1
|
Chen Z, Tian E, Jiang Y, Mo J. Global perspectives on indoor phthalates and alternative plasticizers: Occurrence and key transport parameters. JOURNAL OF HAZARDOUS MATERIALS 2025; 482:136506. [PMID: 39577293 DOI: 10.1016/j.jhazmat.2024.136506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024]
Abstract
Phthalates and emerging alternative plasticizers have garnered significant attention due to their ubiquitous presence indoors and potential adverse health effects. However, the occurrences and key transport parameters of indoor alternative plasticizers have not been sufficiently summarized and analyzed, complicating exposure evaluation and pollution control efforts. This study addresses the gap by providing a comprehensive overview of the occurrence and key transport parameters of the most reported plasticizers, including 10 phthalates and 14 alternative plasticizers. The plasticizer content in source materials was found to range up to 27.6 wt%. An empirical formula was developed to predict the surface-adjacent gaseous plasticizer concentration (y0) of source materials, with values ranging from 0.015 to 64.7 μg/m3. Variations in plasticizer concentrations across source, gas, particle, and dust phases were thoroughly analyzed over both temporal and spatial dimensions from a global perspective, indicating significant differences between continents over time. A detailed investigation of phthalate regulations across continents suggests that the earlier enactment of phthalate bans in Europe is likely a key factor contributing to the most significant decrease in indoor phthalate concentrations. Furthermore, after systematically reviewing mass-transfer and partitioning theories, we developed empirical formulas to predict mass-transfer coefficients (hm) and partition coefficients (K) for both phthalates and alternative plasticizers. Notably, the hm and K parameters of the plasticizers were thoroughly calculated for typical indoor interfaces, including airborne particles, settled dust, and impermeable and permeable materials. Overall, this study advances the understanding of indoor plasticizers, facilitating health-risk assessment and the development of suitable control and monitoring technologies.
Collapse
Affiliation(s)
- Zhuo Chen
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Enze Tian
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Yi Jiang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Jinhan Mo
- Key Laboratory of Coastal Urban Resilient Infrastructures (Ministry of Education), College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China; State Key Laboratory of Intelligent Geotechnics and Tunnelling, Shenzhen University, Shenzhen 518060, China; State Key Laboratory of Subtropical Building and Urban Science, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
2
|
Sargazi S, Mirzaei R, Mohammadi M, Rahmani M. Determination of dialkyl phthalate esters in indoor air of PVC industry: Risk assessment for human health using Monte-Carlo simulations. Heliyon 2024; 10:e35097. [PMID: 39170195 PMCID: PMC11336471 DOI: 10.1016/j.heliyon.2024.e35097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/23/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024] Open
Abstract
Dialkyl phthalate esters are incorporated to enhance the pliability and prevent brittleness in polyvinyl chloride (PVC) tubing. Exposure to these compounds occurs throughout human lifetimes via ingestion, inhalation, and direct skin contact. A study was conducted to evaluate concentrations of four specific phthalates-dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate (DBP), and di(2-ethylhexyl) phthalate (DEHP)-in the indoor air of both industrial and administrative sectors within the PVC manufacturing facilities. Air sampling was conducted in the spring season at two polyethylene factories in Zahedan Industrial Park (Sistan and Baluchestan Province, Iran). The outcomes demonstrated that mean concentrations of these substances in industrial along with administrative departments 485.7 μg/m3 and 49.83 μg/m3for DMP, 807.38 μg/m3 and 30.17 μg/m3 for DEP, 849.62 μg/m3 and 37.50 μg/m3 for DBP along with 1268.08 μg/m3 and 45.50 μg/m3 for DEHP respectively. The probabilistic lifetime cancer risk (LTCR) of DEHP in the indoor air of Zahedan PVC factories for men and women was determined using the Monte Carlo simulation technique. The computed mean LTCRs of DEHP for men and women in the indoor air of industrial and administrative departments in Zahedan PVC were 1.3 × 10-3, 1.2 × 10-3and 4.7 × 10-5,4.2 × 10-5respectively. Data showed that DEHP was a potential risk to human health.
Collapse
Affiliation(s)
- Shahnaz Sargazi
- Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
- Environmental Sciences and Technology Research, Center, Department of Environmental Health Engineering, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ramazan Mirzaei
- Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Mohammadi
- Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mashaallah Rahmani
- Department of Chemistry, Faculty of Sciences, University of Sistan and Baluchestan, Zahedan, 98135-674, Iran
| |
Collapse
|
3
|
Shi S, Feng Q, Zhang J, Wang X, Zhao L, Fan Y, Hu P, Wei P, Bu Q, Cao Z. Global patterns of human exposure to flame retardants indoors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169393. [PMID: 38104845 DOI: 10.1016/j.scitotenv.2023.169393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
To fill the knowledge gaps regarding the global patterns of human exposure to flame retardants (FRs) (i.e., brominated flame retardants (BFRs) and organophosphorus flame retardants (OPFRs)), data on the levels and distributions of FRs in external and internal exposure mediums, including indoor dust, indoor air, skin wipe, serum and urine, were summarized and analysed. Comparatively, FR levels were relatively higher in developed regions in all mediums, and significant positive correlations between FR contamination and economic development level were observed in indoor dust and air. Over time, the concentration of BFRs showed a slightly decreasing trend in all mediums worldwide, whereas OPFRs represented an upward tendency in some regions (e.g., the USA and China). The occurrence levels of FRs and their metabolites in all external and internal media were generally correlated, implying a mutual indicative role among them. Dermal absorption generally contributed >60% of the total exposure of most FR monomers, and dust ingestion was dominant for several low volatile compounds, while inhalation was found to be negligible. The high-risk FR monomers (BDE-47, BDE-99 and TCIPP) identified by external exposure assessment showed similarity to the major FRs or metabolites observed in internal exposure mediums, suggesting the feasibility of using these methods to characterize human exposure and the contribution of indoor exposure to the human burden of FRs. This review highlights the significant importance of exposure assessment based on multiple mediums for future studies.
Collapse
Affiliation(s)
- Shiyu Shi
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Qian Feng
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Jiayi Zhang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Xiaoyu Wang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Leicheng Zhao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Yujuan Fan
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Pengtuan Hu
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Pengkun Wei
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Qingwei Bu
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, China
| | - Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
4
|
Guo Z, Wang L, Li Y, Wu Z, Wang K, Duan J. Dust phase and window film phase phthalates in dormitories: profile characteristics, source screening, and estimated gas-phase concentration and dermal exposure comparison. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:15257-15270. [PMID: 38291205 DOI: 10.1007/s11356-024-32019-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/11/2024] [Indexed: 02/01/2024]
Abstract
Recently, phthalate exposure has become a major public health concern. However, gaps still remain in our understanding of phthalate profile characteristics, source screening, and gas-phase estimation. This study measured phthalate concentrations in dust and window films in 101 dormitories at 13 universities in Beijing, China, from October to December 2019. Based on the phthalate concentrations in the dust and window films, we estimated the gas-phase phthalate concentrations using steady-state and instantaneous equilibrium models, respectively, and male and female students' dermal exposure using the Monte Carlo simulation. Commonly used materials and supplies were screened for phthalate sources and evaluated using the positive matrix factorization (PMF) model. The results showed that the detection frequency of ten phthalates ranged from 79.2 to 100% in dust and from 84.2 to 100% in window films. Dicyclohexyl phthalate (DCHP), di-(2-ethylhexyl) phthalate (DEHP), and dibutyl phthalate (DBP) were the most abundant phthalates in both indoor media and were also predominant in the indoor materials and supplies. The PMF results indicated that the potential sources of phthalates in dust and window films had both similarities and differences. Indoor door seals, paint, coatings, cables, air-conditioning rubber cable ties, wallpaper, and window seals were highly probable sources of phthalates. The gas-phase phthalate concentrations estimated using the two methods differed, especially for phthalates with high octanol-air partition coefficients (Koa), varying by 1-2 orders of magnitude. Moreover, compared with related studies, the gas-phase concentrations were significantly underestimated for phthalates with high Koa values, while the estimated gas-phase concentrations of phthalates with low Koa values were closer to the measured values. The estimated dermal exposure using the two methodologies also considerably differed. Such findings suggest that more attention should be focused on the exposure risk from the dust phase and window film phase phthalates.
Collapse
Affiliation(s)
- Zichen Guo
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Lixin Wang
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Yatai Li
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Zaixing Wu
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Kexin Wang
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Jiahui Duan
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| |
Collapse
|
5
|
Ali N, Ismail IMI, Alamri SH, Alhakamy NA, Summan A, Rehan M, Alshareef BS, Rajeh N, Eqani SAMAS. Toxic trespassers: Uncovering phthalates and organophosphate flame retardants in children's rooms and their health implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166663. [PMID: 37652382 DOI: 10.1016/j.scitotenv.2023.166663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/21/2023] [Accepted: 08/26/2023] [Indexed: 09/02/2023]
Abstract
Organophosphate flame retardants (OPEs) and phthalates have garnered significant attention due to their widespread presence in indoor environments. Many recent investigations have reported extensive contamination of indoor dust, air, children's toys, and other environmental compartments with these chemicals. This research aimed to analyze OPEs and phthalates in air (PM10) and dust samples collected from the bedrooms of children (N = 30) residing in various households in Jeddah, Saudi Arabia. High mean levels (ng/g) of phthalates namely DEHP (1438600) and DnBP (159200) were found in indoor dust while TPhP (5620) was the major OPEs in indoor dust. Similarly, DEHP and DnBP were the predominant phthalates in PM10 samples, exhibiting mean levels of 560 and 680 ng/m3, respectively. However, TCPP was the main OPEs with average levels of 72 ng/m3 in PM10 samples. The majority of individual phthalates and OPEs were detected in 90-100 % of the dust samples, whereas in PM10 samples, their presence ranged from 25 % to 100 %. The concentrations of OPEs were notably greater than those of PBDEs and other BFRs previously reported in these samples, suggesting their broader use than alternative BFRs. The estimated long-term non-carcinogenic risk, hazardous index (HI) and daily exposure via dust for children was above threshold levels for DEHP. On the other hand, the cumulative risk of cancer was below the concerning levels. Further research is required to explore diverse groups of chemicals in indoor microenvironments particularly significant for children, such as kindergartens, primary schools, and their rooms at home.
Collapse
Affiliation(s)
- Nadeem Ali
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Iqbal M I Ismail
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Environment, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sultan H Alamri
- Department of Family Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia; Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia; Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed Summan
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Environment, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Rehan
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Nisreen Rajeh
- Department of Clinical Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | | |
Collapse
|
6
|
Zhu L, Fauser P, Mikkelsen L, Sanderson H, Vorkamp K. Suspect and non-target screening of semi-volatile emerging contaminants in indoor dust from Danish kindergartens. CHEMOSPHERE 2023; 345:140451. [PMID: 37839752 DOI: 10.1016/j.chemosphere.2023.140451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/22/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
Indoor dust is a sink of hundreds of organic chemicals, and humans may potentially be exposed to these via indoor activities. This study investigated potentially harmful semi-volatile organic contaminants in indoor dust from Danish kindergartens using suspect and non-target screening on gas chromatography (GC)-Orbitrap, supported by target analyses using GC-low resolution mass spectrometry (LRMS). A suspect list of 41 chemicals with one or more toxicological endpoints, i.e. endocrine disruption, carcinogenicity, neurotoxicity and allergenicity, known or suspected to be present in indoor dust, was established including phthalate and non-phthalate plasticizers, flame retardants, bisphenols, biocides, UV filters and other plastic additives. Of these, 29 contaminants were detected in the indoor dust samples, also including several compounds that had been banned or restricted for years. In addition, 22 chemicals were tentatively identified via non-target screening. Several chemicals have not previously been detected in Danish indoor dust. Most of the detected chemicals are known to be potentially harmful for human health while hazard assessment of the remaining compounds indicated limited risks to human. However, children were not specifically considered in this hazard assessment.
Collapse
Affiliation(s)
- Linyan Zhu
- Department of Environmental Science, Aarhus University, Denmark.
| | - Patrik Fauser
- Department of Environmental Science, Aarhus University, Denmark
| | - Lone Mikkelsen
- Green Transition Denmark, Kompagnistræde 22, Copenhagen K, 1208, Denmark
| | - Hans Sanderson
- Department of Environmental Science, Aarhus University, Denmark
| | - Katrin Vorkamp
- Department of Environmental Science, Aarhus University, Denmark
| |
Collapse
|
7
|
Liu X, Wang Y, Fang J, Chen R, Sun Y, Tang S, Wang M, Kan H, Li T, Chen D. Plastic additive components of PM 2.5 increase corrected QT interval: Screening for exposure markers based on airborne exposome. PNAS NEXUS 2023; 2:pgad397. [PMID: 38047040 PMCID: PMC10691654 DOI: 10.1093/pnasnexus/pgad397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 11/06/2023] [Indexed: 12/05/2023]
Abstract
The impact of industrial chemical components of ambient fine particles (e.g. PM2.5) on cardiovascular health has been poorly explored. Our study reports for the first time the associations between human exposure to complex plastic additive (PA) components of PM2.5 and prolongation of heart rate-corrected QT (QTC) interval by employing a screening-to-validation strategy based on a cohort of 373 participants (136 in the screening set and 237 in the validation set) recruited from 7 communities across China. The high-throughput airborne exposome framework revealed ubiquitous occurrences of 95 of 224 target PAs in PM2.5, totaling from 66.3 to 555 ng m-3 across the study locations. Joint effects were identified for 9 of the 13 groups of PAs with positive associations with QTC interval. Independent effect analysis also identified and validated tris(2-chloroisopropyl) phosphate, di-n-butyl/diisobutyl adipate, and 3,5-di-tert-butyl-4-hydroxybenzaldehyde as the key exposure markers for QTC interval prolongation and changes of selected cardiovascular biomarkers. Our findings highlight the important contributions of airborne industrial chemicals to the risks of cardiovascular diseases and underline the critical need for further research on the underlying mechanisms, toxic modes of action, and human exposure risks.
Collapse
Affiliation(s)
- Xiaotu Liu
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China
| | - Yanwen Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Jianlong Fang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China
| | - Yue Sun
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Shuqin Tang
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China
| | - Minghao Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China
| | - Tiantian Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Da Chen
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China
| |
Collapse
|
8
|
Jan S, Mishra AK, Bhat MA, Bhat MA, Jan AT. Pollutants in aquatic system: a frontier perspective of emerging threat and strategies to solve the crisis for safe drinking water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:113242-113279. [PMID: 37864686 DOI: 10.1007/s11356-023-30302-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 10/03/2023] [Indexed: 10/23/2023]
Abstract
Water is an indispensable natural resource and is the most vital substance for the existence of life on earth. However, due to anthropogenic activities, it is being polluted at an alarming rate which has led to serious concern about water shortage across the world. Moreover, toxic contaminants released into water bodies from various industrial and domestic activities negatively affect aquatic and terrestrial organisms and cause serious diseases such as cancer, renal problems, gastroenteritis, diarrhea, and nausea in humans. Therefore, water treatments that can eliminate toxins are very crucial. Unfortunately, pollution treatment remains a difficulty when four broad considerations are taken into account: effectiveness, reusability, environmental friendliness, and affordability. In this situation, protecting water from contamination or creating affordable remedial techniques has become a serious issue. Although traditional wastewater treatment technologies have existed since antiquity, they are both expensive and inefficient. Nowadays, advanced sustainable technical approaches are being created to replace traditional wastewater treatment processes. The present study reviews the sources, toxicity, and possible remediation techniques of the water contaminants.
Collapse
Affiliation(s)
- Saima Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, 185234, J&K, India
| | | | - Mujtaba Aamir Bhat
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, 185234, J&K, India
| | - Mudasir Ahmad Bhat
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, 185234, J&K, India
| | - Arif Tasleem Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, 185234, J&K, India.
| |
Collapse
|
9
|
Ye L, Li J, Gong S, Herczegh SM, Zhang Q, Letcher RJ, Su G. Established and emerging organophosphate esters (OPEs) and the expansion of an environmental contamination issue: A review and future directions. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132095. [PMID: 37523961 DOI: 10.1016/j.jhazmat.2023.132095] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023]
Abstract
The list of organophosphate esters (OPEs) reported in the environment continues to expand as evidenced by the increasing number of OPE studies in the literature. However, there remains a general dearth of information on more recently produced and used OPEs that are proving to be emerging environmental contaminants. The present review summarizes the available studies in a systematic framework of the current state of knowledge on the analysis, environmental fate, and behavior of emerging OPEs. This review also details future directions to better understand emerging OPEs in the environment. Firstly, we make recommendations that the current structural/practical abbreviations and naming of OPEs be revised and updated. A chemical database (CDB) containing 114 OPEs is presently established based on the suspect list from the current scientific literature. There are 12 established OPEs and a total of 83 emerging OPEs that have been reported in human and/or biota samples. Of the emerging OPEs more than 80% have nearly 100% detection frequencies in samples of certain environmental media including indoor air, wastewater treatment plants, sediment, and fish. In contrast to OPEs considered established contaminants, most emerging OPEs have been identified more recently due to the more pervasive use of high-resolution mass spectrometry (HRMS) based approaches and especially gas or liquid chromatography coupled with HRMS-based non-target analysis (NTA) of environmental sample fractions. Intentional/unintentional industrial use and non-industrial formation are sources of emerging OPEs in the environment. Predicted physical-chemical properties in silico of newer, molecularly larger and more oligomeric OPEs strongly suggest that some compounds such as bisphenol A diphenyl phosphate (BPA-DPP) are highly persistent, bioaccumulative and/or toxic. Limited information on laboratory-based toxicity data has shown that some emerging OPEs elicit harmful effects such as cytotoxicity, development toxicity, hepatotoxicity, and endocrine disruption in exposed humans and mammals. Established, and to a much lesser degree emerging OPEs, have also been shown to transform and degrade in biota and possibly alter their toxicological effects. Research on emerging OPE contaminants is presently limited and more study is warranted on sample analysis methods, source apportionment, transformation processes, environmental behavior, biomarkers of exposure and toxicity.
Collapse
Affiliation(s)
- Langjie Ye
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jianhua Li
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Shuai Gong
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Sofia M Herczegh
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Directorate, Science and Technology Branch, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON, Canada; Department of Chemistry, Carleton University, Ottawa, ON, Canada
| | - Qi Zhang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Directorate, Science and Technology Branch, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON, Canada; Department of Chemistry, Carleton University, Ottawa, ON, Canada
| | - Guanyong Su
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
10
|
Yoshida T. A urinary biomarker for monitoring exposures to 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate and 2,2,4-trimethyl-1,3-pentanediol diisobutyrate in rats. Arch Toxicol 2023; 97:2687-2695. [PMID: 37555878 DOI: 10.1007/s00204-023-03570-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/02/2023] [Indexed: 08/10/2023]
Abstract
2,2,4-Trimethyl-1,3-pentanediol monoisobutyrate (TMPD-MB) and 2,2,4-trimethyl-1,3-pentanediol diisobutyrate (TMPD-DB) are widely used primarily as surface stabilizers for water-based paints and plasticizers, respectively. Exposure to these compounds has been suspected as being associated with sick building syndrome and allergic diseases such as asthma in general populations. Therefore, it is very important to be able to know the amounts of these compounds absorbed into the body in order to evaluate its adverse effects on humans in living environments. In the present study, the urinary excretion kinetics of TMPD-MB and TMPD-DB were studied in animals to establish for urinary metabolites suitable as biomarkers for monitoring exposure. A single dose (48-750 mg/kg body weight) of TMPD-MB or TMPD-DB was administered intraperitoneally to male Sprague-Dawley rats, and their urine was collected periodically for a week. Two major metabolites, 2,2,4-trimethyl-1,3-pentanediol (TMPD) and 3-hydroxy-2,2,4-trimethylvaleric acid (HTMV), were measured in the urine samples. Their kinetics were evaluated by moment analysis of the urinary excretion rates of the metabolites versus time curves. The urinary excretion amounts of HTMV were suggested to be proportional to the absorption amounts over a wide exposure range of both TMPD-MB and TMPD-DB. The amounts of HTMV accounted for almost the same level, i.e., 4-5% of the dose at the lowest dosage, in rats tested for both TMPD-MB and TMPD-DB. Urinary HTMV was considered to be an optimal biomarker for monitoring exposure to mixtures of these compounds.
Collapse
Affiliation(s)
- Toshiaki Yoshida
- Department of Environmental Health, Osaka Institute of Public Health, 1-3-3, Nakamichi, Higashinari-ku, Osaka, 537-0025, Japan.
| |
Collapse
|
11
|
Lu QO, Jung CC, Chao HR, Chen PS, Lee CW, Thi Phuong Tran Q, Ciou JY, Chang WH. Investigating the associations between organophosphate flame retardants (OPFRs) and fine particles in paired indoor and outdoor air: A probabilistic prediction model for deriving OPFRs in indoor environments. ENVIRONMENT INTERNATIONAL 2023; 174:107871. [PMID: 36931197 DOI: 10.1016/j.envint.2023.107871] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Contaminants of emerging concern such as organophosphate flame retardants (OPFRs) are associated with atmospheric fine particles (PM2.5), which pose the greatest health risk in the world. However, few surveys have explored the interaction between PM2.5 and OPFRs in residential paired indoor/outdoor environments. 11 priority OPFRs and PM2.5 were investigated across 178 paired indoor and outdoor air samples taken from 89 children's households in southern Taiwan, across cold and warm seasons. This involved exploring their associations with building characteristics, interior materials, and human activities. We developed a probabilistic predictive model for indoor OPFRs based on the indoor/outdoor (I/O) ratio of contaminants and an air quality index. The significant associations of paired indoor/outdoor OPFRs and PM2.5 were explored. The indoor level of OPFRs was greater than that of outdoor households, contrasting with PM2.5. The I/O OPFRs ratio was higher than 1 (except for TEHP, EHDPP, and TCP), which suggests that the sources of OPFRs were primarily emitted from indoors. Indoor TCEP was significantly positively associated with indoor and outdoor PM2.5. The OPFR level detected in apartments was higher than in houses due to the greater decoration, furniture and electronic devices. However, this was not the case for PM2.5. TCIPP was the dominant compound in paired indoor and outdoor air. The indoor OPFR predictive model obtained a high accuracy with an R2 value of 0.87. The material used in mattresses, the use of purifiers and heaters, and the total material area were the main influencing factors for indoor OPFRs in households. These findings could provide important evidence of the interaction between paired indoor/outdoor OPFRs and PM2.5 and interior equipment in different building types. In addition, it could prevent the potential risks posed by indoor/outdoor air pollutants and eliminate OPFR emissions through the selection of better construction and building materials.
Collapse
Affiliation(s)
- Quang-Oai Lu
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Chien-Cheng Jung
- Department of Public Health, China Medical University, Taichung 406, Taiwan
| | - How-Ran Chao
- Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Neipu, Pingtung County 912, Taiwan
| | - Pei-Shih Chen
- Department of Public Health, College of Health Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chia-Wei Lee
- Department of Safety, Health, and Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 824, Taiwan
| | - Quynh Thi Phuong Tran
- Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| | - Jyun-Yi Ciou
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Wei-Hsiang Chang
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; Research Center of Environmental Trace Toxic Substances, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan.
| |
Collapse
|
12
|
Huo CY, Li WL, Liu LY, Sun Y, Guo JQ, Wang L, Hung H, Li YF. Seasonal variations of airborne phthalates and novel non-phthalate plasticizers in a test residence in cold regions: Effects of temperature, humidity, total suspended particulate matter, and sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160852. [PMID: 36526181 DOI: 10.1016/j.scitotenv.2022.160852] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
As a class of plasticizers widely used in consumer products, some phthalate esters (PAEs) have been restricted due to their adverse health effects and ubiquitous presence, leading to the introduction of alternative non-phthalates plasticizers (NPPs) to the market. However, few studies focus on the influence of environmental parameters on the presence of these plasticizers and the potential human health risks for people living in poorly ventilated indoor spaces in cold regions. We investigated the trends of PAEs and NPPs in air in a typical indoor residence in northern China for over one year. The air concentrations of PAEs were significantly higher than those of NPPs (p < 0.05), indicating that PAEs are still the dominant plasticizers currently being used in the studied residence. PAEs showed seasonal fluctuation patterns of the highest levels found in summer and autumn. The temperature and relative humidity dependence for most PAEs and NPPs decreased with decreasing vapor pressure. Concentrations of the high molecular weight NPPs and PAEs positively correlated with total suspended particles (TSP). It is worth noting that the peak concentrations of PAEs and NPPs were found when the haze occurred in autumn. Principal component analysis (PCA) suggested the diverse applications of PAEs and NPPs in the indoor environment. The hazard index (HI) values observed in this study were all below international guidelines (<1); however, the average carcinogenic risk (CR) values for some compounds exceeded acceptable levels (One in a million), which raised concerns about the possibility of carcinogenicity for people living indoors for long periods of time in cold regions.
Collapse
Affiliation(s)
- Chun-Yan Huo
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China; University Corporation for Polar Research, Beijing 100875, China
| | - Wen-Long Li
- College of the Environment and Ecology, Xiamen University, Xiamen, China; Air Quality Processes Research Section, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario M3H 5T4, Canada
| | - Li-Yan Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China; University Corporation for Polar Research, Beijing 100875, China.
| | - Yu Sun
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China; University Corporation for Polar Research, Beijing 100875, China
| | - Jia-Qi Guo
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China; University Corporation for Polar Research, Beijing 100875, China
| | - Liang Wang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China; University Corporation for Polar Research, Beijing 100875, China
| | - Hayley Hung
- Air Quality Processes Research Section, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario M3H 5T4, Canada
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China; University Corporation for Polar Research, Beijing 100875, China; IJRC-PTS-NA, Toronto M2N 6X9, Canada
| |
Collapse
|
13
|
Horie Y, Nomura M, Ramaswamy BR, Harino H, Yap CK, Okamura H. Effects of non-phthalate plasticizer bis(2-ethylhexyl) sebacate (DEHS) on the endocrine system in Japanese medaka (Oryzias latipes). Comp Biochem Physiol C Toxicol Pharmacol 2023; 264:109531. [PMID: 36470400 DOI: 10.1016/j.cbpc.2022.109531] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/26/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022]
Abstract
Water pollution due to plasticizers is one of the most severe environmental problems worldwide. Phthalate plasticizers can act as endocrine disruptors in vertebrates. In this study, we investigated whether the non-phthalate bis(2-ethylhexyl) sebacate (DEHS) plasticizer can act as an endocrine disruptor by evaluating changes in the expression levels of thyroid hormone-related, reproduction-related, and estrogen-responsive genes of Japanese medaka (Oryzias latipes) exposed to the plasticizer. Following the exposure, the gene expression levels of thyroid-stimulating hormone subunit beta (tshβ), deiodinase 1 (dio1), and thyroid hormone receptor alpha (trα) did not change. Meanwhile, DEHS suppressed dio2 expression, did not induce swim bladder inflation, and eventually reduced the swimming performance of Japanese medaka. These findings indicate that DEHS can potentially disrupt the thyroid hormone-related gene expression and metabolism of these fish. However, exposure to DEHS did not induce changes in the gene expression levels of kisspeptin 1 (kiss1), gonadotropin-releasing hormone (gnrh), follicle-stimulating hormone beta (fshβ), luteinizing hormone beta (lhβ), choriogenin H (chgH), and vitellogenin (vtg) in a dose-dependent manner. This is the first report providing evidence that DEHS can disrupt thyroid hormone-related metabolism in fish.
Collapse
Affiliation(s)
- Yoshifumi Horie
- Research Center for Inland Seas (KURCIS), Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe 658-0022, Japan.
| | - Miho Nomura
- Graduate School of Maritime Science, Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe 658-0022, Japan
| | - Babu Rajendran Ramaswamy
- Research Center for Inland Seas (KURCIS), Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe 658-0022, Japan; Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli 620024, India
| | - Hiroya Harino
- School of Human Sciences, Kobe College, 4-1 Okadayama, Nishinomiya, Hyogo, Iwate 662-8505, Japan
| | - Chee Kong Yap
- Department of Biology, Faculty of Science, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Hideo Okamura
- Research Center for Inland Seas (KURCIS), Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe 658-0022, Japan
| |
Collapse
|
14
|
DEHP Decreases Steroidogenesis through the cAMP and ERK1/2 Signaling Pathways in FSH-Stimulated Human Granulosa Cells. Cells 2023; 12:cells12030398. [PMID: 36766740 PMCID: PMC9913623 DOI: 10.3390/cells12030398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
DEHP is an endocrine disruptor that interferes with the function of the female reproductive system. Several studies suggested that DEHP affects steroidogenesis in human and rodent granulosa cells (GC). Some studies have shown that DEHP can also affect the FSH-stimulated steroidogenesis in GC; however, the mechanism by which DEHP affects hormone-challenged steroidogenesis in human GC is not understood. Here, we analyzed the mechanism by which DEHP affects steroidogenesis in the primary culture of human cumulus granulosa cells (hCGC) stimulated with FSH. Cells were exposed to DEHP and FSH for 48 h, and steroidogenesis and the activation of cAMP and ERK1/2 were analyzed. The results show that DEHP decreases FSH-stimulated STAR and CYP19A1 expression, which is accompanied by a decrease in progesterone and estradiol production. DEHP lowers cAMP production and CREB phosphorylation in FSH but not cholera toxin- and forskolin-challenged hCGC. DEHP was not able to decrease steroidogenesis in cholera toxin- and forskolin-stimulated hCGC. Furthermore, DEHP decreases FSH-induced ERK1/2 phosphorylation. The addition of EGF rescued ERK1/2 phosphorylation in FSH- and DEHP-treated hCGC and prevented a decrease in steroidogenesis in the FSH- and DEHP-treated hCGC. These results suggest that DEHP inhibits the cAMP and ERK1/2 signaling pathways, leading to the inhibition of steroidogenesis in the FSH-stimulated hCGC.
Collapse
|
15
|
Horie Y, Ramaswamy BR, Ríos JM, Yap CK, Okamura H. Effects of plasticizer diisobutyl adipate on the Japanese medaka (Oryzias latipes) endocrine system. J Appl Toxicol 2023. [PMID: 36647207 DOI: 10.1002/jat.4437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/30/2022] [Accepted: 01/13/2023] [Indexed: 01/18/2023]
Abstract
Plasticizer pollution of the water environment is one of the world's most serious environmental issues. Phthalate plasticizers can disrupt endocrine function in vertebrates. Therefore, this study analyzed thyroid-related, reproduction-related, and estrogen-responsive genes in Japanese medaka (Oryzias latipes) to determine whether non-phthalate diisobutyl adipate (DIBA) plasticizer could affect endocrine hormone activity or not. Developmental toxicity during fish embryogenesis was also evaluated. At a concentration of 11.57 mg/l, embryonic exposure to DIBA increased the mortality rate. Although abnormal development, including body curvature, edema, and lack of swim bladder inflation, was observed at 3.54 and 11.57 mg/l DIBA, growth inhibition and reduced swimming performance were also observed. In addition, DIBA exposure increased the levels of thyroid-stimulating hormone beta-subunit (tshβ) and deiodinase 1 (dio1) but decreased the levels of thyroid hormone receptor alpha (trα) and beta (trβ). These results suggest that DIBA has thyroid hormone-disrupting activities in fish. However, kisspeptin (kiss1 and kiss2), gonadotropin-releasing hormone (gnrh1), follicle-stimulating hormone beta (fshβ), luteinizing hormone beta (lhβ), choriogenin H (chgH), and vitellogenin (vtg1) expression did not change dose-dependently in response to DIBA exposure, whereas gnrh2 and vtg2 expression was elevated. These results indicate that DIBA has low estrogenic activity and does not disrupt the endocrine reproduction system in fish. Overall, this is the first report indicating that non-phthalate DIBA plasticizer is embryotoxic and disrupt thyroid hormone activity in fish.
Collapse
Affiliation(s)
- Yoshifumi Horie
- Research Center for Inland Seas (KURCIS), Kobe University, Fukae Minamimachi, Higashinada-ku, Kobe, 658-0022, Japan
| | - Babu Rajendran Ramaswamy
- Research Center for Inland Seas (KURCIS), Kobe University, Fukae Minamimachi, Higashinada-ku, Kobe, 658-0022, Japan.,Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, 620024, India
| | - Juan Manuel Ríos
- Laboratorio de Ecotoxicología, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU, CCT-CONICET), 5500, Mendoza, Argentina
| | - Chee Kong Yap
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Hideo Okamura
- Research Center for Inland Seas (KURCIS), Kobe University, Fukae Minamimachi, Higashinada-ku, Kobe, 658-0022, Japan
| |
Collapse
|
16
|
Modelling plasticiser loss inside closed environments. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Lv K, Bai L, Song B, Ma X, Hou M, Fu J, Shi Y, Wang Y, Jiang G. Presence of organophosphate flame retardants (OPEs) in different functional areas in residential homes in Beijing, China. J Environ Sci (China) 2022; 115:277-285. [PMID: 34969455 DOI: 10.1016/j.jes.2021.07.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 06/14/2023]
Abstract
The production and application of organophosphate esters (OPEs) have dramatically increased in recent years due to their use as a replacement for brominated flame retardants. In this study, 13 OPEs (Σ13OPEs) were analyzed in indoor air samples from kitchens and living rooms in 14 residential homes in Beijing, China. The concentrations of Σ13OPEs in kitchen air samples (mean: 13 ng/m3) were significantly (p < 0.05) higher than in living room air samples (5.0 ng/m3). In addition, paired window surface organic film samples were collected and analyzed to investigate film-air partitioning, exhibiting a mean concentration of Σ13OPEs of 4100 ng/m2. The congener profiles showed that tris(2-chloroisopropyl) phosphate (TCPP) was the predominant compound in both window film samples (48%) and the corresponding indoor air sample (56%). The estimated daily intakes (EDI) of OPEs via indoor air inhalation were 2.8 and 1.4 ng/kg/day for infants and adults, respectively, both of which are below the reference dose values (RfDs). Overall, these findings indicate that OPEs in the indoor air environment of residential homes in Beijing are not likely to pose a health risk to the general population.
Collapse
Affiliation(s)
- Kun Lv
- Environment Research Institute, Shandong University, Qingdao 266237, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lu Bai
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Boyu Song
- Ministry of Ecology and Environment of the People's Republic of China, Foreign Environmental Cooperation Center, Beijing 100035, China
| | - Xindong Ma
- State Oceanic Administration Key Laboratory for Ecological Environment in Coastal Areas, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Minmin Hou
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Fu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yali Shi
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yawei Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China.
| | - Guibin Jiang
- Environment Research Institute, Shandong University, Qingdao 266237, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
18
|
Aker A, Caron-Beaudoin É, Ayotte P, Ricard S, Gilbert V, Avard E, Lemire M. Non-persistent exposures from plasticizers or plastic constituents in remote Arctic communities: a case for further research. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2022; 32:400-407. [PMID: 35347231 PMCID: PMC9119853 DOI: 10.1038/s41370-022-00425-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Persistent organic pollutant exposures are well-documented in the Arctic, but fewer studies examined non-persistent chemicals, despite increased market food and consumer product consumption. OBJECTIVE To measure phenol, paraben, phthalate, and alternative plasticizer concentrations in Inuit adults. METHODS The study included 30 pooled urine samples from Qanuilirpitaa? 2017 Nunavik Inuit Health Survey (Q2017) participants. Creatinine-adjusted geometric mean concentrations (GM) and 95% confidence intervals (CI) were compared across sex, age, and regions, and compared to those in the Canadian Health Measures Survey (CHMS) and the First Nations Biomonitoring Initiative (FNBI). RESULTS Q2017 bisphenol-A concentrations were double the CHMS 2018-2019 concentrations [GM (95% CI): 1.98 (1.69-2.31) versus 0.71 (0.60-0.84) µg/g creatinine], but in line with FNBI [1.74 (1.41-2.13) µg/g creatinine]. Several phthalate concentrations were higher in Q2017 versus CHMS, particularly monobenzyl phthalate, which was was 19-fold higher in Q2017 versus CHMS 2018-2019 [45.26 (39.35-52.06) versus 2.4 (2.0-2.9) µg/g creatinine] and four-fold higher than FNBI. There were also four-fold higher concentrations of the two alternate plasticizer 2,2,4-trimethyl-1,3-pentanediol diisobutyrate (TIXB) metabolites in Q2017 compared to CHMS 2018-2019. Women and people living in Ungava Bay had generally higher concentrations of non-persistent chemicals. SIGNIFICANCE The results suggest higher concentrations of certain non-persistent chemicals in Inuit versus the general Canadian population. IMPACT Few studies have explored non-persistent chemical distributions in Northern communities, despite the increasing consumer product and market food consumption. We analyzed 30 pooled samples from the Qanuilirpitaa? Nunavik Inuit Health Survey 2017 to assess exposures to common plasticizes and plastic constituents and compare their levels with the general Canadian population and First Nation groups. We observed particularly higher levels of bisphenol-A, of monobenzyl phthalate, and of two 2,2,4-trimethyl-1,3-pentanediol diisobutyrate (TXIB) metabolites among Nunavimmiut compared to the general Canadian population, notably among women and Ungava Bay residents. Larger studies are required to confirm our findings and identify potential adverse health effects from these exposures.
Collapse
Affiliation(s)
- Amira Aker
- Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec-Université Laval, 1050 Ch Ste-Foy, Quebec, QC, Canada
- Département de médecine sociale et préventive, Université Laval, 1030 Avenue de la Médecine, Quebec, QC, Canada
| | - Élyse Caron-Beaudoin
- Department of Health and Society, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, Canada
- Centre for Clinical Epidemiology and Evaluation, University of British Columbia, Vancouver Coastal Health Research Institute, 828 West 10th Avenue, Research Pavilion, Vancouver, BC, Canada
| | - Pierre Ayotte
- Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec-Université Laval, 1050 Ch Ste-Foy, Quebec, QC, Canada
- Département de médecine sociale et préventive, Université Laval, 1030 Avenue de la Médecine, Quebec, QC, Canada
- Centre de Toxicologie du Québec, Institut National de Santé Publique du Québec, Quebec, QC, Canada
| | - Sylvie Ricard
- Nunavik Regional Board of Health and Social Services, Kuujjuaq, QC, Canada
| | - Véronique Gilbert
- Kativik Regional Government based in Saint-Laurent, Saint-Laurent, QC, Canada
| | - Ellen Avard
- Nunavik Research Centre, Makivik Corporation, Kuujjuaq, QC, Canada
| | - Mélanie Lemire
- Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec-Université Laval, 1050 Ch Ste-Foy, Quebec, QC, Canada.
- Département de médecine sociale et préventive, Université Laval, 1030 Avenue de la Médecine, Quebec, QC, Canada.
- Institut de Biologie Intégrative et des Systèmes, Université Laval, 1030 Avenue de la Médecine, Quebec, QC, Canada.
| |
Collapse
|
19
|
Qadeer A, Kirsten KL, Ajmal Z, Jiang X, Zhao X. Alternative Plasticizers As Emerging Global Environmental and Health Threat: Another Regrettable Substitution? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1482-1488. [PMID: 34995444 DOI: 10.1021/acs.est.1c08365] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Affiliation(s)
- Abdul Qadeer
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Kelly L Kirsten
- Department of Geological Sciences, University of Cape Town, Cape Town, 8001, South Africa
| | - Zeeshan Ajmal
- College of Engineering, China Agricultural University, 100083, Beijing, China
| | - Xia Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xingru Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
20
|
Ali N, Alhakamy NA, Ismail IMI, Nazar E, Summan AS, Shah Eqani SAMA, Malarvannan G. Exposure to Phthalate and Organophosphate Esters via Indoor Dust and PM10 Is a Cause of Concern for the Exposed Saudi Population. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18042125. [PMID: 33671626 PMCID: PMC7926922 DOI: 10.3390/ijerph18042125] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/10/2021] [Accepted: 02/16/2021] [Indexed: 11/22/2022]
Abstract
In this study, we measured the occurrence of organophosphate esters (OPEs) and phthalates in the settled dust (floor and air conditioner filter dust) and in suspended particulate matter (PM10) from different microenvironments (households (n = 20), offices (n = 10) and hotels (n = 10)) of Jeddah, Saudi Arabia. Bis (2-Ethylhexyl) phthalate (DEHP) was the major pollutant (contributing >85% of total chemicals burden) in all types of indoor dust with a concentration up to 3,901,500 ng g−1. While dibutyl phthalate (DBP) and DEHP together contributed >70% in PM10 (1900 ng m−3), which indicate PM10 as a significant source of exposure for DBP and DEHP in different Saudi indoor settings. Tris (1-chloro-2-propyl) phosphate (TCPP) was the major OPE in PM10 with a concentration of up to 185 ng m−3 and the occurrence of OPEs in indoor dust varied in studied indoor settings. The estimated daily intake (EDI) of studied chemicals via dust ingestion and inhalation of PM10 was below the reference dose (RfD) of individual chemicals. However, estimated incremental lifetime cancer risk (ILCR) with moderate risk (1.5 × 10−5) for Saudi adults and calculated hazardous index (HI) of >1 for Saudi children from DEHP showed a cause of concern to the local public health.
Collapse
Affiliation(s)
- Nadeem Ali
- Centre of Excellence in Environmental Studies, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (I.M.I.I.); (A.S.S.)
- Correspondence: (N.A.); (G.M.)
| | - Nabil A. Alhakamy
- Pharmaceutics Department, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Iqbal M. I. Ismail
- Centre of Excellence in Environmental Studies, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (I.M.I.I.); (A.S.S.)
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21413, Saudi Arabia
| | - Ehtisham Nazar
- Department of Environmental Sciences, University of Gujrat, Punjab 50700, Pakistan;
| | - Ahmed Saleh Summan
- Centre of Excellence in Environmental Studies, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (I.M.I.I.); (A.S.S.)
- Department of Environmental Sciences, King Abdul Aziz University, Jeddah 21589, Saudi Arabia
| | - Syed Ali Musstjab Akbar Shah Eqani
- Public Health and Environment Division, Department of Biosciences, COMSATS Institute of Information Technology, Islamabad 45550, Pakistan;
| | - Govindan Malarvannan
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
- Correspondence: (N.A.); (G.M.)
| |
Collapse
|
21
|
Wang X, Zhang Y, Huang B, Chen Z, Zhong M, Wang W, Liu X, Fan YN, Hu W. Atmospheric phthalate pollution in plastic agricultural greenhouses in Shaanxi Province, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116096. [PMID: 33279271 DOI: 10.1016/j.envpol.2020.116096] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/09/2020] [Accepted: 11/14/2020] [Indexed: 06/12/2023]
Abstract
Phthalate pollution in soil and vegetables in plastic agricultural greenhouses has attracted wide concern. Investigating airborne phthalates in this environment can improve understanding of air-soil or air-vegetable phthalate migration. However, studies of phthalates in plastic agricultural greenhouse air are rare. To fill this gap, 25 gas-phase and 23 particle-phase samples were collected from 12 typical plastic greenhouses in Shaanxi. 16 types of phthalates were measured by a gas chromatography-mass spectrometry system (GC-MS) to analyse their pollution features and variations. Results showed that in the air of the plastic greenhouses, the median concentration of the sum of sixteen type phthalates (∑16 phthalates) was 5305 ng m-3, with 5th-95th value of 1214-9616 ng m-3. Phthalates in gas-phase samples were over 100 times higher than the levels in particle-phase samples. Air phthalate concentrations in the plastic greenhouses were higher than those in the control groups (P < 0.05). Air bis (2-ethylhexyl) phthalate (DEHP) and di-n-butyl phthalate (DnBP) accounted for 66.9% and 29.3% of total ∑16 phthalate concentrations, respectively. Air phthalate concentrations in the plastic greenhouses in winter were 1.1-5.3 times higher than the levels in summer respectively (P < 0.05). Gas-particle partition coefficients (KP) values of DEHP in summer (median of 1.52 × 10-4 m3 μg-1) were higher than KP values of DnBP in summer (0.60 × 10-4 m3 μg-1). Log-transformed KP values of DnBP and DEHP were linear correlated to the reciprocal of air temperatures, respectively (P < 0.05).
Collapse
Affiliation(s)
- Xinkai Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanxia Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China; School of Environment, Nanjing Normal University, Nanjing, 210023, China.
| | - Biao Huang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Zhikun Chen
- Key Laboratory of Soil Resource & Biotech Applications, Shaanxi Academy of Sciences, Xi'an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi'an, 710061, China
| | - Ming Zhong
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Weixi Wang
- Key Laboratory of Soil Resource & Biotech Applications, Shaanxi Academy of Sciences, Xi'an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi'an, 710061, China
| | - Xiaofei Liu
- Key Laboratory of Soil Resource & Biotech Applications, Shaanxi Academy of Sciences, Xi'an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi'an, 710061, China
| | - Ya' Nan Fan
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenyou Hu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| |
Collapse
|
22
|
Hou M, Shi Y, Na G, Cai Y. A review of organophosphate esters in indoor dust, air, hand wipes and silicone wristbands: Implications for human exposure. ENVIRONMENT INTERNATIONAL 2021; 146:106261. [PMID: 33395927 DOI: 10.1016/j.envint.2020.106261] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 05/14/2023]
Abstract
The ubiquity of organophosphate esters (OPEs) in various environmental matrices inevitably pose human exposure risks. Numerous studies have investigated human exposure pathways to OPEs, including air inhalation, dust ingestion, dermal contact, and dietary and drinking water intake, and have indicated that indoor dust and indoor air routes are frequently the two main human exposure pathways. This article reviews the literature on OPE contamination in indoor air and dust from various microenvironments and on OPE particle size distributions and bioavailability in dust conducted over the past 10 years. Ways in which sampling strategies are related to the uncertainty of exposure assessment results and comparability among different studies in terms of sampling tools, sampling sites, and sample types are addressed. Also, the associations of OPEs in indoor dust/air with human biological samples were summarized. Studies on two emerging matrices, hand wipes and silicone wristbands, are demonstrated to be more comprehensive and accurate in reflecting personal human exposure to OPEs in microenvironments and are summarized. Given the direct application of some diester OPEs (di-OPEs) in numerous products, research on their existence in indoor dust and food and on their effects on human urine are also discussed. Finally, related research trends and avenues for future research are prospected.
Collapse
Affiliation(s)
- Minmin Hou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing, 100083, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yali Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing, 100083, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guangshui Na
- National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Yaqi Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing, 100083, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
23
|
Sun Y, Guo JQ, Liu LY, Sverko E, Zhang Z, Tian CG, Huo CY, Li HL, Ma WL, Zhang ZF, Song WW, Li YF, Wang L. Seasonal variation and influence factors of organophosphate esters in air particulate matter of a northeastern Chinese test home. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:140048. [PMID: 32559539 DOI: 10.1016/j.scitotenv.2020.140048] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
To investigate the seasonal variation of organophosphate esters (OPEs) in air particulate matter (PM) and the corresponding influence factors in indoor environment, 104 indoor PM samples were collected in a test home, Harbin, China, from March 2017 to March 2018. The Σ12OPEs concentrations ranged from 0.41 ng/m3 to 940 ng/m3. Tris(1-chloro-2-propyl) phosphate (TCIPP) was the most abundant OPE and accounted for 83.2% of the total OPEs. The Σ12OPEs concentrations in spring and summer were higher than those in autumn and winter. Outdoor total suspended particles (TSP) were the main factor that affected the concentration variation of OPEs in PM samples in the test home. Comparisons of the gas/particle (G/P) partitioning equilibrium models indicated that the Dachs-Eisenreich (D-E) model estimates were more reliable than the other models in this study. The particle fractions of OPEs with log KOA > 10.51 that predicted by all four models generally well matched the measured OPE particle fractions in the literatures. To OPEs with lower molecular weight, inhalation was the main exposure route and ingestion contributed mostly to OPEs with higher molecular weight. In addition, the estimated daily intakes (EDIs) and carcinogenic risks (CRs) posed by OPEs were all below the recommended values, indicating that the current OPE levels in the test home were within the safe thresholds.
Collapse
Affiliation(s)
- Yu Sun
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS)/International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China; University Corporation for Polar Research, Beijing 100875, China
| | - Jia-Qi Guo
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS)/International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China; University Corporation for Polar Research, Beijing 100875, China
| | - Li-Yan Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS)/International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China; University Corporation for Polar Research, Beijing 100875, China.
| | - Ed Sverko
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS)/International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China; University Corporation for Polar Research, Beijing 100875, China; IJRC-PTS-NA, Toronto M2N 6X9, Canada
| | - Zhi Zhang
- College of Agricultural Resource and Environment, Heilongjiang University, Harbin 150080, China
| | - Chong-Guo Tian
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, CAS, Yantai 264003, China
| | - Chun-Yan Huo
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS)/International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China; University Corporation for Polar Research, Beijing 100875, China
| | - Hai-Ling Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS)/International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China; University Corporation for Polar Research, Beijing 100875, China
| | - Wan-Li Ma
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS)/International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China; University Corporation for Polar Research, Beijing 100875, China
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS)/International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China; University Corporation for Polar Research, Beijing 100875, China
| | - Wei-Wei Song
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS)/International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China; University Corporation for Polar Research, Beijing 100875, China
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS)/International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China; University Corporation for Polar Research, Beijing 100875, China; IJRC-PTS-NA, Toronto M2N 6X9, Canada
| | - Li Wang
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
24
|
Huang L, Qiao Y, Deng S, Zhou M, Zhao W, Yue Y. Airborne phthalates in indoor environment: Partition state and influential built environmental conditions. CHEMOSPHERE 2020; 254:126782. [PMID: 32339798 DOI: 10.1016/j.chemosphere.2020.126782] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 04/10/2020] [Accepted: 04/11/2020] [Indexed: 06/11/2023]
Abstract
Exposure to phthalates has recently become a major public health concern. The information of indoor airborne phthalates and their air-particle partition in real indoor environmental condition is still limited. In this study, the gas- and PM2.5-concentrations of 7 phthalates in 40 residences were concurrently measured in summer and winter. The major phthalates (median concentration in the summer and winter, respectively) in indoor air were DMP (2442.3 and 2403.4 ng/m3), DiBP (801.0 and 640.0 ng/m3) and DnBP (5173.2 and 1379.6 ng/m3), whereas the major phthalates in PM2.5 were DiBP (1055.1 and 585.9 ng/m3) and DnBP (1658.5 and 1517.0 ng/m3) and DEHP (215.1 and 344.9 ng/m3). Air-PM2.5 partition coefficients (Kp) of DiBP, DnBP and DEHP were calculated: the summer and winter median values (m3/μg) were 0.053 and 0.011 for DiBP, 0.010 and 0.004 for DnBP, 0.021 and 0.025 for DEHP, respectively. Air-PM2.5 partition of DiBP and DnBP approached equilibrium, while that of DEHP did not reach equilibrium in either season. The impacts of built environmental conditions on phthalate concentrations were characterized. Elevated temperature resulted in accumulation of airborne phthalates. Higher air humidity led to more water absorption of aerosols in summer, facilitated mass transfer of phthalates from air to PM2.5, and resulted in greater Kp of DiBP and DnBP in the summer. Any factors such as proximity to local traffic highway and indoor smoking activities, which can increase indoor PM2.5 concentrations, resulted in significantly higher airborne phthalate concentrations. Improving ventilation was not an effective measure to reduce indoor airborne phthalate concentrations.
Collapse
Affiliation(s)
- Lihui Huang
- Department of Environmental Engineering, School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Water and Environment, Chang'an University, Xi'an, 710054, China; Institute of Built Environment, Department of Building Science, Tsinghua University, Beijing, 100084, China.
| | - Yaqi Qiao
- Department of Environmental Engineering, School of Water and Environment, Chang'an University, Xi'an, 710054, China
| | - Shunxi Deng
- Department of Environmental Engineering, School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Water and Environment, Chang'an University, Xi'an, 710054, China
| | - Meimei Zhou
- Department of Environmental Engineering, School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Water and Environment, Chang'an University, Xi'an, 710054, China
| | - Weiping Zhao
- Institute of Built Environment, Department of Building Science, Tsinghua University, Beijing, 100084, China; School of Civil Engineering, Hefei University of Technology, Hefei, Anhui, 230001, China
| | - Yang Yue
- Institute of Built Environment, Department of Building Science, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
25
|
Distribution of Viable Bacteria in the Dust-Generating Natural Source Area of the Gobi Region, Mongolia. ATMOSPHERE 2020. [DOI: 10.3390/atmos11090893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Gobi Desert is a major source of dust events, whose frequency of occurrence and damage caused have recently significantly increased. In the present study, we investigated the types of live bacteria present in the surface soil of the Gobi Desert in Mongolia, and determined their genetic identification as well as their geographical distribution. During the survey, four different topographies (dry lake bed, wadi, well, and desert steppe) were selected, and land characteristics were monitored for moisture and temperature. The surface soil was aerobically cultured to isolate bacterial colonies, and their 16s rDNA regions were sequenced. The sequence data were identified through NCBI-BLAST analysis and generated phylogenetic trees. The results revealed two phyla and seven families of isolates from the sample points. Each isolate was characterized by their corresponding sample site. The characteristics of land use and soil surface bacteria were compared. Most of the bacteria originated from the soil, however, animal-derived bacteria were also confirmed in areas used by animals. Our findings confirmed the existence of live bacteria in the dust-generating area, suggesting that their presence could affect animal and human health. Therefore, it is necessary to further investigate dust microbes based on the One Health concept.
Collapse
|
26
|
Poopal RK, Zhang J, Zhao R, Ramesh M, Ren Z. Biochemical and behavior effects induced by diheptyl phthalate (DHpP) and Diisodecyl phthalate (DIDP) exposed to zebrafish. CHEMOSPHERE 2020; 252:126498. [PMID: 32197170 DOI: 10.1016/j.chemosphere.2020.126498] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 05/22/2023]
Abstract
Both Diheptyl-phthalate (DHpP) and Diisodecyl-phthalate (DIDP) were used extensively as plasticizers. Recently, their occurrence in the environmental matrices and human body fluids have been reported. Unfortunately, these phthalate congeners are without basic toxicity profiles. Hence, we studied the toxic effects of both DHpP and DIDP in the median lethal concentration (LC50 96-h) on zebrafish (Danio rerio). We assessed swimming behavior strength and tissues biomarker responses including total antioxidants capacity (TAOC), transaminases, and acetylcholinesterase (AChE) enzyme. Fish exposed to phthalate congeners (Treatment-I and-II) for 15-days showed alterations on fish swimming behavior and circadian rhythm. At the end of the exposure period, both liver and heart tissue transaminases activities were found to be accelerated in DHpP and DIDP treated fish, when compared to control group. TAOC and AChE activities were found to be decreased in brain, gills, intestine, and muscle tissues of phthalate congeners treated fish than the control group. Alterations observed in the studied biomarkers were concentration-based response. Among treatment groups DHpP showed higher effects. Comparative studies on swimming behavior and biochemical activities were reasonable to know the swimming responses are mediated due to external stress or internal stress. More studies on molecular and biomarkers assessments are warranted on toxicity of emerging contaminants.
Collapse
Affiliation(s)
- Rama-Krishnan Poopal
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan, 250358, China
| | - Jingxuan Zhang
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan, 250358, China
| | - Ruibin Zhao
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan, 250358, China
| | - Mathan Ramesh
- Unit of Toxicology, Department of Zoology, Bharathiar University, Coimbatore, 641046, TamilNadu, India
| | - Zongming Ren
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan, 250358, China.
| |
Collapse
|
27
|
Shinohara N, Uchino K. Diethylhexyl phthalate (DEHP) emission to indoor air and transfer to house dust from a PVC sheet. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:134573. [PMID: 32000312 DOI: 10.1016/j.scitotenv.2019.134573] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/29/2019] [Accepted: 09/18/2019] [Indexed: 06/10/2023]
Abstract
Diethylhexyl phthalate (DEHP) emission to air and transfer to house dust from a polyvinyl chloride (PVC) sheet were quantified for periods of 1, 3, 7, and 14 days using a passive flux sampler (PFS). Japanese Industrial Standards (JIS) test powders class 15 was used as the test house dust in settled weights of 0.3, 1, 3, and 12 mg/cm2. DEHP concentrations in the surface air on the PVC sheet were estimated as 2.6-3.3 μg/m3 according to an emission test without dust. Although DEHP transfer rates from the PVC sheet to the house dust decreased over time, the adsorption did not reach an equilibrium state within 14 days. The transfer rates per dust weight increased with decreasing dust weight on the PVC sheet. The transfer rates per PVC sheet area increased nonlinearly with increasing dust weight on the PVC sheet. DEHP emission from a PVC sheet to air was one to three orders of magnitude lower than DEHP transfer from a PVC sheet to dust. In the case of 0.3 mg/cm2 of settled house dust for 7 days, the emission rates to air were 35, 15, 9.1, 6.4, and 3.8 μg/m2/h for a diffusion distance of 0.90, 1.85, 2.75, 3.80, and 5.75 mm, respectively, and the transfer rate to dust was 5.3 × 102 μg/m2/h (no difference among the five diffusion distances). Compared to residents who clean the floor every day, exposure to DEHP in house dust could be 10 times higher for residents who clean the floor once every two weeks based on the time-weighted average concentrations in house dust.
Collapse
Affiliation(s)
- Naohide Shinohara
- Research Institute of Science for Safety and Sustainability (RISS), National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan.
| | - Kanako Uchino
- Research Institute of Science for Safety and Sustainability (RISS), National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| |
Collapse
|
28
|
Feng YX, Feng NX, Zeng LJ, Chen X, Xiang L, Li YW, Cai QY, Mo CH. Occurrence and human health risks of phthalates in indoor air of laboratories. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 707:135609. [PMID: 31771853 DOI: 10.1016/j.scitotenv.2019.135609] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/14/2019] [Accepted: 11/17/2019] [Indexed: 06/10/2023]
Abstract
Phthalate acid esters (PAEs) are of serious concern as a human health risk due to their ubiquitous presence in indoor air. In the present study, fifteen PAEs in the indoor air samples from physical, chemical, and biological laboratories in Guangzhou, southern China were analysed using gas chromatography mass spectrometry. Extremely high levels of PAEs of up to 6.39 × 104 ng/m3 were detected in some laboratories. Diisobutyl phthalate (DiBP), di(methoxyethyl) phthalate (DMEP), and di-n-butyl phthalate (DBP) were the dominant PAEs with median levels of 0.48 × 103, 0.44 × 103, and 0.39 × 103 ng/m3, respectively, followed by di-(2-propylheptyl) phthalate (DPHP) and di(2-ethylhexyl) phthlate (DEHP) (median levels: 0.16 × 103 and 0.13 × 103 ng/m3, respectively). DMEP and DPHP were found for the first time in indoor air. Principal component analysis indicated that profiles of PAEs varied greatly among laboratory types, suggesting notable variations in sources. The results of independent samples t-tests showed that levels of PAEs were significantly influenced by various environmental conditions. Both the non-carcinogenic and carcinogenic health risks from human exposure to PAEs based on the daily exposure dose in laboratory air were acceptable. Further research should be conducted to investigate the long-term health effects of exposure to PAEs in laboratories.
Collapse
Affiliation(s)
- Yu-Xi Feng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Nai-Xian Feng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Li-Juan Zeng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xin Chen
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
29
|
Dong J, Ma Y, Leng K, Wei L, Wang Y, Su C, Liu M, Chen J. Associations of urinary di-(2-ethylhexyl) phthalate metabolites with the residential characteristics of pregnant women. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 707:135671. [PMID: 31780177 DOI: 10.1016/j.scitotenv.2019.135671] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
Epidemiological evidence on the associations between urinary di-(2-ethylhexyl) phthalate (DEHP) metabolites and residential characteristics is limited. Therefore, we investigated the associations of urinary DEHP metabolites with the residential characteristics of pregnant women. We collected completed questionnaires and maternal spot urine samples from 616 random pregnant women in Shengjing Hospital of China Medical University in Shenyang. Urinary DEHP metabolites concentrations, including mono-(2-ethylhexyl) phthalate (MEHP) and mono (2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), were measured and analyzed by Gas Chromatography-Mass Spectrometry (GC-MS). Multivariable linear regression models were performed to obtain regression estimates (β) and 95% confidence intervals (CIs) after adjustment for sociodemographic characteristics. In all participants, the geometric mean of MEHP and MEHHP concentrations were 4.25 ± 4.34 and 5.72 ± 2.65 μg/L, respectively. In multivariable analyses after adjusting for sociodemographic characteristics, distance from residence to motor vehicle traffic (≥150 m versus <20 m) was negatively associated with MEHP (β = -0.241, 95% CI: -0.448, -0.033) and MEHHP (β = -0.279, 95% CI: -0.418, -0.140) concentrations. Compared with the one that had not recently been renovated, a renovated home was associated with higher MEHP (β = 0.194, 95% CI: 0.064, 0.324) and MEHHP (β = 0.111, 95% CI: 0.024, 0.197) concentrations. Air freshener use was associated with higher MEHP (β = 0.322, 95% CI: 0.007, 0.636) concentrations. Moldy walls were positively associated with MEHP (β = 0.299, 95% CI: 0.115, 0.482) and MEHHP (β = 0.172, 95% CI: 0.050, 0.294) concentrations. In contrast, humidifier use was associated with a lower MEHP concentration (β = -0.167, 95% CI: -0.302, -0.032). Residential characteristics were probably associated with the DEHP exposure of pregnant women in Shenyang. Living near the motor vehicle traffic, residential renovation, air freshener use, and moldy walls are likely risk factors for increased DEHP exposure, whereas using household humidifier could be considered a protective measure to reduce DEHP exposure.
Collapse
Affiliation(s)
- Jing Dong
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang 110122, PR China
| | - Yanan Ma
- Department of Biostatistics and Epidemiology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang 110122, PR China
| | - Kunkun Leng
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang 110122, PR China
| | - Lingling Wei
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang 110122, PR China
| | - Ying Wang
- Department of Gynaecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Chang Su
- Yale School of Medicine, New Haven, CT, USA
| | - Ming Liu
- Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Jie Chen
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang 110122, PR China.
| |
Collapse
|
30
|
Ringbeck B, Bury D, Hayen H, Weiss T, Brüning T, Koch HM. Determination of di-n-butyl adipate (DnBA) metabolites as possible biomarkers of exposure in human urine by online-SPE-LC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1141:122029. [DOI: 10.1016/j.jchromb.2020.122029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 12/18/2022]
|
31
|
Sakhi AK, Cequier E, Becher R, Bølling AK, Borgen AR, Schlabach M, Schmidbauer N, Becher G, Schwarze P, Thomsen C. Concentrations of selected chemicals in indoor air from Norwegian homes and schools. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 674:1-8. [PMID: 31003082 DOI: 10.1016/j.scitotenv.2019.04.086] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/15/2019] [Accepted: 04/06/2019] [Indexed: 06/09/2023]
Abstract
Both building materials and consumer products have been identified as possible sources for potentially hazardous substances like phthalates, polychlorinated biphenyls (PCBs), organophosphorous flame retardants (OPFRs), polybrominated diphenyl ethers (PBDEs) and short chain chlorinated paraffins (SCCPs) in indoor air. Thus, indoor air has been suggested to contribute significantly to human exposure to these chemicals. There is lack of data on the occurrence of several of the aforementioned chemicals in indoor air. Therefore, indoor air (gas and particulate phase) was collected from 48 households and 6 classrooms in two counties in Norway. In both the households and schools, median levels of low molecular weight phthalates (785 ng/m3), OPFRs (55 ng/m3) and SCCPs (128 ng/m3) were up to 1000 times higher than the levels of PCBs (829 pg/m3) and PBDEs (167 pg/m3). Median concentrations of dimethyl phthalate (DMP), diethyl phthalate (DEP), di-isobutyl phthalate (DiBP) and SCCPs were 3-6 times higher in households compared to schools. The levels of OPFRs, PCBs and PBDEs were similar in households and schools. In univariate analysis, the indoor concentrations of different environmental chemicals were significantly affected by location of households (OPFRs), airing of living room (some PCBs and PBDEs), presence of upholstered chair/couch (OPFRs), pet animal hold (some PBDEs) and presence of electrical heaters (selected PCBs and PBDEs). Significant correlations were also detected for the total size of households with OPFRs, frequency of vacuuming the living room with selected PCBs and PBDEs, frequency of washing the living room with selected PCBs and the total number of TVs in the households with selected phthalates and SCCPs. Finally, intake estimates indicated that indoor air contributed more or equally to low molecular weight phthalates and SCCPs exposure compared to food consumption, whereas the contribution from indoor air was smaller than the dietary intake for the other groups of chemicals.
Collapse
Affiliation(s)
- Amrit Kaur Sakhi
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, N-0213 Oslo, Norway.
| | - Enrique Cequier
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, N-0213 Oslo, Norway
| | - Rune Becher
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, N-0213 Oslo, Norway
| | - Anette Kocbach Bølling
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, N-0213 Oslo, Norway
| | - Anders R Borgen
- Norwegian Institute for Air Research, PO Box 100, 2027, Kjeller, Norway
| | - Martin Schlabach
- Norwegian Institute for Air Research, PO Box 100, 2027, Kjeller, Norway
| | | | - Georg Becher
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, N-0213 Oslo, Norway; Department of Chemistry, University of Oslo, PO Box 1033, Blindern, 0315 Oslo, Norway
| | - Per Schwarze
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, N-0213 Oslo, Norway
| | - Cathrine Thomsen
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, N-0213 Oslo, Norway
| |
Collapse
|
32
|
Yin H, Wu D, You J, Li S, Deng X, Luo Y, Zheng W. Occurrence, Distribution, and Exposure Risk of Organophosphate Esters in Street Dust from Chengdu, China. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 76:617-629. [PMID: 30840114 DOI: 10.1007/s00244-019-00602-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/24/2019] [Indexed: 06/09/2023]
Abstract
Street dust samples were collected from 31 sampling sites in urban area of Chengdu. The distribution characters of OPEs were analyzed in line with functional districts and industrial layout of the city. The results showed that the detection frequency was tris(2-carboxyethyl) phosphine (TCEP), trichloropropyl phosphate (TCPP), triphenyl phosphate (TPhP), and tributoxyethyl phosphate (TBEP) (100%) > tris(2-ethylhexyl) phosphate (TEHP) (93.5%) > tri-n-butyl phosphate (TnBP) (83.9%) > tridichloropropyl phosphate (TDCPP) (74.2%). The ∑7OPEs concentrations ranged from 94.0 to 1484.6 ng/g (mean 512.9 ± 417.5 ng/g), and TBEP was the predominant pollutant, accounting for 27.9% of the ∑7OPEs. The highest concentrations were observed in the center, west, and northwest sides of the city. Besides, compared with outer area, the higher concentration in the 1st Ring Road reflected that emissions of OPEs might be associated with the population and consumption of commercial products. The correlations between monomers were statistically significant (p < 0.05) for TnBP/TCPP (p = 0.002), TCEP/TCPP (p = 0.026), and TCEP/TPhP (p = 0.033). The exposure level in adults was 0.11 ng/(kg bw day), and in children was 0.20 ng/(kg bw day) while hand-to-mouth was the primary mode of transmission. The Risk Quotients (RQs) of OPEs were 5.35 × 10-10-1.46 × 10-5 and 4.99 × 10-10-2.82 × 10-5 for adults and children respectively, with no potential risk.
Collapse
Affiliation(s)
- Hongling Yin
- College of Resources and Environment, Chengdu University of Information Technology, No. 24 Xuefu Street, Chengdu, 610041, Sichuan, China.
| | - Di Wu
- College of Resources and Environment, Chengdu University of Information Technology, No. 24 Xuefu Street, Chengdu, 610041, Sichuan, China
| | - Junjie You
- College of Resources and Environment, Chengdu University of Information Technology, No. 24 Xuefu Street, Chengdu, 610041, Sichuan, China
| | - Shiping Li
- College of Resources and Environment, Chengdu University of Information Technology, No. 24 Xuefu Street, Chengdu, 610041, Sichuan, China
| | - Xu Deng
- College of Resources and Environment, Chengdu University of Information Technology, No. 24 Xuefu Street, Chengdu, 610041, Sichuan, China
| | - Yi Luo
- College of Resources and Environment, Chengdu University of Information Technology, No. 24 Xuefu Street, Chengdu, 610041, Sichuan, China
| | - Wanqing Zheng
- College of Resources and Environment, Chengdu University of Information Technology, No. 24 Xuefu Street, Chengdu, 610041, Sichuan, China
| |
Collapse
|
33
|
Cao D, Lv K, Gao W, Fu J, Wu J, Fu J, Wang Y, Jiang G. Presence and human exposure assessment of organophosphate flame retardants (OPEs) in indoor dust and air in Beijing, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 169:383-391. [PMID: 30466019 DOI: 10.1016/j.ecoenv.2018.11.038] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 06/09/2023]
Abstract
In this study, levels of 14 organophosphate flame retardants (OPEs) were measured in 101 indoor dust samples collected from dormitories, residential homes, and offices in Beijing, China. In addition, paired air samples were also analyzed to evaluate any correlation between OPE levels in air and that in corresponding dust samples. The Σ14OPEs levels substantially varied between individual samples. Thereinto, significantly higher OPE levels were found in dust samples from office (mean value: 14 μg g-1), comparing to that in dust samples from residential homes (mean value: 5.9 μg g-1) and dormitories (mean value: 6.9 μg g-1). Congener profiles of OPEs in dust samples from different microenvironments indicated that tris (2-chloroethyl) phosphate (TCEP) was the dominant OPE in the office samples, followed by tris (2-chloroisopropyl) phosphate (TCPP). In contrast, TCPP was the dominant OPE in the residential home and dormitory samples, followed by TCEP. The mean concentration (range) of Σ14OPEs in the 15 air samples was 5.2 (1.0-20) ng m-3, and TCPP was the dominated congener in these samples. The concentration of TCEP and TCPP in air was positively correlated with that in corresponding indoor dust, and OPEs with highly saturated vapor pressures have higher fractions in the air than that in the dust. The estimated daily intakes through dust ingestion, dermal absorption, and inhalation indicated that the exposure to OPEs in indoor environments do not result in significant health risk for the general population in Beijing.
Collapse
Affiliation(s)
- Dandan Cao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Kun Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wei Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jing Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
34
|
Wei W, Mandin C, Blanchard O, Mercier F, Pelletier M, Le Bot B, Glorennec P, Ramalho O. Semi-volatile organic compounds in French dwellings: An estimation of concentrations in the gas phase and particulate phase from settled dust. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:2742-2750. [PMID: 30373052 DOI: 10.1016/j.scitotenv.2018.09.398] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/27/2018] [Accepted: 09/27/2018] [Indexed: 05/27/2023]
Abstract
Semi-volatile organic compounds (SVOCs) are present in the gas phase, particulate phase and settled dust in the indoor environment, resulting in human exposure through different pathways. Sometimes, SVOCs are only measured in a single phase because of practical and/or financial constraints. A probabilistic method proposed by Wei et al. for the prediction of the SVOC concentration in the gas phase from the SVOC concentration in the particulate phase was extended to model the equilibrium SVOC concentrations in both the gas and particulate phases from the SVOC concentration measured in settled dust. This approach, based on the theory of SVOC partitioning among the gas phase, particulate phase, and settled dust incorporating Monte Carlo simulation, was validated using measured data from the literature and applied to the prediction of the concentrations of 48 SVOCs in both the gas and particulate phases in 3.6 million French dwellings where at least one child aged 6 months to 6 years lived. The median gas-phase concentration of 15 SVOCs, i.e., 5 phthalates, 2 organochlorine pesticides, 4 polycyclic aromatic hydrocarbons (PAHs), 2 synthetic musks, dichlorvos, and tributyl phosphate, was found to be higher than 1 ng/m3. The median concentration of 5 phthalates in the particulate phase was higher than 1 ng/m3. The impacts of some physical parameters, such as the molar mass and boiling point, on the SVOC partitioning among the different phases were quantified. The partitioning depends on the activity coefficient, vapor pressure at the boiling point, entropy of evaporation of the SVOCs, and the fraction of organic matter in particles. Thus, the partitioning may differ from one chemical family to another. The empirical equations based on regressions allow quick estimation of SVOC partitioning among the gas phase, particulate phase, and settled dust from the molar mass and boiling point.
Collapse
Affiliation(s)
- Wenjuan Wei
- University of Paris-Est, Scientific and Technical Center for Building (CSTB), Health and Comfort Department, French Indoor Air Quality Observatory (OQAI), 84 Avenue Jean Jaurès, Champs sur Marne, 77447 Marne la Vallée Cedex 2, France.
| | - Corinne Mandin
- University of Paris-Est, Scientific and Technical Center for Building (CSTB), Health and Comfort Department, French Indoor Air Quality Observatory (OQAI), 84 Avenue Jean Jaurès, Champs sur Marne, 77447 Marne la Vallée Cedex 2, France
| | - Olivier Blanchard
- Univ Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Fabien Mercier
- Univ Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Maud Pelletier
- Univ Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Barbara Le Bot
- Univ Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Philippe Glorennec
- Univ Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Olivier Ramalho
- University of Paris-Est, Scientific and Technical Center for Building (CSTB), Health and Comfort Department, French Indoor Air Quality Observatory (OQAI), 84 Avenue Jean Jaurès, Champs sur Marne, 77447 Marne la Vallée Cedex 2, France
| |
Collapse
|
35
|
Kashyap D, Agarwal T. Concentration and factors affecting the distribution of phthalates in the air and dust: A global scenario. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 635:817-827. [PMID: 29710605 DOI: 10.1016/j.scitotenv.2018.04.158] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 06/08/2023]
Abstract
Phthalates are ubiquitously present environmental contaminants. Air and dust are the most important mediums of exposure to phthalates. The present study reviews the presence of phthalates in the air and dust reported from different countries in the last ten years (2007-2017). The phthalate concentrations revealed wide heterogeneity with a mean and median value 6 ± 19 μg/m3 and 0.5 μg/m3 respectively in the air and 1.5 × 103 ± 2.2 × 103 μg/g and 7.8x102μg/g respectively in the dust. The highest phthalates levels in the air were reported from India (1.1 × 102 μg/m3) and in dust from Bulgaria (1.2 × 104 μg/g). Overall higher levels were reported from developing countries as compared to developed countries. Di (2-ethylhexyl) phthalate (DEHP) and Di-n-butyl phthalate (DBP) were found to be predominant in both air and dust. Temperature, humidity, air exchange rate, building material and indoor maintenance were reported as the important factors influencing the levels of phthalates in the air and dust. In addition to policy level interventions, reducing the use of phthalate containing materials and controlling the factors which enhance the emission from existing sources can help in reducing human exposure to phthalates.
Collapse
Affiliation(s)
- Durba Kashyap
- National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat, Haryana 131028, India
| | - Tripti Agarwal
- National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat, Haryana 131028, India.
| |
Collapse
|
36
|
Zha D, Li Y, Yang C, Yao C. Assessment of organophosphate flame retardants in surface water and sediment from a freshwater environment (Yangtze River, China). ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:222. [PMID: 29546485 DOI: 10.1007/s10661-018-6587-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 02/28/2018] [Indexed: 06/08/2023]
Abstract
Organophosphate flame retardants (OPFRs) have been detected in the surface water, suspended sediments, and river sediments from the Yangtze River in China. A modified polar organic chemical integrative sampler (m-POCIS) was successfully used to quantify the OPFR concentrations in surface water. The OPFR concentrations estimated by the field m-POCIS at six sampling locations ranged from 8.99 to 112.45 ng/L with an average concentration of 47.04 ng/L. The OPFR concentrations in suspended sediments were related to the sediment particle size distribution. Chlorinated and alkyl OPFRs were the principle compounds in sediments, especially tris(2-chloroisopropyl) phosphate (TCPP) with concentrations of 3.37-29.65 ng/g. The relationship between the OPFR concentrations and total organic carbon (TOC) contents in sediments was examined. The results suggested that the OPFR concentrations were significantly correlated with the TOC contents. The primary OPFR transport mechanism in a freshwater environment occurs in surface water rather than sediment. This was evaluated by the logKow and field sediment-water partition coefficient (logKoc) values between the sediment and water. Finally, the various distributions and transport of OPFRs at the sampling sites indicated that human activities, agricultural production, and wastewater effluents from sewage plants have an important effect on the OPFR levels in a freshwater environment.
Collapse
Affiliation(s)
- Daoping Zha
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education; College of Environment, HoHai University, Nanjing, Jiangsu Province, 210098, China
| | - Ying Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education; College of Environment, HoHai University, Nanjing, Jiangsu Province, 210098, China.
| | - Cunman Yang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education; College of Environment, HoHai University, Nanjing, Jiangsu Province, 210098, China
| | - Chi Yao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education; College of Environment, HoHai University, Nanjing, Jiangsu Province, 210098, China
| |
Collapse
|
37
|
Takeuchi S, Tanaka-Kagawa T, Saito I, Kojima H, Jin K, Satoh M, Kobayashi S, Jinno H. Differential determination of plasticizers and organophosphorus flame retardants in residential indoor air in Japan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:7113-7120. [PMID: 26099596 DOI: 10.1007/s11356-015-4858-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 06/08/2015] [Indexed: 06/04/2023]
Abstract
A variety of chemicals have been used in a wide range of indoor materials, such as wallpaper and furniture, and some of them are released into the indoor air. The level of consumption as well as the diversity of these chemicals has been increasing. The particle size of the materials in the air is known to affect the depth of human exposure, e.g., particles >10 μm can only reach the nasal cavity, whereas particles 2.5-10 μm can reach the respiratory tract and particles <2.5 μm can reach the bottom of the lungs. However, information on the concentrations and form of these chemicals in indoor air is very limited. In this study, we measured 54 compounds, including plasticizers (phthalates, adipates, and others) and organophosphorus flame retardants, in indoor air samples from the living rooms of 21 dwellings in 11 prefectures across Japan. For sampling, we used a four-stage air sampler (multi-nozzle cascade impactor) equipped with three quartz fiber filters to capture chemical particulates in three size ranges (<2.5, 2.5-10, and >10 μm) and a C18 solid-phase extraction disk to capture chemicals that exist in a gas phase in indoor air. Each of the chemicals in the three particulate phases and single gas phase was extracted by acetone and measured separately using GC/MS. Of the 54 compounds tested, 37 were detected in the indoor air samples. The highest concentration observed was that of 2-ethyl-1-hexanol (5.1 μg/m3), which was detected in samples from all 21 houses. The 37 compounds were captured in the four fractions at different rates roughly based on their molecular sizes. Compounds with a smaller molecular size were commonly detected as a gas phase, whereas compounds with a larger molecular size were detected as one or more of the three particulate phases in the indoor air samples. Among the three particulate phases, many of the compounds were detected from the filter capturing the smallest (<2.5 μm) particles. Therefore, these results suggest that the chemicals measured in this study might penetrate deeply into the lungs as many of them tend to exist as a gas and/or as particles smaller than 2.5 μm.
Collapse
Affiliation(s)
- Shinji Takeuchi
- Hokkaido Institute of Public Health, Kita-19, Nishi-12, Kita-ku, Sapporo, 060-0819, Japan.
| | - Toshiko Tanaka-Kagawa
- National Institute of Health Sciences, 1-18-1, Kami-yoga, Setagaya-ku, Tokyo, 158-8501, Japan
| | - Ikue Saito
- Tokyo Metropolitan Institute of Public Health, 3-24-1, Hyakunin-cho, Shinjyuku-ku, Tokyo, 169-0073, Japan
| | - Hiroyuki Kojima
- Hokkaido Institute of Public Health, Kita-19, Nishi-12, Kita-ku, Sapporo, 060-0819, Japan
| | - Kazuo Jin
- Hokkaido Institute of Public Health, Kita-19, Nishi-12, Kita-ku, Sapporo, 060-0819, Japan
| | - Masayuki Satoh
- Hokkaido Institute of Public Health, Kita-19, Nishi-12, Kita-ku, Sapporo, 060-0819, Japan
| | - Satoshi Kobayashi
- Hokkaido Institute of Public Health, Kita-19, Nishi-12, Kita-ku, Sapporo, 060-0819, Japan
| | - Hideto Jinno
- National Institute of Health Sciences, 1-18-1, Kami-yoga, Setagaya-ku, Tokyo, 158-8501, Japan
| |
Collapse
|
38
|
Studies on the development of antibodies for the highly hydrophobic plasticizers DINCH and DEHT. Anal Biochem 2018; 543:90-96. [DOI: 10.1016/j.ab.2017.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 10/28/2017] [Accepted: 12/06/2017] [Indexed: 01/23/2023]
|
39
|
Yadav IC, Devi NL, Zhong G, Li J, Zhang G, Covaci A. Occurrence and fate of organophosphate ester flame retardants and plasticizers in indoor air and dust of Nepal: Implication for human exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 229:668-678. [PMID: 28704803 DOI: 10.1016/j.envpol.2017.06.089] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 05/27/2017] [Accepted: 06/27/2017] [Indexed: 06/07/2023]
Abstract
The present study was carried out in Nepal, a landlocked country located between world's two most populous countries i.e. India and China. In this study, the occurrence, profiles, spatial distributions and fate of eight organophosphate ester flame retardants (OPFRs) were investigated in indoor air and house dust. Overall, the concentrations of ∑OPFR were in the range of 153-12100 ng/g (median732 ng/g) and 0.32-64 ng/m3 (median 5.2 ng/m3) in house dust and indoor air, respectively. The sources of high OPFR in the indoor environment could be from locally used wide variety of consumer products and building materials in Nepalese houses. Significantly, high concentration of tri-cresyl phosphate (TMPP) was found both in air and dust, while tri (2-ethylhexyl) phosphate (TEHP) had the highest concentration in air samples. It might be due to fact that the high concentrations of TMPP are related to intense traffic and/or nearby airports. On the other hand, significantly high concentration of TEHP could be due to anthropogenic activities. Only TEHP showed positive correlation between indoor air and house dust (Rho = 0.517, p < 0.01), while rest of compounds were either less correlated or not correlated at all. The estimated human exposure to ∑OPFR via different pathway of intake suggested dermal absorption via indoor dust as major pathway of human exposure to both children and adult population. However, other pathways of OPFR intake such as dietary or dermal absorption via soil may still be significant in case of Nepal.
Collapse
Affiliation(s)
- Ishwar Chandra Yadav
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China.
| | | | - Guangcai Zhong
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Jun Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
40
|
Zhang Q, Wang J, Zhu J, Liu J, Zhao M. Potential Glucocorticoid and Mineralocorticoid Effects of Nine Organophosphate Flame Retardants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:5803-5810. [PMID: 28430429 DOI: 10.1021/acs.est.7b01237] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Organophosphate flame retardants (OPFRs), as alternatives of polybrominated diphenyl ethers (PBDEs), have been frequently detected in the environment and biota, and could pose adverse effects on organisms. However, information on the potential endocrine disruption of OPFRs, especially their effects on steroid hormone receptors, such as glucocorticoid and mineralocorticoid receptors (GR/MR), is limited. In this study, the dual-luciferase reporter gene assay via GR/MR and a H295R steroidogenesis assay were employed to evaluate the endocrine disruption of nine OPFRs. We found TMPP, TPHP, and TDBPP exhibited both GR and MR antagonistic activities, while TNBP and TDCIPP only showed MR antagonistic property within a concentration range of 10-8 to 10-5 mol/L(M). In the H295R steroidogenesis assay, the fold changes of eight steroidogenic genes in response to OPFRs were further studied. We found CYP17,CYP21, and CYP11B1 expression were significantly down-regulated following TMPP, TPHP, or TDBPP exposure at a concentration of 2 × 10-6 M. Meanwhile TMPP decreased the production of cortisol and TDBPP down-regulated the secretion of aldosterone. Our results indicate that some OPFRs can interact with GR and MR, and have the potential to disturb steroidogenesis. Data provided here will be helpful to comprehensively understand the potential endocrine disruption of OPFRs.
Collapse
Affiliation(s)
- Quan Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology , Hangzhou, Zhejiang 310032, China
- Department of Environmental Health, Harvard T.H. Chan School of Public Health , Landmark Center West, Boston, Massachusetts 02215, United States
| | - Jinghua Wang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology , Hangzhou, Zhejiang 310032, China
| | - Jianqiang Zhu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology , Hangzhou, Zhejiang 310032, China
| | - Jing Liu
- College of Environmental and Resource Sciences, Zhejiang University , Hangzhou 310058, China
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology , Hangzhou, Zhejiang 310032, China
- Department of Environmental Health, Harvard T.H. Chan School of Public Health , Landmark Center West, Boston, Massachusetts 02215, United States
| |
Collapse
|
41
|
Śmiełowska M, Marć M, Zabiegała B. Indoor air quality in public utility environments-a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:11166-11176. [PMID: 28236201 PMCID: PMC5393278 DOI: 10.1007/s11356-017-8567-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/02/2017] [Indexed: 05/24/2023]
Abstract
Indoor air quality has been the object of interest for scientists and specialists from the fields of science such as chemistry, medicine and ventilation system design. This results from a considerable number of potential factors, which may influence the quality of the broadly understood indoor air in a negative way. Poor quality of indoor air in various types of public utility buildings may significantly affect an increase in the incidence of various types of civilisation diseases. This paper presents information about a broad spectrum of chemical compounds that were identified and determined in the indoor environment of various types of public utility rooms such as churches, museums, libraries, temples and hospitals. An analysis of literature data allowed for identification of the most important transport paths of chemical compounds that significantly influence the quality of the indoor environment and thus the comfort of living and the health of persons staying in it.
Collapse
Affiliation(s)
- Monika Śmiełowska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Str. 11/12, PL 80-233, Gdańsk, Poland
| | - Mariusz Marć
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Str. 11/12, PL 80-233, Gdańsk, Poland.
| | - Bożena Zabiegała
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Str. 11/12, PL 80-233, Gdańsk, Poland
| |
Collapse
|
42
|
Vojta Š, Bečanová J, Melymuk L, Komprdová K, Kohoutek J, Kukučka P, Klánová J. Screening for halogenated flame retardants in European consumer products, building materials and wastes. CHEMOSPHERE 2017; 168:457-466. [PMID: 27855342 DOI: 10.1016/j.chemosphere.2016.11.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/05/2016] [Accepted: 11/07/2016] [Indexed: 05/22/2023]
Abstract
To fulfill national and international fire safety standards, flame retardants (FRs) are being added to a wide range of consumer products and building materials consisting of flammable materials like plastic, wood and textiles. While the FR composition of some products and materials has been identified in recent years, the limited global coverage of the data and the large diversity in consumer products necessitates more information for an overall picture of the FR composition in common products/materials. To address this issue, 137 individual samples of various consumer products, building materials and wastes were collected. To identify and characterize potential sources of FRs in indoor environment, all samples were analyzed for content of polybrominated diphenyl ethers (PBDEs), hexabromocyclododecanes (HBCDDs) and novel flame retardants (NFRs). The most frequently detected were HBCDDs (85%), with the highest median concentration of Σ4HBCDDs of 300 mg kg-1 in polystyrenes. The highest median concentration of Σ10PBDEs was found in recycled plastic materials, reaching 4 mg kg-1. The lowest concentrations were observed for NFRs, where the median of Σ12NFRs reached 0.4 mg kg-1 in the group of electrical & electronic equipment wastes. This suggests that for consumer products and building materials that are currently in-use, legacy compounds still contribute to the overall burden of FRs. Additionally, contrasting patterns of FR composition in recycled and virgin plastics, revealed using principle component analysis (PCA), suggest that legacy flame retardants are reentering the market through recycled products, perpetuating the potential for emissions to indoor environments and thus for human exposure.
Collapse
Affiliation(s)
- Šimon Vojta
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 753/5, 625 00, Brno, Czechia
| | - Jitka Bečanová
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 753/5, 625 00, Brno, Czechia
| | - Lisa Melymuk
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 753/5, 625 00, Brno, Czechia.
| | - Klára Komprdová
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 753/5, 625 00, Brno, Czechia
| | - Jiří Kohoutek
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 753/5, 625 00, Brno, Czechia
| | - Petr Kukučka
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 753/5, 625 00, Brno, Czechia
| | - Jana Klánová
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 753/5, 625 00, Brno, Czechia
| |
Collapse
|
43
|
Ma Y, Jin J, Li P, Xu M, Sun Y, Wang Y, Yuan H. Organophosphate ester flame retardant concentrations and distributions in serum from inhabitants of Shandong, China, and changes between 2011 and 2015. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:414-421. [PMID: 27391075 DOI: 10.1002/etc.3554] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/15/2016] [Accepted: 07/07/2016] [Indexed: 06/06/2023]
Abstract
The production and use of brominated flame retardants have been increasingly restricted. Organophosphate esters (OPEs) have been widely used as substitutes for brominated flame retardants. However, little is yet known about human exposure to OPEs. The potential health risks posed by OPEs were assessed by determining the concentrations of 6 OPEs in pooled serum samples from residents of Shandong, China. The mean ∑6 OPE concentrations in 2011 and 2015 were 680 ng/g lipid and 709 ng/g lipid, respectively. The most abundant OPE was tri(2-chloroethyl) phosphate, contributing a mean of 82% of the ∑6 OPE concentration. A significant correlation was found between the tri(2-chloroethyl) phosphate and tri-n-butylphosphate concentrations, possibly indicating that these OPEs are used in similar applications and have similar human exposure pathways in the study area. The mean tri(2-chloroethyl) phosphate concentration increased from 536 ng/g lipid in 2011 to 605 ng/g lipid in 2015, but the concentrations of tri-n-butylphosphate, triphenyl phosphate, and tris(methylphenyl) esters decreased between 2011 and 2015. This could indicate that chlorinated OPEs bioaccumulate in humans more strongly than nonchlorinated OPEs do. Environ Toxicol Chem 2017;36:414-421. © 2016 SETAC.
Collapse
Affiliation(s)
- Yulong Ma
- College of Life and Environmental Science, Minzu University of China, Beijing, China
| | - Jun Jin
- College of Life and Environmental Science, Minzu University of China, Beijing, China
- Engineering Research Center of Food Environment and Public Health, Beijing, China
| | - Peng Li
- College of Life and Environmental Science, Minzu University of China, Beijing, China
| | - Meng Xu
- College of Life and Environmental Science, Minzu University of China, Beijing, China
| | - Yiming Sun
- College of Life and Environmental Science, Minzu University of China, Beijing, China
| | - Ying Wang
- College of Life and Environmental Science, Minzu University of China, Beijing, China
| | - Haodong Yuan
- College of Life and Environmental Science, Minzu University of China, Beijing, China
| |
Collapse
|
44
|
Wei W, Mandin C, Blanchard O, Mercier F, Pelletier M, Le Bot B, Glorennec P, Ramalho O. Predicting the gas-phase concentration of semi-volatile organic compounds from airborne particles: Application to a French nationwide survey. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 576:319-325. [PMID: 27788447 DOI: 10.1016/j.scitotenv.2016.10.074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/09/2016] [Accepted: 10/10/2016] [Indexed: 06/06/2023]
Abstract
Semi-volatile organic compounds (SVOCs) partition indoors between the gas phase, airborne particles, settled dust, and other surfaces. Unknown concentrations of SVOCs in the gas phase (Cg) can be predicted from their measured concentrations in airborne particles. In previous studies, the prediction of Cg depended largely on choosing a specific equation for the calculation of the particle/gas partition coefficient. Moreover, the prediction of Cg is frequently performed at a reference temperature rather than the real indoor temperature. In this paper, a probabilistic approach based on Monte Carlo simulation was developed to predict the distribution of SVOCs' Cg from their concentrations in airborne particles at the target indoor temperature. Moreover, the distribution of the particle/gas partition coefficient of each SVOC at the target temperature was used. The approach was validated using two measured datasets in the literature: the predicted Cg from concentrations measured in airborne particles and the measured Cg were generally of the same order of magnitude. The distributions of the Cg of 66 SVOCs in the French housing stock were then predicted. The SVOCs with the highest median Cg, ranging from 1ng/m3 to >100ng/m3, included 8 phthalates (DEP, DiBP, DBP, DEHP, BBP, DMP, DiNP, and DMEP), 4 polycyclic aromatic hydrocarbons (fluorene, phenanthrene, fluoranthene, and anthracene), 2 alkylphenols (4-tert-butylphenol and 4-tert-octylphenol), 2 synthetic musks (galaxolide and tonalide), tributyl phosphate, and heptachlor. The nationwide, representative, predicted Cg values of SVOCs are frequently of the same order of magnitude in Europe and North America, whereas these Cg values in Chinese and Indian dwellings and the Cg of polybrominated diphenyl ethers in U.S. dwellings are generally higher.
Collapse
Affiliation(s)
- Wenjuan Wei
- University of Paris-Est, Scientific and Technical Center for Building (CSTB), Health and Comfort Department, French Indoor Air Quality Observatory (OQAI), 84 Avenue Jean Jaurès, Champs sur Marne, 77447 Marne la Vallée Cedex 2, France.
| | - Corinne Mandin
- University of Paris-Est, Scientific and Technical Center for Building (CSTB), Health and Comfort Department, French Indoor Air Quality Observatory (OQAI), 84 Avenue Jean Jaurès, Champs sur Marne, 77447 Marne la Vallée Cedex 2, France; INSERM-U1085, Irset-Research Institute for Environmental and Occupational Health, Rennes, France; LERES-Environment and Health Research Laboratory (Irset and EHESP Technologic Platform), Rennes, France
| | - Olivier Blanchard
- EHESP-School of Public Health, Sorbonne Paris Cité, Rennes, France; INSERM-U1085, Irset-Research Institute for Environmental and Occupational Health, Rennes, France
| | - Fabien Mercier
- EHESP-School of Public Health, Sorbonne Paris Cité, Rennes, France; INSERM-U1085, Irset-Research Institute for Environmental and Occupational Health, Rennes, France; LERES-Environment and Health Research Laboratory (Irset and EHESP Technologic Platform), Rennes, France
| | - Maud Pelletier
- EHESP-School of Public Health, Sorbonne Paris Cité, Rennes, France; INSERM-U1085, Irset-Research Institute for Environmental and Occupational Health, Rennes, France
| | - Barbara Le Bot
- EHESP-School of Public Health, Sorbonne Paris Cité, Rennes, France; INSERM-U1085, Irset-Research Institute for Environmental and Occupational Health, Rennes, France; LERES-Environment and Health Research Laboratory (Irset and EHESP Technologic Platform), Rennes, France
| | - Philippe Glorennec
- EHESP-School of Public Health, Sorbonne Paris Cité, Rennes, France; INSERM-U1085, Irset-Research Institute for Environmental and Occupational Health, Rennes, France
| | - Olivier Ramalho
- University of Paris-Est, Scientific and Technical Center for Building (CSTB), Health and Comfort Department, French Indoor Air Quality Observatory (OQAI), 84 Avenue Jean Jaurès, Champs sur Marne, 77447 Marne la Vallée Cedex 2, France
| |
Collapse
|
45
|
Li WL, Huo CY, Liu LY, Song WW, Zhang ZF, Ma WL, Qiao LN, Li YF. Multi-year air monitoring of legacy and current-use brominated flame retardants in an urban center in northeastern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 571:633-642. [PMID: 27401280 DOI: 10.1016/j.scitotenv.2016.07.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 07/02/2016] [Accepted: 07/05/2016] [Indexed: 06/06/2023]
Abstract
The occurrence and temporal trends of polybrominated diphenyl ethers (PBDEs) and non-PBDE brominated flame retardants (NBFRs) were investigated in an urban atmosphere of Northeast China in consecutive six years (2008-2013). Among all chemicals, BDE-209, l,2,5,6,9,10-hexabromocyclododecane (HBCD), and decabromodiphenylethane (DBDPE) were the three most dominant compounds. During the period, the levels of pentabromodiphenyl ethers in the gas-phase and octabromodiphenyl ethers in the particle-phase significantly decreased, while the levels of BDE-209 and NBFRs increased in either the gas-phase or particle-phase. Ambient temperature was the most significant variable that influenced the gas-phase and particle-phase concentrations of BFRs, followed by wind speed and relative humidity. A stronger temperature dependence of the atmospheric concentrations was found for lower mass BFRs. Gas-particle partitioning studies suggested PBDEs in the urban atmosphere of Northeast China were at steady-state. Steady-state equation can also well describe the partitioning behavior for NBFRs, suggesting that the atmospheric partitioning behaviors of NBFRs were similar to those of PBDEs.
Collapse
Affiliation(s)
- Wen-Long Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Chun-Yan Huo
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China; School of Environmental Science, Liaoning University, Shenyang 110036, China
| | - Li-Yan Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China.
| | - Wei-Wei Song
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Wan-Li Ma
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China.
| | - Li-Na Qiao
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China; IJRC-PTS-NA, Toronto M2N 6X9, Canada; School of Environmental Science, Liaoning University, Shenyang 110036, China
| |
Collapse
|
46
|
Lewkowska P, Dymerski T, Gębicki J, Namieśnik J. The Use of Sensory Analysis Techniques to Assess the Quality of Indoor Air. Crit Rev Anal Chem 2016; 47:37-50. [PMID: 27105173 DOI: 10.1080/10408347.2016.1176888] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The quality of indoor air is one of the significant elements that influences people's well-being and health inside buildings. Emissions of pollutants, which may cause odor nuisance, are the main reason for people's complaints regarding the quality of indoor air. As a result, it is necessary to perform tests aimed at identifying the sources of odors inside buildings. The article contains basic information on the characteristics of the sources of indoor air pollution and the influence of the odor detection threshold on people's health and comfort. An attempt was also made to classify and use sensory analysis techniques to perform tests of the quality of indoor air, which would enable identification of sensory experience and would allow for indication of the degree of their intensity.
Collapse
Affiliation(s)
- Paulina Lewkowska
- a Faculty of Chemistry, Department of Analytical Chemistry , Gdansk University of Technology , Gdansk , Poland
| | - Tomasz Dymerski
- a Faculty of Chemistry, Department of Analytical Chemistry , Gdansk University of Technology , Gdansk , Poland
| | - Jacek Gębicki
- a Faculty of Chemistry, Department of Analytical Chemistry , Gdansk University of Technology , Gdansk , Poland
| | - Jacek Namieśnik
- a Faculty of Chemistry, Department of Analytical Chemistry , Gdansk University of Technology , Gdansk , Poland
| |
Collapse
|
47
|
Butt CM, Miranda ML, Stapleton HM. Development of an analytical method to quantify PBDEs, OH-BDEs, HBCDs, 2,4,6-TBP, EH-TBB, and BEH-TEBP in human serum. Anal Bioanal Chem 2016; 408:2449-59. [PMID: 26864867 DOI: 10.1007/s00216-016-9340-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/08/2016] [Accepted: 01/14/2016] [Indexed: 12/30/2022]
Abstract
Polybrominated diphenyl ethers (PBDEs) flame retardants (FRs) were phased-out in the mid-2000s (penta- and octaBDE) and 2013 (decaBDE); however, their hydroxylated metabolites (OH-BDEs) are still commonly detected in human serum. Today, novel FRs such as Firemaster® 550, a mixture that contains two brominated compounds, EH-TBB and BEH-TEBP are used as replacements for PBDEs in some applications, and there is a need to develop a comprehensive analytical method to assess exposure to both legacy PBDEs and novel FRs. This study developed a solid-phase extraction (SPE)-based method to analyze PBDEs, OH-BDEs, 2,4,6-tribromophenol (TBP), hexabromocylcododecane isomers (HBCDs), EH-TBB, and BEH-TEBP in human serum. Briefly, serum proteins were first denatured with formic acid, and then the target analytes were isolated using a SPE column. Finally, the extract was cleaned and fractioned using a silica SPE column. Method performance was assessed by spiking fetal bovine serum with 1-2 ng of the target analytes, and method accuracy was quantified by comparison to a serum Standard Reference Material (SRM). The developed method showed good recovery and accuracy for all target analytes with the exception of the very low and very high molecular weight PBDE congeners. Using this method, 43 serum samples collected from the Healthy Pregnancy, Healthy Baby Study (HPHB) cohort in Durham, NC, USA were analyzed for FRs. A novel finding was the ubiquitous detection of 2,4,6-TBP, at levels greater than the individual PBDE congeners. Furthermore, 2,4,6-TBP was positively correlated with PBDEs, suggesting that they may have a similar source of exposure, or that 2,4,6-TBP may result from metabolism of PBDEs in vivo.
Collapse
Affiliation(s)
- Craig M Butt
- Nicholas School of the Environment, Levine Science Research Center, Duke University, Room A220, Box 90328, Durham, NC, 27708, USA
| | - Marie Lynn Miranda
- Department of Statistics, Rice University, 6100 Main St. MS-138, Duncan Hall, Box 1892, Houston, TX, 77005-1827, USA.,Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Heather M Stapleton
- Nicholas School of the Environment, Levine Science Research Center, Duke University, Room A220, Box 90328, Durham, NC, 27708, USA.
| |
Collapse
|
48
|
Bui TT, Giovanoulis G, Cousins AP, Magnér J, Cousins IT, de Wit CA. Human exposure, hazard and risk of alternative plasticizers to phthalate esters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 541:451-467. [PMID: 26410720 DOI: 10.1016/j.scitotenv.2015.09.036] [Citation(s) in RCA: 265] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 09/07/2015] [Accepted: 09/07/2015] [Indexed: 05/22/2023]
Abstract
Alternative plasticizers to phthalate esters have been used for over a decade, but data regarding emissions, human exposure and health effects are limited. Here we review 20 alternative plasticizers in current use and their human exposure, hazard and risk. Physicochemical properties are collated for these diverse alternatives and log KOW values range over 15 orders of magnitude and log KAW and log KOA values over about 9 orders of magnitude. Most substances are hydrophobic with low volatility and are produced in high volumes for use in multiple applications. There is an increasing trend in the total use of alternative plasticizers in Sweden compared to common phthalate esters in the last 10 years, especially for DINCH. Evaluative indoor fate modeling reveals that most alternatives are distributed to vertical surfaces (e.g. walls or ceilings). Only TXIB and GTA are predicted to be predominantly distributed to indoor air. Human exposure data are lacking and clear evidence for human exposure only exists for DEHT and DINCH, which show increasing trends in body burdens. Human intake rates are collected and compared with limit values with resulting risk ratios below 1 except for infant's exposure to ESBO. PBT properties of the alternatives indicate mostly no reasons for concern, except that TEHPA is estimated to be persistent and TCP toxic. A caveat is that non-standard toxicological endpoint results are not available and, similar to phthalate esters, the alternatives are likely "pseudo-persistent". Key data gaps for more comprehensive risk assessment are identified and include: analytical methods to measure metabolites in biological fluids and tissues, toxicological information regarding non-standard endpoints such as endocrine disruption and a further refined exposure assessment in order to consider high risk groups such as infants, toddlers and children.
Collapse
Affiliation(s)
- Thuy T Bui
- IVL Swedish Environmental Research Institute, SE-100 31 Stockholm, Sweden; Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, SE-106 91 Stockholm, Sweden.
| | - Georgios Giovanoulis
- IVL Swedish Environmental Research Institute, SE-100 31 Stockholm, Sweden; Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, SE-106 91 Stockholm, Sweden
| | - Anna Palm Cousins
- IVL Swedish Environmental Research Institute, SE-100 31 Stockholm, Sweden
| | - Jörgen Magnér
- IVL Swedish Environmental Research Institute, SE-100 31 Stockholm, Sweden
| | - Ian T Cousins
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, SE-106 91 Stockholm, Sweden
| | - Cynthia A de Wit
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
49
|
Bao J, Wang M, Ning X, Zhou Y, He Y, Yang J, Gao X, Li S, Ding Z, Chen B. Phthalate concentrations in personal care products and the cumulative exposure to female adults and infants in Shanghai. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2015; 78:325-341. [PMID: 25734628 DOI: 10.1080/15287394.2014.968696] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Phthalate esters (PE) are synthetic chemicals widely used in industry, and have been detected in personal care products (PCP). Recent findings of human reports demonstrated endocrine-disrupting action associated with phthalate exposures. The aims of this study were to (1) measure levels of 11 PE in 198 PCP collected from retail markets in Shanghai and (2) assess daily dermal exposure in adult females and infants. The health risk of cumulative exposure to eight PE on reproductive system function derived from dermal PCP use was further assessed by utilizing the hazard index (HI) approach. Diethyl phthalate (DEP) was the most frequently detected compound (29.8%), followed by diisobutyl phthalate (DiBP) (6.6%). The geometric mean (GM) concentrations of daily exposure to DEP, bis(2-methoxyethyl) phthalate (DMEP), DiBP, dibutyl phthalate (DBP), diphenyl phthalate (DPP), and bis(2-ethylhexyl) phthalate (DEHP) in female adults were 0.018, 0.012, 0.002, 0.001, 0.003, and 0.002 μg/kg body weight (bw)/d, respectively. The GM daily exposure levels to PE in infants and adult females were similar except for DEHP, which was higher in infants. DEP exposure was highest in both subpopulations at either GM or maximal level. All HI of 8 PE were far less than 1, ranging from 0.0002 to 0.005, indicating no cumulative reproductive risks to these populations. DBP, DMEP, and DEHP were three major contributors to the cumulative HI. In summary, the level of phthalate in PCP from Shanghai retail markets posed no apparent cumulative risk to adult females and infants in China.
Collapse
Affiliation(s)
- Jiaqin Bao
- a College of Food Science and Technology, Shanghai Ocean University , Shanghai , P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|