1
|
Chen X, Song Y, Ling C, Shen Y, Zhan X, Xing B. Fate of emerging antibiotics in soil-plant systems: A case on fluoroquinolones. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175487. [PMID: 39153616 DOI: 10.1016/j.scitotenv.2024.175487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/17/2024] [Accepted: 08/11/2024] [Indexed: 08/19/2024]
Abstract
Fluoroquinolones (FQs), a class of broad-spectrum antibiotics widely used to treat human and animal diseases globally, have limited adsorption and are often excreted unchanged or as metabolites. These compounds enter the soil environment through feces, urban wastewater, or discharge of biological solids. The fluorine atoms in FQs impart high electronegativity, chemical stability, and resistance to microbial degradation, allowing them to potentially enter food chains. The persistence of FQs in soils raises questions about their impacts on plant growth, an aspect not yet conclusively determined. We reviewed whether, like other organic compounds, FQs are actively absorbed by plants, resulting in bioaccumulation and posing threats to human health. The influx of FQs has led to antibiotic resistance in soil microbes by exerting selective pressure and contributing to multidrug-resistant bacteria. Therefore, the environmental risks of FQs warrant further attention. This work provides a comprehensive review of the fate and behavior of FQs at the plant-environment interface, their migration and transport from the environment into plants, and associated toxicity. Current limitations in research are discussed and prospects for future investigations outlined. Thus, understanding antibiotic behavior in plants and translocation within tissues is not only crucial for ecosystem health (plant health), but also assessing potential human health risks. In addition, it can offer insights into the fate of emerging soil pollutants in plant-soil systems.
Collapse
Affiliation(s)
- Xiaohan Chen
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Yixuan Song
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Chen Ling
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Yu Shen
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Xinhua Zhan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States.
| |
Collapse
|
2
|
Castillo NA, Santos RO, James WR, Rezek R, Cerveny D, Boucek RE, Adams AJ, Fick J, Brodin T, Rehage JS. Widespread pharmaceutical exposure at concentrations of concern for a subtropical coastal fishery: Bonefish (Albula vulpes). MARINE POLLUTION BULLETIN 2024; 209:117143. [PMID: 39461181 DOI: 10.1016/j.marpolbul.2024.117143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/29/2024]
Abstract
Pharmaceuticals have been acknowledged as an important contaminant of emerging concern with the potential to cause adverse effects in exposed fauna. Most research has focused on temperate freshwater systems; therefore, there is a pressing need to quantify pharmaceutical exposure in subtropical coastal marine systems. This study investigated the prevalence of pharmaceutical exposure to bonefish (Albula vulpes) in subtropical South Florida, USA, and evaluated the relative risk of detected concentrations to elicit pharmacological effects. The influence of sampling region, season (within or outside spawning season), and bonefish length on pharmaceutical assemblage, detection frequency, and risk was assessed. Both spatial (multiple regions) and temporal (spawning season) components were considered in order to incorporate bonefish biology biological in our exploration of pharmaceutical exposure and potential risk of effect. To quantify risk of pharmacological effects, concentrations were compared to a 1/3 threshold of the human therapeutic plasma concentration (HTPC). In total, 53 different pharmaceuticals were detected with an average of 7.1 pharmaceuticals per bonefish and 52.3 % had at least one pharmaceutical exceeding the 1/3 HTPC threshold. The presence of pharmaceutical cocktails at concentrations capable of eliciting pharmacological effects is of particular concern considering the potential for unknown interactions. For exposure and risk of pharmacological effect, region and season were significant, while bonefish length was not. Pharmaceutical exposure and risk were highest in the most remote sampling region. Results establish pharmaceuticals' widespread prevalence in subtropical coastal marine ecosystems, exposure and risk to biota, and the necessity to examine marine systems.
Collapse
Affiliation(s)
- N A Castillo
- Earth and Environment Department, Florida International University, Miami, FL, USA.
| | - R O Santos
- Department of Biology, Florida International University, Miami, FL, USA
| | - W R James
- Earth and Environment Department, Florida International University, Miami, FL, USA; Department of Biology, Florida International University, Miami, FL, USA
| | - R Rezek
- Department of Marine Science, Coastal Carolina University, Conway, SC, USA
| | - D Cerveny
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden; Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Vodňany, Czech Republic
| | - R E Boucek
- Bonefish and Tarpon Trust, Miami, FL, USA
| | - A J Adams
- Bonefish and Tarpon Trust, Miami, FL, USA; Florida Atlantic University Harbor Branch Oceanographic Institute, Fort Pierce, FL, USA
| | - J Fick
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - T Brodin
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - J S Rehage
- Earth and Environment Department, Florida International University, Miami, FL, USA
| |
Collapse
|
3
|
Harriage S, Harasheh A, Schultz N, Long B. Bioconcentration of pharmaceuticals by aquatic flora in an Australian river system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174361. [PMID: 38960202 DOI: 10.1016/j.scitotenv.2024.174361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/06/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
Pharmaceuticals are emerging contaminants in the environment and are a ubiquitous presence in rivers downstream of wastewater treatment plant outfalls. Questions remain about the persistence of pharmaceuticals in rivers, and the uptake and bioconcentration of pharmaceuticals by aquatic plants. Our study took place in the Yarrowee/Leigh/Barwon River system in southeastern Australia. We quantified the concentrations of five pharmaceuticals (carbamazepine, primidone, propranolol, tramadol, and venlafaxine) in surface water at five sites along a 144-km stretch of river, downstream of the presumed primary point source (a wastewater treatment plant outfall). We quantified pharmaceuticals in the leaves of two aquatic plant species (Phragmites australis and Vallisneria australis) sampled at each site, and calculated bioconcentration factors. All five pharmaceuticals were detected in surface waters, and the highest detected concentration exceeded 500 ng.L-1 (tramadol). Four of the pharmaceuticals (all except tramadol) were detected and quantified at all sites, including the furthest site from the outfall (144 km). Carbamazepine showed less attenuation with distance from the outfall than the other pharmaceuticals. Carbamazepine and venlafaxine were quantified in the leaves of both aquatic plant species (range: 10-31 ng.g-1), and there was evidence that bioconcentration factors increased with decreasing surface water concentrations. The study demonstrates the potential long-distance persistence of pharmaceuticals in river systems, and the bioconcentration of pharmaceuticals by aquatic plants in natural ecosystems. These phenomena deserve greater attention as aquatic plants are a potential point of transfer of pharmaceuticals from aquatic ecosystems to terrestrial food webs.
Collapse
Affiliation(s)
- Samantha Harriage
- Future Regions Research Centre, Federation University Australia, Ballarat, Victoria, Australia
| | - Ahmad Harasheh
- Future Regions Research Centre, Federation University Australia, Ballarat, Victoria, Australia; Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Nick Schultz
- Future Regions Research Centre, Federation University Australia, Ballarat, Victoria, Australia
| | - Benjamin Long
- Future Regions Research Centre, Federation University Australia, Ballarat, Victoria, Australia
| |
Collapse
|
4
|
Castillo NA, James WR, Santos RO, Rezek R, Cerveny D, Boucek RE, Adams AJ, Trabelsi S, Distrubell A, Sandquist M, Fick J, Brodin T, Rehage JS. Identifying pathways of pharmaceutical exposure in a mesoconsumer marine fish. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135382. [PMID: 39088947 DOI: 10.1016/j.jhazmat.2024.135382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/03/2024]
Abstract
Pharmaceutical uptake involves processes that vary across aquatic systems and biota. However, single studies examining multiple environmental compartments, microhabitats, biota, and exposure pathways in mesoconsumer fish are sparse. We investigated the pharmaceutical burden in bonefish (Albula vulpes), pathways of exposure, and estimated exposure to a human daily dose. To evaluate exposure pathways, the number and composition of pharmaceuticals across compartments and the bioconcentration in prey and bonefish were assessed. To evaluate bioaccumulation, we proposed the use of a field-derived bioaccumulation factor (fBAF), due to variability inherent to natural systems. Exposure to a human daily dose was based on bonefish daily energetic requirements and consumption rates using pharmaceutical concentrations in prey. Pharmaceutical number and concentration were highest in prey, followed by bonefish, water and sediment. Fifteen pharmaceuticals were detected in common among bonefish, prey, and water; all of which bioconcentrated in prey and bonefish, and four bioaccumulated in bonefish. The composition of detected pharmaceuticals was compartment specific, and prey were most similar to bonefish. Bonefish were exposed to a maximum of 1.2 % of a human daily dose via prey consumption. Results highlight the need for multicompartment assessments of exposure and consideration of prey along with water as a pathway of exposure.
Collapse
Affiliation(s)
- N A Castillo
- Earth and Environment Department, Institute of Environment, Florida International University, Miami, FL, USA.
| | - W R James
- Earth and Environment Department, Institute of Environment, Florida International University, Miami, FL, USA; Department of Biology, Florida International University, Miami, FL, USA
| | - R O Santos
- Department of Biology, Florida International University, Miami, FL, USA
| | - R Rezek
- Department of Marine Science, Coastal Carolina University, Conway, SC, USA
| | - D Cerveny
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden; Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Vodňany, Czech Republic
| | - R E Boucek
- Bonefish and Tarpon Trust, Miami, FL, USA
| | - A J Adams
- Bonefish and Tarpon Trust, Miami, FL, USA; Florida Atlantic University Harbor Branch Oceanographic Institute, Fort Pierce, FL, USA
| | - S Trabelsi
- Earth and Environment Department, Institute of Environment, Florida International University, Miami, FL, USA
| | - A Distrubell
- Earth and Environment Department, Institute of Environment, Florida International University, Miami, FL, USA
| | - M Sandquist
- Earth and Environment Department, Institute of Environment, Florida International University, Miami, FL, USA
| | - J Fick
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - T Brodin
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - J S Rehage
- Earth and Environment Department, Institute of Environment, Florida International University, Miami, FL, USA
| |
Collapse
|
5
|
Chai T, Jin Y, Cui F, Li Z, Li M, Meng S, Yuan L, Qiu J, Mu J, Xiao G, Mu X, Qian Y. Multidimensional occurrence and diet risk of emerging contaminants in freshwater with urban agglomerations. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134813. [PMID: 38850951 DOI: 10.1016/j.jhazmat.2024.134813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/17/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Freshwater systems near highly urbanized areas are extremely susceptible to emerging contaminants (ECs), yet their stereoscopic persistence in aquatic ecosystems and related risks remain largely unknown. Herein, we characterized the multi-mediums distribution of 63 ECs in Baiyangdian Lake, the biggest urban lake in the North of China. We identified variations in the seasonal patterns of aquatic EC levels, which decreased in water and increased in sediment from wet to dry seasons. Surprisingly, higher concentrations and a greater variety of ECs were detected in reeds than in aquatic animals, indicating that plants may contribute to the transferring of ECs. Source analysis indicated that human activity considerably affected the distribution and risk of ECs. The dietary risk of ECs is most pronounced among children following the intake of aquatic products, especially with a relatively higher risk associated with fish consumption. Besides, a comprehensive scoring ranking method was proposed, and 9 ECs, including BPS and macrolide antibiotics, are identified as prioritized control pollutants. These findings highlight the risks associated with aquatic ECs and can facilitate the development of effective management strategies.
Collapse
Affiliation(s)
- Tingting Chai
- School of Food Science and Health, Zhejiang A&F University, Wusu Street # 666, Lin'an District, Hangzhou, Zhejiang 311300, PR China
| | - Yinyin Jin
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; School of Food Science and Health, Zhejiang A&F University, Wusu Street # 666, Lin'an District, Hangzhou, Zhejiang 311300, PR China
| | - Feng Cui
- Collaborative Innovation Center of Green Pesticide, Zhejiang A & F University, Lin'an, Zhejiang Province 311300, PR China
| | - Zongjie Li
- School of Food Science and Health, Zhejiang A&F University, Wusu Street # 666, Lin'an District, Hangzhou, Zhejiang 311300, PR China
| | - Mingxiao Li
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences; Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi 214081, PR China; Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, PR China
| | - Shunlong Meng
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences; Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi 214081, PR China.
| | - Lilai Yuan
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing 100141, PR China
| | - Jing Qiu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Jiandong Mu
- Hebei Ocean and Fisheries Science Research Institute, Qinhuangdao 066201, PR China; Hebei Marine Living Resources and Environment Key Laboratory, Qinhuangdao 066201, PR China
| | - Guohua Xiao
- Hebei Ocean and Fisheries Science Research Institute, Qinhuangdao 066201, PR China; Hebei Marine Living Resources and Environment Key Laboratory, Qinhuangdao 066201, PR China
| | - Xiyan Mu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Yongzhong Qian
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| |
Collapse
|
6
|
Grabicová K, Duchet C, Švecová H, Randák T, Boukal DS, Grabic R. The effect of warming and seasonality on bioaccumulation of selected pharmaceuticals in freshwater invertebrates. WATER RESEARCH 2024; 254:121360. [PMID: 38422695 DOI: 10.1016/j.watres.2024.121360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/26/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
Multiple human-induced environmental stressors significantly threaten global biodiversity and ecosystem functioning. Climate warming and chemical pollution are two widespread stressors whose impact on freshwaters is likely to increase. However, little is known about the combined effects of warming on the bioaccumulation of environmentally relevant mixtures of emerging contaminants, such as pharmaceutically active compounds (PhACs) in freshwater biota. This study investigated the bioaccumulation of a mixture of 15 selected PhACs at environmentally relevant concentrations in common freshwater macroinvertebrate taxa, exposed to ambient temperatures and warming (+4 °C) during the warm and cold seasons in two outdoor mesocosm experiments. Nine PhACs (carbamazepine, cetirizine, clarithromycin, clindamycin, fexofenadine, telmisartan, trimethoprim, valsartan and venlafaxine) were dissipated faster in the warm season experiment than in the cold season experiment, while lamotrigine showed the opposite trend. The most bioaccumulated PhACs in macroinvertebrates were tramadol, carbamazepine, telmisartan, venlafaxine, citalopram and cetirizine. The bioaccumulation was taxon, season and temperature dependent, but differences could not be fully explained by the different water stability of the PhACs and their partitioning between water and leaf litter. The highest water-based bioaccumulation factors were found in Asellus and Planorbarius. Moreover, the bioaccumulation of some PhACs increased with warming in Planorbarius, suggesting that it could be used as a sentinel taxon in environmental studies of the effects of climate warming on PhAC bioaccumulation.
Collapse
Affiliation(s)
- Kateřina Grabicová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic.
| | - Claire Duchet
- University of South Bohemia, Faculty of Science, Department of Ecosystem Biology, Branišovská 1645/31a, 370 05 České Budějovice, Czech Republic; Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic
| | - Helena Švecová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| | - Tomáš Randák
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| | - David S Boukal
- University of South Bohemia, Faculty of Science, Department of Ecosystem Biology, Branišovská 1645/31a, 370 05 České Budějovice, Czech Republic; Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic
| | - Roman Grabic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| |
Collapse
|
7
|
Zhou H, Jiao X, Li Y. Exploring the Toxicity of Oxytetracycline in Earthworms ( Eisenia fetida) Based on the Integrated Biomarker Response Method. TOXICS 2024; 12:310. [PMID: 38787089 PMCID: PMC11125748 DOI: 10.3390/toxics12050310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024]
Abstract
Antibiotic contamination has become a global environmental issue of widespread concern, among which oxytetracycline contamination is very severe. In this study, earthworm (Eisenia fetida) was exposed to oxytetracycline to study its impact on the soil environment. The total protein (TP), catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), malondialdehyde (MDA), glutathione S-transferase (GST), and glutathione peroxidase (GPX) oxidative stress indicators in earthworms were measured, and the integrated biomarker response (IBR) approach was used to evaluate the toxic effect of oxytetracycline on earthworms. A Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) and a path analysis model were used to explore the physiological and metabolic processes of earthworms after stress occurs. The results showed that SOD, GPX, and GST play important roles in resisting oxytetracycline stress. In addition, stress injury showed a good dose-effect relationship, and long-term stress from pollutants resulted in the most serious damage to the head tissue of earthworms. These results provide a theoretical basis for understanding the toxic effect of oxytetracycline on soil animals, monitoring the pollution status of oxytetracycline in soil, and conducting ecological security risk assessment.
Collapse
Affiliation(s)
- Haoran Zhou
- College of Modern Agriculture and Eco-Environment, Heilongjiang University, Harbin 150080, China;
| | - Xiaoguang Jiao
- College of Modern Agriculture and Eco-Environment, Heilongjiang University, Harbin 150080, China;
| | - Yunfei Li
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China;
| |
Collapse
|
8
|
Kidd KA, Backhaus T, Brodin T, Inostroza PA, McCallum ES. Environmental Risks of Pharmaceutical Mixtures in Aquatic Ecosystems: Reflections on a Decade of Research. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:549-558. [PMID: 37530415 DOI: 10.1002/etc.5726] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/13/2023] [Accepted: 07/31/2023] [Indexed: 08/03/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) occur as variable mixtures in surface waters receiving discharges of human and animal wastes. A key question identified a decade ago is how to assess the effects of long-term exposures of these PPCP mixtures on nontarget organisms. We review the recent progress made on assessing the aquatic ecotoxicity of PPCP mixtures-with a focus on active pharmaceutical ingredients-and the challenges and research needs that remain. New knowledge has arisen from the use of whole-mixture testing combined with component-based approaches, and these studies show that mixtures often result in responses that meet the concentration addition model. However, such studies have mainly been done on individual species over shorter time periods, and longer-term, multispecies assessments remain limited. The recent use of targeted and nontargeted gene analyses has improved our understanding of the diverse pathways that are impacted, and there are promising new "read-across" methods that use mammalian data to predict toxicity in wildlife. Risk assessments remain challenging given the paucity of ecotoxicological and exposure data on PPCP mixtures. As such, the assessment of PPCP mixtures in aquatic environments should remain a priority given the potential for additive-as well as nontarget-effects in nontarget organisms. In addition, we need to improve our understanding of which species, life stages, and relevant endpoints are most sensitive to which types of PPCP mixtures and to expand our knowledge of environmental PPCP levels in regions of the globe that have been poorly studied to date. We recommend an increased use of new approach methodologies, in particular "omics," to advance our understanding of the molecular mechanics of mixture effects. Finally, we call for systematic research on the role of PPCP mixtures in the development of antimicrobial resistance. Environ Toxicol Chem 2024;43:549-558. © 2023 SETAC.
Collapse
Affiliation(s)
- Karen A Kidd
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
- School of Earth, Environment and Society, McMaster University, Hamilton, Ontario, Canada
| | - Thomas Backhaus
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
| | - Tomas Brodin
- Department of Wildlife, Fish & Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Pedro A Inostroza
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
| | - Erin S McCallum
- Department of Wildlife, Fish & Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| |
Collapse
|
9
|
Kokotović I, Veseli M, Ložek F, Karačić Z, Rožman M, Previšić A. Pharmaceuticals and endocrine disrupting compounds modulate adverse effects of climate change on resource quality in freshwater food webs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168751. [PMID: 38008314 DOI: 10.1016/j.scitotenv.2023.168751] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/13/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
Freshwater biodiversity, ecosystem functions and services are changing at an unprecedented rate due to the impacts of vast number of stressors overlapping in time and space. Our study aimed at characterizing individual and combined impacts of pollution with pharmaceuticals (PhACs) and endocrine disrupting compounds (EDCs) and increased water temperature (as a proxy for climate change) on primary producers and first level consumers in freshwaters. We conducted a microcosm experiment with a simplified freshwater food web containing moss (Bryophyta) and shredding caddisfly larvae of Micropterna nycterobia (Trichoptera). The experiment was conducted with four treatments; control (C), increased water temperature + 4 °C (T2), emerging contaminants' mix (EC = 15 PhACs & 5 EDCs), and multiple stressor treatment (MS = EC + T2). Moss exhibited an overall mild response to selected stressors and their combination. Higher water temperature negatively affected development of M. nycterobia through causing earlier emergence of adults and changes in their lipidome profiles. Pollution with PhACs and EDCs had higher impact on metabolism of all life stages of M. nycterobia than warming. Multiple stressor effect was recorded in M. nycterobia adults in metabolic response, lipidome profiles and as a decrease in total lipid content. Sex specific response to stressor effects was observed in adults, with impacts on metabolome generally more pronounced in females, and on lipidome in males. Thus, our study highlights the variability of both single and multiple stressor impacts on different traits, different life stages and sexes of a single insect species. Furthermore, our research suggests that the combined impacts of warming, linked to climate change, and contamination with PhACs and EDCs could have adverse consequences on the population dynamics of aquatic insects. Additionally, these findings point to a potential decrease in the quality of resources available for both aquatic and potentially terrestrial food webs.
Collapse
Affiliation(s)
- Iva Kokotović
- Department of Biology, Zoology, Faculty of Science, University of Zagreb, Zagreb, Croatia.
| | - Marina Veseli
- Department of Biology, Zoology, Faculty of Science, University of Zagreb, Zagreb, Croatia.
| | - Filip Ložek
- Department of Biology, Zoology, Faculty of Science, University of Zagreb, Zagreb, Croatia; South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Czech Republic.
| | | | | | - Ana Previšić
- Department of Biology, Zoology, Faculty of Science, University of Zagreb, Zagreb, Croatia.
| |
Collapse
|
10
|
Duchet C, Grabicová K, Kolar V, Lepšová O, Švecová H, Csercsa A, Zdvihalová B, Randák T, Boukal DS. Combined effects of climate warming and pharmaceuticals on a tri-trophic freshwater food web. WATER RESEARCH 2024; 250:121053. [PMID: 38159539 DOI: 10.1016/j.watres.2023.121053] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Multiple anthropogenic stressors influence the functioning of lakes and ponds, but their combined effects are often little understood. We conducted two mesocosm experiments to evaluate the effects of warming (+4 °C above ambient temperature) and environmentally relevant concentrations of a mixture of commonly used pharmaceuticals (cardiovascular, psychoactive, antihistamines, antibiotics) on tri-trophic food webs representative of communities in ponds and other small standing waters. Communities were constituted of phyto- and zooplankton and macroinvertebrates (molluscs and insects) including benthic detritivores, grazers, omnivorous scrapers, omnivorous piercers, water column predators, benthic predators, and phytophilous predators. We quantified the main and interactive effects of warming and pharmaceuticals on each trophic level in the pelagic community and attributed them to the direct effects of both stressors and the indirect effects arising through biotic interactions. Warming and pharmaceuticals had stronger effects in the summer experiment, altering zooplankton community composition and causing delayed or accelerated emergence of top insect predators (odonates). In the summer experiment, both stressors and top predators reduced the biomass of filter-feeding zooplankton (cladocerans), while warming and pharmaceuticals had opposite effects on phytoplankton. In the winter experiment, the effects were much weaker and were limited to a positive effect of warming on phytoplankton biomass. Overall, we show that pharmaceuticals can exacerbate the effects of climate warming in freshwater ecosystems, especially during the warm season. Our results demonstrate the utility of community-level studies across seasons for risk assessment of multiple emerging stressors in freshwater ecosystems.
Collapse
Affiliation(s)
- Claire Duchet
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic; Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 37005 České Budějovice, Czech Republic.
| | - Kateřina Grabicová
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| | - Vojtech Kolar
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic; Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Olga Lepšová
- Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic
| | - Helena Švecová
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| | - Andras Csercsa
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic
| | - Barbora Zdvihalová
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic
| | - Tomáš Randák
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| | - David S Boukal
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic; Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 37005 České Budějovice, Czech Republic
| |
Collapse
|
11
|
Castillo NA, James WR, Santos RO, Rezek R, Cerveny D, Boucek RE, Adams AJ, Goldberg T, Campbell L, Perez AU, Schmitter-Soto JJ, Lewis JP, Fick J, Brodin T, Rehage JS. Understanding pharmaceutical exposure and the potential for effects in marine biota: A survey of bonefish (Albula vulpes) across the Caribbean Basin. CHEMOSPHERE 2024; 349:140949. [PMID: 38096990 DOI: 10.1016/j.chemosphere.2023.140949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/22/2023]
Abstract
Most research on pharmaceutical presence in the environment to date has focused on smaller scale assessments of freshwater and riverine systems, relying mainly on assays of water samples, while studies in marine ecosystems and of exposed biota are sparse. This study investigated the pharmaceutical burden in bonefish (Albula vulpes), an important recreational and artisanal fishery, to quantify pharmaceutical exposure throughout the Caribbean Basin. We sampled 74 bonefish from five regions, and analyzed them for 102 pharmaceuticals. We assessed the influence of sampling region on the number of pharmaceuticals, pharmaceutical assemblage, and risk of pharmacological effects. To evaluate the risk of pharmacological effects at the scale of the individual, we proposed a metric based on the human therapeutic plasma concentration (HTPC), comparing measured concentrations to a threshold of 1/3 the HTPC for each pharmaceutical. Every bonefish had at least one pharmaceutical, with an average of 4.9 and a maximum of 16 pharmaceuticals in one individual. At least one pharmaceutical was detected in exceedance of the 1/3 HTPC threshold in 39% of bonefish, with an average of 0.6 and a maximum of 11 pharmaceuticals exceeding in a Key West individual. The number of pharmaceuticals (49 detected in total) differed across regions, but the risk of pharmacological effects did not (23 pharmaceuticals exceeded the 1/3 HTPC threshold). The most common pharmaceuticals were venlafaxine (43 bonefish), atenolol (36), naloxone (27), codeine (27), and trimethoprim (24). Findings suggest that pharmaceutical detections and concentration may be independent, emphasizing the need to monitor risk to biota regardless of exposure diversity, and to focus on risk quantified at the individual level. This study supports the widespread presence of pharmaceuticals in marine systems and shows the utility of applying the HTPC to assess the potential for pharmacological effects, and thus quantify impact of exposure at large spatial scales.
Collapse
Affiliation(s)
- N A Castillo
- Earth and Environment Department, Institute of Environment, Florida International University, Miami, FL, USA.
| | - W R James
- Earth and Environment Department, Institute of Environment, Florida International University, Miami, FL, USA; Department of Biology, Institute of Environment, Florida International University, Miami, FL, USA
| | - R O Santos
- Department of Biology, Institute of Environment, Florida International University, Miami, FL, USA
| | - R Rezek
- Department of Marine Science, Coastal Carolina University, Conway, SC, USA
| | - D Cerveny
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden; Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Vodňany, Czech Republic
| | - R E Boucek
- Bonefish and Tarpon Trust, Miami, FL, USA
| | - A J Adams
- Bonefish and Tarpon Trust, Miami, FL, USA; Florida Atlantic University Harbor Branch Oceanographic Institute, Fort Pierce, FL, USA
| | - T Goldberg
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - L Campbell
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - A U Perez
- Bonefish and Tarpon Trust, Miami, FL, USA
| | - J J Schmitter-Soto
- Departmento de Sistemática y Ecología Acuática, El Colegio de la Frontera Sur, Chetumal, Mexico
| | - J P Lewis
- Bonefish and Tarpon Trust, Miami, FL, USA
| | - J Fick
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - T Brodin
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - J S Rehage
- Earth and Environment Department, Institute of Environment, Florida International University, Miami, FL, USA
| |
Collapse
|
12
|
Schuijt LM, van Smeden J, van Drimmelen CKE, Buijse LL, Wu D, Boerwinkel MC, Belgers DJM, Matser AM, Roessink I, Heikamp-de Jong I, Beentjes KK, Trimbos KB, Smidt H, Van den Brink PJ. Effects of antidepressant exposure on aquatic communities assessed by a combination of morphological identification, functional measurements, environmental DNA metabarcoding and bioassays. CHEMOSPHERE 2024; 349:140706. [PMID: 37992907 DOI: 10.1016/j.chemosphere.2023.140706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/30/2023] [Accepted: 11/11/2023] [Indexed: 11/24/2023]
Abstract
The antidepressant fluoxetine is frequently detected in aquatic ecosystems, yet the effects on aquatic communities and ecosystems are still largely unknown. Therefore the aim of this study is to assess the effects of the long-term application of fluoxetine on key components of aquatic ecosystems including macroinvertebrate-, zooplankton-, phytoplankton- and microbial communities and organic matter decomposition by using traditional and non-traditional assessment methods. For this, we exposed 18 outdoor mesocosms (water volume of 1530 L and 10 cm of sediment) to five different concentrations of fluoxetine (0.2, 2, 20 and 200 μg/L) for eight weeks, followed by an eight-week recovery period. We quantified population and community effects by morphological identification, environmental DNA metabarcoding, in vitro and in vivo bioassays and measured organic matter decomposition as a measure of ecosystem functioning. We found effects of fluoxetine on bacterial, algal, zooplankton and macroinvertebrate communities and decomposition rates, mainly for the highest (200 μg/L) treatment. Treatment-related decreases in abundances were found for damselfly larvae (NOEC of 0.2 μg/L) and Sphaeriidae bivalves (NOEC of 20 μg/L), whereas Asellus aquaticus increased in abundance (NOEC <0.2 μg/L). Fluoxetine decreased photosynthetic activity and primary production of the suspended algae community. eDNA assessment provided additional insights by revealing that the algae belonging to the class Cryptophyceae and certain cyanobacteria taxa were the most negatively responding taxa to fluoxetine. Our results, together with results of others, suggest that fluoxetine can alter community structure and ecosystem functioning and that some impacts of fluoxetine on certain taxa can already be observed at environmentally realistic concentrations.
Collapse
Affiliation(s)
- Lara M Schuijt
- Aquatic Ecology and Water quality management group, Wageningen University and Research, Wageningen, the Netherlands; Wageningen Environmental Research, Wageningen University and Research, Wageningen, the Netherlands
| | - Jasper van Smeden
- Wageningen Environmental Research, Wageningen University and Research, Wageningen, the Netherlands
| | - Chantal K E van Drimmelen
- Aquatic Ecology and Water quality management group, Wageningen University and Research, Wageningen, the Netherlands
| | - Laura L Buijse
- Wageningen Environmental Research, Wageningen University and Research, Wageningen, the Netherlands
| | - Dailing Wu
- Aquatic Ecology and Water quality management group, Wageningen University and Research, Wageningen, the Netherlands
| | - Marie-Claire Boerwinkel
- Wageningen Environmental Research, Wageningen University and Research, Wageningen, the Netherlands
| | - Dick J M Belgers
- Wageningen Environmental Research, Wageningen University and Research, Wageningen, the Netherlands
| | - Arrienne M Matser
- Wageningen Environmental Research, Wageningen University and Research, Wageningen, the Netherlands
| | - Ivo Roessink
- Wageningen Environmental Research, Wageningen University and Research, Wageningen, the Netherlands
| | - Ineke Heikamp-de Jong
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, the Netherlands
| | | | - Krijn B Trimbos
- Institute of Environmental Sciences, Leiden University, Leiden, the Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, the Netherlands
| | - Paul J Van den Brink
- Aquatic Ecology and Water quality management group, Wageningen University and Research, Wageningen, the Netherlands.
| |
Collapse
|
13
|
Sokołowski A, Mordec M, Caban M, Øverjordet IB, Wielogórska E, Włodarska-Kowalczuk M, Balazy P, Chełchowski M, Lepoint G. Bioaccumulation of pharmaceuticals and stimulants in macrobenthic food web in the European Arctic as determined using stable isotope approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168557. [PMID: 37979847 DOI: 10.1016/j.scitotenv.2023.168557] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/20/2023]
Abstract
Although pharmaceuticals are increasingly detected in abiotic matrices in the Arctic, the accumulation of drugs in the resident biota and trophic transfer have not been yet examined. This study investigated the behaviour of several pharmaceuticals in the rocky-bottom, macrobenthic food web in the coastal zone of Isfjorden (western Spitsbergen) using stable isotope analyses (SIA) coupled with liquid chromatography-mass spectrometry (LC-MS/MS). Across 16 macroalgal and invertebrate species the highest average concentration was measured for ciprofloxacin (CIP) (on average 60.3 ng g-1 dw) followed by paracetamol (PCT) (51.3 ng g-1 dw) and nicotine (NIC) (37.8 ng g-1 dw). The biomagnification potential was assessed for six target compounds of 13 analytes detected that were quantified with a frequency > 50 % in biological samples. The trophic magnification factor (TMF) ranged between 0.3 and 2.8, and was significant for NIC and CIP. TMF < 1.0 for NIC (0.3; confidence interval, CI 0.1-0.5) indicated that the compound does not accumulate with trophic position. The dilution of pharmaceutical residues in the food web may result from limited intake with dietary route, poor assimilation efficiency and high biotransformation rates in benthic invertebrates. TMF for CIP (2.8, CI 1.2-6.4) suggests trophic magnification, a phenomenon observed previously for several antibiotics in freshwater food webs. Trophic transfer therefore plays a role in controlling concentration of CIP in the Arctic benthic communities and should be considered in environmental risk assessment. Biomagnification potential of diclofenac (DIC; 0.9, CI 0.5-1.7), carbamazepine (CBZ; 0.4, CI 0.1-2.1), caffeine (CAF; 0.9, CI 0.5-1.9) and PCT (1.3, CI 0.7-2.7) was not evident due to large 95 % confidence of their TMFs. This study provides the first evidence of drug bioaccumulation in the Arctic food web and indicates that behaviour of pharmaceuticals varies among target compounds.
Collapse
Affiliation(s)
- Adam Sokołowski
- University of Gdańsk, Faculty of Oceanography and Geography, Al. Piłsudskiego 46, 81-378 Gdynia, Poland.
| | - Marlena Mordec
- University of Gdańsk, Faculty of Oceanography and Geography, Al. Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Magda Caban
- University of Gdańsk, Faculty of Chemistry, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | | | | | - Maria Włodarska-Kowalczuk
- Institute of Oceanology Polish Academy of Sciences, ul. Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Piotr Balazy
- Institute of Oceanology Polish Academy of Sciences, ul. Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Maciej Chełchowski
- Institute of Oceanology Polish Academy of Sciences, ul. Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Gilles Lepoint
- Université de Liège, UR FOCUS, Laboratory of Trophic and Isotope Ecology (LETIS), allée du six Août 11, 4000 Liège 1, Belgium
| |
Collapse
|
14
|
Papaioannou C, Geladakis G, Kommata V, Batargias C, Lagoumintzis G. Insights in Pharmaceutical Pollution: The Prospective Role of eDNA Metabarcoding. TOXICS 2023; 11:903. [PMID: 37999555 PMCID: PMC10675236 DOI: 10.3390/toxics11110903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023]
Abstract
Environmental pollution is a growing threat to natural ecosystems and one of the world's most pressing concerns. The increasing worldwide use of pharmaceuticals has elevated their status as significant emerging contaminants. Pharmaceuticals enter aquatic environments through multiple pathways related to anthropogenic activity. Their high consumption, insufficient waste treatment, and the incapacity of organisms to completely metabolize them contribute to their accumulation in aquatic environments, posing a threat to all life forms. Various analytical methods have been used to quantify pharmaceuticals. Biotechnology advancements based on next-generation sequencing (NGS) techniques, like eDNA metabarcoding, have enabled the development of new methods for assessing and monitoring the ecotoxicological effects of pharmaceuticals. eDNA metabarcoding is a valuable biomonitoring tool for pharmaceutical pollution because it (a) provides an efficient method to assess and predict pollution status, (b) identifies pollution sources, (c) tracks changes in pharmaceutical pollution levels over time, (d) assesses the ecological impact of pharmaceutical pollution, (e) helps prioritize cleanup and mitigation efforts, and (f) offers insights into the diversity and composition of microbial and other bioindicator communities. This review highlights the issue of aquatic pharmaceutical pollution while emphasizing the importance of using modern NGS-based biomonitoring actions to assess its environmental effects more consistently and effectively.
Collapse
Affiliation(s)
- Charikleia Papaioannou
- Department of Biology, University of Patras, 26504 Patras, Greece; (C.P.); (G.G.); (V.K.)
| | - George Geladakis
- Department of Biology, University of Patras, 26504 Patras, Greece; (C.P.); (G.G.); (V.K.)
| | - Vasiliki Kommata
- Department of Biology, University of Patras, 26504 Patras, Greece; (C.P.); (G.G.); (V.K.)
| | - Costas Batargias
- Department of Biology, University of Patras, 26504 Patras, Greece; (C.P.); (G.G.); (V.K.)
| | | |
Collapse
|
15
|
Tang J, Zhang C, Jia Y, Fang J, Mai BX. Phytoplankton Biological Pump Controls the Spatiotemporal Bioaccumulation and Trophic Transfer of Antibiotics in a Large Subtropical River. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14002-14014. [PMID: 37667590 DOI: 10.1021/acs.est.3c03478] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
The spatiotemporal bioaccumulation, trophic transfer of antibiotics, and regulation of the phytoplankton biological pump were quantitatively evaluated in the Pearl River, South China. The occurrence of antibiotics in organisms indicated a significant spatiotemporal trend associated with the life cycle of phytoplankton. Higher temporal bioaccumulation factors (BAFs) were found in phytoplankton at the bloom site, while lower BAFs of antibiotics in organisms could not be explained by phytoplankton biomass dilution but were attributed to the low bioavailability of antibiotics, which was highly associated with distribution coefficients (R2 = 0.480-0.595, p < 0.05). Such lower BAFs of antibiotics in phytoplankton at higher biomass sites hampered the entry of antibiotics into food webs, and trophic dilutions were subsequently observed for antibiotics except for ciprofloxacin (CFX) and sulfamerazine (SMZ) at sites with blooms in all seasons. Distribution of CFX, norfloxacin (NFX), and sulfapyridine (SPD) showed further significant positive relationships with the plasma protein fraction (R2 = 0.275-0.216, p < 0.05). Both mean BAFs and trophic magnification factors (TMFs) were significantly negatively correlated with phytoplankton biomass (R2 = 0.661-0.741, p < 0.05). This study highlights the importance of the biological pump in the regulation of spatiotemporal variations in bioaccumulation and trophic transfer of antibiotics in anthropogenic-impacted eutrophic rivers in subtropical regions.
Collapse
Affiliation(s)
- Jinpeng Tang
- School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, Guangdong, P. R. China
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Chencheng Zhang
- School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, Guangdong, P. R. China
| | - Yanyan Jia
- School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, Guangdong, P. R. China
| | - Ji Fang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, P. R. China
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, P. R. China
- CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, P. R. China
| |
Collapse
|
16
|
Del Carmen Gómez-Regalado M, Martín J, Hidalgo F, Santos JL, Aparicio I, Alonso E, Zafra-Gómez A. Accumulation and metabolization of the antidepressant venlafaxine and its main metabolite o-desmethylvenlafaxine in non-target marine organisms Holothuria tubulosa, Anemonia sulcata and Actinia equina. MARINE POLLUTION BULLETIN 2023; 192:115055. [PMID: 37207394 DOI: 10.1016/j.marpolbul.2023.115055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/02/2023] [Accepted: 05/09/2023] [Indexed: 05/21/2023]
Abstract
The assessment of exposure to the antidepressant venlafaxine and its major metabolite o-desmethylvenlafaxine in Holothuria tubulosa, Anemonia sulcata and Actinia equina is proposed. A 28-day exposure experiment (10 μg/L day) followed by a 52-day depuration period was conducted. The accumulation shows a first-order kinetic process reaching an average concentration of 49,125/54342 ng/g dw in H. tubulosa and 64,810/93007 ng/g dw in A. sulcata. Venlafaxine is considered cumulative (BCF > 2000 L/kg dw) in H. tubulosa, A. sulcata and A. equina respectively; and o-desmethylvenlafaxine in A. sulcata. Organism-specific BCF generally followed the order A. sulcata > A. equina > H. tubulosa. The study revealed differences between tissues in metabolizing abilities in H. tubulosa this effect increases significantly with time in the digestive tract while it was negligible in the body wall. The results provide a description of venlafaxine and o-desmethylvenlafaxine accumulation in common and non-target organisms in the marine environment.
Collapse
Affiliation(s)
| | - Julia Martín
- Department of Analytical Chemistry, Escuela Politécnica Superior, University of Seville, C/Virgen de África 7, E-41011 Seville, Spain.
| | - Felix Hidalgo
- Department of Zoology, Sciences Faculty, University of Granada, E-18071 Granada, Spain
| | - Juan Luis Santos
- Department of Analytical Chemistry, Escuela Politécnica Superior, University of Seville, C/Virgen de África 7, E-41011 Seville, Spain
| | - Irene Aparicio
- Department of Analytical Chemistry, Escuela Politécnica Superior, University of Seville, C/Virgen de África 7, E-41011 Seville, Spain
| | - Esteban Alonso
- Department of Analytical Chemistry, Escuela Politécnica Superior, University of Seville, C/Virgen de África 7, E-41011 Seville, Spain
| | - Alberto Zafra-Gómez
- Department of Analytical Chemistry, Sciences Faculty, University of Granada, E-18071 Granada, Spain; Instituto de Investigación Biosanitaria, Ibs.Granada, E-18016 Granada, Spain; Institute of Nutrition and Food Technology, INYTA, University of Granada, Spain.
| |
Collapse
|
17
|
Hu T, Zhang J, Xu X, Wang X, Yang C, Song C, Wang S, Zhao S. Bioaccumulation and trophic transfer of antibiotics in the aquatic and terrestrial food webs of the Yellow River Delta. CHEMOSPHERE 2023; 323:138211. [PMID: 36828112 DOI: 10.1016/j.chemosphere.2023.138211] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Antibiotic pollution caused by aquaculture industries is a common problem in the wetland of the Yellow River Delta (YRD). Aquatic and terrestrial food webs coexist and interact in wetlands. However, there are few comparative studies on antibiotics in these two food webs. This study investigated the occurrence, bioaccumulation, and trophic transfer of 19 antibiotics in the aquatic and terrestrial food webs of the YRD, and discussed the effects of physicochemical parameters in different food webs. The total concentrations of antibiotics in aquatic organisms and terrestrial organisms ranged from 11.61 to 63.08 ng/g dry weight (dw) and 4.21-9.11 ng/g dw, respectively. BAF (bioaccumulation factor), BSAFa (biota sediment accumulation factor), and BSAFt (biota soil accumulation factor) were used to explore the bioaccumulation capacity of antibiotics. The calculation results of these three factors showed that fluoroquinolones (FQs) had the highest bioaccumulation capacity. As for the trophic transfer, the total concentrations of antibiotics were biodiluted in the aquatic food web while biomagnified in the terrestrial food web. Physicochemical parameters of the antibiotics showed that log Kow (octanol-water partition coefficient)/log Dow (pH-dependent distribution coefficient) and log Koa (octanol-air partition coefficient) were good predictors for antibiotic bioaccumulation in the aquatic and terrestrial organisms of the YRD, respectively. In addition, the increasing log Dow and log Koa led to a rise of TMF (trophic magnification factor) in the aquatic food web while a decrease of TMF in the terrestrial food web. Overall, these results provide insights into the mechanisms on bioaccumulation and trophic transfer of antibiotics in different food webs.
Collapse
Affiliation(s)
- Tao Hu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Jiachao Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Xueyan Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Xiaoli Wang
- Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Changzhi Yang
- Shandong Yellow River Delta National Nature Reserve Administration Committee, Dongying, 257091, China
| | - Chao Song
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Shuguang Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Shan Zhao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
18
|
Manjarrés-López DP, Peña-Herrera JM, Benejam L, Montemurro N, Pérez S. Assessment of wastewater-borne pharmaceuticals in tissues and body fluids from riverine fish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121374. [PMID: 36858105 DOI: 10.1016/j.envpol.2023.121374] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Riverine fish in densely populated areas is constantly exposed to wastewater-borne contaminants from effluent discharges. These can enter the organism through the skin, gills or by ingestion. Whereas most studies assessing the contaminant burden in exposed fish have focused either on muscle or a limited set of tissues. Here we set out to generate a more comprehensive overview of the distribution of pollutants across tissues by analyzing a panel of matrices including liver, kidney, skin, brain, muscle, heart, plasma and bile. To achieve a broad analyte coverage with a minimal bias towards a specific contaminant class, sample extracts from four fish species were analyzed by High-Performance Liquid Chromatography (HPLC) - high-resolution mass spectrometry (HRMS) for the presence of 600 wastewater-borne pharmaceutically active compounds (PhACs) with known environmental relevance in river water through a suspect-screening analysis. A total of 30 compounds were detected by suspect screening in at least one of the analyzed tissues with a clear prevalence of antidepressants. Of these, 15 were detected at confidence level 2.a (Schymanski scale), and 15 were detected at confidence level 1 following confirmation with authentic standards, which furthermore enabled their quantification. The detected PhACs confirmed with level 1 of confidence included acridone, acetaminophen, caffeine, clarithromycin, codeine, diazepam, diltiazem, fluoxetine, ketoprofen, loratadine, metoprolol, sertraline, sotalol, trimethoprim, and venlafaxine. Among these substances, sertraline stood out as it displayed the highest detection frequency. The values of tissue partition coefficients for sertraline in the liver, kidney, brain and muscle were correlated with its physicochemical properties. Based on inter-matrix comparison of detection frequencies, liver, kidney, skin and heart should be included in the biomonitoring studies of PhACs in riverine fish.
Collapse
Affiliation(s)
| | | | - L Benejam
- Aquatic Ecology Group, University of Vic - Central University of Catalonia, c/de la Laura. 13, 08500, Vic, Barcelona, Spain
| | - N Montemurro
- ONHEALTH, IDAEA-CSIC, c/Jordi Girona 18-26, 08034, Barcelona, Spain
| | - S Pérez
- ONHEALTH, IDAEA-CSIC, c/Jordi Girona 18-26, 08034, Barcelona, Spain.
| |
Collapse
|
19
|
Let M, Grabicová K, Ložek F, Bláha M. Bioconcentrations, depuration, shift in metabolome and a behavioural response in the nymphs of the dragonfly Aeshna cyanea (Müller, 1764) to environmentally relevant concentrations of methamphetamine. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 259:106479. [PMID: 37146511 DOI: 10.1016/j.aquatox.2023.106479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/20/2023] [Accepted: 03/06/2023] [Indexed: 05/07/2023]
Abstract
Methamphetamine (MEA) is commonly detected in municipal wastewater. It causes imbalances in the system of neurotransmitters as well as several other adverse effects on human health. The aim of this study was to investigate bioconcentration and depuration rates at an environmentally relevant concentration of 1 µg·L-1 in Aeshna cyanea nymphs exposed to MEA for six days followed by three days of depuration. The metabolomes of nymphs sampled during exposure and depuration were compared using non-targeted screening. Concurrently, a behavioural experiment was run to evaluate the effect of MEA on movement. Since most samples were below the limits of quantification (LOQs) - MEA was quantified in only four out of the 87 samples and only during the first 24 h of exposure at concentrations at LOQ level - we estimated maximal possible bioconcentration factor (BCF) on 0.63 using the LOQ. An MEA metabolite - amphetamine - was not detected in any sample at levels above their LOQs. From 247 up to 1458 significant down- and up-regulated metabolite signals (p ≤ 0.05) were detected by non-targeted screening during initial times of exposure and depuration. Numbers of significant down- and/or up-regulated signals in metabolomes (p ≤ 0.05) calculated for particular sampling times possibly correlated with the size of the effect on movement recorded at the same times. In the MEA treatment, movement was not significantly greater during exposure (p > 0.05) but was significantly lower during depuration (p < 0.05). This study shows how MEA acts on dragonfly nymphs, an ecologically important group of aquatic insects with a high trophic level.
Collapse
Affiliation(s)
- Marek Let
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic Zátiší 728/II 389 25 Vodňany Czech Republic.
| | - Kateřina Grabicová
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic Zátiší 728/II 389 25 Vodňany Czech Republic
| | - Filip Ložek
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic Zátiší 728/II 389 25 Vodňany Czech Republic
| | - Martin Bláha
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic Zátiší 728/II 389 25 Vodňany Czech Republic.
| |
Collapse
|
20
|
Gómez-Regalado MDC, Martín J, Santos JL, Aparicio I, Alonso E, Zafra-Gómez A. Bioaccumulation/bioconcentration of pharmaceutical active compounds in aquatic organisms: Assessment and factors database. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160638. [PMID: 36473663 DOI: 10.1016/j.scitotenv.2022.160638] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
There is increasing evidence that the presence of certain pharmaceuticals in the environment leads to biota exposure and constitute a potential risk for ecosystems. Bioaccumulation is an essential focus of risk assessment to evaluate at what degree emerging contaminants are a hazard both to the environment and the individuals that inhabit it. The main goals of the present review are 1) to summarize and describe the research and factors that should be taken into account in the evaluation of bioaccumulation of pharmaceuticals in aquatic organisms; and 2) to provide a database and a critical review of the bioaccumulation/bioconcentration factors (BAF or BCF) of these compounds in organisms of different trophic levels. Most studies fall into one of two categories: laboratory-scale absorption and purification tests or field studies and, to a lesser extent, large-scale, semi-natural system tests. Although in the last 5 years there has been considerable progress in this field, especially in species of fish and molluscs, research is still limited on other aquatic species like crustaceans or algae. This revision includes >230 bioconcentration factors (BCF) and >530 bioaccumulation factors (BAF), determined for 113 pharmaceuticals. The most commonly studied is the antidepressant group, followed by diclofenac and carbamazepine. There is currently no reported accumulation data on certain compounds, such as anti-cancer drugs. BCFs are highly influenced by experimental factors (notably the exposure level, time or temperature). Field BAFs are superior to laboratory BCFs, highlighting the importance of field studies for reliable assessments and in true environmental conditions. BAF data appears to be organ, species and compound-specific. The potential impact on food web transfer is also considered. Among different aquatic species, lower trophic levels and benthic organisms exhibit relatively higher uptake of these compounds.
Collapse
Affiliation(s)
| | - Julia Martín
- Department of Analytical Chemistry, Escuela Politécnica Superior, University of Seville, C/ Virgen de África 7, E-41011 Seville, Spain.
| | - Juan Luis Santos
- Department of Analytical Chemistry, Escuela Politécnica Superior, University of Seville, C/ Virgen de África 7, E-41011 Seville, Spain
| | - Irene Aparicio
- Department of Analytical Chemistry, Escuela Politécnica Superior, University of Seville, C/ Virgen de África 7, E-41011 Seville, Spain
| | - Esteban Alonso
- Department of Analytical Chemistry, Escuela Politécnica Superior, University of Seville, C/ Virgen de África 7, E-41011 Seville, Spain
| | - Alberto Zafra-Gómez
- Department of Analytical Chemistry, University of Granada, Sciences Faculty, E-18071 Granada, Spain; Instituto de Investigación Biosanitaria, Ibs.Granada, E-18016 Granada, Spain.
| |
Collapse
|
21
|
Liu Y, Hua Z, Lu Y, Gu L, Luan C, Li X, Wu J, Chu K. Quinolone distribution, trophodynamics, and human exposure risk in a transit-station lake for water diversion in east China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119985. [PMID: 35985438 DOI: 10.1016/j.envpol.2022.119985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/27/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Quinolone antibiotics (QNs) pollution in lake environments is increasingly raising public concern due to their potential combined toxicity and associated risks. However, the spatiotemporal distribution and trophodynamics of QNs in transit-station lakes for water diversion are not well documented or understood. In this study, a comprehensive investigation of QNs in water, sediment, and aquatic fauna, including norfloxacin (NOR), ciprofloxacin (CIP), enrofloxacin (ENR), and ofloxacin (OFL), was conducted in Luoma Lake, a major transit station for the eastern route of the South-to-North Water Diversion Project in China. The target QNs were widely distributed in the water (∑QNs: 70.12 ± 62.79 ng/L) and sediment samples (∑QNs: 13.35 ± 10.78 ng/g dw) in both the non-diversion period (NDP) and the diversion period (DP), where NOR and ENR were predominant. All the QNs were detected in all biotic samples in DP (∑QNs: 80.04 ± 20.59 ng/g dw). The concentration of ∑QNs in the water in NDP was significantly higher than those in DP, whereas the concentration in the sediments in NDP was comparable to those in DP. ∑QNs in the water-sediment system exhibited decreasing trends from northwest (NW) to southeast (SE) in both periods; however, the Koc (organic carbon normalized partition coefficients) of individual QNs in DP sharply rose compared with those in NDP, which indicated that water diversion would alter the environmental fate of QNs in Luoma Lake. In DP, all QNs, excluding NOR, were all biodiluted across the food web; whereas their bioaccumulation potentials in the SE subregion were higher than those in the NW subregion, which was in contrast to the spatial distribution of their exposure concentrations. The estimated daily QN intakes via drinking water and aquatic products suggested that residents in the SE side were exposed to greater health risks, despite less aquatic pollution in the region.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, PR China
| | - Zulin Hua
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, PR China
| | - Ying Lu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, PR China
| | - Li Gu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, PR China
| | - Chengmei Luan
- Jiangsu Province Hydrology and Water Resources Investigation Bureau, Nanjing, 210098, PR China
| | - Xiaoqing Li
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, PR China
| | - Jianyi Wu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, PR China
| | - Kejian Chu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, PR China.
| |
Collapse
|
22
|
Grabicová K, Vojs Staňová A, Švecová H, Nováková P, Kodeš V, Leontovyčová D, Brooks BW, Grabic R. Invertebrates differentially bioaccumulate pharmaceuticals: Implications for routine biomonitoring. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119715. [PMID: 35809709 DOI: 10.1016/j.envpol.2022.119715] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 05/10/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Surface water quality monitoring programs have been developed to examine traditional contaminants, such as persistent organic pollutants (POPs). However, urbanization, which is increasing around the world, is increasing discharge of treated wastewater and raw sewage in many regions. Pharmaceuticals and their metabolites represent typical markers of such trajectories in urbanization. We selected an ongoing monitoring program, which was designed for routine surveillance of nonionizable POPs in different aquatic matrices, to examine the occurrence of 67 pharmaceuticals and their metabolites in water and multiple bioindicator matrices: benthic invertebrates, juvenile fish, and adult fish (plasma and muscle tissue) from ten river systems with varying levels of watershed development. In addition, we placed zebra mussels and passive samplers in situ for a fixed period. A statistically significant relationship between pharmaceutical levels in passive samplers and biota was found for caged zebra mussels and benthic invertebrates, while only a few pharmaceuticals were identified in fish matrices. Invertebrates, which have received relatively limited study for pharmaceutical bioaccumulation, accumulated more pharmaceuticals than fish, up to thirty different substances. The highest concentration was observed for sertraline in zebra mussels and telmisartan in benthic invertebrates (83 and 31 ng/g ww, respectively). Our results across diverse study systems indicate that ongoing surface water quality monitoring programs, which were originally designed for traditional organic pollutants, need to be revised to account for bioaccumulation dynamics of pharmaceuticals and other ionizable contaminants. Aquatic monitoring programs routinely examine accumulation of nonionizable organic pollutants; however, we identified that these efforts need to be revised to account for bioaccumulation of ionizable contaminants, which reached higher levels in invertebrates than in fish.
Collapse
Affiliation(s)
- Kateřina Grabicová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic.
| | - Andrea Vojs Staňová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic; Comenius University in Bratislava, Faculty of Natural Sciences, Department of Analytical Chemistry, Ilkovičova 6, SK-842 15, Bratislava, Slovak Republic
| | - Helena Švecová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| | - Petra Nováková
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| | - Vít Kodeš
- Czech Hydrometeorological Institute, Section of Water Quality, Na Šabatce 17, CZ-143 06, Prague 4, Czech Republic
| | - Drahomíra Leontovyčová
- Czech Hydrometeorological Institute, Section of Water Quality, Na Šabatce 17, CZ-143 06, Prague 4, Czech Republic
| | - Bryan W Brooks
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic; Department of Environmental Science, Institute of Biomedical Studies, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, 76798, USA
| | - Roman Grabic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| |
Collapse
|
23
|
Veseli M, Rožman M, Vilenica M, Petrović M, Previšić A. Bioaccumulation and bioamplification of pharmaceuticals and endocrine disruptors in aquatic insects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156208. [PMID: 35618119 DOI: 10.1016/j.scitotenv.2022.156208] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Environmental fate of emerging contaminants such as pharmaceuticals and endocrine disrupting compounds at the aquatic terrestrial boundary are largely unexplored. Aquatic insects connect aquatic and terrestrial food webs as their life cycle includes aquatic and terrestrial life stages, thus they represent an important inter-habitat linkage not only for energy and nutrient flow, but also for contaminant transfer to terrestrial environments. We measured the concentrations of pharmaceuticals and endocrine disrupting compounds in the larval and adult tissues (last larval stages and teneral adults) of five Odonata species sampled in a wastewater-impacted river, in order to examine their bioaccumulation and bioamplification at different taxonomic levels. Twenty different compounds were bioaccumulated in insect tissues, with majority having higher concentrations (up to 90% higher) in aquatic larvae compared to terrestrial adults (reaching 88 ng/g for 1H-benzotriazole). However, increased concentration in adults was observed for seven compounds in at least one suborder (41% of the accumulated), confirming contaminants bioamplification across the metamorphosis. Both, bioaccumulation and bioamplification differed at various taxa levels; the order (Odonata), suborder (Anisoptera and Zygoptera) and species level. Highest variability was observed between Anisoptera and Zygoptera, due to the underlying differences in their ecology. Generally, Zygoptera had higher concentrations of contaminants in both larvae and adults. Additionally, we aimed at predicting effects of contaminant properties on bioaccumulation and bioamplification patterns using the commonly used physicochemical and pharmacokinetic descriptors on both order and suborder levels, however, neither of the two processes could be consistently predicted with simple linear models. Our study highlights the importance of taxonomy in studies aiming at advancing the understanding of contaminant exchange between aquatic and terrestrial food webs, as higher taxonomic categories include ecologically diverse groups, whose contribution to "the dark side of subsidies" could substantially differ.
Collapse
Affiliation(s)
- Marina Veseli
- Department of Biology, Zoology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia.
| | - Marko Rožman
- Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Marina Vilenica
- Faculty of Teacher Education, Trg Matice hrvatske 12, 44250 Petrinja, Croatia.
| | - Mira Petrović
- Catalan Institute for Water Research, Carrer Emili Grahit 101, 17003 Girona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| | - Ana Previšić
- Department of Biology, Zoology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia.
| |
Collapse
|
24
|
Kayode-Afolayan SD, Ahuekwe EF, Nwinyi OC. Impacts of pharmaceutical effluents on aquatic ecosystems. SCIENTIFIC AFRICAN 2022. [DOI: 10.1016/j.sciaf.2022.e01288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
25
|
Zakari-Jiya A, Frazzoli C, Obasi CN, Babatunde BB, Patrick-Iwuanyanwu KC, Orisakwe OE. Pharmaceutical and personal care products as emerging environmental contaminants in Nigeria: A systematic review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 94:103914. [PMID: 35738461 DOI: 10.1016/j.etap.2022.103914] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/26/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
The increasingly broad and massive use of pharmaceuticals (human, veterinary) and personal care products in industrially developing nations makes their uncontrolled environmental and ecological impact a true concern. Focusing on Nigeria, this systematic literature search (databases: PubMed, ScienceDirect, Google Scholar, EMBASE, Scopus, Cochrane library and African Journals Online) aims to increase visibility to the issue. Among 275 articles identified, 7 were included in this systematic review. Studies indicated the presence of 11 personal care products (15.94 %) and 58 pharmaceutical products (84.06 %) in surface and ground water, leachates, runoffs, sludge, and sediments. The 42.86% (3/7) of reviewed studies reported 17 analgesics; 71.42 % (5/7) reported 16 antibiotics; 28.57 % (2/7) reported 5 lipid lowering drugs; 28.57% reported anti-malaria and fungal drugs; 14.29 % (1/7) reported estrogen drugs. Different studies report on sunscreen products, hormone, phytosterol, insect repellent, and β1 receptor. Gemfibrozil (<4-730 ng/L), Triclosan (55.1-297.7 ng/L), Triclocarban (35.6-232.4 ng/L), Trimethoprim (<1-388 ng/L) and Tramadol (<2-883 ng/L) had the highest range of concentrations. Findings confirm the need of i) legislation for environmental monitoring, including biota, ii) toxicological profiling of new market products, and iii) sensitization on appropriate use and disposal of pharmaceuticals and personal care products.
Collapse
Affiliation(s)
- Aliyu Zakari-Jiya
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323 Port Harcourt, Choba, Nigeria
| | - Chiara Frazzoli
- Department of Cardiovascular and Endocrine-Metabolic Diseases, and Ageing, Istituto Superiore di Sanità (Italian National Institute of Health), Rome, Italy
| | - Cecilia Nwadiuto Obasi
- Department of Experimental Pharmacology & Toxicology, Faculty of Pharmacy, University of Port-Harcourt, Port-Harcourt, Rivers State, Nigeria
| | - Bolaji Bernard Babatunde
- Department of Animal and Environmental Biology, Faculty of Science, University of Port-Harcourt, Port-Harcourt, Rivers State, Nigeria
| | - Kingsley C Patrick-Iwuanyanwu
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323 Port Harcourt, Choba, Nigeria; Department of Biochemistry, Faculty of Science, University of Port-Harcourt, Port-Harcourt, Rivers State, Nigeria
| | - Orish E Orisakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323 Port Harcourt, Choba, Nigeria; Department of Experimental Pharmacology & Toxicology, Faculty of Pharmacy, University of Port-Harcourt, Port-Harcourt, Rivers State, Nigeria.
| |
Collapse
|
26
|
Tang J, Zhang J, Su L, Jia Y, Yang Y. Bioavailability and trophic magnification of antibiotics in aquatic food webs of Pearl River, China: Influence of physicochemical characteristics and biotransformation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153285. [PMID: 35066051 DOI: 10.1016/j.scitotenv.2022.153285] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
Information on trophodynamics of antibiotics and subsequent relationships to antibiotic metabolism in river ecosystem is still unavailable, limiting the evaluation of their bioaccumulation and trophodynamics in aquatic food webs. In the present study, concentrations and relative abundance of 11 antibiotics were investigated in surface water, sediment and 22 aquatic taxa (e.g., fish, invertebrates and plankton) from Pearl River, South China. The logarithmic bioaccumulation factors (log BAFs) of antibiotics generally showed positive relationships with their log D (pH-adjusted log Kow), implying that their bioaccumulation of ionizable antibiotics depends on it is in an ionized form. Higher BAFs of antibiotics in benthic biota were observed than those in fish, indicating that sediment ingestion was a possible route of antibiotic exposure. The logarithmic biota-sediment accumulation factors (log BSAFs) of benthic biota increased when log D increased from -4.79 to -0.01, but declined thereafter. Trophodynamics of antibiotics was investigated, and intrinsic clearance were measured in liver microsomes of Tilapia zillii (trophic level [TL]: 2.5), Anabas testudineu (TL: 3.9), and Coilia grayi (TL: 5.0). Only ciprofloxacin (CFX) showed significant trophic magnification (Trophic Magnification Factor [TMF] = 1.95), and a higher metabolism rate in lower trophic levels suggest that metabolic biotransformation play a significant role in driving biomagnification of antibiotics.
Collapse
Affiliation(s)
- Jinpeng Tang
- Research Center of Hydrobiology, Department of Ecology, Jinan University, Guangzhou 510632, PR China; School of Ecology, Sun Yat-sen University, Guangzhou 510006, PR China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, PR China.
| | - Jinhua Zhang
- Research Center of Hydrobiology, Department of Ecology, Jinan University, Guangzhou 510632, PR China
| | - Linhui Su
- Research Center of Hydrobiology, Department of Ecology, Jinan University, Guangzhou 510632, PR China
| | - Yanyan Jia
- School of Ecology, Sun Yat-sen University, Guangzhou 510006, PR China.
| | - Yang Yang
- Research Center of Hydrobiology, Department of Ecology, Jinan University, Guangzhou 510632, PR China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, PR China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou 510632, PR China.
| |
Collapse
|
27
|
Gao Y, Shah K, Kwok I, Wang M, Rome LH, Mahendra S. Immobilized fungal enzymes: Innovations and potential applications in biodegradation and biosynthesis. Biotechnol Adv 2022; 57:107936. [PMID: 35276253 DOI: 10.1016/j.biotechadv.2022.107936] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 01/10/2023]
Abstract
Microbial enzymes catalyze various reactions inside and outside living cells. Among the widely studied enzymes, fungal enzymes have been used for some of the most diverse purposes, especially in bioremediation, biosynthesis, and many nature-inspired commercial applications. To improve their stability and catalytic ability, fungal enzymes are often immobilized on assorted materials, conventional as well as nanoscale. Recent advances in fungal enzyme immobilization provide effective and sustainable approaches to achieve improved environmental and commercial outcomes. This review aims to provide a comprehensive overview of commonly studied fungal enzymes and immobilization technologies. It also summarizes recent advances involving immobilized fungal enzymes for the degradation or assembly of compounds used in the manufacture of products, such as detergents, food additives, and fossil fuel alternatives. Furthermore, challenges and future directions are highlighted to offer new perspectives on improving existing technologies and addressing unexplored fields of applications.
Collapse
Affiliation(s)
- Yifan Gao
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA 90095, United States
| | - Kshitjia Shah
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA 90095, United States
| | - Ivy Kwok
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA 90095, United States
| | - Meng Wang
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Leonard H Rome
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, United States; California NanoSystems Institute, University of California, Los Angeles, CA 90095, United States
| | - Shaily Mahendra
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA 90095, United States; California NanoSystems Institute, University of California, Los Angeles, CA 90095, United States.
| |
Collapse
|
28
|
Ojemaye CY, Petrik L. Pharmaceuticals and Personal Care Products in the Marine Environment Around False Bay, Cape Town, South Africa: Occurrence and Risk-Assessment Study. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:614-634. [PMID: 33783837 DOI: 10.1002/etc.5053] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/15/2020] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
Pollution of the marine environment has been increasing as a result of anthropogenic activities. The preservation of marine ecosystems as well as the safety of harvested seafood are nowadays a global concern. In the present study, levels of pharmaceuticals and personal care products were assessed in different environmental compartments in the near-shore marine environment of False Bay, Cape Town, South Africa. The study revealed the presence of these persistent chemical compounds in different environmental samples from this location. Diclofenac was the most dominant compound detected, with higher concentration than the other pharmaceutical compounds, as well as being present in almost all the samples from the different sites (seawater, 3.70-4.18 ng/L; sediment, 92.08-171.89 ng/g dry wt; marine invertebrates, 67.67-780.26 ng/g dry wt; seaweed, 101.50-309.11 ng/g dry wt). The accumulation of pharmaceuticals and personal care products in the different species of organisms reflects the increasing anthropogenic pressure taking place at the sampling sites along the bay, as a result of population growth, resident lifestyle as well as poorly treated sewage effluent discharge from several associated wastewater-treatment plants. The concentration of these contaminants is in the order marine biota > sediments > seawater. The contaminants pose a low acute and chronic risk to the selected trophic levels. A public awareness campaign is needed to reduce the pollution at the source, as well as wastewater discharge limits need to be more stringent. Environ Toxicol Chem 2022;41:614-634. © 2021 SETAC.
Collapse
Affiliation(s)
- Cecilia Y Ojemaye
- Environmental and Nano Science Group, Department of Chemistry, University of the Western Cape, Cape Town, South Africa
| | - Leslie Petrik
- Environmental and Nano Science Group, Department of Chemistry, University of the Western Cape, Cape Town, South Africa
| |
Collapse
|
29
|
Świacka K, Maculewicz J, Kowalska D, Caban M, Smolarz K, Świeżak J. Presence of pharmaceuticals and their metabolites in wild-living aquatic organisms - Current state of knowledge. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127350. [PMID: 34607031 DOI: 10.1016/j.jhazmat.2021.127350] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/09/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
In the last decades an increasing number of studies has been published concerning contamination of aquatic ecosystems with pharmaceuticals. Yet, the distribution of these chemical compounds in aquatic environments raises many questions and uncertainties. Data on the presence of selected pharmaceuticals in the same water bodies varies significantly between different studies. Therefore, since early 1990 s, wild organisms have been used in research on environmental contamination with pharmaceuticals. Indeed, pharmaceutical levels measured in biological matrices may better reflect their overall presence in the aquatic environments as such levels include not only direct exposure of a given organisms to a specific pollutant but also processes such as bioaccumulation and biomagnification. In the present paper, data concerning occurrence of pharmaceuticals in aquatic biota was reviewed. So far, pharmaceuticals have been studied mainly in fish and molluscs, with only a few papers available on crustaceans and macroalgae. The most commonly found pharmaceuticals both in freshwater and marine organisms are antibiotics, antidepressants and NSAIDS while there is no information about the presence of anticancer drugs in aquatic organisms. Furthermore, only single studies were conducted in Africa and Australia. Hence, systematization of up-to-date knowledge, the main aim of this review, is needed for further research targeting.
Collapse
Affiliation(s)
- Klaudia Świacka
- Department of Experimental Ecology of Marine Organisms, Institute of Oceanography, University of Gdańsk, Av. Pilsudskiego 46, 81-378 Gdynia, Poland
| | - Jakub Maculewicz
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland.
| | - Dorota Kowalska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Magda Caban
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Katarzyna Smolarz
- Department of Experimental Ecology of Marine Organisms, Institute of Oceanography, University of Gdańsk, Av. Pilsudskiego 46, 81-378 Gdynia, Poland
| | - Justyna Świeżak
- Department of Experimental Ecology of Marine Organisms, Institute of Oceanography, University of Gdańsk, Av. Pilsudskiego 46, 81-378 Gdynia, Poland
| |
Collapse
|
30
|
Wu Q, Xiao SK, Pan CG, Yin C, Wang YH, Yu KF. Occurrence, source apportionment and risk assessment of antibiotics in water and sediment from the subtropical Beibu Gulf, South China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150439. [PMID: 34597968 DOI: 10.1016/j.scitotenv.2021.150439] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
The widespread use of antibiotics has raised global concerns, but scarce information on antibiotics in the subtropical marine environment is available. In the present study, seawater and sediment samples were collected to investigate the occurrence, spatial distribution, source, and ecological risks of 22 antibiotics in the Beibu Gulf. The total concentrations of target antibiotics (∑antibiotics) were in the range of 1.74 ng/L to 23.83 ng/L for seawater and 1.33 ng/g to 8.55 ng/g dry weight (dw) for sediment. Spatially, a decreasing trend of antibiotic levels from coast to offshore area was observed, with relatively high levels at the sites close to the Qinzhou Bay and Qiongzhou Strait. Sulfamethoxazole (SMX), trimethoprim (TMP), and norfloxacin (NOX) were predominant in seawater, while NOX, enoxacin (ENX), and enrofloxacin (ENR) were the most abundant antibiotics in sediment. In general, the sediment-water partitioning coefficients (Kd) were positively correlated with log molecular weight (MW). Salinity, particle size, and pH of water were predicted to be vital factors influencing the partition of sulfadiazine (SDZ), CIX, and ENR (p < 0.05). Livestock and aquaculture were identified as dominant sources of antibiotics in the Beibu Gulf based on PCA-MLR and Unmix model. Risk assessment revealed that SMX, CIX could pose medium risks to algae in the Beibu Gulf. Overall, our results provided paramount insights into understanding the fate and transport behaviors of antibiotics in the subtropical marine environment.
Collapse
Affiliation(s)
- Qi Wu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; Coral Reef Research Center of China, Guangxi University, Nanning 530004, China; School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Shao-Ke Xiao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; Coral Reef Research Center of China, Guangxi University, Nanning 530004, China; School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Chang-Gui Pan
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; Coral Reef Research Center of China, Guangxi University, Nanning 530004, China; School of Marine Sciences, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| | - Chao Yin
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; Coral Reef Research Center of China, Guangxi University, Nanning 530004, China; School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Ying-Hui Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; Coral Reef Research Center of China, Guangxi University, Nanning 530004, China; School of Marine Sciences, Guangxi University, Nanning 530004, China.
| | - Ke-Fu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; Coral Reef Research Center of China, Guangxi University, Nanning 530004, China; School of Marine Sciences, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| |
Collapse
|
31
|
Bilal M, Lam SS, Iqbal HMN. Biocatalytic remediation of pharmaceutically active micropollutants for environmental sustainability. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118582. [PMID: 34856243 DOI: 10.1016/j.envpol.2021.118582] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/25/2021] [Accepted: 11/25/2021] [Indexed: 02/06/2023]
Abstract
The discharge of an alarming number of recalcitrant pollutants from various industrial activities presents a serious threat to environmental sustainability and ecological integrity. Bioremediation has gained immense interest around the world due to its environmentally friendly and cost-effective nature. In contrast to physical and chemical methods, the use of microbial enzymes, particularly immobilized biocatalysts, has been demonstrated as a versatile approach for the sustainable mitigation of environmental pollution. Considerable attention is now devoted to developing novel enzyme engineering approaches and state-of-the-art bioreactor design for ameliorating the overall bio-catalysis and biodegradation performance of enzymes. This review discusses the contemporary and state of the art technical and scientific progress regarding applying oxidoreductase enzyme-based biocatalytic systems to remediate a vast number of pharmaceutically active compounds from water and wastewater bodies. A comprehensive insight into enzyme immobilization, the role of mediators, bioreactors designing, and transformation products of pharmaceuticals and their associated toxicity is provided. Additional studies are necessary to elucidate enzymatic degradation mechanisms, monitor the toxicity levels of the resulting degraded metabolites and optimize the entire bio-treatment strategy for technical and economical affordability.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Su Shiung Lam
- Pyrolysis Technology Research Group, Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
32
|
Mathur P, Sanyal D, Callahan DL, Conlan XA, Pfeffer FM. Treatment technologies to mitigate the harmful effects of recalcitrant fluoroquinolone antibiotics on the environ- ment and human health. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118233. [PMID: 34582925 DOI: 10.1016/j.envpol.2021.118233] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/06/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Antibiotic proliferation in the environment and their persistent nature is an issue of global concern as they induce antibiotic resistance threatening both human health and the ecosystem. Antibiotics have therefore been categorized as emerging pollutants. Fluoroquinolone (FQs) antibiotics are an emerging class of contaminants that are used extensively in human and veterinary medicine. The recalcitrant nature of fluoroquinolones has led to their presence in wastewater, effluents and water bodies. Even at a low concentration, FQs can stimulate antibacterial resistance. The main sources of FQ contamination include waste from pharmaceutical manufacturing industries, hospitals and households that ultimately reaches the wastewater treatment plants (WWTPs). The conventional WWTPs are unable to completely remove FQs due to their chemical stability. Therefore, the development and implementation of more efficient, economical, convenient treatment and removal technologies are needed to adequately address the issue. This review provides an overview of the technologies available for the removal of fluoroquinolone antibiotics from wastewater including adsorptive removal, advanced oxidation processes, removal using non-carbon based nanomaterials, microbial degradation and enzymatic degradation. Each treatment technology is discussed on its merits and limitations and a comparative view is presented on the choice of an advanced treatment process for future studies and implementation. A discussion on the commercialization potential and eco-friendliness of each technology is also included in the review. The importance of metabolite identification and their residual toxicity determination has been emphasized. The last section of the review provides an overview of the policy interventions and regulatory frameworks that aid in retrofitting antibiotics as a central key focus contaminant and thereby defining the discharge limits for antibiotics and establishing safe manufacturing practices.
Collapse
Affiliation(s)
- Purvi Mathur
- TERI-Deakin NanoBiotechnology Centre, Sustainable Agriculture Division, The Energy and Resources Institute, New Delhi, 110003, India; Deakin University, School of Life and Environmental Sciences (Burwood Campus), 221 Burwood Highway, Burwood, VIC, 3125, Australia
| | - Doyeli Sanyal
- TERI-Deakin NanoBiotechnology Centre, Sustainable Agriculture Division, The Energy and Resources Institute, New Delhi, 110003, India; Amity University Punjab, IT City, Sector 82A, Mohali, 140308, India.
| | - Damien L Callahan
- Deakin University, School of Life and Environmental Sciences (Burwood Campus), 221 Burwood Highway, Burwood, VIC, 3125, Australia
| | - Xavier A Conlan
- Deakin University, School of Life and Environmental Sciences, (Waurn Ponds Campus), 75 Pigdons Road, Locked Bag 20000, Geelong, VIC, 3220, Australia
| | - Frederick M Pfeffer
- Deakin University, School of Life and Environmental Sciences, (Waurn Ponds Campus), 75 Pigdons Road, Locked Bag 20000, Geelong, VIC, 3220, Australia
| |
Collapse
|
33
|
Abstract
Deep eutectic solvents (DESs) are a relatively new type of solvent that have attracted the attention of the scientific community due to their environmentally friendly properties and their versatility in many applications. Many possible DESs have been described and, thus, it is not easy to unequivocally characterize and generalize their properties. This is especially important in the case of the (eco)toxicity information that can be found for these mixtures. In this review, we collect data on the human and environmental toxicity of DESs, with the aim of gathering and exploring the behavioral patterns of DESs. The toxicity data found were analyzed attending to different factors: hydrogen bond donors or acceptors that form part of the eutectic mixture, pH, and the presence of organic acids in the DES molar ratio of the components, or interactions with natural compounds. In the case of ecotoxicity, results generally depend on the biomodel studied, along with other factors that have been also revised. Finally, we also carried out a revision of the biodegradation of DESs.
Collapse
|
34
|
Hiranmai RY, Kamaraj M. Occurrence, fate, and toxicity of emerging contaminants in a diverse ecosystem. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2021-0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Activities that were developed for better/modern living conditions of humans are the primary source of contaminants to the natural ecosystem. Some of the compounds involved in urbanization and industrialization are termed emerging contaminants (ECs) or contaminants of emerging concern. ECs are either chemical or derived from natural sources which environmental concerns and public health have been raised in recent years. ECs enter wastewater treatment systems and migrate from here to different ecosystems as direct or by-products. They are persistent and also stay for a long duration due to their less biodegradation and photodegradation nature. Also, ECs accumulated in living cells and transformed through trophic levels. Technological developments and their application/utility in daily life led to the production of various components that are being added to the natural ecosystem. The treated/untreated wastewater enters into fresh/marine water bodies and gets accumulated into fauna, flora, and sediments. These pollutants/contaminants that are getting added on an everyday basis bring about changes in the existing ecosystem balances. ECs have been found in almost every country’s natural environment, and as a result, they became a global issue. The present review discusses the route and transport of selected ECs into the terrestrial ecosystem through water and other means and how they influence the natural process in an ecosystem. The ECs such as personal care products, pharmaceuticals, polyaromatic hydrocarbons, endocrine disruptors, nanoparticles, and microplastics are highlighted in this review.
Collapse
Affiliation(s)
- Rameshwar Yadav Hiranmai
- School of Environment and Sustainable Development, Central University of Gujarat , Sector-30 , Gandhinagar 382030 , Gujarat , India
| | - Murugesan Kamaraj
- Department of Biotechnology , College of Biological and Chemical Engineering, Addis Ababa Science and Technology University , Addis Ababa 16417 , Ethiopia
| |
Collapse
|
35
|
Cerveny D, Fick J, Klaminder J, McCallum ES, Bertram MG, Castillo NA, Brodin T. Water temperature affects the biotransformation and accumulation of a psychoactive pharmaceutical and its metabolite in aquatic organisms. ENVIRONMENT INTERNATIONAL 2021; 155:106705. [PMID: 34139590 DOI: 10.1016/j.envint.2021.106705] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
Pharmaceutically active compounds (PhACs) have been shown to accumulate in aquatic and riparian food-webs. Yet, our understanding of how temperature, a key environmental factor in nature, affects uptake, biotransformation, and the subsequent accumulation of PhACs in aquatic organisms is limited. In this study, we tested to what extent bioconcentration of an anxiolytic drugs (temazepam and oxazepam) is affected by two temperature regimes (10 and 20 °C) and how the temperature affects the temazepam biotransformation and subsequent accumulation of its metabolite (oxazepam) in aquatic organisms. We used European perch (Perca fluviatilis) and dragonfly larvae (Sympetrum sp.), which represent predator and prey species of high ecological relevance in food chains of boreal and temperate aquatic ecosystems. Experimental organisms were exposed to target pharmaceuticals at a range of concentrations (0.2-6 µg L-1) to study concentration dependent differences in bioconcentration and biotransformation. We found that the bioconcentration of temazepam in perch was significantly reduced at higher temperatures. Also, temperature had a strong effect on temazepam biotransformation in the fish, with the production and subsequent accumulation of its metabolite (oxazepam) being two-fold higher at 20 °C compared to 10 °C. In contrast, we found no temperature dependency for temazepam bioconcentration in dragonfly larvae and no detectable biotransformation of the parent compound that would result in measurable concentrations of oxazepam in this organism. Our results highlight that while organisms may share the same aquatic ecosystem, their exposure to PhACs may change differently across temperature gradients in the environment.
Collapse
Affiliation(s)
- D Cerveny
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences (SLU), Umea, Sweden; University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, Vodnany, Czech Republic.
| | - J Fick
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - J Klaminder
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - E S McCallum
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences (SLU), Umea, Sweden
| | - M G Bertram
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences (SLU), Umea, Sweden
| | - N A Castillo
- Department of Earth and Environment, Institute of Environment, Florida International University, Miami, FL, USA
| | - T Brodin
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences (SLU), Umea, Sweden
| |
Collapse
|
36
|
Chen L, Guo C, Sun Z, Xu J. Occurrence, bioaccumulation and toxicological effect of drugs of abuse in aquatic ecosystem: A review. ENVIRONMENTAL RESEARCH 2021; 200:111362. [PMID: 34048744 DOI: 10.1016/j.envres.2021.111362] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/11/2021] [Accepted: 05/15/2021] [Indexed: 05/23/2023]
Abstract
Drugs of abuse are a group of emerging contaminants. As the prevalence of manufacture and consumption, there is a growing global environmental burden and ecological risk from the continuous release of these contaminants into environment. The widespread occurrence of drugs of abuse in waste wasters and surface waters is due to the incomplete removal through traditional wastewater treatment plants in different regions around the world. Although their environmental concentrations are not very high, they can potentially influence the aquatic organisms and ecosystem function. This paper reviews the occurrence of drugs of abuse and their metabolites in waste waters and surface waters, their bioaccumulation in aquatic plants, fishes and benthic organisms and even top predators, and the toxicological effects such as genotoxic effect, cytotoxic effect and even behavioral effect on aquatic organisms. In summary, drugs of abuse occur widely in aquatic environment, and may exert adverse impact on aquatic organisms at molecular, cellular or individual level, and even on aquatic ecosystem. It necessitates the monitoring and risk assessment of these compounds on diverse aquatic organisms in the further study.
Collapse
Affiliation(s)
- Like Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Changsheng Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zhenyu Sun
- Jiangsu Rainfine Environmental Science and Technology Co.,Ltd, Henan Branch Zhengzhou, 450000, China
| | - Jian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
37
|
Fonseca VF, Duarte IA, Duarte B, Freitas A, Pouca ASV, Barbosa J, Gillanders BM, Reis-Santos P. Environmental risk assessment and bioaccumulation of pharmaceuticals in a large urbanized estuary. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:147021. [PMID: 34088124 DOI: 10.1016/j.scitotenv.2021.147021] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/12/2021] [Accepted: 04/04/2021] [Indexed: 05/11/2023]
Abstract
We screened for the presence of 66 different pharmaceutical residues in surface waters and in multiple invertebrate and fish species of the Tejo estuary to produce an environmental risk assessment of individual pharmaceuticals and their mixtures, as well as evaluate the bioaccumulation of pharmaceuticals in one of Europe's largest estuarine systems. Sixteen pharmaceutical residues, from seven therapeutic classes, were detected in estuarine waters, with environmental mixture concentrations ranging from 42 to 1762 ng/L. Environmental risk assessment via the determination of risk quotients, demonstrated high ecological risk for the antibiotic amoxicillin and angiotensin II receptor blockers irbesartan and losartan. Moderate risk was estimated for antidepressants, antiepileptics, anxiolytics and beta-blockers, but the risk quotient of the accumulated mixture of compounds was over 380-fold higher than the no risk threshold, driven by antibiotics and angiotensin II receptor blockers. In biota, higher risk therapeutic groups were found in higher concentrations, with nine pharmaceutical residues detected, including six antibiotics and two neuroactive compounds, and maximum tissue concentrations up to 250 μg/kg. Bioaccumulation was species- and compound-specific, with only two compounds found simultaneously in water and biota, likely a result of the complex dynamics and fate of pharmaceuticals in estuarine waters. Nonetheless, higher detection frequencies were observed in species living directly on or just above the substrate (i.e. benthic and demersal species), underpinning the importance of habitat use, as well the potential role of sediment and diet based routes for pharmaceutical uptake. Ultimately, results support urgent action on managing the impact of pharmaceuticals in coastal environments, striving for improved monitoring schemes tailored to the dynamic nature and ecological diversity of estuaries and coastal ecosystems.
Collapse
Affiliation(s)
- Vanessa F Fonseca
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| | - Irina A Duarte
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Bernardo Duarte
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Andreia Freitas
- INIAV - Instituto Nacional de Investigação Agrária e Veterinária, Vila do Conde, Portugal; REQUIMTE/LAQV, Faculdade de Farmácia, Universidade de Coimbra, Coimbra, Portugal
| | - Ana Sofia Vila Pouca
- INIAV - Instituto Nacional de Investigação Agrária e Veterinária, Vila do Conde, Portugal
| | - Jorge Barbosa
- INIAV - Instituto Nacional de Investigação Agrária e Veterinária, Vila do Conde, Portugal; REQUIMTE/LAQV, Faculdade de Farmácia, Universidade de Coimbra, Coimbra, Portugal
| | - Bronwyn M Gillanders
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, South Australia 5005, Australia
| | - Patrick Reis-Santos
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, South Australia 5005, Australia
| |
Collapse
|
38
|
Biswas P, Vellanki BP. Occurrence of emerging contaminants in highly anthropogenically influenced river Yamuna in India. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 782:146741. [PMID: 33839659 DOI: 10.1016/j.scitotenv.2021.146741] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/20/2021] [Accepted: 03/21/2021] [Indexed: 06/12/2023]
Abstract
River Yamuna is one of the major lifelines of Northern India. The study quantified 16 target compounds including pharmaceuticals, personal care products, and hormones in the Yamuna river. Surface water samples were collected from 13 locations spanning 575 km along the river, and from two of its tributaries, Hindon river and Hindon canal. Spatiotemporal variations in the occurrence of the target compounds at the 13 sites during summer and post-monsoon season were investigated. Caffeine, estrone, gemfibrozil, sulfamethoxazole, testosterone and trimethoprim were found in all the samples, indicating substantial usage and/or persistence in the environment. The mean concentration of the target compounds ranged from 25.5 to 2187.5 ng/L. Higher concentrations were detected during the post monsoon, compared to the summer season. The highest concentration detected was of trimethoprim (8807.6 ng/L) during summer sampling, followed by caffeine (6489.9 ng/L) and gemfibrozil (2991 ng/L), during the post-monsoon sampling. The lowest concentration detected was of estrone (10.7 ng/L), during the summer sampling. The runoff from the catchment areas is one of the contributing factors for the increased concentration of the compounds during post monsoon. During summer, the river bed goes dry, facilitating the adsorption of the compounds onto the river bed sediments. The three sampling locations Okhla barrage (ponding of water from drains traversing Delhi), confluence of Yamuna with Shahadara drain (industrial and poultry cluster, and Ghazipur dumping yard) and Agra city (industrial clusters) were the hotspots in terms of total concentration of the target compounds. The study also reported the presence of PPCPs and hormones in the finished drinking water of two DWTPs at Mathura and Agra.
Collapse
|
39
|
Covernton GA, Davies HL, Cox KD, El-Sabaawi R, Juanes F, Dudas SE, Dower JF. A Bayesian analysis of the factors determining microplastics ingestion in fishes. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125405. [PMID: 33930957 DOI: 10.1016/j.jhazmat.2021.125405] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 05/17/2023]
Abstract
Microplastic particles (MPs) occur widely in aquatic ecosystems and are ingested by a wide range of organisms. While trophic transfer of MPs is known to occur, researchers do not yet fully understand the fate of MPs in food webs. We explored the factors influencing reported ingestion of MPs in marine and freshwater fishes by conducting a literature review of 123 studies published between January 2011 and June 2020. We used Bayesian generalized linear mixed models to determine whether MP ingestion by fishes varies by Food and Agricultural Organization fishing area, trophic level, body size, taxa, and study methodology. After accounting for methodology, strong regional differences were not present, although ingested MP concentrations were slightly different among some FAO areas. According to the reviewed studies, MP concentrations in fish digestive tracts did not increase with either trophic level or body size, suggesting that biomagnification of MPs did not occur, although larger fish were more likely to contain MPs. Researchers reported higher concentrations of MPs in clupeids compared with other commonly studied taxonomic families, which could be due to their planktivorous feeding strategy. Methodology played an influential role in predicting reported concentrations, highlighting the need to harmonize methods among studies.
Collapse
Affiliation(s)
- Garth A Covernton
- Department of Biology, University of Victoria, Victoria, BC, Canada.
| | - Hailey L Davies
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | - Kieran D Cox
- Department of Biology, University of Victoria, Victoria, BC, Canada; Hakai Institute, Calvert Island, BC, Canada
| | - Rana El-Sabaawi
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | - Francis Juanes
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | - Sarah E Dudas
- Department of Biology, University of Victoria, Victoria, BC, Canada; Hakai Institute, Calvert Island, BC, Canada; Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, BC, Canada
| | - John F Dower
- Department of Biology, University of Victoria, Victoria, BC, Canada; School of Earth and Ocean Sciences, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
40
|
Cerveny D, Fick J, Klaminder J, Bertram MG, Brodin T. Exposure via biotransformation: Oxazepam reaches predicted pharmacological effect levels in European perch after exposure to temazepam. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 217:112246. [PMID: 33901781 DOI: 10.1016/j.ecoenv.2021.112246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/02/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
It is generally expected that biotransformation and excretion of pharmaceuticals occurs similarly in fish and mammals, despite significant physiological differences. Here, we exposed European perch (Perca fluviatilis) to the benzodiazepine drug temazepam at a nominal concentration of 2 µg L-1 for 10 days. We collected samples of blood plasma, muscle, and brain in a time-dependent manner to assess its bioconcentration, biotransformation, and elimination over another 10 days of depuration in clean water. We observed rapid pharmacokinetics of temazepam during both the exposure and depuration periods. The steady state was reached within 24 h of exposure in most individuals, as was complete elimination of temazepam from tissues during depuration. Further, the biologically active metabolite oxazepam was produced via fish biotransformation, and accumulated significantly throughout the exposure period. In contrast to human patients, where a negligible amount of oxazepam is created by temazepam biotransformation, we observed a continuous increase of oxazepam concentrations in all fish tissues throughout exposure. Indeed, oxazepam accumulated more than its parent compound, did not reach a steady state during the exposure period, and was not completely eliminated even after 10 days of depuration, highlighting the importance of considering environmental hazards posed by pharmaceutical metabolites.
Collapse
Affiliation(s)
- Daniel Cerveny
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences (SLU), Umeå, Sweden; University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, Vodnany, Czech Republic.
| | - Jerker Fick
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Jonatan Klaminder
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - Michael G Bertram
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences (SLU), Umeå, Sweden
| | - Tomas Brodin
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences (SLU), Umeå, Sweden
| |
Collapse
|
41
|
Vinterstare J, Brönmark C, Nilsson PA, Langerhans RB, Berglund O, Örjes J, Brodin T, Fick J, Hulthén K. Antipredator phenotype in crucian carp altered by a psychoactive drug. Ecol Evol 2021; 11:9435-9446. [PMID: 34306633 PMCID: PMC8293787 DOI: 10.1002/ece3.7762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 01/01/2023] Open
Abstract
Predator-inducible defenses constitute a widespread form of adaptive phenotypic plasticity, and such defenses have recently been suggested linked with the neuroendocrine system. The neuroendocrine system is a target of endocrine disruptors, such as psychoactive pharmaceuticals, which are common aquatic contaminants. We hypothesized that exposure to an antidepressant pollutant, fluoxetine, influences the physiological stress response in our model species, crucian carp, affecting its behavioral and morphological responses to predation threat. We examined short- and long-term effects of fluoxetine and predator exposure on behavior and morphology in crucian carp. Seventeen days of exposure to a high dose of fluoxetine (100 µg/L) resulted in a shyer phenotype, regardless of the presence/absence of a pike predator, but this effect disappeared after long-term exposure. Fluoxetine effects on morphological plasticity were context-dependent as a low dose (1 µg/L) only influenced crucian carp body shape in pike presence. A high dose of fluoxetine strongly influenced body shape regardless of predator treatment. Our results highlight that environmental pollution by pharmaceuticals could disrupt physiological regulation of ecologically important inducible defenses.
Collapse
Affiliation(s)
- Jerker Vinterstare
- Department of BiologyAquatic Ecology Unit, Ecology BuildingLund UniversityLundSweden
| | - Christer Brönmark
- Department of BiologyAquatic Ecology Unit, Ecology BuildingLund UniversityLundSweden
| | - P. Anders Nilsson
- Department of BiologyAquatic Ecology Unit, Ecology BuildingLund UniversityLundSweden
| | - R. Brian Langerhans
- Department of Biological Sciences and W.M. Keck Center for Behavioral BiologyNorth Carolina State UniversityRaleighNCUSA
| | - Olof Berglund
- Department of BiologyAquatic Ecology Unit, Ecology BuildingLund UniversityLundSweden
| | - Jennie Örjes
- Department of BiologyAquatic Ecology Unit, Ecology BuildingLund UniversityLundSweden
| | - Tomas Brodin
- Department of Wildlife, Fish and Environmental StudiesSwedish University of Agricultural Sciences (SLU) – UmeåUmeåSweden
| | - Jerker Fick
- Department of ChemistryUmeå UniversityUmeåSweden
| | - Kaj Hulthén
- Department of BiologyAquatic Ecology Unit, Ecology BuildingLund UniversityLundSweden
| |
Collapse
|
42
|
Omar TFT, Aris AZ, Yusoff FM. Multiclass analysis of emerging organic contaminants in tropical marine biota using improved QuEChERS extraction followed by LC MS/MS. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Pharmaceutical and Personal Care Products in Different Matrices: Occurrence, Pathways, and Treatment Processes. WATER 2021. [DOI: 10.3390/w13091159] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The procedures for analyzing pharmaceuticals and personal care products (PPCPs) are typically tedious and expensive and thus, it is necessary to synthesize all available information from previously conducted research. An extensive collection of PPCP data from the published literature was compiled to determine the occurrence, pathways, and the effectiveness of current treatment technologies for the removal of PPCPs in water and wastewater. Approximately 90% of the compiled published papers originated from Asia, Europe, and the North American regions. The incomplete removal of PPCPs in different water and wastewater treatment processes was widely reported, thus resulting in the occurrence of PPCP compounds in various environmental compartments. Caffeine, carbamazepine, diclofenac, ibuprofen, triclosan, and triclocarban were among the most commonly reported compounds detected in water and solid matrices. Trace concentrations of PPCPs were also detected on plants and animal tissues, indicating the bioaccumulative properties of some PPCP compounds. A significant lack of studies regarding the presence of PPCPs in animal and plant samples was identified in the review. Furthermore, there were still knowledge gaps on the ecotoxicity, sub-lethal effects, and effective treatment processes for PPCPs. The knowledge gaps identified in this study can be used to devise a more effective research paradigm and guidelines for PPCP management.
Collapse
|
44
|
Occurrence and Human Health Risk Assessment of Pharmaceuticals and Hormones in Drinking Water Sources in the Metropolitan Area of Turin in Italy. TOXICS 2021; 9:toxics9040088. [PMID: 33923920 PMCID: PMC8073697 DOI: 10.3390/toxics9040088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/13/2021] [Accepted: 04/17/2021] [Indexed: 12/03/2022]
Abstract
Pharmaceuticals and hormones (PhACs) enter the aquatic environment in multiple ways, posing potential adverse effects on non-target organisms. They have been widely detected in drinking water sources, challenging water companies to reassure good quality drinking water. The aim of this study was to evaluate the concentration of sixteen PhACs in both raw and treated drinking water sources in the Metropolitan Area of Turin—where Società Metropolitana Acque Torino (SMAT) is the company in charge of the water cycle management—and evaluate the potential human health risks associated to these compounds. Multivariate spatial statistical analysis techniques were used in order to characterize the areas at higher risk of pollution, taking into account the already existing SMAT sampling points’ network. Health risks were assessed considering average detected concentrations and provisional guideline values for individual compounds as well as their combined mixture. As reported in the just-issued Drinking Water Directive 2020/2184/UE, in order to establish priority substances, a risk assessment of contaminants present in raw drinking water sources is required for monitoring, identifying potential health risks and, if necessary, managing their removal. The results showed negligibly low human health risks in both raw water sources and treated water.
Collapse
|
45
|
Hagberg A, Gupta S, Rzhepishevska O, Fick J, Burmølle M, Ramstedt M. Do environmental pharmaceuticals affect the composition of bacterial communities in a freshwater stream? A case study of the Knivsta river in the south of Sweden. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:142991. [PMID: 33121787 DOI: 10.1016/j.scitotenv.2020.142991] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/07/2020] [Accepted: 10/07/2020] [Indexed: 06/11/2023]
Abstract
Pharmaceutical substances present at low concentrations in the environment may cause effects on biological systems such as microbial consortia living on solid riverbed substrates. These consortia are an important part of the river ecosystem as they form part of the food chain. This case study aims to contribute to an increased understanding of how low levels of pharmaceuticals in freshwater streams may influence sessile bacterial consortia. An important point source for pharmaceutical release into the environment is treated household sewage water. In order to investigate what types of effects may occur, we collected water samples as well as riverbed substrates from a small stream in the south of Sweden, Knivstaån, upstream and downstream from a sewage treatment plant (STP). Data from these samples formed the base of this case study where we investigated both the presence of pharmaceuticals in the water and bacterial composition on riverbed substrates. In the water downstream from the STP, 19 different pharmaceuticals were detected at levels below 800 ng/dm3. The microbial composition was obtained from sequencing 16S rRNA genes directly from substrates as well as from cultivated isolates. The cultivated strains showed reduced species variability compared with the data obtained directly from the substrates. No systematic differences were observed following the sampling season. However, differences could be seen between samples upstream and downstream from the STP effluent. We further observed large similarities in bacterial composition on natural stones compared to sterile stones introduced into the river approximately two months prior to sampling, giving indications for future sampling methodology of biofilms.
Collapse
Affiliation(s)
- Aleksandra Hagberg
- Department of Chemistry, Umeå Center for Microbial Research, Umeå University, 901 87 Umeå, Sweden
| | - Shashank Gupta
- Section of Microbiology, Department of Biology, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Olena Rzhepishevska
- Department of Chemistry, Umeå Center for Microbial Research, Umeå University, 901 87 Umeå, Sweden
| | - Jerker Fick
- Department of Chemistry, Umeå Center for Microbial Research, Umeå University, 901 87 Umeå, Sweden
| | - Mette Burmølle
- Section of Microbiology, Department of Biology, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Madeleine Ramstedt
- Department of Chemistry, Umeå Center for Microbial Research, Umeå University, 901 87 Umeå, Sweden.
| |
Collapse
|
46
|
Previšić A, Vilenica M, Vučković N, Petrović M, Rožman M. Aquatic Insects Transfer Pharmaceuticals and Endocrine Disruptors from Aquatic to Terrestrial Ecosystems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3736-3746. [PMID: 33650859 PMCID: PMC8031366 DOI: 10.1021/acs.est.0c07609] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/17/2021] [Indexed: 05/08/2023]
Abstract
A wide range of pharmaceuticals and endocrine disrupting compounds enter freshwaters globally. As these contaminants are transported through aquatic food webs, understanding their impacts on both aquatic and terrestrial ecosystems remains a major challenge. Here, we provide the first direct evidence of the transfer of pharmaceuticals and endocrine disruptors through the aquatic-terrestrial habitat linkage by emerging aquatic insects. We also show that the type of insect metamorphosis and feeding behavior determine the bioaccumulation patterns of these contaminants. Adult Trichoptera, an important food source for riparian predators, showed an increased body burden of pharmaceuticals and endocrine disruptors. This implies that terrestrial predators, such as spiders, birds, and bats, are exposed to mixtures of pharmaceuticals and endocrine disruptors of aquatic origin, which may impact their physiology and population dynamics. Overall, our study provides valuable insights into the bioaccumulation patterns and trophic cross-ecosystem transfer of these contaminants, from aquatic primary producers to terrestrial predators.
Collapse
Affiliation(s)
- Ana Previšić
- Department
of Biology, Zoology, Faculty of Science, University of Zagreb, Rooseveltov Trg 6, 10000 Zagreb, Croatia
| | - Marina Vilenica
- Faculty
of Teacher Education, University of Zagreb, Trg Matice hrvatske 12, 44250 Petrinja, Croatia
| | - Natalija Vučković
- Department
of Biology, Zoology, Faculty of Science, University of Zagreb, Rooseveltov Trg 6, 10000 Zagreb, Croatia
| | - Mira Petrović
- Catalan
Institute for Water Research, Carrer Emili Grahit 101, 17003 Girona, Spain
- Catalan
Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Marko Rožman
- Ruđer
Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| |
Collapse
|
47
|
Fahlman J, Hellström G, Jonsson M, Fick JB, Rosvall M, Klaminder J. Impacts of Oxazepam on Perch ( Perca fluviatilis) Behavior: Fish Familiarized to Lake Conditions Do Not Show Predicted Anti-anxiety Response. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3624-3633. [PMID: 33663207 PMCID: PMC8031365 DOI: 10.1021/acs.est.0c05587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 02/17/2021] [Accepted: 02/17/2021] [Indexed: 05/26/2023]
Abstract
A current theory in environmental science states that dissolved anxiolytics (oxazepam) from wastewater effluents can reduce anti-predator behavior in fish with potentially negative impacts on prey fish populations. Here, we hypothesize that European perch (Perca fluviatilis) populations being exposed to oxazepam in situ show reduced anti-predator behavior, which has previously been observed for exposed isolated fish in laboratory studies. We tested our hypothesis by exposing a whole-lake ecosystem, containing both perch (prey) and northern pike (Esox lucius; predator), to oxazepam while tracking fish behavior before and after exposure in the exposed lake as well as in an unexposed nearby lake (control). Oxazepam concentrations in the exposed lake ranged between 11 and 24 μg L-1, which is >200 times higher than concentrations reported for European rivers. In contrast to our hypothesis, we did not observe an oxazepam-induced reduction in anti-predator behavior, inferred from perch swimming activity, distance to predators, distance to conspecifics, home-range size, and habitat use. In fact, exposure to oxazepam instead stimulated anti-predator behavior (decreased activity, decreased distance to conspecifics, and increased littoral habitat use) when using behavior in the control lake as a reference. Shoal dynamics and temperature changes may have masked modest reductions in anti-predator behavior due to oxazepam. Although we cannot fully resolve the mechanism(s) behind our observations, our results indicate that the effects of oxazepam on perch behavior in a familiar natural ecosystem are negligible in comparison to the effects of other environmental conditions.
Collapse
Affiliation(s)
- Johan Fahlman
- Department
of Ecology and Environmental Science, Umeå
University, Umeå 901 87, Sweden
| | - Gustav Hellström
- Department
of Wildlife, Fish, and Environmental Studies, SLU, Umeå 901 83, Sweden
| | - Micael Jonsson
- Department
of Ecology and Environmental Science, Umeå
University, Umeå 901 87, Sweden
| | | | - Martin Rosvall
- Department
of Physics, Umeå University, Umeå 901 87, Sweden
| | - Jonatan Klaminder
- Department
of Ecology and Environmental Science, Umeå
University, Umeå 901 87, Sweden
| |
Collapse
|
48
|
García-Galán MJ, Matamoros V, Uggetti E, Díez-Montero R, García J. Removal and environmental risk assessment of contaminants of emerging concern from irrigation waters in a semi-closed microalgae photobioreactor. ENVIRONMENTAL RESEARCH 2021; 194:110278. [PMID: 33038365 DOI: 10.1016/j.envres.2020.110278] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/17/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
The present study evaluated the efficiency of a semi-closed, tubular, horizontal photobioreactor (PBR) to treat a mixture of irrigation and rural drainage water, focusing in the removal of different contaminants of emerging concern (CECs), and evaluating the environmental impact of the resulting effluent. Target CECs included pharmaceuticals, personal care products and flame retardants. Of the 13 compounds evaluated, 11 were detected in the feed water entering the PBR, and diclofenac (DCF) (1107 ng L-1) and N,N-diethyl-toluamide (DEET) (699 ng L-1) were those present at the greatest concentrations. The best removal efficiencies were achieved for the pharmaceuticals diazepam (94%), lorazepam (LZP) (83%) and oxazepam (OXA) (71%), and also for ibuprofen (IBU) (70%). For the rest of the CECs evaluated, attenuation was similar to that obtained after conventional wastewater treatment, ranging from basically no elimination (carbamazepine (CBZ) and tris-(2-chloroethyl) phosphate (TCEP)) to medium efficiencies (DCF and tributyl phosphate (TBP) (50%)). Environmental risk assessment based on hazard quotients (HQs) resulted in HQ values < 0.1 (no risk associated) for most of the compounds and most of the trophic levels considered. Values between 1 and 10 (moderate risk) were obtained for tonalide (AHTN) (fish) and CBZ (invertebrates). The most sensitive trophic level was green algae, whereas fish and aquatic plants were the most resilient. Our results suggest that microalgae-based treatments could become a green, cost-effective alternative to conventional wastewater treatment regarding the efficient elimination of these contaminants.
Collapse
Affiliation(s)
- Ma Jesús García-Galán
- GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, c/Jordi Girona 1-3, Building D1, E-08034, Barcelona, Spain.
| | - Víctor Matamoros
- Group of Environmental Pollution and Agriculture, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Enrica Uggetti
- GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, c/Jordi Girona 1-3, Building D1, E-08034, Barcelona, Spain
| | - Rubén Díez-Montero
- GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, c/Jordi Girona 1-3, Building D1, E-08034, Barcelona, Spain
| | - Joan García
- GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, c/Jordi Girona 1-3, Building D1, E-08034, Barcelona, Spain
| |
Collapse
|
49
|
Lebreton M, Sire S, Carayon JL, Malgouyres JM, Vignet C, Géret F, Bonnafé E. Low concentrations of oxazepam induce feeding and molecular changes in Radix balthica juveniles. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 230:105694. [PMID: 33316747 DOI: 10.1016/j.aquatox.2020.105694] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 11/12/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
Psychotropics, especially benzodiazepines, are commonly prescribed worldwide. Poorly eliminated at wastewater treatment plants, they belong to a group of emerging contaminants. Due to their interaction with the GABAA receptor, they may affect the function of the nervous system of non-target organisms, such as aquatic organisms. The toxicity of oxazepam, a very frequently detected benzodiazepine in continental freshwater, has been largely studied in aquatic vertebrates over the last decade. However, its effects on freshwater non-vertebrates have received much less attention. We aimed to evaluate the long-term effects of oxazepam on the juvenile stage of a freshwater gastropod widespread in Europe, Radix balthica. Juveniles were exposed for a month to environmentally-relevant concentrations of oxazepam found in rivers (0.8 μg/L) and effluents (10 μg/L). Three main physiological functions were studied: feeding, growth, and locomotion. Additionally, gene expression analysis was performed to provide insights into toxicity mechanisms. There was a strong short-term activation of the feeding rate at low concentration, whereas the high dose resulted in long-term inhibition of food intake. A significant decrease in mortality rate was observed in juveniles exposed to the lowest dose. Shell growth and locomotor activity did not appear to be affected by oxazepam. Transcriptomic analysis revealed global over-expression of genes involved in the nervous regulation of the feeding, digestive, and locomotion systems after oxazepam exposure. The molecular analysis also revealed a possible interference of animal manipulation with the molecular effects induced by oxazepam exposure. Overall, these results improve our understanding of the effects of the psychoactive drug oxazepam on an aquatic mollusc gastropod.
Collapse
Affiliation(s)
- Morgane Lebreton
- Biochimie et Toxicologie des Substances Bioactives, EA 7417, INU Champollion, Albi, France.
| | - Sacha Sire
- Biochimie et Toxicologie des Substances Bioactives, EA 7417, INU Champollion, Albi, France.
| | - Jean-Luc Carayon
- Biochimie et Toxicologie des Substances Bioactives, EA 7417, INU Champollion, Albi, France.
| | - Jean-Michel Malgouyres
- Biochimie et Toxicologie des Substances Bioactives, EA 7417, INU Champollion, Albi, France.
| | - Caroline Vignet
- Biochimie et Toxicologie des Substances Bioactives, EA 7417, INU Champollion, Albi, France.
| | - Florence Géret
- Biochimie et Toxicologie des Substances Bioactives, EA 7417, INU Champollion, Albi, France.
| | - Elsa Bonnafé
- Biochimie et Toxicologie des Substances Bioactives, EA 7417, INU Champollion, Albi, France.
| |
Collapse
|
50
|
Yadav A, Rene ER, Mandal MK, Dubey KK. Threat and sustainable technological solution for antineoplastic drugs pollution: Review on a persisting global issue. CHEMOSPHERE 2021; 263:128285. [PMID: 33297229 DOI: 10.1016/j.chemosphere.2020.128285] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/31/2020] [Accepted: 09/06/2020] [Indexed: 06/12/2023]
Abstract
In the past 20 years, the discharge of pharmaceuticals and their presence in the aquatic environment have been continuously increasing and this has caused serious public health and environmental concerns. Antineoplastic drugs are used in chemotherapy, in large quantities worldwide, for the treatment of continuously increasing cancer cases. Antineoplastic drugs also contaminate water sources and possess mutagenic, cytostatic and eco-toxicological effects on microorganisms present in the aquatic environment as well as on human health. Due to the recalcitrant nature of antineoplastic drugs, the commonly used wastewater treatment processes are not able to eliminate these drugs. Globally, various anticancer drugs are being consumed during chemotherapy in hospitals and households by out-patients. These anti-cancer agents enter the water bodies in their original form or as metabolites via urine and faeces of the out-patients or the patients admitted in hospitals. Due to its high lipid solubility, the antineoplastic drugs accumulate in the fatty tissues of the organisms. These drugs enter through the food chain and cause adverse health effects on humans due to their cytotoxic and genotoxic properties. The United States Environmental Protection Agency (US-EPA) and the Organization for Economic Cooperation and Development (OECD) elucidated new regulations for the management of hazardous pharmaceuticals in the water environment. In this paper, the role of antineoplastic agents as emerging water contaminants, its transfer through the food chain, its eco-toxicological properties and effects, technological solutions and management aspects were reviewed.
Collapse
Affiliation(s)
- Ankush Yadav
- Bioprocess Engineering Laboratory, Department of Biotechnology, Central University of Haryana, Mahendergarh, 123031, Haryana, India
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX, Delft, the Netherlands
| | - Mrinal Kanti Mandal
- Department of Chemical Engineering, NIT Durgapur, Durgapur, 713209, West Bengal, India
| | - Kashyap Kumar Dubey
- Bioprocess Engineering Laboratory, Department of Biotechnology, Central University of Haryana, Mahendergarh, 123031, Haryana, India; Bioprocess Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|