1
|
Shoman N, Solomonova E, Akimov A. Combined effect of light and glyphosate herbicide on growth rate of marine diatom algae. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:622-629. [PMID: 38760613 DOI: 10.1007/s10646-024-02759-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/09/2024] [Indexed: 05/19/2024]
Abstract
The effect of glyphosate herbicide at concentrations of 25, 100, 150 and 200 μg.L-1 on growth characteristics of diatoms C. caspia and T. weissflogii under accumulative growth conditions was investigated. Increasing herbicide concentration in the medium resulted in growth suppression of both species and decreased the final abundance of the cultures in the stationary growth phase. The calculated concentrations of herbicide EC10 and EC50 (10 and 90 μg.L-1 for C. caspia and 7 and 25 μg·L-1 for T. weissflogii, respectively) led to a 10 and 50% reduction in the abundance of the studied cultures relative to the control, are ecologically significant and correspond to the values recorded in aquatic areas. The combined effect of light (in the range of 20-250 µE.m-2.s-1) and glyphosate (calculated concentrations of EC10 and EC50) on the growth characteristics of microalgae was evaluated. An increase in algal sensitivity to light was observed with glyphosate exposure. In both species, the increase in the concentration of glyphosate in the medium led to a decrease in the initial angle of slope of the light curve of growth under conditions of light limitation, a reduction in the value of light saturation of growth, narrowing of the boundaries of the light optimum and an increase in the degree of light inhibition. It is shown that the effect of the combined action of light and glyphosate exceeds the sum of the effects of each factor. This fact should be taken into account in ecotoxicological monitoring when assessing the risks of glyphosate ingress into aquatic ecosystems. An increase in glyphosate concentration in water during periods with high values of solar insolation is potentially dangerous due to a decrease in the photosynthetic activity of algae and a reduction in diatom algae abundance.
Collapse
Affiliation(s)
- Natalia Shoman
- A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, 2, Nakhimov Avе., Sevastopol, Russia.
| | - Ekaterina Solomonova
- A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, 2, Nakhimov Avе., Sevastopol, Russia
| | - Arkady Akimov
- A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, 2, Nakhimov Avе., Sevastopol, Russia
| |
Collapse
|
2
|
Quaglia G, Joris I, Desmet N, Koopmans K, Nelissen V, Boënne W, Stamm C, Seuntjens P, Van De Vijver E. Mitigating glyphosate levels in surface waters: Long-term assessment in an agricultural catchment in Belgium. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:121046. [PMID: 38728981 DOI: 10.1016/j.jenvman.2024.121046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/27/2024] [Accepted: 04/28/2024] [Indexed: 05/12/2024]
Abstract
The increasing concern over pesticide pollution in water bodies underscores the need for effective mitigation strategies to support the transition towards sustainable agriculture. This study assesses the effectiveness of landscape mitigation strategies, specifically vegetative buffer strips, in reducing glyphosate loads at the catchment scale under realistic conditions. Conducted over six years (2014-2019) in a small agricultural region in Belgium, our research involved the analysis of 732 water samples from two monitoring stations, differentiated by baseflow and event-driven sampling, and before (baseline) and after the implementation of mitigation measures. The results indicated a decline in both the number and intensity of point source losses over the years. Additionally, there was a general decrease in load intensity; however, the confluence of varying weather conditions (notably dry years during the mitigation period) and management practices (the introduction of buffer strips) posed challenges for a statistically robust evaluation of each contributing factor. A reduction of loads was measured when comparing mitigation with baseline, although this reduction is not statistically significant. Glyphosate loads during rainfall events correlated with a rainfall index and runoff ratio. Overall, focusing the mitigation strategy on runoff and erosion was a valid approach. Nevertheless, challenges remain, as evidenced by the continuous presence of glyphosate in baseflow conditions, highlighting the complex dynamics of pesticide transport. The study concludes that while progress has been made towards reducing pesticide pollution, the complexity of interacting factors necessitates further research. Future directions should focus on enhancing farmer engagement in mitigation programs and developing experiments with more intense data collection that help to assess underlying dynamics of pesticide pollution and the impact of mitigation strategies in more detail, contributing towards the goal of reducing pesticide pollution in water bodies.
Collapse
Affiliation(s)
- Gisela Quaglia
- VITO, Flemish Institute for Technological Research, Belgium; Ghent University, Department of Environment, Belgium.
| | - Ingeborg Joris
- VITO, Flemish Institute for Technological Research, Belgium
| | - Nele Desmet
- VITO, Flemish Institute for Technological Research, Belgium
| | | | | | - Wesley Boënne
- VITO, Flemish Institute for Technological Research, Belgium
| | - Christian Stamm
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Switzerland
| | - Piet Seuntjens
- VITO, Flemish Institute for Technological Research, Belgium; University of Antwerp, Institute for Environment and Sustainable Development, Belgium
| | | |
Collapse
|
3
|
Ferreira NGC, da Silva KA, Guimarães ATB, de Oliveira CMR. Hotspots of soil pollution: Possible glyphosate and aminomethylphosphonic acid risks on terrestrial ecosystems and human health. ENVIRONMENT INTERNATIONAL 2023; 179:108135. [PMID: 37647703 DOI: 10.1016/j.envint.2023.108135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 04/13/2023] [Accepted: 08/07/2023] [Indexed: 09/01/2023]
Abstract
The study presents a literature review of glyphosate (GLY) occurrence and its breakdown product, aminomethylphosphonic acid (AMPA), in soils worldwide, but with a specific focus on South America. In addition, an ecological risk approach based on the ecotoxicological endpoints for key soil biota (e.g., collembolans, and earthworms) assessed the impact of GLY and AMPA on these organisms. A generic probabilistic model for human health risk was also calculated for the different world regions. For what reports the risk for edaphic species and the level of pollution under the worst-case scenario, the South American continent was identified as the region of most concern. Nonetheless, other areas may also be in danger, but no risk could be calculated due to the lack of data. Since tropical countries are the top food exporters worldwide, the results obtained in this study must be carefully examined for their implications on a global scale. Some of the factors behind the high levels of these two chemicals in soils are debated (e.g., permissive protection policies, the extensive use of genetically modified crops), and some possible guidelines are presented that include, for example, further environmental characterisation and management of pesticide residues. The present review integrates data that can be used as a base by policymakers and decision-makers to develop and implement environmental policies.
Collapse
Affiliation(s)
- Nuno G C Ferreira
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; School of Biosciences - Cardiff University, Museum Avenue, Cardiff CF10 3AX, United Kingdom.
| | - Karlo Alves da Silva
- Graduate Program in Environmental Management (PPGAmb), Universidade Positivo (UP) and Centro de Pesquisa da Universidade Positivo (CPUP), Professor Pedro Viriato Parigot de Souza, 81280-330 Curitiba, Brazil
| | - Ana Tereza Bittencourt Guimarães
- Laboratory of Biological Investigations, Universidade Estadual do Oeste do Paraná, Rua Universitária, Cascavel 2069, Paraná, Brazil; Graduate Program in Biosciences and Health, Universidade Estadual do Oeste do Paraná, Rua Universitária, Cascavel 2069, Paraná, Brazil
| | - Cíntia Mara Ribas de Oliveira
- Graduate Program in Environmental Management (PPGAmb), Universidade Positivo (UP) and Centro de Pesquisa da Universidade Positivo (CPUP), Professor Pedro Viriato Parigot de Souza, 81280-330 Curitiba, Brazil.
| |
Collapse
|
4
|
Wimmer B, Langarica-Fuentes A, Schwarz E, Kleindienst S, Huhn C, Pagel H. Mechanistic modeling indicates rapid glyphosate dissipation and sorption-driven persistence of its metabolite AMPA in soil. JOURNAL OF ENVIRONMENTAL QUALITY 2023; 52:393-405. [PMID: 36417923 DOI: 10.1002/jeq2.20437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Residual concentrations of glyphosate and its main transformation product aminomethylphosphonic acid (AMPA) are often observed in soils. The factors controlling their biodegradation are currently not well understood. We analyzed sorption-limited biodegradation of glyphosate and AMPA in soil with a set of microcosm experiments. A mechanistic model that accounts for equilibrium and kinetic sorption facilitated interpretation of the experimental results. Both compounds showed a biphasic dissipation with an initial fast (up to Days 7-10) and subsequent slower transformation rate, pointing to sorption-limited degradation. Glyphosate transformation was well described by considering only equilibrium sorption. Model simulations suggested that only 0.02-0.13% of total glyphosate was present in the soil solution and thus bioavailable. Glyphosate transformation was rapid in solution (time required for 50 % dissipation of the total initially added chemical [DT50 ] = 3.9 min), and, despite strong equilibrium sorption, total glyphosate in soil dissipated quickly (DT50 = 2.4 d). Aminomethylphosphonic acid dissipation kinetics could only be described when considering both equilibrium and kinetic sorption. In comparison to glyphosate, the model simulations showed that a higher proportion of total AMPA was dissolved and directly bioavailable (0.27-3.32%), but biodegradation of dissolved AMPA was slower (DT50 = 1.9 h). The model-based data interpretation suggests that kinetic sorption strongly reduces AMPA bioavailability, leading to increased AMPA persistence in soil (DT50 = 12 d). Thus, strong sorption combined with rapid degradation points to low risks of glyphosate leaching by vertical transport through soil in the absence of preferential flow. Ecotoxicological effects on soil microorganisms might be reduced. In contrast, AMPA persists, rendering these risks more likely.
Collapse
Affiliation(s)
- Benedikt Wimmer
- Institute of Physical and Theoretical Chemistry, Eberhard Karls Univ., Tübingen, Germany
| | - Adrian Langarica-Fuentes
- Center for Applied Geosciences/Geo- and Environmental Research Center, Eberhard Karls Univ., Tübingen, Germany
| | - Erik Schwarz
- Dep. of Biogeophysics, Institute of Soil Science and Land Evaluation, Univ. of Hohenheim, Stuttgart, Germany
- Dep. of Physical Geography and Bolin Centre for Climate Research, Stockholm Univ., Stockholm, Sweden
| | - Sara Kleindienst
- Center for Applied Geosciences/Geo- and Environmental Research Center, Eberhard Karls Univ., Tübingen, Germany
- Dep. of Environmental Microbiology, Institute for Sanitary Engineering, Water Quality and Solid Waste Management (ISWA), Univ. of Stuttgart, Stuttgart, Germany
| | - Carolin Huhn
- Institute of Physical and Theoretical Chemistry, Eberhard Karls Univ., Tübingen, Germany
| | - Holger Pagel
- Dep. of Biogeophysics, Institute of Soil Science and Land Evaluation, Univ. of Hohenheim, Stuttgart, Germany
| |
Collapse
|
5
|
Zioga E, White B, Stout JC. Glyphosate used as desiccant contaminates plant pollen and nectar of non-target plant species. Heliyon 2022; 8:e12179. [PMID: 36531643 PMCID: PMC9755368 DOI: 10.1016/j.heliyon.2022.e12179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/09/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
Pesticide products containing glyphosate as a systemic active ingredient are some of the most extensively used herbicides worldwide. After spraying, residues have been found in nectar and pollen collected by bees foraging on treated plants. This dietary exposure to glyphosate could pose a hazard for flower-visiting animals including bees, and for the delivery of pollination services. Here, we evaluated whether glyphosate contaminates nectar and pollen of targeted crops and non-target wild plants. Oilseed rape was selected as focal crop species, and Rubus fruticosus growing in the hedgerows surrounding the crop was chosen as non-target plant species. Seven fields of oilseed rape, where a glyphosate-based product was applied, were chosen in east and southeast Ireland, and pollen and nectar were extracted from flowers sampled from the field at various intervals following glyphosate application. Pollen loads were taken from honeybees and bumblebees foraging on the crop at the same time. Glyphosate and aminomethylphosphonic acid (AMPA) residues were extracted using acidified methanol and their concentrations in the samples were determined by a validated liquid chromatography tandem mass spectrometry (LC-MS/MS) method. Glyphosate was detected in R. fruticosus nectar and pollen samples that were taken within a timeframe of two to seven days after the application on the crop as a desiccant. No glyphosate was detected when the application took place before or more than two months prior to our sampling in any of the evaluated matrices. The metabolite AMPA was not detected in any samples. To gain further insight into the potential extent of translocation within both plants and soil when a crop is desiccated using glyphosate before harvesting, and the potential impacts on bees, we recommend a longitudinal study of the presence and fate of glyphosate in non-target flowering plants growing nearby crop fields, over a period of several days after glyphosate application.
Collapse
Affiliation(s)
- Elena Zioga
- Botany, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Blánaid White
- School of Chemical Sciences, DCU Water Institute, Dublin City University, Dublin 9, Ireland
| | - Jane C. Stout
- Botany, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
6
|
Fan Y, Zhang K, Zhang R, Guo G, Li H, Bai Y, Lin Y, Cai T. Derivation of water quality criteria for glyphosate and its formulations to protect aquatic life in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:51860-51870. [PMID: 35254617 DOI: 10.1007/s11356-022-19517-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Extensive use of the herbicide glyphosate leads to a high detection rate in the environment and potential risks to nontarget aquatic life. China ranks first globally in the production and consumption of glyphosate, but there are no glyphosate water quality criteria (WQCs) for protecting aquatic life. Here, data on the acute and chronic toxicity of glyphosate and glyphosate-based formulations (GBFs) to freshwater aquatic life were collected and screened. Significant differences in species sensitivity distributions (SSDs) and toxicity values for acute or chronic toxicity were found between glyphosate and GBFs. The hazardous concentrations for 5% of species (HC5) of glyphosate or GBFs between native and nonnative species were different, and native species were found to be more sensitive to the toxicity of glyphosate. The acute and chronic WQCs derived with the SSD method for glyphosate based on the toxicity data for native species in China were 3.35 and 0.26 mg/L, respectively, and those found for GBFs were 0.21 and 0.005 mg/L, respectively. The WQCs in this study were quite different from those estimated using similar statistical extrapolation methods in other countries, which reflects the differences in species sensitivity to glyphosate toxicity in different regions. The hazard quotients (HQs) were calculated based on the WQCs and concentrations of glyphosate in some surface waters in China and indicated that glyphosate exhibits medium or high hazard risk in some samples of Tai Lake, surface water in Guiyang, fishpond water in Chongqing, rural drinking water, and surface water and reservoir water in Henan Province. The WQCs of glyphosate and GBFs have scientific significance for the exposure and pollution control of herbicide formulations and the protection of aquatic life in China.
Collapse
Affiliation(s)
- Yili Fan
- School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, Inner Mongolia, China
| | - Kaibo Zhang
- School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, Inner Mongolia, China
| | - Ruiqing Zhang
- School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, Inner Mongolia, China.
| | - Guanghui Guo
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huixian Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yingchen Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Ying Lin
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Ting Cai
- Inner Mongolia Autonomous Region Agriculture and Animal Husbandry Technology Extension Center, Hohhot, 010010, Inner Mongolia, China
| |
Collapse
|
7
|
Zabaloy MC, Allegrini M, Hernandez Guijarro K, Behrends Kraemer F, Morrás H, Erijman L. Microbiomes and glyphosate biodegradation in edaphic and aquatic environments: recent issues and trends. World J Microbiol Biotechnol 2022; 38:98. [PMID: 35478266 DOI: 10.1007/s11274-022-03281-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/08/2022] [Indexed: 12/11/2022]
Abstract
Glyphosate (N-(phosphonomethyl)glycine) has emerged as the top-selling herbicide worldwide because of its versatility in controlling annual and perennial weeds and the extensive use of glyphosate-resistant crops. Concerns related to the widespread use of glyphosate and its ubiquitous presence in the environment has led to a large number of studies and reviews, which examined the toxicity and fate of glyphosate and its major metabolite, aminomethylphosphonic acid (AMPA) in the environment. Because the biological breakdown of glyphosate is most likely the main elimination process, the biodegradation of glyphosate has also been the object of abundant experimental work. Importantly, glyphosate biodegradation in aquatic and soil ecosystems is affected not only by the composition and the activity of microbial communities, but also by the physical environment. However, the interplay between microbiomes and glyphosate biodegradation in edaphic and aquatic environments has rarely been considered before. The proposed minireview aims at filling this gap. We summarize the most recent work exploring glyphosate biodegradation in natural aquatic biofilms, the biological, chemical and physical factors and processes playing on the adsorption, transport and biodegradation of glyphosate at different levels of soil organization and under different agricultural managements, and its impact on soil microbial communities.
Collapse
Affiliation(s)
- María Celina Zabaloy
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
- Departamento de Agronomía, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Marco Allegrini
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR), CONICET, Universidad Nacional de Rosario, Zavalla, Argentina
| | - Keren Hernandez Guijarro
- Instituto Nacional de Tecnología Agropecuaria (INTA), Unidad Integrada Estación Experimental Agropecuaria Balcarce, Balcarce, Argentina
| | - Filipe Behrends Kraemer
- Cátedra de Manejo y Conservación de Suelos, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Suelos-CIRN-INTA, Hurlingham, Argentina
| | - Héctor Morrás
- Instituto de Suelos-CIRN-INTA, Hurlingham, Argentina
- Facultad de Ciencias Agrarias y Veterinaria, Universidad del Salvador, Pilar, Argentina
| | - Leonardo Erijman
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr Héctor N. Torres" (INGEBI-CONICET), Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina.
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
8
|
PING H, ZHAO F, LI C, WANG B, KONG H, LI Y, MA Z. [Rapid and simultaneous determination of glyphosate, glufosinate, and their metabolites in soil by high performance liquid chromatography-tandem mass spectrometry]. Se Pu 2022; 40:273-280. [PMID: 35243837 PMCID: PMC9404154 DOI: 10.3724/sp.j.1123.2021.08005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Indexed: 11/25/2022] Open
Abstract
Glyphosate (GLY) and glufosinate (GLUF) are non-selective translocated herbicides that are used in agricultural and non-agricultural land worldwide. The extensive use of GLY and GLUF may lead to their accumulation in soil, which causes soil pollution and affects the soil micro-ecological environment; the accumulated GLY and GLUF also migrate to groundwater via leaching. However, GLY, GLUF, and their metabolites are highly water-soluble and lack chromogenic and fluorescent groups, making them difficult to analyze. Currently, derivatization methods are mostly used to detect GLY, GLUF, and their metabolites. However, these methods also have some drawbacks, such as complex operation, long time consumption, and poor stability. In addition, these compounds are easily passivated and made inactive in soil; they also react with organic matter, humic acid, metal oxides, and heavy metal ions, making their extraction from soil difficult. To date, the method for the determination of GLY, GLUF, and their metabolites in soil is limited. Therefore, it is necessary to establish a quick and sensitive method to determine the residues of GLY, GLUF, and their metabolites in soil. In this study, a high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was developed for the determination of GLY, GLUF, and their metabolites in soil. Parameters like extraction solvent, extraction temperature, extraction time, and adsorbents, which affected the extraction efficiencies, were optimized. Finally, the soil samples were extracted with 0.5 mol/L ammonia solution in a bath shaker at 50 ℃, and then centrifuged at 10000 r/min for 5 min. The supernatant was filtered through 0.2-μm syringe filters and then determined by HPLC-MS/MS. A Dikma Polyamino HILIC column (150 mm×2.0 mm, 5 μm) was used for chromatographic separation with good peak shape and high response of the target compounds. Ammonium acetate (0.2 mmol/L) with 0.07% ammonia aqueous solution and acetonitrile were used as the mobile phase. The flow rate of the elute was 0.25 mL/min. MS/MS was conducted under multiple reaction monitoring (MRM) mode using an electrospray ionization (ESI) source, and was quantified by the external standard method using matrix-matched calibration curves. All the target compounds were ionized in the negative ionization mode. The linear ranges of GLY and its metabolites were between 5.0 and 500 μg/L, and those of GLUF and its metabolites were between 2.0 and 500 μg/L. Linear correlation coefficients were greater than 0.99. The limit of detection (LOD) and limit of quantification (LOQ) were assessed using signal-to-noise (S/N) ratios of 3 and 10, respectively. The LOD and LOQ values of both GLY and (aminomethyl)phosphonic acid (AMPA) were 4.0 and 13.3 μg/kg, respectively. The LOD and LOQ values of GLUF, MPP, and N-acetyl glufosinate (NAG) were 2.0 and 6.7 μg/kg, respectively. Method accuracy was acquired by recovery test at three spiked levels (0.02, 0.05, 0.2 mg/kg). The average recoveries of five targets spiked in soil with low organic matter content were 74.2%-101%, and the relative standard deviation (RSD) was 0.93%-6.8%; the average recoveries of the five targets spiked in soil with high organic matter content were 90.8%-116%, and the RSD was 0.40%-7.1%. The established method was used to determine 20 soil samples in peach orchard, and the detection rates of AMPA, GLY, MPP, GLUF and NAG were 45%, 25%, 10%, 5% and 5%, respectively. The maximum residues were 147, 35.2, 154, 21.6 and 11.0 μg/kg, respectively. This method is simple, rapid, green, inexpensive, allows pretreatment without organic reagents, and affords high accuracy, high sensitivity, and good reproducibility. The method is suitable for testing a large number of soil samples with different organic matter contents. It can provide reliable technical support for the study of residue status and environmental behavior in soil.
Collapse
|
9
|
Morphospecies Abundance of Above-Ground Invertebrates in Agricultural Systems under Glyphosate and Microplastics in South-Eastern Mexico. ENVIRONMENTS 2021. [DOI: 10.3390/environments8110130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Soil invertebrates are important for diverse soil ecosystem services, which are jeopardized by pesticides and microplastics. In the present study, we aimed to assess above-ground invertebrates’ morphospecies abundance in the presence of glyphosate (GLY), its main metabolite aminomethylphosphonic acid (AMPA), and microplastics (MPs). Three land-use systems were analyzed: agricultural systems with and without plastic mulch and pesticides (AwPM, AwoPM) and natural unmanaged farming systems (UF). Soil GLY, AMPA, MP concentrations and above-ground invertebrates were quantified. GLY concentrations were also assessed inside invertebrate tissues. GLY, AMPA and the highest concentration of GLY in invertebrates’ tissue were found only in AwoPM at 0.14–0.45 mg kg−1, 0.12–0.94 mg kg−1 and 0.03–0.26 mg kg−1, respectively. MPs were present as follows: AwPM system (100%, 400–2000 particles kg−1) > AwoPM (70.8%, 200–1000 particles kg−1) > UF (37.5%, 200–400 particles kg−1). No significant correlations were found between soil MPs, GLY and AMPA. There was a significant correlation between MPs and morphospecies from the order Entomobrymorpha (Collembola, R = 0.61, p < 0.05). Limnophila, Mesogastropoda (Gastropoda) and Siphonaptera morphospecies were only present in the UF system. GLY in invertebrate tissue was inversely correlated with soil GLY (R = −0.73, p < 0.05) and AMPA (R = −0.59, p < 0.05). Further investigations are required to understand these phenomena.
Collapse
|
10
|
Rossi F, Carles L, Donnadieu F, Batisson I, Artigas J. Glyphosate-degrading behavior of five bacterial strains isolated from stream biofilms. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126651. [PMID: 34329075 DOI: 10.1016/j.jhazmat.2021.126651] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 07/02/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
The present study investigates the individual degrading behavior of bacterial strains isolated from glyphosate-degrading stream biofilms. In this aim, biofilms were subjected to enrichment experiments using glyphosate or its metabolite AMPA (aminomethyl phosphonic acid) as the sole phosphorus source. Five bacterial strains were isolated and taxonomically affiliated to Ensifer sp. CNII15, Acidovorax sp. CNI26, Agrobacterium tumefaciens CNI28, Novosphingobium sp. CNI35 and Ochrobactrum pituitosum CNI52. All strains were capable of completely dissipating glyphosate after 125-400 h and AMPA after 30-120 h, except for Ensifer sp. CNII15 that was not able to dissipate glyphosate but entirely dissipated AMPA after 200 h. AMPA dissipation was overall faster than glyphosate dissipation. The five strains degraded AMPA completely since formaldehyde and/or glycine accumulation was observed. During glyphosate degradation, the strain CNI26 used the C-P lyase degradation pathway since sarcosine was quantitatively produced, and C-P lyase gene expression was enhanced 30× compared to the control treatment. However, strains CNI28, CNI35 and CNI52 accumulated both formaldehyde and glycine after glyphosate transformation suggesting that both C-P lyase and/or glyphosate oxidase degradation pathways took place. Our study shows different and complementary glyphosate degradation pathways for bacteria co-existing in stream biofilms.
Collapse
Affiliation(s)
- Florent Rossi
- Université Clermont-Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, F-63000 Clermont-Ferrand, France
| | - Louis Carles
- Department of Environmental Toxicology (Utox), Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland
| | - Florence Donnadieu
- Université Clermont-Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, F-63000 Clermont-Ferrand, France
| | - Isabelle Batisson
- Université Clermont-Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, F-63000 Clermont-Ferrand, France
| | - Joan Artigas
- Université Clermont-Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
11
|
Ramirez Haberkon NB, Aparicio VC, Mendez MJ. First evidence of glyphosate and aminomethylphosphonic acid (AMPA) in the respirable dust (PM10) emitted from unpaved rural roads of Argentina. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145055. [PMID: 33592477 DOI: 10.1016/j.scitotenv.2021.145055] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
The aim of this work was to compare the concentration of glyphosate and AMPA in the PM10 and the actual PM10 emission from agricultural soils and unpaved roads, located inside and outside farm fields. To determine the actual PM10 emission by wind erosion, the actual wind erosion was estimated using the Wind Erosion Equation, and the PM10 emission efficiency was measured with the Easy Dust Generator. PM10 was collected in an electrostatic precipitator coupled to the Easy Dust Generator. Actual PM10 emission was 11.5 g ha-1 year-1 in agricultural soils and 4711.4 g ha-1 year-1 in unpaved roads. The high value of actual PM10 emission in unpaved roads was due to their high actual wind erosion and the high PM10 emission efficiency, while the low value in agricultural soils was due to their low actual wind erosion. Content of glyphosate in the PM10 ranged from 59 to 359 μg kg-1 in agricultural soils, from 382 to 454 μg kg-1 in unpaved roads inside farm fields, and from 39 to 639 μg kg-1 in unpaved roads outside farm fields. Content of AMPA in the PM10 ranged from 387 to 7228 μg kg-1 in agricultural soils, from 900 to 4138 μg kg-1 in unpaved roads inside farm fields, and 98 to 500 μg kg-1 in unpaved roads outside farm fields. AMPA concentration in PM10 was higher than that of glyphosate due to the longer persistence of AMPA than glyphosate. Glyphosate and AMPA concentrations in PM10 were higher than in soil, which is an additional risk that should be considered when the effect of PM10 emitted by agricultural soils and unpaved roads on human health are evaluated. Our results show that the amount and chemical composition of PM10 emitted by wind erosion from unpaved roads should be studied in other regions.
Collapse
Affiliation(s)
- Nancy B Ramirez Haberkon
- Institute for Earth and Environmental Sciences of La Pampa (INCITAP, CONICET-UNLPam), Argentina, cc 300, 6300 Santa Rosa, Argentina
| | - Virginia C Aparicio
- National Institute for Agricultural Technology (INTA), Balcarce, Route 226 km 73.5, CP (7620) Balcarce, Buenos Aires, Argentina
| | - Mariano J Mendez
- Institute for Earth and Environmental Sciences of La Pampa (INCITAP, CONICET-UNLPam), Argentina, cc 300, 6300 Santa Rosa, Argentina; National University of La Pampa, Faculty of Agronomy (UNLPam), Argentina, cc 300, 6300 Santa Rosa, Argentina.
| |
Collapse
|
12
|
Geng Y, Jiang L, Zhang D, Liu B, Zhang J, Cheng H, Wang L, Peng Y, Wang Y, Zhao Y, Xu Y, Liu X. Glyphosate, aminomethylphosphonic acid, and glufosinate ammonium in agricultural groundwater and surface water in China from 2017 to 2018: Occurrence, main drivers, and environmental risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:144396. [PMID: 33486182 DOI: 10.1016/j.scitotenv.2020.144396] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/16/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
Glyphosate and glufosinate ammonium are the main herbicides used to control weeds in no-tillage agricultural fields in China. However, their leaching risk to groundwater and ecological risk to aquatic organisms remain unclear. From the agricultural basins among 10 provinces of China, glyphosate, its main metabolite aminomethylphosphonic acid (AMPA), and glufosinate ammonium were detected in 1.01%, 0.86%, 0% of 694 groundwater samples with the maximum concentrations of 2.09, 5.13, and <0.05 μg/L, and were detected in 14.3%, 15.8%, and 2.6% of 196 surface water samples with the maximum levels of 32.49, 10.31 and 13.15 μg/L. Furthermore, to evaluate the main drivers of exposure to the targets in water bodies, the fate models were used. The model simulation indicated that spray drift and overflow runoff were the key factors affecting the exposure to targets in surface water adjacent to rice field, whereas the spray drift deposition, runoff, and erosion induced the exposure to the targets in pond water close to dry land crop fields under different meteorological conditions and soil characteristics. The targets in groundwater posed a low risk to water consumption, while fish embryos might be at unacceptable risk due to glufosinate ammonium exposure in surface water with median risk quotient (RQ) equal to 55.6. The results highlight the spatial and seasonal distribution of glyphosate, AMPA, and glufosinate ammonium in groundwater and surface water in agricultural basins of China, providing the first evidence to the environmental risk of the targets to drinking water consumption and aquatic organism safety in China agriculture system.
Collapse
Affiliation(s)
- Yue Geng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China; Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture and Rural Affairs, China; National Reference Laboratory for Agricultural Testing, China
| | - Linjie Jiang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China; Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture and Rural Affairs, China; National Reference Laboratory for Agricultural Testing, China
| | - Danyang Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China; Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture and Rural Affairs, China; National Reference Laboratory for Agricultural Testing, China
| | | | | | | | - Lu Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China; Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture and Rural Affairs, China; National Reference Laboratory for Agricultural Testing, China
| | - Yi Peng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China; Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture and Rural Affairs, China; National Reference Laboratory for Agricultural Testing, China
| | - Yuehua Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China; Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture and Rural Affairs, China; National Reference Laboratory for Agricultural Testing, China
| | - Yujie Zhao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China; Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture and Rural Affairs, China; National Reference Laboratory for Agricultural Testing, China
| | - Yaping Xu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China; Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture and Rural Affairs, China; National Reference Laboratory for Agricultural Testing, China.
| | - Xiaowei Liu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China; Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture and Rural Affairs, China; National Reference Laboratory for Agricultural Testing, China
| |
Collapse
|
13
|
da Silva KA, Nicola VB, Dudas RT, Demetrio WC, Maia LDS, Cunha L, Bartz MLC, Brown GG, Pasini A, Kille P, Ferreira NGC, de Oliveira CMR. Pesticides in a case study on no-tillage farming systems and surrounding forest patches in Brazil. Sci Rep 2021; 11:9839. [PMID: 33972553 PMCID: PMC8110586 DOI: 10.1038/s41598-021-88779-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/01/2021] [Indexed: 02/03/2023] Open
Abstract
With the growing global concern on pesticide management, the relationship between its environmental recalcitrance, food security and human health has never been more relevant. Pesticides residues are known to cause significant environmental contamination. Here, we present a case study on long-term no-tillage farming systems in Brazil, where Glyphosate (GLY) has been applied for more than 35 years. GLY and its main breakdown product, aminomethylphosphonic acid (AMPA) were determined in topsoil (0-10 cm) samples from no-tillage fields and nearby subtropical secondary forests by high-performance liquid chromatography coupled with a fluorescence detector. In addition, the presence of carbamates, organochlorines, organophosphates and triazines were also screened for. GLY and AMPA were present in all soil samples, reaching values higher than those described for soils so far in the literature. A significant decrease for AMPA was observed only between the secondary forest and the farm's middle slope for site B. GLY and AMPA were observed respectively at peak concentrations of 66.38 and 26.03 mg/kg soil. GLY was strongly associated with forest soil properties, while AMPA associated more with no-tillage soil properties. Soil texture was a significant factor contributing to discrimination of the results as clay and sand contents affect GLY and AMPA retention in soils. This was the first study to report DDT and metabolites in consolidated no-tillage soils in Brazil (a pesticide fully banned since 2009). Based on human risk assessment conducted herein and the potential risk of GLY to local soil communities, this study offers a baseline for future studies on potential adverse effects on soil biota, and mechanistic studies.
Collapse
Affiliation(s)
- Karlo Alves da Silva
- Programa de Pós-Graduação em Gestão Ambiental, Universidade Positivo, Curitiba, 81280-330, Brasil
| | | | - Rafaela Tavares Dudas
- Programa de Pós-Graduação em Gestão Ambiental, Universidade Positivo, Curitiba, 81280-330, Brasil
| | - Wilian Carlo Demetrio
- Programa de Pós-Graduação em Ciências do Solo, Universidade Federal do Paraná, Curitiba, 80035-050, Brasil
| | - Lilianne Dos Santos Maia
- Programa de Pós-Graduação em Ciências do Solo, Universidade Federal do Paraná, Curitiba, 80035-050, Brasil
| | - Luis Cunha
- Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
- School of Applied Sciences, University of South Wales, Pontypridd, CF37 4BD, Wales, UK
| | - Marie Luise Carolina Bartz
- Programa de Pós-Graduação em Gestão Ambiental, Universidade Positivo, Curitiba, 81280-330, Brasil
- Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - George Gardner Brown
- Programa de Pós-Graduação em Ciências do Solo, Universidade Federal do Paraná, Curitiba, 80035-050, Brasil
- Embrapa Florestas, Colombo, Paraná, 83411-000, Brasil
| | - Amarildo Pasini
- Departamento de Agronomia, Universidade Estadual de Londrina, Londrina, 86057-970, Brasil
| | - Peter Kille
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, Wales, UK
| | - Nuno G C Ferreira
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, Wales, UK.
| | - Cíntia Mara Ribas de Oliveira
- Programa de Pós-Graduação em Gestão Ambiental, Universidade Positivo, Curitiba, 81280-330, Brasil.
- Graduação em Biomedicina, Universidade Positivo, Curitiba, 81280-330, Brasil.
| |
Collapse
|
14
|
Smith DFQ, Camacho E, Thakur R, Barron AJ, Dong Y, Dimopoulos G, Broderick NA, Casadevall A. Glyphosate inhibits melanization and increases susceptibility to infection in insects. PLoS Biol 2021; 19:e3001182. [PMID: 33979323 PMCID: PMC8115815 DOI: 10.1371/journal.pbio.3001182] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 03/11/2021] [Indexed: 12/23/2022] Open
Abstract
Melanin, a black-brown pigment found throughout all kingdoms of life, has diverse biological functions including UV protection, thermoregulation, oxidant scavenging, arthropod immunity, and microbial virulence. Given melanin's broad roles in the biosphere, particularly in insect immune defenses, it is important to understand how exposure to ubiquitous environmental contaminants affects melanization. Glyphosate-the most widely used herbicide globally-inhibits melanin production, which could have wide-ranging implications in the health of many organisms, including insects. Here, we demonstrate that glyphosate has deleterious effects on insect health in 2 evolutionary distant species, Galleria mellonella (Lepidoptera: Pyralidae) and Anopheles gambiae (Diptera: Culicidae), suggesting a broad effect in insects. Glyphosate reduced survival of G. mellonella caterpillars following infection with the fungus Cryptococcus neoformans and decreased the size of melanized nodules formed in hemolymph, which normally help eliminate infection. Glyphosate also increased the burden of the malaria-causing parasite Plasmodium falciparum in A. gambiae mosquitoes, altered uninfected mosquito survival, and perturbed the microbial composition of adult mosquito midguts. Our results show that glyphosate's mechanism of melanin inhibition involves antioxidant synergy and disruption of the reaction oxidation-reduction balance. Overall, these findings suggest that glyphosate's environmental accumulation could render insects more susceptible to microbial pathogens due to melanin inhibition, immune impairment, and perturbations in microbiota composition, potentially contributing to declines in insect populations.
Collapse
Affiliation(s)
- Daniel F. Q. Smith
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Emma Camacho
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Raviraj Thakur
- Department of Otolaryngology, Head and Neck Surgery, Johns Hopkins Medicine, Baltimore, Maryland, United States of America
| | - Alexander J. Barron
- Department of Biology, Johns Hopkins University, Baltimore Maryland, United States of America
| | - Yuemei Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Nichole A. Broderick
- Department of Biology, Johns Hopkins University, Baltimore Maryland, United States of America
| | - Arturo Casadevall
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| |
Collapse
|
15
|
Limon AW, Moingt M, Widory D. The carbon stable isotope compositions of glyphosate and aminomethylphosphonic acid (AMPA): Improved analytical sensitivity and first application to environmental water matrices. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9017. [PMID: 33270272 DOI: 10.1002/rcm.9017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
RATIONALE The presence of glyphosate and its degradation product aminomethylphosphonic acid (AMPA) in the environment has adverse effects on environmental quality, raising the need to better constrain their fates, in particular the processes that control their production and degradation. Our aim was to improve the sensitivity of their δ13 C analysis and demonstrate the feasibility of measuring them in natural surface water. METHODS The δ13 C values of dissolved glyphosate and AMPA were determined using isotope ratio mass spectrometry (IRMS) (Delta V Plus instrument) coupled to a high-performance liquid chromatography (HPLC) unit, where glyphosate and AMPA were separated on a Hypercarb column. RESULTS We demonstrated an improved sensitivity of the δ13 C analysis for glyphosate and AMPA by LC/IRMS compared with previous studies. For waters from the carbonate and silicate hydrofacies, while no pretreatment was required for the isotope analysis of glyphosate, removal by H3 PO4 acidification of dissolved inorganic carbon, that co-elutes with AMPA, was required prior to its analysis. We successfully tested a freeze-drying pre-concentration method showing no associated isotope fractionation up to concentration factors of 500 and 50 for glyphosate and AMPA, respectively. CONCLUSIONS We demonstrated, for the first time, the feasibility of measuring the δ13 C values of glyphosate and AMPA in natural surface waters with contrasted hydrofacies (calcium carbonate and silicate types). This opens new fields in pesticide research, especially on the characterization of processes that control their degradation and the production of their secondary byproducts.
Collapse
Affiliation(s)
- A Williams Limon
- GEOTOP/Université du Québec à Montréal, case postale 8888, , Montréal, QC, H3C 3P8, Canada
| | - Matthieu Moingt
- GEOTOP/Université du Québec à Montréal, case postale 8888, , Montréal, QC, H3C 3P8, Canada
| | - David Widory
- GEOTOP/Université du Québec à Montréal, case postale 8888, , Montréal, QC, H3C 3P8, Canada
| |
Collapse
|
16
|
Delile H, Masson M, Miège C, Le Coz J, Poulier G, Le Bescond C, Radakovitch O, Coquery M. Hydro-climatic drivers of land-based organic and inorganic particulate micropollutant fluxes: The regime of the largest river water inflow of the Mediterranean Sea. WATER RESEARCH 2020; 185:116067. [PMID: 33086458 DOI: 10.1016/j.watres.2020.116067] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Land-based micropollutants are the largest pollution source of the marine environment acting as the major large-scale chemical sink. Despite this, there are few comprehensive datasets for estimating micropollutant fluxes released to the sea from river mouths. Hence, their dynamics and drivers remain poorly understood. Here, we address this issue by continuous measurements throughout the Rhône River basin (∼100,000 km2) of 1) particulate micropollutant concentrations (persistant organic micropollutants: polychlorobiphenyls [PCBi] and polycyclic aromatic hydrocarbons [PAHs]; emerging compounds: glyphosate and aminomethylphosphonic acid [AMPA]; and trace metal elements [TME]), 2) suspended particulate matter [SPM], and 3) water discharge. From these data, we computed daily fluxes for a wide range of micropollutants (n = 29) over a long-term period (2008-2018). We argue that almost two-thirds of annual micropollutant fluxes are released to the Mediterranean Sea during three short-term periods over the year. The watershed hydro-climatic heterogeneity determines this dynamic by triggering seasonal floods. Unexpectedly, the large deficit of the inter-annual monthly micropollutant fluxes inputs (tributaries and the Upper Rhône River) compared to the output (Beaucaire station) claims for the presence of highly contaminated missing sources of micropollutants in the Rhône River watershed. Based on a SPM-flux-averaged micropollutant concentrations mass balance of the system and the estimates of the relative uncertainty of the missing sources concentration, we assessed their location within the Rhône River catchment. We assume that the potential missing sources of PAHs, PCBi and TME would be, respectively, the metropolitan areas, the alluvial margins of the Rhône River valley, and the unmonitored Cevenol tributaries.
Collapse
Affiliation(s)
- Hugo Delile
- INRAE, UR RiverLy, 5 Rue de la Doua CS 20244, F-69625, Villeurbanne, France.
| | - Matthieu Masson
- INRAE, UR RiverLy, 5 Rue de la Doua CS 20244, F-69625, Villeurbanne, France
| | - Cécile Miège
- INRAE, UR RiverLy, 5 Rue de la Doua CS 20244, F-69625, Villeurbanne, France
| | - Jérôme Le Coz
- INRAE, UR RiverLy, 5 Rue de la Doua CS 20244, F-69625, Villeurbanne, France
| | - Gaëlle Poulier
- INRAE, UR RiverLy, 5 Rue de la Doua CS 20244, F-69625, Villeurbanne, France
| | - Chloé Le Bescond
- INRAE, UR RiverLy, 5 Rue de la Doua CS 20244, F-69625, Villeurbanne, France
| | - Olivier Radakovitch
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LRTA, BP3, 13115, Saint-Paul Lez Durance, France; Aix Marseille Univ, CNRS, IRD, INRA, Coll France, CEREGE, Aix-en-provence, France
| | - Marina Coquery
- INRAE, UR RiverLy, 5 Rue de la Doua CS 20244, F-69625, Villeurbanne, France
| |
Collapse
|
17
|
Differences in Risk Perception of Water Quality and Its Influencing Factors between Lay People and Factory Workers for Water Management in River Sosiani, Eldoret Municipality Kenya. WATER 2020. [DOI: 10.3390/w12082248] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study evaluates the differences between risk predictors and risk perception regarding water pollution. Specifically, it focuses on the differences in risk perception between factory workers and lay people situated in textile industries near the River Sosiani in Eldoret, Kenya. The lay people are divided into two groups. The respondents living downstream are situated mostly in town centers and at the mid/lower parts of the river, and the respondents living upstream are mainly found at the upper parts of the River Sosiani. Data were obtained from 246 participants using questionnaires. Several factors influencing risk perception were selected to evaluate the degree of perceived risk amongst the groups. Descriptive statistics, mean score and correlation analyses, and multiple linear regression models were used to analyse the data. The one-way ANOVA results showed statistically different levels of risk perceptions amongst the groups. The partial and bivariate correlation analyses revealed the differences in scientific knowledge between respondents upstream and downstream. The multiple linear regression analysis showed that each group used different variables to determine risks in the region. In the factory group, 56.1% of the variance in risk perception is significantly predicted by sensorial factors, trust in the government’s capacity to manage water pollution and the impact of water pollution on human health. About 65.9% of the variance in risk perception of the downstream inhabitants is significantly predicted by sensorial factors, the possibility of industries generating water pollution, and previous experience with water pollution. For the respondents located upstream, age, sensorial factors, trust in the government and the possibility of being impacted by water pollution factors significantly predicted 37.05% of the variance in risk perception. These findings indicate that enhanced public participation in water governance amongst the residents of Eldoret town is needed, along with an understanding of the different characteristics of the respondents in the region during risk communication. This will boost awareness in the region and promote the adoption of better practices to minimise the adverse effects of water pollution faced by the region.
Collapse
|
18
|
Meftaul IM, Venkateswarlu K, Dharmarajan R, Annamalai P, Asaduzzaman M, Parven A, Megharaj M. Controversies over human health and ecological impacts of glyphosate: Is it to be banned in modern agriculture? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114372. [PMID: 32203845 DOI: 10.1016/j.envpol.2020.114372] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 02/09/2020] [Accepted: 03/12/2020] [Indexed: 05/27/2023]
Abstract
Glyphosate, introduced by Monsanto Company under the commercial name Roundup in 1974, became the extensively used herbicide worldwide in the last few decades. Glyphosate has excellent properties of fast sorption in soil, biodegradation and less toxicity to nontarget organisms. However, glyphosate has been reported to increase the risk of cancer, endocrine-disruption, celiac disease, autism, effect on erythrocytes, leaky-gut syndrome, etc. The reclassification of glyphosate in 2015 as 'probably carcinogenic' under Group 2A by the International Agency for Research on Cancer has been broadly circulated by anti-chemical and environmental advocacy groups claiming for restricted use or ban of glyphosate. In contrast, some comprehensive epidemiological studies involving farmers with long-time exposure to glyphosate in USA and elsewhere coupled with available toxicological data showed no correlation with any kind of carcinogenic or genotoxic threat to humans. Moreover, several investigations confirmed that the surfactant, polyethoxylated tallow amine (POEA), contained in the formulations of glyphosate like Roundup, is responsible for the established adverse impacts on human and ecological health. Subsequent to the evolution of genetically modified glyphosate-resistant crops and the extensive use of glyphosate over the last 45 years, about 38 weed species developed resistance to this herbicide. Consequently, its use in the recent years has been either restricted or banned in 20 countries. This critical review on glyphosate provides an overview of its behaviour, fate, detrimental impacts on ecological and human health, and the development of resistance in weeds and pathogens. Thus, the ultimate objective is to help the authorities and agencies concerned in resolving the existing controversies and in providing the necessary regulations for safer use of the herbicide. In our opinion, glyphosate can be judiciously used in agriculture with the inclusion of safer surfactants in commercial formulations sine POEA, which is toxic by itself is likely to increase the toxicity of glyphosate.
Collapse
Affiliation(s)
- Islam Md Meftaul
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia; Department of Agricultural Chemistry, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu 515003, India
| | - Rajarathnam Dharmarajan
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Prasath Annamalai
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Md Asaduzzaman
- NSW Department of Primary Industries, Pine Gully Road, Wagga Wagga, NSW 2650, Australia
| | - Aney Parven
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia; Department of Agricultural Chemistry, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
19
|
Mercado SAS, Caleño JDQ. Cytotoxic evaluation of glyphosate, using Allium cepa L. as bioindicator. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 700:134452. [PMID: 31629268 DOI: 10.1016/j.scitotenv.2019.134452] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/07/2019] [Accepted: 09/13/2019] [Indexed: 06/10/2023]
Abstract
Glyphosate is a chemical compound used mainly as a broad spectrum herbicide, it is recognized for its proven effectiveness and easy handling. It represents more than 60% of the world market of non-selective herbicides and is used in both agricultural fields and family gardens. The present study was designed to test the cytogenotoxic potential of glyphosate using the Allium cepa test as toxicity bioindicator. Consequently, bulbs of A. cepa were exposed to different concentrations of glyphosate (5, 10, 15, 25 and 30 mgL-1) and a control (deionized water), for 72 h; root development was also studied in this period of time. The cytogenotoxic potential of glyphosate was determined by calculating the mitotic index (MI), cellular anomalies (CA) and registering the roots longitudinal growth at 24, 48 and 72 h. Regarding root development, a greater growth was observed in the control treatment in the three measurement times. The mitotic phases analysis, determined that the higher the concentration, the lower the mitotic index, in addition the inhibition of the telophase Mitotic Index (TMI) was observed in any of the concentrations. The results indicate that the exposure to glyphosate of A. cepa meristematic cells induces diverse types of chromosomal anomalies, such as micronuclei (MN), chromosome breaking (CB), nuclear notch (Nn), among others. Therefore, in demonstrates that glyphosate has a highly cytogenotoxic effect for any of the concentrations used.
Collapse
Affiliation(s)
- Seir Antonio Salazar Mercado
- Department of Biology, Universidad Francisco de Paula Santander, Avenida Gran Colombia No. 12E-96B Colsag, San José de Cúcuta, Colombia.
| | | |
Collapse
|
20
|
Quaglia G, Joris I, Broekx S, Desmet N, Koopmans K, Vandaele K, Seuntjens P. A spatial approach to identify priority areas for pesticide pollution mitigation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 246:583-593. [PMID: 31202826 DOI: 10.1016/j.jenvman.2019.04.120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 04/19/2019] [Accepted: 04/29/2019] [Indexed: 06/09/2023]
Abstract
Identifying priority areas is an essential step in developing management strategies to reduce pesticide loads in surface water. A spatially explicit model-based approach was developed to detect priority areas for diffuse pesticide pollution at catchment scale. The method uses available datasets and considers different pesticide pathways in the environment post-application. The approach was applied in a catchment area in SE Flanders (Belgium) as a case study. Calculated risk areas were obtained using detailed landscape data and combining pesticide emissions and hydrological connectivity. The risk areas obtained were further compared with an alternative observation-based method, developed specifically for this study site that includes long-term field observations and local expert knowledge. Both methods equally classified 50% of the areas. The impact of crop rotation on the calculated risk was analysed. High-risk areas were identified and added to a cumulative map over all five years to evaluate temporal variations. The model-based approach was used for the initial identification of risk areas at the study site. The tool helps to prioritise zones and detect particular fields to target landscape mitigation measures to reduce diffuse pesticide pollution reaching surface water bodies.
Collapse
Affiliation(s)
- Gisela Quaglia
- VITO, Flemish Institute for Technological Research, Environmental Modelling Unit, Boeretang 200, B-2400 Mol, Belgium; Department of Environment, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| | - Ingeborg Joris
- VITO, Flemish Institute for Technological Research, Environmental Modelling Unit, Boeretang 200, B-2400 Mol, Belgium; Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Steven Broekx
- VITO, Flemish Institute for Technological Research, Environmental Modelling Unit, Boeretang 200, B-2400 Mol, Belgium
| | - Nele Desmet
- VITO, Flemish Institute for Technological Research, Environmental Modelling Unit, Boeretang 200, B-2400 Mol, Belgium
| | - Kim Koopmans
- pcfruit npo, Fruittuinweg 1, B-3800 Sint-Truiden, Belgium
| | - Karel Vandaele
- Watering Sint-Truiden, Breendonkstraat 3, B-3800 Sint-Truiden, Belgium
| | - Piet Seuntjens
- VITO, Flemish Institute for Technological Research, Environmental Modelling Unit, Boeretang 200, B-2400 Mol, Belgium; Department of Environment, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium; Institute for Environment and Sustainable Development, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| |
Collapse
|
21
|
Mangrove Vegetation Health Assessment Based on Remote Sensing Indices for Tanjung Piai, Malay Peninsular. JOURNAL OF LANDSCAPE ECOLOGY 2019. [DOI: 10.2478/jlecol-2019-0008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Mangroves critically require conservation activity due to human encroachment and environmental unsustainability. The forests must be conserving through monitoring activities with an application of remote sensing satellites. Recent high-resolution multispectral satellite was used to produce Normalized Difference Vegetation Index (NDVI) and Tasselled Cap transformation (TC) indices mapping for the area. Satellite Pour l’Observation de la Terre (SPOT) SPOT-6 was employed for ground truthing. The area was only a part of mangrove forest area of Tanjung Piai which estimated about 106 ha. Although, the relationship between the spectral indices and dendrometry parameters was weak, we found a very significant between NDVI (mean) and stem density (y=10.529x + 12.773) with R2=0.1579. The sites with NDVI calculated varied from 0.10 to 0.26 (P1 and P2), under the environmental stress due to sand deposition found was regard as unhealthy vegetation areas. Whereas, site P5 with NDVI (mean) 0.67 is due to far distance from risk wave’s zone, therefore having young/growing trees with large lush green cover was regard as healthy vegetation area. High greenness indicated in TC means, the bands respond to a combination of high absorption of chlorophyll in the visible bands and the high reflectance of leaf structures in the near-infrared band, which is characteristic of healthy green vegetation. Overall, our study showed our tested WV-2 image combined with ground data provided valuable information of mangrove health assessment for Tanjung Piai, Johor, Malay Peninsula.
Collapse
|
22
|
Yang X, Lwanga EH, Bemani A, Gertsen H, Salanki T, Guo X, Fu H, Xue S, Ritsema C, Geissen V. Biogenic transport of glyphosate in the presence of LDPE microplastics: A mesocosm experiment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 245:829-835. [PMID: 30502712 DOI: 10.1016/j.envpol.2018.11.044] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 06/09/2023]
Abstract
The accumulation of plastic debris and herbicide residues has become a huge challenge and poses many potential risks to environmental health and soil quality. In the present study, we investigated the transport of glyphosate and its main metabolite, aminomethylphosphonic acid (AMPA) via earthworms in the presence of different concentrations of light density polyethylene microplastics in the litter layer during a 14-day mesocosm experiment. The results showed earthworm gallery weight was negatively affected by the combination of glyphosate and microplastics. Glyphosate and AMPA concentrated in the first centimetre of the top soil layer and the downward transport of glyphosate and AMPA was only detected in the earthworm burrows, ranging from 0.04 to 4.25 μg g-1 for glyphosate and from 0.01 (less than limit of detection) to 0.76 μg g-1 for AMPA. The transport rate of glyphosate (including AMPA) from the litter layer into earthworm burrows ranged from 6.6 ± 4.6% to 18.3 ± 2.4%, depending on synergetic effects of microplastics and glyphosate application. The findings imply that earthworm activities strongly influence pollutant movement into the soil, which potentially affects soil ecosystems. Further studies focused on the fate of pollutants in the microenvironment of earthworm burrows are needed.
Collapse
Affiliation(s)
- Xiaomei Yang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; Soil Physics and Land Management, Wageningen University & Research, 6700AA, Wageningen, the Netherlands
| | - Esperanza Huerta Lwanga
- Soil Physics and Land Management, Wageningen University & Research, 6700AA, Wageningen, the Netherlands; Agroecología, El Colegio de la Frontera Sur, Unidad Campeche, Av Poligono s/n, Ciudad Industrial, Lerma, Campeche, Mexico
| | - Akram Bemani
- Soil Physics and Land Management, Wageningen University & Research, 6700AA, Wageningen, the Netherlands
| | - Hennie Gertsen
- Soil Physics and Land Management, Wageningen University & Research, 6700AA, Wageningen, the Netherlands
| | - Tamas Salanki
- Soil Quality Group, Wageningen University & Research, 6700AA, Wageningen, the Netherlands
| | - Xuetao Guo
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Haimei Fu
- Soil Physics and Land Management, Wageningen University & Research, 6700AA, Wageningen, the Netherlands; Institute of Agriculture Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Sha Xue
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100, China.
| | - Coen Ritsema
- Soil Physics and Land Management, Wageningen University & Research, 6700AA, Wageningen, the Netherlands
| | - Violette Geissen
- Soil Physics and Land Management, Wageningen University & Research, 6700AA, Wageningen, the Netherlands
| |
Collapse
|
23
|
Bento CPM, van der Hoeven S, Yang X, Riksen MMJPM, Mol HGJ, Ritsema CJ, Geissen V. Dynamics of glyphosate and AMPA in the soil surface layer of glyphosate-resistant crop cultivations in the loess Pampas of Argentina. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 244:323-331. [PMID: 30343233 DOI: 10.1016/j.envpol.2018.10.046] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 09/20/2018] [Accepted: 10/09/2018] [Indexed: 06/08/2023]
Abstract
This study investigates the dynamics of glyphosate and AMPA in the soil surface layer of two fields growing glyphosate-resistant crops in the loess Pampas of Córdoba Province, Argentina. Glyphosate decay and AMPA formation/decay were studied after a single application, using decay kinetic models. Furthermore, glyphosate and AMPA concentrations were investigated in runoff to evaluate their off-site risk. During a 2.5-month study, cultivations of glyphosate-resistant soybean and maize received an application of 1.0 and 0.81 kg a.e. ha-1, respectively, of Roundup UltraMax©. Topsoil samples (0-1, 1-2 cm) were collected weekly (including before application) and analysed for glyphosate, AMPA and soil moisture (SM) contents. Runoff was collected from runoff plots (3 m2) and weirs after 2 erosive rainfall events, and analysed for glyphosate and AMPA contents (water, eroded-sediment). Under both cultivations, background residues in soil before application were 0.27-0.42 mg kg-1 for glyphosate and 1.3-1.7 mg kg-1 for AMPA. In the soybean area, the single-first-order (SFO) model performed best for glyphosate decay. In the maize area, the bi-phasic Hockey-Stick (HS) model performed best for glyphosate decay, due to an abrupt change in SM regimes after high rainfall. Glyphosate half-life and DT90 were 6.0 and 19.8 days, respectively, in the soybean area, and 11.1 and 15.4 days, respectively, in the maize area. In the soybean area, 24% of the glyphosate was degraded to AMPA. In the maize area, it was only 5%. AMPA half-life and DT90 were 54.7 and 182 days, respectively, in the soybean area, and 71.0 and 236 days, respectively, in the maize area. Glyphosate and AMPA contents were 1.1-17.5 times higher in water-eroded sediment than in soil. We conclude that AMPA persists and may accumulate in soil, whereas both glyphosate and AMPA are prone to off-site transport with water erosion, representing a contamination risk for surface waters and adjacent fields.
Collapse
Affiliation(s)
- Célia P M Bento
- Soil Physics and Land Management, Wageningen University & Research, P.O. Box 47, 6700 AA, Wageningen, the Netherlands.
| | - Siebrand van der Hoeven
- Soil Physics and Land Management, Wageningen University & Research, P.O. Box 47, 6700 AA, Wageningen, the Netherlands
| | - Xiaomei Yang
- Soil Physics and Land Management, Wageningen University & Research, P.O. Box 47, 6700 AA, Wageningen, the Netherlands; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Michel M J P M Riksen
- Soil Physics and Land Management, Wageningen University & Research, P.O. Box 47, 6700 AA, Wageningen, the Netherlands
| | - Hans G J Mol
- RIKILT - Wageningen University & Research, P.O. Box 230, 6700 AE, Wageningen, the Netherlands
| | - Coen J Ritsema
- Soil Physics and Land Management, Wageningen University & Research, P.O. Box 47, 6700 AA, Wageningen, the Netherlands
| | - Violette Geissen
- Soil Physics and Land Management, Wageningen University & Research, P.O. Box 47, 6700 AA, Wageningen, the Netherlands
| |
Collapse
|
24
|
Kronberg MF, Clavijo A, Moya A, Rossen A, Calvo D, Pagano E, Munarriz E. Glyphosate-based herbicides modulate oxidative stress response in the nematode Caenorhabditis elegans. Comp Biochem Physiol C Toxicol Pharmacol 2018; 214:1-8. [PMID: 30142450 DOI: 10.1016/j.cbpc.2018.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 08/07/2018] [Accepted: 08/15/2018] [Indexed: 01/21/2023]
Abstract
Glyphosate-based formulation is used as non-selective and post-emergent herbicides in urban and rural activities. In view of its recurring applications in agricultural producing countries, the increase of glyphosate concentration in the environment stresses the need to test the adverse effects on non-target organisms and assess the risk of its use. This paper analyzes the toxicological and oxidative stress and modulatory effects of a glyphosate commercial formulation (glyphosate F) on the nematode Caenorhabditis elegans. We detected ROS production and enhancement of oxidative stress response in glyphosate F-treated nematodes. Particularly, we found an increased ctl-1 catalase gene expression of a catalase specific activity. In addition, we showed that glyphosate F treatment activated the FOXO transcription factor DAF-16, a critical target of the insulin/IGF-1 signaling pathway, which modulates the transcription of a broad range of genes involved in stress resistance, reproductive development, dauer formation, and longevity. In summary, the exposure of glyphosate F induces an oxidative imbalance in C. elegans that leads to the DAF-16 activation and consequently to the expression of genes that boost the antioxidant defense system. In this regard, clt-1 gene and catalase activity proved to be excellent biomarkers to develop more sensitive protocols to assess the environmental risk of glyphosate use.
Collapse
Affiliation(s)
- María Florencia Kronberg
- Cátedra de Bioquímica, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Investigaciones en Biociencias Agrícolas y Ambientales, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Araceli Clavijo
- Cátedra de Bioquímica, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Investigaciones en Biociencias Agrícolas y Ambientales, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Aldana Moya
- Cátedra de Protección vegetal, Facultad de Agronomía, Universidad de Buenos Aires, Argentina
| | - Ariana Rossen
- Laboratorio Experimental de Tecnologías Sustentables, Instituto Nacional del Agua, Pcia, Buenos Aires, Argentina
| | - Daniel Calvo
- Dirección de Servicios Hidrológicos, Instituto Nacional del Agua, Pcia, Buenos Aires, Argentina
| | - Eduardo Pagano
- Cátedra de Bioquímica, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Investigaciones en Biociencias Agrícolas y Ambientales, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Eliana Munarriz
- Cátedra de Bioquímica, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Investigaciones en Biociencias Agrícolas y Ambientales, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
| |
Collapse
|
25
|
Glyphosate Transport in Two Louisiana Agricultural Soils: Miscible Displacement Studies and Numerical Modeling. SOIL SYSTEMS 2018. [DOI: 10.3390/soilsystems2030053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Glyphosate (N-(phosphonomethyl) glycine) (GPS) is currently the most commonly used herbicide worldwide, and is generally considered as immobile in soils. However, numerous reports of the environmental occurrence of the herbicide coupled with recent evidence of human toxicity necessitate further investigation as to the behavior of GPS in the soil environment. Batch sorption studies along with miscible displacement experiments were carried out in order to assess the mobility of GPS in two Louisiana agricultural soils; Commerce silt loam and Sharkey clay. Batch results indicated a high affinity of both soils for solvated GPS, with greater affinity observed by the Sharkey soil. GPS sorption in the Commerce soil was most likely facilitated by the presence of amorphous Fe and Al oxides, whereas the high cation exchange capacity of the Sharkey soil likely allows for GPS complexation with surface exchangeable poly-valent cations. Miscible displacement studies indicate that GPS mobility is highly limited in both soils, with 3% and 2% of the applied herbicide mass recovered in the effluent solution from the Commerce and Sharkey soils, respectively. A two-site multi-reaction transport model (MRTM) adequately described GPS breakthrough from both soils and outperformed linear modeling efforts using CXTFIT. Analysis of extracted herbicide residues suggests that the primary metabolite of GPS, aminomethylphosphonic acid (AMPA), is more mobile in both soils, although both compounds are strongly retained.
Collapse
|
26
|
Bento CPM, Commelin MC, Baartman JEM, Yang X, Peters P, Mol HGJ, Ritsema CJ, Geissen V. Spatial glyphosate and AMPA redistribution on the soil surface driven by sediment transport processes - A flume experiment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 234:1011-1020. [PMID: 29665633 DOI: 10.1016/j.envpol.2017.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 11/01/2017] [Accepted: 12/02/2017] [Indexed: 06/08/2023]
Abstract
This study investigates the influence of small-scale sediment transport on glyphosate and AMPA redistribution on the soil surface and on their off-site transport during water erosion events. Both a smooth surface (T1) and a surface with "seeding lines on the contour" (T2) were tested in a rainfall simulation experiment using soil flumes (1 × 0.5 m) with a 5% slope. A dose of 178 mg m-2 of a glyphosate-based formulation (CLINIC®) was applied on the upper 0.2 m of the flumes. Four 15-min rainfall events (RE) with 30-min interval in between and a total rainfall intensity of 30 mm h-1 were applied. Runoff samples were collected after each RE in a collector at the flume outlet. At the end of the four REs, soil and sediment samples were collected in the application area and in four 20 cm-segments downslope of the application area. Samples were collected according to the following visually distinguished soil surface groups: light sedimentation (LS), dark sedimentation (DS), background and aggregates. Results showed that runoff, suspended sediment and associated glyphosate and AMPA off-site transport were significantly lower in T2 than in T1. Glyphosate and AMPA off-site deposition was higher for T2 than for T1, and their contents on the soil surface decreased with increasing distance from the application area for all soil surface groups and in both treatments. The LS and DS groups presented the highest glyphosate and AMPA contents, but the background group contributed the most to the downslope off-site deposition. Glyphosate and AMPA off-target particle-bound transport was 9.4% (T1) and 17.8% (T2) of the applied amount, while water-dissolved transport was 2.8% (T1) and 0.5% (T2). Particle size and organic matter influenced the mobility of glyphosate and AMPA to off-target areas. These results indicate that the pollution risk of terrestrial and aquatic environments through runoff and deposition can be considerable.
Collapse
Affiliation(s)
- Célia P M Bento
- Soil Physics and Land Management, Wageningen University & Research, P.O. Box 47, 6700 AA Wageningen, The Netherlands.
| | - Meindert C Commelin
- Soil Physics and Land Management, Wageningen University & Research, P.O. Box 47, 6700 AA Wageningen, The Netherlands
| | - Jantiene E M Baartman
- Soil Physics and Land Management, Wageningen University & Research, P.O. Box 47, 6700 AA Wageningen, The Netherlands
| | - Xiaomei Yang
- Soil Physics and Land Management, Wageningen University & Research, P.O. Box 47, 6700 AA Wageningen, The Netherlands; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Piet Peters
- Soil Physics and Land Management, Wageningen University & Research, P.O. Box 47, 6700 AA Wageningen, The Netherlands
| | - Hans G J Mol
- RIKILT, Wageningen University & Research, P.O. Box 230, 6700 AE Wageningen, The Netherlands
| | - Coen J Ritsema
- Soil Physics and Land Management, Wageningen University & Research, P.O. Box 47, 6700 AA Wageningen, The Netherlands
| | - Violette Geissen
- Soil Physics and Land Management, Wageningen University & Research, P.O. Box 47, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
27
|
Grandcoin A, Piel S, Baurès E. AminoMethylPhosphonic acid (AMPA) in natural waters: Its sources, behavior and environmental fate. WATER RESEARCH 2017; 117:187-197. [PMID: 28391123 DOI: 10.1016/j.watres.2017.03.055] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/24/2017] [Accepted: 03/26/2017] [Indexed: 05/19/2023]
Abstract
The widely occurring degradation product aminomethylphosphonic acid (AMPA) is a result of glyphosate and amino-polyphosphonate degradation. Massive use of the parent compounds leads to the ubiquity of AMPA in the environment, and particularly in water. The purpose of this review is to summarize and discuss current insights into AMPA formation, transport, persistence and toxicity. In agricultural soils, AMPA is concentrated in the topsoil, and degrades slowly in most soils. It can reach shallow groundwater, but rarely managed to enter deep groundwater. AMPA is strongly adsorbed to soil particles and moves with the particles towards the stream in rainfall runoff. In urban areas, AMPA comes from phosphonates and glyphosate in wastewater. It is commonly found at the outlets of Wastewater Treatment Plants (WWTP). Sediments tend to accumulate AMPA, where it may be biodegraded. Airborne AMPA is not negligible, but does wash-out with heavy rainfall. AMPA is reported to be persistent and can be biologically degraded in soils and sediments. Limited photodegradation in waters exists. AMPA mainly has its sources in agricultural leachates, and urban wastewater effluents. The domestic contribution to urban loads is negligible. There is a critical lack of epidemiological data - especially on water exposure - to understand the toxicological effects, if any, of AMPA on humans. Fortunately, well operated water treatment plants remove a significant proportion of the AMPA from water, even though there are not sufficient regulatory limits for metabolites.
Collapse
Affiliation(s)
- Alexis Grandcoin
- Environment and Health Research Laboratory (LERES), EHESP School of Public Health, Avenue du Professeur Léon Bernard-CS 74312, Rennes Cedex, 35043, France; Inserm, U 1085 Institute of Research in Environmental and Occupational Health (IRSET), Avenue du Professeur Léon Bernard-CS 74312, Rennes Cedex, 35043, France; SAUR Research and Development, 2 rue de la Bresle, Maurepas 78310, France.
| | - Stéphanie Piel
- SAUR Research and Development, 2 rue de la Bresle, Maurepas 78310, France
| | - Estelle Baurès
- Environment and Health Research Laboratory (LERES), EHESP School of Public Health, Avenue du Professeur Léon Bernard-CS 74312, Rennes Cedex, 35043, France; Inserm, U 1085 Institute of Research in Environmental and Occupational Health (IRSET), Avenue du Professeur Léon Bernard-CS 74312, Rennes Cedex, 35043, France.
| |
Collapse
|
28
|
Bento CPM, Goossens D, Rezaei M, Riksen M, Mol HGJ, Ritsema CJ, Geissen V. Glyphosate and AMPA distribution in wind-eroded sediment derived from loess soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 220:1079-1089. [PMID: 27876225 DOI: 10.1016/j.envpol.2016.11.033] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/09/2016] [Accepted: 11/11/2016] [Indexed: 05/12/2023]
Abstract
Glyphosate is one of the most used herbicides in agricultural lands worldwide. Wind-eroded sediment and dust, as an environmental transport pathway of glyphosate and of its main metabolite aminomethylphosphonic acid (AMPA), can result in environmental- and human exposure far beyond the agricultural areas where it has been applied. Therefore, special attention is required to the airborne transport of glyphosate and AMPA. In this study, we investigated the behavior of glyphosate and AMPA in wind-eroded sediment by measuring their content in different size fractions (median diameters between 715 and 8 μm) of a loess soil, during a period of 28 days after glyphosate application. Granulometrical extraction was done using a wind tunnel and a Soil Fine Particle Extractor. Extractions were conducted on days 0, 3, 7, 14, 21 and 28 after glyphosate application. Results indicated that glyphosate and AMPA contents were significantly higher in the finest particle fractions (median diameters between 8 and 18 μm), and lowered significantly with the increase in particle size. However, their content remained constant when aggregates were present in the sample. Glyphosate and AMPA contents correlated positively with clay, organic matter, and silt content. The dissipation of glyphosate over time was very low, which was most probably due to the low soil moisture content of the sediment. Consequently, the formation of AMPA was also very low. The low dissipation of glyphosate in our study indicates that the risk of glyphosate transport in dry sediment to off-target areas by wind can be very high. The highest glyphosate and AMPA contents were found in the smallest soil fractions (PM10 and less), which are easily inhaled and, therefore, contribute to human exposure.
Collapse
Affiliation(s)
- Célia P M Bento
- Soil Physics and Land Management, Wageningen University & Research, PO. Box 47, 6700 AA, Wageningen, The Netherlands.
| | - Dirk Goossens
- Department of Earth and Environmental Sciences, Katholieke Universiteit Leuven, Geo-Institute, Celestijnenlaan 200 E, 3001 Leuven, Belgium
| | - Mahrooz Rezaei
- Department of Soil Science, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Michel Riksen
- Soil Physics and Land Management, Wageningen University & Research, PO. Box 47, 6700 AA, Wageningen, The Netherlands
| | - Hans G J Mol
- RIKILT - Wageningen University & Research, PO. Box 230, 6700 AE, Wageningen, The Netherlands
| | - Coen J Ritsema
- Soil Physics and Land Management, Wageningen University & Research, PO. Box 47, 6700 AA, Wageningen, The Netherlands
| | - Violette Geissen
- Soil Physics and Land Management, Wageningen University & Research, PO. Box 47, 6700 AA, Wageningen, The Netherlands
| |
Collapse
|
29
|
Bento CPM, Yang X, Gort G, Xue S, van Dam R, Zomer P, Mol HGJ, Ritsema CJ, Geissen V. Persistence of glyphosate and aminomethylphosphonic acid in loess soil under different combinations of temperature, soil moisture and light/darkness. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 572:301-311. [PMID: 27505263 DOI: 10.1016/j.scitotenv.2016.07.215] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 07/29/2016] [Accepted: 07/29/2016] [Indexed: 05/12/2023]
Abstract
The dissipation kinetics of glyphosate and its metabolite aminomethylphosphonic acid (AMPA) were studied in loess soil, under biotic and abiotic conditions, as affected by temperature, soil moisture (SM) and light/darkness. Nonsterile and sterile soil samples were spiked with 16mgkg-1 of glyphosate, subjected to three SM contents (20% WHC, 60% WHC, saturation), and incubated for 30days at 5°C and 30°C, under dark and light regimes. Glyphosate and AMPA dissipation kinetics were fit to single-first-order (SFO) or first-order-multicompartment (FOMC) models, per treatment combination. AMPA kinetic model included both the formation and decline phases. Glyphosate dissipation kinetics followed SFO at 5°C, but FOMC at 30°C. AMPA followed SFO dissipation kinetics for all treatments. Glyphosate and AMPA dissipation occurred mostly by microbial activity. Abiotic processes played a negligible role for both compounds. Under biotic conditions, glyphosate dissipation and AMPA formation/dissipation were primarily affected by temperature, but also by SM. Light regimes didn't play a significant role. Glyphosate DT50 varied between 1.5 and 53.5days, while its DT90 varied between 8.0 and 280days, depending on the treatment. AMPA persisted longer in soil than glyphosate, with its DT50 at 30°C ranging between 26.4 and 44.5days, and its DT90 between 87.8 and 148days. The shortest DT50/DT90 values for both compounds occurred at 30°C and under optimal/saturated moisture conditions, while the largest occurred at 5°C and reaching drought stress conditions. Based on these results, we conclude that glyphosate and AMPA dissipate rapidly under warm and rainy climate conditions. However, repeated glyphosate applications in fallows or winter crops in countries where cold and dry winters normally occur could lead to on-site soil pollution, with consequent potential risks to the environment and human health. To our knowledge, this study is the first evaluating the combined effect of temperature, soil moisture and light/dark conditions on AMPA formation/dissipation kinetics and behaviour.
Collapse
Affiliation(s)
- Célia P M Bento
- Soil Physics and Land Management, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands.
| | - Xiaomei Yang
- Soil Physics and Land Management, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands; Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Gerrit Gort
- Biometris, Wageningen University, PO Box 100, 6700 AC Wageningen, the Netherlands
| | - Sha Xue
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau of Northwest A&F University, Yangling, 712100 Shaanxi, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Education, Yangling, 712100 Shaanxi, China
| | - Ruud van Dam
- RIKILT - Wageningen UR, P.O. Box 230, 6700 AE Wageningen, the Netherlands
| | - Paul Zomer
- RIKILT - Wageningen UR, P.O. Box 230, 6700 AE Wageningen, the Netherlands
| | - Hans G J Mol
- RIKILT - Wageningen UR, P.O. Box 230, 6700 AE Wageningen, the Netherlands
| | - Coen J Ritsema
- Soil Physics and Land Management, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| | - Violette Geissen
- Soil Physics and Land Management, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands; Institute of Crop Science and Resources Conservation (INRES), University of Bonn, 53115 Bonn, Germany
| |
Collapse
|