution, campus de Beaulieu, Bâtiment 14A, 35042, Rennes cedex, France.
| | - Richard Berthomé
- Institute of Plant Sciences Paris Saclay (IPS2), UMR 9213/UMR1403, Université Paris Sud, CNRS, INRA, Université d'Evry, Université Paris Diderot, Sorbonne Paris Cité, Bâtiment 630, 91405, Orsay, France.
- Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR INRA 441/CNRS 2594, CS 52627, 31326, Castanet Tolosan cedex, France.
| |
Collapse
|
34
|
Peters RE, James K, Cave M, Wickstrom M, Siciliano SD. Is received dose from ingested soil independent of soil PAH concentrations?-Animal model results. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:2261-2269. [PMID: 26815007 DOI: 10.1002/etc.3384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/14/2015] [Accepted: 01/25/2016] [Indexed: 06/05/2023]
Abstract
Polycyclic aromatic hydrocarbon (PAH) bioavailability from ingested soils will vary between soils; however, the nature of this variation is not well characterized. A juvenile swine model was used to link external exposure to internal benzo[a]pyrene (BaP) and anthracene exposure following oral PAH ingestion of 27 different impacted site soils, soots, or spiked artificial soils. Internal exposure of BaP and anthracene, represented by area under the plasma-time curve, did not relate to soil concentration in impacted site soils, but did relate in spiked artificial soil. Point of departure modeling identified soil PAH concentrations greater than 1900 mg kg(-1) as the point where area under the curve becomes proportional to external dose. A BaP internal exposure below 1900 mg kg(-1) had an upper 95% confidence interval estimate of 33% of external exposure. Weak relationships between soil:simulated gastrointestinal fluid PAH partitioning and area under the curve values suggest that differences in internal PAH exposure between soils may not be dominated by differences in PAH partitioning. The data seem to best support exposure assessment assuming constant internal PAH exposure below soil concentrations of 1900 mg kg(-1) . However, because constant internal exposure would challenge several existing paradigms, a bioavailability estimate of 33% of the external exposure is suggested as a likely workable solution. Environ Toxicol Chem 2016;35:2261-2269. © 2016 SETAC.
Collapse
Affiliation(s)
- Rachel E Peters
- Department of Soil Science, University of Saskatchewan, Saskatoon, Canada
- Toxicology Graduate Program, University of Saskatchewan, Saskatoon, Canada
| | - Kyle James
- Department of Soil Science, University of Saskatchewan, Saskatoon, Canada
- Toxicology Graduate Program, University of Saskatchewan, Saskatoon, Canada
| | - Mark Cave
- British Geological Survey, Nottingham, United Kingdom
| | - Mark Wickstrom
- Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Steven D Siciliano
- Department of Soil Science, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
35
|
Duan L, Naidu R, Liu Y, Dong Z, Mallavarapu M, Herde P, Kuchel T, Semple KT. Comparison of oral bioavailability of benzo[a]pyrene in soils using rat and swine and the implications for human health risk assessment. ENVIRONMENT INTERNATIONAL 2016; 94:95-102. [PMID: 27235687 DOI: 10.1016/j.envint.2016.04.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 03/18/2016] [Accepted: 04/25/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND There are many uncertainties concerning variations in benzo[a]pyrene (B[a]P) soil guidelines protecting human health based on carcinogenic data obtained in animal studies. Although swine is recognised as being much more representative of the human child in terms of body size, gut physiology and genetic profile the rat/mice model is commonly used in practice. OBJECTIVES We compare B[a]P bioavailability using a rat model to that estimated in a swine model, to investigate the correlation between these two animal models. This may help reduce uncertainty in applying bioavailability to human health risk assessment. METHODS Twelve spiked soil samples and a spiked silica sand (reference material) were dosed to rats in parallel with a swine study. B[a]P bioavailability was estimated by the area under the plasma B[a]P concentration-time curve (AUC) and faecal excretion as well in the rats. Direct comparison between the two animal models was made for: firstly, relative bioavailability (RB) using AUC assay; and secondly, the two assays in the rat model. RESULTS Both AUC and faecal excretion assays showed linear dose-response for the reference material. However, absolute bioavailability was significantly higher when using faecal excretion assay (p<0.001). In aged soils faecal excretion estimated based on solvent extraction was not accurate due to the form of non-extractable fraction through ageing. A significant correlation existed between the two models using RB for soil samples (RBrat=0.26RBswine+17.3, R(2)=0.70, p<0.001), despite the regression slope coefficient revealing that the rat model would underestimate RB by about one quarter compared to using swine. CONCLUSIONS In the comparison employed in this study, an interspecies difference of four in RB using AUC assay was identified between the rat and swine models regarding pharmacokinetic differences, which supported the body weight scaling method recommended by US EPA. Future research should focus on the carcinogenic competency (pharmacodynamics) used in experiment animals and humans.
Collapse
Affiliation(s)
- Luchun Duan
- Global Centre for Environmental Remediation (GCER), ATC Building, University of Newcastle, Callaghan Campus, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan Campus, NSW 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), ATC Building, University of Newcastle, Callaghan Campus, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan Campus, NSW 2308, Australia.
| | - Yanju Liu
- Global Centre for Environmental Remediation (GCER), ATC Building, University of Newcastle, Callaghan Campus, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan Campus, NSW 2308, Australia
| | - Zhaomin Dong
- Global Centre for Environmental Remediation (GCER), ATC Building, University of Newcastle, Callaghan Campus, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan Campus, NSW 2308, Australia
| | - Megharaj Mallavarapu
- Global Centre for Environmental Remediation (GCER), ATC Building, University of Newcastle, Callaghan Campus, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan Campus, NSW 2308, Australia
| | - Paul Herde
- South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia
| | - Tim Kuchel
- South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia
| | - Kirk T Semple
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| |
Collapse
|
36
|
Cui XY, Xiang P, He RW, Juhasz A, Ma LQ. Advances in in vitro methods to evaluate oral bioaccessibility of PAHs and PBDEs in environmental matrices. CHEMOSPHERE 2016; 150:378-389. [PMID: 26921590 DOI: 10.1016/j.chemosphere.2016.02.041] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 01/05/2016] [Accepted: 02/09/2016] [Indexed: 06/05/2023]
Abstract
Cleanup goals for sites contaminated with persistent organic pollutants (POPs) are often established based on total contaminant concentrations. However, mounting evidence suggests that understanding contaminant bioavailability in soils is necessary for accurate assessment of contaminant exposure to humans via oral ingestion pathway. Animal-based in vivo tests have been used to assess contaminant bioavailability in soils; however, due to ethical issues and cost, it is desirable to use in vitro assays as alternatives. Various in vitro methods have been developed, which simulate human gastrointestinal (GI) tract using different digestion fluids. These methods can be used to predict POP bioavailability in soils, foods, and indoor dust after showing good correlation with in vivo animal data. Here, five common in vitro methods are evaluated and compared using PAHs and PBDEs as an example of traditional and emerging POPs. Their applications and limitations are discussed while focusing on method improvements and future challenges to predict POP bioavailability in different matrices. The discussions should shed light for future research to accurately assess human exposure to POPs via oral ingestion pathway.
Collapse
Affiliation(s)
- Xin-Yi Cui
- State Key Lab of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China
| | - Ping Xiang
- State Key Lab of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China
| | - Rui-Wen He
- State Key Lab of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China
| | - Albert Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Lena Q Ma
- State Key Lab of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China; Soil and Water Science Department, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
37
|
Peters RE, Wickstrom M, Siciliano SD. Do biomarkers of exposure and effect correlate with internal exposure to PAHs in swine? Biomarkers 2016; 21:283-91. [DOI: 10.3109/1354750x.2016.1138322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
38
|
James K, Peters RE, Cave MR, Wickstrom M, Lamb EG, Siciliano SD. Predicting Polycyclic Aromatic Hydrocarbon Bioavailability to Mammals from Incidentally Ingested Soils Using Partitioning and Fugacity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:1338-1346. [PMID: 26741299 DOI: 10.1021/acs.est.5b05317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Soil and dust ingestion is one of the major human exposure pathways to contaminated soil; however, pollutant transfer from ingested substances to humans cannot currently be confidently predicted. Soil polycyclic aromatic hydrocarbon (PAH) bioavailability is likely dependent upon properties linked to chemical potential and partitioning such as fugacity, fugacity capacity, soil organic carbon, and partitioning to simulated intestinal fluids. We estimated the oral PAH bioavailability of 19 historically contaminated soils fed to juvenile swine. Between soils, PAH blood content, with the exception of benzo(a)pyrene, was not linked to fugacity. In contrast, between individual PAHs, using partitioning explained PAH blood content (area under the curve = 0.47 log fugacity + 0.34, r(2) = 0.68, p < 0.005, n = 14). Soil fugacity capacity predicts PAH soil concentration with an average slope of 0.30 (μg PAH g(-1) soil) Pa(-1) and r(2)'s of 0.61-0.73. Because PAH blood content was independent of soil concentration, soil fugacity correlated to PAH bioavailability via soil fugacity's link to soil concentration. In conclusion, we can use fugacity to explain PAH uptake from a soil into blood. However, something other than partitioning is critical to explain the differences in PAH uptake into blood between soils.
Collapse
Affiliation(s)
- Kyle James
- Department of Soil Science, University of Saskatchewan , Saskatoon S7N 5A8, Canada
- Toxicology Graduate Program, University of Saskatchewan , Saskatoon S7N 5A8, Canada
| | - Rachel E Peters
- Department of Soil Science, University of Saskatchewan , Saskatoon S7N 5A8, Canada
- Toxicology Graduate Program, University of Saskatchewan , Saskatoon S7N 5A8, Canada
| | - Mark R Cave
- British Geological Survey, Nottingham, United Kingdom
| | - Mark Wickstrom
- Veterinary Biomedical Sciences, University of Saskatchewan , Saskatoon S7N 5A8, Canada
| | - Eric G Lamb
- Department of Plant Sciences, University of Saskatchewan , Saskatoon S7N 5A8, Canada
| | - Steven D Siciliano
- Department of Soil Science, University of Saskatchewan , Saskatoon S7N 5A8, Canada
| |
Collapse
|
39
|
Li C, Sun H, Juhasz AL, Cui X, Ma LQ. Predicting the Relative Bioavailability of DDT and Its Metabolites in Historically Contaminated Soils Using a Tenax-Improved Physiologically Based Extraction Test (TI-PBET). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:1118-1125. [PMID: 26716472 DOI: 10.1021/acs.est.5b03891] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Due to their static nature, physiologically based in vitro assays often fail to provide sufficient sorption capacity for hydrophobic organic contaminants (HOCs). The addition of a sorption sink to in vitro intestinal solution has the potential to mimic dynamic intestinal uptake for HOCs, thereby increasing their desorption from soil. However, the effectiveness of sorption sinks for improving in vitro assays needs to be compared with in vivo data. In this study, Tenax was added as a sorption sink into the physiologically based extraction test (PBET), while DDT and its metabolites (DDTr) were investigated as typical HOCs. Tenax added at 0.01-0.2 g to the PBET intestinal solution sorbed ∼100% of DDTr in 6.3-19 min, indicating its ability as an effective sorption sink. DDTr bioaccessibility in six contaminated soils using Tenax-improved PBET (TI-PBET; 27-56%) was 3.4-22 fold greater than results using the PBET (1.2-15%). In vivo DDTr relative bioavailability (RBA) was measured using a mouse adipose model with values of 17.9-65.4%. The inclusion of Tenax into PBET improved the in vivo-in vitro correlation from r(2) = 0.36 (slope = 2.1 for PBET) to r(2) = 0.62 (slope = 1.2 for TI-PBET), illustrating that the inclusion of Tenax as a sorption sink improved the in vitro prediction of DDTr RBA in contaminated soils.
Collapse
Affiliation(s)
- Chao Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing 210023, China
| | - Hongjie Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing 210023, China
| | - Albert L Juhasz
- Future Industries Institute, University of South Australia , Mawson Lakes, South Australia 5095, Australia
| | - Xinyi Cui
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing 210023, China
| | - Lena Q Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing 210023, China
- Soil and Water Science Department, University of Florida , Gainesville, Florida 32611, United States
| |
Collapse
|
40
|
Wu J, Yan Z, Yi X, Lin Y, Ni J, Gao X, Liu Z, Shi X. Comparison of species sensitivity distributions constructed with predicted acute toxicity data from interspecies correlation estimation models and measured acute data for benzo[a]pyrene. CHEMOSPHERE 2016; 144:2183-2188. [PMID: 26595312 DOI: 10.1016/j.chemosphere.2015.10.099] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 10/23/2015] [Accepted: 10/23/2015] [Indexed: 06/05/2023]
Abstract
Benzo[a]pyrene (BaP) is a priority Polycyclic Aromatic Hydrocarbon (PAH), which is toxic to aquatic organisms and has been widely detected in the environment. However, ecological risk assessment for BaP is hard to perform because of the absence of water quality criteria (WQC) and lack of toxicity data for this chemical. To fill in the data gaps, a interspecies correlation estimation (ICE) model was developed by USEPA to predict toxicity values for multiple species from the toxicity estimate for one species. In order to validate the applicability of the ICE model for BaP, measured-based-species sensitivity distributions (SSDs) generated using eight Chinese native aquatic species were compared with ICE-based-SSDs generated using the data predicted from three surrogate species (Lepomis macrochirus, Cyprinus carpio and Daphnia magna). The results showed that there were no significant differences between the two SSD curves and the two hazardous concentrations for the 5% of species (HC5) derived from measured acute toxicity data and ICE-based predicted data. The ICE model was verified as a valid approach for generating SSDs with limited toxicity data.
Collapse
Affiliation(s)
- Jiangyue Wu
- National Marine Hazard Mitigation Service, State Oceanic Administration People's Republic of China, Beijing 100194, China
| | - Zhenguang Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xianliang Yi
- School of Food and Environment, Dalian University of Technology, Panjin Campus 116024, China
| | - Yufei Lin
- National Marine Hazard Mitigation Service, State Oceanic Administration People's Republic of China, Beijing 100194, China
| | - Jianbin Ni
- National Marine Hazard Mitigation Service, State Oceanic Administration People's Republic of China, Beijing 100194, China
| | - Xiang Gao
- College of Chemistry and Chemical Engineering, Ocean University of China, Tsingdao 266100, China
| | - Zhengtao Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Xiaoyong Shi
- National Marine Hazard Mitigation Service, State Oceanic Administration People's Republic of China, Beijing 100194, China.
| |
Collapse
|
41
|
Juhasz AL, Tang W, Smith E. Using in vitro bioaccessibility to refine estimates of human exposure to PAHs via incidental soil ingestion. ENVIRONMENTAL RESEARCH 2016; 145:145-153. [PMID: 26697808 DOI: 10.1016/j.envres.2015.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 11/30/2015] [Accepted: 12/02/2015] [Indexed: 06/05/2023]
Abstract
PAH bioaccessibility in contaminated soil was determined using the organic physiologically based extraction test with the inclusion of a sorption sink. Silicone cord was incorporated into the assay in order to overcome the limited capacity of the in vitro medium to accommodate desorbable PAHs. Initially, silicone cord sorption efficacy was determined by assessing sorption kinetics using PAH-spiked sand (phenanthrene, pyrene and benzo[a]pyrene; 10-1000mgkg(-1)). Irrespective of PAH and concentration, >95% of the initial PAH mass partitioned into the silicone cord within 12h although rates were lower at higher concentration and with increasing hydrophobicity. When PAH bioaccessibility was assessed in contaminated soil (n=18), contamination source (i.e. pyrogenic versus petrogenic) influenced PAH bioaccessibility. Individual PAH bioaccessibility ranged up to 81.7±2.7% although mean values ranged from 2.1 (acenaphthalene) to 20.8% (benzo[k]fluoranthene) with upper 95% confidence intervals of the means of 4.5 and 28.3% respectively. Although a PAH in vivo-in vitro correlation is yet to be established, bioaccessibility approaches incorporating sorption sinks represent a robust approach for estimating PAH bioavailability as the desorbable fraction may be a conservative measure of the absorbable fraction.
Collapse
Affiliation(s)
- Albert L Juhasz
- Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA 5095, Australia.
| | - Wayne Tang
- Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Euan Smith
- Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA 5095, Australia
| |
Collapse
|
42
|
Guo M, Gong Z, Allinson G, Tai P, Miao R, Li X, Jia C, Zhuang J. Variations in the bioavailability of polycyclic aromatic hydrocarbons in industrial and agricultural soils after bioremediation. CHEMOSPHERE 2016; 144:1513-20. [PMID: 26498099 DOI: 10.1016/j.chemosphere.2015.10.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 10/01/2015] [Accepted: 10/07/2015] [Indexed: 05/15/2023]
Abstract
The aim of this study was to demonstrate the variations in bioavailability remaining in industrial and agricultural soils contaminated by polycyclic aromatic hydrocarbons (PAHs) after bioremediation. After inoculation of Mycobacterium sp. and Mucor sp., PAH biodegradation was tested on a manufactured gas plant (MGP) soil and an agricultural soil. PAH bioavailability was assessed before and after biodegradation using solid-phase extraction (Tenax-TA extraction) and solid-phase micro-extraction (SPME) to represent bioaccessibility and chemical activity of PAHs, respectively. Only 3- and 4-ring PAHs were noticeably biodegradable in the MGP soil. PAH biodegradation in the agricultural soil was different from that in the MGP soil. The rapidly desorbing fractions (F(rap)) extracted by Tenax-TA and the freely dissolved concentrations of 3- and 4-ring PAHs determined by SPME from the MGP soil decreased after 30 days biodegradation; those values of the 5- and 6-ring PAHs changed to a lesser degree. For the agricultural soil, the F(rap) values of the 3- and 4-ring PAHs also decreased after the biodegradation experiment. The Tenax-TA extraction and the SPME have the potential to assess variations in the bioavailability of PAHs and the degree of biodegradation in contaminated MGP soils. In addition, Tenax-TA extraction is more sensitive than SPME when used in the agricultural soil.
Collapse
Affiliation(s)
- Meixia Guo
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Zongqiang Gong
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China.
| | - Graeme Allinson
- School of Applied Sciences, RMIT University, Melbourne, Victoria, 3001, Australia; Centre for Environmental Sustainability and Remediation (EnSuRE), RMIT University, Melbourne, Victoria, 3001, Australia
| | - Peidong Tai
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China
| | - Renhui Miao
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xiaojun Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China
| | - Chunyun Jia
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China
| | - Jie Zhuang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China
| |
Collapse
|
43
|
Wu J, Liu Z, Yan Z, Yi X. Derivation of water quality criteria of phenanthrene using interspecies correlation estimation models for aquatic life in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:9457-9463. [PMID: 25608455 DOI: 10.1007/s11356-015-4091-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/07/2015] [Indexed: 06/04/2023]
Abstract
Species sensitivity distribution (SSD) method has been widely used to derive water quality criteria (WQC). However, the toxicity data of some environmental pollutants are not easily accessible, especially for endangered and threatened species. Thus, it would be very desirable and economical to predict the toxicity of those species not subjected to toxicity test with the aid of a mathematical model. The interspecies correlation estimation (ICE) model (developed by the US Environmental Protection Agency (USEPA)) uses the initial toxicity estimate for one species to produce correlated toxicity values for multiple species, and it can be utilized to develop SSD and HC5 (hazardous concentration, 5th percentile). In this study, we explored the applicability of ICE to predict toxicity of phenanthrene to various species. ICE-based SSDs were generated using three surrogate species (Oncorhynchus mykiss, Lepomis macrochirus, and Daphnia magna) and compared with the metrical-based SSD. The corresponding HC5 of both models were also compared. The results showed there were no significant differences between HC5 derived from measured acute and ICE-based predicted values. The ICE model was verified as a valid approach for generating SSDs with limited toxicity data and deriving WQC for phenanthrene.
Collapse
Affiliation(s)
- Jiangyue Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, An Wai Da Yang Fang 8, Chaoyang District, Beijing, 100012, China
| | | | | | | |
Collapse
|
44
|
Collins CD, Craggs M, Garcia-Alcega S, Kademoglou K, Lowe S. 'Towards a unified approach for the determination of the bioaccessibility of organic pollutants'. ENVIRONMENT INTERNATIONAL 2015; 78:24-31. [PMID: 25728561 DOI: 10.1016/j.envint.2015.02.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 02/02/2015] [Accepted: 02/03/2015] [Indexed: 06/04/2023]
Abstract
Bioaccessibility studies have been widely used as a research tool to determine the potential human exposure to ingested contaminants. More recently they have been practically applied for soil borne toxic elements. This paper reviews the application of bioaccessibility tests across a range of organic pollutants and contaminated matrices. Important factors are reported to be: the physiological relevance of the test, the components in the gut media, the size fraction chosen for the test and whether it contains a sorptive sink. The bioaccessibility is also a function of the composition of the matrix (e.g. organic carbon content of soils) and the physico-chemical characteristics of the pollutant under test. Despite the widespread use of these tests, there are a large number of formats used and very few validation studies with animal models. We propose a unified format for a bioaccessibility test for organic pollutants. The robustness of this test should first be confirmed through inter laboratory comparison, then tested in-vivo.
Collapse
Affiliation(s)
| | - Mark Craggs
- Soil Research Centre, University of Reading, Reading, UK
| | | | | | - Stephen Lowe
- Soil Research Centre, University of Reading, Reading, UK
| |
Collapse
|
45
|
Peters RE, Wickstrom M, Siciliano SD. The bioavailability of polycyclic aromatic hydrocarbons from different dose media after single and sub-chronic exposure in juvenile swine. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 506-507:308-314. [PMID: 25460964 DOI: 10.1016/j.scitotenv.2014.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 10/20/2014] [Accepted: 11/03/2014] [Indexed: 06/04/2023]
Abstract
Humans are constantly exposed to contaminants in the environment, which may lead to changes in physiological processes by altering enzyme activities that could affect bioavailability. However, bioavailability estimates are typically made from a single exposure to an animal model, which may lead to overestimating bioavailability. This study uses juvenile swine to model human exposure to benzo[a]pyrene (BaP) and anthracene in certified reference material (CRM), spiked soil, spiked food, or spiked corn oil after one and seven days of dosing. Area under the curve (AUC) was calculated after one and seven days of exposure for both BaP and anthracene for each exposure media. Whereas there were significant differences in AUC between different media, there were no significant changes in AUC after sub-chronic exposure to BaP or anthracene. Average BaP bioavailability for CRM, spiked soil, spiked food and corn oil was 71%, 0.72%, 0.03% and 0.97% respectively. Average anthracene bioavailability was 1.7% and 43% for corn oil and CRM respectively. Anthracene was not detected above background in swine exposed to spiked food and spiked soil. Thus, this study indicates that exposure media impacts bioavailability, but there is no statistical evidence that sub-chronic exposure affects systemic exposure.
Collapse
Affiliation(s)
- Rachel E Peters
- Toxicology Graduate Program, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada
| | - Mark Wickstrom
- Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK S7N 5B2, Canada; Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada
| | - Steven D Siciliano
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada; Department of Soil Science, University of Saskatchewan, Saskatoon, SK S7N 5B8, Canada.
| |
Collapse
|
46
|
Wu JY, Yan ZG, Liu ZT, Liu JD, Liang F, Wang XN, Wang WL. Development of water quality criteria for phenanthrene and comparison of the sensitivity between native and non-native species. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 196:141-146. [PMID: 25463707 DOI: 10.1016/j.envpol.2014.09.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 09/16/2014] [Accepted: 09/29/2014] [Indexed: 06/04/2023]
Abstract
Phenanthrene (PHE) is a priority polycyclic aromatic hydrocarbon (PAH) which is toxic to aquatic organisms.However, there has been no paper dealing with water quality criteria (WQC) of PHE due to the shortage of toxicity data of different taxonomic levels. In the present study, toxicity data were obtained from 8 acute toxicity tests and 3 chronic toxicity tests using 8 Chinese native aquatic species from different taxonomic levels, and the water quality criteria was derived using 3 methods. Furthermore, differences of species sensitivity distributions (SSDs) between native and non-native species were compared. A criterion maximum concentration of 0.0514 mg/L and a criterion continuous concentration of 0.0186 mg/L were developed according to the US EPA guidelines. Finally, by using risk quotient (RQ) to assess the site-specific ecological risk in Liao River, the results indicated that the PHE might pose no risk to local aquatic species.
Collapse
Affiliation(s)
- Jiang-Yue Wu
- College of Water Science, Beijing Normal University, Beijing 100875, China
| | | | | | | | | | | | | |
Collapse
|
47
|
Li C, Cui XY, Fan YY, Teng Y, Nan ZR, Ma LQ. Tenax as sorption sink for in vitro bioaccessibility measurement of polycyclic aromatic hydrocarbons in soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 196:47-52. [PMID: 25299793 DOI: 10.1016/j.envpol.2014.09.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/02/2014] [Accepted: 09/03/2014] [Indexed: 06/04/2023]
Abstract
Physiologically based in vitro methods have been developed to measure bioaccessibility of organic contaminants in soils. However, bioaccessibility of hydrophobic organic contaminants (HOCs) can be underestimated by in vitro tests if gastrointestinal (GI) solution fails to provide sufficient sorption sink for HOCs. To circumvent this drawback, Tenax was included in GI solution as sorption sink to trap mobilized HOCs and maintain the desorption gradient between soil and GI solution. Polycyclic aromatic hydrocarbons (PAHs) were selected as target HOCs, and physiologically based extraction test (PBET) was selected as the in vitro method. Inclusion of Tenax in GI solution increased bioaccessibility of PAHs in five spiked soils from 8.25-20.8% to 55.7-65.9% and the bioaccessibility of PAHs in a field contaminated soil from 3.70-6.92% to 16.3-31.0%. Our results demonstrated the effectiveness of Tenax as sorption sink to enhance PAH mobilization in bioaccessibility measurement in soils.
Collapse
Affiliation(s)
- Chao Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, China
| | - Xin Yi Cui
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, China.
| | - Ying Ying Fan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, China
| | - Ying Teng
- Institute of Soil Science, Chinese Academy of Sciences, Jiangsu 210008, China
| | - Zhong Ren Nan
- National Laboratory of West China's Environment System, College of Resource & Environment, Lanzhou University, Lanzhou 730000, China
| | - Lena Q Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, China; Soil and Water Science Department, University of Florida, Gainesville, FL 32611, United States
| |
Collapse
|