1
|
Sharma G, Verma Y, Lai CW, Naushad M, Iqbal J, Kumar A, Dhiman P. Biochar and biosorbents derived from biomass for arsenic remediation. Heliyon 2024; 10:e36288. [PMID: 39263124 PMCID: PMC11388741 DOI: 10.1016/j.heliyon.2024.e36288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 09/13/2024] Open
Abstract
Global groundwater contamination by Arsenic (As) presents a grave danger to the health of living beings and wildlife, demanding comprehensive remediation strategies. This review delves into the complex landscape of arsenic remediation, encompassing its chemical forms, occurrences, sources, and associated health risks. Advanced techniques, notably biomass-derived adsorbents, emerge as promising and cost-effective solutions. The exploration spans preparing and modifying biomass-derived adsorbents, unraveling their adsorption capacity, influencing factors, isotherms, kinetics, and thermodynamics. Noteworthy attention is given to plant-agricultural waste, algal-fungal-bacterial, and iron-modified biomass-derived adsorbents. The comprehensive discussion of the adsorption mechanism highlights the efficacy of low-cost biomass, particularly from plant, animal, and agricultural residues, offering a sustainable remedy for arsenic removal. This insightful review contributes to the understanding of evolving technologies essential for addressing arsenic contamination in wastewater, emphasizing the potential of renewable biomaterials in advancing efficient remediation practices.
Collapse
Affiliation(s)
- Gaurav Sharma
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University of Biotechnology and Management Sciences, Solan, 173229, Himachal Pradesh, India
| | - Yaksha Verma
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University of Biotechnology and Management Sciences, Solan, 173229, Himachal Pradesh, India
| | - Chin Wei Lai
- Nanotechnology & Catalysis Research Centre (NANOCAT), Institute for Advanced Studies (IAS), University of Malaya (UM), 50603, Kuala Lumpur, Malaysia
| | - Mu Naushad
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Jibran Iqbal
- Department of Environmental Sciences and Sustainability, College of Natural and Health Sciences, Zayed University, Abu Dhabi, 144534, United Arab Emirates
| | - Amit Kumar
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University of Biotechnology and Management Sciences, Solan, 173229, Himachal Pradesh, India
| | - Pooja Dhiman
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University of Biotechnology and Management Sciences, Solan, 173229, Himachal Pradesh, India
| |
Collapse
|
2
|
Di Caprio F, Altimari P, Astolfi ML, Pagnanelli F. Optimization of two-phase synthesis of Fe-hydrochar for arsenic removal from drinking water: Effect of temperature and Fe concentration. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119834. [PMID: 38128206 DOI: 10.1016/j.jenvman.2023.119834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/15/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023]
Abstract
Arsenic-contaminated water is a global concern that demands the development of cost-effective treatments to ensure a safe drinking water supply for people worldwide. In this paper, we report the optimization of a two-phase synthesis for producing a hydrochar core from olive pomace to serve as support for the deposition of Fe-hydroxide, which is the active component in As(V) removal. The operating conditions considered were the initial concentration of Fe in solution in the hydrothermal treatment (phase I) and the temperature of Fe precipitation (phase II). The obtained samples were characterized for their elemental composition, solid yield, mineral content (Fe and K), phenol release, As(V) sorption capacity, and sorbent stability. Correlation analysis revealed that higher Fe concentrations (26.8 g/L) ensured better carbonization during hydrothermal treatment, increased arsenic removal, reduced concentrations of phenols in the final liquid, and improved stability of the sorbent composite. On the other hand, the temperature during Fe precipitation (phase II) can be maintained at lower levels (25-80 °C) since higher temperatures yielded lower adsorption capacity. Regression analysis demonstrated the significance of the main effects of the parameters on sorption capacity and provided a model for selecting operating conditions (Fe concentration and phase II temperature) to obtain composite sorbents with tailored sorption properties.
Collapse
Affiliation(s)
- Fabrizio Di Caprio
- Dipartimento di Chimica, Università Sapienza di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Pietro Altimari
- Dipartimento di Chimica, Università Sapienza di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Maria Luisa Astolfi
- Dipartimento di Chimica, Università Sapienza di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy; CIABC, Università Sapienza di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Francesca Pagnanelli
- Dipartimento di Chimica, Università Sapienza di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
3
|
Chormare R, Moradeeya PG, Sahoo TP, Seenuvasan M, Baskar G, Saravaia HT, Kumar MA. Conversion of solid wastes and natural biomass for deciphering the valorization of biochar in pollution abatement: A review on the thermo-chemical processes. CHEMOSPHERE 2023; 339:139760. [PMID: 37567272 DOI: 10.1016/j.chemosphere.2023.139760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/14/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023]
Abstract
This overview addresses the formation of solid trash and the various forms of waste from a variety of industries, which environmentalists have embraced. The paper investigates the negative effects on the environment caused by unsustainable management of municipal solid trash as well as the opportunities presented by the formal system. This examination looks at the origins of solid waste as well as the typical treatment methods. Pyrolysis methods, feedstock pyrolysis, and lignocellulosic biomass pyrolysis were highlighted. Explain in detail the various thermochemical processes that take place during the pyrolysis of biomass. Due to its carbon content, low cost, accessibility, ubiquitousness, renewable nature, and environmental friendliness, biomass waste is a unique biochar precursor. This study looks at the different types of biomass waste that are available for treating wastewater. This study discussed a wide variety of reactors. Adsorption is the standard method that is used the most frequently to remove hazardous organic, dye, and inorganic pollutants from wastewater. These pollutants cause damage to the environment and water supplies, thus it is important to remove them. Adsorption is both simple and inexpensive to utilize. Temperature-dependent conversions explain the kinetic theories of biomaterial biochemical degradation. This article presents a review that explains how pyrolytic breakdown char materials can be used to reduce pollution and improve environmental management.
Collapse
Affiliation(s)
- Rishikesh Chormare
- Process Design and Engineering Cell, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India; Academy of Scientific and Innovative Research, Ghaziabad, 201 002, Uttar Pradesh, India
| | - Pareshkumar G Moradeeya
- Department of Environmental Science and Engineering, Marwadi University, Rajkot, 360 003, Gujarat, India
| | - Tarini Prasad Sahoo
- Academy of Scientific and Innovative Research, Ghaziabad, 201 002, Uttar Pradesh, India; Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India
| | - Muthulingam Seenuvasan
- Department of Chemical Engineering, Hindusthan College of Engineering and Technology, Coimbatore, 641 032, Tamil Nadu, India
| | - Gurunathan Baskar
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai, 600 119, Tamil Nadu, India
| | - Hitesh T Saravaia
- Academy of Scientific and Innovative Research, Ghaziabad, 201 002, Uttar Pradesh, India; Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India.
| | - Madhava Anil Kumar
- Centre for Rural and Entrepreneurship Development, National Institute of Technical Teachers Training and Research, Chennai, 600 113, Tamil Nadu, India.
| |
Collapse
|
4
|
Xu Y, Huang M, Wang H, Sun G, Kumar A, Yu Z. Enhancing arsenic adsorptions by optimizing Fe-loaded biochar and preliminary application in paddy soil under different water management strategies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:101616-101626. [PMID: 37653193 DOI: 10.1007/s11356-023-29499-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/21/2023] [Indexed: 09/02/2023]
Abstract
Arsenic (As) is widely distributed in nature and is a highly toxic element impacting human health through drinking water and rice. In this study, an optimized approach was attempted to improve As adsorption capabilities by combining pre- and post-pyrolysis modification of Fe(oxy)hydroxides to rice husk biochar (FRB), of which the method is rarely addressed in previous studies. Maghemite and goethite were successfully loaded onto biochar, characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoemission spectroscopy (XPS) analyzer. The FRB had maximum As(III) and As(V) adsorption capabilities of 7908 and 11,268 mg/kg, respectively, which was significantly higher than that of Fe-modified biochar in the pre-pyrolysis and/or post-pyrolysis process. Adsorption mechanisms for As explored by Fourier-transform infrared spectroscopy (FTIR), XPS analysis mainly included electronic attraction and ligand exchange with hydroxyl groups on the FRB. It was noteworthy that more than half of the As(II) species loaded on FRB were converted into less toxic As(V) species, which could be mediated by the redox-active groups on the biochar. The preliminary application of FRB in soil indicated that it has an effective remediation potential for As-contaminated soil under flooded conditions, while promoted As release under dry conditions. Finding of this study highlighted that the loading of metal oxides onto biochar by combining pre- and post-pyrolysis modification could potentially increase As adsorption capabilities and further help in strategic water management.
Collapse
Affiliation(s)
- Yijie Xu
- School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Manjie Huang
- School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Hongyan Wang
- School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China.
| | - Guoxin Sun
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, People's Republic of China
| | - Amit Kumar
- School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Zhiguo Yu
- School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| |
Collapse
|
5
|
Aktar S, Mia S, Makino T, Rahman MM, Rajapaksha AU. Arsenic removal from aqueous solution: A comprehensive synthesis with meta-data. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160821. [PMID: 36509267 DOI: 10.1016/j.scitotenv.2022.160821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/19/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Removal of arsenic from drinking water is one of the most important global concerns. Among the various techniques, adsorptive removal of arsenic is considered as a viable most effective method. However, limited attention is given to understand the overall relative sorption capacity of different sorbents (e.g., biocomposite, biochar and nano-composite etc.) since various factors influence the sorption capacity. The aim of this study is to assess the effectiveness of various adsorbents with quantitative estimation (Langmuir adsorption maxima, Qmax) as well as to evaluate the influence of experimental conditions on the achievement of maximum adsorption. A number of analyses including meta-analysis, analysis of variance (ANOVA), scientometric and regression were performed. The results revealed that among the sorbents, nanoparticles show the greatest sorption capacity while pre-doped biochar performed the best among different biochars. Average across all sorbents, As (V) removal efficacy was higher than As (III). As expected, a high point of zero charge (PZC) and higher positive surface charge favored adsorption. The relative contribution of different mechanisms was also discussed. Our scientometric analyses revealed that, research should focus on the development of low-cost adsorbents and increase their reusability, safe disposal of adsorbed arsenic. Altogether, our findings provide a molecular understanding of arsenic sorption to different sorbents with implications for tailoring a good sorbent for arsenic removal from drinking water.
Collapse
Affiliation(s)
- Sanjida Aktar
- Department of Environmental Science, Patuakhali Science and Technology University, Patuakhali 8602, Bangladesh
| | - Shamim Mia
- Department of Agronomy, Patuakhali Science and Technology University, Patuakhali 8602, Bangladesh.
| | - Tomoyuki Makino
- Graduate School of Agricultural Science, Tohoku University, Japan
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia; Department of General Educational Development, Faculty of Science & Information Technology, Daffodil International University, Ashulia, Savar, Dhaka 1207, Bangladesh
| | - Anushka Upamali Rajapaksha
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka; Instrument Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| |
Collapse
|
6
|
Wang Q, Wen J, Yang L, Cui H, Zeng T, Huang J. Exploration on the role of different iron species in the remediation of As and Cd co-contamination by sewage sludge biochar. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:39154-39168. [PMID: 36595173 DOI: 10.1007/s11356-022-24952-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Numerous studies have explored the adsorption of cadmium (Cd) and arsenic (As) by iron (Fe)-modified biochar, but few studies have examined in-depth the similarities and differences in the adsorption behavior of different iron types on Cd and As. In this study, sewage sludge biochar (BC) was co-pyrolyzed with self-made Fe minerals (magnetite, hematite, ferrihydrite, goethite, and schwertmannite) to treat Cd and As co-contaminated water. The adsorption of Cd and As on the Fe-modified biochar was further analyzed by adsorption kinetics, adsorption isotherms, and adsorption thermodynamics combined with a series of characterization experiments. Both SEM-EDX and XRD results confirmed the successful loading of iron minerals onto BC. Both adsorption kinetics and adsorption isotherms experiments showed that the adsorption of Cd and As by BC and the other five Fe-modified biochar was mainly controlled by chemical interactions. The results also indicated that goethite biochar (GtBC) was the most effective for the adsorption of Cd among the five Fe-modified biochar. Ferrihydrite biochar (FhBC) formed more diverse complexes, coupled with the relatively stronger electrons accepting ability, thus making it more effective for As adsorption than the others. Additionally, GtBC and hematite biochar (HmBC) were found effective for the adsorption of both Cd and As, whereas MBC was not found effective for either metal. Furthermore, combined with XPS results, the adsorption of Cd by the materials was mainly governed by Cd2+-π interactions, complexation precipitation, and co-precipitation, while oxidation reactions also existed for As.
Collapse
Affiliation(s)
- Qi Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Jia Wen
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China.
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China.
| | - Lisha Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Hongsheng Cui
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Tianjing Zeng
- State Environmental Protection Key Laboratory of Monitoring for Heavy Metal Pollutants, Changsha, 410019, People's Republic of China
| | - Jin Huang
- State Environmental Protection Key Laboratory of Monitoring for Heavy Metal Pollutants, Changsha, 410019, People's Republic of China
| |
Collapse
|
7
|
Xia C, Liang Y, Li X, Garalleh HA, Garaleh M, Hill JM, Pugazhendhi A. Remediation competence of nanoparticles amalgamated biochar (nanobiochar/nanocomposite) on pollutants: A review. ENVIRONMENTAL RESEARCH 2023; 218:114947. [PMID: 36462692 DOI: 10.1016/j.envres.2022.114947] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/17/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Advanced biochar blended nanoparticles substances, such as nano biochar or nanocomposites, have provided long-term solutions to a wide range of modern-day problems. Biochar blended nano-composites can be created to create better composite materials that combine the benefits of biochar and nanoparticles. Such materials have been typically improved with active functional groups, porous structure, active surface area, catalytic deterioration ability, as well as easy recovery or separation of pollutants. Such biochar-basednanocomposites have good adsorption properties for a variety of pollutants in various form of polluted medium (soil and water contamination). Catalytic nanoparticle encapsulated biochar, can perform concurrently the adsorption (by biochar) as well as catalytic degradation (nanoparticles) functions for pollutants removal from polluted sites. In this review, the advanced and practically feasible techniques involved in the biochar blended nanoparticles-based nanocomposites have been discussed with environmental applications. Furthermore, the mechanisms involved in this composite material in remediation, as well as the advantages and disadvantages of biochar blended nanoparticles-based nanocomposites, were discussed, and future directions for study in this field were suggested.
Collapse
Affiliation(s)
- Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Yunyi Liang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Xia Li
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Hakim Al Garalleh
- Department of Mathematical Science, College of Engineering, University of Business and Technology-Dahban, Jeddah, 21361, Saudi Arabia
| | - Mazen Garaleh
- Department of Mathematical Science, College of Engineering, University of Business and Technology-Dahban, Jeddah, 21361, Saudi Arabia; Department of Applied Chemistry, Faculty of Science, Tafila Technical University, Tafila, 66141, Jordan
| | - James M Hill
- School of Information Technology and Mathematical Sciences, University of South Australia, Adelaide, SA, 5001, Australia
| | | |
Collapse
|
8
|
Kumar M, Ambika S, Hassani A, Nidheesh PV. Waste to catalyst: Role of agricultural waste in water and wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159762. [PMID: 36306836 DOI: 10.1016/j.scitotenv.2022.159762] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/14/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Presently, owing to the rapid development of industrialization and urbanization activities, a huge quantity of wastewater is generated that contain toxic chemical and heavy metals, imposing higher environmental jeopardies and affecting the life of living well-being and the economy of the counties, if not treated appropriately. Subsequently, the advancement in sustainable cost-effective wastewater treatment technology has attracted more attention from policymakers, legislators, and scientific communities. Therefore, the current review intends to highlight the recent development and applications of biochars and/or green nanoparticles (NPs) produced from agricultural waste via green routes in removing the refractory pollutants from water and wastewater. This review also highlights the contemporary application and mechanism of biochar-supported advanced oxidation processes (AOPs) for the removal of organic pollutants in water and wastewater. Although, the fabrication and application of agriculture waste-derived biochar and NPs are considered a greener approach, nevertheless, before scaling up production and application, its toxicological and life-cycle challenges must be taken into account. Furthermore, future efforts should be carried out towards process engineering to enhance the performance of green catalysts to improve the economy of the process.
Collapse
Affiliation(s)
- Manish Kumar
- CSIR National Environmental Engineering Research Institute, Nagpur, Maharashtra, India
| | - Selvaraj Ambika
- Faculty, Department of Civil Engineering, Indian Institute of Technology Hyderabad, Telangana, India; Adjunct Faculty, Department of Climate Change, Indian Institute of Technology Hyderabad, Telangana, India; Faculty and Program Coordinator, E-Waste Resources Engineering and Management, Indian Institute of Technology Hyderabad, Telangana, India
| | - Aydin Hassani
- Department of Materials Science and Nanotechnology Engineering, Faculty of Engineering, Near East University, 99138 Nicosia, TRNC, Mersin 10, Turkey
| | - P V Nidheesh
- CSIR National Environmental Engineering Research Institute, Nagpur, Maharashtra, India.
| |
Collapse
|
9
|
Kumar R, Sharma P, Yang W, Sillanpää M, Shang J, Bhattacharya P, Vithanage M, Maity JP. State-of-the-art of research progress on adsorptive removal of fluoride-contaminated water using biochar-based materials: Practical feasibility through reusability and column transport studies. ENVIRONMENTAL RESEARCH 2022; 214:114043. [PMID: 36029838 DOI: 10.1016/j.envres.2022.114043] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 07/15/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Fluoride (F-) is one of the essential elements found in soil and water released from geogenic sources and several anthropogenic activities. Fluoride causes fluorosis, dental and skeletal growth problems, teeth mottling, and neurological damage due to prolonged consumption, affecting millions worldwide. Adsorption is an extensively implemented technique in water and wastewater treatment for fluoride, with significant potential due to efficiency, cost-effectiveness, ease of operation, and reusability. This review highlights the current state of knowledge for fluoride adsorption using biochar-based materials and the limitations of biochar for fluoride-contaminated groundwater and industrial wastewater treatment. Biochar materials have shown significant adsorption capacities for fluoride under the influence of low pH, biochar dose, initial concentration, temperature, and co-existing ions. Modified biochar possesses various functional groups (-OH, -CC, -C-O, -CONH, -C-OH, X-OH), in which enhanced hydroxyl (-OH) groups onto the surface plays a significant role in fluoride adsorption via electrostatic attraction and ion exchange. Regeneration and reusability of biochar sorbents need to be performed to a greater extent to improve removal efficiency and reusability in field conditions. Furthermore, the present investigation identifies the limitations of biochar materials in treating fluoride-contaminated drinking groundwater and industrial effluents. The fluoride removal using biochar-based materials at an industrial scale for understanding the practical feasibility is yet to be documented. This review work recommend the feasibility of biochar-based materials in column studies for fluoride remediation in the future.
Collapse
Affiliation(s)
- Rakesh Kumar
- School of Ecology and Environment Studies, Nalanda University, Rajgir, Bihar, 803116, India
| | - Prabhakar Sharma
- School of Ecology and Environment Studies, Nalanda University, Rajgir, Bihar, 803116, India.
| | - Wen Yang
- Agronomy College, Shenyang Agricultural University, Shenyang, China
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa; Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia; Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173212, Himachal Pradesh, India
| | - Jianying Shang
- Department of Soil and Water Science, China Agricultural University, Beijing, 100083, China
| | - Prosun Bhattacharya
- Department of Sustainable Development, Environmental Sciences and Engineering, KTH Royal Institute of Technology, Teknikringen, 10B SE-100 44, Stockholm, Sweden
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, 248007, India
| | - Jyoti Prakash Maity
- Department of Chemistry, School of Applied Sciences, KIIT Deemed to Be University, Bhubaneswar, Odisha, 751024, India
| |
Collapse
|
10
|
Hamid Y, Liu L, Usman M, Naidu R, Haris M, Lin Q, Ulhassan Z, Hussain MI, Yang X. Functionalized biochars: Synthesis, characterization, and applications for removing trace elements from water. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129337. [PMID: 35714538 DOI: 10.1016/j.jhazmat.2022.129337] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Biochar (BC) has been recognized as an effective adsorbent to remove trace elements (TEs) from water. However, low surface functionality and small pore size can limit the adsorption ability of pristine biochar. These limitations can be addressed by using functionalized biochars which are developed by physical, chemical, or biological activation of biochar to improve their physico-chemical properties and adsorption efficiency. Despite the large amount of research concerning functionalized biochars in recent decades, to our knowledge, no comprehensive review of this topic has been published. This review focuses solely on the synthesis, characterization, and applications of functionalized/engineered biochars for removing TEs from water. Firstly, we evaluate the synthesis of functionalized biochars by physical, chemical, and biological strategies that yield the desired properties in the final product. The following section describes the characterization of functionalized biochars using various techniques (SEM, TEM, EDS, XRD, XANES/NEXAFS, XPS, FTIR, and Raman spectroscopy). Afterward, the role of functionalized biochars in the adsorption of different TEs from water/wastewater is critically evaluated with an emphasis on the factors affecting sorption efficiency, sorption mechanisms, fate of sorbed TEs from contaminated environments and associated challenges. Finally, we specifically scrutinized the future recommendations and research directions for the application of functionalized biochar. This review serves as a comprehensive resource for the use of functionalized biochar as an emerging environmental material capable of removing TEs from contaminated water/wastewater.
Collapse
Affiliation(s)
- Yasir Hamid
- Ministry of Education (MOE) Key Lab of Environ. Remediation and Ecol. Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310058, China.
| | - Lei Liu
- Ministry of Education (MOE) Key Lab of Environ. Remediation and Ecol. Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310058, China
| | - Muhammad Usman
- PEIE Research Chair for the Development of Industrial Estates and Free Zones, Center for Environmental Studies and Research, Sultan Qaboos University, Al-Khoud 123, Muscat, Oman.
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Muhammad Haris
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Qiang Lin
- Ministry of Education (MOE) Key Lab of Environ. Remediation and Ecol. Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310058, China
| | - Zaid Ulhassan
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China
| | - M Iftikhar Hussain
- Department of Plant Biology & Soil Science, Universidade de Vigo, Campus Lagoas Marcosende, Vigo 36310, Spain
| | - Xiaoe Yang
- Ministry of Education (MOE) Key Lab of Environ. Remediation and Ecol. Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
11
|
Liu J, Zhang W, Mei M, Wang T, Chen S, Li J. A Ca-rich biochar derived from food waste digestate with exceptional adsorption capacity for arsenic (III) removal via a cooperative mechanism. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Nguyen TH, Loganathan P, Nguyen TV, Vigneswaran S, Ha Nguyen TH, Tran HN, Nguyen QB. Arsenic removal by a pomelo peel biochar coated with iron. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Effects of Pyrolysis Temperature and Chemical Modification on the Adsorption of Cd and As(V) by Biochar Derived from Pteris vittata. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095226. [PMID: 35564620 PMCID: PMC9104657 DOI: 10.3390/ijerph19095226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 11/16/2022]
Abstract
Phytoremediation can be applied successfully to solve the serious worldwide issue of arsenic (As) and cadmium (Cd) pollution. However, the treatment of biomass containing toxic elements after remediation is a challenge. In this study, we investigated the effective use of biomass resources by converting the As hyperaccumulator P. vittata into biochar to adsorb toxic elements. Plant biomass containing As was calcined at 600, 800, and 1200 °C, and its surface structure and adsorption performances for As(V) and Cd were evaluated. Pyrolysis at 1200 °C increased the specific surface area of the biochar, but it did not significantly affect its adsorption capacity for toxic elements. The calcined biochar had very high adsorption capacities of 90% and 95% for As(V) and Cd, respectively, adsorbing 6000 mmol/g-biochar for As(V) and 4000 mmol/g-biochar for Cd. The As(V) adsorption rate was improved by FeCl3 treatment. However, the adsorption capacity for Cd was not significantly affected by the NaOH treatment. In conclusion, it was found that after phytoremediation using P. vittata biomass, it can be effectively used as an environmental purification material by conversion to biochar. Furthermore, chemical modification with FeCl3 improves the biochar’s adsorption performance.
Collapse
|
14
|
Srivastav AL, Pham TD, Izah SC, Singh N, Singh PK. Biochar Adsorbents for Arsenic Removal from Water Environment: A Review. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 108:616-628. [PMID: 34536097 DOI: 10.1007/s00128-021-03374-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Arsenic intake can cause human health disorders to the lungs, urinary tract, kidney, liver, hyper-pigmentation, muscles, neurological and even cancer. Biochar is potent, economical and ecologically sound adsorbents for water purification. After surface modifications, adsorption capacity of biochar significantly increased due to high porosity and reactivity. Adsorption capacities of the biochar derived from the municipal solid waste and KOH mixed municipal solid waste were increased from 24.49 and 30.98 mg/g for arsenic adsorption. Complex formation, electrostatic behavior and ion exchange are important mechanisms for arsenic adsorption. Organic arsenic removal using biochar is a major challenge. Hence, more innovative research should be conducted to achieve one of the 17 sustainable development goals of the United Nations i.e. "providing safe drinking water for all". This review is focused on the arsenic removal from water using pristine and modified biochar adsorbents. Recent advances in production methods of biochar adsorbents and mechanisms of arsenic removal from water are also illustrated.
Collapse
Affiliation(s)
- Arun Lal Srivastav
- Chitkara University School of Engineering and Technology, Chitkara University, Himachal Pradesh, 174103, India.
| | - Tien Duc Pham
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi - 19 Le Thanh Tong, Hoan Kiem, Hanoi, 100000, Vietnam.
| | - Sylvester Chibueze Izah
- Department of Microbiology, Faculty of Science, Bayelsa Medical University, Yenagoa, Bayelsa State, Nigeria
| | - Nirankar Singh
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, 133207, Haryana, India
| | - Prabhat Kumar Singh
- Department of Civil Engineering, Indian Institute of Technology (BHU), Varanasi, India
| |
Collapse
|
15
|
Thomas B, Vinka C, Pawan L, David S. Sustainable groundwater treatment technologies for underserved rural communities in emerging economies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152633. [PMID: 34963585 DOI: 10.1016/j.scitotenv.2021.152633] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/14/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
Worldwide, about one out of two people depend on groundwater resources to satisfy their drinking water needs. While groundwater typically is of higher quality than surface water, pollution and geologic conditions may require treating groundwater to meet safe water quality criteria. Herein, a critical overview is presented of water treatment technologies for rural and underserved communities in emerging economies that depend on groundwater. Given that small to medium sized rural communities in emerging economies often lack the financial resources to support technologically complex and expensive centralized public water treatment systems, the focus is on proven technologies that are sustainable and acceptable by the rural population. After an overview of the underlying treatment mechanisms and the principal groundwater contaminants targeted by the traditional, advanced, and experimental water treatment technologies, we identify the groundwater quality parameters that may impact or interfere with the technology performance. We also introduce enabling environmental factors that might govern the implementation of water treatment technologies in the target communities and a brief discussion of safe storage of water after treatment to underline the importance of protecting the water from re-contamination. Our overview is further supported by tabulated summaries of the principal (dis)advantages of each technology covered herein, including cost considerations and social acceptance. Overall, our review suggests that underserved rural communities have sustainable and affordable options for cases where the quality of local groundwater resources requires treatment.
Collapse
Affiliation(s)
- Boving Thomas
- Department of Geosciences, University of Rhode Island, Kingston, RI 02881, USA; Department of Civil and Environmental Engineering, University of Rhode Island, Kingston, RI 02881, USA.
| | - Craver Vinka
- Department of Civil and Environmental Engineering, University of Rhode Island, Kingston, RI 02881, USA
| | - Labhasetwar Pawan
- Water Technology and Management Division, CSIR-NEERI, Nehru Marg, Nagpur 440020, India
| | - Sabatini David
- School of Civil Engineering and Environmental Science and WaTER Center, University of Oklahoma, Norman, OK 73019, USA
| |
Collapse
|
16
|
Yang F, Jiang Y, Dai M, Hou X, Peng C. Active biochar-supported iron oxides for Cr(VI) removal from groundwater: Kinetics, stability and the key role of FeO in electron-transfer mechanism. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127542. [PMID: 34740162 DOI: 10.1016/j.jhazmat.2021.127542] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 10/02/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Chromium (Cr), especially in forms of hexavalent chromium (Cr(VI)) remains a serious threat to public health and environmental safety for its high toxicity. Herein, two types of iron-modification methods adopting co-pyrolysis and surface-deposition respectively were carried out to prepare active Fe-biochar composites (FeBC) for Cr(VI) removal in the simulated groundwater environment. The systematic characterization demonstrated that larger BET surface area and diversified iron oxides of FeBC-1 obtained from the co-pyrolysis method contributed to higher adsorption and reduction activity towards Cr(VI) degradation in comparison with FeBC-2 produced from surface-deposition method. Further, FeO was evidenced to be a main active component for transforming Cr(VI) to lower-toxicity Cr(III) uniting XRD and XPS analysis. Also, the designed batch experiments aiming at deeper clarifying FeBC-1 revealed that the pseudo-second-order kinetic and intra-particle diffusion model could well describe the Cr(VI) sorption behaviors, suggesting that a single-layer, chemical adsorption process as well as internal particle diffusion both controlled the removal process of Cr(VI) using FeBC-1. Finally, the stability experiments stated that FeBC-1 was basically stable at acidic and neutral conditions. Thus, it was found that co-pyrolysis of FeBC-1 is a potential technology for Cr(VI) remediation.
Collapse
Affiliation(s)
- Fei Yang
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Yating Jiang
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Min Dai
- School of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing 526061, China
| | - Xiaoting Hou
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Changsheng Peng
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; School of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing 526061, China.
| |
Collapse
|
17
|
Liang L, Xi F, Tan W, Meng X, Hu B, Wang X. Review of organic and inorganic pollutants removal by biochar and biochar-based composites. BIOCHAR 2021; 3:255-281. [DOI: doi.org/10.1007/s42773-021-00101-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/11/2021] [Indexed: 06/25/2023]
Abstract
AbstractBiochar (BC) has exhibited a great potential to remove water contaminants due to its wide availability of raw materials, high surface area, developed pore structure, and low cost. However, the application of BC for water remediation has many limitations. Driven by the intense desire of overcoming unfavorable factors, a growing number of researchers have carried out to produce BC-based composite materials, which not only improved the physicochemical properties of BC, but also obtained a new composite material which combined the advantages of BC and other materials. This article reviewed previous researches on BC and BC-based composite materials, and discussed in terms of the preparation methods, the physicochemical properties, the performance of contaminant removal, and underlying adsorption mechanisms. Then the recent research progress in the removal of inorganic and organic contaminants by BC and BC-based materials was also systematically reviewed. Although BC-based composite materials have shown high performance in inorganic or organic pollutants removal, the potential risks (such as stability and biological toxicity) still need to be noticed and further study. At the end of this review, future prospects for the synthesis and application of BC and BC-based materials were proposed. This review will help the new researchers systematically understand the research progress of BC and BC-based composite materials in environmental remediation.
Collapse
|
18
|
Cuong DV, Wu PC, Chen LI, Hou CH. Active MnO 2/biochar composite for efficient As(III) removal: Insight into the mechanisms of redox transformation and adsorption. WATER RESEARCH 2021; 188:116495. [PMID: 33065416 DOI: 10.1016/j.watres.2020.116495] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/15/2020] [Accepted: 10/03/2020] [Indexed: 06/11/2023]
Abstract
In the present work, an active MnO2/rice husk biochar (BC) composite (MBC) was prepared to enhance As(III) removal for groundwater remediation. The MBC material obtained an improved porous structure (i.e., specific surface area, pore volume and mesoporosity) with MnO2, providing abundant reaction or interaction sites for surface or interface-related processes such as redox transformation and adsorption of arsenic. As a result, a significant enhancement in arsenic removal can be achieved by using MBC. More specifically, MBC showed a high removal capacity for As(III), which was tenfold higher than that of BC. This improvement can be ascribed to the redox transformation of As(III) via MnO2, resulting in the more effective removal of As(V) species. In addition, pH was an important factor that could influence the As(III) removal capacity. Under alkaline conditions, the As(III, V) removal capacity of MBC was clearly lower than those under acidic and neutral conditions due to the negative effects of electrostatic repulsion. Importantly, a powerful transformation capability of As(III) via MBC was presented; namely, only 5.9% As(III) remained in solution under neutral conditions. Both MnO2 and the BC substrate contributed to the removal of arsenic by MBC. MnO2 delivered Mn-OH functional groups to generate surface complexes with As(V) produced by As(III) oxidation, while the reduced Mn(II) and As(V) could precipitate on the MBC surface. The BC substrate also provided COOH and OH functional groups for As(III, V) removal by a surface complexation mechanism. Note that the application of MBC in the treatment of simulated groundwater demonstrated an efficient arsenic removal of 94.6% and a concentration of arsenic as low as the 10 µg L-1 WHO guideline.
Collapse
Affiliation(s)
- Dinh Viet Cuong
- Graduate Institute of Environmental Engineering, National Taiwan University, No. 1, Sec. 4. Roosevelt Rd., Taipei, 10617, Taiwan; Faculty of Environmental Engineering, National University of Civil Engineering, 55 Giai Phong, Hai Ba Trung, Hanoi 100000, Vietnam
| | - Po-Chang Wu
- Graduate Institute of Environmental Engineering, National Taiwan University, No. 1, Sec. 4. Roosevelt Rd., Taipei, 10617, Taiwan
| | - Lo-I Chen
- Graduate Institute of Environmental Engineering, National Taiwan University, No. 1, Sec. 4. Roosevelt Rd., Taipei, 10617, Taiwan
| | - Chia-Hung Hou
- Graduate Institute of Environmental Engineering, National Taiwan University, No. 1, Sec. 4. Roosevelt Rd., Taipei, 10617, Taiwan; Research Center for Future Earth, National Taiwan University, No. 1, Sec. 4. Roosevelt Rd., Taipei, 10617, Taiwan.
| |
Collapse
|
19
|
Kwon G, Bhatnagar A, Wang H, Kwon EE, Song H. A review of recent advancements in utilization of biomass and industrial wastes into engineered biochar. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123242. [PMID: 32585525 DOI: 10.1016/j.jhazmat.2020.123242] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 05/12/2023]
Abstract
For past few years, biochar has gained a great deal of attention for its versatile utility in agricultural and environmental applications. The diverse functionality and environmental-friendly nature of biochar have motivated many researchers to delve into biochar researches and spurred rapid expansion of literature in recent years. Biochar can be produced from virtually all the biomass, but the properties of biochar are highly dependent upon the types of feedstock biomass and preparation methods. The overall performances of as-prepared biochar in treating soil and water contaminants is generally inferior to activated carbon due to its lower surface area and limited functionalities. This limitation has led to many follow-up studies that focused on improving material characteristics by imparting desired functionality. Such efforts have greatly advanced knowledge to produce better-performing engineered biochar with enhanced capability and versatility. To this end, this review was prepared to compile recent advancements in fabrication and application of engineered biochar, especially with respect to the influences of biomass feedstock on the properties of biochar and the utilization of industrial wastes in fabrication of engineered biochar.
Collapse
Affiliation(s)
- Gihoon Kwon
- Department of Environment and Energy, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul05006, Republic of Korea
| | - Amit Bhatnagar
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, Fl-70211, Kuopio, Finland
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Eilhann E Kwon
- Department of Environment and Energy, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul05006, Republic of Korea
| | - Hocheol Song
- Department of Environment and Energy, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul05006, Republic of Korea.
| |
Collapse
|
20
|
Wei X, Wang X, Gao B, Zou W, Dong L. Facile Ball-Milling Synthesis of CuO/Biochar Nanocomposites for Efficient Removal of Reactive Red 120. ACS OMEGA 2020; 5:5748-5755. [PMID: 32226853 PMCID: PMC7097928 DOI: 10.1021/acsomega.9b03787] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/27/2020] [Indexed: 05/03/2023]
Abstract
With the goal of improving the removal of anionic contaminants, copper oxide (CuO)-modified biochar (BC) nanocomposites were successfully prepared through simply ball milling CuO particles with BC. The physicochemical properties of the fabricated CuO/BC nanocomposites were systematically characterized by a series of techniques; their adsorption performances were assessed, and the main adsorption mechanism was revealed. X-ray powder diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy analyses of the nanocomposites showed the strong interaction between CuO and BC and confirmed the success of the ball-milling syntheses. Because of strong electrostatic attraction between the embedded CuO nanoparticles and reactive red (RR120), the composited adsorbents exhibited excellent RR120 removal. The 10%-CuO/BC nanocomposite achieved the best RR120 removal efficiency (46%), which is much higher than that of pristine BC (20%). In addition, the adsorption was insensitive to the change of solution initial pH (4-10). The 10%-CuO/BC also showed fast adsorption kinetics (equilibrium time < 3 h) and extremely high adsorption capacity (Langmuir maximum capacity of 1399 mg g-1) to RR120 in aqueous solutions. Findings from this study demonstrate not only the strong feasibility of ball-milling synthesis of BC-based nanocomposites but also the promising potential of the CuO/BC nanocomposites to remove aqueous anionic contaminants.
Collapse
Affiliation(s)
- Xiaoqian Wei
- Key
Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and
Chemical Engineering, Nanjing University, Nanjing 210093, PR China
- Jiangsu
Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Nanjing University, Nanjing 210093, PR China
- Department
of Agricultural and Biological Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Xin Wang
- Key
Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and
Chemical Engineering, Nanjing University, Nanjing 210093, PR China
- Jiangsu
Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Nanjing University, Nanjing 210093, PR China
| | - Bin Gao
- Department
of Agricultural and Biological Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Weixin Zou
- Key
Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and
Chemical Engineering, Nanjing University, Nanjing 210093, PR China
- Jiangsu
Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Nanjing University, Nanjing 210093, PR China
- E-mail: (W.Z.)
| | - Lin Dong
- Key
Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and
Chemical Engineering, Nanjing University, Nanjing 210093, PR China
- Jiangsu
Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Nanjing University, Nanjing 210093, PR China
- School
of the Environmental, Nanjing University, Nanjing 210093, PR China
- E-mail: (L.D.)
| |
Collapse
|
21
|
Liu J, Cheng W, Yang X, Bao Y. Modification of biochar with silicon by one-step sintering and understanding of adsorption mechanism on copper ions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135252. [PMID: 31831228 DOI: 10.1016/j.scitotenv.2019.135252] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/09/2019] [Accepted: 10/27/2019] [Indexed: 06/10/2023]
Abstract
Novel salt-based biochar was prepared by loading silicon (Si) on cornstalk biomass with "one-step sintering" technique. Manganese (Mn) was also used to modify biochar with the same method as a control. Surface morphology, elemental composition, crystal structure and surface area of "salt-based biochars" were analyzed by SEM + EDS, XRD, FTIR and BET, and the effects of the dosage of absorbent and pH of solution on the adsorption process were explored. Si and Mn could be successfully attached on the biochar surface as oxide forms. SiBC exhibited a dense and agglomerated surface, while MnBC was a kind of porous and rough materials. The optimal adsorption capability would realize when putting 2 g/L of biochar composites at pH = 5-6. Adsorption isotherms, adsorption kinetics, combine with FTIR and XPS were carried out to help to elaborate the adsorption mechanisms. The maximum adsorption capacity of Cu (II) was 152.61 mg/g on SiBC and it could reach at 97% of removal rate within 10 min when the concentration was 100 mg/L, while MnBC had to take 500 min to achieve the same adsorption effect, and reached 187.76 mg/g of maximum adsorption capacity. Langmuir model and pseudo-second-order model were more suitable for both SiBC and MnBC, which meant the monolayer and chemical adsorption were dominated. Surface complexation and precipitation was attributed to SiBC. Specialistic adsorption, ion exchange and intra-particle diffusion was put it down to MnBC.
Collapse
Affiliation(s)
- Juan Liu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Wanyi Cheng
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Xiaoyu Yang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yongchao Bao
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|
22
|
Hassan M, Naidu R, Du J, Liu Y, Qi F. Critical review of magnetic biosorbents: Their preparation, application, and regeneration for wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 702:134893. [PMID: 31733558 DOI: 10.1016/j.scitotenv.2019.134893] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/03/2019] [Accepted: 10/07/2019] [Indexed: 05/12/2023]
Abstract
The utilisation of magnetic biosorbents (metal or metal nanoparticles impregnated onto biosorbents) has attracted increasing research attention due to their manipulable active sites, specific surface area, pore volume, pore size distribution, easy separation, and reusability that are suitable for remediation of heavy metal(loid)s and organic contaminants. The properties of magnetic biosorbents (MB) depend on the raw biomass, properties of metal nanoparticles, modification/synthesis methods, and process parameters which influence the performance of removal efficiency of organic and inorganic contaminants. There is a lack of information regarding the development of tailored materials for particular contaminants and the influence of specific characteristics. This review focuses on the synthesis/modification methods, application, and recycling of magnetic biosorbents. In particular, the mechanisms and the effect of sorbents properties on the adsorption capacity. Ion exchanges, electrostatic interaction, precipitation, and complexation are the dominant sorption mechanisms for ionic contaminants whereas hydrophobic interaction, interparticle diffusion, partition, and hydrogen bonding are the dominant adsorption mechanisms for removal of organic contaminants by magnetic biosorbents. In generally, low pyrolysis temperatures are suitable for ionic contaminants separation, whereas high pyrolysis temperatures are suitable for organic contaminants removal. Additionally, magnetic properties of the biosorbents are positively correlated with the pyrolysis temperatures. Metal-based functional groups of MB can contribute to an ion exchange reaction which influences the adsorption capacity of ionic contaminants and catalytic degradation of non-persistent organic contaminants. Metal modified biosorbents can enhance adsorption capacity of anionic contaminants significantly as metal nanoparticles are not occupying positively charged active sites of the biosorbents. Magnetic biosorbents are promising adsorbents in comparison with other adsorbents including commercially available activated carbon, and thermally and chemically modified biochar in terms of their removal capacity, rapid and easy magnetic separation which allow multiple reuse to minimize remediation cost of organic and inorganic contaminants from wastewater.
Collapse
Affiliation(s)
- Masud Hassan
- Global Centre for Environmental Remediation, Faculty of Science and Information Technology, University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Callaghan, NSW 2308, Australia.
| | - Ravi Naidu
- Global Centre for Environmental Remediation, Faculty of Science and Information Technology, University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Callaghan, NSW 2308, Australia.
| | - Jianhua Du
- Global Centre for Environmental Remediation, Faculty of Science and Information Technology, University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Callaghan, NSW 2308, Australia.
| | - Yanju Liu
- Global Centre for Environmental Remediation, Faculty of Science and Information Technology, University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Callaghan, NSW 2308, Australia.
| | - Fangjie Qi
- Global Centre for Environmental Remediation, Faculty of Science and Information Technology, University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Callaghan, NSW 2308, Australia.
| |
Collapse
|
23
|
Ramadan MM, Asran-Amal, Abd-Elsalam KA. Micro/nano biochar for sustainable plant health: Present status and future prospects. CARBON NANOMATERIALS FOR AGRI-FOOD AND ENVIRONMENTAL APPLICATIONS 2020:323-357. [DOI: 10.1016/b978-0-12-819786-8.00016-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
24
|
Wei Y, Wei S, Liu C, Chen T, Tang Y, Ma J, Yin K, Luo S. Efficient removal of arsenic from groundwater using iron oxide nanoneedle array-decorated biochar fibers with high Fe utilization and fast adsorption kinetics. WATER RESEARCH 2019; 167:115107. [PMID: 31563708 DOI: 10.1016/j.watres.2019.115107] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 09/19/2019] [Accepted: 09/21/2019] [Indexed: 05/21/2023]
Abstract
Although Fe-based biochar adsorbents are attractive for removing arsenic from water due to their advantages of costing little and being producible at a large scale, the practical applications of these granular adsorbents are mainly limited by low Fe utilization and slow adsorption kinetics. In this study, iron oxide nanoneedle array-decorated biochar fibers (Fe-NN/BFs) adsorbents have been prepared through a simple hydrothermal reaction. The vertical growth of iron oxide nanoneedle arrays on the surface of biochar fibers maximizes Fe utilization and shortens As diffusion distance, thereby increasing As removal kinetics and capacity. Batch experiments show that the adsorption capacities of Fe-NN/BFs for As(V) and As(III) reach to 93.94 and 70.22 mg/g-Fe at pH 7.0, respectively. As(V) levels (275 μg/L) in groundwater are rapidly reduced (less than 5 min) to below 10 μg/L using Fe-NN/BFs (1 g/L) at pH 6.7. Similar As(III) levels can be reduced to below 10 μg/L within 30 min by Fe-NN/BFs (1.5 g/L). In fixed-bed experiments, the treatment volumes of As(V) and As(III) spiked groundwater reach to 2900 BV (26.2 L) and 2500 BV (22.6 L), respectively, using two columns packed with Fe-NN/BFs in tandem (C0 = 275 μg/L, 2 g of adsorbents in each column). When the As concentration in the influent is reduced to 50 μg/L (As(V): 25 μg/L + As(III): 25 μg/L), the treatment volume using one column reaches up to 11000 BV. The Fe-NN/BFs packed column can be easily regenerated and reused many times. After four regenerations, the treatment volume of As(V) and As(III) were reduced by 10.4% and 22.8%, respectively.
Collapse
Affiliation(s)
- Yuanfeng Wei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, PR China
| | - Shudan Wei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, PR China
| | - Chengbin Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, PR China.
| | - Tao Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, PR China
| | - Yanhong Tang
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, PR China.
| | - Jianhong Ma
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China
| | - Kai Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, PR China
| | - Shenglian Luo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, PR China
| |
Collapse
|
25
|
|
26
|
Yaashikaa PR, Senthil Kumar P, Varjani SJ, Saravanan A. Advances in production and application of biochar from lignocellulosic feedstocks for remediation of environmental pollutants. BIORESOURCE TECHNOLOGY 2019; 292:122030. [PMID: 31455552 DOI: 10.1016/j.biortech.2019.122030] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 08/13/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
Thermochemical processing of biomass results in a producing char, a typical by-product. The char can be termed as biochar when specifically applied as a soil fertility enhancement. Biochar, when utilized efficiently, is basic for enhancing financial viability and also to maintain ecosystem. The properties of carbonized biomass rely upon raw materials (feedstock) and procedure conditions. Biochar shows an incredible potential to effectively handle water contaminants taking into consideration the wide accessibility of feedstock, suitable physical/chemical surface properties and low-cost. Pyrolysis technology for converting lignocellulosic biomass into biochar has emerged as a frontier research domain for the removal of pollutants. This review focused on production of biochar from various sources of lignocellulosic biomass (cellulose, hemicellulose and lignin) and its application in various fields such as agriculture, wastewater treatment process. Biochar is a significant resource however, its application require further examination of its properties and structure and techniques to alter those factors.
Collapse
Affiliation(s)
- P R Yaashikaa
- Department of Chemical Engineering, SSN College of Engineering, Kalavakkam, Chennai 603110, India
| | - P Senthil Kumar
- Department of Chemical Engineering, SSN College of Engineering, Kalavakkam, Chennai 603110, India; SSN-Centre for Radiation, Environmental Science and Technology (SSN-CREST), SSN College of Engineering, Chennai 603110, India
| | - Sunita J Varjani
- Gujarat Pollution Control Board, Gandhinagar 382010, Gujarat, India.
| | - A Saravanan
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai 602105, India
| |
Collapse
|
27
|
Lata S, Prabhakar R, Adak A, Samadder SR. As(V) removal using biochar produced from an agricultural waste and prediction of removal efficiency using multiple regression analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:32175-32188. [PMID: 31494845 DOI: 10.1007/s11356-019-06300-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/26/2019] [Indexed: 05/23/2023]
Abstract
Arsenic contamination in drinking water is a matter of concern for many countries. An efficient and low-cost solution for this hazard is essentially needed on urgent basis. Therefore, in this study, banana pith (an agricultural waste) was used for biochar production and later it was modified with iron and applied for arsenic adsorption from aqueous solution. Produced biochar was characterized for proximate, ultimate, and surface analyses. Interestingly, after iron impregnation, the surface area of biochar increased (31.59 m2/g) by nearly 8 times. Morphological analysis showed that iron particles firmly held within the pores after impregnation. Arsenate (As(V)) adsorption behavior of iron-impregnated banana pith biochar was evaluated through a batch study by considering various parameters like dose, concentration, pH, temperature, and competing anions. Compared to impregnated biochar, raw biomass and its biochar showed a lesser affinity for arsenate in aqueous solution. The adsorption isotherm of As(V) on banana pith biochar was covered in the temperature range of 298 to 318 K, and kinetic data of adsorption was experimentally generated at 298 K. Langmuir model for the sorption isotherms and pseudo-second-order kinetic model for the sorption kinetics represented the experimental data. The thermodynamic study showed negative Gibb's free energy (- 46.88 kJ/mol at 298 K, - 48.58 kJ/mol at 308 K, - 50.73 kJ/mol at 318 K) that suggested spontaneity of the adsorption process. Negative enthalpy (ΔH° = - 10.55 kJ/mol) showed exothermic nature of adsorption of arsenic, while negative entropy (ΔS° = 0.123 kJ/mol.K) suggested enthalpy-driven adsorption process. Mechanism of arsenic adsorption onto iron-impregnated banana pith biochar has also been discussed in detail. Based on the experimental observation, a predictive model for arsenate removal has been developed in this study. The findings of the present study elucidated that iron-impregnated banana pith biochar can be used as a low-cost adsorbing material for As(V) from aqueous solutions.
Collapse
Affiliation(s)
- Sneh Lata
- Department of Environmental Science & Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, India
| | - Roshan Prabhakar
- Department of Environmental Science & Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, India
| | - Asok Adak
- Department of Civil Engineering, Indian Institute of Engineering Science and Technology, Howrah, Shibpur, India
| | - Sukha Ranjan Samadder
- Department of Environmental Science & Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, India.
| |
Collapse
|
28
|
Rodriguez-Narvaez OM, Peralta-Hernandez JM, Goonetilleke A, Bandala ER. Biochar-supported nanomaterials for environmental applications. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.06.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
29
|
Nath BK, Chaliha C, Kalita E. Iron oxide Permeated Mesoporous rice-husk nanobiochar (IPMN) mediated removal of dissolved arsenic (As): Chemometric modelling and adsorption dynamics. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 246:397-409. [PMID: 31200174 DOI: 10.1016/j.jenvman.2019.06.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 05/11/2019] [Accepted: 06/02/2019] [Indexed: 06/09/2023]
Abstract
Adsorption based technologies are most widely used to mitigate the global predominance of heavy-metal groundwater contaminants like Arsenic (As), owing to their high efficiency and economic operation. The current study involves the optimization of Iron oxide Permeated Mesoporous rice-husk nanobiochars (IPMN) for As removal, which were synthesized through a chemically amended pyrolytic approach. The IPMN variants were screened based on preliminary OVAT (one-variable-at-a-time) studies for As removal. Chemometric investigations employing a central composite design matrix of Response surface methodology was further used to understand the influence of the process parameters on the adsorption of As on the most efficient IPMN variant. A Multi-Layered-Perceptron based artificial neural network was further used to confirm the veracity of the experimental and predictive conditions, to derive the optimal condition for the best adsorption efficiency. In addition, the dynamics of As adsorption by the optimal IPMN variant was modelled using pseudo-first-order (Lagergren) and pseudo-second-order (Ho) rate kinetic equations followed by isotherm studies using non-linear regression of Langmuir, Freundlich and Sips adsorption isotherms. The IPMNs have an appreciably higher uptake capacity (>90%) for dissolved As, as compared to the native milled rice husk (∼20%), alongside a substantial recyclability, thereby establishing their potential as a highly efficient, economical and sustainable nanobiochar for As removal.
Collapse
Affiliation(s)
- B K Nath
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, 784028, India
| | - C Chaliha
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, 784028, India
| | - E Kalita
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, 784028, India.
| |
Collapse
|
30
|
Zhang Y, Fan J, Fu M, Ok YS, Hou Y, Cai C. Adsorption antagonism and synergy of arsenate(V) and cadmium(II) onto Fe-modified rice straw biochars. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2019; 41:1755-1766. [PMID: 28550600 DOI: 10.1007/s10653-017-9984-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/15/2017] [Indexed: 06/07/2023]
Abstract
Arsenic-containing water poses a serious threat to human health. In this study, two types of Fe-modified rice straw biochars [(Fe-impregnated biochar (FeIm char) and pre-modified rice straw biochar (PMRS char)] were prepared, in which three ratios [1, 5, and 10% (w/w)] of Fe modification were evaluated, resulting in six different Fe-modified biochars. Then, a series of adsorption experiments, using single- and binary-metal solutions of As(V) and Cd(II), were conducted to investigate the performances of modified biochars on metal adsorption compared to pristine rice straw biochar (RS char). Results indicated Fe modification improved the As(V) adsorption capacity of biochar. PMRS char showed higher adsorption of As(V) than FeIm char. At the 5% Fe modification ratio (FMR), the As(V) removal by PMRS char (at 10 g/L dosage) from 100 mg/L As(V) solution was approximately 69.6%, which was higher than 46.1% of FeIm char or 22.6% of RS char. In contrast, the adsorption of Cd(II) was decreased after modified at 5 or 10% FMR. Interestingly, for treating solution containing As(V) and Cd(II) together, the adsorption of As(V) onto FeIm char or PMRS char prepared at 5 or 10% FMR remained higher than that onto RS char, while the simultaneous removal of Cd(II) ion by either modified biochar was kept over 50%. Thus, the finding of this study suggested Fe-modified biochars, especially prepared via the pyrolysis of FeCl3 pre-soaking rice straw, could be a promising adsorbent for the remediation of complex As(V)-containing wastewater.
Collapse
Affiliation(s)
- Youchi Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Jimei District, Xiamen, Fujian, 361021, China
| | - Jiajun Fan
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Jimei District, Xiamen, Fujian, 361021, China
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
| | - Minglai Fu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Jimei District, Xiamen, Fujian, 361021, China
| | - Yong Sik Ok
- Korea Biochar Research Center and School of Natural Resources and Environmental Science, Kangwon National University, Chuncheon, 24341, Korea
| | - Yanwei Hou
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
| | - Chao Cai
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Jimei District, Xiamen, Fujian, 361021, China.
| |
Collapse
|
31
|
Alkurdi SSA, Herath I, Bundschuh J, Al-Juboori RA, Vithanage M, Mohan D. Biochar versus bone char for a sustainable inorganic arsenic mitigation in water: What needs to be done in future research? ENVIRONMENT INTERNATIONAL 2019; 127:52-69. [PMID: 30909094 DOI: 10.1016/j.envint.2019.03.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/15/2019] [Accepted: 03/04/2019] [Indexed: 06/09/2023]
Abstract
Arsenic (As) is an emerging contaminant on a global scale posing threat to environmental and human health. The relatively brief history of the applications of biochar and bone char has mapped the endeavors to remove As from water to a considerable extent. This critical review attempts to provide a comprehensive overview for the first time on the potential of bio- and bone-char in the immobilization of inorganic As in water. It seeks to offer a rational assessment of what is existing and what needs to be done in future research as an implication for As toxicity of human health risks through acute and chronic exposure to As contaminated water. Bio- and bone-char are recognized as promising alternatives to activated carbon due to their lower production and activation cost. The surface modification via chemical methods has been adopted to improve the adsorption capacity for anionic As species. Surface complexation, ion exchange, precipitation and electrostatic interactions are the main mechanisms involved in the adsorption of As onto the char surface. However, arsenic-bio-bone char interactions along with their chemical bonding for the removal of As in aqueous solution is still a subject of debate. Hence, the proposed mechanisms need to be scrutinized further using advanced analytical techniques such as synchrotron-based X-ray. Moving this technology from laboratory phase to field scale applications is an urgent necessity in order to establish a sustainable As mitigation in drinking water on a global scale.
Collapse
Affiliation(s)
- Susan S A Alkurdi
- School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, 4350, Queensland, Australia; Northern Technical University, Engineering Technical College, Kirkuk, Iraq
| | - Indika Herath
- School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, 4350, Queensland, Australia
| | - Jochen Bundschuh
- School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, 4350, Queensland, Australia; UNESCO Chair on Groundwater Arsenic within the 2030 Agenda for Sustainable Development, University of Southern Queensland, West Street, Toowoomba, 4350, Queensland, Australia.
| | - Raed A Al-Juboori
- School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, 4350, Queensland, Australia; School of Science, Engineering and Information Technology, Federation University Australia, University Drive, Mt Helen, VIC 3350, Australia
| | - Meththika Vithanage
- Office of the Dean, Faculty of Applied Sciences, Jayewardenepura, Nugegoda, Sri Lanka; International Centre for Applied Climate Science, University of Southern Queensland, West Street, Toowoomba, 4350, Queensland, Australia
| | - Dinesh Mohan
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
32
|
Sattar MS, Shakoor MB, Ali S, Rizwan M, Niazi NK, Jilani A. Comparative efficiency of peanut shell and peanut shell biochar for removal of arsenic from water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:18624-18635. [PMID: 31055751 DOI: 10.1007/s11356-019-05185-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/15/2019] [Indexed: 06/09/2023]
Abstract
Contamination of surface water and groundwater streams with carcinogenic chemicals such as arsenic (As) has been a major environmental issue worldwide, and requires significant attention to develop new and low-cost sorbents to treat As-polluted water. In the current study, arsenite (As(III)) and arsenate (As(V)) removal efficiency of peanut shell biochar (PSB) was compared with peanut shell (PS) in aqueous solutions. Sorption experiments showed that PSB possessed relatively higher As removal efficiency than PS, with 95% As(III) (at pH 7.2) and 99% As(V) (at pH 6.2) with 0.6 g L-1 sorbent dose, 5 mg L-1 initial As concentration, and 2 h equilibrium time. Experimental data followed a pseudo-second-order model for sorption kinetics showing the dominance of chemical interactions (surface complexation) between As and surface functional groups. The Langmuir model for sorption isotherm indicated that As was sorbed via a monolayer sorption process. The X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy analyses revealed that the hydroxyl (-OH) and aromatic surface functional (C=O, C=C-C, and -C-H) groups contributed significantly in the sorption of both As species from aqueous solutions through surface complexation and/or electrostatic reactions. We demonstrate that the pyrolysis of abandoned PS yields a novel, low-cost, and efficient biochar which provides dual benefits of As-rich water treatment and a value-added sustainable strategy for solid waste disposal.
Collapse
Affiliation(s)
- Muhammad Sohail Sattar
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Bilal Shakoor
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
- School of Civil Engineering and Surveying, University of Southern Queensland, Toowoomba, Australia
| | - Asim Jilani
- Center of Nanotechnology, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
33
|
Xiong Y, Cui X, Wang D, Wang Y, Lou Z, Shan W, Fan Y. Diethanolamine functionalized rice husk for highly efficient recovery of gallium(III) from solution and a mechanism study. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:1115-1122. [DOI: 10.1016/j.msec.2019.02.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/14/2018] [Accepted: 02/10/2019] [Indexed: 11/30/2022]
|
34
|
Zubrik A, Matik M, Lovás M, Danková Z, Kaňuchová M, Hredzák S, Briančin J, Šepelák V. Mechanochemically Synthesised Coal-Based Magnetic Carbon Composites for Removing As(V) and Cd(II) from Aqueous Solutions. NANOMATERIALS 2019; 9:nano9010100. [PMID: 30654449 PMCID: PMC6359593 DOI: 10.3390/nano9010100] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/11/2019] [Accepted: 01/13/2019] [Indexed: 01/22/2023]
Abstract
The continued decrease in water quality requires new advances in the treatment of wastewater, including the preparation of novel, effective, environmentally friendly, and affordable sorbents of toxic pollutants. We introduce a simple non-conventional mechanochemical synthesis of magnetically responsive materials. Magnetic lignite and magnetic char were prepared by high-energy ball co-milling from either raw Slovak lignite or coal-based char together with a ferrofluid. The products were characterised by X-ray diffraction, electron microscopy, 57Fe Mössbauer spectroscopy, X-ray photoelectron spectroscopy (XPS), volumetric magnetic susceptibility, and low-temperature nitrogen adsorption, and both magnetic carbons were comparatively tested as potential sorbents of As(V) oxyanions and Cd(II) cations in aqueous solutions. The magnetic char was an excellent sorbent of As(V) oxyanions (Qm = 19.9 mg/g at pH 3.9), whereas the magnetic lignite was less effective. The different sorption properties towards arsenic anions may have been due to different oxidation states of iron on the surfaces of the two magnetic composites (determined by XPS), although the overall state of iron monitored by Mössbauer spectroscopy was similar for both samples. Both magnetic composites were effective sorbents for removing Cd(II) cations (Qm (magnetic lignite) = 70.4 mg/g at pH 6.5; Qm (magnetic char) = 58.8 mg/g at pH 6.8).
Collapse
Affiliation(s)
- Anton Zubrik
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, SK-04001 Košice, Slovakia.
| | - Marek Matik
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, SK-04001 Košice, Slovakia.
| | - Michal Lovás
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, SK-04001 Košice, Slovakia.
| | - Zuzana Danková
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, SK-04001 Košice, Slovakia.
| | - Mária Kaňuchová
- Faculty of Mining, Ecology, Process Control and Geotechnologies, Technical University of Košice, Letná 9, SK-04200 Košice, Slovakia.
| | - Slavomír Hredzák
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, SK-04001 Košice, Slovakia.
| | - Jaroslav Briančin
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, SK-04001 Košice, Slovakia.
| | - Vladimír Šepelák
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, SK-04001 Košice, Slovakia.
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
35
|
Preparation of Ag-MnFe2O4-bentonite Magnetic Composite for Pb(II)/Cd(II) Adsorption Removal and Bacterial Inactivation in Wastewater. Chem Res Chin Univ 2018. [DOI: 10.1007/s40242-018-7372-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
36
|
Dhoble RM, Maddigapu PR, Bhole AG, Rayalu S. Development of bark-based magnetic iron oxide particle (BMIOP), a bio-adsorbent for removal of arsenic (III) from water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:19657-19674. [PMID: 29736644 DOI: 10.1007/s11356-018-1792-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 03/19/2018] [Indexed: 06/08/2023]
Abstract
Novel low-cost bark-based magnetic iron oxide particles (BMIOPs) were synthesized and investigated for the removal of As(III) in drinking water. The synthesized BMIOP had a saturation magnetization value of 38.62 emug-1 which was found to be enough for the magnetic separation of exhausted BMIOP after As(III) adsorption. Parameters like agitation speed, adsorbent dosage, contact time, pH, temperature, and initial concentration were thoroughly investigated. Langmuir, Freundlich, and Dubinin-Radushkevich isotherms were used for the modeling of experiments and observed a maximum adsorption (19.61 mg g-1) of As(III) by Langmuir isotherm. Kinetics of As(III) sorption were well correlated with the coefficients in pseudo-first-order than the pseudo-second-order rate equation. Thermodynamic parameter investigation revealed that As(III) sorption process is endothermic, feasible, and spontaneous. BMIOP emerged as less expensive adsorbent for the abatement of arsenic ion from the drinking water. BMIOP showed 13.58 mg g-1 adsorption capacity when As(V) alone is present, while it is 9.43 and 7.04 mg g-1 for As(V) and As(III), respectively, when present together in the water. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Rajesh Manoharrao Dhoble
- Civil Engineering Department, Priyadarshini Indira Gandhi College of Engineering, Nagpur, M.S., India
| | - Pratap Reddy Maddigapu
- Environmental Materials Division, National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, M.S., India
| | - Anand Govind Bhole
- Department of Civil Engineering, Visvesvaraya National Institute of Technology, Nagpur, M.S., India
| | - Sadhana Rayalu
- Environmental Materials Division, National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, M.S., India.
| |
Collapse
|
37
|
Wang H, Liu Y, Ifthikar J, Shi L, Khan A, Chen Z, Chen Z. Towards a better understanding on mercury adsorption by magnetic bio-adsorbents with γ-Fe 2O 3 from pinewood sawdust derived hydrochar: Influence of atmosphere in heat treatment. BIORESOURCE TECHNOLOGY 2018; 256:269-276. [PMID: 29454278 DOI: 10.1016/j.biortech.2018.02.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/01/2018] [Accepted: 02/04/2018] [Indexed: 06/08/2023]
Abstract
Pyrolysis under protective atmosphere was regarded as an indispensable process for the preparation of biomass-based adsorbents to achieve higher surface areas. In this paper, magnetic carbon composites (MCC) that fabricated under air atmosphere showed an adsorption capacity of 167.22 mg/g in 200 ppm Hg(II), which was significantly higher than magnetic biochar (MBC, 31.80 mg/g) that fabricated under traditional nitrogen protection, and this remarkable performance of MCC was consistent in a wide range of pHs. Based on BET, XRD, FTIR, SEM and Boehm titration, MCC was demonstrated with limited surface area (43.29 m2/g) but large amount of surface functional groups comparing with MBC. Additionally, γ-Fe2O3 with a high degree of crystallization was generated in MCC, which led to a better magnetic property and recyclability. Moreover, characterizations, Langmuir isotherm and pseudo-second-order kinetics demonstrated the chemisorption was dominant for MCC in mercury capture, and surface complexation co-precipitate of Hg4Fe8O16C56H40 were also formed.
Collapse
Affiliation(s)
- Huabin Wang
- Department of Environmental Engineering, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Yong Liu
- Department of Environmental Engineering, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Jerosha Ifthikar
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Lerong Shi
- Department of Environmental Engineering, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Aimal Khan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Zhulei Chen
- Department of Environmental Engineering, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Zhuqi Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
38
|
Niazi NK, Bibi I, Shahid M, Ok YS, Shaheen SM, Rinklebe J, Wang H, Murtaza B, Islam E, Farrakh Nawaz M, Lüttge A. Arsenic removal by Japanese oak wood biochar in aqueous solutions and well water: Investigating arsenic fate using integrated spectroscopic and microscopic techniques. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 621:1642-1651. [PMID: 29054629 DOI: 10.1016/j.scitotenv.2017.10.063] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/07/2017] [Accepted: 10/08/2017] [Indexed: 06/07/2023]
Abstract
In this study, we examined the sorption of arsenite (As(III)) and arsenate (As(V)) to Japanese oak wood-derived biochar (OW-BC) in aqueous solutions, and determined its efficiency to remove As from As-contaminated well water. Results revealed that, among the four sorption isotherm models, Langmuir model showed the best fit to describe As(III) and As(V) sorption on OW-BC, with slightly greater sorption affinity for As(V) compared to As(III) (QL=3.89 and 3.16mgg-1; R2=0.91 and 0.85, respectively). Sorption edge experiments indicated that the maximum As removal was 81% and 84% for As(III)- and As(V)-OW-BC systems at pH7 and 6, respectively, which decreased above these pH values (76-69% and 80-58%). Surface functional groups, notably OH, COOH, CO, CH3, were involved in As sequestration by OW-BC, suggesting the surface complexation/precipitation and/or electrostatic interaction of As on OW-BC surface. Arsenic K-edge X-ray absorption near edge structure (XANES) spectroscopy indicated that 36% of the added As(III) was partially oxidized to As(V) in the As(III) sorption experiment, and in As(V) sorption experiment, 48% of As(V) was, albeit incompletely, reduced to As(III) on OW-BC surface. Application of OW-BC to As-contaminated well water (As: 27-144μgL-1; n=10) displayed that 92 to 100% of As was depleted despite in the presence of co-occurring competing anions (e.g., SO42-, CO32-, PO43-). This study shows that OW-BC has a great potential to remove As from solution and drinking (well) water. Overall, the combination of macroscopic sorption data and integrated spectroscopic and microscopic techniques highlight that the fate of As on biochar involves complex redox transformation and association with surface functional moieties in aquatic systems, thereby providing crucial information required for implication of biochar in environmental remediation programs.
Collapse
Affiliation(s)
- Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; MARUM and Department of Geosciences, University of Bremen, Bremen D-28359, Germany.
| | - Irshad Bibi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; MARUM and Department of Geosciences, University of Bremen, Bremen D-28359, Germany
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari, Pakistan
| | - Yong Sik Ok
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Sabry M Shaheen
- University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33 516 Kafr El-Sheikh, Egypt; University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment and Energy, Sejong University, 98 Gunja-Dong, Guangjin-Gu, Seoul, Republic of Korea.
| | - Hailong Wang
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A & F University, Lin'an, Hangzhou 311300, China; School of Environment and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Behzad Murtaza
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari, Pakistan
| | - Ejazul Islam
- Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad 38000, Pakistan
| | - M Farrakh Nawaz
- Department of Forestry and Range Management, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Andreas Lüttge
- MARUM and Department of Geosciences, University of Bremen, Bremen D-28359, Germany
| |
Collapse
|
39
|
Khalil A, Sergeevich N, Borisova V. Removal of ammonium from fish farms by biochar obtained from rice straw: Isotherm and kinetic studies for ammonium adsorption. ADSORPT SCI TECHNOL 2018. [DOI: 10.1177/0263617418768944] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Ammonium is a water pollutant that harms the environment, particularly fisheries. Rice straw is also an economic waste of rice, with millions of tons produced per year around the world. In this paper, physical and chemical procedures for the modification of rice straw were studied. The kinetic and isothermal adsorption trends were investigated, including the ammonium removal efficiency, the contact time of the adsorbent, the amount of adsorbent, and the initial concentration of NH4+. The effect of temperature and pH on the adsorption process was discussed. The removal efficiency of NH4+ recorded 43, 53.7, and 69.5%, with maximum adsorption values of 2.9, 3.5, and 4.5 mg/g at temperatures of 25 ± 5, 35 ± 5, and 45 ± 5°C, respectively, at pH 7.5. The biochar obtained from rice follows the pseudo-second-order equation for ammonium adsorption kinetics (R2 = 0.98). The adsorption isotherm follows Freundlich’s model (R2 = 0.99) and Langmuir’s model (R2 = 0.98).
Collapse
Affiliation(s)
- Ahmed Khalil
- Don State Technical University, Russian Federation; Kafrelsheikh University, Egypt
| | | | - Vita Borisova
- Peter the Great St Petersburg Polytechnic University, Russian Federation
| |
Collapse
|
40
|
Li R, Wang JJ, Gaston LA, Zhou B, Li M, Xiao R, Wang Q, Zhang Z, Huang H, Liang W, Huang H, Zhang X. An overview of carbothermal synthesis of metal–biochar composites for the removal of oxyanion contaminants from aqueous solution. CARBON 2018; 129:674-687. [DOI: 10.1016/j.carbon.2017.12.070] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
|
41
|
Niazi NK, Bibi I, Shahid M, Ok YS, Burton ED, Wang H, Shaheen SM, Rinklebe J, Lüttge A. Arsenic removal by perilla leaf biochar in aqueous solutions and groundwater: An integrated spectroscopic and microscopic examination. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 232:31-41. [PMID: 28966026 DOI: 10.1016/j.envpol.2017.09.051] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/11/2017] [Accepted: 09/17/2017] [Indexed: 06/07/2023]
Abstract
In this study, we examined the removal of arsenite (As(III)) and arsenate (As(V)) by perilla leaf-derived biochars produced at 300 and 700 °C (referred as BC300 and BC700) in aqueous environments. Results revealed that the Langmuir isotherm model provided the best fit for As(III) and As(V) sorption, with the sorption affinity following the order: BC700-As(III) > BC700-As(V) > BC300-As(III) > BC300-As(V) (QL = 3.85-11.01 mg g-1). In general, As removal decreased (76-60%) with increasing pH from 7 to 10 except for the BC700-As(III) system, where notably higher As removal (88-90%) occurred at pH from 7 to 9. Surface functional moieties contributed to As sequestration by the biochars examined here. However, significantly higher surface area and aromaticity of BC700 favored a greater As removal compared to BC300, suggesting that surface complexation/precipitation dominated As removal by BC700. Arsenic K-edge X-ray absorption near edge structure (XANES) spectroscopy demonstrated that up to 64% of the added As(V) was reduced to As(III) in BC700- and BC300-As(V) sorption experiments, and in As(III) sorption experiments, partial oxidation of As(III) to As(V) occurred (37-39%). However, XANES spectroscopy was limited to precisely quantify As binding with sulfur species as As2S3-like phase. Both biochars efficiently removed As from natural As-contaminated groundwater (As: 23-190 μg L-1; n = 12) despite in the presence of co-occurring anions (e.g., CO32-, PO43-, SO42-) with the highest levels of As removal observed for BC700 (97-100%). Overall, this study highlights that perilla leaf biochars, notably BC700, possessed the greatest ability to remove As from solution and groundwater (drinking water). Significantly, the integrated spectroscopic techniques advanced our understanding to examine complex redox transformation of As(III)/As(V) with biochar, which are crucial to determine fate of As on biochar in aquatic environments.
Collapse
Affiliation(s)
- Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; MARUM and Department of Geosciences, University of Bremen, Bremen D-28359, Germany; Southern Cross GeoScience, Southern Cross University, Lismore 2480 NSW, Australia.
| | - Irshad Bibi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; MARUM and Department of Geosciences, University of Bremen, Bremen D-28359, Germany
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari, Pakistan
| | - Yong Sik Ok
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Edward D Burton
- Southern Cross GeoScience, Southern Cross University, Lismore 2480 NSW, Australia
| | - Hailong Wang
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A & F University, Lin'an, Hangzhou 311300, China; School of Environment and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Sabry M Shaheen
- University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33 516 Kafr El-Sheikh, Egypt; University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment and Energy, Sejong University, 98 Gunja-Dong, Guangjin-Gu, Seoul, South Korea
| | - Andreas Lüttge
- MARUM and Department of Geosciences, University of Bremen, Bremen D-28359, Germany
| |
Collapse
|
42
|
Huling JR, Huling SG, Ludwig R. Enhanced adsorption of arsenic through the oxidative treatment of reduced aquifer solids. WATER RESEARCH 2017; 123:183-191. [PMID: 28668631 PMCID: PMC7281868 DOI: 10.1016/j.watres.2017.06.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/16/2017] [Accepted: 06/22/2017] [Indexed: 05/13/2023]
Abstract
Arsenic (As) contamination in drinking water is an epidemic in many areas of the world, especially Eastern Asian countries. Developing affordable and efficient procedures to remove arsenic from drinking water is critical to protect human health. In this study, the oxidation of aquifer solids through the use of sodium permanganate (NaMnO4), hydrogen peroxide (H2O2), and exposure to air, enhanced the adsorption of arsenic to the aquifer material resulting in treatment of the water. NaMnO4 was more effective than H2O2. NaMnO4 was tested at different loading rates (0.5, 1.5, 2.4, 3.4, and 4.9 g NaMnO4/kg aquifer material), and after 30 days contact time, arsenic removal ([As+3]INITIAL = 610 μg/L) was 77%, 88%, 93%, 95%, 97%, respectively, relative to un-oxidized aquifer material. Arsenic removal increased with increasing contact time (30, 60, 90 days) suggesting removal was not reversible under the conditions of these experiments. Oxidative treatment by exposing the aquifer solids to air for 68 days resulted in >99% removal of Arsenic ([As+3]INITIAL = 550 μg/L). Less arsenic removal (38.2%) was measured in the un-oxidized aquifer material. In-situ oxidation of aquifer materials using NaMnO4, or ex-situ oxidation of aquifer materials through exposure to air could be effective in the removal of arsenic in ground water and a potential treatment method to protect human health.
Collapse
Affiliation(s)
- Jenna R Huling
- Oklahoma State University, Department of Chemical Engineering, 423 Engineering North, Stillwater, OK 74078, USA.
| | - Scott G Huling
- U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, Robert S. Kerr Environmental Research Center, P.O. Box 1198, Ada, OK 74820, USA.
| | - Ralph Ludwig
- U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, Robert S. Kerr Environmental Research Center, P.O. Box 1198, Ada, OK 74820, USA.
| |
Collapse
|
43
|
Iron-oxide modified sericite alginate beads: A sustainable adsorbent for the removal of As(V) and Pb(II) from aqueous solutions. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.05.086] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
44
|
Rashidi Nodeh H, Sereshti H, Zamiri Afsharian E, Nouri N. Enhanced removal of phosphate and nitrate ions from aqueous media using nanosized lanthanum hydrous doped on magnetic graphene nanocomposite. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 197:265-274. [PMID: 28395235 DOI: 10.1016/j.jenvman.2017.04.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/23/2017] [Accepted: 04/02/2017] [Indexed: 05/12/2023]
Abstract
A novel nanocomposite adsorbent based on nanosized lanthanum hydroxide doped onto magnetic reduced graphene oxide (MG@La) was synthesized and used for removal of phosphate and nitrate ions from river and sewage media. The composition, surface properties and morphology of the as prepared adsorbent were studied using Fourier transform-infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and field emission scanning electron microscopy (FE-SEM). The influence of main parameters on the efficiency of removal process including adsorbent dosage, salt addition, solution pH, contact time, and concentration of the analytes were thoroughly investigated. The validity of the experimental process was checked by the adsorption isotherm and adsorption kinetics models. The obtained data were well fitted to Langmuir isotherm and pseudo-second-order kinetic models. The developed adsorbent showed high adsorption capacities of 116.28 mg g-1 and 138.88 mg g-1 for phosphate and nitrate ions, respectively. Additionally, Langmuir isotherm and free energy were suggested monolayer pattern and physisorption mechanism for adsorption process, respectively. Finally, the field application of newly synthesized MG@La provided high removal efficiencies (74%-90%) for phosphate and nitrate ions in real river and sewage water samples.
Collapse
Affiliation(s)
- Hamid Rashidi Nodeh
- Department of Chemistry, Faculty of Science, University of Tehran, Tehran, Iran
| | - Hassan Sereshti
- Department of Chemistry, Faculty of Science, University of Tehran, Tehran, Iran.
| | | | - Nina Nouri
- Department of Chemistry, Faculty of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
45
|
Lee C, Jung J, Pawar RR, Kim M, Lalhmunsiama, Lee SM. Arsenate and phosphate removal from water using Fe-sericite composite beads in batch and fixed-bed systems. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2016.12.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Xu Y, Liu Y, Liu S, Tan X, Zeng G, Zeng W, Ding Y, Cao W, Zheng B. Enhanced adsorption of methylene blue by citric acid modification of biochar derived from water hyacinth (Eichornia crassipes). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:23606-23618. [PMID: 27614648 DOI: 10.1007/s11356-016-7572-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/01/2016] [Indexed: 06/06/2023]
Abstract
In this work, a novel potential adsorbent, citric acid (CA)-modified biochar, named as CAWB, was obtained from water hyacinth biomass by slow pyrolysis in a N2 environment at 300 °C. The CA modification focused on enhancing the contaminants adsorption capacity of biochar pyrolyzed at relatively low temperature. Over 90 % of the total methylene blue (MB) could be removed at the first 60 min by CAWB, and the maximum MB adsorption capacity could reach to 395 mg g-1. The physicochemical properties of CAWB was examined by FTIR, XPS, SEM, and BET analysis. The results indicated that the additional carboxyl groups were introduced to the surface of CAWB via the esterification reaction with CA, which played a significant role in the adsorption of MB. Batch adsorption studies showed that the initial MB concentration, solution pH, background ionic strength, and temperature could affect the removal efficiency obviously. The adsorption process could be well described by the pseudo-second-order kinetic model and Langmuir isotherm. Thermodynamic analysis revealed that the MB adsorption onto CAWB was an endothermic and spontaneous process. The regeneration study revealed that CAWB still exhibited an excellent regeneration and adsorption performance after multiple cycle adsorptions. The adsorption experiments of actual dye wastewater by CAWB suggested that it had a great potential in environmental application.
Collapse
Affiliation(s)
- Yan Xu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Yunguo Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China.
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China.
| | - Shaobo Liu
- School of Metallurgy and Environmental, Central South University, Changsha, 410083, People's Republic of China.
- School of Architecture and Art, Central South University, Changsha, 410082, People's Republic of China.
| | - Xiaofei Tan
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Wei Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Yang Ding
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Weicheng Cao
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Bohong Zheng
- School of Architecture and Art, Central South University, Changsha, 410082, People's Republic of China
| |
Collapse
|
47
|
Han C, Liu H, Zhang L, Deng J, Luo Y. Effectively uptake arsenate from water by mesoporous sulphated zirconia: Characterization, adsorption, desorption, and uptake mechanism. CAN J CHEM ENG 2016. [DOI: 10.1002/cjce.22704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Caiyun Han
- Faculty of Environmental Science and Engineering; Kunming University of Science and Technology; Kunming 650500 P. R. China
| | - Hang Liu
- Faculty of Environmental Science and Engineering; Kunming University of Science and Technology; Kunming 650500 P. R. China
| | - Liuyi Zhang
- Faculty of Environmental Science and Engineering; Kunming University of Science and Technology; Kunming 650500 P. R. China
- Department of Environmental and Chemistry Engineering; Chongqing Three Gorges University; Wanzhou 404100 Chongqing P. R. China
| | - Jiushuai Deng
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization; Faculty of Land Resource Engineering; Kunming University of Science and Technology; Kunming 650093 P. R. China
| | - Yongming Luo
- Faculty of Environmental Science and Engineering; Kunming University of Science and Technology; Kunming 650500 P. R. China
| |
Collapse
|
48
|
Han C, Liu H, Chen H, Zhang L, Wan G, Shan X, Deng J, Luo Y. Adsorption performance and mechanism of As(V) uptake over mesoporous Y–Al binary oxide. J Taiwan Inst Chem Eng 2016. [DOI: 10.1016/j.jtice.2016.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
49
|
Tan XF, Liu YG, Gu YL, Xu Y, Zeng GM, Hu XJ, Liu SB, Wang X, Liu SM, Li J. Biochar-based nano-composites for the decontamination of wastewater: A review. BIORESOURCE TECHNOLOGY 2016; 212:318-333. [PMID: 27131871 DOI: 10.1016/j.biortech.2016.04.093] [Citation(s) in RCA: 343] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/18/2016] [Accepted: 04/19/2016] [Indexed: 05/12/2023]
Abstract
Synthesizing biochar-based nano-composites can obtain new composites and combine the advantages of biochar with nano-materials. The resulting composites usually exhibit great improvement in functional groups, pore properties, surface active sites, catalytic degradation ability and easy to separation. These composites have excellent abilities to adsorb a range of contaminants from aqueous solutions. Particularly, catalytic material-coated biochar can exert simultaneous adsorption and catalytic degradation function for organic contaminants removal. Synthesizing biochar-based nano-composites has become an important practice for expanding the environmental applications of biochar and nanotechnology. This paper aims to review and summarize the various synthesis techniques for biochar-based nano-composites and their effects on the decontamination of wastewater. The characteristic and advantages of existing synthesis methods are summarized and discussed. Application of biochar-based nano-composites for different contaminants removal and the underlying mechanisms are reviewed. Furthermore, knowledge gaps that exist in the fabrication and application of biochar-based nano-composites are also identified.
Collapse
Affiliation(s)
- Xiao-Fei Tan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yun-Guo Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Yan-Ling Gu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yan Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Guang-Ming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xin-Jiang Hu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China; College of Environmental Science and Engineering Research, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Shao-Bo Liu
- School of Architecture and Art, Central South University, Changsha 410082, PR China; School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Xin Wang
- College of Resources and Environmental Science, Hunan Normal University, Changsha 410082, PR China
| | - Si-Mian Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jiang Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
50
|
Mangwandi C, Suhaimi SN, Liu JT, Dhenge RM, Albadarin AB. Design, production and characterisation of granular adsorbent material for arsenic removal from contaminated wastewater. Chem Eng Res Des 2016. [DOI: 10.1016/j.cherd.2016.04.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|