1
|
Knox B, Güil-Oumrait N, Basagaña X, Cserbik D, Dadvand P, Foraster M, Galmes T, Gascon M, Dolores Gómez-Roig M, Gómez-Herrera L, Småstuen Haug L, Llurba E, Márquez S, Rivas I, Sunyer J, Thomsen C, Julia Zanini M, Bustamante M, Vrijheid M. Prenatal exposure to per- and polyfluoroalkyl substances, fetoplacental hemodynamics, and fetal growth. ENVIRONMENT INTERNATIONAL 2024; 193:109090. [PMID: 39454342 DOI: 10.1016/j.envint.2024.109090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/25/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024]
Abstract
INTRODUCTION The impact of legacy per- and polyfluoroalkyl substances (PFAS) on fetal growth has been well studied, but assessments of next-generation PFAS and PFAS mixtures are sparse and the potential role of fetoplacental hemodynamics has not been studied. We aimed to evaluate associations between prenatal PFAS exposure and fetal growth and fetoplacental hemodynamics. METHODS We included 747 pregnant women from the BiSC birth cohort (Barcelona, Spain (2018-2021)). Twenty-three PFAS were measured at 32 weeks of pregnancy in maternal plasma, of which 13 were present above detectable levels. Fetal growth was measured by ultrasound, as estimated fetal weight at 32 and 37 weeks of gestation, and weight at birth. Doppler ultrasound measurements for uterine (UtA), umbilical (UmA), and middle cerebral artery (MCA) pulsatility indices (PI), as well as the cerebroplacental ratio (CPR - ratio MCA to UmA), were obtained at 32 weeks to assess fetoplacental hemodynamics. We applied linear mixed effects models to assess the association between singular PFAS and longitudinal fetal growth and PI, and Bayesian Weighted Quantile Sum models to evaluate associations between the PFAS mixture and the aforementioned outcomes, controlled for the relevant covariates. RESULTS Single PFAS and the mixture tended to be associated with reduced fetal growth and CPR PI, but few associations reached statistical significance. Legacy PFAS PFOS, PFHpA, and PFDoDa were associated with statistically significant decreases in fetal weight z-score of 0.13 (95%CI (-0.22, -0.04), 0.06 (-0.10, 0.01), and 0.05 (-0.10, 0.00), respectively, per doubling of concentration. The PFAS mixture was associated with a non-statistically significant 0.09 decrease in birth weight z-score (95%CI -0.22, 0.04) per quartile increase. CONCLUSION This study suggests that legacy PFAS may be associated with reduced fetal growth, but associations for next generation PFAS and for the PFAS mixture were less conclusive. Associations between PFAS and fetoplacental hemodynamics warrant further investigation.
Collapse
Affiliation(s)
- Bethany Knox
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.
| | - Nuria Güil-Oumrait
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| | - Xavier Basagaña
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.
| | - Dora Cserbik
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.
| | - Payam Dadvand
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.
| | - Maria Foraster
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.
| | - Toni Galmes
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.
| | - Mireia Gascon
- Unitat de Suport a la Recerca de la Catalunya Central, Fundació Institut Universitari per a la Recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Manresa, Spain.
| | - Maria Dolores Gómez-Roig
- BCNatal, Fetal Medicine Research Center, Hospital Sant Joan de Déu and Hospital Clínic, University of Barcelona, Barcelona, Spain; Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin Network (RICORS), RD21/0012/0003, Instituto de Salud Carlos III, Madrid, Spain; Institut de Recerca Sant Joan de Déu, Barcelona, Spain.
| | - Laura Gómez-Herrera
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.
| | - Line Småstuen Haug
- Norwegian Institute of Public Health (NIPH), Department of Food Safety, Oslo, Norway.
| | - Elisa Llurba
- Department of Obstetrics and Gynaecology. Institut d'Investigació Biomèdica Sant Pau - IIB Sant Pau. Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Primary Care Interventions to Prevent Maternal and Child Chronic Diseases d Developof Perinatal anmental Origin Network (RICORS), RD21/0012/0001, Instituto de Salud Carlos III, Madrid, Spain.
| | - Sandra Márquez
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.
| | - Ioar Rivas
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.
| | - Jordi Sunyer
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.
| | - Cathrine Thomsen
- Norwegian Institute of Public Health (NIPH), Department of Food Safety, Oslo, Norway.
| | - Maria Julia Zanini
- BCNatal, Fetal Medicine Research Center, Hospital Sant Joan de Déu and Hospital Clínic, University of Barcelona, Barcelona, Spain; Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin Network (RICORS), RD21/0012/0003, Instituto de Salud Carlos III, Madrid, Spain
| | - Mariona Bustamante
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
2
|
Ru H, Lee AL, Rappazzo KM, Dzierlenga M, Radke E, Bateson TF, Wright JM. Systematic review and meta-analysis of birth weight and perfluorohexane sulfonate exposures: examination of sample timing and study confidence. Occup Environ Med 2024; 81:266-276. [PMID: 38724253 DOI: 10.1136/oemed-2023-109328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/28/2024] [Indexed: 06/06/2024]
Abstract
We examined the association between mean birth weight (BW) differences and perfluorohexane sulfonate (PFHxS) exposure biomarkers.We fit a random effects model to estimate the overall pooled effect and for different strata based on biomarker sample timing and overall study confidence. We also conducted an analysis to examine the impact of a continuous measure of gestational age sample timing on the overall pooled effect.We detected a -7.9 g (95% CI -15.0 to -0.7; pQ=0.85; I2=0%) BW decrease per ln ng/mL PFHxS increase based on 27 studies. The 11 medium confidence studies (β=-10.0 g; 95% CI -21.1 to 1.1) showed larger deficits than 12 high (β=-6.8 g; 95% CI -16.3 to 2.8) and 4 low confidence studies (β=-1.5 g; 95% CI -51.6 to 48.7). 10 studies with mid-pregnancy to late-pregnancy sampling periods showed smaller deficits (β=-3.9 g; 95% CI -17.7 to 9.9) than 5 post-partum studies (β=-28.3 g; 95% CI -69.3 to 12.7) and 12 early sampling studies (β=-7.6 g; 95% CI -16.2 to 1.1). 6 of 12 studies with the earliest sampling timing showed results closer to the null.Overall, we detected a small but statistically significant BW deficit across 27 studies. We saw comparable BW deficit magnitudes in both the medium and high confidence studies as well as the early pregnancy group. Despite no definitive pattern by sample timing, larger deficits were seen in postpartum studies. We also saw results closer to the null for a subset of studies restricted to the earliest biomarker collection times. Serial pregnancy sampling, improved precision in gestational age estimates and more standardised reporting of sample variation and exposure units in future epidemiologic research may offer a greater understanding of the relationship between PFHxS on BW and any potential impact of pregnancy haemodynamics.
Collapse
Affiliation(s)
- Hongyu Ru
- Office of Research and Development, Center for Public Health and Environmental Assessment; Chemical and Pollutant Assessment Division, US Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Alexandra L Lee
- Office of Research and Development, Center for Public Health and Environmental Assessment; Chemical and Pollutant Assessment Division, US Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Kristen M Rappazzo
- Office of Research and Development, Center for Public Health and Environmental Assessment; Public Health and Environmental Systems Division, US Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Michael Dzierlenga
- Office of Research and Development, Center for Public Health and Environmental Assessment; Chemical and Pollutant Assessment Division, US Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Elizabeth Radke
- Office of Research and Development, Center for Public Health and Environmental Assessment; Chemical and Pollutant Assessment Division, US Environmental Protection Agency, Washington, District of Columbia, USA
| | - Thomas F Bateson
- Office of Research and Development, Center for Public Health and Environmental Assessment; Chemical and Pollutant Assessment Division, US Environmental Protection Agency, Washington, District of Columbia, USA
| | - J Michael Wright
- Office of Research and Development, Center for Public Health and Environmental Assessment; Chemical and Pollutant Assessment Division, US Environmental Protection Agency, Cincinnati, Ohio, USA
| |
Collapse
|
3
|
Liu L, Yan P, Liu X, Zhao J, Tian M, Huang Q, Yan J, Tong Z, Zhang Y, Zhang J, Zhang T, Guo J, Liu G, Bian X, Li B, Wang T, Wang H, Shen H. Profiles and transplacental transfer of per- and polyfluoroalkyl substances in maternal and umbilical cord blood: A birth cohort study in Zhoushan, Zhejiang Province, China. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133501. [PMID: 38246060 DOI: 10.1016/j.jhazmat.2024.133501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 11/11/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) can pass through the placental barrier and pose health risks to fetuses. However, exposure and transplacental transfer patterns of emerging PFAS remain unclear. Here, 24 PFAS were measured in paired maternal whole blood (n = 228), umbilical cord whole blood (n = 119) and serum (n = 120). Orthogonal partial least-squares discriminant analysis (OPLS-DA) was used to differentiate PFAS between different matrices. The transplacental transfer (TPT) of PFAS was calculated using cord to maternal whole blood concentration ratios. PFOS and PFOA were still the dominant PFAS in maternal samples. The emerging PFAS had higher TPT than PFOS and PFOA. Moreover, PFAS with the same chain length but different functional groups and C-F bonds showed different TPT, such as PFOS and PFOSA (C8, median: 0.090 vs. 0.305, p < 0.05) and PFHxS and 4:2 FTS (C6, median: 0.220 vs. 1.190, p < 0.05). A significant sex difference in 4:2 FTS (median: boys 1.250, girls 1.010, p < 0.05) were found. Furthermore, we observed a significant U-shaped trend for the TPT of carboxylates with increasing carbon chain length. PFAS showed a compound-specific transfer through placental barrier and a compound-specific distribution between different matrices in this study.
Collapse
Affiliation(s)
- Liangpo Liu
- Department of Public Health Laboratory Sciences, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, 030001, PR China
| | - Peixia Yan
- Department of Public Health Laboratory Sciences, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China; Changping District Center for Disease Control and Prevention, Changping, Beijing, 102200, PR China
| | - Xuan Liu
- Department of Public Health Laboratory Sciences, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
| | - Junxia Zhao
- Department of Public Health Laboratory Sciences, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
| | - Meiping Tian
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Qingyu Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Jianbo Yan
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan, Zhejiang, 316021, PR China
| | - Zhendong Tong
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan, Zhejiang, 316021, PR China
| | - Yongli Zhang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan, Zhejiang, 316021, PR China
| | - Jie Zhang
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361002, China
| | - Tongjie Zhang
- Daishan County Center for Disease Control and Prevention, Daishan, Zhejiang 316200, PR China
| | - Jianquan Guo
- Department of Public Health Laboratory Sciences, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
| | - Guiying Liu
- Department of Public Health Laboratory Sciences, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
| | - Xia Bian
- Department of Public Health Laboratory Sciences, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
| | - Ben Li
- Department of Public Health Laboratory Sciences, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
| | - Tong Wang
- Department of Public Health Laboratory Sciences, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
| | - Heng Wang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan, Zhejiang, 316021, PR China
| | - Heqing Shen
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361002, China.
| |
Collapse
|
4
|
Ji H, Guo M, Yang F, Liang H, Wang Z, Chen Y, Zheng H, Miao M, Yuan W. Prenatal per- and polyfluoroalkyl substances exposure and gut microbiota of infants: A prospective cohort study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115891. [PMID: 38159339 DOI: 10.1016/j.ecoenv.2023.115891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Prenatal exposure to per- and polyfluoroalkyl substances (PFASs) has been reported to be linked to a series of adverse health outcomes in mothers and their children. As the gut microbiota is a sensitive biomarker for assessing the toxicity of environmental contaminants, this study attempted to investigate whether prenatal PFASs exposure was associated with the gut microbiota of infants. Based on the Shanghai-Minhang Birth Cohort Study, this prospective cohort study included 69 mother-infant pairs. Fasting blood samples were collected from pregnant women for the PFASs assay. We collected fecal samples of infants at 1 year of age and analyzed the V3-V4 hypervariable region of the bacterial 16 S rRNA gene by high-throughput sequencing. Among the detected 11 PFASs, the concentration of perfluorooctanoic acid (22.19 ng/mL) was the highest, followed by perfluorooctane sulfonic acid (12.08 ng/mL). Compared with infants whose mothers' total PFASs concentrations during pregnancy were at the 40th percentile or lower (reference group), the species richness and diversity of microbiota were lower in infants prenatally exposed to a high level of PFASs (the sum of PFASs concentrations above the 60th percentile). Prenatal exposure to PFASs was associated with a higher proportion of Acidaminococcaceae, Acidaminococcus, Megamonas, Megasphaera micronuciformis and Megamonas funiformis in infants. The changes of the species have been suggested to be associated with immune and metabolic dysfunction in humans. Functional alterations of gut microbiota due to PFASs exposure were dominated by an enrichment of butanoate metabolism. Our preliminary findings may shed light on the potential role of the microbiota underlying the well-known impact of prenatal PFASs exposure on health outcomes of humans in later life.
Collapse
Affiliation(s)
- Honglei Ji
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Min Guo
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Fen Yang
- Department of Global Public Health, Karolinska Institutet, Sweden
| | - Hong Liang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Ziliang Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Yao Chen
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Huajun Zheng
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China.
| | - Maohua Miao
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China.
| | - Wei Yuan
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| |
Collapse
|
5
|
Zheng T, Kelsey K, Zhu C, Pennell KD, Yao Q, Manz KE, Zheng YF, Braun JM, Liu Y, Papandonatos G, Liu Q, Shi K, Brochman S, Buka SL. Adverse birth outcomes related to concentrations of per- and polyfluoroalkyl substances (PFAS) in maternal blood collected from pregnant women in 1960-1966. ENVIRONMENTAL RESEARCH 2024; 241:117010. [PMID: 37696323 DOI: 10.1016/j.envres.2023.117010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/12/2023] [Accepted: 08/27/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND Prior animal and epidemiological studies suggest that per- and polyfluoroalkyl substances (PFAS) exposure may be associated with reduced birth weight. However, results from prior studies evaluated a relatively small set of PFAS. OBJECTIVES Determine associations of gestational PFAS concentrations in maternal serum samples banked for 60 years with birth outcomes. METHODS We used data from 97 pregnant women from Boston and Providence that enrolled in the Collaborative Perinatal Project (CPP) study (1960-1966). We quantified concentrations of 27 PFAS in maternal serum in pregnancy and measured infant weight, height and ponderal index at birth. Covariate-adjusted associations between 11 PFAS concentrations (>75% detection limits) and birth outcomes were estimated using linear regression methods. RESULTS Median concentrations of PFOA, PFNA, PFHxS, and PFOS were 6.189, 0.330, 14.432, and 38.170 ng/mL, respectively. We found that elevated PFAS concentrations during pregnancy were significantly associated with lower birth weight and ponderal index at birth, but no significant associations were found with birth length. Specifically, infants born to women with PFAS concentrations ≥ median levels had significantly lower birth weight (PFOS: β = -0.323, P = 0.006; PFHxS: β = -0.292, P = 0.015; PFOA: β = -0.233, P = 0.03; PFHpS: β = -0.239, P = 0.023; PFNA: β = -0.239, P = 0.017). Similarly, women with PFAS concentrations ≥ median levels had significantly lower ponderal index (PFHxS: β = -0.168, P = 0.020; PFHxA: β = -0.148, P = 0.018). CONCLUSIONS Using data from this US-based cohort study, we found that 1) maternal PFAS levels from the 1960s exceeded values in contemporaneous populations and 2) that gestational concentrations of certain PFAS were associated with lower birth weight and infant ponderal index. Additional studies with larger sample size are needed to further examine the associations of gestational exposure to individual PFAS and their mixtures with adverse birth outcomes.
Collapse
Affiliation(s)
- T Zheng
- Department of Epidemiology, Brown School of Public Health, 121 South Main Street, Providence, RI, 02903, USA.
| | - K Kelsey
- Department of Epidemiology, Brown School of Public Health, 121 South Main Street, Providence, RI, 02903, USA
| | - C Zhu
- West China School of Public Health, Sichuan University, Sichuan, 610044, China
| | - K D Pennell
- School of Engineering, Brown University, 184 Hope Street, Providence, RI, 02912, USA
| | - Q Yao
- West China School of Public Health, Sichuan University, Sichuan, 610044, China
| | - K E Manz
- School of Engineering, Brown University, 184 Hope Street, Providence, RI, 02912, USA
| | - Y F Zheng
- Department of Gynecology, Hubei Provincial Women and Children Hospital, Wuhan, 430070, China; Wuhan Science and Technology University, Wuhan, 430062, China
| | - J M Braun
- Department of Epidemiology, Brown School of Public Health, 121 South Main Street, Providence, RI, 02903, USA
| | - Y Liu
- Department of Epidemiology, Brown School of Public Health, 121 South Main Street, Providence, RI, 02903, USA
| | - G Papandonatos
- Department of Biostatistics, Brown School of Public Health, 121 South Main Street, Providence, RI, 02903, USA
| | - Q Liu
- Department of Epidemiology, Brown School of Public Health, 121 South Main Street, Providence, RI, 02903, USA
| | - K Shi
- Department of Epidemiology, Brown School of Public Health, 121 South Main Street, Providence, RI, 02903, USA
| | - S Brochman
- Department of Epidemiology, Brown School of Public Health, 121 South Main Street, Providence, RI, 02903, USA
| | - S L Buka
- Department of Epidemiology, Brown School of Public Health, 121 South Main Street, Providence, RI, 02903, USA.
| |
Collapse
|
6
|
Cserbik D, Casas M, Flores C, Paraian A, Haug LS, Rivas I, Bustamante M, Dadvand P, Sunyer J, Vrijheid M, Villanueva CM. Concentrations of per- and polyfluoroalkyl substances (PFAS) in paired tap water and blood samples during pregnancy. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:90-96. [PMID: 37749395 PMCID: PMC10907290 DOI: 10.1038/s41370-023-00581-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/21/2023] [Accepted: 07/04/2023] [Indexed: 09/27/2023]
Affiliation(s)
- Dora Cserbik
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Maribel Casas
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Cintia Flores
- Mass Spectrometry Laboratory/Organic Pollutants, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Spain
| | - Alexandra Paraian
- Mass Spectrometry Laboratory/Organic Pollutants, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Spain
| | - Line Småstuen Haug
- Centre for Sustainable Diets, Norwegian Institute of Public Health, Oslo, Norway
| | - Ioar Rivas
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Mariona Bustamante
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Payam Dadvand
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Jordi Sunyer
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Cristina M Villanueva
- ISGlobal, Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.
| |
Collapse
|
7
|
Li C, Zhang H, Mo J, Zuo J, Ye L. Caspase-3/GSDME dependent pyroptosis contributes to offspring lung injury induced by gestational PFOS exposure via PERK/ATF4 signaling. Arch Toxicol 2024; 98:207-221. [PMID: 37955688 PMCID: PMC10761489 DOI: 10.1007/s00204-023-03626-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/12/2023] [Indexed: 11/14/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is widely used in industry and consumer products. Previous studies have showed that PFOS gestational exposure is associated with offspring lung damage in rat. However, the underlying mechanisms remain poorly understood. In this study, we investigated the role of gasdermin E (GSDME) in lung injury of offspring and its underlying mechanisms using in vivo and in vitro approaches. Pregnant SD rats were exposed to PFOS (1 mg/kg BW/d) between gestational day 12-18, and the lung tissue of the offspring was evaluated on postnatal day 7. PFOS treated animals exhibited alveolar septal thickening and inflammation-related damages, with an increased expression of GSDME in alveolar type II epithelial cells (AECII). Furthermore, in vitro experiments demonstrated that PFOS exposure (with 225 μM and up) upregulated the caspase-3/GSDME signaling pathway in AECII. Also, ultrastructure analysis revealed significant changes in the endoplasmic reticulum (ER) structure in PFOS-induced pyroptotic cells, which is consistent with the ER stress detected in these cells. Additionally, PFOS exposure led to increased expression of ER stress-related proteins, including p-PERK, p-eIF2α, ATF4, and CHOP. Subsequently, using specific inhibitors, we found that the PERK/ATF4 pathway acted as an upstream signal regulating GSDME-dependent pyroptosis. Overall, our findings show that GSDME-dependent pyroptosis plays a crucial role in the lung injury induced by gestational PFOS exposure, and the PERK/ATF4 pathway may function as a possible mediator of this process.
Collapse
Affiliation(s)
- Cong Li
- Department of Pediatrics, Peking University First Hospital, No.1 Xi'an Men Street, West District, Beijing, 100034, China
| | - Huishan Zhang
- Department of Pediatrics, Peking University First Hospital, No.1 Xi'an Men Street, West District, Beijing, 100034, China
- Department of Respiratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200120, China
| | - Jiali Mo
- Department of Pediatrics, Peking University First Hospital, No.1 Xi'an Men Street, West District, Beijing, 100034, China
| | - Jingye Zuo
- Department of Pediatrics, Peking University First Hospital, No.1 Xi'an Men Street, West District, Beijing, 100034, China
| | - Leping Ye
- Department of Pediatrics, Peking University First Hospital, No.1 Xi'an Men Street, West District, Beijing, 100034, China.
| |
Collapse
|
8
|
Lan L, Wei H, Chen D, Pang L, Xu Y, Tang Q, Li J, Xu Q, Li H, Lu C, Wu W. Associations between maternal exposure to perfluoroalkylated substances (PFASs) and infant birth weight: a meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:89805-89822. [PMID: 37458883 DOI: 10.1007/s11356-023-28458-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 06/23/2023] [Indexed: 08/11/2023]
Abstract
The objective of this study was to determine the associations between maternal exposure to PFASs and infant birth weight and to explore evidence for a possible dose-response relationship. Four databases including PubMed, Embase, Web of Science, and Medline before 20 September 2022 were systematically searched. A fixed-effect model was used to estimate the change in infant birth weight (g) associated with PFAS concentrations increasing by 10-fold. Dose-response meta-analyses were also conducted when possible. The study follows the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). A total of 21 studies were included. Among these studies, 18 studies examined the associations between PFOA and birth weight, 17 studies reported PFOS, and 11 studies discussed PFHxS. Associations between PFHxS (ES = -5.67, 95% CI: -33.92 to 22.59, P = 0.694) were weaker than those for PFOA and PFOS (ES = -58.62, 95% CI: -85.23 to -32.01, P < 0.001 for PFOA; ES = -54.75, 95% CI: -84.48 to -25.02, P < 0.001 for PFOS). The association was significantly stronger in the high median PFOS concentration group (ES = -107.23, 95% CI: -171.07 to -43.39, P < 0.001) than the lower one (ES = -29.15, 95% CI: -63.60 to -5.30, P = 0.097; meta-regression, P = 0.045). Limited evidence of a dose-response relationship was found. This study showed negative associations between maternal exposure to PFASs and infant birth weight. Limited evidence of a dose-response relationship between exposure to PFOS and infant birth weight was found. Further studies are needed to find more evidence.
Collapse
Affiliation(s)
- Linchen Lan
- State Key Laboratory of Reproductive Medicine, Wuxi Medical Center, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hongcheng Wei
- State Key Laboratory of Reproductive Medicine, Wuxi Medical Center, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Danrong Chen
- State Key Laboratory of Reproductive Medicine, Wuxi Medical Center, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Liya Pang
- State Key Laboratory of Reproductive Medicine, Wuxi Medical Center, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yifan Xu
- State Key Laboratory of Reproductive Medicine, Wuxi Medical Center, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qiuqin Tang
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Jinhui Li
- Stanford University Medical Center, Stanford, CA, USA
| | - Qiaoqiao Xu
- State Key Laboratory of Reproductive Medicine, Wuxi Medical Center, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Huijun Li
- Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Chuncheng Lu
- State Key Laboratory of Reproductive Medicine, Wuxi Medical Center, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wei Wu
- State Key Laboratory of Reproductive Medicine, Wuxi Medical Center, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
9
|
Padula AM, Ning X, Bakre S, Barrett ES, Bastain T, Bennett DH, Bloom MS, Breton CV, Dunlop AL, Eick SM, Ferrara A, Fleisch A, Geiger S, Goin DE, Kannan K, Karagas MR, Korrick S, Meeker JD, Morello-Frosch R, O’Connor TG, Oken E, Robinson M, Romano ME, Schantz SL, Schmidt RJ, Starling AP, Zhu Y, Hamra GB, Woodruff TJ. Birth Outcomes in Relation to Prenatal Exposure to Per- and Polyfluoroalkyl Substances and Stress in the Environmental Influences on Child Health Outcomes (ECHO) Program. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:37006. [PMID: 36920051 PMCID: PMC10015888 DOI: 10.1289/ehp10723] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/01/2022] [Accepted: 02/06/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are persistent and ubiquitous chemicals associated with risk of adverse birth outcomes. Results of previous studies have been inconsistent. Associations between PFAS and birth outcomes may be affected by psychosocial stress. OBJECTIVES We estimated risk of adverse birth outcomes in relation to prenatal PFAS concentrations and evaluate whether maternal stress modifies those relationships. METHODS We included 3,339 participants from 11 prospective prenatal cohorts in the Environmental influences on the Child Health Outcomes (ECHO) program to estimate the associations of five PFAS and birth outcomes. We stratified by perceived stress scale scores to examine effect modification and used Bayesian Weighted Sums to estimate mixtures of PFAS. RESULTS We observed reduced birth size with increased concentrations of all PFAS. For a 1-unit higher log-normalized exposure to perfluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), perfluorononanoic acid (PFNA), and perfluorohexane sulfonic acid (PFHxS), we observed lower birthweight-for-gestational-age z-scores of β = - 0.15 [95% confidence interval (CI): - 0.27 , - 0.03 ], β = - 0.14 (95% CI: - 0.28 , - 0.002 ), β = - 0.22 (95% CI: - 0.23 , - 0.10 ), β = - 0.06 (95% CI: - 0.18 , 0.06), and β = - 0.25 (95% CI: - 0.37 , - 0.14 ), respectively. We observed a lower odds ratio (OR) for large-for-gestational-age: OR PFNA = 0.56 (95% CI: 0.38, 0.83), OR PFDA = 0.52 (95% CI: 0.35, 0.77). For a 1-unit increase in log-normalized concentration of summed PFAS, we observed a lower birthweight-for-gestational-age z-score [- 0.28 ; 95% highest posterior density (HPD): - 0.44 , - 0.14 ] and decreased odds of large-for-gestational-age (OR = 0.49 ; 95% HPD: 0.29, 0.82). Perfluorodecanoic acid (PFDA) explained the highest percentage (40%) of the summed effect in both models. Associations were not modified by maternal perceived stress. DISCUSSION Our large, multi-cohort study of PFAS and adverse birth outcomes found a negative association between prenatal PFAS and birthweight-for-gestational-age, and the associations were not different in groups with high vs. low perceived stress. This study can help inform policy to reduce exposures in the environment and humans. https://doi.org/10.1289/EHP10723.
Collapse
Affiliation(s)
- Amy M. Padula
- Program for Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Xuejuan Ning
- Department of Epidemiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Shivani Bakre
- Department of Epidemiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Emily S. Barrett
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Environmental and Occupational Health Sciences Institute, Piscataway, New Jersey, USA
| | - Tracy Bastain
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Deborah H. Bennett
- Department of Public Health Sciences, University of California, Davis, Davis, California, USA
| | - Michael S. Bloom
- Department of Global and Community Health, George Mason University, Fairfax, Virginia, USA
| | - Carrie V. Breton
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Anne L. Dunlop
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Stephanie M. Eick
- Program for Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Assiamira Ferrara
- Division of Research, Kaiser Permanente Northern California, Oakland, California, USA
| | - Abby Fleisch
- Center for Outcomes Research and Evaluation, Maine Medical Center Research Institute, Portland, Maine, USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Sarah Geiger
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - Dana E. Goin
- Program for Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Kurunthachalam Kannan
- Department of Pediatrics and Department of Environmental Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Margaret R. Karagas
- Department of Epidemiology, Dartmouth Geisel School of Medicine, Lebanon, New Hampshire, USA
| | - Susan Korrick
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - John D. Meeker
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Rachel Morello-Frosch
- School of Public Health and Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, California, USA
| | - Thomas G. O’Connor
- Department of Psychiatry, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Emily Oken
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts, USA
| | - Morgan Robinson
- Department of Pediatrics and Department of Environmental Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Megan E. Romano
- Department of Epidemiology, Dartmouth Geisel School of Medicine, Lebanon, New Hampshire, USA
| | - Susan L. Schantz
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - Rebecca J. Schmidt
- Department of Public Health Sciences, University of California, Davis, Davis, California, USA
| | - Anne P. Starling
- Center for Lifecourse Epidemiology of Adiposity and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yeyi Zhu
- Division of Research, Kaiser Permanente Northern California, Oakland, California, USA
| | - Ghassan B. Hamra
- Department of Epidemiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Tracey J. Woodruff
- Program for Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California, USA
| | | |
Collapse
|
10
|
Aker A, Ayotte P, Caron-Beaudoin É, De Silva A, Ricard S, Lemire M. Associations between dietary profiles and perfluoroalkyl acids in Inuit youth and adults. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159557. [PMID: 36272489 DOI: 10.1016/j.scitotenv.2022.159557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/12/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Perfluoroalkyl acids (PFAAs), a subset of perfluoroalkyl substances (PFAS), are synthetic chemicals used in industrial and consumer applications. They are exceptionally stable and highly mobile in the environment, and were detected in high concentrations in Arctic wildlife and Nunavik Inuit. The study's objective was to study the association between dietary profiles in Nunavik and plasma PFAAs concentrations. METHODS The study used data from the Qanuilirpitaa? 2017 Nunavik Inuit Health Survey (Q2017) (N = 1172) on Inuit adults aged 16-80 years. Nine PFAAs congeners were measured in plasma samples (six were detected). Dietary profiles were identified using latent profile analysis. Two sets of dietary profiles were included; the first included market (store-bought) and country foods (harvested/hunted from the land), and the second included only country foods. Multiple linear regression models regressed log-transformed PFAAs concentrations against the dietary profiles, adjusting for sociodemographic variables. RESULTS We identified statistically significant 24.54-57.55 % increases in all PFAAs congeners (PFOA, PFNA, PFDA, PFUnDA, PFHxS, and PFOS) in the dietary profile defined by frequent country food consumption compared to the dietary profile defined by frequent market food consumption. Individuals defined by low consumption of foods (related to food insecurity) had higher concentrations of six PFAAs compared to individuals with frequent market food consumption. The associations were stronger with profiles defined by more frequent country food consumption, and particularly those with increased marine mammal consumption. PFDA, PFUnDA, and PFOS were particularly associated with high country food consumption frequency, such that their concentrations increased by approximately 67-83 % compared to those reporting no or very little consumption of any country foods. CONCLUSIONS Increased country food consumption was strongly associated with higher PFAAs concentrations, particularly PFOS, PFDA, and PFUnDA. The results provide further evidence that the quality of country foods is being threatened by PFAAs contamination. Additional national and international regulations are required to protect the Arctic and its inhabitants from these pollutants.
Collapse
Affiliation(s)
- Amira Aker
- Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada; Département de médecine sociale et préventive, Université Laval, Québec, Quebec, Canada.
| | - Pierre Ayotte
- Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada; Département de médecine sociale et préventive, Université Laval, Québec, Quebec, Canada; Centre de Toxicologie du Québec, Institut National de Santé Publique du Québec, Québec, Canada
| | - Élyse Caron-Beaudoin
- Department of Health and Society University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, Canada
| | - Amila De Silva
- Aquatic Contaminants Research Division, Water Science Technology Directorate, Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - Sylvie Ricard
- Nunavik Regional Board of Health and Social Services, Kuujjuaq, QC, Canada
| | - Mélanie Lemire
- Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada; Département de médecine sociale et préventive, Université Laval, Québec, Quebec, Canada; Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Quebec, Quebec, Canada
| |
Collapse
|
11
|
Zhang B, Wei Z, Gu C, Yao Y, Xue J, Zhu H, Kannan K, Sun H, Zhang T. First Evidence of Prenatal Exposure to Emerging Poly- and Perfluoroalkyl Substances Associated with E-Waste Dismantling: Chemical Structure-Based Placental Transfer and Health Risks. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17108-17118. [PMID: 36399367 DOI: 10.1021/acs.est.2c05925] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Limited information is available about prenatal exposure to per- and polyfluoroalkyl substances (PFAS) in electronic waste (e-waste) recycling sites. In this study, we determined 21 emerging PFAS and 13 legacy PFAS in 94 paired maternal and cord serum samples collected from an e-waste dismantling site in Southern China. We found 6:2 fluorotelomer sulfonate (6:2 FTSA), 6:2 chlorinated polyfluorinated ether sulfonate (6:2 Cl-PFESA), and perfluorooctanephosphonate (PFOPA) as the major emerging PFAS, regardless of matrices, at median concentrations of 2.40, 1.78, and 0.69 ng/mL, respectively, in maternal serum samples, and 2.30, 0.73, and 0.72 ng/mL, respectively, in cord serum samples. Our results provide evidence that e-waste dismantling activities contribute to human exposure to 6:2 FTSA, 6:2 Cl-PFESA, and PFOPA. The trans-placental transfer efficiencies of emerging PFAS (0.42-0.94) were higher than that of perfluorooctanesulfonic acid (0.37) and were structure-dependent. The substitution of fluorine with chlorine or hydrogen and/or hydrophilic functional groups may alter trans-placental transfer efficiencies. Multiple linear regression analysis indicated significant associations between maternal serum concentrations of emerging PFAS and maternal clinical parameters, especially liver function and erythrocyte-related biomarkers. This study provides new insights into prenatal exposure to multiple PFAS in e-waste dismantling areas and the prevalence of emerging PFAS in people living near the sites.
Collapse
Affiliation(s)
- Bo Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ziyang Wei
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Jingchuan Xue
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Hongkai Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Kurunthachalam Kannan
- Department of Pediatrics, New York University School of Medicine, New York, New York 10016, United States
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Tao Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
12
|
Shen C, Ding J, Xu C, Zhang L, Liu S, Tian Y. Perfluoroalkyl Mixture Exposure in Relation to Fetal Growth: Potential Roles of Maternal Characteristics and Associations with Birth Outcomes. TOXICS 2022; 10:650. [PMID: 36355941 PMCID: PMC9695392 DOI: 10.3390/toxics10110650] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/23/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Perfluoroalkyl substances (PFASs) exposure is suggested to interfere with fetal growth. However, limited investigations considered the roles of parity and delivery on PFASs distributions and the joint effects of PFASs mixture on birth outcomes. In this study, 506 birth cohorts were investigated in Hangzhou, China with 14 PFASs measured in maternal serum. Mothers with higher maternal ages who underwent cesarean section were associated with elevated PFASs burden, while parity showed a significant but diverse influence. A logarithmic unit increment in perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), and perfluorononane sulfonate (PFNS) was significantly associated with a reduced birth weight of 0.153 kg (95% confidence interval (CI): -0.274, -0.031, p = 0.014), 0.217 kg (95% CI: -0.385, -0.049, p = 0.012), and 0.137 kg (95% CI: -0.270, -0.003, p = 0.044), respectively. Higher perfluoroheptanoic acid (PFHpA) and perfluoroheptane sulphonate (PFHpS) were associated with increased Apgar-1 scores. PFOA (Odds ratio (OR): 2.17, 95% CI: 1.27, 3.71, p = 0.004) and PFNS (OR:1.59, 95% CI: 1.01, 2.50, p = 0.043) were also risk factors to preterm birth. In addition, the quantile-based g-computation showed that PFASs mixture exposure was significantly associated with Apgar-1 (OR: 0.324, 95%CI: 0.068, 0.579, p = 0.013) and preterm birth (OR: 0.356, 95% CI: 0.149, 0.845, p = 0.019). In conclusion, PFASs were widely distributed in the maternal serum, which was influenced by maternal characteristics and significantly associated with several birth outcomes. Further investigation should focus on the placenta transfer and toxicities of PFASs.
Collapse
Affiliation(s)
- Chensi Shen
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Jiaxin Ding
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Chenye Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Long Zhang
- Women’s Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Shuren Liu
- Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Yonghong Tian
- Women’s Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| |
Collapse
|
13
|
Gui SY, Chen YN, Wu KJ, Liu W, Wang WJ, Liang HR, Jiang ZX, Li ZL, Hu CY. Association Between Exposure to Per- and Polyfluoroalkyl Substances and Birth Outcomes: A Systematic Review and Meta-Analysis. Front Public Health 2022; 10:855348. [PMID: 35400049 PMCID: PMC8988915 DOI: 10.3389/fpubh.2022.855348] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/23/2022] [Indexed: 12/17/2022] Open
Abstract
Background A large body of emerging evidence suggests that per- and polyfluoroalkyl substances (PFAS) affect birth outcomes in various pathways, but the evidence is inconsistent. Therefore, this study aimed to systematically review the epidemiological evidence on PFAS exposure and birth outcomes. Methods Three electronic databases were searched for epidemiological studies through February 13, 2021. We used random-effects meta-analysis for eight birth outcome indicators to calculate summary effect estimates for various exposure types. The risk of bias and the overall quality and level of evidence for each exposure-outcome pair were assessed. Results The initial search identified 58 potentially eligible studies, of which 46 were ultimately included. Many PFAS were found to have previously unrecognized statistically significant associations with birth outcomes. Specifically, birth weight (BW) was associated with PFAS, with effect sizes ranging from −181.209 g (95% confidence interval (CI) = −360.620 to −1.798) per 1 ng/ml increase in perfluoroheptanesulfonate (PFHpS) to −24.252 g (95% CI = −38.574 to −9.930) per 1 ln (ng/ml) increase in perfluorodecaoic acid (PFDA). Similar patterns were observed between other PFAS and birth outcomes: perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) with birth length (BL) and ponderal index (PI), PFOS and perfluorododecanoic acid (PFDoDA) with head circumference (HC), PFHpS with gestational age (GA), and perfluorononanoic acid (PFNA) and PFHpS with preterm birth (PTB). Additionally, PFDA showed a statistically significant association with small for gestational age (SGA). The level of the combined evidence for each exposure-outcome pair was considered to be “moderate”. Conclusion This study showed that PFAS exposure was significantly associated with increased risks of various adverse birth outcomes and that different birth outcome indicators had different degrees of sensitivity to PFAS. Further studies are needed to confirm our results by expanding the sample size, clarifying the effects of different types or doses of PFAS and the time of blood collection on birth outcomes, and fully considering the possible confounders.
Collapse
Affiliation(s)
- Si-Yu Gui
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Yue-Nan Chen
- Department of Pharmacy, School of Clinical Pharmacy, Anhui Medical University, Hefei, China
| | - Ke-Jia Wu
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Wen Liu
- Department of Clinical Medicine, The First School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Wen-Jing Wang
- Department of Pharmacy, School of Clinical Pharmacy, Anhui Medical University, Hefei, China
| | - Huan-Ru Liang
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zheng-Xuan Jiang
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ze-Lian Li
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Ze-Lian Li
| | - Cheng-Yang Hu
- Department of Humanistic Medicine, School of Humanistic Medicine, Anhui Medical University, Hefei, China
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Cheng-Yang Hu
| |
Collapse
|
14
|
Yang Z, Liu HY, Yang QY, Chen X, Li W, Leng J, Tang NJ. Associations between exposure to perfluoroalkyl substances and birth outcomes: A meta-analysis. CHEMOSPHERE 2022; 291:132909. [PMID: 34785180 DOI: 10.1016/j.chemosphere.2021.132909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
Although previous meta-analyses have shown that prenatal PFASs exposure is associated with reduction in birth weight, effects of prenatal PFASs exposure on birth outcomes have not been fully explored. We conducted a meta-analysis of 23 eligible studies searched from Embase, PubMed, and Web of Science before March 21, 2021 to analyze the association between prenatal PFASs exposure and birth outcomes, including premature birth (PTB), low birth weight (LBW), small for gestational age (SGA) and miscarriage. Odds ratio (OR) and corresponding confidence intervals were extracted for analysis. According to the heterogeneity of the included studies, fixed-effects (I2 ≤ 50%) and random-effects (I2 > 50%) models were applied respectively. The significant associations between PFOS and PTB (pooled OR = 1.54, 95% CI: 1.20-1.98), PFOA and miscarriage (pooled OR = 1.40, 95% CI: 1.15-1.70), and PFOS and LBW (pooled OR = 1.52, 95% CI: 1.19-1.94) were obtained. There were differences between included studies with different study regions, sampling time, and samples type used for PFASs assessment. These findings may provide insight in risk assessment and decision-making in producing products that contain PFASs.
Collapse
Affiliation(s)
- Ze Yang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Huan-Yu Liu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Qiao-Yun Yang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Xi Chen
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Weiqin Li
- Tianjin Women and Children's Health Center, Tianjin, 300070, China
| | - Junhong Leng
- Tianjin Women and Children's Health Center, Tianjin, 300070, China.
| | - Nai-Jun Tang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China.
| |
Collapse
|
15
|
Chang CJ, Barr DB, Ryan PB, Panuwet P, Smarr MM, Liu K, Kannan K, Yakimavets V, Tan Y, Ly V, Marsit CJ, Jones DP, Corwin EJ, Dunlop AL, Liang D. Per- and polyfluoroalkyl substance (PFAS) exposure, maternal metabolomic perturbation, and fetal growth in African American women: A meet-in-the-middle approach. ENVIRONMENT INTERNATIONAL 2022; 158:106964. [PMID: 34735953 PMCID: PMC8688254 DOI: 10.1016/j.envint.2021.106964] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 05/13/2023]
Abstract
BACKGROUND Prenatal exposures to per- and polyfluoroalkyl substances (PFAS) have been linked to reduced fetal growth. However, the detailed molecular mechanisms remain largely unknown. This study aims to investigate biological pathways and intermediate biomarkers underlying the association between serum PFAS and fetal growth using high-resolution metabolomics in a cohort of pregnant African American women in the Atlanta area, Georgia. METHODS Serum perfluorohexane sulfonic acid (PFHxS), perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), and perfluorononanoic acid (PFNA) measurements and untargeted serum metabolomics profiling were conducted in 313 pregnant African American women at 8-14 weeks gestation. Multiple linear regression models were applied to assess the associations of PFAS with birth weight and small-for-gestational age (SGA) birth. A high-resolution metabolomics workflow including metabolome-wide association study, pathway enrichment analysis, and chemical annotation and confirmation with a meet-in-the-middle approach was performed to characterize the biological pathways and intermediate biomarkers of the PFAS-fetal growth relationship. RESULTS Each log2-unit increase in serum PFNA concentration was significantly associated with higher odds of SGA birth (OR = 1.32, 95% CI 1.07, 1.63); similar but borderline significant associations were found in PFOA (OR = 1.20, 95% CI 0.94, 1.49) with SGA. Among 25,516 metabolic features extracted from the serum samples, we successfully annotated and confirmed 10 overlapping metabolites associated with both PFAS and fetal growth endpoints, including glycine, taurine, uric acid, ferulic acid, 2-hexyl-3-phenyl-2-propenal, unsaturated fatty acid C18:1, androgenic hormone conjugate, parent bile acid, and bile acid-glycine conjugate. Also, we identified 21 overlapping metabolic pathways from pathway enrichment analyses. These overlapping metabolites and pathways were closely related to amino acid, lipid and fatty acid, bile acid, and androgenic hormone metabolism perturbations. CONCLUSION In this cohort of pregnant African American women, higher serum concentrations of PFOA and PFNA were associated with reduced fetal growth. Perturbations of biological pathways involved in amino acid, lipid and fatty acid, bile acid, and androgenic hormone metabolism were associated with PFAS exposures and reduced fetal growth, and uric acid was shown to be a potential intermediate biomarker. Our results provide opportunities for future studies to develop early detection and intervention for PFAS-induced fetal growth restriction.
Collapse
Affiliation(s)
- Che-Jung Chang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Dana Boyd Barr
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - P Barry Ryan
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Parinya Panuwet
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Melissa M Smarr
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Ken Liu
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Kurunthachalam Kannan
- Department of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Volha Yakimavets
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Youran Tan
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - ViLinh Ly
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Carmen J Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Dean P Jones
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | | | - Anne L Dunlop
- Woodruff Health Sciences Center, School of Medicine and Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA
| | - Donghai Liang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| |
Collapse
|
16
|
Kobayashi S, Sata F, Ikeda-Araki A, Miyashita C, Goudarzi H, Iwasaki Y, Nakajima T, Kishi R. Relationships between maternal perfluoroalkyl substance levels, polymorphisms of receptor genes, and adverse birth outcomes in the Hokkaido birth cohort study, Japan. Reprod Toxicol 2021; 107:112-122. [PMID: 34896592 DOI: 10.1016/j.reprotox.2021.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/05/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022]
Abstract
We assessed the associations between perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) levels in third trimester maternal serum, the maternal genotypes of genes encoding nuclear receptors, and birth outcomes. We studied a prospective birth cohort of healthy pregnant Japanese women (n = 372) recruited in Sapporo between July 2002 and October 2005. We analyzed PFOS and PFOA levels using liquid chromatography-tandem mass spectrometry and analyzed 13 single nucleotide polymorphisms (SNPs) of proliferator-activated receptor alpha, gamma, gamma coactivator 1A, delta, constitutive androstane receptor, liver X receptor alpha, and beta (LXRB) using real-time polymerase reaction (PCR). We employed multiple linear regression models to establish the influences of log10-transformed PFOS and PFOA levels and maternal genotypes on birth size. In female infants, we identified interactions between PFOS levels, the maternal genotype of LXRB (rs1405655), and birth weight. The estimated mean changes in birth weight in response to PFOS levels, the maternal genotype LXRB (rs1405655)-TC/CC (compared to TT), and their interactions were -502.9 g (95 % confidence interval [CI] = -247.3, -758.5 g), -526.3 g (95 % CI = -200.7, -852.0 g), and 662.1 g (95 % CI = 221.0, 1,103.2 g; pint = 0.003), respectively. Interactions between PFOS levels and the maternal genotype of LXRB (rs1405655) also significantly affected birth chest circumference and the Ponderal index (pint = 0.037 and 0.005, respectively). Thus, interactions between PFOS levels and the maternal genotype of LXRB (rs1405655) affects birth sizes in female infants. We found that certain SNPs modify the effects of PFOS levels on birth size.
Collapse
Affiliation(s)
- Sumitaka Kobayashi
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo, 060-0812, Japan
| | - Fumihiro Sata
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo, 060-0812, Japan; Health Center, Chuo University, 42-8, Ichigaya-Hommura-cho, Shinjuku-ku, Tokyo, 162-8473, Japan
| | - Atsuko Ikeda-Araki
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo, 060-0812, Japan; Faculty of Health Sciences, Hokkaido University, North-12, West-5, Kita-ku, Sapporo, 060-0812, Japan
| | - Chihiro Miyashita
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo, 060-0812, Japan
| | - Houman Goudarzi
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo, 060-0812, Japan; Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, North-15, West-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Yusuke Iwasaki
- Department of Biopharmaceutics and Analytical Science, Hoshi University, 2-4-41, Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Tamie Nakajima
- College of Life and Health Sciences, Chubu University, 1200, Matsumoto-cho, Kasugai, 487-8501, Japan
| | - Reiko Kishi
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo, 060-0812, Japan.
| |
Collapse
|
17
|
Lazarevic N, Barnett AG, Sly PD, Callan AC, Stasinska A, Heyworth JS, Hinwood AL, Knibbs LD. Prenatal exposure to mixtures of persistent environmental chemicals and fetal growth outcomes in Western Australia. Int J Hyg Environ Health 2021; 240:113899. [PMID: 34883336 DOI: 10.1016/j.ijheh.2021.113899] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/21/2021] [Accepted: 12/01/2021] [Indexed: 01/09/2023]
Abstract
BACKGROUND Environmental chemicals have been implicated in the etiology of impaired fetal growth. However, few studies have assessed the effects of chemical mixtures or considered the possibility of non-monotonic exposure-response relationships for chemicals that act through the endocrine system. METHODS We assessed exposure to polybrominated diphenyl ethers, organochlorine pesticides, metals, and perfluorinated alkyl substances in blood and urine samples collected approximately two weeks prior to delivery in 166 non-smoking pregnant women, and subsequent birth weight, length, and head circumference of neonates who were part of the Australian Maternal Exposures to Toxic Substances (AMETS) study. We used Bayesian structured additive regression models with spike-slab priors to estimate mixture effects, identify important exposures, and model non-linearity in exposure-response relationships. RESULTS Mixtures of polybrominated diphenyl ethers, organochlorine pesticides, metals, and perfluorinated alkyl substances were not associated with fetal growth outcomes. Estimated change in fetal growth outcomes for an increase in exposure from the 25th to 75th percentile suggested no meaningful associations; the strongest evidence was for a small inverse association between birth weight and cesium exposure measured in whole blood (-124 g, 90% credible interval: -240 to -3 g). We identified several chemicals that may be associated with fetal growth non-linearly; however, 90% credible intervals contained small values consistent with no meaningful association. CONCLUSIONS Using a Bayesian penalized regression method, we assessed the shapes of exposure-response relationships, controlled for confounding by co-exposure, and estimated the single and combined effects of a large mixture of correlated environmental chemicals on fetal growth. Our findings, based on a small sample of mother-neonate pairs, suggest that mixtures of persistent chemicals are not associated with birth weight, length, and head circumference. The potential for non-monotonic relationships between environmental chemicals and fetal growth outcomes warrants further study.
Collapse
Affiliation(s)
- Nina Lazarevic
- School of Public Health, Faculty of Medicine, The University of Queensland, Herston, QLD, 4006, Australia; National Centre for Epidemiology and Population Health, Research School of Population Health, ANU College of Health and Medicine, The Australian National University, Canberra, ACT, 2600, Australia.
| | - Adrian G Barnett
- School of Public Health and Social Work, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD, 4059, Australia
| | - Peter D Sly
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, South Brisbane, QLD, 4101, Australia
| | - Anna C Callan
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Ania Stasinska
- School of Population and Global Health, Faculty of Health and Medical Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Jane S Heyworth
- School of Population and Global Health, Faculty of Health and Medical Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Andrea L Hinwood
- United Nations Environment Programme, Nairobi, Kenya; School of Science, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Luke D Knibbs
- School of Public Health, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia
| |
Collapse
|
18
|
Yao Q, Gao Y, Zhang Y, Qin K, Liew Z, Tian Y. Associations of paternal and maternal per- and polyfluoroalkyl substances exposure with cord serum reproductive hormones, placental steroidogenic enzyme and birth weight. CHEMOSPHERE 2021; 285:131521. [PMID: 34273704 DOI: 10.1016/j.chemosphere.2021.131521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 07/08/2021] [Accepted: 07/08/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND Maternal per- and polyfluoroalkyl substances (PFAS) exposure has been associated with placental function and fetal growth measures. However, few studies have simultaneously investigated paternal and maternal exposure effects. OBJECTIVES We evaluated the associations of paternal or maternal PFAS levels with placental function and fetal growth measures. METHODS We studied six PFAS measured in matched parental serums collected within 3 days before delivery in a birth cohort from LaiZhouWan, China. Outcomes evaluated include cord serum estradiol (n = 351), testosterone (n = 349), placental P450aromatase (n = 125), and birth weight (n = 369). Multiple linear regression was applied to estimate the associations for these outcomes according to paternal or maternal PFAS level after adjusting for socio-demographic confounders. Co-adjustment analysis of both paternal and maternal PFAS in the same model was performed. RESULTS Maternal and paternal PFAS levels were correlated (Spearman's r = 0.23-0.45). Maternal PFAS were associated with increased estradiol (e.g. , PFOA β = 0.03, 95%CI: 0.00, 0.07), testosterone (e.g. , PFUA β = 0.14, 95%CI: 0.00, 0.27), and P450aromatase (e.g. , PFOA β = 0.13, 95%CI: 0.04, 0.22). Maternal PFAS were also associated with a lower mean of birth weight but the estimated 95% CI included the null. Paternal PFAS were not associated with any of the outcomes evaluated. CONCLUSIONS Several maternal PFAS were associated with fetal steroid hormones and placental enzymes. Despite a correlation of PFAS level within the couples, no association was found for paternal PFAS exposure on these outcomes. The findings suggest the intrauterine PFAS exposure effect on fetal endocrine hormones and growth is unlikely to be confounded by exposure sources or familial factors shared within the couples.
Collapse
Affiliation(s)
- Qian Yao
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yu Gao
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yan Zhang
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Kaili Qin
- Institute of Inspection and Supervision, Shanghai Municipal Health Commission, Shanghai, 200031, China
| | - Zeyan Liew
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, 06510, USA; Yale Center for Perinatal, Pediatric and Environmental Epidemiology, Yale School of Public Health, New Haven, 06510, USA.
| | - Ying Tian
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200093, China.
| |
Collapse
|
19
|
Hu JMY, Arbuckle TE, Janssen P, Lanphear BP, Zhuang LH, Braun JM, Chen A, McCandless LC. Prenatal exposure to endocrine disrupting chemical mixtures and infant birth weight: A Bayesian analysis using kernel machine regression. ENVIRONMENTAL RESEARCH 2021; 195:110749. [PMID: 33465343 DOI: 10.1016/j.envres.2021.110749] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Pregnant women are regularly exposed to a multitude of endocrine disrupting chemicals (EDCs). EDC exposures, both individually and as mixtures, may affect fetal growth. The relationship of EDC mixtures with infant birth weight, however, remains poorly understood. We examined the relations between prenatal exposure to EDC mixtures and infant birth weight. METHODS We used data from the Maternal-Infant Research on Environmental Chemicals (MIREC) Study, a pan-Canadian cohort of 1857 pregnant women enrolled between 2008 and 2011. We quantified twenty-one chemical concentrations from five EDC classes, including organochlorine compounds (OCs), metals, perfluoroalkyl substances (PFAS), phenols and phthalate metabolites that were detected in >70% of urine or blood samples collected during the first trimester. In our primary analysis, we used Bayesian kernel machine regression (BKMR) models to assess variable importance, explore EDC mixture effects, and identify any interactions among EDCs. Our secondary analysis used traditional linear regression to compare the results with those of BKMR and to quantify the changes in mean birth weight in relation to prenatal EDC exposures. RESULTS We found evidence that mixtures of OCs and metals were associated with monotonic decreases in mean birth weight across the whole range of exposure. trans-Nonachlor from the OC mixture and lead (Pb) from the metal mixture had the greatest impact on birth weight. Our linear regression analysis corroborated the BKMR results and found that a 2-fold increase in trans-nonachlor and Pb concentrations reduced mean birth weight by -38 g (95% confidence interval (CI): -67, -10) and -39 g (95% CI: -69, -9), respectively. A sex-specific association for OC mixture was observed among female infants. PFAS, phenols and phthalates were not associated with birth weight. No interactions were observed among the EDCs. CONCLUSIONS Using BKMR, we observed that both OC and metal mixtures were associated with decreased birth weight in the MIREC Study. trans-Nonachlor from the OC mixture and Pb from the metal mixture contributed most to the adverse effects.
Collapse
Affiliation(s)
- Janice M Y Hu
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.
| | - Tye E Arbuckle
- Population Studies Division, Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, Canada
| | - Patricia Janssen
- School of Population and Public Health, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Bruce P Lanphear
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Liheng H Zhuang
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, RI, USA
| | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
20
|
Ramskov Tetzlaff CN, Ramhøj L, Lardenois A, Axelstad M, Evrard B, Chalmel F, Taxvig C, Svingen T. Adult female rats perinatally exposed to perfluorohexane sulfonate (PFHxS) and a mixture of endocrine disruptors display increased body/fat weights without a transcriptional footprint in fat cells. Toxicol Lett 2021; 339:78-87. [DOI: 10.1016/j.toxlet.2020.12.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 12/22/2020] [Accepted: 12/26/2020] [Indexed: 12/11/2022]
|
21
|
Tian Y, Miao M, Ji H, Zhang X, Chen A, Wang Z, Yuan W, Liang H. Prenatal exposure to perfluoroalkyl substances and cord plasma lipid concentrations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115426. [PMID: 33152632 DOI: 10.1016/j.envpol.2020.115426] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/17/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
The effect of prenatal exposure to perfluoroalkyl substances (PFAS) on lipid concentrations in newborns is unknown. Using data from the Shanghai-Minhang Birth Cohort Study, we prospectively assessed the health effects of prenatal exposure to individual and multiple PFAS on cord lipid concentrations. Maternal plasma samples collected at 12-16 weeks of gestation were analyzed for eleven PFAS, and cord blood samples were analyzed for lipids: total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C). We used multiple linear regression models to evaluate the associations of each individual PFAS with each lipid parameter, and used Bayesian Kernel Machine Regression (BKMR) models to assess the overall and single-exposure effects of eight PFAS with the detection rate above 80% on cord lipid concentrations. In multiple linear regression models, for each unit increase in ln-transformed maternal concentrations of perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUdA), and perfluorotridecanoic acid (PFTrDA), ln-transformed TC concentration decreased by 0.15 mg/dL (95% confidence interval (CI): -0.25, -0.05), 0.12 mg/dL (95% CI: -0.19, -0.05), 0.12 mg/dL (95% CI: -0.19, -0.05), and 0.05 mg/dL (95% CI: -0.09, -0.01), respectively, and ln-transformed HDL-C concentration decreased by 0.17 mg/dL (95% CI: -0.29, -0.05), 0.12 mg/dL (95% CI: -0.20, -0.03), 0.12 mg/dL (95% CI: -0.20, -0.03), and 0.06 mg/dL (95% CI: -0.11, -0.00), respectively. Statistically significant inverse associations were also observed between ln-transformed concentrations of PFDA, PFUdA, or PFTrDA and ln-transformed cord concentrations of TG and LDL-C. In BKMR models, the mixture of eight PFAS showed suggestively inverse association with all ln-transformed lipid concentrations, such that ln-transformed TC concentration of exposure to the 75th percentile of the mixture was 0.11 units (95% credible interval, -0.21, -0.01) lower than the 25th percentile exposure. Our findings indicated that prenatal exposure to PFAS may disrupt lipid metabolism in newborns.
Collapse
Affiliation(s)
- Youping Tian
- National Management Office of Neonatal Screening Project for CHD, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China; NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, 779 Old Hu Min Road, Shanghai, 200237, China
| | - Maohua Miao
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, 779 Old Hu Min Road, Shanghai, 200237, China
| | - Honglei Ji
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, 779 Old Hu Min Road, Shanghai, 200237, China
| | - Xiaotian Zhang
- National Reference Laboratory of Dioxin, Institute of Health Inspection and Detection, Hubei Provincial Academy of Preventive Medicine, Hubei Provincial Center for Disease Control and Prevention, #6 Zhuo Daoquan North Road, Wuhan, 430079, China
| | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, 423 Guardian Drive, Philadelphia, 19104-6021, USA
| | - Ziliang Wang
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, 779 Old Hu Min Road, Shanghai, 200237, China
| | - Wei Yuan
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, 779 Old Hu Min Road, Shanghai, 200237, China
| | - Hong Liang
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, 779 Old Hu Min Road, Shanghai, 200237, China.
| |
Collapse
|
22
|
Lee YJ, Jung HW, Kim HY, Choi YJ, Lee YA. Early-Life Exposure to Per- and Poly-Fluorinated Alkyl Substances and Growth, Adiposity, and Puberty in Children: A Systematic Review. Front Endocrinol (Lausanne) 2021; 12:683297. [PMID: 34566884 PMCID: PMC8458955 DOI: 10.3389/fendo.2021.683297] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 08/16/2021] [Indexed: 01/09/2023] Open
Abstract
Per- or polyfluoroalkyl substances (PFAS), a family of synthetic polyfluorinated compounds, are widely used in consumer products. Ubiquitous exposures to PFAS, in consideration of their persistence, bioaccumulation potential, and toxicities have led to concerns regarding possible harmful effects during critical periods of development in early-life and long-term consequences on health. The potential effects of PFAS depend on various factors including the type of PFAS and the timing and level of exposure. We performed a systematic review of the epidemiologic literature to assess the effects of early-life PFAS exposure on prenatal and postnatal growth, adiposity, and puberty in children and adolescents. For birth size, most studies indicated that prenatal PFAS exposure, in particular long-chain PFAS, may impair fetal growth, albeit some reports of null associations with maternal PFAS. For growth within 2 years of age, prenatal PFAS exposure showed no associations with height and either null or negative associations with weight. However, postnatal PFAS exposures were inversely related to height and weight at 2 years in a cross-sectional study. For postnatal adiposity, prenatal PFAS may mostly have negative associations with body mass index in the first 2 years of life, but positive relationships with adiposity in childhood and adolescence, although some studies showed null associations. For puberty, the evidence for associations between early-life PFAS exposure and pubertal development or sex hormone levels were limited and inconclusive. From experimental studies, plausible mechanisms through which PFAS may affect early-life growth and puberty include PFAS-induced activation of peroxisome proliferator-activated receptor, alterations of thyroid or steroid hormone synthesis and metabolism, and their weak estrogenic or anti-androgenic properties. Although the published literature suggests possible effects of PFAS exposures on early-life growth, adiposity, and puberty, current human evidence is limited in establishing PFAS-induced effects on early-life physical development. Further investigation is warranted to clarify PFAS-induced effects on growth and physical development in consideration of the critical time-window of exposure, concomitant exposure to chemical mixtures including various PFAS types, and possible non-monotonic dose-response relationship for growth and adiposity trajectories.
Collapse
Affiliation(s)
- Yun Jeong Lee
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Hae Woon Jung
- Department of Pediatrics, Kyung Hee University Medical Center, Seoul, South Korea
| | - Hwa Young Kim
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Yoon-Jung Choi
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, South Korea
- Environmental Health Center, Seoul National University College of Medicine, Seoul, South Korea
| | - Young Ah Lee
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul National University College of Medicine, Seoul, South Korea
- *Correspondence: Young Ah Lee,
| |
Collapse
|
23
|
Kim YR, White N, Bräunig J, Vijayasarathy S, Mueller JF, Knox CL, Harden FA, Pacella R, Toms LML. Per- and poly-fluoroalkyl substances (PFASs) in follicular fluid from women experiencing infertility in Australia. ENVIRONMENTAL RESEARCH 2020; 190:109963. [PMID: 32745751 DOI: 10.1016/j.envres.2020.109963] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/07/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
UNLABELLED Per- and poly-fluoroalkyl substances (PFASs) have been widely used and detected in human matrices. Evidence that PFAS exposure may be associated with adverse human reproductive health effects exists, however, data is limited. The use of a human matrix such as follicular fluid to determine chemical exposure, along with reproductive data will be used to investigate if there is a relationship between PFAS exposure and human fertility. OBJECTIVE This study aims to: (1) assess if associations exist between PFAS concentrations and/or age and fertilisation rate (as determined in follicular fluid of women in Australia who received assisted reproductive treatment (ART)); and (2) assess if associations exist between PFAS concentrations and infertility aetiology. METHODS Follicular fluids were originally collected from participants who underwent fully stimulated ART treatment cycles at an in vitro fertilisation (IVF) clinic in the period 2006-2009 and 2010-11 in Queensland, Australia. The samples were available for analysis of 32 PFASs including perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorohexane sulfonate (PFHxS), and perfluorononanoic acid (PFNA) using high performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS). 97 samples were matched with limited demographic data (age and fertilisation rate) and five infertility factors (three known female factors): 1) endometriosis, 2) polycystic ovarian syndrome (PCOS), and 3) genital tract infections - tubal/pelvic inflammation disease; as well as 4) male factor, and 5) idiopathic or unknown from either males or females. SPSS was used for linear regression analysis. RESULTS PFASs were detected in all follicular fluid samples with the mean concentrations of PFOS and PFOA, 4.9, and 2.4 ng/ml, respectively. A lower fertilisation rate was observed at higher age when age was added as a covariate, but there was no relationship between PFAS concentrations and fertilisation rate. There were few statistically significant associations between PFAS concentrations in follicular fluid and infertility factors. Log-transformed PFHxS concentrations were lower in females with endometriosis (factor 1) than in women who had reported 'male factors' as a reason of infertility, while PFHpA was higher in women who had infertile due to female factors (factor 1-3) compared to those who had infertile due to male factor. CONCLUSION PFASs were detected in follicular fluid of Australian women who had been treated at an IVF clinic. PFAS exposure found in follicular fluids is linked to increased risk of some infertility factors, and increased age was associated with decreased fertilisation rate in our data. But there was no relationship between PFAS and ferlitisation rate. Further large-scale investigations of PFAS and health effects including infertility are warranted.
Collapse
Affiliation(s)
- Young Ran Kim
- School of Public Health and Social Work, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, QLD, Australia.
| | - Nicole White
- School of Public Health and Social Work, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, QLD, Australia
| | - Jennifer Bräunig
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, QLD, Australia
| | - Soumini Vijayasarathy
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, QLD, Australia
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, QLD, Australia
| | - Christine L Knox
- School of Biomedical Science, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, QLD, Australia
| | | | - Rosana Pacella
- Institute for Lifecourse Development, Faculty of Education, Health and Human Sciences, University of Greenwich, UK
| | - Leisa-Maree L Toms
- School of Public Health and Social Work, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, QLD, Australia
| |
Collapse
|
24
|
Birth weight and perfluorooctane sulfonic acid: a random-effects meta-regression analysis. Environ Epidemiol 2020; 4:e095. [PMID: 33778349 PMCID: PMC7941775 DOI: 10.1097/ee9.0000000000000095] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/26/2020] [Indexed: 11/26/2022] Open
Abstract
Supplemental Digital Content is available in the text. Perfluorooctane sulfonic acid (PFOS) is a ubiquitous environmental contaminant. Most people in developed countries have detectable serum concentrations. Lower birth weight has been associated with serum PFOS in studies world-wide, many of which have been published only recently.
Collapse
|
25
|
Wikström S, Lin PI, Lindh CH, Shu H, Bornehag CG. Maternal serum levels of perfluoroalkyl substances in early pregnancy and offspring birth weight. Pediatr Res 2020; 87:1093-1099. [PMID: 31835271 PMCID: PMC7196936 DOI: 10.1038/s41390-019-0720-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 05/16/2019] [Accepted: 09/19/2019] [Indexed: 11/14/2022]
Abstract
BACKGROUND Perfluoroalkyl substances (PFASs) are widespread, bioaccumulating, and persistent and show placental transfer. Emerging research indicates associations between prenatal exposure and low birth weight. The aim of this study was to assess the associations between first trimester exposure to PFASs and birth weight (BW) in the Swedish Environmental, Longitudinal, Mother and child, Asthma and allergy (SELMA) study and examine whether associations differ between girls and boys. METHODS Eight PFASs were analyzed in maternal serum (median: 10 weeks of pregnancy). Associations between prenatal PFAS exposure and birth outcomes with BW, BW for gestational age, and birth small for gestational age (SGA) were assessed in 1533 infants, adjusted for potential confounders and stratified by sex. RESULTS Increased maternal perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), and perfluoroundecanoic acid (PFUnDA) were associated with lower BW, lower BW for gestational age, and SGA birth. Associations were significant only in girls, where prenatal exposure in the upper quartile was associated with a 93-142-g lower BW when compared with that of the lowest quartile exposure. The associations were not mediated by effects on gestational age. CONCLUSIONS We found associations between prenatal exposure for five different PFASs and birth weight, with more pronounced associations in girls than in boys.
Collapse
Affiliation(s)
- Sverre Wikström
- School of Medical Sciences, Örebro University, Örebro, Sweden. .,Department of Health Sciences, Karlstad University, Karlstad, Sweden.
| | - Ping-I Lin
- 0000 0001 0721 1351grid.20258.3dDepartment of Health Sciences, Karlstad University, Karlstad, Sweden
| | - Christian H. Lindh
- 0000 0001 0930 2361grid.4514.4Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Huan Shu
- 0000 0001 0721 1351grid.20258.3dDepartment of Health Sciences, Karlstad University, Karlstad, Sweden ,0000 0004 1936 9377grid.10548.38Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Carl-Gustaf Bornehag
- 0000 0001 0721 1351grid.20258.3dDepartment of Health Sciences, Karlstad University, Karlstad, Sweden ,0000 0001 0670 2351grid.59734.3cDepartment of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY USA
| |
Collapse
|
26
|
Xu C, Yin S, Liu Y, Chen F, Zhong Z, Li F, Liu K, Liu W. Prenatal exposure to chlorinated polyfluoroalkyl ether sulfonic acids and perfluoroalkyl acids: Potential role of maternal determinants and associations with birth outcomes. JOURNAL OF HAZARDOUS MATERIALS 2019; 380:120867. [PMID: 31330388 DOI: 10.1016/j.jhazmat.2019.120867] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 07/01/2019] [Accepted: 07/04/2019] [Indexed: 06/10/2023]
Abstract
Transplacental exposure to per/polyfluoroalkyl substances (PFASs) may impact fetal growth, but published evidence are still sparse and not in agreement. Moreover, little is known on the occurrence of emerging chlorinated polyfluorinated ether sulfonates (Cl-PFESAs, 6:2 and 8:2) in maternal-neonatal population. This study investigated eleven PFASs by analyzing 98 cord samples from Hangzhou, China. All target compounds can be transported across placenta, with highest median concentrations of 4.07, 1.05 and 0.731 ng/mL for PFOS, PFOA, and 6:2 Cl-PFESA. Older ages and higher pre-pregnancy BMI were associated with higher cord PFASs concentration; being primiparous was also significantly associated. Notably, after adjusting for potential confounders, PFOS was negatively associated with birth weight (β = -417.3 g, 95% CI: -742.1, -92.4, p = 0.011, per a log10 unit increase in exposure) and ponderal index (β = -0.005 g/cm3, 95% CI: -0.008, -0.002, p = 0.000). PFOS and PFHxS were also indicated to be associated with small for gestational age birth (SGA) (p < 0.05). Although no evidence of association was observed between Cl-PFESAs and birth outcomes in this study, the bioaccumulative properties and development toxicity of Cl-PFESAs deserve continuous concern.
Collapse
Affiliation(s)
- Chenye Xu
- School of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China; MOE Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, Zhejiang University, Hangzhou, 310058, China
| | - Shanshan Yin
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, Zhejiang University, Hangzhou, 310058, China
| | - Yingxue Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, Zhejiang University, Hangzhou, 310058, China
| | - Fangfang Chen
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, Zhejiang University, Hangzhou, 310058, China
| | - Zhehui Zhong
- School of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Fang Li
- School of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Kai Liu
- Division of Engineering and Applied Science, W. M. Keck Laboratories California Institute of Technology, Pasadena, California, 91125, USA
| | - Weiping Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
27
|
Rovira J, Martínez MÁ, Sharma RP, Espuis T, Nadal M, Kumar V, Costopoulou D, Vassiliadou I, Leondiadis L, Domingo JL, Schuhmacher M. Prenatal exposure to PFOS and PFOA in a pregnant women cohort of Catalonia, Spain. ENVIRONMENTAL RESEARCH 2019; 175:384-392. [PMID: 31154228 DOI: 10.1016/j.envres.2019.05.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/10/2019] [Accepted: 05/23/2019] [Indexed: 05/20/2023]
Abstract
This study was aimed at assessing the prenatal exposure to perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) in a cohort of pregnant women living in Reus (Tarragona County, Catalonia, Spain). These chemicals were biomonitored in maternal plasma during the first trimester of pregnancy, at delivery, and in cord blood. The dietary exposure of PFOS and PFOA was estimated by using questionnaires of food frequency and water intake, as well as data on food levels previously reported in the same area. In addition, the exposure through air inhalation and indoor dust ingestion was also calculated. Finally, a physiologically-based pharmacokinetic (PBPK) model was applied in order to establish the prenatal exposure of the fetus/child and to adjust exposure assessment vs. biomonitoring results. Probabilistic calculations of fetal exposure were performed by forward internal dosimetry and Monte-Carlo simulation. Mean plasma levels of PFOA were 0.45, 0.13 and 0.12 ng/mL at the first trimester, at delivery and in cord plasma, while those of PFOS were 2.93, 2.21, and 1.17 ng/mL, respectively. Traces of PFOS were found in all samples in the trimester and at delivery, and almost in all cord blood samples. Transplacental transfers of PFOS and PFOA were estimated to be around 70% and 60%, respectively. A temporal decrease trend in plasma levels of PFOS and PFOA was noticed, when comparing current values with data obtained 10 years ago in the same area. In agreement with many other studies, dietary intake was the main route of exposure to PFOS and PFOA in our cohort of pregnant women. It is an important issue to establish the exposure in critical windows periods such as fetal development to perfluoroalkylated substances, but also to other endocrine disrupting chemicals.
Collapse
Affiliation(s)
- Joaquim Rovira
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, Catalonia, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain
| | - Maria Ángeles Martínez
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, Catalonia, Spain
| | - Raju Prasad Sharma
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, Catalonia, Spain
| | - Teresa Espuis
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, Catalonia, Spain
| | - Martí Nadal
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain
| | - Vikas Kumar
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, Catalonia, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain
| | - Danae Costopoulou
- Mass Spectrometry and Dioxin Analysis Laboratory, INRASTES, NCSR "Demokritos", Neapoleos 27, 15341, Athens, Greece
| | - Irene Vassiliadou
- Mass Spectrometry and Dioxin Analysis Laboratory, INRASTES, NCSR "Demokritos", Neapoleos 27, 15341, Athens, Greece
| | - Leondios Leondiadis
- Mass Spectrometry and Dioxin Analysis Laboratory, INRASTES, NCSR "Demokritos", Neapoleos 27, 15341, Athens, Greece
| | - José L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain
| | - Marta Schuhmacher
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, Catalonia, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain.
| |
Collapse
|
28
|
Niu J, Liang H, Tian Y, Yuan W, Xiao H, Hu H, Sun X, Song X, Wen S, Yang L, Ren Y, Miao M. Prenatal plasma concentrations of Perfluoroalkyl and polyfluoroalkyl substances and neuropsychological development in children at four years of age. Environ Health 2019; 18:53. [PMID: 31196101 PMCID: PMC6567504 DOI: 10.1186/s12940-019-0493-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 05/31/2019] [Indexed: 05/02/2023]
Abstract
OBJECTIVE Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are persistent pollutants and have endocrine disruptive and neurotoxic effects. The association between maternal PFAS concentrations and neuropsychological development in children is inconclusive. The present study aimed to examine the effect of maternal PFAS concentrations on neuropsychological development in 4-years-old children. METHODS We used data from Shanghai-Minhang Birth Cohort, which recruited pregnant women at 12-16 gestational weeks. Among 981 women having PFAS measurement, 533 mother-child pairs were included in the study. A total of eight PFASs were measured, including perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorohexane sulfonate (PFHxS), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUdA), perfluorododecanoic acid (PFDoA), and perfluorotridecanoic acid (PFTrDA). When infants turned 4 years old, mothers were asked to complete the Ages and Stages Questionnaires® (ASQ) to assess neuropsychological development of their children. Poisson regression model with robust variance estimates was used to examine the association between maternal PFAS concentrations and each developmental subscale of the ASQ. RESULTS Prenatal plasma concentrations of most PFASs tended to be associated with increased risk of development problem in personal-social skills, including PFHxS, PFOS, PFOA, PFNA, PFDA, and PDUdA, and the associations for PFNA and PFDA were significant (per natural log unit increase: RRPFNA = 1.92, 95% CI: 1.21, 3.05; RR PFDA = 1.66, 95% CI: 1.17, 2.37). In stratified analyses by child' sex, the consistent pattern of higher risk of developmental problems in personal-social skills associated with most PFASs was mainly observed among girls (RRPFOS = 2.56, 95% CI: 1.20, 5.45; RRPFOA = 9.00, 95% CI: 3.82, 21.21; RRPFNA = 3.11, 95% CI: 1.36, 7.13; RRPFDA = 2.20, 95% CI: 1.21, 4.00; RRPFUdA = 2.44, 95% CI: 1.14, 5.20; RRPFDoA = 1.62, 95% CI: 1.04, 2.54). Boys with higher maternal PFOA concentrations had a decreased risk of developmental problems in gross motor skills (RR = 0.47, 95% CI: 0.25, 0.89). CONCLUSION Prenatal plasma PFAS concentrations were associated with neuropsychological development in girls at 4 years of age, mainly in the subset of personal-social skills.
Collapse
Affiliation(s)
- Jinbo Niu
- The First People's Hospital of Jianshan, Jiaxing, Zhejiang Province, China
| | - Hong Liang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| | - Youping Tian
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| | - Wei Yuan
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| | - Hong Xiao
- Department of Pharmaceutical Outcomes & Policy, College of Pharmacy, University of Florida, 1225 Center Drive, HPNP 3338, Gainesville, FL, 32610, USA
| | - Hui Hu
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, 2004 Mowry Road, Gainesville, FL, 32610, USA
| | - Xiaowei Sun
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| | - Xiuxia Song
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| | - Sheng Wen
- National Reference Laboratory of Dioxin, Institute of Health Inspection and Detection, Hubei Provincial Academy of Preventive Medicine, Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, China
| | - Li Yang
- Department of Public Educaion, Weifang Medical University, 7166 Baotong west Road, Weifang, 261053, Shandong Province, China
| | - Yanfeng Ren
- Department of Health Statistics, School of Public Health and Management, Weifang Medical University, 7166 Baotong west Road, Weifang, 261053, Shandong Province, China.
| | - Maohua Miao
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| |
Collapse
|
29
|
Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Edler L, Grasl-Kraupp B, Hogstrand C, Hoogenboom LR, Nebbia CS, Oswald IP, Petersen A, Rose M, Roudot AC, Vleminckx C, Vollmer G, Wallace H, Bodin L, Cravedi JP, Halldorsson TI, Haug LS, Johansson N, van Loveren H, Gergelova P, Mackay K, Levorato S, van Manen M, Schwerdtle T. Risk to human health related to the presence of perfluorooctane sulfonic acid and perfluorooctanoic acid in food. EFSA J 2018. [PMID: 32625773 DOI: 10.2903/j.efsa.2018.5194">10.2903/j.efsa.2018.5194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [10.2903/j.efsa.2018.5194','32625773', '10.1016/j.scitotenv.2016.06.177')">Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023] Open
10.2903/j.efsa.2018.5194" />
Abstract
The European Commission asked EFSA for a scientific evaluation on the risks to human health related to the presence of perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) in food. Regarding PFOS and PFOA occurrence, the final data set available for dietary exposure assessment contained a total of 20,019 analytical results (PFOS n = 10,191 and PFOA n = 9,828). There were large differences between upper and lower bound exposure due to analytical methods with insufficient sensitivity. The CONTAM Panel considered the lower bound estimates to be closer to true exposure levels. Important contributors to the lower bound mean chronic exposure were 'Fish and other seafood', 'Meat and meat products' and 'Eggs and egg products', for PFOS, and 'Milk and dairy products', 'Drinking water' and 'Fish and other seafood' for PFOA. PFOS and PFOA are readily absorbed in the gastrointestinal tract, excreted in urine and faeces, and do not undergo metabolism. Estimated human half-lives for PFOS and PFOA are about 5 years and 2-4 years, respectively. The derivation of a health-based guidance value was based on human epidemiological studies. For PFOS, the increase in serum total cholesterol in adults, and the decrease in antibody response at vaccination in children were identified as the critical effects. For PFOA, the increase in serum total cholesterol was the critical effect. Also reduced birth weight (for both compounds) and increased prevalence of high serum levels of the liver enzyme alanine aminotransferase (ALT) (for PFOA) were considered. After benchmark modelling of serum levels of PFOS and PFOA, and estimating the corresponding daily intakes, the CONTAM Panel established a tolerable weekly intake (TWI) of 13 ng/kg body weight (bw) per week for PFOS and 6 ng/kg bw per week for PFOA. For both compounds, exposure of a considerable proportion of the population exceeds the proposed TWIs.
Collapse
|
30
|
Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Edler L, Grasl-Kraupp B, Hogstrand C, Hoogenboom LR, Nebbia CS, Oswald IP, Petersen A, Rose M, Roudot AC, Vleminckx C, Vollmer G, Wallace H, Bodin L, Cravedi JP, Halldorsson TI, Haug LS, Johansson N, van Loveren H, Gergelova P, Mackay K, Levorato S, van Manen M, Schwerdtle T. Risk to human health related to the presence of perfluorooctane sulfonic acid and perfluorooctanoic acid in food. EFSA J 2018; 16:e05194. [PMID: 32625773 PMCID: PMC7009575 DOI: 10.2903/j.efsa.2018.5194] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The European Commission asked EFSA for a scientific evaluation on the risks to human health related to the presence of perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) in food. Regarding PFOS and PFOA occurrence, the final data set available for dietary exposure assessment contained a total of 20,019 analytical results (PFOS n = 10,191 and PFOA n = 9,828). There were large differences between upper and lower bound exposure due to analytical methods with insufficient sensitivity. The CONTAM Panel considered the lower bound estimates to be closer to true exposure levels. Important contributors to the lower bound mean chronic exposure were 'Fish and other seafood', 'Meat and meat products' and 'Eggs and egg products', for PFOS, and 'Milk and dairy products', 'Drinking water' and 'Fish and other seafood' for PFOA. PFOS and PFOA are readily absorbed in the gastrointestinal tract, excreted in urine and faeces, and do not undergo metabolism. Estimated human half-lives for PFOS and PFOA are about 5 years and 2-4 years, respectively. The derivation of a health-based guidance value was based on human epidemiological studies. For PFOS, the increase in serum total cholesterol in adults, and the decrease in antibody response at vaccination in children were identified as the critical effects. For PFOA, the increase in serum total cholesterol was the critical effect. Also reduced birth weight (for both compounds) and increased prevalence of high serum levels of the liver enzyme alanine aminotransferase (ALT) (for PFOA) were considered. After benchmark modelling of serum levels of PFOS and PFOA, and estimating the corresponding daily intakes, the CONTAM Panel established a tolerable weekly intake (TWI) of 13 ng/kg body weight (bw) per week for PFOS and 6 ng/kg bw per week for PFOA. For both compounds, exposure of a considerable proportion of the population exceeds the proposed TWIs.
Collapse
|
31
|
|
32
|
Tian Y, Zhou Y, Miao M, Wang Z, Yuan W, Liu X, Wang X, Wang Z, Wen S, Liang H. Determinants of plasma concentrations of perfluoroalkyl and polyfluoroalkyl substances in pregnant women from a birth cohort in Shanghai, China. ENVIRONMENT INTERNATIONAL 2018; 119:165-173. [PMID: 29958117 DOI: 10.1016/j.envint.2018.06.015] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 05/17/2023]
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are widely used in commercial applications and have been commonly detected in pregnant women in Europe and North America. However, data on PFAS concentrations in pregnant women in China are limited. Additionally, the determinants of maternal PFAS concentrations with respect to diet habits have been less extensively described, especially in Asian countries. In the present study, we aimed to measure PFAS concentrations in pregnant women and evaluate sociodemographic, lifestyle, and dietary factors as potential determinants of PFAS concentrations. We analyzed eleven PFASs in maternal blood samples (N = 981) collected at 12-16 weeks of gestation between April and December 2012 at Maternal and Child Health Hospital of Minhang District in Shanghai, China. Multivariate linear regression models were used to examine the associations of PFAS concentrations with maternal sociodemographic, lifestyle, and dietary factors. Eight PFASs, including perfluorohexane sulfonate (PFHxS), perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUdA), perfluorododecanoic acid (PFDoA), and perfluorotridecanoic acid (PFTrDA), were detected in >85% of the samples. PFOA and PFOS were the predominant PFASs with high median concentrations (19.97 ng/mL and 10.81 ng/mL, respectively). Pregnant women who were older, multiparous, well educated, passive smokers, with lower per capita household incomes, and had lived in rooms decorated within the past two years had higher PFAS concentrations, after mutual adjustment for maternal sociodemographic characteristics and lifestyles. With regard to dietary factors, intake of red meat, poultry, animal offal, fish, pastries and fried food, and drinking tap water during pregnancy contributed to higher concentrations of most PFASs, after adjustment for sociodemographic characteristics and lifestyles. Furthermore, higher intake of wheat, coarse cereals, tubers, and soy products was associated with lower maternal PFAS concentrations. Our findings indicate that PFASs were ubiquitous among pregnant women in Shanghai. We provide new evidence for the association between dietary factors and maternal PFAS exposure in China.
Collapse
Affiliation(s)
- Youping Tian
- School of Public Health, Fudan University, Shanghai 200032, China; Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai 200237, China
| | - Yan Zhou
- National Reference Laboratory of Dioxin, Institute of Health Inspection and Detection, Hubei Provincial Academy of Preventive Medicine, Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China
| | - Maohua Miao
- Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai 200237, China
| | - Ziliang Wang
- School of Public Health, Fudan University, Shanghai 200032, China; Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai 200237, China
| | - Wei Yuan
- Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai 200237, China
| | - Xiao Liu
- National Reference Laboratory of Dioxin, Institute of Health Inspection and Detection, Hubei Provincial Academy of Preventive Medicine, Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China
| | - Xin Wang
- Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai 200237, China
| | - Zhikai Wang
- Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai 200237, China
| | - Sheng Wen
- National Reference Laboratory of Dioxin, Institute of Health Inspection and Detection, Hubei Provincial Academy of Preventive Medicine, Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China.
| | - Hong Liang
- Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai 200237, China.
| |
Collapse
|
33
|
Xin Y, Wan B, Yang Y, Cui XJ, Xie YC, Guo LH. Perfluoroalkyl acid exposure induces protective mitochondrial and endoplasmic reticulum autophagy in lung cells. Arch Toxicol 2018; 92:3131-3147. [PMID: 30022264 DOI: 10.1007/s00204-018-2266-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 07/12/2018] [Indexed: 01/07/2023]
Abstract
Wide application of perfluoroalkyl acids (PFAAs) has raised great concerns on their side-effects on human health. PFAAs have been shown to accumulate mainly in the liver and cause hepatotoxicity. However, PFAAs can also deposit in lung tissues through air-borne particles and cause serious pulmonary toxicity. But the underlying mechanisms are still largely unknown. Autophagy is a type of programmed cell death parallel to necrosis and apoptosis, and may be involved in the lung toxicity of PFAAs. In this study, lung cancer cells, A549, were employed as the model to investigate the effects of three PFAAs with different carbon chain lengths on cell autophagy. Through Western blot analysis on LC3-I/II ratio of cells exposed to non-cytotoxic concentration (200 µM) and cytotoxic concentration (350 µM), we found concentration-dependent increase of autophagosomes in cells, which was further confirmed by TEM examination on ultra-thin section of cells and fluorescence imaging on autophagosomes in live cells. The abundance of p62 increased with the PFAAs concentration indicating the blockage of autophagy flux. Furthermore, we identified the mitochondrial autophagy (mitophagy) and endoplasmic reticulum autophagy (ER-phagy) morphologically as the major types of autophagy, suggesting the disruption on mitochondria and ERs. These organelle damages were confirmed by the overgeneration of ROS, hyperpolarization of mitochondrial membrane potential, as well as the up-regulation of ER-stress-related proteins, ATF4 and p-IRE1. Further analysis on the signaling pathways showed that PFAAs activated the MAPK pathways and inhibited the PI3K/Akt pathway, with potencies following the order of PFDA > PFNA > PFOA. Anti-oxidant (NAC) treatment did not rescue cells from death, indicating that oxidative stress is not the reason of cytotoxicity. Inhibition of autophagy by Atg5 siRNA and chloroquine even increased the toxicity of PFAAs, suggesting that PFAAs-autophagy was induced as the secondary effects of organelle damages and played a protective role during cell death.
Collapse
Affiliation(s)
- Yan Xin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, P.O. Box 2871, Beijing, 100085, People's Republic of China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Bin Wan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, P.O. Box 2871, Beijing, 100085, People's Republic of China. .,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| | - Yu Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, P.O. Box 2871, Beijing, 100085, People's Republic of China
| | - Xue-Jing Cui
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, P.O. Box 2871, Beijing, 100085, People's Republic of China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yi-Chun Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, P.O. Box 2871, Beijing, 100085, People's Republic of China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Liang-Hong Guo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, P.O. Box 2871, Beijing, 100085, People's Republic of China. .,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China. .,Institute of Environment and Health, Jianghan University, Wuhan, 430056, Hubei, People's Republic of China.
| |
Collapse
|
34
|
Lee YA, Kim JH, Jung HW, Lim YH, Bae S, Kho Y, Hong YC, Shin CH, Yang SW. The serum concentrations of perfluoroalkyl compounds were inversely associated with growth parameters in 2-year old children. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 628-629:226-232. [PMID: 29438932 DOI: 10.1016/j.scitotenv.2018.02.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 02/05/2018] [Accepted: 02/05/2018] [Indexed: 05/22/2023]
Abstract
The relationship between the serum concentrations of perfluoroalkyl compounds (PFCs) and growth parameters was investigated in 2-year-old Korean children. The study included 361 children aged 2years (192 boys and 169 girls; 22-27months), born at term appropriate-for-gestational-age, who visited between 2012 and 2013. Growth parameters of height and weight, and serum samples were collected from 2-year-old children. Four PFCs (perfluorohexane sulfonic acid [PFHxS], perfluorooctane sulfonic acid [PFOS], perfluorooctanoic acid [PFOA], and perfluorononanoic acid [PFNA]), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUnDA), and perfluoroheptanoic acid (PFHpA) were detected in >99, 93.4, 89.8, and 74.2% of the serum samples, respectively. The duration of breastfeeding was positively associated with the serum concentrations of ln-transformed PFHxS, PFOS, PFHpA, PFOA, PFNA, PFDA, and PFUnDA (all P<0.001). Height at 2years of age was inversely related to PFHxS, PFOS, PFOA, PFNA, and PFDA concentrations (adjusted β per ln unit [95% confidence interval, CI]: -0.84 [-1.26, -0.42], -0.77 [-1.27, -0.15], -0.91 [-1.36, -0.47], -0.48 [-1.40, -0.51], and -0.44 [-0.77, -0.10] cm, respectively), after adjusting for age, sex, and midparental height. Weight at 2years of age was inversely associated with PFNA (adjusted β per ln unit [95% CI]: -0.32 [-0.48, -0.15] kg), after adjusting for age, sex, and parental BMI. In conclusion, the serum concentrations of PFCs were inversely associated with growth parameters in 2-year-old children.
Collapse
Affiliation(s)
- Young Ah Lee
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jin Hee Kim
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul, Republic of Korea
| | - Hae Woon Jung
- Department of Pediatrics, Kyunghee University Kyunghee Medical Center, Seoul, Republic of Korea
| | - Youn-Hee Lim
- Environmental Health Center, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Sanghyuk Bae
- Department of Preventive Medicine, College of Medicine, Dankook University, Cheonan, Republic of Korea
| | - Younglim Kho
- Department of Health, Environment & Safety, Eulji University, Sungnam, Republic of Korea
| | - Yun-Chul Hong
- Environmental Health Center, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea; Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Choong Ho Shin
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Sei Won Yang
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
35
|
Jain RB. Contribution of diet and other factors to the observed levels of selected perfluoroalkyl acids in serum among US children aged 3-11 years. ENVIRONMENTAL RESEARCH 2018; 161:268-275. [PMID: 29169101 DOI: 10.1016/j.envres.2017.11.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/14/2017] [Accepted: 11/13/2017] [Indexed: 05/21/2023]
Abstract
Data from National Health and Nutrition Examination Survey for 2013-2014 for children aged 3-11 years (N = 639) were analyzed to evaluate the contribution of diet and other factors in variability associated with the observed levels of seven perfluoroalkyl acids in serum, namely, 2(N-methyl-perfluorooctane sulfonamide) acetic acid (MPAH), perfluorodecanoic acid (PFDE), perfluorononanoic acid (PFNA), perflurorohexane sulfonic acid (PFHxS), linear isomer of PFOA (NPFOA), linear isomer of PFOS (NPFOS), and monomethyl isomer of PFOS (MPFOS). Diet accounted for a low of 18.6% of the total explained variance in the adjusted levels of NPFOA and a high of 72.3% for PFNA. Consumption of meat other than fish and poultry was associated with increased levels of NPFOS (β = 0.00035, p < 0.01) and MPFOS (β = 0.00027, p=0.02). However, consumption of fish was associated with decreased levels of PFDE (β = - 0.00058, p=0.01). Consumption of eggs was associated with higher levels of PFDE (β = 0.00105, p=0.04). Higher levels of PFHxS were associated with consumption of fruits and juices (β = 0.00019, p = 0.03). Exposure to environmental tobacco smoke in indoor environments other than home was associated with 12.6% increase in the levels of NPFOA. Boys had higher adjusted geometric mean (AGM) than girls for MPAH (0.88 vs. 0.70ng/mL, p = 0.04) and NPFOS (2.73 vs. 2.27ng/mL, p = 0.04). Non-Hispanic white had higher AGMs than Hispanics for MPAH (0.15 vs. 0.07, p < 0.01), for NPFOA (1.98 vs. 1.64ng/mL, p < 0.01), and MPFOS (1.39 vs. 1.18ng/mL, p = 0.03). Non-Hispanic white also had higher AGM than non-Hispanic Asians and others for PFHxS (0.99 vs. 0.63ng/mL, p < 0.01) and NPFOA (1.98 vs. 1.53ng/mL, p < 0.01).
Collapse
Affiliation(s)
- Ram B Jain
- 2959 Estate View Ct, Dacula, GA 30019, USA.
| |
Collapse
|
36
|
Fang X, Wu C, Li H, Yuan W, Wang X. Elevation of intracellular calcium and oxidative stress is involved in perfluorononanoic acid–induced neurotoxicity. Toxicol Ind Health 2017; 34:139-145. [DOI: 10.1177/0748233717742262] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Perfluorononanoic acid (PFNA) is one of the major perfluorinated compounds found in both biological and abiotic samples and has recently been demonstrated to cause neurobehavioral defects in mammals. In this study, pheochromocytoma-12 (PC12) cells were exposed to various doses of PFNA to explore the cytotoxicity of PFNA to neurons and the possible mechanisms underlying these effects. The results showed that exposure to PFNA dose-dependently decreased the viability of PC12 cells and increased the release of lactate dehydrogenase into cell culture media. Exposure to PFNA increased the malondialdehyde content and decreased the total antioxidant capacity and glutathione peroxidase activity in PC12 cell culture supernatants. Exposure to PFNA increased the intracellular calcium level and upregulated the Ca2+/calmodulin-dependent protein kinase II (CaMKII) expression in PC12 cells. PFNA also decreased Bcl-2 expression and increased Bax expression in PC12 cells. These results suggested that exposure to PFNA elevated the intracellular calcium level and activated the CaMKII signaling pathway, which may aggravate oxidative stress in PC12 cells and lead to cell damage or cell apoptosis.
Collapse
Affiliation(s)
- Xuemei Fang
- School of Biological and Food Engineering, Suzhou University, Suzhou, People’s Republic of China
| | - Chao Wu
- School of Biological and Food Engineering, Suzhou University, Suzhou, People’s Republic of China
| | - Hongxia Li
- School of Biological and Food Engineering, Suzhou University, Suzhou, People’s Republic of China
| | - Weifeng Yuan
- School of Biological and Food Engineering, Suzhou University, Suzhou, People’s Republic of China
| | - Xin Wang
- School of Biological and Food Engineering, Suzhou University, Suzhou, People’s Republic of China
| |
Collapse
|
37
|
Manzano-Salgado CB, Casas M, Lopez-Espinosa MJ, Ballester F, Iñiguez C, Martinez D, Costa O, Santa-Marina L, Pereda-Pereda E, Schettgen T, Sunyer J, Vrijheid M. Prenatal exposure to perfluoroalkyl substances and birth outcomes in a Spanish birth cohort. ENVIRONMENT INTERNATIONAL 2017; 108:278-284. [PMID: 28917208 DOI: 10.1016/j.envint.2017.09.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/04/2017] [Accepted: 09/05/2017] [Indexed: 05/03/2023]
Abstract
BACKGROUND Prenatal perfluorooctanoate (PFOA) exposure has been associated with reduced birth weight but maternal glomerular filtration rate (GFR) may attenuate this association. Further, this association remains unclear for other perfluoroalkyl substances (PFAS), such as perfluorooctane sulfonate (PFOS), perfluorohexane sulfonate (PFHxS), and perfluorononanoate (PFNA). We estimated associations between prenatal PFAS exposure and birth outcomes, and the influence of GFR, in a Spanish birth cohort. METHODS We measured PFHxS, PFOS, PFOA, and PFNA in 1st-trimester maternal plasma (years: 2003-2008) in 1202 mother-child pairs. Continuous birth outcomes included standardized weight, length, head circumference, and gestational age. Binary outcomes included low birth weight (LBW), small-for-gestational-age, and preterm birth. We calculated maternal GFR from plasma-creatinine measurements in the 1st-trimester of pregnancy (n=765) using the Cockcroft-Gault formula. We used mixed-effects linear and logistic models with region of residence as random effect and adjustment for maternal age, parity, pre-pregnancy BMI, and fish intake during pregnancy. RESULTS Newborns in this study weighted on average 3263g and had a median gestational age of 39.8weeks. The most abundant PFAS were PFOS and PFOA (median: 6.05 and 2.35ng/mL, respectively). Overall, PFAS concentrations were not significantly associated to birth outcomes. PFOA, PFHxS, and PFNA showed weak, non-statistically significant associations with reduced birth weights ranging from 8.6g to 10.3g per doubling of exposure. Higher PFOS exposure was associated with an OR of 1.90 (95% CI: 0.98, 3.68) for LBW (similar in births-at-term) in boys. Maternal GFR did not confound the associations. CONCLUSIONS In this study, PFAS showed little association with birth outcomes. Higher PFHxS, PFOA, and PFNA concentrations were non-significantly associated with reduced birth weight. The association between PFOS and LBW seemed to be sex-specific. Finally, maternal GFR measured early during pregnancy had little influence on the estimated associations.
Collapse
Affiliation(s)
- Cyntia B Manzano-Salgado
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| | - Maribel Casas
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Maria-Jose Lopez-Espinosa
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain
| | - Ferran Ballester
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain
| | - Carmen Iñiguez
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain
| | - David Martinez
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Olga Costa
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain
| | - Loreto Santa-Marina
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Subdirección de Salud Pública y Adicciones de Gipuzkoa, Donostia-San Sebastián, Spain; Instituto de Investigación Sanitaria BIODONOSTIA, Donostia-San Sebastián, Spain
| | - Eva Pereda-Pereda
- Instituto de Investigación Sanitaria BIODONOSTIA, Donostia-San Sebastián, Spain; Facultad de Psicología, Universidad del País Vasco (UPV/EHU), Donostia-San Sebastián, Spain
| | - Thomas Schettgen
- Institute for Occupational Medicine, RWTH Aachen University, Aachen, Germany
| | - Jordi Sunyer
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Martine Vrijheid
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
38
|
Mamsen LS, Jönsson BAG, Lindh CH, Olesen RH, Larsen A, Ernst E, Kelsey TW, Andersen CY. Concentration of perfluorinated compounds and cotinine in human foetal organs, placenta, and maternal plasma. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 596-597:97-105. [PMID: 28426990 DOI: 10.1016/j.scitotenv.2017.04.058] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 04/06/2017] [Accepted: 04/07/2017] [Indexed: 05/20/2023]
Abstract
BACKGROUND Perfluoroalkyl substances (PFASs) are bio-accumulative pollutants, and prenatal exposure to PFASs is believed to impact human foetal development and may have long-term adverse health effects later in life. Additionally, maternal cigarette smoking may be associated with PFAS levels. Foetal exposure has previously been estimated from umbilical cord plasma, but the actual concentration in foetal organs has never been measured. OBJECTIVES The concentrations of 5 PFASs and cotinine - the primary metabolite of nicotine - were measured in human foetuses, placentas, and maternal plasma to evaluate to what extent these compounds were transferred from mother to foetus and to determine if the PFAS concentrations were associated with maternal cigarette smoking. METHODS Thirty-nine Danish women who underwent legal termination of pregnancy before gestational week 12 were included; 24 maternal blood samples were obtained together with 34 placental samples and 108 foetal organs. PFASs and cotinine were assayed by liquid chromatography/triple quadrupole mass spectrometry. RESULTS In foetal organs, the average concentrations of perfluorooctanesulphonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluoroundecanoic acid (PFUnDa), and perfluorodecanoic acid (PFDA) were 0.6ng/g, 0.2ng/g, 0.1ng/g, 0.1ng/g, and 0.1ng/g, respectively. A significant positive correlation was found between the exposure duration, defined as foetal age, and foetal to maternal ratio for all five PFASs and cotinine. Smokers presented 99ng/g cotinine in plasma, 108ng/g in placenta, and 61ng/g in foetal organs. No correlation between the maternal cotinine concentrations and PFAS concentrations was found. CONCLUSIONS PFASs were transferred from mother to foetus, however, with different efficiencies. The concentrations of PFOS, PFOA, PFNA, PFUnDA, and PFDA in foetal organs were much lower than the maternal concentrations. Furthermore, a significant correlation between the exposure duration and all of the evaluated PFASs was found. The health-compromising concentrations of these substances during foetal development are unknown.
Collapse
Affiliation(s)
- Linn Salto Mamsen
- Laboratory of Reproductive Biology, Section 5712, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, University of Copenhagen, Rigshospitalet, 2100 Copenhagen, Denmark.
| | - Bo A G Jönsson
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, 223 61 Lund, Sweden
| | - Christian H Lindh
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, 223 61 Lund, Sweden.
| | - Rasmus H Olesen
- Department of Biomedicine - Pharmacology, Aarhus University, 8000 Aarhus C, Denmark.
| | - Agnete Larsen
- Department of Biomedicine - Pharmacology, Aarhus University, 8000 Aarhus C, Denmark.
| | - Erik Ernst
- Department of Obstetrics and Gynaecology, University Hospital of Aarhus, Skejby Sygehus, 8000 Aarhus, Denmark.
| | - Thomas W Kelsey
- School of Computer Science, University of St. Andrews, KY16 9SX St. Andrews, United Kingdom.
| | - Claus Yding Andersen
- Laboratory of Reproductive Biology, Section 5712, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, University of Copenhagen, Rigshospitalet, 2100 Copenhagen, Denmark.
| |
Collapse
|