1
|
Bai B, Chen J, Zhang B. Flowing-water remediation simulation experiments of lead-contaminated soil using UCB technology. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024:1-10. [PMID: 39709546 DOI: 10.1080/15226514.2024.2443071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2024]
Abstract
The flowing-water remediation of contaminated soil was investigated. Urease combined with biochar (UCB) technology was used to handle the Pb2+-contaminated sand column. The results showed that with the continuous increase of pore volume, the concentration of Pb2+ in the leachate undergoes three stages: slow growth, rapid growth, and steady state. With increasing seepage velocity, the concentration of Pb2+ in leachate increased slightly. The residual amount of each section of the sand column gradually decreased with increasing migration distance. The comparative results indicated that the UCB technology had a good solidification effect on Pb2+. This was due to urease-induced CaCO3 precipitation, cementation, and adsorption of Pb2+. Biochar provided more nucleation sites for urease, and some Pb2+ was adsorbed on its surface or diffused into the pores of biochar, or ions exchanged with functional groups on the surface of biochar, which effectively stabilized the free Pb2+.
Collapse
Affiliation(s)
- Bing Bai
- Key Laboratory of Urban Underground Engineering of Ministry of Education, Beijing Jiaotong University, Beijing, PR China
| | - Jing Chen
- Key Laboratory of Urban Underground Engineering of Ministry of Education, Beijing Jiaotong University, Beijing, PR China
| | - Bin Zhang
- Key Laboratory of Urban Underground Engineering of Ministry of Education, Beijing Jiaotong University, Beijing, PR China
| |
Collapse
|
2
|
Yang Y, Zhu F. An overview of electrokinetically enhanced chemistry technologies for organochlorine compounds (OCs) remediation from soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:529-548. [PMID: 38015392 DOI: 10.1007/s11356-023-31183-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/18/2023] [Indexed: 11/29/2023]
Abstract
In recent years, electrokinetic (EK) remediation technology has gained significant attention among researchers. This technology has proven effective in the remediation of low-permeability polluted soil. Organochlorines (OCs) are highly toxic, persistent, bioaccumulative, and capable of long-distance migration. They can also accumulate through the food chain, posing significant environmental risks. This paper provides a review of the reaction mechanism of combining chemical technology with EK remediation for the removal of several typical OCs. Furthermore, the factors influencing the efficiency of EK remediation, such as pH and ζ potential, voltage gradients, electrode materials, electrolytes, electrode arrangements, and soil types, are summarized. The paper also presents an overview of recent advancements in the methods of combining chemical technology with EK remediation for the treatment of OCs contaminated soil. Specifically, the research progress in surfactants-combined EK technology, chemical oxidation-combined EK technology, chemical reduction-combined EK technology, and chemical adsorption-combined EK technology is summarized. These findings serve as a foundation for ongoing and future research endeavors in the field. Further exploration and investigation in this area are essential for advancing the field and improving environmental remediation strategies.
Collapse
Affiliation(s)
- Yue Yang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong, Shanxi, 030600, People's Republic of China
| | - Fang Zhu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong, Shanxi, 030600, People's Republic of China.
| |
Collapse
|
3
|
Wang L, Cheng WC, Xue ZF, Xie YX, Lv XJ. Study on Cu- and Pb-contaminated loess remediation using electrokinetic technology coupled with biological permeable reactive barrier. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119348. [PMID: 37866186 DOI: 10.1016/j.jenvman.2023.119348] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/29/2023] [Accepted: 10/14/2023] [Indexed: 10/24/2023]
Abstract
Although the electrokinetic (EK) remediation has drawn great attention because of its good maneuverability, the focusing phenomenon near the cathode and low removal efficiency remain to be addressed. In this study, a novel EK reactor was proposed to remediate Cu and Pb contaminated loess where a biological permeable reactive barrier (bio-PRB) was deployed to the middle of the EK reactor. For comparison, three test configurations, namely, CG, TG-1, and TG-2, were available. CG considered the multiple enzyme-induced carbonate precipitation (EICP) treatments, while TG-1 considered both the multiple EICP treatments and pH regulation. TG-2 further considered NH4+ recovery based on TG-1. CG not only improved Cu and Pb removals by the bio-PRB but also depressed the focusing phenomenon. TG-1 causes more Cu2+ and Pb2+ to migrate toward the bio-PRB and aggravates Cu and Pb removals by the bio-PRB, depressing the focusing phenomenon. TG-2 depressed the focusing phenomenon the most because Cu2+ and Pb2+ can combine with not only CO32- but PO43-. The removal efficiency of Cu and Pb is 34% and 36%, respectively. A NH4+ recovery of about 100% is attained.
Collapse
Affiliation(s)
- Lin Wang
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| | - Wen-Chieh Cheng
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| | - Zhong-Fei Xue
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| | - Yi-Xin Xie
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| | - Xin-Jiang Lv
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| |
Collapse
|
4
|
Acosta Hernández I, Muñoz Morales M, Fernández Morales FJ, Rodríguez Romero L, Villaseñor Camacho J. Removal of heavy metals from mine tailings by in-situ bioleaching coupled to electrokinetics. ENVIRONMENTAL RESEARCH 2023; 238:117183. [PMID: 37769830 DOI: 10.1016/j.envres.2023.117183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/04/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023]
Abstract
This work utilizes a combined biological-electrochemical technique for the in-situ removal of metals from polluted mine tailings. As the main novelty point it is proposed to use electrokinetics (EK) for the in-situ activation of a bioleaching mechanism into the tailings, in order to promote biological dissolution of metal sulphides (Step 1), and for the subsequent removal of leached metals by EK transport out of the tailings (Step 2). Mine tailings were collected from an abandoned Pb/Zn mine located in central-southern Spain. EK-bioleaching experiments were performed under batch mode using a lab scale EK cell. A mixed microbial culture of autochthonous acidophilic bacteria grown from the tailings was used. Direct current with polarity reversal vs alternate current was evaluated in Step 1. In turn, different biological strategies were used: biostimulation, bioaugmentation and the abiotic reference test (EK alone). It was observed that bioleaching activation was very low during Step 1, because it was difficult to maintain acidic pH in the whole soil, but then it worked correctly during Step 2. It was confirmed that microorganisms successfully contributed to the in-situ solubilization of the metal sulphides as final metal removal rates were improved compared to the conventional abiotic EK (best increases of around 40% for Cu, 162% for Pb, 18% for Zn, 13% for Mn, 40% for Ni and 15% for Cr). Alternate current seemed to be the best option. The tailings concentrations of Fe, Al, Cu, Mn, Ni and Pb after treatment comply with regulations, but Pb, Cd and Zn concentrations exceed the maximum values. From the data obtained in this work it has been observed that EK-bioleaching could be feasible, but some upgrades and future work must be done in order to optimize experimental conditions, especially the control of soil pH in acidic values.
Collapse
Affiliation(s)
- Irene Acosta Hernández
- Chemical Engineering Department, Research Institute for Chemical and Environmental Technologies (ITQUIMA), University of Castilla La Mancha UCLM, 13071 Ciudad Real, Spain
| | - Martín Muñoz Morales
- Chemical Engineering Department, Research Institute for Chemical and Environmental Technologies (ITQUIMA), University of Castilla La Mancha UCLM, 13071 Ciudad Real, Spain
| | - Francisco Jesús Fernández Morales
- Chemical Engineering Department, Research Institute for Chemical and Environmental Technologies (ITQUIMA), University of Castilla La Mancha UCLM, 13071 Ciudad Real, Spain
| | - Luis Rodríguez Romero
- Chemical Engineering Department, Research Institute for Chemical and Environmental Technologies (ITQUIMA), University of Castilla La Mancha UCLM, 13071 Ciudad Real, Spain
| | - José Villaseñor Camacho
- Chemical Engineering Department, Research Institute for Chemical and Environmental Technologies (ITQUIMA), University of Castilla La Mancha UCLM, 13071 Ciudad Real, Spain.
| |
Collapse
|
5
|
Lan J, Wen F, Ren Y, Liu G, Jiang Y, Wang Z, Zhu X. An overview of bioelectrokinetic and bioelectrochemical remediation of petroleum-contaminated soils. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2023; 16:100278. [PMID: 37251519 PMCID: PMC10220241 DOI: 10.1016/j.ese.2023.100278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 05/31/2023]
Abstract
The global problem of petroleum contamination in soils seriously threatens environmental safety and human health. Current studies have successfully demonstrated the feasibility of bioelectrokinetic and bioelectrochemical remediation of petroleum-contaminated soils due to their easy implementation, environmental benignity, and enhanced removal efficiency compared to bioremediation. This paper reviewed recent progress and development associated with bioelectrokinetic and bioelectrochemical remediation of petroleum-contaminated soils. The working principles, removal efficiencies, affecting factors, and constraints of the two technologies were thoroughly summarized and discussed. The potentials, challenges, and future perspectives were also deliberated to shed light on how to overcome the barriers and realize widespread implementation on large scales of these two technologies.
Collapse
Affiliation(s)
- Jun Lan
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Fang Wen
- Xinjiang Academy of Environmental Protection Science, Urumqi, 830011, China
| | - Yongxiang Ren
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Guangli Liu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yi Jiang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Zimeng Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Xiuping Zhu
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| |
Collapse
|
6
|
Cai Q, Shi C, Yuan S, Tong M. Integrated anaerobic-aerobic biodegradation of mixed chlorinated solvents by electrolysis coupled with groundwater circulation in a simulated aquifer. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:31188-31201. [PMID: 36445524 DOI: 10.1007/s11356-022-24377-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
Chlorinated solvents are widespread subsurface contaminants that are often present as complex mixtures. Complete biodegradation of mixed chlorinated solvents remains challenging because the optimal redox conditions for biodegradation of different chlorinated solvents differ significantly. In this study, anaerobic and aerobic conditions were integrated by electrolysis coupled with groundwater circulation for biodegradation of a mixture of chloroform (CF, 8.25 mg/L), 1,2-dichloroethane (DCA, 7.01 mg/L), and trichloroethylene (TCE, 4.56 mg/L). A two-dimensional tank was filled with field sandy and silty-clayed sediments to simulate aquifer conditions, a pair of electrodes was installed between an injection well and abstraction well, and groundwater circulation transported cathodic H2 and anodic O2 to produce multiple redox conditions. Microbial community analysis demonstrated that the system constructed a habitat suitable for the co-existence of aerobic and anaerobic microbes. After 50 days of treatment, 93.1%, 100%, and 87.3% of CF, 1,2-DCA, and TCE were removed without observed intermediates, respectively. Combined with compound specific isotope analysis, the degradation of 1,2-DCA and CF was mainly attributed to aerobic oxidation and reductive dechlorination, respectively, and TCE was removed by both aerobic and anaerobic biodegradation. Our findings provide a new and efficient strategy for in situ bioremediation of groundwater contaminated by mixed chlorinated solvents.
Collapse
Affiliation(s)
- Qizheng Cai
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan, 430078, People's Republic of China
| | - Chongwen Shi
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan, 430078, People's Republic of China
| | - Songhu Yuan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan, 430078, People's Republic of China
- Hubei Key Laboratory of Yangze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan, 430078, People's Republic of China
| | - Man Tong
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan, 430078, People's Republic of China.
- Hubei Key Laboratory of Yangze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan, 430078, People's Republic of China.
| |
Collapse
|
7
|
Wang L, Cheng WC, Xue ZF, Zhang B, Lv XJ. Immobilizing of lead and copper using chitosan-assisted enzyme-induced carbonate precipitation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120947. [PMID: 36581237 DOI: 10.1016/j.envpol.2022.120947] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Enzyme-induced carbonate precipitation (EICP) is considered as an environmentally friendly method for immobilizing heavy metals (HMs). The fundamental of the EICP method is to catalyze urea hydrolysis using the urease, discharging CO32- and NH4+. CO32- helps to form carbonates that immobilize HMs afterwards. However, HMs can depress urease activity and reduce the degree of urea hydrolysis. Herein, the potential of applying the chitosan-assisted EICP method to Pb and Cu immobilization was explored. The chitosan addition elevated the degree of urea hydrolysis when subjected to the effect of Cu2+ toxicity where the protective effect, flocculation and adsorption, and the formation of precipitation, play parts in improving the Cu immobilization efficiency. The use of chitosan addition, however, also causes the side effect (copper-ammonia complex formation). Two calcium source additions, CaCl2 and Ca(CH3COO)2, intervened in the test tube experiments not only to prevent pH from raising to values where Cu2+ complexes with NH3 but also to separate the urease enzyme and Cu2+ from each other with the repulsion of charges. The FTIR spectra indicate that the chitosan addition adsorbs Cu2+ through its surface hydroxyl and carboxyl groups, while the SEM images distinguish who the mineral are nucleating with. The findings shed light on the potential of applying the chitosan-assisted EICP method to remedy lead- and copper-rich water bodies.
Collapse
Affiliation(s)
- Lin Wang
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| | - Wen-Chieh Cheng
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| | - Zhong-Fei Xue
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| | - Bin Zhang
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| | - Xin-Jiang Lv
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| |
Collapse
|
8
|
Basic principles and problems in decontamination of natural disperse systems. The electrokinetic treatment of soils. Adv Colloid Interface Sci 2022; 310:102798. [DOI: 10.1016/j.cis.2022.102798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/15/2022] [Accepted: 10/15/2022] [Indexed: 11/20/2022]
|
9
|
Kumpanenko IV, Ivanova NA, Shapovalova OV, Dyubanov MV, Skryl’nikov AM, Roshchin AV. Empirical Mathematical Analysis of Electrokinetic Decontamination of Soils Polluted With Heavy Metals. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2022. [DOI: 10.1134/s1990793122050050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
An Overview of Emerging Cyanide Bioremediation Methods. Processes (Basel) 2022. [DOI: 10.3390/pr10091724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Cyanide compounds are hazardous compounds which are extremely toxic to living organisms, especially free cyanide in the form of hydrogen cyanide gas (HCN) and cyanide ion (CN−). These cyanide compounds are metabolic inhibitors since they can tightly bind to the metals of metalloenzymes. Anthropogenic sources contribute significantly to CN− contamination in the environment, more specifically to surface and underground waters. The treatment processes, such as chemical and physical treatment processes, have been implemented. However, these processes have drawbacks since they generate additional contaminants which further exacerbates the environmental pollution. The biological treatment techniques are mostly overlooked as an alternative to the conventional physical and chemical methods. However, the recent research has focused substantially on this method, with different reactor configurations that were proposed. However, minimal attention was given to the emerging technologies that sought to accelerate the treatment with a subsequent resource recovery from the process. Hence, this review focuses on the recent emerging tools that can be used to accelerate cyanide biodegradation. These tools include, amongst others, electro-bioremediation, anaerobic biodegradation and the use of microbial fuel cell technology. These processes were demonstrated to have the possibility of producing value-added products, such as biogas, co-factors of neurotransmitters and electricity from the treatment process.
Collapse
|
11
|
Behrouzinia S, Ahmadi H, Abbasi N, Javadi AA. Experimental investigation on a combination of soil electrokinetic consolidation and remediation of drained water using composite nanofiber-based electrodes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155562. [PMID: 35504389 DOI: 10.1016/j.scitotenv.2022.155562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/13/2022] [Accepted: 04/23/2022] [Indexed: 06/14/2023]
Abstract
A novel electrokinetic geosynthetic (EKG) can be efficient in achieving multiple objectives. In this study, a new EKG as an electrode and a drainage channel in the electro-osmotic consolidation was fabricated by electrospun nanofibers containing graphene nanoparticles (GNs) attached to a carbon fiber substrate. To investigate the effectiveness of the fabricated electrodes in electro-osmotic consolidation and remediation of water drained from the system, an experimental apparatus was constructed while considering loading capability in expanded ranges and applying the electric field, and was filled with copper (Cu)-contaminated kaolinite. Experiments were divided into control (CT) and EKG groups, and three categories, C-EK, ES1-EK, and ES2-EK (using carbon fiber, electrospun nanofibers containing 1 wt% GNs, and electrospun nanofibers consisting of 2 wt% GNs, respectively). All the experiments were conducted with the same conditions, loading, drainage condition, and duration. However, EKG experiments were performed by employing the electric field under the vertical pressure in the range of 7-113 kPa, while the CT was conducted without the electric field. According to experimental results, 18 wt% polymethyl methacrylate in the dimethylformamide solvent containing 1 and 2 wt% GNs was selected for making a nanofibrous layer on the carbon fiber. The average diameters of the fibers were 404 ± 36 and 690 ± 62 nm and yielded at 1 and 2 wt% GNs, respectively. The results revealed that using the EKG accelerated kaolinite consolidation. The average degree of consolidation was 68 and 85% in the CT and EKG experiments, respectively. Furthermore, the fabricated electrodes were highly effective as a drainage channel for remediating water drained from the system. Moreover, the highest Cu removal efficiency was obtained in ES2-EK (97%) and ES1-EK (92%), respectively. Conversely, the lowest Cu removal efficiency was observed in the C-EK group (85%).
Collapse
Affiliation(s)
| | - Hojjat Ahmadi
- Department of Water Engineering, Urmia University, Iran.
| | - Nader Abbasi
- Agricultural Engineering Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Akbar A Javadi
- Department of Engineering, College of Engineering, Mathematics and Physical Sciences, University of Exeter, North Park Road, Exeter EX4 4QF, UK
| |
Collapse
|
12
|
Miller de Melo Henrique J, Isidro J, Sáez C, López-Vizcaíno R, Yustres A, Navarro V, Dos Santos EV, Rodrigo MA. Enhancing soil vapor extraction with EKSF for the removal of HCHs. CHEMOSPHERE 2022; 296:134052. [PMID: 35189200 DOI: 10.1016/j.chemosphere.2022.134052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
This paper evaluates the combination of electrokinetic soil flushing (EKSF) with soil vapor extraction (SVE) for the removal of four hexachlorocyclohexane (HCH) isomers contained in a real matrix. Results demonstrate that the combination of EKSF and SVE can be positive, but it is required the application of high electric fields (3 V cm-1) in order to promote a higher temperature in the system, which improves the volatilization of the HCH contained in the system. Electrokinetic transport is also enhanced with the application of higher electric gradients, but these transport processes are slower than the volatilization processes, which are the primary in this system. Hence collection of species in the electrolyte wells is negligible as compared to the compound dragged with air by the SVE but the temperature increase demonstrates a good performance. Combination of EKSF with SVE can efficiently exhaust the four HCH isomers reaching a removal of more than 90% after 15 days of treatment (20% more than values attained by SVE) but it is required the application of high electric fields to promote a higher temperature in the system (to improve the volatilization) and EK transport (to improve the dragging). 1-D transport model can be easily used to estimate the average pore water velocity and the effective diffusion of each compound under the different experimental conditions tested.
Collapse
Affiliation(s)
- João Miller de Melo Henrique
- Postgraduate Program in Chemical Engineering, School of Science and Technology, Federal University of Rio Grande do Norte, 59078-970, Natal, RN, Brazil; Department of Chemical Engineering, Faculty of Chemical Sciences & Technologies, Universidad de Castilla La Mancha, Campus Universitario, s/n, 13071, Ciudad Real, Spain
| | - Julia Isidro
- Department of Chemical Engineering, Faculty of Chemical Sciences & Technologies, Universidad de Castilla La Mancha, Campus Universitario, s/n, 13071, Ciudad Real, Spain
| | - Cristina Sáez
- Department of Chemical Engineering, Faculty of Chemical Sciences & Technologies, Universidad de Castilla La Mancha, Campus Universitario, s/n, 13071, Ciudad Real, Spain
| | - Rubén López-Vizcaíno
- Geoenvironmental Group, Civil Engineering School, University of Castilla-La Mancha, Avda. Camilo José Cela s/n, 13071, Ciudad Real, Spain
| | - Angel Yustres
- Geoenvironmental Group, Civil Engineering School, University of Castilla-La Mancha, Avda. Camilo José Cela s/n, 13071, Ciudad Real, Spain
| | - Vicente Navarro
- Geoenvironmental Group, Civil Engineering School, University of Castilla-La Mancha, Avda. Camilo José Cela s/n, 13071, Ciudad Real, Spain
| | - Elisama V Dos Santos
- Postgraduate Program in Chemical Engineering, School of Science and Technology, Federal University of Rio Grande do Norte, 59078-970, Natal, RN, Brazil
| | - Manuel A Rodrigo
- Department of Chemical Engineering, Faculty of Chemical Sciences & Technologies, Universidad de Castilla La Mancha, Campus Universitario, s/n, 13071, Ciudad Real, Spain.
| |
Collapse
|
13
|
Abstract
Abstract
This paper evaluates the remediation of soil spiked with lindane using a combined treatment consisting of electrokinetic soil flushing (EKSF) with air stripping to elucidate the main processes occurring in the soil when electric fields of 0.75 V cm−1 and 1.50 V cm−1 are applied. The results demonstrate that lindane is efficiently transported to the anodic and cathodic wells using flushing fluids containing sodium dodecyl sulfate (SDS). Additionally, an important amount is volatilized and stripped with the injected air. In the cathodic well, lindane is rapidly transformed into other species because of the strongly alkaline media. These other species are also found in the portions of soil next to this well, confirming the efficient transport of chlorinated organics with SDS. After 14 days of operation, nearly 50% of the spiked lindane can be removed from the soil. Operation with large electric fields does not improve the performance of the treatment technology and results in lower current intensities and electro-osmotic fluxes and in higher evaporated water, despite the water content in the soil matrix, indicating the coexistence of multiple inputs in these processes.
Graphical abstract
Collapse
|
14
|
Gidudu B, Chirwa EM. Electrokinetic extraction and recovery of biosurfactants using rhamnolipids as a model biosurfactant. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Crognale S, Cocarta DM, Streche C, D’Annibale A. Development of laboratory-scale sequential electrokinetic and biological treatment of chronically hydrocarbon-impacted soils. N Biotechnol 2020; 58:38-44. [DOI: 10.1016/j.nbt.2020.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/06/2020] [Accepted: 04/11/2020] [Indexed: 01/04/2023]
|
16
|
Li F, Guo S, Wang S, Zhao M. Changes of microbial community and activity under different electric fields during electro-bioremediation of PAH-contaminated soil. CHEMOSPHERE 2020; 254:126880. [PMID: 32957287 DOI: 10.1016/j.chemosphere.2020.126880] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
Electro-bioremediation is a promising technology for remediation of soil contaminated with persistent organic compounds such as polycyclic aromatic hydrocarbons (PAHs). During electro-bioremediation, electrical fields have been shown to increase pollutant degradation. However, it remains unclear whether there is an optimal strength for the electrical field applied that is conductive to the maximum role played by microbes. This study aimed to determine the optimal strength of electric field through the analysis of the effects of different voltages on the microbial community and activity. Four bench-scale experiments with voltages of 0, 1, 2 and 3 V cm-1 were conducted for 90 days in an aged PAH-contaminated soil. The spatiotemporal changes of the soil pH, moisture content and temperature, microbial biomass and community structure, and the degradation extent of PAHs were researched over 90 days. The results indicated that the total microbial biomass and degradation activity were highest at voltages of 2 V cm-1. The concentration of total phospholipid fatty acids, used to quantify soil microbial biomass, reached 65.7 nmol g-1 soil, and the mean degradation extent of PAHs was 44.0%. Similarly, the maximum biomass of actinomycetes, bacteria and fungus also occurred at the voltage of 2 V cm-1. The Gram-positive/Gram-negative and (cy17:0+cy 19:0)/(16:1ω7+18:1ω7) ratios also showed that the intensity of electric field and electrode reactions strongly influenced the microbial community structure. Therefore, to optimize the electro-bioremediation of PAH-contaminated soil, the strength of electric field needs to be selected carefully. This work provides reference for the development of novel electrokinetically enhanced bioremediation processes.
Collapse
Affiliation(s)
- Fengmei Li
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-physicochemical Synergistic Process, Shenyang, 110016, China
| | - Shuhai Guo
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-physicochemical Synergistic Process, Shenyang, 110016, China.
| | - Sa Wang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-physicochemical Synergistic Process, Shenyang, 110016, China
| | - Mingyang Zhao
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| |
Collapse
|
17
|
Rodríguez-González V, Obregón S, Patrón-Soberano OA, Terashima C, Fujishima A. An approach to the photocatalytic mechanism in the TiO 2-nanomaterials microorganism interface for the control of infectious processes. APPLIED CATALYSIS. B, ENVIRONMENTAL 2020; 270:118853. [PMID: 32292243 DOI: 10.1016/j.apcatb.2020.118857] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 05/21/2023]
Abstract
The approach of this timely review considers the current literature that is focused on the interface nanostructure/cell-wall microorganism to understand the annihilation mechanism. Morphological studies use optical and electronic microscopes to determine the physical damage on the cell-wall and the possible cell lysis that confirms the viability and microorganism death. The key parameters of the tailoring the surface of the photoactive nanostructures such as the metal functionalization with bacteriostatic properties, hydrophilicity, textural porosity, morphology and the formation of heterojunction systems, can achieve the effective eradication of the microorganisms under natural conditions, ranging from practical to applications in environment, agriculture, and so on. However, to our knowledge, a comprehensive review of the microorganism/nanomaterial interface approach has rarely been conducted. The final remarks point the ideal photocatalytic way for the effective prevention/eradication of microorganisms, considering the resistance that the microorganism could develop without the appropriate regulatory aspects for human and ecosystem safety.
Collapse
Affiliation(s)
- Vicente Rodríguez-González
- Photocatalysis International Research Center, Research Institute for Science & Technology, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), División de Materiales Avanzados, Camino a la Presa San José 2055, Lomas 4a, Sección, 78216, San Luis Potosí, Mexico
| | - Sergio Obregón
- Universidad Autónoma de Nuevo León, UANL, CICFIM-Facultad de Ciencias Físico Matemáticas, Av. Universidad S/N, San Nicolás de los Garza, 66455, Nuevo León, Mexico
| | - Olga A Patrón-Soberano
- Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), División de Biología Molecular, Camino a la Presa San José 2055, Lomas 4a, Sección, 78216, San Luis Potosí, Mexico
| | - Chiaki Terashima
- Photocatalysis International Research Center, Research Institute for Science & Technology, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Akira Fujishima
- Photocatalysis International Research Center, Research Institute for Science & Technology, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
18
|
Saini A, Bekele DN, Chadalavada S, Fang C, Naidu R. A review of electrokinetically enhanced bioremediation technologies for PHs. J Environ Sci (China) 2020; 88:31-45. [PMID: 31862072 DOI: 10.1016/j.jes.2019.08.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/13/2019] [Accepted: 08/13/2019] [Indexed: 06/10/2023]
Abstract
Since the early 1980's there have been several different strategies designed and applied to the remediation of subsurface environment including physical, chemical and biological approaches. They have had varying degrees of success in remediating contaminants from subsurface soils and groundwater. The objective of this review is to examine the range of technologies for the remediation of contaminants, particularly petroleum hydrocarbons, in subsurfaces with a specific focus on bioremediation and electrokinetic remediation. Further, this review examines the efficiency of remediation carried out by combining bioremediation and electrokinetic remediation. Surfactants, which are slowly becoming the selected chemicals for mobilizing contaminants, are also considered in this review. The current knowledge gaps of these technologies and techniques identified which could lead to development of more efficient ways of utilizing these technologies or development of a completely new technology.
Collapse
Affiliation(s)
- Anish Saini
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan, Newcastle 2308, NSW, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, Newcastle 2308, NSW, Australia
| | - Dawit Nega Bekele
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan, Newcastle 2308, NSW, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, Newcastle 2308, NSW, Australia
| | - Sreenivasulu Chadalavada
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan, Newcastle 2308, NSW, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, Newcastle 2308, NSW, Australia
| | - Cheng Fang
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan, Newcastle 2308, NSW, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, Newcastle 2308, NSW, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan, Newcastle 2308, NSW, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, Newcastle 2308, NSW, Australia.
| |
Collapse
|
19
|
Huang T, Liu L, Zhang S, Xu J. Evaluation of electrokinetics coupled with a reactive barrier of activated carbon loaded with a nanoscale zero-valent iron for selenite removal from contaminated soils. JOURNAL OF HAZARDOUS MATERIALS 2019; 368:104-114. [PMID: 30665105 DOI: 10.1016/j.jhazmat.2019.01.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 01/09/2019] [Accepted: 01/14/2019] [Indexed: 06/09/2023]
Abstract
The range between dietary deficient and toxic levels for selenium is quite narrow. In this study, the synergistic effects of electrokinetics (EK) and a permeable reactive barrier (PRB) on the reductive sequestration of Se(IV) oxyanions from spiked soils were investigated in detail. Activated charcoal (AC)-supported Fe(II) and nanoscale zero-valent iron (nZVI) were prepared as the PRB media for use in an electrolyzer. In aqueous equilibrium adsorption tests, the AC-supported nZVI medium had a higher adsorption capacity than that of the other adsorbents. The Se(IV) removal isotherms were well-fitted using the Langmuir model. The Se(IV) removal rates were accurately predicted by both pseudo-first- and pseudo-second-order kinetic models. For the coupled systems, a moderate increase in the number of PRBs and decrease in the PRB thickness in the electrolyzer enhanced the removal and catalytic recovery of Se(IV) from the spiked soil samples. A Se(VI) removal efficiency of approximately 95% and Se(VI) reduction efficiency of 90% were achieved in the optimized electrochemical system. The Se(IV) species were reduced to Se° and FeSe by the AC-supported nZVI regardless of the pH distribution. The experimental results provide guidance for the multichannel recovery of Se from abandoned ore tailings or solid wastes.
Collapse
Affiliation(s)
- Tao Huang
- School of Chemistry and Materials Engineering, Changshu Institute of Technology, 215500, China.
| | - Longfei Liu
- School of Chemistry and Materials Engineering, Changshu Institute of Technology, 215500, China
| | - Shuwen Zhang
- Nuclear Resources Engineering College, University of South China, 421001, China
| | - Jiaojiao Xu
- School of Chemistry and Materials Engineering, Changshu Institute of Technology, 215500, China
| |
Collapse
|
20
|
Yang GCC. Integrated electrokinetic processes for the remediation of phthalate esters in river sediments: A mini-review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 659:963-972. [PMID: 31096426 DOI: 10.1016/j.scitotenv.2018.12.334] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 11/29/2018] [Accepted: 12/22/2018] [Indexed: 06/09/2023]
Abstract
Concerning the contamination of phthalate esters (PAEs) in river sediments, this mini-review introduces four recently reported novel "integrated electrokinetic (EK) processes" for the remediation purpose, namely two combined technologies of the EK process and advanced oxidation process (EK-AOP Processes) and two combined technologies of the EK process and biological process (EK-BIO Processes). The following is a comprehensive summary for these remediation processes: (1) the EK process coupled with nano-Fe3O4/S2O82- oxidation process - Test results have shown that nanoscale Fe3O4 played a significant role in activating persulfate oxidation. Even a recalcitrant compound like di(2‑ethylhexyl)phthalate (DEHP), its concentration in test sediment was reduced to 1.97 mg kg-1, far below the regulatory levels set by Taiwan EPA; (2) the EK process integrated with a novel Fenton-like process catalyzed by nanoscale schwertmannite (nano-SHM) - Test results have revealed that simultaneous injection of nano-SHM slurry and H2O2 into the anode reservoir and sediment compartment is a good practice. 70-99% in removal efficiency was obtained for various target PAEs; (3) enhanced in situ bioremediation coupled with the EK process for promoting the growth of intrinsic microorganisms by adding H2O2 as an oxygen release compound (ORC) - Test results have demonstrated that an intermittent mode of injecting lab-prepared ORC directly into the contaminant zone would be beneficial to the growth of intrinsic microorganisms in test sediment for in situ bioremediation of target PAEs; and (4) coupling of a second-generation ORC (designated 2G-ORC) with the EK-biological process - Test results have proved that 2G-ORC is long-lasting and can be directly utilized as the carbon source and oxygen source for microbial growth resulting in an enhanced biodegradation of PAEs. Except DEHP having a residual concentration of 4 μg kg-1, all other target PAEs in test sediment were totally removed by this novel combined remediation process.
Collapse
Affiliation(s)
- Gordon C C Yang
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
| |
Collapse
|
21
|
Barba S, Carvela M, Villaseñor J, Rodrigo MA, Cañizares P. Improvement of the electro-bioremediation process of a non-polar herbicide-polluted soil by means of surfactant addition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:1961-1968. [PMID: 30290338 DOI: 10.1016/j.scitotenv.2018.09.338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/18/2018] [Accepted: 09/26/2018] [Indexed: 06/08/2023]
Abstract
Oxyfluorfen is a non-polar herbicide that may cause severe soil pollution. The present work studies the possible improvement due to surfactant addition in the efficiency of electro-bioremediation of a clay soil polluted which such a non-polar, low-mobility pollutant. Two-week-long batch electro-bioremediation experiments were performed in a bench-scale device. Oxyfluorfen-polluted soil (20 mg kg-1) was inoculated with an acclimated microbial culture, and several experiments were performed using different surfactant concentrations in the electrode wells (0.0, 2.5, 5.0, 10.0 and 20.0 g L-1 of SDS, sodium dodecyl sulphate). Experiments were performed under 1.0 V cm-1 and electrode polarity reversal. It was observed that the electro-osmotic flow (EOF) increased with SDS concentration and that SDS was successfully distributed across the soil, probably improving the oxyfluorfen mobility. Additionally, microbiological activity was fully maintained during the experiments. Electro-bioremediation without SDS removed 14% of the oxyfluorfen, while under 2.5 g L-1 SDS, the efficiency increased to 22% because of an expected improvement in the contact between the different species in the soil. However, higher SDS concentrations (between 10.0 and 20.0 g L-1) caused a decrease in the oxyfluorfen removal efficiency, as SDS is an easily biodegradable compound and was preferably used as substrate by the microbial culture instead of oxyfluorfen. Additionally, the use of high concentrations of SDS was clearly inefficient, as high amounts of the surfactant were lost through the EOF, and even low amounts of oxyfluorfen were removed to the electrode wells, which means that ex situ treatment of the polluted water would be needed.
Collapse
Affiliation(s)
- Silvia Barba
- Chemical Engineering Department, Research Institute for Chemical and Environmental Technology (ITQUIMA), University of Castilla-La Mancha, 13071 Ciudad Real, Spain.
| | - Mireya Carvela
- Chemical Engineering Department, Research Institute for Chemical and Environmental Technology (ITQUIMA), University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - José Villaseñor
- Chemical Engineering Department, Research Institute for Chemical and Environmental Technology (ITQUIMA), University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Manuel A Rodrigo
- Chemical Engineering Department, Faculty of Chemical Sciences and Technology, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Pablo Cañizares
- Chemical Engineering Department, Faculty of Chemical Sciences and Technology, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| |
Collapse
|
22
|
Barba S, Villaseñor J, Cañizares P, Rodrigo MA. Strategies for the electrobioremediation of oxyfluorfen polluted soils. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.11.195] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
López-Vizcaíno R, Yustres A, Sáez C, Cañizares P, Asensio L, Navarro V, Rodrigo MA. Techno-economic analysis of the scale-up process of electrochemically-assisted soil remediation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 231:570-575. [PMID: 30388654 DOI: 10.1016/j.jenvman.2018.10.084] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/16/2018] [Accepted: 10/23/2018] [Indexed: 06/08/2023]
Abstract
This work presents a techno-economic study of the scaling-up of the electrochemically-assisted soil remediation (EASR) process of polluted soil. Four scales have been selected for the study: laboratory, bench, pilot and prototype, with a capacity of treating a volume of soil of 1 × 10-4, 2 × 10-3, 0.11 and 21.76 m3, respectively. This study analyses the technical information produced by studies carried out at each scale, and informs about the fixed costs (construction of the electrokinetic remediation reactor, installation of auxiliary services and purchase of analytical equipment) and variable costs (start-up, operation and dismantling of the test) derived from running a test at each of the evaluated scales. The information discussed in based on the experience gained with many evaluations carried out over the last decade at these scales. This information can provide useful guidance for developing a scaling-up of the EASR for many researchers starting on the evaluation of this important environmental remediation technology.
Collapse
Affiliation(s)
- R López-Vizcaíno
- Geoenvironmental Group, Civil Engineering School, University of Castilla-La Mancha, Avda. Camilo José Cela s/n, 13071 Ciudad Real, Spain.
| | - A Yustres
- Geoenvironmental Group, Civil Engineering School, University of Castilla-La Mancha, Avda. Camilo José Cela s/n, 13071 Ciudad Real, Spain
| | - C Sáez
- Department of Chemical Engineering, Faculty of Chemical Sciences & Technologies, University of Castilla-La Mancha, Campus Universitario s/n, 13071 Ciudad Real, Spain
| | - P Cañizares
- Department of Chemical Engineering, Faculty of Chemical Sciences & Technologies, University of Castilla-La Mancha, Campus Universitario s/n, 13071 Ciudad Real, Spain
| | - L Asensio
- Geoenvironmental Group, Civil Engineering School, University of Castilla-La Mancha, Avda. Camilo José Cela s/n, 13071 Ciudad Real, Spain
| | - V Navarro
- Geoenvironmental Group, Civil Engineering School, University of Castilla-La Mancha, Avda. Camilo José Cela s/n, 13071 Ciudad Real, Spain
| | - M A Rodrigo
- Department of Chemical Engineering, Faculty of Chemical Sciences & Technologies, University of Castilla-La Mancha, Campus Universitario s/n, 13071 Ciudad Real, Spain
| |
Collapse
|
24
|
Rodrigo S, Saez C, Cañizares P, Rodrigo MA. Reversible electrokinetic adsorption barriers for the removal of organochlorine herbicide from spiked soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 640-641:629-636. [PMID: 29870938 DOI: 10.1016/j.scitotenv.2018.05.364] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/10/2018] [Accepted: 05/28/2018] [Indexed: 06/08/2023]
Abstract
This work aims to describe the removal of clopyralid from clay soils using electrokinetically assisted soil flushing (EKSF) coupled with a permeable reactive barrier (PRB), consisting of beds of Granulated Activated Carbon (GAC). To do this, two strategies have been evaluated on bench-scale electroremediation facilities (175 dm3): electrokinetic adsorption barrier (EKAB) and reversible electrokinetic adsorption barrier (REKAB). Likewise, to clarify the contribution of the different mechanisms to remediation process results are compared to those obtained in a reference test (without applying an electric field) and to results obtained in the EKSF of soils polluted with compounds with different polarity and vapour pressure. Results show that during EKAB and REKAB tests, clopyralid is removed from the soil by adsorption in PRB, electrokinetic transport and, very less decisively, by evaporation. The application of polarity reversion attains a higher retention of clopyralid in the activated carbon-PRB and a better regulation of pH because of the neutralization of H+ and OH- generated in the electrolyte wells. After 30 days of operation, the removal of clopyralid by EKAB is 45% while it reaches 57% in the case of REKAB.
Collapse
Affiliation(s)
- S Rodrigo
- Department of Chemical Engineering, Instituto de Tecnologías Química y Medioambiental, University of Castilla-La Mancha, Campus Universitario s/n, 13071 Ciudad Real, Spain
| | - C Saez
- Department of Chemical Engineering, Instituto de Tecnologías Química y Medioambiental, University of Castilla-La Mancha, Campus Universitario s/n, 13071 Ciudad Real, Spain.
| | - P Cañizares
- Department of Chemical Engineering, Instituto de Tecnologías Química y Medioambiental, University of Castilla-La Mancha, Campus Universitario s/n, 13071 Ciudad Real, Spain
| | - M A Rodrigo
- Department of Chemical Engineering, Instituto de Tecnologías Química y Medioambiental, University of Castilla-La Mancha, Campus Universitario s/n, 13071 Ciudad Real, Spain
| |
Collapse
|
25
|
Ramadan BS, Sari GL, Rosmalina RT, Effendi AJ. An overview of electrokinetic soil flushing and its effect on bioremediation of hydrocarbon contaminated soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 218:309-321. [PMID: 29689534 DOI: 10.1016/j.jenvman.2018.04.065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 04/08/2018] [Accepted: 04/14/2018] [Indexed: 06/08/2023]
Abstract
Combination of electrokinetic soil flushing and bioremediation (EKSF-Bio) technology has attracted many researchers attention in the last few decades. Electrokinetic is used to increase biodegradation rate of microorganisms in soil pores. Therefore, it is necessary to use solubilizing agents such as surfactants that can improve biodegradation process. This paper describes the basic understanding and recent development associated with electrokinetic soil flushing, bioremediation, and its combination as innovative hybrid solution for treating hydrocarbon contaminated soil. Surfactant has been widely used in many studies and practical applications in remediation of hydrocarbon contaminant, but specific review about those combination technology cannot be found. Surfactants and other flushing/solubilizing agents have significant effects to increase hydrocarbon remediation efficiency. Thus, this paper is expected to provide clear information about fundamental interaction between electrokinetic, flushing agents and bioremediation, principal factors, and an inspiration for ongoing and future research benefit.
Collapse
Affiliation(s)
- Bimastyaji Surya Ramadan
- Faculty of Environmental Engineering, Institut Teknologi Yogyakarta, Yogyakarta, 55171, Indonesia.
| | - Gina Lova Sari
- Faculty of Engineering, Universitas Singaperbangsa, Karawang, 41361, Indonesia.
| | | | - Agus Jatnika Effendi
- Department of Environmental Engineering, Faculty of Civil and Environmental Engineering, Institut Teknologi Bandung, Bandung, 40132, Indonesia.
| |
Collapse
|
26
|
Barba S, Villaseñor J, Rodrigo MA, Cañizares P. Can electro-bioremediation of polluted soils perform as a self-sustainable process? J APPL ELECTROCHEM 2018. [DOI: 10.1007/s10800-018-1172-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Barba S, Villaseñor J, Rodrigo MA, Cañizares P. Effect of the polarity reversal frequency in the electrokinetic-biological remediation of oxyfluorfen polluted soil. CHEMOSPHERE 2017; 177:120-127. [PMID: 28288422 DOI: 10.1016/j.chemosphere.2017.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 06/06/2023]
Abstract
This work studies the feasibility of the periodic polarity reversal strategy (PRS) in a combined electrokinetic-biological process for the remediation of clayey soil polluted with a herbicide. Five two-weeks duration electrobioremediation batch experiments were performed in a bench scale set-up using spiked clay soil polluted with oxyfluorfen (20 mg kg-1) under potentiostatic conditions applying an electric field between the electrodes of 1.0 V cm-1 (20.0 V) and using PRS with five frequencies (f) ranging from 0 to 6 d-1. Additionally, two complementary reference tests were done: single bioremediation and single electrokinetic. The microbial consortium used was obtained from an oil refinery wastewater treatment plant and acclimated to oxyfluorfen degradation. Main soil conditions (temperature, pH, moisture and conductivity) were correctly controlled using PRS. On the contrary, the electroosmotic flow clearly decreased as f increased. The uniform soil microbial distribution at the end of the experiments indicated that the microbial activity remained in every parts of the soil after two weeks when applying PRS. Despite the adapted microbial culture was capable of degrade 100% of oxyfluorfen in water, the remediation efficiency in soil in a reference test, without the application of electric current, was negligible. However, under the low voltage gradients and polarity reversal, removal efficiencies between 5% and 15% were obtained, and it suggested that oxyfluorfen had difficulties to interact with the microbial culture or nutrients and that PRS promoted transport of species, which caused a positive influence on remediation. An optimal f value was observed between 2 and 3 d-1.
Collapse
Affiliation(s)
- Silvia Barba
- Chemical Engineering Department, Research Institute for Chemical and Environmental Technology (ITQUIMA), University of Castilla- La Mancha, 13071, Ciudad Real, Spain
| | - José Villaseñor
- Chemical Engineering Department, Research Institute for Chemical and Environmental Technology (ITQUIMA), University of Castilla- La Mancha, 13071, Ciudad Real, Spain.
| | - Manuel A Rodrigo
- Chemical Engineering Department, Faculty of Chemical Sciences and Technology, University of Castilla- La Mancha, 13071, Ciudad Real, Spain
| | - Pablo Cañizares
- Chemical Engineering Department, Faculty of Chemical Sciences and Technology, University of Castilla- La Mancha, 13071, Ciudad Real, Spain
| |
Collapse
|
28
|
Souza F, Sáez C, Lanza M, Cañizares P, Rodrigo M. Removal of chlorsulfuron and 2,4-D from spiked soil using reversible electrokinetic adsorption barriers. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2017.01.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Yuan Y, Guo S, Li F, Wu B, Yang X, Li X. Coupling electrokinetics with microbial biodegradation enhances the removal of cycloparaffinic hydrocarbons in soils. JOURNAL OF HAZARDOUS MATERIALS 2016; 320:591-601. [PMID: 27501882 DOI: 10.1016/j.jhazmat.2016.07.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/21/2016] [Accepted: 07/18/2016] [Indexed: 05/21/2023]
Abstract
An innovative approach that couples electrokinetics with microbial degradation to breakdown cycloparaffinic hydrocarbons in soils is described. Soils were spiked with cyclododecane, used as a model pollutant, at approximately 1000mgkg-1. A mixture of petroleum-utilizing bacteria was added to achieve about 106-107 CFUg-1. Then, three treatments were applied for 25 days: (1) no electric field, control; (2) a constant voltage gradient of 1.3Vcm-1 in one direction; and (3) the same electric field, but with periodical switching of polarity. The degradation pathway of cyclododecane was not changed by the electric field, but the dynamic processes were remarkably enhanced, especially when the electric field was periodically switched. After 25 days, 79.9% and 87.0% of the cyclododecane was degraded in tests 2 and 3, respectively; both much higher than the 61.5% degraded in test 1. Analysis of the intermediate products strongly indicated that the competitive advantage of the electric field was the increase in ring-breaking of cyclododecane, resulting in greater concentrations of linear substances that were more susceptible to microbial attack, that is, β-oxidation. The conditions near the cathode were more favorable for the growth and metabolism of microorganisms, which also enhanced β-oxidation of the linear alkanoic acids. Therefore, when the electric field polarity was periodically switched, the functions of both the anode and cathode electrodes were applied across the whole soil cell, further increasing the degradation efficiency.
Collapse
Affiliation(s)
- Ye Yuan
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China; Safety Evaluation Center, Shenyang Research Institute of Chemical Industry, Shenyang, China
| | - Shuhai Guo
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China.
| | - Fengmei Li
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Bo Wu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Xuelian Yang
- College of Life Science and Bioengineering, Shenyang University, Shenyang, China
| | - Xuan Li
- Pesticide Testing Laboratory, Shenyang Research Institute of Chemical Industry, Shenyang, China
| |
Collapse
|
30
|
Mikolasch A, Reinhard A, Alimbetova A, Omirbekova A, Pasler L, Schumann P, Kabisch J, Mukasheva T, Schauer F. From oil spills to barley growth - oil-degrading soil bacteria and their promoting effects. J Basic Microbiol 2016; 56:1252-1273. [PMID: 27624187 DOI: 10.1002/jobm.201600300] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/06/2016] [Indexed: 12/30/2022]
Abstract
Heavy contamination of soils by crude oil is omnipresent in areas of oil recovery and exploitation. Bioremediation by indigenous plants in cooperation with hydrocarbon degrading microorganisms is an economically and ecologically feasible means to reclaim contaminated soils. To study the effects of indigenous soil bacteria capable of utilizing oil hydrocarbons on biomass production of plants growing in oil-contaminated soils eight bacterial strains were isolated from contaminated soils in Kazakhstan and characterized for their abilities to degrade oil components. Four of them, identified as species of Gordonia and Rhodococcus turned out to be effective degraders. They produced a variety of organic acids from oil components, of which 59 were identified and 7 of them are hitherto unknown acidic oil metabolites. One of them, Rhodococcus erythropolis SBUG 2054, utilized more than 140 oil components. Inoculating barley seeds together with different combinations of these bacterial strains restored normal growth of the plants on contaminated soils, demonstrating the power of this approach for bioremediation. Furthermore, we suggest that the plant promoting effect of these bacteria is not only due to the elimination of toxic oil hydrocarbons but possibly also to the accumulation of a variety of organic acids which modulate the barley's rhizosphere environment.
Collapse
Affiliation(s)
- Annett Mikolasch
- Department of Applied Microbiology, Institute of Microbiology, University Greifswald, Greifswald, Germany
| | - Anne Reinhard
- Department of Applied Microbiology, Institute of Microbiology, University Greifswald, Greifswald, Germany
| | - Anna Alimbetova
- Department of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Anel Omirbekova
- Department of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Lisa Pasler
- Department of Applied Microbiology, Institute of Microbiology, University Greifswald, Greifswald, Germany
| | - Peter Schumann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Johannes Kabisch
- Institute of Biochemistry, University Greifswald, 17487, Greifswald, Germany
| | - Togzhan Mukasheva
- Department of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Frieder Schauer
- Department of Applied Microbiology, Institute of Microbiology, University Greifswald, Greifswald, Germany
| |
Collapse
|
31
|
Lim MW, Lau EV, Poh PE. A comprehensive guide of remediation technologies for oil contaminated soil - Present works and future directions. MARINE POLLUTION BULLETIN 2016; 109:14-45. [PMID: 27267117 DOI: 10.1016/j.marpolbul.2016.04.023] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/07/2016] [Accepted: 04/11/2016] [Indexed: 06/06/2023]
Abstract
UNLABELLED Oil spills result in negative impacts on the environment, economy and society. Due to tidal and waves actions, the oil spillage affects the shorelines by adhering to the soil, making it difficult for immediate cleaning of the soil. As shoreline clean-up is the most costly component of a response operation, there is a need for effective oil remediation technologies. This paper provides a review on the remediation technologies for soil contaminated with various types of oil, including diesel, crude oil, petroleum, lubricating oil, bitumen and bunker oil. The methods discussed include solvent extraction, bioremediation, phytoremediation, chemical oxidation, electrokinetic remediation, thermal technologies, ultrasonication, flotation and integrated remediation technologies. Each of these technologies was discussed, and associated with their advantages, disadvantages, advancements and future work in detail. Nonetheless, it is important to note that no single remediation technology is considered the best solution for the remediation of oil contaminated soil. CAPSULE This review provides a comprehensive literature on the various remediation technologies studied in the removal of different oil types from soil.
Collapse
Affiliation(s)
- Mee Wei Lim
- School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Ee Von Lau
- School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Phaik Eong Poh
- School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
32
|
Sandu C, Popescu M, Rosales E, Bocos E, Pazos M, Lazar G, Sanromán MA. Electrokinetic-Fenton technology for the remediation of hydrocarbons historically polluted sites. CHEMOSPHERE 2016; 156:347-356. [PMID: 27183337 DOI: 10.1016/j.chemosphere.2016.04.133] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 04/30/2016] [Accepted: 04/30/2016] [Indexed: 06/05/2023]
Abstract
The feasibility of the electrokinetic-Fenton technology coupled with surfactants in the treatment of real historically hydrocarbons polluted soils has been studied. The characterisation of these soils from Spain and Romania was performed and identified as diesel and diesel-motor oil spillages, respectively. Moreover, the ageing of the spillages produced by the soil contamination was estimated showing the historical pollution of the sites (around 11 and 20 years for Romanian and Spanish soils, respectively). An ex-situ electrochemical treatment was performed to evaluate the adequacy of surfactants for the degradation of the hydrocarbons present in the soils. It was found an enhancement in the solubilisation and removal of TPHs with percentages increasing from 25.7 to 81.8% by the presence of Tween 80 for Spanish soil and from 15.1% to 71.6% for Triton X100 in Romanian soil. Therefore, the viability of coupling enhanced electrokinetic and Fenton remediation was evaluated through a simulated in-situ treatment at laboratory scale. The results demonstrated that the addition of the selected surfactants improved the solubilisation of the hydrocarbons and influenced the electroosmotic flow with a slight decrease. The efficiency of the treatment increased for both considered soil samples and a significant degradation level of the hydrocarbons compounds was observed. Buffering of pH coupled with the addition of a complexing agent showed to be important in the treatment process, facilitating the conditions for the degradation reactions that take place into the soil matrix. The results demonstrated the effectiveness of the selected techniques for remediation of the investigated soils.
Collapse
Affiliation(s)
- Ciprian Sandu
- Department of Chemical Engineering, University of Vigo, Campus As Lagoas-Marcosende, 36310 Vigo, Spain; Faculty of Engineering, "Vasile Alecsandri" University of Bacau, Calea Marasesti 157, 600115 Bacau, Romania
| | - Marius Popescu
- Department of Chemical Engineering, University of Vigo, Campus As Lagoas-Marcosende, 36310 Vigo, Spain; Faculty of Engineering, "Vasile Alecsandri" University of Bacau, Calea Marasesti 157, 600115 Bacau, Romania
| | - Emilio Rosales
- Department of Chemical Engineering, University of Vigo, Campus As Lagoas-Marcosende, 36310 Vigo, Spain
| | - Elvira Bocos
- Department of Chemical Engineering, University of Vigo, Campus As Lagoas-Marcosende, 36310 Vigo, Spain
| | - Marta Pazos
- Department of Chemical Engineering, University of Vigo, Campus As Lagoas-Marcosende, 36310 Vigo, Spain
| | - Gabriel Lazar
- Faculty of Engineering, "Vasile Alecsandri" University of Bacau, Calea Marasesti 157, 600115 Bacau, Romania
| | - M Angeles Sanromán
- Department of Chemical Engineering, University of Vigo, Campus As Lagoas-Marcosende, 36310 Vigo, Spain.
| |
Collapse
|
33
|
Mena E, Villaseñor J, Cañizares P, Rodrigo MA. Effect of electric field on the performance of soil electro-bioremediation with a periodic polarity reversal strategy. CHEMOSPHERE 2016; 146:300-307. [PMID: 26735730 DOI: 10.1016/j.chemosphere.2015.12.053] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 06/05/2023]
Abstract
In this work, it is studied the effect of the electric fields (within the range 0.0-1.5 V cm(-1)) on the performance of electrobioremediation with polarity reversal, using a bench scale plant with diesel-spiked kaolinite with 14-d long tests. Results obtained show that the periodic changes in the polarity of the electric field results in a more efficient treatment as compared with the single electro-bioremediation process, and it does not require the addition of a buffer to keep the pH within a suitable range. The soil heating was not very important and it did not cause a change in the temperature of the soil up to values incompatible with the life of microorganisms. Low values of water transported by the electro-osmosis process were attained with this strategy. After only 14 d of treatment, by using the highest electric field studied in this work (1.5 V cm(-1)), up to 35.40% of the diesel added at the beginning of the test was removed, value much higher than the 10.5% obtained by the single bioremediation technology in the same period.
Collapse
Affiliation(s)
- E Mena
- Chemical Engineering Department, Faculty of Chemical Sciences and Technologies, Research Institute for Chemical and Environmental Technology (ITQUIMA), Universidad de Castilla La Mancha, Campus Universitario s/n.13071, Ciudad Real, Spain
| | - J Villaseñor
- Chemical Engineering Department, Faculty of Chemical Sciences and Technologies, Research Institute for Chemical and Environmental Technology (ITQUIMA), Universidad de Castilla La Mancha, Campus Universitario s/n.13071, Ciudad Real, Spain
| | - P Cañizares
- Chemical Engineering Department, Faculty of Chemical Sciences and Technologies, Research Institute for Chemical and Environmental Technology (ITQUIMA), Universidad de Castilla La Mancha, Campus Universitario s/n.13071, Ciudad Real, Spain
| | - M A Rodrigo
- Chemical Engineering Department, Faculty of Chemical Sciences and Technologies, Research Institute for Chemical and Environmental Technology (ITQUIMA), Universidad de Castilla La Mancha, Campus Universitario s/n.13071, Ciudad Real, Spain.
| |
Collapse
|
34
|
Mena E, Villaseñor J, Cañizares P, Rodrigo M. Influence of electric field on the remediation of polluted soil using a biobarrier assisted electro-bioremediation process. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2015.12.133] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Li WW, Yu HQ. Electro-assisted groundwater bioremediation: fundamentals, challenges and future perspectives. BIORESOURCE TECHNOLOGY 2015; 196:677-684. [PMID: 26227572 DOI: 10.1016/j.biortech.2015.07.074] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 07/20/2015] [Accepted: 07/21/2015] [Indexed: 06/04/2023]
Abstract
Bioremediation is envisaged as an important way to abate groundwater contamination, but the need for chemical addition and limited bioavailability of electron donors/acceptors or contaminants hamper its application. As a promising means to enhance such processes, electrochemical system has drawn considerable attention, as it offers distinct advantages in terms of environmental benignity, controllability and treatment efficiency. Meanwhile, there are also potential risks and considerable engineering challenges for its practical application. This review provides a first comprehensive introduction of this emerging technology, discusses its potential applications and current challenges, identifies the knowledge gaps, and outlooks the future opportunities to bring it to field application. The need for a better understanding on the microbiology under electrochemical stimulation and the future requirements on process monitoring, modeling and evaluation protocols and field investigations are highlighted.
Collapse
Affiliation(s)
- Wen-Wei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei 230026, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei 230026, China.
| |
Collapse
|