1
|
R de O Stremel T, da Silva CP, E Domingues C, Lucia Voigt C, Raphael Pedroso C, Magno de Sousa Vidal C, X Campos S. Assessment of organochlorine pesticide contamination in Astyanax altiparanae from the Alagados Dam, Southern Brazil. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2024; 59:725-736. [PMID: 39484824 DOI: 10.1080/03601234.2024.2422219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 10/23/2024] [Indexed: 11/03/2024]
Abstract
Organochlorine pesticides (OCPs) are persistent pollutants previously used in agriculture, known for their ability to bioaccumulate and pose health risks. This study analyzed samples of roe, viscera, and muscle from Astyanax altiparanae fish collected from the Alagados reservoir in Paraná, Brazil. Samples were prepared through extraction and purification, then analyzed using gas chromatography with an electron capture detector (GC/ECD), chosen for its sensitivity in detecting OCPs. The method was validated for precision, accuracy, and detection limits. Detected OCPs included Aldrin (17.1 to 50.6 ng/g in roe), α-endosulfan (3.4 to 23.5 ng/g), p, p'-DDE (4.2 to 134.7 ng/g), Dieldrin (84.7 to 183.1 ng/g), β-endosulfan (6.0 to 51.6 ng/g), and p, p'-DDT (56.6 to 286.8 ng/g). In viscera, concentrations ranged from Aldrin (19.8 to 93.3 ng/g) to p, p'-DDT (52.3 to 89.2 ng/g). Muscle samples showed similar trends. Principal component analysis indicated a link between higher OCP concentrations and increased abdominal width of the fish. While OCP levels were below FAO and WHO limits, risk quotient calculations suggest potential health risks from consuming these fish.
Collapse
Affiliation(s)
- Tatiana R de O Stremel
- Research Group on Environmental and Sanitary Analytical Chemistry, Ponta Grossa State University (UEPG), Ponta Grossa, Brazil
| | - Cleber Pinto da Silva
- Research Group on Environmental and Sanitary Analytical Chemistry, Ponta Grossa State University (UEPG), Ponta Grossa, Brazil
| | - Cinthia E Domingues
- Research Group on Environmental and Sanitary Analytical Chemistry, Ponta Grossa State University (UEPG), Ponta Grossa, Brazil
| | - Carmem Lucia Voigt
- Research Group on Environmental and Sanitary Analytical Chemistry, Ponta Grossa State University (UEPG), Ponta Grossa, Brazil
| | - Carlos Raphael Pedroso
- Laboratory of Sanitary and Environmental Engineering, State University of Centro-Oeste (UNICENTRO), Irati, Brazil
| | - Carlos Magno de Sousa Vidal
- Laboratory of Sanitary and Environmental Engineering, State University of Centro-Oeste (UNICENTRO), Irati, Brazil
| | - Sandro X Campos
- Research Group on Environmental and Sanitary Analytical Chemistry, Ponta Grossa State University (UEPG), Ponta Grossa, Brazil
| |
Collapse
|
2
|
Afzal W, Habib SS, Ujan JA, Mohany M, Bibi H. Assessment of pesticide residues: a comprehensive analysis of seasonal trends and health implications. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2024; 59:642-653. [PMID: 39305033 DOI: 10.1080/03601234.2024.2406131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/15/2024] [Indexed: 10/05/2024]
Abstract
This study assessed the presence of eight pesticide residues in the Indus River, Mianwali, Pakistan, focusing on three sampling sites (S1, S2, and S3) in water, sediment, and the fish species Cyprinus carpio during both dry and wet seasons. Analysis was conducted using gas chromatography with an electron capture detector. Results indicated elevated pesticide concentrations in both seasons, with levels of 0.84 and 0.62 μg/L in water, 12.47 and 9.21 μg/g/dw in sediment, and 17.33 and 12.17 μg/g/ww in fish, with higher concentrations observed during the dry season. Cypermethrin and carbofuran were the primary pesticides detected in water, while endosulfan and cypermethrin were dominant in sediment and fish tissue, often exceeding standard safety thresholds. Principal Component Analysis (PCA) and cluster analysis revealed stronger correlations between sediment and fish muscle, with varying associations among pesticides across seasons. The Hazard Index (HI) surpassed 1 in both seasons, signaling potential health risks to humans. These findings underscore the substantial risk agricultural pesticides pose to the aquatic ecosystem and food chain, highlighting the urgent need for sustainable agricultural practices and stricter regulations to minimize pesticide use and encourage eco-friendly pest management strategies.
Collapse
Affiliation(s)
- Wajeeha Afzal
- Department of Zoology, University of the Punjab Lahore, Lahore, Pakistan
| | | | - Javed Ahmed Ujan
- Department of Zoology, Shah Abdul Latif University, Khairpur, Pakistan
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hakim Bibi
- Department of Zoology, University of Sargodha, Sargodha, Pakistan
| |
Collapse
|
3
|
Orou-Seko A, Chirawurah D, Gnimatin JP, Pèlèbè EOR, Aputere Ndago J, Pwatirah D, Adokiya MN. Protocol for pesticide residue monitoring and risk assessment on water, sediment, and fish: A case study of two selected reservoirs in Ghana. Heliyon 2024; 10:e37251. [PMID: 39290279 PMCID: PMC11407082 DOI: 10.1016/j.heliyon.2024.e37251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024] Open
Abstract
Background Africa is experiencing a significant surge in the use of pesticides on farms. Though the use of pesticide products on farms is increasing rapidly, the ability to monitor and regulate the practice has not kept pace. Despite their potential significance, the health and environmental impacts of the growing pesticide usage in developing nations remain inadequately comprehended and recorded. Objective This paper presents a research protocol for a study that seeks to provide criteria for future monitoring of pesticide residues in aquatic environments and food sources. This study aims to evaluate pesticide utilisation methods and the potential hazards of pesticide residues in aquatic ecosystems. Additionally, the study seeks to assess the human health risks linked to pesticide applications. Methods This study will employ a quantitative approach and cross-sectional design. It will utilise a combination of survey and the collection of biological and environmental samples. Our methodology consists of four distinct steps. These outline the processes for studying pesticide residue in environmental and fish samples. Additionally, we plan to employ mathematical algorithms to evaluate the ecological and health risks associated with these pesticide residues. Conclusion This study is an effort to monitor and assess the hazards to the environment and human well-being associated with the increasing utilisation of pesticides. It also aims to gather relevant data on pesticide utilisation practices that contribute to the contamination of aquatic ecosystems. It will specifically focus on determining the concentration of pesticide residues in both biological and environmental samples. Additionally, the study will assess the ecological and health risks associated with these pesticide residues. This will enable the incorporation of organised research efforts and coordinated pesticide surveillance operations for toxicovigilance.
Collapse
Affiliation(s)
- Abdou Orou-Seko
- Department of Environmental and Occupational Health, University for Development Studies, Tamale, Ghana
- Research Laboratory in Aquaculture and Aquatic Ecotoxicology, University of Parakou, Parakou, Benin
| | - Dennis Chirawurah
- Department of Environmental and Occupational Health, University for Development Studies, Tamale, Ghana
| | - Jean-Pierre Gnimatin
- Department of Social and Behavioral Change, University for Development Studies, Tamale, Ghana
| | - Edéya Orobiyi Rodrigue Pèlèbè
- Research Laboratory in Aquaculture and Aquatic Ecotoxicology, University of Parakou, Parakou, Benin
- Africa Centre of Excellence in Coastal Resilience, University of Cape Coast, Cape Coast, Ghana
| | - Joyce Aputere Ndago
- Department of Social and Behavioral Change, University for Development Studies, Tamale, Ghana
| | | | - Martin Nyaaba Adokiya
- Department of Epidemiology, Biostatistics and Disease Control, University for Development Studies, Tamale, Ghana
| |
Collapse
|
4
|
Sah R, Talukdar G, Khanduri M, Chaudhary P, Badola R, Hussain SA. Do dietary exposures to multi-class endocrine disrupting chemicals translate into health risks for Gangetic dolphins? An assessment and way forward. Heliyon 2024; 10:e35130. [PMID: 39170170 PMCID: PMC11336425 DOI: 10.1016/j.heliyon.2024.e35130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024] Open
Abstract
Dietary exposure risks of 39 multi-class Endocrine Disrupting Chemicals (EDCs) to the threatened Gangetic dolphins (Platanista gangetica) were investigated in a conservation-priority segment of the Ganga River. Elevated EDCs bioaccumulation was observed across prey fish species, with di(2-ethylhexyl) phthalate (DEHP) and di-n-butyl phthalate (DnBP) significantly contributing to the EDC burden. The concentrations of persistent organochlorines in prey revealed a shift from dioxin-like polychlorinated biphenyls (PCBs) to non-dioxin-like PCBs. The prevalence of regulated p,p' DDT (Dichlorodiphenyltrichloroethane) and γ-HCH (Lindane) residues suggests regional non-compliance with regulatory standards. The concentration of some EDCs is dependent on the habitat, foraging behavior, trophic level and fish growth. The potential drivers of EDCs contamination in catchment includes agriculture, vehicular emissions, poor solid waste management, textile industry, and high tourist influx. Risk quotients (RQs) based on toxicity reference value were generally below 1, while the RQ derived from the reference dose highlighted a high risk to Gangetic dolphins from DEHP, DDT, DnBP, arsenic, PCBs, mercury, and cadmium, emphasizing the need for their prioritization within monitoring programs. The study also proposes a monitoring framework to provide guidance on monitoring and assessment of chemical contamination in Gangetic dolphin and habitats.
Collapse
Affiliation(s)
- Ruchika Sah
- Wildlife Institute of India, Chandrabani, Dehradun, 248001, India
| | - Gautam Talukdar
- Wildlife Institute of India, Chandrabani, Dehradun, 248001, India
| | - Megha Khanduri
- Wildlife Institute of India, Chandrabani, Dehradun, 248001, India
| | - Pooja Chaudhary
- Wildlife Institute of India, Chandrabani, Dehradun, 248001, India
| | - Ruchi Badola
- Wildlife Institute of India, Chandrabani, Dehradun, 248001, India
| | | |
Collapse
|
5
|
Sims JL, Cole AR, Moran ZS, Mansfield CM, Possamai B, Rojo M, King RS, Matson CW, Brooks BW. The Tissue-Specific Eco-Exposome: Differential Pharmaceutical Bioaccumulation and Disposition in Fish among Trophic Positions. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1894-1902. [PMID: 38888274 DOI: 10.1002/etc.5931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/28/2024] [Accepted: 05/12/2024] [Indexed: 06/20/2024]
Abstract
Though bioaccumulation of pharmaceuticals by aquatic organisms continues to receive scientific attention, the internal disposition of these contaminants among different tissue compartments of fish species has been infrequently investigated, particularly among fish at different trophic positions. We tested a human to fish biological read-across hypothesis for contaminant disposition by examining tissue-specific accumulation in three understudied species, longnose gar (Lepisosteus osseus; piscivore), gizzard shad (Dorosoma cepedianum; planktivore/detritivore), and smallmouth buffalo (Ictiobus bubalus; benthivore), from a river influenced by municipal effluent discharge. In addition to surface water, fish plasma, and brain, gill, gonad, liver, and lateral muscle fillet tissues were analyzed via isotope dilution liquid chromatography tandem mass spectrometry. Caffeine and sucralose, two common effluent tracers, were quantitated at low micrograms per liter levels in surface water, while an anticonvulsant, carbamazepine, was observed at levels up to 37 ng/L. The selective serotonin reuptake inhibitors (SSRIs) fluoxetine and sertraline and primary metabolites were detected in at least one tissue of all three species at low micrograms per kilogram concentrations. Within each species, brain and liver of select fish contained the highest levels of SSRIs compared to plasma and other tissues, which is generally consistent with human tissue disposition patterns. However, we observed differential accumulation among specific tissue types and species. For example, mean levels of sertraline in brain and liver tissues were 13.4 µg/kg and 1.5 µg/kg in gizzard shad and 1.3 µg/kg and 7.3 µg/kg in longnose gar, respectively. In contrast, smallmouth buffalo did not consistently accumulate SSRIs to detectable levels. Tissue-specific eco-exposome efforts are necessary to understand mechanisms associated with such marked bioaccumulation and internal dispositional differences among freshwater fish species occupying different trophic positions. Environ Toxicol Chem 2024;43:1894-1902. © 2024 The Author(s). Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Jaylen L Sims
- Department of Environmental Science, Baylor University, Waco, Texas, USA
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas, USA
| | - Alexander R Cole
- Department of Environmental Science, Baylor University, Waco, Texas, USA
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas, USA
| | - Zachary S Moran
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas, USA
- Department of Biology, Baylor University, Waco, Texas, USA
| | - Charles M Mansfield
- Department of Environmental Science, Baylor University, Waco, Texas, USA
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas, USA
| | - Bianca Possamai
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas, USA
- Department of Biology, Baylor University, Waco, Texas, USA
| | - Macarena Rojo
- Department of Environmental Science, Baylor University, Waco, Texas, USA
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas, USA
| | - Ryan S King
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas, USA
- Department of Biology, Baylor University, Waco, Texas, USA
| | - Cole W Matson
- Department of Environmental Science, Baylor University, Waco, Texas, USA
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas, USA
| | - Bryan W Brooks
- Department of Environmental Science, Baylor University, Waco, Texas, USA
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas, USA
| |
Collapse
|
6
|
Lombardero LR, Pérez DJ, Medici SK, Mendieta JR, Iturburu FG, Menone ML. Usefulness of oxidative stress biomarkers in native species for the biomonitoring of pesticide pollution in a shallow lake of the Austral Pampas, Argentina. CHEMOSPHERE 2024; 353:141578. [PMID: 38430938 DOI: 10.1016/j.chemosphere.2024.141578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 02/22/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Pesticide contamination and its adverse effects on native freshwater species continue to be a worldwide major concern, mainly in developing countries. Passive biomonitoring of pesticide pollution in shallow lakes may be achieved by the simultaneous use of fish and wetland plants. Thus, the present study aimed to evaluate the occurrence of current-use pesticides in the surface water of a shallow lake of the Austral Pampas region (Buenos Aires Province, Argentina) surrounded by intensive agricultural activities and its relationship with a battery of biomarkers, including oxidative stress and genotoxicity, in two native species, the fish Oligosarcus jenynsii and the macrophyte Bidens laevis. A total of 26 pesticide residues were analyzed, and the main ones detected were glyphosate and its metabolite aminomethylphosphonic acid (AMPA), chlorpyrifos, and imidacloprid. In O. jenynsii, hydrogen peroxide (H2O2) content in the liver increased with chlorpyrifos occurrence, while malondialdehyde (MDA) levels in the brain and liver increased with the presence of both chlorpyrifos and glyphosate. In B. laevis, H2O2 and MDA levels in leaves and roots increased with AMPA occurrence. Also, leaf H2O2 contents and root MDA levels increased with chlorpyrifos concentration. In contrast, catalase and peroxidase activities in roots decreased with AMPA and chlorpyrifos occurrence. In both species, mainly H2O2 and MDA levels demonstrated their sensitivity to be used as biomarkers in the biomonitoring of current-use pesticide pollution in shallow lakes. Their use may provide information to plan strategies for environmental conservation by government institutions or decision-makers, and to assess the biota health status.
Collapse
Affiliation(s)
- Lucas Rodrigo Lombardero
- Laboratorio de Ecotoxicología, Instituto de Investigaciones Marinas y Costeras (IIMYC), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar del Plata (CONICET- UNMdP), Dean Funes 3350, 7600, Mar del Plata, Buenos Aires, Argentina
| | - Débora Jesabel Pérez
- Instituto de Innovación Para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS), Consejo Nacional de Investigaciones Científicas y Técnicas, INTA Balcarce, Ruta Nacional 226 Km 73,5, 7620, Balcarce, Buenos Aires, Argentina
| | - Sandra Karina Medici
- Fares Taie Instituto de Análisis Magallanes 3019, 7600, Mar del Plata, Buenos Aires Argentina
| | - Julieta Renée Mendieta
- Instituto de Investigaciones Biológicas (IIB, CONICET), Universidad Nacional de Mar del Plata, Dean Funes 3350, 7600, Mar del Plata, Buenos Aires, Argentina; Comisión de Investigaciones Científica (CIC-BA), Calle 526 entre 10 y 11, 1900, La Plata, Buenos Aires, Argentina
| | - Fernando Gastón Iturburu
- Laboratorio de Ecotoxicología, Instituto de Investigaciones Marinas y Costeras (IIMYC), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar del Plata (CONICET- UNMdP), Dean Funes 3350, 7600, Mar del Plata, Buenos Aires, Argentina
| | - Mirta Luján Menone
- Laboratorio de Ecotoxicología, Instituto de Investigaciones Marinas y Costeras (IIMYC), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar del Plata (CONICET- UNMdP), Dean Funes 3350, 7600, Mar del Plata, Buenos Aires, Argentina.
| |
Collapse
|
7
|
Drizo A, Shaikh MO. An assessment of approaches and techniques for estimating water pollution releases from aquaculture production facilities. MARINE POLLUTION BULLETIN 2023; 196:115661. [PMID: 37898017 DOI: 10.1016/j.marpolbul.2023.115661] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/26/2023] [Accepted: 10/10/2023] [Indexed: 10/30/2023]
Abstract
The rapid expansion of the aquaculture industry raises concerns about water pollution from aquaculture production facilities (APFs). APFs release pollutants, including fish feed and feces, threatening the environment. The United Nations has introduced regulatory tools like the National Baseline Budget of pollutants (NBB) and Pollutant Release and Transfer Registers (PRTRs) to monitor pollution. However, these tools lack specific capabilities for estimating aquaculture-related pollution, especially from mariculture non-point sources (NPS). The United Nations Programme for the Assessment and Control of Marine Pollution in the Mediterranean (UNEP/MAP) stresses the need for an inventory and guidance document. Our comprehensive literature review focused on (1) NPS discharges of specific pollutants from APFs, (2) methods for estimating potential pollution releases from aquaculture, and (3) compiling information into a guidance document summarizing estimation methods. The geographical coverage of our study includes Europe, Australia, the USA, Canada, and East/Southeast Asia.
Collapse
Affiliation(s)
- Aleksandra Drizo
- International College Sustainability Science and Management Program, Tunghai University, No.1727, Sec.4, Taiwan Boulevard, Taichung City 407, Taiwan.
| | - Muhammad Omar Shaikh
- International College Sustainability Science and Management Program, Tunghai University, No.1727, Sec.4, Taiwan Boulevard, Taichung City 407, Taiwan.
| |
Collapse
|
8
|
Simukoko CK, Mwakalapa EB, Muzandu K, Mutoloki S, Evensen Ø, Ræder EM, Müller MB, Polder A, Lyche JL. Persistent organic pollutants (POPs) and per- and polyfluoroalkyl substances (PFASs) in liver from wild and farmed tilapia (Oreochromis niloticus) from Lake Kariba, Zambia: Levels and geographic trends and considerations in relation to environmental quality standards (EQSs). ENVIRONMENTAL RESEARCH 2023:116226. [PMID: 37247651 DOI: 10.1016/j.envres.2023.116226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/29/2023] [Accepted: 05/22/2023] [Indexed: 05/31/2023]
Abstract
The current study was carried out to investigate a wide variety of persistent organic pollutants (POPs) in wild and farmed tilapia (Oreochromis niloticus) in Lake Kariba, Zambia, and assess levels of POPs in relation to Environmental Quality Standards (EQSs). Concentrations of organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), polybrominated diphenyls (PBDEs), and perfluoroalkyl substances (PFASs) were determined in liver samples of tilapia. PFASs compounds PFOS, PFDA and PFNA were only detected in wild fish, with the highest median PFOS levels in site 1 (0.66 ng/g ww). Concentrations of POPs were in general highest in wild tilapia. The highest median ∑DDTs (93 and 81 ng/g lw) were found in wild tilapia from sites 1 and 2, respectively 165 km and 100 km west of the fish farms. Lower DDE/DDT ratios in sites 1 and 3 may indicate relatively recent exposure to DDT. The highest median of ∑17PCBs (3.2 ng/g lw) and ∑10PBDEs (8.1 ng/g lw) were found in wild tilapia from sites 1 and 2, respectively. The dominating PCB congeners were PCB-118, -138, -153 and -180 and for PBDEs, BDE-47, -154, and -209. In 78% of wild fish and 8% of farmed fish ∑6PBDE concentrations were above EQSbiota limits set by the EU. This warrants further studies.
Collapse
Affiliation(s)
- Chalumba Kachusi Simukoko
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P. O. Box 5003 NMBU, 1432 Ås, Norway; Department of Biomedical Sciences, School of Veterinary Medicine, University of Zambia, P. O. Box 32379 Lusaka, Zambia
| | - Eliezer Brown Mwakalapa
- Department of Natural Sciences, Mbeya University of Science and Technology, P. O. Box 131, Mbeya, Tanzania
| | - Kaampwe Muzandu
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Zambia, P. O. Box 32379 Lusaka, Zambia
| | - Stephen Mutoloki
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P. O. Box 5003 NMBU, 1432 Ås, Norway
| | - Øystein Evensen
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P. O. Box 5003 NMBU, 1432 Ås, Norway
| | - Erik Magnus Ræder
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P. O. Box 5003 NMBU, 1432 Ås, Norway
| | - Mette Bjørge Müller
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P. O. Box 5003 NMBU, 1432 Ås, Norway
| | - Anuschka Polder
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P. O. Box 5003 NMBU, 1432 Ås, Norway.
| | - Jan Ludvig Lyche
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P. O. Box 5003 NMBU, 1432 Ås, Norway
| |
Collapse
|
9
|
Rodríguez-Bolaña C, Pérez-Parada A, Tesitore G, Goyenola G, Kröger A, Pacheco M, Gérez N, Berton A, Zinola G, Gil G, Mangarelli A, Pequeño F, Besil N, Niell S, Heinzen H, Teixeira de Mello F. Multicompartmental monitoring of legacy and currently used pesticides in a subtropical lake used as a drinking water source (Laguna del Cisne, Uruguay). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162310. [PMID: 36828068 DOI: 10.1016/j.scitotenv.2023.162310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/13/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
A pilot annual monitoring survey (April 2018-March 2019) was conducted to investigate the presence of pesticides in superficial water and fish in Laguna del Cisne, one of the most critical drinking water sources in Uruguay. A total of 25 pesticide residues were detected in superficial water (89.3 % of the samples). Pesticide's temporal distribution was associated with crops and livestock practices, with higher occurrences in spring and summer than in autumn and winter. The most frequent compounds in superficial water were the insecticide chlorantraniliprole, and the herbicides glyphosate (including its metabolite AMPA) and metolachlor. The levels of Organochlorine pesticide, p,p'-DDT, was in some cases two order of magnitude above the international water quality guidelines for Ambient Water Criteria. In fishes, eight different pesticides were detected, at concentrations from 1000 to 453,000 ng·kg-1. The most frequent pesticides found were propiconazole, chlorpyrifos, and p,p'-DDE. The widespread occurrence of pesticides in fish suggests potential exposure effects on fish populations and the aquatic ecosystem. The sampling approach of this work allowed monitoring the continuous concentrations of several pesticides in surface waters and fishes to establish the influence from past and current agriculture practices in Laguna del Cisne basin. For safety measures, continuous monitoring programs must be performed in this system to prevent toxicity impacts on aquatic organisms and human health.
Collapse
Affiliation(s)
- César Rodríguez-Bolaña
- Departamento de Ecologia y Gestion Ambiental, Centro Universitario Regional del Este (CURE), Universidad de la República, Tacuarembó entre Saravia y Bvar. Artigas, Maldonado CP 20000, Uruguay.
| | - Andrés Pérez-Parada
- Departamento de Desarrollo Tecnológico, Centro Universitario Regional del Este (CURE), Universidad de la República, Ruta 9 y Ruta 15, CP 27000 Rocha, Uruguay; Grupo de Análisis de Compuestos Traza, Cátedra de Farmacognosia y Productos Naturales, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, General Flores 2124, 11800 Montevideo, Uruguay
| | - Giancarlo Tesitore
- Departamento de Ecologia y Gestion Ambiental, Centro Universitario Regional del Este (CURE), Universidad de la República, Tacuarembó entre Saravia y Bvar. Artigas, Maldonado CP 20000, Uruguay
| | - Guillermo Goyenola
- Departamento de Ecologia y Gestion Ambiental, Centro Universitario Regional del Este (CURE), Universidad de la República, Tacuarembó entre Saravia y Bvar. Artigas, Maldonado CP 20000, Uruguay
| | - Alejandra Kröger
- Departamento de Ecologia y Gestion Ambiental, Centro Universitario Regional del Este (CURE), Universidad de la República, Tacuarembó entre Saravia y Bvar. Artigas, Maldonado CP 20000, Uruguay
| | - Martín Pacheco
- Departamento de Ecologia y Gestion Ambiental, Centro Universitario Regional del Este (CURE), Universidad de la República, Tacuarembó entre Saravia y Bvar. Artigas, Maldonado CP 20000, Uruguay
| | - Natalia Gérez
- Grupo de Análisis de Compuestos Traza, Cátedra de Farmacognosia y Productos Naturales, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, General Flores 2124, 11800 Montevideo, Uruguay
| | - Analia Berton
- Grupo de Análisis de Compuestos Traza, Cátedra de Farmacognosia y Productos Naturales, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, General Flores 2124, 11800 Montevideo, Uruguay
| | - Gianna Zinola
- Grupo de Análisis de Compuestos Traza, Cátedra de Farmacognosia y Productos Naturales, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, General Flores 2124, 11800 Montevideo, Uruguay
| | - Guillermo Gil
- Grupo de Análisis de Compuestos Traza, Cátedra de Farmacognosia y Productos Naturales, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, General Flores 2124, 11800 Montevideo, Uruguay
| | - Alejandro Mangarelli
- Grupo de Análisis de Compuestos Traza, Cátedra de Farmacognosia y Productos Naturales, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, General Flores 2124, 11800 Montevideo, Uruguay
| | - Fiamma Pequeño
- Grupo de Análisis de Compuestos Traza, Departamento de Química del Litoral, Facultad de Química, CENUR Litoral Norte, Universidad de la República, Ruta 3, Km 363, 60000 Paysandú, Uruguay
| | - Natalia Besil
- Grupo de Análisis de Compuestos Traza, Departamento de Química del Litoral, Facultad de Química, CENUR Litoral Norte, Universidad de la República, Ruta 3, Km 363, 60000 Paysandú, Uruguay
| | - Silvina Niell
- Grupo de Análisis de Compuestos Traza, Departamento de Química del Litoral, Facultad de Química, CENUR Litoral Norte, Universidad de la República, Ruta 3, Km 363, 60000 Paysandú, Uruguay
| | - Horacio Heinzen
- Grupo de Análisis de Compuestos Traza, Cátedra de Farmacognosia y Productos Naturales, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, General Flores 2124, 11800 Montevideo, Uruguay
| | - Franco Teixeira de Mello
- Departamento de Ecologia y Gestion Ambiental, Centro Universitario Regional del Este (CURE), Universidad de la República, Tacuarembó entre Saravia y Bvar. Artigas, Maldonado CP 20000, Uruguay.
| |
Collapse
|
10
|
Tang Y, Liu Y, Wang J, Wang J, Liu Z. In Vivo Tracking of Persistent Organic Pollutants via a Coaxially Integrated and Implanted Photofuel Microsensor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2826-2836. [PMID: 36775915 DOI: 10.1021/acs.est.2c08245] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In vivo tracking of persistent organic pollutants (POPs) is of great significance for assessing their risks to the ecological environment and human health. However, existing in vivo POPs detection methods are limited by the lethal sampling of living organisms, complex sample preparation processes, or bulky testing equipment. Photoelectrochemical (PEC) sensing with the merits of high sensitivity and simple equipment is a fast-developed method for in vivo analysis. A major obstacle for in vivo PEC sensors is the separated implantation of multiple electrodes and a light source, which raises concerns like multielectrode biofouling and electroactive molecules interference in the complex environment, uncertain electrode implant distance, and multiple insertion operations. Here, a coaxially implanted photofuel microsensor was developed by hiding the optical fiber-based photoanode inside the glass capillary-based biocathode, and the model target PCB77 can be detected with an ultralow detection limit (2.8 fg/mL). This unique photoanode-biocathode-light source integrated structure ensures excellent selectivity, good antifouling ability and biocompatibility, high accuracy, and less implant mechanical damage. Combined with a handheld pH meter, our sensor achieved convenient and direct tracking of the bioaccumulation levels of PCB77 in freely swimming fish.
Collapse
Affiliation(s)
- Ying Tang
- College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072, China
| | - Yanwen Liu
- College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072, China
| | - Jinmiao Wang
- College of Health Science and Engineering, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Juan Wang
- College of Health Science and Engineering, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Zhihong Liu
- College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072, China
- College of Health Science and Engineering, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| |
Collapse
|
11
|
Jin R, Liu G, Zhou X, Zhang Z, Lin B, Liu Y, Qi Z, Zheng M. Analysis of polycyclic aromatic hydrocarbon derivatives in environment. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
12
|
Leighton GRM, Bishop JM, Camarero PR, Mateo R, O'Riain MJ, Serieys LEK. Poisoned chalice: Use of transformed landscapes associated with increased persistent organic pollutant concentrations and potential immune effects for an adaptable carnivore. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153581. [PMID: 35104517 DOI: 10.1016/j.scitotenv.2022.153581] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Wildlife around cities bioaccumulate multiple harmful environmental pollutants associated with human activities. Exposure severity can vary based on foraging behaviour and habitat use, which can be examined to elucidate exposure pathways. Carnivores can play vital roles in ecosystem stability but are particularly vulnerable to bioaccumulation of pollutants. Understanding the spatial and dietary predictors of these contaminants can inform pollutant control, and carnivores, at the top of food webs, can act as useful indicator species. We test for exposure to toxic organochlorines (OCs), including dichloro-diphenyl-trichloroethane (DDT) and polychlorinated biphenyls (PCBs), in a medium-sized felid, the caracal (Caracal caracal), across the peri-urban and agricultural landscapes of the city of Cape Town, South Africa. Concentrations in both blood (n = 69) and adipose tissue (n = 25) were analysed along with detailed spatial, dietary, demographic, and physiological data to assess OC sources and exposure risk. The analysis revealed widespread exposure of Cape Town's caracals to organochlorines: detection rate was 100% for PCBs and 83% for DDTs in blood, and 100% for both compounds in adipose. Caracals using human-transformed areas, such as vineyards and areas with higher human population and electrical transformer density, as well as wetland areas, had higher organochlorine burdens. These landscapes were also highly selected foraging areas, suggesting caracals are drawn into areas that co-incidentally increase their risk of exposure to these pollutants. Further, biomagnification potential was higher in individuals feeding on higher trophic level prey and on exotic prey. These findings point to bioaccumulation of OC toxicants and widespread exposure across local food webs. Additionally, we report possible physiological effects of exposure, including elevated white blood cell and platelet count, suggesting a degree of immunological response that may increase disease susceptibility. Cape Town's urban fringes likely represent a source of toxic chemicals for wildlife and require focused attention and action to ensure persistence of this adaptable mesocarnivore.
Collapse
Affiliation(s)
- Gabriella R M Leighton
- Institute for Communities and Wildlife in Africa (iCWild), Department of Biological Sciences, University of Cape Town, Cape Town, South Africa.
| | - Jacqueline M Bishop
- Institute for Communities and Wildlife in Africa (iCWild), Department of Biological Sciences, University of Cape Town, Cape Town, South Africa
| | - Pablo R Camarero
- Instituto de Investigación en Recursos Cinegéticos (IREC - CSIC, UCLM, JCCM), Ciudad Real, Spain
| | - Rafael Mateo
- Instituto de Investigación en Recursos Cinegéticos (IREC - CSIC, UCLM, JCCM), Ciudad Real, Spain
| | - M Justin O'Riain
- Institute for Communities and Wildlife in Africa (iCWild), Department of Biological Sciences, University of Cape Town, Cape Town, South Africa
| | - Laurel E K Serieys
- Institute for Communities and Wildlife in Africa (iCWild), Department of Biological Sciences, University of Cape Town, Cape Town, South Africa; Cape Leopard Trust, Cape Town, South Africa; Panthera, NY, New York, USA
| |
Collapse
|
13
|
Xu L, Ren M, Cui Y, Miao X, Yang Z, Li H. Concentrations and Human Health Risk of Organochlorines in Farmed Freshwater Products: Fish Ponds around Changsha, China. J Food Prot 2022; 85:465-477. [PMID: 34469541 DOI: 10.4315/jfp-21-211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 09/01/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT The present study was conducted to reveal the concentrations and patterns of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in seven species of freshwater food products (Procambarus clarkii, Ctenopharyngodon idellus, Parabramis pekinensis, Hypophthalmichthys molitrix, Cyprinus carpio, Aristichthys nobilis, and Carassius auratus) collected from aquaculture farms around Changsha, People's Republic of China. The OCPs and PCBs in the muscle tissue of these species were analyzed to assess the health risk associated with dietary intake. The mean concentrations of OCPs and PCBs were 6.38 to 15.90 and 3.18 to 5.12 ng g-1 wet weight, respectively. Heptachlor and δ-HCH were the main OCP contaminants in the tested samples, accounting for >74% of the total OCPs. PCB52 was the main PCB, accounting for >88% of the total PCBs. The bioaccumulation of OCPs and PCBs in these aquatic products depends upon the species. C. idellus had the highest concentrations of OCPs, and H. molitrix had the highest concentrations of PCBs. The mean lipid concentration in these freshwater species was 6.08 to 19.8% (dry weight) and was significantly correlated with the concentrations of OCPs and PCBs. The health risk from consumption of these freshwater species was assessed based on the hazard ratios and hazard quotient, and consumption of these products was determined to pose a carcinogenic risk. HIGHLIGHTS
Collapse
Affiliation(s)
- Lijun Xu
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, People's Republic of China.,Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, People's Republic of China.,Changsha Agricultural Product Quality Monitoring Center, Changsha 410081, People's Republic of China
| | - Meiqing Ren
- Hunan Hydrology and Water Resources Survey Center, Changsha 410081, People's Republic of China
| | - Yue Cui
- Hunan Hydrology and Water Resources Survey Center, Changsha 410081, People's Republic of China
| | - Xiaohuan Miao
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, People's Republic of China.,Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, People's Republic of China
| | - Zhaoguang Yang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, People's Republic of China.,Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, People's Republic of China
| | - Haipu Li
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, People's Republic of China.,Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, People's Republic of China
| |
Collapse
|
14
|
da Silva JM, Alves LMF, Laranjeiro MI, Bessa F, Silva AV, Norte AC, Lemos MFL, Ramos JA, Novais SC, Ceia FR. Accumulation of chemical elements and occurrence of microplastics in small pelagic fish from a neritic environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118451. [PMID: 34740735 DOI: 10.1016/j.envpol.2021.118451] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
The assessment of contaminant exposure in marine organisms often focuses on the most toxic chemical elements from upper trophic level species. Information on mid-trophic level species and particularly on potentially less harmful elements is lacking. Additionally, microplastics have been considered emergent contaminants in aquatic environments which have not been extensively studied in species from mid-trophic levels in food chains. This study aims to contribute to an overall assessment of environmental impacts of such chemicals in a community of small pelagic fish in the North Atlantic. The concentrations of 16 chemical elements, rarely simultaneously quantified (including minerals, trace elements and heavy metals), and the presence of microplastics were analysed in sardines (Sardina pilchardus) and mackerels (Scomber spp. and Trachurus trachurus) sampled along the Portuguese coast. Biochemical stress assessments and stable isotope analyses were also performed. The chemical element concentrations in S. pilchardus, T. trachurus, and Scomber spp. were relatively low and lower than the levels reported for the same species in the North Atlantic and adjacent areas. No clear relationships were found between chemical elements and oxidative damage in fish. However, the concentration of several chemical elements showed differences among species, being related with the species' habitat use, trophic niches, and specific feeding strategies. The presence of plastic pieces in the stomachs of 29% of the sampled fishes is particularly concerning, as these small pelagic fish from mid-trophic levels compose a significant part of the diet of humans and other top predators. This study highlights the importance of multidisciplinary approaches focusing on the individual, including position data, stable isotopes, and oxidative stress biomarkers as complementary tools in contamination assessment of the marine mid-trophic levels in food chains.
Collapse
Affiliation(s)
- Joana M da Silva
- University of Coimbra, Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Luís M F Alves
- MARE - Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, 2520-641, Peniche, Portugal
| | - Maria I Laranjeiro
- University of Coimbra, Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Filipa Bessa
- University of Coimbra, Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Andreia V Silva
- IPMA - Portuguese Institute for the Sea and Atmosphere, Av. Dr. Alfredo Magalhães Ramalho, 6, 1495-165, Lisboa, Portugal
| | - Ana C Norte
- University of Coimbra, Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Marco F L Lemos
- MARE - Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, 2520-641, Peniche, Portugal
| | - Jaime A Ramos
- University of Coimbra, Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Sara C Novais
- MARE - Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, 2520-641, Peniche, Portugal
| | - Filipe R Ceia
- University of Coimbra, Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal.
| |
Collapse
|
15
|
Leão-Buchir J, Folle NMT, Lima de Souza T, Brito PM, de Oliveira EC, de Almeida Roque A, Ramsdorf WA, Fávaro LF, Garcia JRE, Esquivel L, Filipak Neto F, de Oliveira Ribeiro CA, Mela Prodocimo M. Effects of trophic 2,2', 4,4'-tetrabromodiphenyl ether (BDE-47) exposure in Oreochromis niloticus: A multiple biomarkers analysis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 87:103693. [PMID: 34166789 DOI: 10.1016/j.etap.2021.103693] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
Polybrominated diphenyl esters are emerging environmental contaminants with few toxicological data, being a concern for the scientific community. This study evaluated the effects of BDE-47 on the health of Oreochromis niloticus fish. The animals were exposed to three doses of BDE-47 (0, 0.253, 2.53, 25.3 ng g-1) every 10 days, for 80 days. The BDE-47 affected the hepatosomatic and gonadosomatic index in female and the condition factor by intermediate dose in both sexes. The levels of estradiol decreased and the T4 are increased, but the vitellogenin production was not modulated in male individuals. Changes in AChE, GST, LPO and histopathology were observed while the integrated biomarker response index suggests that the lowest dose of BDE-47 compromised the activity of antioxidant enzymes. The oral exposure to BDE-47 in environmental concentrations is toxic to O. niloticus and the use of multiple biomarkers is an attribution in ecotoxicology studies and biomonitoring programs.
Collapse
Affiliation(s)
- Joelma Leão-Buchir
- Departamento de Biologia Celular, Universidade Federal do Paraná, Caixa Postal 19031, CEP 81531-970, Curitiba, PR, Brazil; Departamento de Toxicologia Molecular e Ambiente, Centro de Biotecnologia, Universidade Eduardo Mondlane (CB-UEM), Maputo, Mozambique
| | - Nilce Mary Turcatti Folle
- Departamento de Biologia Celular, Universidade Federal do Paraná, Caixa Postal 19031, CEP 81531-970, Curitiba, PR, Brazil
| | - Tugstênio Lima de Souza
- Departamento de Biologia Celular, Universidade Federal do Paraná, Caixa Postal 19031, CEP 81531-970, Curitiba, PR, Brazil
| | - Patricia Manuitt Brito
- Departamento de Biologia Celular, Universidade Federal do Paraná, Caixa Postal 19031, CEP 81531-970, Curitiba, PR, Brazil
| | - Elton Celton de Oliveira
- Programa de Pós-graduação em Agroecossistemas, Universidade Tecnológica Federal do Paraná, Campus Dois Vizinhos, CEP 82660-000, Dois Vizinhos, PR, Brazil
| | - Aliciane de Almeida Roque
- Departamento de Biologia Celular, Universidade Federal do Paraná, Caixa Postal 19031, CEP 81531-970, Curitiba, PR, Brazil
| | - Wanessa Algarte Ramsdorf
- Programa de Pós-graduação em Ecotoxicologia, Universidade Tecnológica Federal do Paraná, Campus Curitiba, CEP 81280-340, Curitiba, PR, Brazil
| | - Luis Fernando Fávaro
- Departamento de Biologia Celular, Universidade Federal do Paraná, Caixa Postal 19031, CEP 81531-970, Curitiba, PR, Brazil
| | | | - Luíse Esquivel
- Estação de Piscicultura Panamá, Est. Geral Bom Retiro, Paulo Lopes, SC, CEP 88490-000, Brazil
| | - Francisco Filipak Neto
- Departamento de Biologia Celular, Universidade Federal do Paraná, Caixa Postal 19031, CEP 81531-970, Curitiba, PR, Brazil
| | | | - Maritana Mela Prodocimo
- Departamento de Biologia Celular, Universidade Federal do Paraná, Caixa Postal 19031, CEP 81531-970, Curitiba, PR, Brazil.
| |
Collapse
|
16
|
Rolón E, Ondarza PM, Miglioranza KSB, Rosso JJ, Mabragaña E, Volpedo AV, Avigliano E. Multi-matrix approach reveals the distribution of pesticides in a multipurpose protected area from the Atlantic Rainforest: potential risk for aquatic biota and human health? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:34386-34399. [PMID: 33646546 DOI: 10.1007/s11356-021-12699-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
The Atlantic Rainforest is among the main biodiversity hotspots in the world, the Yabotí Biosphere Reserve (YBR) being one of the most important remaining areas. Agriculture practices could lead to intensive usage of pesticides resulting in a risk to the environment and human health. Water, suspended particulate matter (SPM), sediment, and fish (Andromakhe paris and Andromakhe saguazu) samples were collected from four streams with different degrees of protection of the YBR in two periods in order to assess the distribution of 18 organochlorine pesticides. Legacy and current-use pesticides were found in the different environmental matrices of the stream headwaters in non-anthropized areas within the buffer zone that drains the intangible area. A similar occurrence pattern of pesticides was found in all matrices. Levels of DDTs (<3.63 ng/L) and endosulfans (<21.8 ng/L) in surface water were above international guidelines for the protection of aquatic life in several streams for both sampling periods. HCHs, DDTs, endosulfans, and chlorpyrifos were detected in SPM and sediments from three streams, while γ-HCH (<60.3 ng/g lipid weight), chlorpyrifos (<698 ng/g lw), p,p´-DDD (<367 ng/g lw), and α-endosulfans (<209 ng/g lw) were detected in fish muscle in several streams. Chlorpyrifos and endosulfans were associated with current use, while DDx/DDT ratios suggested an old use. The concentration of pesticides found would not represent a risk to human health; however, it highlights the need to establish better regulation and action guidelines to reduce the anthropogenic effect on natural reserves.
Collapse
Affiliation(s)
- Eugenia Rolón
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Investigaciones en Producción Animal (INPA), CONICET-Universidad de Buenos Aires, Av. Chorroarín 280, (1427), Ciudad Autonoma de Buenos Aires, Argentina
| | - Paola M Ondarza
- Laboratorio de Ecotoxicología y Contaminación Ambiental, Instituto de Investigaciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata-CONICET, Dean Funes 3350, (7600), Mar del Plata, Argentina
| | - Karina S B Miglioranza
- Laboratorio de Ecotoxicología y Contaminación Ambiental, Instituto de Investigaciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata-CONICET, Dean Funes 3350, (7600), Mar del Plata, Argentina
| | - Juan José Rosso
- Grupo de Biotaxonomía Morfológica y Molecular de Peces, Instituto de Investigaciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata-CONICET, Dean Funes 3350, (7600), Mar del Plata, Argentina
| | - Ezequiel Mabragaña
- Grupo de Biotaxonomía Morfológica y Molecular de Peces, Instituto de Investigaciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata-CONICET, Dean Funes 3350, (7600), Mar del Plata, Argentina
| | - Alejandra V Volpedo
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Investigaciones en Producción Animal (INPA), CONICET-Universidad de Buenos Aires, Av. Chorroarín 280, (1427), Ciudad Autonoma de Buenos Aires, Argentina
| | - Esteban Avigliano
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires, Argentina.
- Instituto de Investigaciones en Producción Animal (INPA), CONICET-Universidad de Buenos Aires, Av. Chorroarín 280, (1427), Ciudad Autonoma de Buenos Aires, Argentina.
- Centro de Investigaciones Antonia Ramos (CIAR), Fundación Bosques Nativos Argentinos para la Biodiversidad, Buenos Aires, Argentina.
| |
Collapse
|
17
|
Malarvannan G, Poma G, Covaci A. Interspecies comparison of the residue levels and profiles of persistent organic pollutants in terrestrial top predators. ENVIRONMENTAL RESEARCH 2020; 183:109187. [PMID: 32006764 DOI: 10.1016/j.envres.2020.109187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 01/05/2020] [Accepted: 01/24/2020] [Indexed: 05/24/2023]
Abstract
Serum samples from three species of living terrestrial top predators were analysed for six groups of persistent organic pollutants (POPs), such as polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane and its metabolites (DDTs), chlordane compounds (CHLs), hexachlorocyclohexane isomers (HCHs), hexachlorobenzene (HCB) and polybrominated diphenyl ethers (PBDEs). The study included three carnivore species: lion (Panthera leo), hyena (Hyena brunnea) and cheetah (Acinonyx jubatus). All samples were collected from healthy living animals between 2004 and 2005. Most of the samples (wild lions (n = 50) and hyenas (n = 11)) were collected from various locations within the Kruger National Park and Addo National Park (South Africa), while captive lions (n = 6) and cheetahs (n = 3) were collected from the Antwerp Zoo (Belgium). In general, relatively low levels of POPs were found in the studied species, varying widely within species and locations. Median concentrations of POPs were higher in captive lions (PCBs: 505 pg/mL; DDTs: 270 pg/mL; HCHs: 72 pg/mL; HCB: 34 pg/mL; CHLs: 24 pg/mL; PBDEs: 8 pg/mL) compared to wild lions (DDTs: 274 pg/mL; HCHs: 44 pg/mL; CHLs: 7.9 pg/mL; PCBs: 2.1 pg/mL; HCB: < LOQ; PBDEs: < LOQ). In the wild animals, POPs accumulated in the following order: DDTs > HCHs > CHLs > HCB > PCBs > PBDEs, while in the captive animals, the order was: PCBs > DDTs > CHLs > HCHs > HCB > PBDEs, suggesting differences in the diet of these animals. Furthermore, wild hyena contained significantly higher (p < 0.05) median levels of POPs compared to wild lions, possibly reflecting differences in metabolic capacity and/or feeding habits, together with an uneven distribution of POPs in the area where the animals lived. No previous data are available to compare for similar terrestrial top predators, such as lion, hyena and cheetah. To our knowledge, this is first study on POPs in these three species. The low POP levels found in this study were several orders of magnitude lower than those for other carnivore species, such as polar bears, grizzly bears, brown bears and wolves worldwide. The present study has revealed the need for expanding research and monitoring on occurrence, levels and disposition of POPs in the top predators of the terrestrial environment.
Collapse
Affiliation(s)
- Govindan Malarvannan
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, Wilrijk, Belgium.
| | - Giulia Poma
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, Wilrijk, Belgium
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, Wilrijk, Belgium.
| |
Collapse
|
18
|
Ruan J, Guo J, Huang Y, Mao Y, Yang Z, Zuo Z. Adolescent exposure to environmental level of PCBs (Aroclor 1254) induces non-alcoholic fatty liver disease in male mice. ENVIRONMENTAL RESEARCH 2020; 181:108909. [PMID: 31776016 DOI: 10.1016/j.envres.2019.108909] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic pollutants found in various environmental media, and there is growing evidence that PCBs may contribute to the pathogenesis of non-alcoholic fatty liver disease (NAFLD). The purposes of this study were to investigate whether environmental level of Aroclor 1254 (a commercial mixture of PCBs) exposure to adolescent male mice could induce the development of NAFLD and the mechanisms involved. Twenty-one-day-old male C57BL/6 mice were exposed to Aroclor 1254 (0.5-500 μg/kg body weight) by oral gavage once every third day for 60 days. The results showed that exposure to Aroclor 1254 increased body weight and decreased the liver-somatic index in a dose-dependent manner. Aroclor 1254 administration increased lipid accumulation in the liver and induced the mRNA expression of genes associated with lipogenesis, including acetyl-CoA carboxylase 1 (Acc1), acetyl-CoA carboxylase 2 (Acc2) and fatty acid synthase (Fasn). Moreover, Aroclor 1254 decreased peroxisome proliferator-activated receptor alpha (PPARα) signaling and lipid oxidation. In addition, we found that Aroclor 1254 administration induced oxidative stress in mouse liver and elevated the protein level of cyclooxygenase 2 (COX-2), an inflammatory molecule, possibly via the endoplasmic reticulum (ER) stress inositol-requiring enzyme 1α-X-box-binding protein-1 (IRE1α-XBP1) pathway, but not the nuclear factor-κB (NF-κB) pathway. In summary, adolescent exposure to environmental level of PCBs stimulated oxidative stress, ER stress and the inflammatory response and caused NAFLD in male mice. This work provides new insight into the idea that adolescent exposure to environmental level of PCBs might induce the development of NAFLD under the regulation of ER stress in males.
Collapse
Affiliation(s)
- Jinpeng Ruan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Jiaojiao Guo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yameng Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yunzi Mao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Zhenggang Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China.
| |
Collapse
|
19
|
Iturburu FG, Calderon G, Amé MV, Menone ML. Ecological Risk Assessment (ERA) of pesticides from freshwater ecosystems in the Pampas region of Argentina: Legacy and current use chemicals contribution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 691:476-482. [PMID: 31325848 DOI: 10.1016/j.scitotenv.2019.07.044] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/15/2019] [Accepted: 07/03/2019] [Indexed: 06/10/2023]
Abstract
Agricultural production in the Pampas region is one of the most important economic activities in Argentina. However, the possible environmental effects related to the growth of this activity in the last years have not been studied enough. Particularly, the effects of pesticides mixtures are a topic of great concern both for society and regulatory authorities worldwide, given the possible additive and synergistic relationships between these chemicals and their possible effects on aquatic biota. Based on a concentration addition model, this study developed an Ecological Risk Assessment (ERA) of pesticides from freshwater ecosystems in the Pampas region. For this purpose, reported pesticides concentrations available in public bibliography and a Risk Quotients (RQs) approach were used. A cumulative risk map was established to display RQs for current use pesticides (CUPs) and legacy chemicals. The ΣRQs were calculated for 66 sites, using available reported measured environmental concentrations (MECs) and predicted no effect concentrations (PNECs) of pesticides. While ΣRQ for only CUPs resulted in a high and very high risk (ΣRQ > 1) for 29% of the sites, when legacy pesticides were incorporated this percentage reached the 41% of the sites, increasing significantly the absolute values of RQ. Herbicides like glyphosate and atrazine contributed considerably to the ΣRQCUPs while organochlorines were the major contributors for ΣRQs when legacy pesticides were incorporated. Moreover, some active ingredients (acetochlor, carbendazim and fenitrothion) which are approved for their use in Argentina but banned in EU showed high contribution to ΣRQCUPs. The present study is the first attempt to develop an ERA in surface water of the Pampas region of Argentina and it provides a starting point for a more comprehensive pesticides monitoring and a further risk assessment program.
Collapse
Affiliation(s)
- Fernando Gastón Iturburu
- Laboratorio de Ecotoxicología, Instituto de Investigaciones Marinas y Costeras (IIMYC), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar del Plata (CONICET- UNMdP), Dean Funes 3350, 7600, Mar del Plata, Buenos Aires, Argentina.
| | - Gabriela Calderon
- Instituto del Hábitat y del Ambiente, Universidad Nacional de Mar del Plata (UNMdP), Dean Funes 3350, 7600, Mar del Plata, Buenos Aires, Argentina
| | - María Valeria Amé
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Facultad de Ciencias Químicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Córdoba (CONICET-UNC), Haya de la Torre esq, Medina Allende, 5000 Córdoba, Argentina
| | - Mirta Luján Menone
- Laboratorio de Ecotoxicología, Instituto de Investigaciones Marinas y Costeras (IIMYC), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar del Plata (CONICET- UNMdP), Dean Funes 3350, 7600, Mar del Plata, Buenos Aires, Argentina
| |
Collapse
|
20
|
González-Mille DJ, Ilizaliturri-Hernández CA, Espinosa-Reyes G, Cruz-Santiago O, Cuevas-Díaz MDC, Martín Del Campo CC, Flores-Ramírez R. DNA damage in different wildlife species exposed to persistent organic pollutants (POPs) from the delta of the Coatzacoalcos river, Mexico. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 180:403-411. [PMID: 31108417 DOI: 10.1016/j.ecoenv.2019.05.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/08/2019] [Accepted: 05/11/2019] [Indexed: 05/07/2023]
Abstract
The delta of the Coatzacoalcos river is a priority region for the biological conservation in the Gulf of Mexico. Environmental studies in the area have detected a complex mixture of contaminants where the presence of Persistent organic compounds (POPs) is highlighted. Deoxyribonucleic acid (DNA) integrity of biological populations are global concerns due to their ecological implications. The purpose of this study was to measure the exposure to POPs and DNA damage in nine species residing in the Coatzacoalcos river classified by taxonomic group, type of habitat and feeding habits. Total POPs concentrations (minimum and maximum) detected for all species were from 22.7 to 24,662.1 ng/g l.w; and the values of DNA damage (minimum and maximum) varied from 0.7 to 20.5 and from 6.5 to 56.8 μm (Olive tail moment and tail length respectively). Broadly speaking, reptiles, species residing in the wetland and the ones with a carnivorous diet showed higher levels of POPs and DNA damage. This study provides us with a baseline of the state of POPs contamination and shows the degree of environmental stress to which the different components of the ecosystem of the Coatzacoalcos river delta are subject to.
Collapse
Affiliation(s)
- Donaji J González-Mille
- Cátedras Consejo Nacional de Ciencia y Tecnología (CONACyT), Universidad Autónoma de San Luis Potosí, S.L.P., Mexico
| | - César A Ilizaliturri-Hernández
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), CIACyT-Facultad de Medicina, Universidad Autónoma de San Luis Potosí, S.L.P., Mexico. https://publons.com/author/1409273/cesar-a-ilizaliturri-hernandez
| | - Guillermo Espinosa-Reyes
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), CIACyT-Facultad de Medicina, Universidad Autónoma de San Luis Potosí, S.L.P., Mexico
| | - Omar Cruz-Santiago
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), CIACyT-Facultad de Medicina, Universidad Autónoma de San Luis Potosí, S.L.P., Mexico
| | | | - Claudia C Martín Del Campo
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), CIACyT-Facultad de Medicina, Universidad Autónoma de San Luis Potosí, S.L.P., Mexico
| | - Rogelio Flores-Ramírez
- Cátedras Consejo Nacional de Ciencia y Tecnología (CONACyT), Universidad Autónoma de San Luis Potosí, S.L.P., Mexico
| |
Collapse
|
21
|
Helou K, Harmouche-Karaki M, Karake S, Narbonne JF. A review of organochlorine pesticides and polychlorinated biphenyls in Lebanon: Environmental and human contaminants. CHEMOSPHERE 2019; 231:357-368. [PMID: 31136903 DOI: 10.1016/j.chemosphere.2019.05.109] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 06/09/2023]
Abstract
The country of Lebanon banned organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in 1982 and 1997, respectively, and adopted the Stockholm Convention on persistent organic pollutants (POPs) in 2003. Compliance with the Stockholm Convention began immediately, and research related to POPs in Lebanon had already been completed. A National Implementation Plan for POPs was formulated and updated several times, and includes a national inventory of PCBs that were mainly detected in insulating oils and equipment in power stations. High levels of PCBs have also been detected in sediments from the Port of Tripoli, the second major sea port in Lebanon. High levels of OCPs, which are illegally smuggled into Lebanon and improperly handled and used by farmers, have been detected in underground and surface waters for many years. There have also been human biomonitoring studies of PCBs and OCPs; for example, in 1999, measurable amounts of DDE were found in breast milk, and a 2018 study reported measurable amounts of PCBs and OCPs in human serum. While these levels were well below concentrations observed in other countries, they were slightly higher than the levels observed by the National Health and Nutrition Examination Survey (NHANES). This review provides an overview of the available PCB and OCP data from Lebanon between 1999 and 2017. In total, 12 studies of PCBs and OCPs in environmental samples, human serum samples, and human milk samples are included in this review, and the results of these studies are compared in terms of geography and chronology.
Collapse
Affiliation(s)
- Khalil Helou
- Department of Nutrition, Faculty of Pharmacy, Saint-Joseph University of Beirut, Medical Sciences Campus, Damascus Road, P.O.B. 11-5076, Riad Solh Beirut 1107 2180, Lebanon.
| | - Mireille Harmouche-Karaki
- Department of Nutrition, Faculty of Pharmacy, Saint-Joseph University of Beirut, Medical Sciences Campus, Damascus Road, P.O.B. 11-5076, Riad Solh Beirut 1107 2180, Lebanon.
| | - Sara Karake
- Department of Nutrition, Faculty of Pharmacy, Saint-Joseph University of Beirut, Medical Sciences Campus, Damascus Road, P.O.B. 11-5076, Riad Solh Beirut 1107 2180, Lebanon.
| | | |
Collapse
|
22
|
Solid-Phase Extraction Combined with Dispersive Liquid-Liquid Microextraction Based on Solidification of Floating Organic Droplet for Simultaneous Determination of Organochlorine Pesticides and Polychlorinated Biphenyls in Fish. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01527-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Vlotman D, Ngila J, Ndlovu T, Doyle B, Carleschi E, Malinga S. Hyperbranched polymer membrane for catalytic degradation of polychlorinated biphenyl-153 (PCB-153) in water. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2018.12.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
24
|
Silva-Barni MF, Smedes F, Fillmann G, Miglioranza KSB. Passive sampling of pesticides and polychlorinated biphenyls along the Quequén Grande River watershed, Argentina. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:340-349. [PMID: 30520101 DOI: 10.1002/etc.4325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/14/2018] [Accepted: 11/26/2018] [Indexed: 06/09/2023]
Abstract
Water monitoring is of great importance, especially for water bodies in agricultural or industrial areas. Grab sampling is a widely used technique for aquatic monitoring but represents only a snapshot of the contaminant levels at a specific point in time. Passive sampling, on the other hand, is an integrative technique that provides an average concentration of contaminants representative of its deployment period. Thus, the current contamination by organochlorine pesticides, polychlorinated biphenyls (PCBs), and some currently used pesticides was assessed along the Quequén Grande River watershed (Argentina) using the integrative silicone rubber passive sampling technique in a year-long study. Silicone rubber samplers were deployed at 6 sampling sites selected according to different land uses (agricultural-livestock production, agricultural and urban activities) during 3 periods in 2014 and 2015. The organochlorine pesticides were dominated by endosulfan (sum of α-, β-endosulfan, endosulfan sulfate = 0.15-23.4 ng/L). The highest endosulfan levels were registered during the pesticide application period (December-March), exceeding the international water quality guidelines for protecting freshwater biota (3 ng/L). Compared with previous reports, no reductions in endosulfan levels were observed at the Quequén Grande River watershed. These results would suggest the illegal use of remaining stocks because water sampling was carried out after endosulfan was banned in Argentina. Chlorpyrifos was the second major pesticide found in water (0.02-4.3 ng/L), associated with its widespread usage on soybean crops. A reduction in levels of legacy pesticides (heptachlors, DDTs, dieldrin, and chlordanes) was evident compared with previous reports from 2007. Levels of PCBs were very low, indicating that probably only minor diffuse sources were still available along the Quequén Grande River watershed. Environ Toxicol Chem 2019;38:340-349. © 2018 SETAC.
Collapse
Affiliation(s)
- María Florencia Silva-Barni
- Laboratorio de Ecotoxicología y Contaminación Ambiental, Instituto de Investigaciones Marinas y Costeras (IIMyC), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata, Argentina
| | - Foppe Smedes
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Brno, Czech Republic
| | - Gilberto Fillmann
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Brno, Czech Republic
- Instituto de Oceanografia, Universidade Federal do Rio Grande (FURG), Campus Carreiros, Rio Grande, Rio Grande do Sul, Brazil
| | - Karina Silvia Beatriz Miglioranza
- Laboratorio de Ecotoxicología y Contaminación Ambiental, Instituto de Investigaciones Marinas y Costeras (IIMyC), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata, Argentina
| |
Collapse
|
25
|
Liu C, Wang B, Zhou B, Jian X, Zhang X, Wang Y. The responses of Oncorhynchus mykiss coping with BDE-47 stress via PXR-mediated detoxification and Nrf2-mediated antioxidation system. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 207:63-71. [PMID: 30530205 DOI: 10.1016/j.aquatox.2018.11.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/29/2018] [Accepted: 11/30/2018] [Indexed: 06/09/2023]
Abstract
The low brominated polybrominated diphenyl ether (PBDE) 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) is ubiquitous in the marine environment. To elucidate the stress response and possible mechanisms underlying BDE-47, the rainbow trout fish Oncorhynchus mykiss were selected and orally fed bait with BDE-47 concentrations of 50 ng/g and 500 ng/g. BDE-47 was found to be mainly accumulated in head kidney and caused lipid peroxidation after prolonged exposure. We studied the detoxification system genes pregnane X receptor (PXR) and downstream genes (cytochrome 3 A, CYP3 A; glutathione S-transferase, GST) and their corresponding enzyme activity and found that the above indicators in the treatment groups increased first and then decreased with time, while the 500 ng/g group showed more significant changes. Further, the antioxidant system gene expression levels of the NF-E2-related factor 2 (Nrf2) and downstream genes (superoxide dismutase, SOD; catalase, CAT) were found significantly up-regulated with concentration and time. The change in the enzyme activity of SOD and CAT showed the same tendency as that of indicators of detoxifying system. The results showed that BDE-47 can accumulated in head kidney and caused activate and fast increase of genes and enzymes of detoxification and antioxidant system in the short-term and then damage the response systems in longer times. After Pearson correlation analysis, the Integrated Biomarker Response (IBR) Index was established with malondialdehyde (MDA) content; PXR, Nrf2, SOD, and CAT gene expression; and CYP3 A, GST, and CAT enzymatic activity, which were significantly related to BDE-47 bioaccumulation (P < 0.5). The IBR value can indicate the ecotoxicological responses of the head kidney to different BDE-47 concentrations exposure, but the high activity of the antioxidant system might obscure the damage of the detoxification system.
Collapse
Affiliation(s)
- Chunchen Liu
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, China.
| | - Boyuan Wang
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, China.
| | - Bin Zhou
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China.
| | - Xiaoyang Jian
- North China Sea Environmental Monitoring Center, State Oceanic Administration, Fushun Road 22, Qingdao, Shandong Province, 266033, China.
| | - Xinxin Zhang
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, China.
| | - You Wang
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China.
| |
Collapse
|
26
|
Samidurai J, Subramanian M, Venugopal D. Levels of organochlorine pesticide residues in fresh water fishes of three bird sanctuaries in Tamil Nadu, India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:1983-1993. [PMID: 30460660 DOI: 10.1007/s11356-018-3770-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 11/15/2018] [Indexed: 06/09/2023]
Abstract
Organochlorine pesticide (OCP) residues were determined in nine species of fresh water fishes caught from three bird sanctuaries in Tamil Nadu, India. A total of 302 fishes were analyzed for various types of OCPS. OCPs, namely hexachlorocyclohexane (HCH), dichloro diphenyl trichloroethane (DDT), heptachlor epoxide, endosulfan, and dieldrin were detected among various species of fishes. Among the various OCPs analyzed, HCH was the most frequently detected pesticides. Among the HCH isomers, β HCH contributed more than 50% to the Σ HCH. p,p' DDT, the metabolites of DDT, had high percentage of occurrence. Among the cyclodiene insecticide residues, endosulfan was detected in more than 60% of the fishes. Varying levels of ΣOCPs (a sum of Σ HCH, Σ DDT, Σ endosulfan, heptachlor epoxide, and dieldrin) were detected in various fish species, although it was not significant (p > 0.05). However, significant variations in OCPs were observed among location and between seasons (p < 0.05). However, continuous monitoring is recommended to facilitate the early identification of risks not only to the fishes, but also to fish-eating birds breeding in these sanctuaries.
Collapse
Affiliation(s)
- Jayakumar Samidurai
- Division of Ecotoxicology, Sálim Ali Centre for Ornithology and Natural History, Anaikatty, Coimbatore, Tamil Nadu, 641108, India.
- P.G. Research Department of Zoology and Wildlife Biology, A.V.C. College (Autonomous), Mannampandal, Mayiladuthurai, Tamil Nadu, 609305, India.
| | - Muralidharan Subramanian
- Division of Ecotoxicology, Sálim Ali Centre for Ornithology and Natural History, Anaikatty, Coimbatore, Tamil Nadu, 641108, India
| | - Dhananjayan Venugopal
- Division of Ecotoxicology, Sálim Ali Centre for Ornithology and Natural History, Anaikatty, Coimbatore, Tamil Nadu, 641108, India
- Industrial Hygiene & Toxicology Division, Regional Occupational Health Centre (S), ICMR-NIOH, Devanahalli, Bangalore, 562110, India
| |
Collapse
|
27
|
Sá C, Pestana D, Calhau C, Faria A. Unravelling the Effect of p,p'-Dichlorodiphenyldichloroethylene (DDE) in Hypertension of Wistar Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12847-12854. [PMID: 30415545 DOI: 10.1021/acs.jafc.8b05001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Hypertension is a multifactorial disease with limited knowledge of the involved mechanisms. p,p'-DDE ( p,p'-dichlorodiphenyldichloroethylene) is a pollutant commonly found in tissues that interferes with endocrine signaling. This study aimed to evaluate the mechanism of hypertension triggered by p,p'-DDE exposure in the presence or absence of a HF (high-fat) diet in rats. The renin-angiotensin system (RAS) was evaluated by qPCR in liver and adipose tissue (AT), and a transcriptome analysis comparing visceral AT of HF diet and HF/DDE groups was performed. HF diet influenced RAS, but the p,p'-DDE effect was more evident in liver than in AT (interaction between the diet and p,p'-DDE treatment affected aldosterone receptor and angiotensin converting enzyme 2 expression in liver, p < 0.05, two-way ANOVA). p,p'-DDE induced a decrease in the expression of genes involved in the retinoid acid biosynthesis pathway (Crabp1; -2.07-fold; p = 0.018), eNOS activation (Nos1; -1.64-fold; p = 0.012), and regulation and urea cycle (Ass1; -2.07-fold; p = 0.02). This study suggested that p,p'-DDE may play a fundamental role in the pathogenesis of hypertension, not exclusively in RAS but also by induction of hyperuricemia and increased oxidative stress, which may lead to endoplasmic reticulum stress and vascular injury.
Collapse
Affiliation(s)
- Carla Sá
- CINTESIS , Center for Health Technology and Services Research , Al. Prof. Hernâni Monteiro , 4200-369 Porto , Portugal
- Department of Biochemistry, Faculty of Medicine , University of Porto , Al. Prof. Hernâni Monteiro , 4200-369 Porto , Portugal
| | - Diogo Pestana
- CINTESIS , Center for Health Technology and Services Research , Al. Prof. Hernâni Monteiro , 4200-369 Porto , Portugal
- Nutrition & Metabolism , NOVA Medical School - FCM Universidade Nova de Lisboa , Campo Mártires da Pátria, 130 1169-056 Lisboa , Portugal
| | - Conceição Calhau
- CINTESIS , Center for Health Technology and Services Research , Al. Prof. Hernâni Monteiro , 4200-369 Porto , Portugal
- Nutrition & Metabolism , NOVA Medical School - FCM Universidade Nova de Lisboa , Campo Mártires da Pátria, 130 1169-056 Lisboa , Portugal
| | - Ana Faria
- CINTESIS , Center for Health Technology and Services Research , Al. Prof. Hernâni Monteiro , 4200-369 Porto , Portugal
- Nutrition & Metabolism , NOVA Medical School - FCM Universidade Nova de Lisboa , Campo Mártires da Pátria, 130 1169-056 Lisboa , Portugal
- Comprehensive Health Research Centre NOVA Medical School - FCM Universidade Nova de Lisboa , Campo Mártires da Pátria, 130 1169-056 Lisboa , Portugal
| |
Collapse
|
28
|
Romanić SH, Vuković G, Klinčić D, Sarić MM, Župan I, Antanasijević D, Popović A. Organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in Cyprinidae fish: Towards hints of their arrangements using advanced classification methods. ENVIRONMENTAL RESEARCH 2018; 165:349-357. [PMID: 29783084 DOI: 10.1016/j.envres.2018.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/04/2018] [Accepted: 05/06/2018] [Indexed: 06/08/2023]
Abstract
To tackle the ever-present global concern regarding human exposure to persistent organic pollutants (POPs) via food products, this study strived to indicate associations between organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in lake-fish tissue depending on the species and sampling season. Apart from the monitoring initiatives recommended in the Global Monitoring Plan for POPs, the study discussed 7 OCPs and 18 PCB congeners determined in three Cyprinidae species (rudd, carp, and Prussian carp) from Vransko Lake (Croatia), which are widely domesticated and reared as food fish across Europe and Asia. We exploit advanced classification algorithms, the Kohonen self-organizing maps (SOM) and Decision Trees (DT), to search for POP patterns typical for the investigated species. As indicated by SOM, some of the dioxin-like and non-dioxin-like PCBs (PCB-28, PCB-74, PCB-52, PCB-101, PCB-105, PCB-114, PCB-118, PCB-156 and PCB-157), α-HCH and β-HCH caused dissimilarities among fish species, but regardless of their weight and length. To support these suggestions, DT analysis sequenced the fish species and seasons based on the concentration of heavier congeners. The presented assumptions indicated that the supplemental application of SOM and DT offers advantageous features over the usually rough interpretation of POPs pattern and over the single use of the methods.
Collapse
Affiliation(s)
- Snježana Herceg Romanić
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, PO Box 291, 10001 Zagreb, Croatia.
| | - Gordana Vuković
- Institute of Physics Belgrade, a National Institute of the Republic of Serbia, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia.
| | - Darija Klinčić
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, PO Box 291, 10001 Zagreb, Croatia.
| | - Marijana Matek Sarić
- Department of Health Studies, University of Zadar, Splitska 1, 23000 Zadar, Croatia.
| | - Ivan Župan
- Department of Ecology, Agronomy and Aquaculture, University of Zadar, Trg kneza Višeslava 9, 23000 Zadar, Croatia.
| | - Davor Antanasijević
- Innovation Center of the Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia.
| | - Aleksandar Popović
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia.
| |
Collapse
|
29
|
Abbassy MMS. Distribution pattern of persistent organic pollutants in aquatic ecosystem at the Rosetta Nile branch estuary into the Mediterranean Sea, North of Delta, Egypt. MARINE POLLUTION BULLETIN 2018; 131:115-121. [PMID: 29886927 DOI: 10.1016/j.marpolbul.2018.03.049] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 03/18/2018] [Accepted: 03/26/2018] [Indexed: 06/08/2023]
Abstract
The objective of this study was to evaluate the distribution pattern of persistent organic pollutants in water, sediment and aquatic biota represented by Oreochromis niloticus and Donax trunculus at the Rosetta Nile branch estuary. α-HCH, p,p'-DDE and polychlorinated biphenyls were the predominant compounds detected at ranges of 0.54-4.90 ng/l water, 0.75-2.41 ng/g, d. wt. sediment and 2.19-28.11 ng/g, fresh wt. biota. β and γ-HCHs, endosulfan compounds, heptachlor and heptachlor epoxide were at low detection frequencies. Totally, the organochlorine pollutants were at high levels and abundances in Donax spp. than in Tilapia spp. followed by sediment and water. These levels were ranged between lower and higher than those found by the other studies established in Egypt, and well below its tolerable residue levels in fish. A correlation was found for the quantified pollutants between water, sediment and biota. This is clearly reflecting the bioaccumulation properties of these compounds.
Collapse
Affiliation(s)
- Moustafa Mohamed Saleh Abbassy
- Department of Environmental Studies, Institute of Graduate Studies & Research, Alexandria University, 163 Horreya Avenue, Chatby, 21526 Alexandria, Egypt.
| |
Collapse
|
30
|
Furley TH, Brodeur J, Silva de Assis HC, Carriquiriborde P, Chagas KR, Corrales J, Denadai M, Fuchs J, Mascarenhas R, Miglioranza KSB, Miguez Caramés DM, Navas JM, Nugegoda D, Planes E, Rodriguez‐Jorquera IA, Orozco‐Medina M, Boxall ABA, Rudd MA, Brooks BW. Toward sustainable environmental quality: Identifying priority research questions for Latin America. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2018; 14:344-357. [PMID: 29469193 PMCID: PMC5947661 DOI: 10.1002/ieam.2023] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/14/2017] [Accepted: 11/14/2017] [Indexed: 05/19/2023]
Abstract
The Global Horizon Scanning Project (GHSP) is an innovative initiative that aims to identify important global environmental quality research needs. Here we report 20 key research questions from Latin America (LA). Members of the Society of Environmental Toxicology and Chemistry (SETAC) LA and other scientists from LA were asked to submit research questions that would represent priority needs to address in the region. One hundred questions were received, then partitioned among categories, examined, and some rearranged during a workshop in Buenos Aires, Argentina. Twenty priority research questions were subsequently identified. These research questions included developing, improving, and harmonizing across LA countries methods for 1) identifying contaminants and degradation products in complex matrices (including biota); 2) advancing prediction of contaminant risks and effects in ecosystems, addressing lab-to-field extrapolation challenges, and understanding complexities of multiple stressors (including chemicals and climate change); and 3) improving management and regulatory tools toward achieving sustainable development. Whereas environmental contaminants frequently identified in these key questions were pesticides, pharmaceuticals, endocrine disruptors or modulators, plastics, and nanomaterials, commonly identified environmental challenges were related to agriculture, urban effluents, solid wastes, pulp and paper mills, and natural extraction activities. Several interesting research topics included assessing and preventing pollution impacts on conservation protected areas, integrating environment and health assessments, and developing strategies for identification, substitution, and design of less hazardous chemicals (e.g., green chemistry). Finally, a recurrent research need included developing an understanding of differential sensitivity of regional species and ecosystems to environmental contaminants and other stressors. Addressing these critical questions will support development of long-term strategic research efforts to advance more sustainable environmental quality and protect public health and the environment in LA. Integr Environ Assess Manag 2018;14:344-357. © 2018 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
| | - Julie Brodeur
- Instituto de Recursos Biológicos, Centro de Investigaciones de Recursos Naturales (CIRN)Instituto Nacional de Tecnología Agropecuaria (INTA)Buenos AiresArgentina
| | | | | | | | - Jone Corrales
- Department of Environmental ScienceBaylor UniversityWacoTexasUSA
| | - Marina Denadai
- Department of ChemistryFederal University of São CarlosSão CarlosBrazil
| | - Julio Fuchs
- IQUIBICEN‐CONICETUniversidad de Buenos AiresBuenos AiresArgentina
| | | | | | - Diana Margarita Miguez Caramés
- Laboratorio Ecotoxicología y Contaminación Ambiental, IIMyC, CONICET‐UNMDPArgentina
- Laboratorio Tecnológico del Uruguay (LATU)MontevideoUruguay
| | | | | | - Estela Planes
- National Institute of Industrial TechnologyChemistry CenterBuenos AiresArgentina
| | | | | | | | - Murray A Rudd
- Department of Environmental SciencesEmory UniversityAtlantaGeorgiaUSA
| | - Bryan W Brooks
- Department of Environmental ScienceBaylor UniversityWacoTexasUSA
| |
Collapse
|
31
|
Zhu X, Beiyuan J, Lau AYT, Chen SS, Tsang DCW, Graham NJD, Lin D, Sun J, Pan Y, Yang X, Li XD. Sorption, mobility, and bioavailability of PBDEs in the agricultural soils: Roles of co-existing metals, dissolved organic matter, and fertilizers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 619-620:1153-1162. [PMID: 29734594 DOI: 10.1016/j.scitotenv.2017.11.159] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 11/08/2017] [Accepted: 11/14/2017] [Indexed: 06/08/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are common pollutants released from electronic waste (e-waste) dismantling and recycling activities. Our city-wide survey of agricultural soils in Qingyuan (40 sampling sites), where e-waste recycling has been active, observed exceedance of PBDEs above background levels (average of 251.9ngg-1, 87 times the regional baseline concentration) together with elevated levels of metals/metalloids at the contamination hotspots, such as As (180.4mgkg-1), Cu (100.7mgkg-1), Zn (93.4mgkg-1), Pb (37.8mgkg-1), Cr (15.1mgkg-1), and Cd (0.3mgkg-1). Hence, a twenty-cycle batch sorption test on composite soil samples from the e-waste site was conducted to study the fate of BDE-28 (2,4,4'-tribromodiphenyl ether) and BDE-99 (2,2',4,4',5-pentabromodiphenyl ether) under the influence of co-existing trace elements (TEs) (Cu, Pb, Zn, and Cd, which exceeded Chinese Environmental Quality Standard for Soils), dissolved organic matter (extracted from local peat), and locally available commercial fertilizer. The results showed that the presence of TEs barely affected the sorption of BDEs, probably because the low concentration of BDEs in the environment resulted in nearly complete sorption onto the soil. In contrast, metals sorption onto soil was promoted by the presence of BDEs. The mobility of BDE-28 was higher than BDE-99 in water leaching tests, while the leaching concentration of BDE-99 was further reduced in simulated acid rain possibly due to protonation of π-accepting sites in soil organic matter. In the freshly spiked soil, BDEs of greater hydrophobicity and larger molecular size exhibited higher bioavailability (due to greater affinity to Tenax extraction), which was contrary to the field contaminated soil. Similarly, the co-occurrence of metals and fertilizer increased the bioavailability of newly sorbed BDE-99 more than BDE-28 in the soil. These results illustrate the need to holistically assess the fate and interactions of co-existing organic and inorganic pollutants in the agricultural soils.
Collapse
Affiliation(s)
- Xuan Zhu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Jingzi Beiyuan
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Centre of Sustainable Design and Environment, Faculty of Design and Environment, Technological and Higher Education Institute of Hong Kong, Tsing Yi Road, Hong Kong, China
| | - Abbe Y T Lau
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Season S Chen
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Nigel J D Graham
- Environmental and Water Resources Engineering, Department of Civil and Environmental Engineering, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Daohui Lin
- College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianteng Sun
- College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanheng Pan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Yang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Xiang-Dong Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
32
|
Chang GR. Persistent organochlorine pesticides in aquatic environments and fishes in Taiwan and their risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:7699-7708. [PMID: 29288298 DOI: 10.1007/s11356-017-1110-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/19/2017] [Indexed: 05/06/2023]
Abstract
Organochlorine pesticides (OCPs) are ubiquitous contaminants with high bioaccumulation and persistence in the environment; they can have adverse effects in humans and animals. This study examined residual concentrations in water, sediments, and fishes as well as the association between the health risks of OCPs and fish consumption in the Taiwanese population. Various water and sediment samples from Taiwanese aquaculture and fish samples from different sources were collected and analyzed through gas chromatography tandem mass spectrometry to determine the concentrations of 20 OCPs, namely, aldrin; cis-chlordane; trans-chlordane; dieldrin; endrin; alpha-endosulfan; beta-endosulfan; heptachlor; hexachlorobenzene; alpha-hexachlorocyclohexane; beta-hexachlorocyclohexane; lindane; mirex; pentachlorobenzene; o,p'-dichlorodiphenyltrichloroethane (DDT); p,p'-DDT; and DDT metabolites (o,p'-dichlorodiphenyldichloroethane [DDD]; p,p'-DDD; o,p'-dichlorodiphenyldichloroethylene [DDE]; and p,p'-DDE). None of the analyzed samples was positive for OCP contamination, suggesting no new input pollution from the land through washing into Taiwanese aquaculture environments. However, OCP residues were detected in fishes caught along the coast, namely, skipjack tuna and bigeye barracuda, and in imported fishes, such as codfish and salmon. DDT was the predominant pesticide. The contamination pattern of persistent organic pollutants was as follows: dieldrin > cis-chlordane > hexachlorobenzene, with average concentrations ranging from 0.09 to 2.74 ng/g. The risk was assessed in terms of the estimated daily intake (EDI) for potential adverse indices; the EDI of OCP residues was lower than 1% of the acceptable daily intake established by the Food and Agriculture Organization of the United Nations and World Health Organization. The assessed risk was negligible and considered to be at a safe level, suggesting no association between fish consumption and risks to human health in Taiwan. However, a continuous monitoring program for OCP residues in fishes is necessary to further assess the possible effects on human health.
Collapse
Affiliation(s)
- Geng-Ruei Chang
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi, Taiwan, 60054, Republic of China.
- Division of Residual Control, Agricultural Chemicals and Toxic Substance Research Institute, Council of Agriculture, 11 Guangming Road, Wufeng, Taichung, Taiwan, 41358, Republic of China.
| |
Collapse
|
33
|
Ballesteros ML, Hued AC, Gonzalez M, Miglioranza KSB, Bistoni MA. Evaluation of the Health Status of the Silverside (Odontesthes bonariensis) at a RAMSAR Site in South America. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 99:62-68. [PMID: 28299406 DOI: 10.1007/s00128-017-2055-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 02/24/2017] [Indexed: 06/06/2023]
Abstract
The objective of this work was to evaluate the health status of an economic and ecologically important fish species from Mar Chiquita Lake, a RAMSAR site located in Cordoba, Argentina, relative to the levels of selected persistent organic pollutants (POPs) in lake water and fish tissues. Odontesthes bonariensis was used as a model species, and its health was estimated by means of histological indices in gills and liver. Sampling was performed according to rainy and dry seasons (i.e. dry, rainy and post-rainy). Gill and liver histopathology were evaluated by semi-quantitative indices and morphometric analysis. Although epithelial lifting in gills and lipid degeneration in liver were frequently registered, they are considered as reversible if environmental conditions improve. During rainy and post-rainy seasons fish presented significantly higher scores of liver and total indices. These higher index scores were correlated with increased levels of POPs in gill and liver tissue. Therefore, preventive measures are needed to mitigate the entry of these compounds into the lake.
Collapse
Affiliation(s)
- M L Ballesteros
- Instituto de Diversidad y Ecología Animal (CONICET-UNC) and Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Av. Vélez Sársfield 299, Córdoba,, X5000JJC, Argentina
| | - A C Hued
- Instituto de Diversidad y Ecología Animal (CONICET-UNC) and Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Av. Vélez Sársfield 299, Córdoba,, X5000JJC, Argentina
| | - M Gonzalez
- Laboratorio de Ecotoxicología y Contaminación Ambiental Funes 3350, Instituto de Investigaciones Marinas y Costeras (IIMyC), UNMdP, CONICET, Mar del Plata, B7602AYL, Argentina
| | - K S B Miglioranza
- Laboratorio de Ecotoxicología y Contaminación Ambiental Funes 3350, Instituto de Investigaciones Marinas y Costeras (IIMyC), UNMdP, CONICET, Mar del Plata, B7602AYL, Argentina
| | - M A Bistoni
- Instituto de Diversidad y Ecología Animal (CONICET-UNC) and Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Av. Vélez Sársfield 299, Córdoba,, X5000JJC, Argentina.
| |
Collapse
|
34
|
Berenstein G, Nasello S, Beiguel É, Flores P, Di Schiena J, Basack S, Hughes EA, Zalts A, Montserrat JM. Human and soil exposure during mechanical chlorpyrifos, myclobutanil and copper oxychloride application in a peach orchard in Argentina. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 586:1254-1262. [PMID: 28237465 DOI: 10.1016/j.scitotenv.2017.02.129] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/14/2017] [Accepted: 02/16/2017] [Indexed: 06/06/2023]
Abstract
The objective of this study was to measure the impact of the mechanized chlorpyrifos, copper oxychloride and myclobutanil application in a small peach orchard, on humans (operators, bystanders and residents) and on the productive soil. The mean Potential Dermal Exposure (PDE) of the workers (tractor drivers) was 30.8mL·h-1±16.4mL·h-1, with no specific pesticide distribution on the laborers body. Although the Margin of Safety (MOS) factor for the application stage were above 1 (safe condition) for myclobutanil and cooper oxycloride it was below 1 for chlorpyrifos. The mix and load stage remained as the riskier operation. Pesticide found on the orchard soil ranged from 5.5% to 14.8% of the total chlorpyrifos, copper oxychloride and myclobutanil applied. Pesticide drift was experimentally measured, finding values in the range of 2.4% to 11.2% of the total pesticide applied. Using experimental drift values, bystander (for one application), resident (for 20 applications) and earthworm (for one application) risk indicators (RIs) were calculated for the chlorpyrifos plus copper oxychloride and for myclobutanil treatments for different distances to the orchard border. Earthworm RI was correlated with experimental Eisenia andrei ecotoxicological assays (enzymatic activities: cholinesterases, carboxylesterases and glutathione S-transferases; behavioral: avoidance and bait-lamina tests) with good correlation.
Collapse
Affiliation(s)
- Giselle Berenstein
- Instituto de Ciencias, Universidad Nacional de General Sarmiento (UNGS), J. M. Gutiérrez 1150, (B1613GSX) Los Polvorines, Prov. de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Soledad Nasello
- Instituto de Ciencias, Universidad Nacional de General Sarmiento (UNGS), J. M. Gutiérrez 1150, (B1613GSX) Los Polvorines, Prov. de Buenos Aires, Argentina
| | - Érica Beiguel
- Instituto de Ciencias, Universidad Nacional de General Sarmiento (UNGS), J. M. Gutiérrez 1150, (B1613GSX) Los Polvorines, Prov. de Buenos Aires, Argentina
| | - Pedro Flores
- Instituto de Ciencias, Universidad Nacional de General Sarmiento (UNGS), J. M. Gutiérrez 1150, (B1613GSX) Los Polvorines, Prov. de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Johanna Di Schiena
- Instituto de Ciencias, Universidad Nacional de General Sarmiento (UNGS), J. M. Gutiérrez 1150, (B1613GSX) Los Polvorines, Prov. de Buenos Aires, Argentina
| | - Silvana Basack
- Instituto de Ciencias, Universidad Nacional de General Sarmiento (UNGS), J. M. Gutiérrez 1150, (B1613GSX) Los Polvorines, Prov. de Buenos Aires, Argentina
| | - Enrique A Hughes
- Instituto de Ciencias, Universidad Nacional de General Sarmiento (UNGS), J. M. Gutiérrez 1150, (B1613GSX) Los Polvorines, Prov. de Buenos Aires, Argentina
| | - Anita Zalts
- Instituto de Ciencias, Universidad Nacional de General Sarmiento (UNGS), J. M. Gutiérrez 1150, (B1613GSX) Los Polvorines, Prov. de Buenos Aires, Argentina
| | - Javier M Montserrat
- Instituto de Ciencias, Universidad Nacional de General Sarmiento (UNGS), J. M. Gutiérrez 1150, (B1613GSX) Los Polvorines, Prov. de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
35
|
Verhaert V, Newmark N, D'Hollander W, Covaci A, Vlok W, Wepener V, Addo-Bediako A, Jooste A, Teuchies J, Blust R, Bervoets L. Persistent organic pollutants in the Olifants River Basin, South Africa: Bioaccumulation and trophic transfer through a subtropical aquatic food web. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 586:792-806. [PMID: 28214119 DOI: 10.1016/j.scitotenv.2017.02.057] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 02/06/2017] [Accepted: 02/07/2017] [Indexed: 06/06/2023]
Abstract
This study investigates the trophic transfer of persistent organic pollutants (POPs: PCBs, PBDEs, OCPs and PFASs) in the subtropical aquatic ecosystem of the Olifants River Basin (South Africa) by means of trophic magnification factors (TMFs). Relative trophic levels were determined by stable isotope analysis. POP levels in surface water, sediment and biota were low. Only ∑DDTs levels in fish muscle (<LOQ-61ng/g ww) were comparable or higher than values from other temperate and tropical regions. Significant positive relationships between relative trophic level and PCB, DDT and HCH concentrations were observed so trophic levels play an important role in the movement of contaminants through the food web. TMFs were >1, indicating biomagnification of all detected POPs. Calculated TMFs for PCBs were comparable to TMF values reported from the tropical Congo River basin and lower than TMFs from temperate and arctic regions. For p,p'-DDT, a higher TMF value was observed for the subtropical Olifants River during the winter low flow season than for the tropical Congo river. TMFs of DDTs from the present study were unexpectedly higher than TMFs from temperate and arctic aquatic food webs. The fish species in the aquatic ecosystem of the Olifants River can be consumed with a low risk for POP contamination.
Collapse
Affiliation(s)
- Vera Verhaert
- Systemic Physiological & Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | - Nadine Newmark
- Systemic Physiological & Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Wendy D'Hollander
- Systemic Physiological & Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk-Antwerp, Belgium
| | - Wynand Vlok
- Department of Zoology, University of Johannesburg, PO Box 524, Auckland Park 2006, South Africa
| | - Victor Wepener
- Unit for Environmental Sciences and Management, Water Research Group, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Abraham Addo-Bediako
- Department of Biodiversity, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa
| | - Antoinette Jooste
- Department of Biodiversity, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa
| | - Johannes Teuchies
- Systemic Physiological & Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Ronny Blust
- Systemic Physiological & Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Lieven Bervoets
- Systemic Physiological & Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| |
Collapse
|
36
|
Walczak M, Reichert M. Characteristics of selected bioaccumulative substances and their impact on fish health. J Vet Res 2016. [DOI: 10.1515/jvetres-2016-0070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Abstract
The aim of this article was to evaluate the influence and effects of chosen bioaccumulative substances i.e. heavy metals, pesticides, and polychlorinated biphenyls (PCBs) on fish, as well as provide information on time trends and potential threat to human health. Chemical substances which pollute water may affect living organisms in two ways. First of all, large amounts of chemical substances may cause sudden death of a significant part of the population of farmed fish, without symptoms (i.e. during breakdown of factories or industrial sewage leaks). However, more frequently, chemical substances accumulate in tissues of living organisms affecting them chronically. Heavy metals, pesticides, and polychlorinated biphenyls are persistent substances with a long-lasting biodegradation process. In a water environment they usually accumulate in sediments, which makes them resistant to biodegradation processes induced by, e.g., the UV light. These substances enter the fish through direct consumption of contaminated water or by contact with skin and gills. Symptoms of intoxication with heavy metals, pesticides, and PCBs may vary and depend on the concentration and bioavailability of these substances, physicochemical parameters of water, and the fish itself.
Collapse
Affiliation(s)
- Marek Walczak
- Department of Fish Diseases, National Veterinary Research Institute, 24-100 Pulawy, Poland
| | - Michał Reichert
- Department of Fish Diseases, National Veterinary Research Institute, 24-100 Pulawy, Poland
| |
Collapse
|
37
|
Berton P, Mammana SB, Locatelli DA, Lana NB, Hapon MB, Camargo AB, Altamirano JC. Determination of polybrominated diphenyl ethers in milk samples. Development of green extraction coupled techniques for sample preparation. Electrophoresis 2016; 38:460-468. [DOI: 10.1002/elps.201600247] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 10/03/2016] [Accepted: 10/05/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Paula Berton
- Instituto Argentino de Nivología; Glaciología y Ciencias Ambientales (IANIGLA, CONICET); Mendoza Mendoza Argentina
- Facultad de Ciencias Exactas y Naturales; Universidad Nacional de Cuyo; Mendoza Argentina
| | - Sabrina B. Mammana
- Instituto Argentino de Nivología; Glaciología y Ciencias Ambientales (IANIGLA, CONICET); Mendoza Mendoza Argentina
- Facultad de Ciencias Exactas y Naturales; Universidad Nacional de Cuyo; Mendoza Argentina
| | - Daniela A. Locatelli
- Instituto de Biología Agrícola de Mendoza (IBAM, CONICET); Mendoza Argentina
- Facultad de Ciencias Agrarias; Universidad Nacional de Cuyo; Chacras de Coria Mendoza Argentina
| | - Nerina B. Lana
- Instituto Argentino de Nivología; Glaciología y Ciencias Ambientales (IANIGLA, CONICET); Mendoza Mendoza Argentina
| | - María B. Hapon
- Facultad de Ciencias Exactas y Naturales; Universidad Nacional de Cuyo; Mendoza Argentina
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU, CONICET); Mendoza Argentina
| | - Alejandra B. Camargo
- Facultad de Ciencias Exactas y Naturales; Universidad Nacional de Cuyo; Mendoza Argentina
- Instituto de Biología Agrícola de Mendoza (IBAM, CONICET); Mendoza Argentina
- Facultad de Ciencias Agrarias; Universidad Nacional de Cuyo; Chacras de Coria Mendoza Argentina
| | - Jorgelina C. Altamirano
- Instituto Argentino de Nivología; Glaciología y Ciencias Ambientales (IANIGLA, CONICET); Mendoza Mendoza Argentina
- Facultad de Ciencias Exactas y Naturales; Universidad Nacional de Cuyo; Mendoza Argentina
| |
Collapse
|
38
|
Scholes RC, Hageman KJ, Closs GP, Stirling CH, Reid MR, Gabrielsson R, Augspurger JM. Predictors of pesticide concentrations in freshwater trout - The role of life history. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 219:253-261. [PMID: 27814542 DOI: 10.1016/j.envpol.2016.10.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/02/2016] [Accepted: 10/06/2016] [Indexed: 06/06/2023]
Abstract
Concentrations of halogenated pesticides in freshwater fish can be affected by age, size, trophic position, and exposure history. Exposure history may vary for individual fish caught at a single location due to different life histories, e.g. they may have hatched in different tributaries before migrating to a specific lake. We evaluated correlations of pesticide concentrations in freshwater brown trout (Salmo trutta) from the Clutha River, New Zealand, with potential predictors including capture site, age, length, trophic level, and life history. Life history was determined from otolith (fish ear bone) strontium isotope signatures, which vary among tributaries in the region of our study. Variability in pesticide concentrations between individual fish was not well explained by capture site, age, length, or trophic level. However, hexachlorobenzene (HCB) and chlorpyrifos concentrations were distinct in lake-based trout with different life histories. Additionally, one of the riverine life histories was associated with relatively high concentrations of total endosulfans. Linear models that included all potential predictor variables were evaluated and the resulting best models for HCB, chlorpyrifos, and total endosulfans included life history. These findings show that in cases where otolith isotope signatures vary geographically, they can be used to help explain contaminant concentration variations in fish caught from a single location.
Collapse
Affiliation(s)
- Rachel C Scholes
- Department of Chemistry, University of Otago, Dunedin 9016, New Zealand
| | - Kimberly J Hageman
- Department of Chemistry, University of Otago, Dunedin 9016, New Zealand.
| | - Gerard P Closs
- Department of Zoology, University of Otago, Dunedin 9016, New Zealand
| | - Claudine H Stirling
- Department of Chemistry, University of Otago, Dunedin 9016, New Zealand; Centre for Trace Element Analysis, University of Otago, Dunedin 9016, New Zealand
| | - Malcolm R Reid
- Department of Chemistry, University of Otago, Dunedin 9016, New Zealand; Centre for Trace Element Analysis, University of Otago, Dunedin 9016, New Zealand
| | - Rasmus Gabrielsson
- Department of Zoology, University of Otago, Dunedin 9016, New Zealand; Cawthron Institute, Nelson 7010, New Zealand
| | | |
Collapse
|
39
|
Megson D, Reiner EJ, Jobst KJ, Dorman FL, Robson M, Focant JF. A review of the determination of persistent organic pollutants for environmental forensics investigations. Anal Chim Acta 2016; 941:10-25. [DOI: 10.1016/j.aca.2016.08.027] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 08/15/2016] [Accepted: 08/17/2016] [Indexed: 01/11/2023]
|