1
|
Yu X, Bai M, Li X, Yang P, Wang Q, Wang Z, Weng L, Ye H. Tetracycline removal by immobilized indigenous bacterial consortium using biochar and biomass: Removal performance and mechanisms. BIORESOURCE TECHNOLOGY 2024; 413:131463. [PMID: 39277055 DOI: 10.1016/j.biortech.2024.131463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/28/2024] [Accepted: 09/07/2024] [Indexed: 09/17/2024]
Abstract
The significant influx of antibiotics into the environment represents ecological risks and threatens human health. Microbial degradation stands as a highly effective method for reducing antibiotic pollution. This study explored the potential of immobilized microbial consortia to efficiently degrade tetracycline. Concurrently, the suitability of different immobilization materials were assessed, with reed charcoal-immobilized consortia exhibiting the highest efficiency in removing tetracycline (92%). Similarly, wheat-bran-loaded bacterial consortia displayed a remarkable 11.43-fold increase in tetracycline removal compared with free consortia. Moreover, adding the carriers increased the nutrients, while the activities of both intracellular and extracellular catalases increased significantly post-immobilization, thus highlighting this enzyme's crucial role in tetracycline degradation. Finally, analysis of the microbial communities revealed the prevalence of Achromobacter and Parapedobacter, signifying their potential as key degraders. Overall, the immobilized consortia not only hold promise for application in the bioremediation of tetracycline-contaminated environment but also provide theoretical underpinnings for environmental remediation by microorganisms.
Collapse
Affiliation(s)
- Xinping Yu
- Ocean College, Hebei Agricultural University, Qinhuangdao 066000, China
| | - Mohan Bai
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Xiaojing Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Pinpin Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Qiuzhen Wang
- Ocean College, Hebei Agricultural University, Qinhuangdao 066000, China.
| | - Zhennan Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Liping Weng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Huike Ye
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China.
| |
Collapse
|
2
|
Prasad B, Goswami R, Mishra A, Gill FS, Juyal S, Asrani A, Jain A, Sahu R, Gupta MK, Bajaj M, Zaitsev I. Assessment of carbonized himalayan chir pine biomass as an eco-friendly adsorbent for effective removal of industrial dyes. Sci Rep 2024; 14:15694. [PMID: 38977838 PMCID: PMC11231168 DOI: 10.1038/s41598-024-66745-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 07/03/2024] [Indexed: 07/10/2024] Open
Abstract
This study investigates the use of carbonized Himalayan Chir Pine Biomass, known as Chir Pine Activated Carbon (CPAC), as an eco-friendly and cost-effective adsorbent for efficient industrial dye removal, with a focus on environmental sustainability. By applying different additive treatments, four adsorbents (C1, C2, C3, and C4) were formulated. CPAC was synthesized through pyrolysis and characterized using various analytical techniques including FE-SEM, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC). The adsorption capacity of CPAC was evaluated using Malachite Green (MG) dye as a model contaminant. FE-SEM images revealed high porosity (~ 10 µm) and a high surface area (119.886 m2/g) as confirmed by BET testing. CPAC effectively removed MG dye within 30 min at a solution pH of 7. Langmuir and Freundlich isotherm models indicated both monolayer and multilayer adsorption, while kinetic models suggested chemisorption. The regeneration efficiency was assessed using 0.1 N HCl over five consecutive cycles, with C4 demonstrating a high regeneration tendency of 85% and only a 9% reduction in adsorption ability after the fifth cycle. The developed CPAC shows excellent potential for use in the textile, paper, and leather industries for industrial dye adsorption, contributing to the protection of aquatic ecosystems. Additionally, CPAC can be utilized in other water and air purification applications.
Collapse
Affiliation(s)
- Brijesh Prasad
- Department of Mechanical Engineering, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, India.
- Institute of Advance Materials, Ulrika, Sweden.
| | - Rekha Goswami
- Department of Environmental Sciences, Graphic Era Hill University, Dehradun, Uttarakhand, India
| | - Abhilasha Mishra
- Department of Chemistry, Graphic Era (Deemed to be) University, Dehradun, Uttarakhand, India
| | - Fateh Singh Gill
- Department of Allied Sciences (Physics), Graphic Era (Deemed to be) University, Dehradun, Uttarakhand, India
| | - Sakshi Juyal
- Department of Allied Sciences (Physics), Graphic Era (Deemed to be) University, Dehradun, Uttarakhand, India
| | - Anjas Asrani
- Department of Mechanical Engineering, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, India
| | - Ankur Jain
- Suresh Gyan Vihar University Jaipur, Jaipur, India
| | - Rajesh Sahu
- Suresh Gyan Vihar University Jaipur, Jaipur, India
| | - Munish Kumar Gupta
- Department of Mechanical Engineering, Opole University of Technology, Opole, Poland
| | - Mohit Bajaj
- Department of Electrical Engineering, Graphic Era (Deemed to be University), Dehradun, 248002, India.
- Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Amman, Jordan.
- Graphic Era Hill University, Dehradun, 248002, India.
| | - Ievgen Zaitsev
- Department of Theoretical Electrical Engineering and Diagnostics of Electrical Equipment, Institute of Electrodynamics, National Academy of Sciences of Ukraine, 56, Kyiv-57, Peremogy, 03680, Ukraine.
- Center for Information-Analytical and Technical Support of Nuclear Power Facilities Monitoring of the National Academy of Sciences of Ukraine, Akademika Palladina Avenue, 34-A, Kyiv, Ukraine.
| |
Collapse
|
3
|
Mu Y, Tang B, Cheng X, Fu Y, Huang W, Wang J, Ming D, Xing L, Zhang J. Source apportionment and predictable driving factors contribute to antibiotics profiles in Changshou Lake of the Three Gorges Reservoir area, China. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133522. [PMID: 38244452 DOI: 10.1016/j.jhazmat.2024.133522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/01/2024] [Accepted: 01/11/2024] [Indexed: 01/22/2024]
Abstract
Lakes, crucial antibiotic reservoirs, lack thorough exploration of quantitative relationships between antibiotics and influencing factors. Here, we conducted a comprehensive year-long investigation in Changshou Lake within the Three Gorges Reservoir area, China. The concentrations of 21 antibiotics spanned 35.6-200 ng/L, 50.3-348 ng/L and 0.57-57.9 ng/g in surface water, overlying water and sediment, respectively. Compared with abundant water period, surface water and overlying water displayed significantly high antibiotic concentrations in flat and low water periods, while sediment remained unchanged. Moreover, tetracyclines, fluoroquinolones and erythromycin posed notable risks to algae. Six primary sources were identified using positive matrix factorization model, with aquaculture contributing 21.2%, 22.7% and 25.4% in surface water, overlying water and sediment, respectively. The crucial predictors were screened through machine learning, redundancy analysis and Mantel test. Our findings emphasized the pivotal roles of water quality parameters, including water temperature (WT), pH, dissolved oxygen, electrical conductivity, inorganic anions (NO3⁻, Cl⁻ and F⁻) and metal cations (Ca, Mg, Fe, K and Cr), with WT influencing greatest. Total nitrogen (TN), cation exchange capacity, K, Al and Cd significantly impacted sediment antibiotics, with TN having the most pronounced effect. This study can promise valuable insights for environmental planning and policies addressing antibiotic pollution.
Collapse
Affiliation(s)
- Yue Mu
- Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Bobin Tang
- Technical Centre, Chongqing Customs, Chongqing 400020, PR China
| | - Xian Cheng
- Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Yuanhang Fu
- Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Weibin Huang
- Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Jing Wang
- Technical Centre, Chongqing Customs, Chongqing 400020, PR China
| | - Dewang Ming
- Technical Centre, Chongqing Customs, Chongqing 400020, PR China
| | - Liangshu Xing
- Eco-Environmental Monitoring Station of Changshou District, Chongqing 401220, PR China
| | - Jinzhong Zhang
- Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
4
|
Song W, Qian L, Miao Z, Nica V, Zhao Y, He Z, Zhu Y, Gao J, Li X. High-performance functional cellulose foam fabricated with theoretically optimized imidazolium salts for the efficient removal of ciprofloxacin. Carbohydr Polym 2023; 315:121001. [PMID: 37230624 DOI: 10.1016/j.carbpol.2023.121001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/25/2023] [Accepted: 05/07/2023] [Indexed: 05/27/2023]
Abstract
With the increasing requirements for sustainable development and environmental protection, the design and development of bio-adsorbent based on the widely sourced cellulose have attracted widespread attention. In this study, a polymeric imidazolium satls (PIMS) functionalized cellulose foam (CF@PIMS) was conveniently fabricated. It was then employed to efficiently remove ciprofloxacin (CIP). Three imidazolium salts containing phenyl groups that can lead to multiple interactions with CIP were elaborately designed and then screened through a combination of molecular simulation and removal experiments to acquire the most significant binding ability of CF@PIMS. Besides, the CF@PIMS retained the well-defined 3D network structure as well as high porosity (90.3 %) and total intrusion volume (6.05 mL g-1) as the original cellulose foam (CF). Therefore, the adsorption capacity of CF@PIMS reached an astonishing value of 736.9 mg g-1, nearly 10 times that of the CF. Furthermore, the pH-affected and ionic strength-affected adsorption experiments confirmed that the non-electrostatic interaction took on a critical significance in the adsorption. The reusability experiments showed that the recovery efficiency of CF@PIMS was higher than 75 % after 10 adsorption cycles. Thus, a high-potential method was proposed in terms of the design and preparation of functionalized bio-adsorbent to remove waste matters from samples of the environment.
Collapse
Affiliation(s)
- Wenqi Song
- Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, Technological Institute of Materials & Energy Science (TIMES), School of Electronic Information, Xijing University, Xi'an 710123, PR China
| | - Liwei Qian
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Zongcheng Miao
- Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, Technological Institute of Materials & Energy Science (TIMES), School of Electronic Information, Xijing University, Xi'an 710123, PR China; School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China.
| | - Valentin Nica
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China; Department of Physics, "Alexandru Ioan Cuza" University of Iasi, Iasi 700506, Romania
| | - Yuzhen Zhao
- Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, Technological Institute of Materials & Energy Science (TIMES), School of Electronic Information, Xijing University, Xi'an 710123, PR China
| | - Zemin He
- Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, Technological Institute of Materials & Energy Science (TIMES), School of Electronic Information, Xijing University, Xi'an 710123, PR China
| | - Yanfang Zhu
- Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, Technological Institute of Materials & Energy Science (TIMES), School of Electronic Information, Xijing University, Xi'an 710123, PR China
| | - Jianjing Gao
- Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, Technological Institute of Materials & Energy Science (TIMES), School of Electronic Information, Xijing University, Xi'an 710123, PR China
| | - Xiaorui Li
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212114, PR China
| |
Collapse
|
5
|
Zhang Y, Wang L, Ma N, Wan Y, Zhu X, Qian W. Ordered Porous Layer Interferometry for Dynamic Observation of Non-Specific Adsorption Induced by 1-Ethyl-3-(3-(dimethylamino)propyl) Carbodiimide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:11406-11413. [PMID: 37542713 DOI: 10.1021/acs.langmuir.3c01266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2023]
Abstract
Nonspecific adsorption (NSA) seems to be an impregnable obstacle to the progress of the biomedical, diagnostic, microelectronic, and material fields. The reaction path of bioconjugation can alter the surface charge distribution on products and the interaction of bioconjugates, an ignored factor causing NSA. We monitored exacerbated NSA introduced by a 1-ethyl-3-(3-(dimethylamino)propyl) carbodiimide (EDC) addition reaction, which cannot be resistant to bovine serum albumin (BSA) or polyethylene glycol (PEG) antifouling coating and Tween-20. And the negative effects can be minimized by adding as low as 7.5 × 10-6 M N-hydroxysulfosuccinimide (sulfo-NHS). We applied ordered porous layer interferometry (OPLI) to sensitively evaluate the NSA that is difficult to measure on individual particles. Using the silica colloidal crystal (SCC) film with Fabry-Perot fringes as in situ and real-time monitoring for the NSA, we optimized the surface chemistry to yield a conjugate surface without variational charge distribution. In this work, we propose a novel approach from the perspective of the reaction pathway to minimize the NSA of solely EDC-induced chemistry.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Lu Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Ning Ma
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yizhen Wan
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xueyi Zhu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Weiping Qian
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
6
|
Lv S, Rong F, Hu S, Wang G, Liu J, Hou G, Xu Y, Li M, Liu K, Liu A. Competitive adsorption and desorption of three antibiotics in distinct soil aggregate size fractions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115002. [PMID: 37201422 DOI: 10.1016/j.ecoenv.2023.115002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/12/2023] [Accepted: 05/09/2023] [Indexed: 05/20/2023]
Abstract
Multiple antibiotics that are used in veterinary medicine coexist in soils, but their interaction and the effects on adsorption and desorption in soils have not been extensively studied. In this study, using batch experiments, we evaluated the adsorption and desorption of sulfadiazine (SDZ), tetracycline (TC), and norfloxacin (NFX) using four different soil aggregate size fractions and discovered that: (1) TC had the highest adsorption (76-98 %) and the lowest desorption in each tested system, whereas SDZ showed opposite adsorption and desorption ability, (2) the highest adsorption and the lowest desorption of all three tested antibiotics were observed with soil macroaggregates (250-2000 µm) in all the cases; in contrast, opposite adsorption and desorption ability were observed for soil clay (<53 µm), and (3) adsorption of each antibiotic was in the following order: single system (71-89 %) > binary system (56-84 %) > ternary system (50-78 %); however, desorption were in the reverse order. The Freundlich equation fitting and Brunauer-Emmett-Teller (BET) analysis further demonstrated that the adsorption competition between the tested antibiotics depended mainly on the specific surface area of each soil aggregate size fractions and its chemical properties. In conclusion, soil macroaggregates play a key role in the retention of antibiotics in soils, and the coexistence of multiple antibiotics greatly increases leaching risk.
Collapse
Affiliation(s)
- Shiquan Lv
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Fangxu Rong
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Shuxiang Hu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Guizhen Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Jing Liu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Guoqin Hou
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Yuzhi Xu
- School of Resources and Environmental Engineering, Shandong University of Technology, Zibo 255049, China
| | - Mingyue Li
- School of Resources and Environmental Engineering, Shandong University of Technology, Zibo 255049, China
| | - Kai Liu
- School of Resources and Environmental Engineering, Shandong University of Technology, Zibo 255049, China
| | - Aiju Liu
- School of Resources and Environmental Engineering, Shandong University of Technology, Zibo 255049, China.
| |
Collapse
|
7
|
Ijaz I, Bukhari A, Gilani E, Nazir A, Zain H, Bukhari A, Shaheen A, Hussain S, Imtiaz A. Functionalization of chitosan Biopolymer using Two Dimensional Metal-Organic Frameworks and MXene for Rapid, Efficient, and Selective Removal of Lead (II) and Methyl Blue from Wastewater. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
8
|
Gu J, Liu Z, Jia A, Wang Y, Li N, Liu Z, Li Y, Zhang H. New insight into adsorption and co-adsorption of chlortetracycline hydrochloride and ciprofloxacin hydrochloride by Ga-based metal-organic gel/sodium alginate composite beads. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
9
|
Xiang Y, Zhou Y, Yao B, Sun Y, Khan E, Li W, Zeng G, Yang J, Zhou Y. Vinasse-based biochar magnetic composites: adsorptive removal of tetracycline in aqueous solutions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:8916-8927. [PMID: 35146603 DOI: 10.1007/s11356-022-19012-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Highly efficient and cost-effective adsorbents for antibiotic removal are the key to mitigate pollution by industrial wastewaters. Pyrolyzing low-cost winemaking waste into biochar is a promising means for waste biomass utilization. This study assembled vinasse-derived biochar with manganese ferrite into vinasse-manganese ferrite biochar-magnetic composites (V-MFB-MCs) through simultaneous pyrolysis of waste biomass and metal (Mn and Fe) hydroxide precipitates. Batch experiments were conducted to evaluate the kinetics and isotherms of tetracycline (TC) adsorption as well as the influence of pH value, humic acid, and ionic strength. Morphological characterization showed that crystalline MnFe2O4 nanoparticles were impregnated within the framework of fabricated V-MFB-MCs. Superior TC adsorption capacity and fast pseudo-second-order kinetics could be achieved by the V-MFB-MCs-800 at pH 3.0. The TC adsorption onto V-MFB-MCs-800 was highly pH-dependent and controlled by the positive influence of ionic strength and humic acid. V-MFB-MCs-800 showed excellent adsorption performance in different natural water. Multiple interaction mechanisms including pore filling effect, π-π stacking interaction, and hydrogen bonding contribute to TC removal by V-MFB-MCs-800, which can be an innovative biowaste-derived material for industrial wastewater treatment.
Collapse
Affiliation(s)
- Yujia Xiang
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, China
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Yuzhou Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Bin Yao
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Yuqing Sun
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Eakalak Khan
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, NV, 89154, USA
| | - Wei Li
- School of Biology and Chemistry, Key Laboratory of Chemical Synthesis and Environmental Pollution Control-Remediation Technology of Guizhou Province, Xingyi Normal University for Nationalities, Xingyi, 562400, China
| | - Guihua Zeng
- Hunan Research Academy of Environmental Sciences, Changsha, 410002, China
| | - Jian Yang
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
10
|
Wang Y, Tian Q, Yang G, Li X, Du W, Leong YK, Chang JS. Enhanced chlortetracycline removal by iron oxide modified spent coffee grounds biochar and persulfate system. CHEMOSPHERE 2022; 301:134654. [PMID: 35452644 DOI: 10.1016/j.chemosphere.2022.134654] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/06/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Chlortetracycline (CTC) is a tetracycline derivative antibiotic that has been widely used in the livestock industry for prophylactic and therapeutic purposes. Effective measures should be taken to decrease the environmental risks associated with CTC-rich waste. Biochar produced by biomass waste showed great potential for organic contaminants removal by adsorption and catalytic degradation. This study prepared iron oxide-modified coffee grounds biochar (CGF) at different temperatures for enhanced CTC removal by adsorption and degradation. The main mechanism for CTC removal was found to be electrostatic interaction. In addition, pore diffusion, hydrogen bonds, and π-π bonds also contributed to CTC adsorption. Maximum CTC adsorption capacity was 223.63 mg/g for CGF800 (CGF prepared at 800 °C pyrolysis). The free radical content of CGF600 (CFG prepared at 600 °C pyrolysis) was higher than CGF800, and there were no significant advantages in using biochar prepared at a higher temperature for persulfate activation. The ion mass-to-charge ratio (M/z) is used to describe the ratio of mass to charge of an ion or peak, which can infer compound structure. The structure of CTC degradation products was analyzed by UPLC-MS, and the M/z values were determined as 444, 273, and 154. Thus, pyrolysis of coffee grounds at higher temperatures increased CTC adsorption capacity, and CGF can indirectly assist in CTC degradation by persulfate activation.
Collapse
Affiliation(s)
- Yue Wang
- School of Materials and Environmental Engineering, Yantai University, Yantai, China.
| | - Qingbai Tian
- School of Materials and Environmental Engineering, Yantai University, Yantai, China
| | - Guanyun Yang
- School of Materials and Environmental Engineering, Yantai University, Yantai, China
| | - Xiaoqiang Li
- School of Materials and Environmental Engineering, Yantai University, Yantai, China
| | - Wei Du
- School of Materials and Environmental Engineering, Yantai University, Yantai, China
| | - Yoong Kit Leong
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, 407, Taiwan
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, 407, Taiwan; Department of Chemical Engineering, National Cheng-Kung University, Tainan, 701, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, 32003, Taiwan.
| |
Collapse
|
11
|
Zhang S, Wang J. Biodegradation of chlortetracycline by Bacillus cereus LZ01: Performance, degradative pathway and possible genes involved. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128941. [PMID: 35462123 DOI: 10.1016/j.jhazmat.2022.128941] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/06/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Microbial degradation of chlortetracycline (CTC) is an effective bioremediation method. In the present study, an enrichment technique was used to isolate a Bacillus cereus LZ01 strain capable of effectively degrading CTC from cattle manure. Response surface methodology was used to identify optimized conditions under which strain LZ01 was able to achieve maximal CTC removal (83.58%): temperature of 35.77 °C, solution pH of 7.59, CTC concentration of 57.72 mg/L and microbial inoculum of 0.98%. The antibacterial effect of CTC degradation products on Escherichia coli was investigated by the disk diffusion test, revealing that the products by LZ01 degradation of CTC exhibited lower toxicity than parent compound. Shake flask batch experiments showed that the biodegradation of CTC was a synergistic effect of intracellular and extracellular enzymes, and intracellular enzyme had a better degradation effect on CTC (77.56%). Whole genome sequencing revealed that genes associated with ring-opening hydrolysis, demethylation, deamination and dehydrogenation in strain LZ01 may be involved in the biodegradation of CTC. Subsequent seven possible biodegradation products were identified by LC-MS analyses, and the biodegradation pathways were proposed. Overall, this study provides a theoretical foundation for the characterization and mechanism of CTC degradation in the environment by Bacillus cereus LZ01.
Collapse
Affiliation(s)
- Sinan Zhang
- Key Laboratory of Straw Biology and Utilization, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; College of Resource and Environment, Jilin Agricultural University, Changchun 130118, China
| | - Jihong Wang
- College of Resource and Environment, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
12
|
Rajput VD, Minkina T, Ahmed B, Singh VK, Mandzhieva S, Sushkova S, Bauer T, Verma KK, Shan S, van Hullebusch ED, Wang B. Nano-biochar: A novel solution for sustainable agriculture and environmental remediation. ENVIRONMENTAL RESEARCH 2022; 210:112891. [PMID: 35183514 DOI: 10.1016/j.envres.2022.112891] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/18/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Currently, the applications of biochar (BC) in agricultural practices and for environmental remediation purposes have demonstrated multifaceted advantages despite a few limitations. Nano-BC offers considerable opportunities especially for the remediation of hazardous contaminants as well as the improvement of crop productivity. Positive outcomes of nano-BC on soil physico-chemical and biological characteristics have indicated its suitability for agricultural applications. Nano-BC may effectively regulate the mobilization and sorption of important micro- and macro-nutrients, along with the hazardous contaminants including potentially toxic metals, pesticides, etc. Additionally, the sorption characteristics of nano-BC depends substantially on feedstock materials and pyrolysis temperatures. Nevertheless, the conducted investigations regarding nano-BC are in infant stages, requiring extensive field investigations. The nano-enhanced properties of BC on one hand dramatically improve its effectiveness and sustainability, on the other hand, there may be associated with toxicity development in diverse aquatic and/or terrestrial environments. Therefore, risk assessment on soil organisms and its indirect impact on human health is another area of concern linked with the field application of nano-BC. The present review delineates the potentiality of nano-BC as an emerging sorbent for sustainable agriculture and environmental applications.
Collapse
Affiliation(s)
| | | | - Bilal Ahmed
- Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| | | | | | | | - Tatiana Bauer
- Federal Research Center the Southern Scientific Center of the Russian Academy of Sciences, Rostov-on-Don, 344006, Russia Federation
| | | | - Shengdao Shan
- School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Eric D van Hullebusch
- Université de Paris, Institut de Physique Du Globe de Paris, CNRS, F-75005, Paris, France
| | - Bing Wang
- College of Resources and Environment Engineering, Guizhou University, Guiyang, 550025, Guizhou, China
| |
Collapse
|
13
|
Liu Y, Chen Y, Li Y, Chen L, Jiang H, Li H, Luo X, Tang P, Yan H, Zhao M, Yuan Y, Hou S. Fabrication, application, and mechanism of metal and heteroatom co-doped biochar composites (MHBCs) for the removal of contaminants in water: A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128584. [PMID: 35359100 DOI: 10.1016/j.jhazmat.2022.128584] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
The potential risk of various contaminants in water has recently attracted public attention. Biochars and modified biochars have been widely developed for environmental remediation. Metal and heteroatom co-doped biochar composites (MHBCs) quickly caught the interest of researchers with more active sites and higher affinity for contaminants compared to single-doped biochar by metal or heteroatoms. This study provides a comprehensive review of MHBCs in wastewater decontamination. Firstly, the main fabrication methods of MHBCs were external doping and internal doping, with external doping being the most common. Secondly, the applications of MHBCs as adsorbents and catalysts in water treatment were introduced emphatically, which mainly included the removal of metals, antibiotics, dyes, pesticides, phenols, and other organic contaminants. Thirdly, the removal mechanisms of contaminants by MHBCs were deeply discussed in adsorption, oxidation and reduction, and degradation. Furthermore, the influencing factors for the removal of contaminants by MHBCs were also summarized, including the physicochemical properties of MHBCs, and environmental variables of pH and co-existing substance. Finally, futural challenges of MHBCs are proposed in the leaching toxicity of metal from MHBCs, the choice of heteroatoms on the fabrication for MHBCs, and the application in the composite system and soil remediation.
Collapse
Affiliation(s)
- Yihuan Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yaoning Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| | - Yuanping Li
- College of Municipal and Mapping Engineering, Hunan City University, Yiyang, Hunan 413000, China
| | - Li Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Hongjuan Jiang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Hui Li
- State Key Laboratory of Utilization of Woody Oil Resource and Institute of Biological and Environmental Engineering, Hunan Academy of Forestry, Changsha 410004, China
| | - Xinli Luo
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Ping Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Haoqin Yan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Mengyang Zhao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yu Yuan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| | - Suzhen Hou
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| |
Collapse
|
14
|
Abstract
Biochar (BC) has attracted attention due to its impacts on soil quality by enhancing soil fertility, carbon storage and contaminants immobilization. BC also induces changes in microbial community structure and enhances crop productivity in long term scenarios compared to many other organic amendments. However, information related to the role of modified BCs in altering the soil quality is still scarce. BC can be modified by using physical, chemical and microbial methods. Modified BC can change the functional groups, pore size, pore structure, surface area and chemical properties of soil, which plays a key role in changing the soil quality. The addition of modified BCs as soil amendment increased soil CEC (cation exchange capacity), EC (electron conductivity), pH, organic matter, hydraulic conductivity, soil porosity, infiltration rate, microbial activities (enzymes and community), nutrient profile and gas exchange properties, but it varies according to the soil structure and pervading environmental conditions. This study provides a basis for effective practical approaches to modifying BCs for improving soil quality.
Collapse
|
15
|
Behzadi A, Hashemi Motlagh G, Raef M, Motahari S. Rational design of in‐situ‐modified resorcinol formaldehyde aerogels for removing chlortetracycline antibiotics from aqueous solutions. POLYM ENG SCI 2022. [DOI: 10.1002/pen.25920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Alireza Behzadi
- Advanced Polymer Materials & Processing Lab, School of Chemical Engineering, College of Engineering University of Tehran Tehran Iran
| | - Ghodratollah Hashemi Motlagh
- Advanced Polymer Materials & Processing Lab, School of Chemical Engineering, College of Engineering University of Tehran Tehran Iran
| | - Mohammad Raef
- Department of Mining‐Metallurgy Engineering and Materials Science, POLYMAT, Faculty of Engineering in Bilbao University of the Basque Country (UPV/EHU) Bilbao Spain
| | - Siamak Motahari
- Advanced Polymer Materials & Processing Lab, School of Chemical Engineering, College of Engineering University of Tehran Tehran Iran
| |
Collapse
|
16
|
Wang L, Han X, Liang T, Yan X, Yang X, Pei Z, Tian S, Wang S, Lima EC, Rinklebe J. Cosorption of Zn(II) and chlortetracycline onto montmorillonite: pH effects and molecular investigations. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127368. [PMID: 34879563 DOI: 10.1016/j.jhazmat.2021.127368] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/16/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Ionic antibiotics and metals generally coexist, and their interaction can affect their sorption behaviors onto soil minerals, therefore determining their environmental hazards. This study investigated the sorption and cosorption of Zn(II) and chlortetracycline (CTC) onto montmorillonite at different solution pH (3-10) using batch experiments and extended X-ray absorption fine structure (EXAFS) analysis. The Langmuir model could reproduce well the sorption isotherms of Zn(II) and CTC. The presence of CTC/Zn(II) could promote the maximum sorption capacity (Qm) of Zn(II)/CTC, based on site energy distribution (SED) theory. Generally, Zn(II) sorption increased with pH increasing. Comparatively, CTC sorption decreased as pH increased till approximately pH 5.0, then increased continuously with pH increasing. Both CTC and Zn(II) co-existence enhanced their individual sorption in both acidic and neutral environments. The processes behind CTC and Zn(II) sorption mainly included cation exchange and surface complexation. The EXAFS data evidenced that the presence of CTC could alter the species of Zn(II) on montmorillonite via surface complexation at pH 4.5 and 7.5, with Zn-CTC complexes being the predominant species on montmorillonite at pH 7.5. At pH 9.5, Zn(II) may exist onto montmorillonite in precipitated form similar to Zn-Al hydrotalcite-like compound (HTlc) regardless of CTC presence.
Collapse
Affiliation(s)
- Lingqing Wang
- Institute of Geographical Sciences and Natural Resources Research, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxiao Han
- Institute of Geographical Sciences and Natural Resources Research, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Liang
- Institute of Geographical Sciences and Natural Resources Research, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiulan Yan
- Institute of Geographical Sciences and Natural Resources Research, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Yang
- Institute of Geographical Sciences and Natural Resources Research, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiguo Pei
- University of Chinese Academy of Sciences, Beijing 100049, China; Research Center for Eco-Environmental Sciences, Beijing 100085, China
| | - Shuhan Tian
- Institute of Geographical Sciences and Natural Resources Research, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Eder C Lima
- Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment, Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| |
Collapse
|
17
|
Luo Z, Yao B, Yang X, Wang L, Xu Z, Yan X, Tian L, Zhou H, Zhou Y. Novel insights into the adsorption of organic contaminants by biochar: A review. CHEMOSPHERE 2022; 287:132113. [PMID: 34826891 DOI: 10.1016/j.chemosphere.2021.132113] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/14/2021] [Accepted: 08/29/2021] [Indexed: 05/22/2023]
Abstract
With rising concerns in the practical application of biochar for the remediation of environment influenced by various organic contaminants, a critical review to facilitate insights the crucial role that biochar has played in wastewater and polluted soil decontamination is urgently needed. This research therefore aimed to describe different intriguing dimensions of biochar interactions with organic contaminants, which including: (i) an introduction of biochar preparation and the related physicochemical properties, (ii) an overview of mechanisms and factors controlling the adsorption of organic contaminants onto biochar, and (iii) a summary of the challenges and an outlook of the further research needs in this issue. In the light of the survey consequences, the appearance of biochar indicates the potential in substituting the existing costly adsorbents, and it has been proved that biochar is one promising adsorbent for organic pollutants adsorption removal from water and soil. However, some research gaps, such as dynamic adsorption, potential environmental risks, interactions between biochar and soil microbes, novel modification techniques, need to be further investigated to facilitate its practical application. This research will be conductive to better understanding the adsorption removal of organic contaminants by biochar.
Collapse
Affiliation(s)
- Zirui Luo
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Bin Yao
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Xiao Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lingqing Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhangyi Xu
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Xiulan Yan
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Lin Tian
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Hao Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
18
|
Ali Noman E, Al-Gheethi A, Saphira Radin Mohamed RM, Talip BA, Hossain MS, Ali Hamood Altowayti W, Ismail N. Sustainable approaches for removal of cephalexin antibiotic from non-clinical environments: A critical review. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126040. [PMID: 34000703 DOI: 10.1016/j.jhazmat.2021.126040] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/03/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
In this article, the removal of cephalexin (CFX) antibiotic from non-clinical environment is reviewed. Adsorption and photocatalytic degradation techniques are widely used to remove CFX from waters and wastewaters, the combination of these methods is becoming more common for CFX removal. The treatment methods of CFX has not been reviewed before, the present article aim is to organize the scattered available information regarding sustainable approaches for CFX removal from non-clinical environment. These include adsorption by nanoparticles, bacterial biomass, biodegradation by bacterial enzymes and the photocatalysis using different catalysts and Photo-Fenton photocatalysis. The metal-organic frameworks (MOFs) appeared to have high potential for CFX degradation. It is evident from the recently papers reviewed that the effective methods could be used in place of commercial activated carbon. The widespread uses of photocatalytic degradation for CFX remediation are strongly recommended due to their engineering applicability, technical feasibility, and high effectiveness. The adsorption capacity of the CFX is ranging from 7 mg CFX g-1 of activated carbon nanoparticles to 1667 mg CFX g-1 of Nano-zero-valent iron from Nettle. In contrast, the photo-degradation was 45% using Photo-Fenton while has increased to 100% using heterogeneous photoelectro-Fenton (HPEF) with UVA light using chalcopyrite catalyst.
Collapse
Affiliation(s)
- Efaq Ali Noman
- Department of Applied Microbiology, Faculty of Applied Science, Taiz University, Yemen; Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (UTHM), Pagoh Higher Education Hub, KM 1, Jalan Panchor, 84600, Panchor, Johor, Malaysia
| | - Adel Al-Gheethi
- Micropollutant Research Centre (MPRC), Faculty of Civil Engineering & Built Environment, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia.
| | - Radin Maya Saphira Radin Mohamed
- Micropollutant Research Centre (MPRC), Faculty of Civil Engineering & Built Environment, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia
| | - Balkis A Talip
- Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (UTHM), Pagoh Higher Education Hub, KM 1, Jalan Panchor, 84600, Panchor, Johor, Malaysia
| | - Md Sohrab Hossain
- School of Industrial Technology, Universiti Sains Malaysia (USM), 11800 Penang, Malaysia
| | - Wahid Ali Hamood Altowayti
- Micropollutant Research Centre (MPRC), Faculty of Civil Engineering & Built Environment, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia
| | - Norli Ismail
- School of Industrial Technology, Universiti Sains Malaysia (USM), 11800 Penang, Malaysia
| |
Collapse
|
19
|
Peter A, Chabot B, Loranger E. Enhanced activation of ultrasonic pre-treated softwood biochar for efficient heavy metal removal from water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 290:112569. [PMID: 33865155 DOI: 10.1016/j.jenvman.2021.112569] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
Physical and chemical modification on biochar is an interesting approach to enhance the properties and make them potential candidates in adsorption of heavy metals from water. Studies have shown that ultrasound treatments as well as alkali activations on biochar has positive impact on adsorption behaviour of the material. Base activation on biochar derived from ultrasound pre-treated woodchips were studied to understand the influence of ultrasound pre-treatment on chemical modification of biochar and the adsorption properties emerged from it. 40 and 170 kHz ultrasound pre-treated softwood woodchips were subjected to laboratory scale pyrolysis and the resulted biochars were treated with NaOH. The physicochemical properties were examined, and the adsorption experiments revealed that ultrasound pre-treatment assisted biochars have better adsorption capacity as compared to untreated biochar samples after activation. 170 kHz pre-treated sample exhibited an equilibrium adsorption capacity of 19.99 mg/g which is almost 22 times higher than that of corresponding non-activated sample. The ultrasound pre-treated samples showed improved competitive adsorption behaviour towards copper ions in comparison with nickel or lead. The overall study suggests that ultrasound pre-treated biochars combined with alkali activation enhances the heavy metal removal efficiency and these engineered biochars can be used as an effective adsorbent in the field of wastewater treatment.
Collapse
Affiliation(s)
- Aneeshma Peter
- I2E3 - Institut d'Innovations en Écomatériaux, Écoproduits et Écoénergies, à base de biomasse, Université du Québec à Trois-Rivières, 3351, boul. des Forges, Trois-Rivières, Québec, G8Z 4M3, Canada
| | - Bruno Chabot
- I2E3 - Institut d'Innovations en Écomatériaux, Écoproduits et Écoénergies, à base de biomasse, Université du Québec à Trois-Rivières, 3351, boul. des Forges, Trois-Rivières, Québec, G8Z 4M3, Canada
| | - Eric Loranger
- I2E3 - Institut d'Innovations en Écomatériaux, Écoproduits et Écoénergies, à base de biomasse, Université du Québec à Trois-Rivières, 3351, boul. des Forges, Trois-Rivières, Québec, G8Z 4M3, Canada.
| |
Collapse
|
20
|
Efficacy of Different Waste and By-Products from Forest and Food Industries in the Removal/Retention of the Antibiotic Cefuroxime. Processes (Basel) 2021. [DOI: 10.3390/pr9071151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Environmental pollution due to antibiotics is a serious problem. In this work, the adsorption and desorption of the antibiotic cefuroxime (CFX) were studied in four by-products/residues from the forestry and food industries. For this, batch-type experiments were carried out, adding increasing concentrations of CFX (from 0 to 50 µmol L−1) to 0.5 g of adsorbent. The materials with a pH higher than 9 (mussel shell and wood ash) were those that presented the highest adsorption percentages, from 71.2% (23.1 µmol kg−1) to 98.6% (928.0 µmol kg−1). For the rest of the adsorbents, the adsorption was also around 100% when the lowest concentrations of CFX were added, but the percentage dropped sharply when the highest dose of the antibiotic was incorporated. Adsorption data fitted well to the Langmuir and Freundlich models, with R2 greater than 0.9. Regarding desorption, the materials that presented the lowest values when the highest concentration of CFX was added were wood ash (0%) and mussel shell (2.1%), while pine bark and eucalyptus leaves presented the highest desorption (26.6% and 28.6%, respectively). Therefore, wood ash and mussel shell could be considered adsorbents with a high potential to be used in problems of environmental contamination by CFX.
Collapse
|
21
|
Nafees M, Ullah S, Ahmed I. Morphological and elemental evaluation of biochar through analytical techniques and its combined effect along with plant growth promoting rhizobacteria on Vicia faba L. under induced drought stress. Microsc Res Tech 2021; 84:2947-2959. [PMID: 34196062 DOI: 10.1002/jemt.23854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/22/2021] [Accepted: 06/08/2021] [Indexed: 11/07/2022]
Abstract
Drought is a persistent and complex natural vulnerability whose rate and extent of recurrence are expected to increase with climate change. Regardless of the progress made in responding and adapting to water scarcity, drought stress causes severe afflictions. Therefore, the present study has been accomplished in Department of Botany, University of Peshawar to investigate the effect of biochar and plant growth promoting rhizobacteria (PGPR) Cellulomonas pakistanensis (NCCP11) and Sphingobacterium pakistanensis (NCCP246) on Vicia faba under drought stress. Two varieties of seeds Desi (V1) and Pulista (V2) were obtained from Cereal Crop Research Institute (CCRI) Nowshera, sown in earthen pots in triplicate filled with 3 kg soil and sand (2:1) and biochar (0 and 5% w/w). Scanning electron microscopy of biochar showed porous nature and energy dispersive x-ray spectroscopy spectroscopy showed C, Ca, Mg, and Na elemental composition. Germination parameters including germination energy (GE), Timson germination index (TGI), germination index (GI), and water use efficiency (WUE) were amplified to 28.04, 19.17, 25.72, and 43.62% in V1, respectively, and 14.38, 16.66, 19.79, and 41.50% in V2 respectively, by the co-application of biochar and PGPR. Agronomical attributes including, fresh and dry weight of leaves, root, and shoot were significantly reduced, which were positively ameliorated by 28.57, 36.36, 16, 10.47, 14.28, and 10%, respectively, by the application of biochar and PGPR especially by NCCP246 in combination as well as individually. It has been concluded that, adversities of drought significantly condensed with the application of biochar and PGPR, which may be important in agricultural practices carried out in water-deficient regions.
Collapse
Affiliation(s)
- Muhammad Nafees
- Department of Botany, University of Peshawar, Peshawar, Pakistan
| | - Sami Ullah
- Department of Botany, University of Peshawar, Peshawar, Pakistan
| | - Iftikhar Ahmed
- National Culture Collection of Pakistan (NCCP), Bio-resources Conservation Institute (BCI), National Agriculture Research Centre (NARC), Islamabad, Pakistan
| |
Collapse
|
22
|
Zeng S, Kan E. Adsorption and regeneration on iron-activated biochar for removal of microcystin-LR. CHEMOSPHERE 2021; 273:129649. [PMID: 33497982 DOI: 10.1016/j.chemosphere.2021.129649] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Novel iron activated biochars (FA-BCs) were prepared via simultaneous pyrolysis and activation of FeCl3-pretreated bermudagrass (BG) for removing microcystin-LR (MC-LR) in aqueous solution. Compared to the raw BC (without activation), the surface area and adsorption capacity of FA-BC at iron impregnation ratio of 2 (2 g FeCl3/g BG) were enhanced from 86 m2/g and 0.76 mg/g to 835 m2/g and 9.00 mg/g. Moreover, FA-BC possessed various iron oxides at its surface which provided the catalytic capacity for regeneration of MC-LR spent FA-BC and magnetic separation after the MC-LR adsorption. Possible mechanisms for the MC-LR adsorption onto FA-BC would include electrostatic attraction, π+-π, hydrogen bond, and hydrophobic interactions. The detailed adsorption studies indicated mainly chemisorption and intra-particle diffusion limitation would participate in the adsorption process. The thermal regeneration at 300 °C kept high regeneration efficiency (99-100%) for the MC-LR spent FA-BC during four cycles of adsorption-regeneration. In addition, the high regeneration efficiency (close to 100%) was also achieved by persulfate oxidation-driven regeneration. FA-BC also exhibited high adsorption capacity for the MC-LR from the real lake water to meet the MC-LR concentration below 1 μg/L as a safe guideline suggested by WHO.
Collapse
Affiliation(s)
- Shengquan Zeng
- Department of Biological and Agricultural Engineering & Texas A&M AgriLife Research Center, Texas A&M University, TX, 77843, USA
| | - Eunsung Kan
- Department of Biological and Agricultural Engineering & Texas A&M AgriLife Research Center, Texas A&M University, TX, 77843, USA; Department of Wildlife, Sustainability, and Ecosystem Sciences, Tarleton State University, TX, 76401, USA.
| |
Collapse
|
23
|
da Silva Santos DH, Paulino JCPL, Dos Santos Alves GF, de Magalhães Oliveira LMT, de Carvalho Nagliate P, da Silva Duarte JL, Meili L, Tonholo J, Zanta CLDPES. Effluent treatment using activated carbon adsorbents: a bibliometric analysis of recent literature. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10.1007/s11356-021-14267-w. [PMID: 33950424 DOI: 10.1007/s11356-021-14267-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
Agricultural practices and industrial and human discharges play an important role in the generation of highly contaminated effluents, which becomes a threat to the environment. The persistence of many of these compounds to conventional treatments in recent years has meant that numerous efforts have been devoted to the proposal of new selective materials that allow the removal of these contaminants by adsorption. In addition, bibliometric studies have grown as powerful tools to indicate trends in innovation. In this way, the present study consisted of evaluating the potential interest to use activated carbon as adsorbent through a prospection study in scientific and technological databases. The number of records obtained for the use of activated carbon in effluent remediation processes is equivalent to 4898, which corresponds to approximately 2.5% of the total documents (articles/patents) found for the use of carbon with no defined purpose. A total of 2275 works that used the adsorptive property of activated carbon were recovered. According to the data recovered, Brazil is the leader in scientific publications among Latin American countries and the 12th worldwide, according to the SciELO and Scopus databases, respectively. In general, a significant number of patents have been recovered for this theme, in the Derwent database, 1167 documents were recovered. The results obtained in this work evidenced the growing interest in developing technologies in this area.
Collapse
Affiliation(s)
- Danilo Henrique da Silva Santos
- Laboratório de Eletroquímica Aplicada, Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, UFAL, Maceió, Brazil
| | | | | | | | | | - José Leandro da Silva Duarte
- Laboratório de Eletroquímica Aplicada, Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, UFAL, Maceió, Brazil
- Laboratório de Processos, Centro de Tecnologia, Universidade Federal de Alagoas, UFAL, Maceió, Brazil
| | - Lucas Meili
- Laboratório de Processos, Centro de Tecnologia, Universidade Federal de Alagoas, UFAL, Maceió, Brazil.
- Laboratory of Processes - LAPRO, Center of Technology, Federal University of Alagoas, Campus A. C. Simões, Av. Lourival Melo Mota, Tabuleiro dos Martins, Maceió, AL, CEP 57072-970, Brazil.
| | - Josealdo Tonholo
- Laboratório de Eletroquímica Aplicada, Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, UFAL, Maceió, Brazil
| | | |
Collapse
|
24
|
Wang H, Lou X, Hu Q, Sun T. Adsorption of antibiotics from water by using Chinese herbal medicine residues derived biochar: Preparation and properties studies. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114967] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
25
|
Russell JN, Yost CK. Alternative, environmentally conscious approaches for removing antibiotics from wastewater treatment systems. CHEMOSPHERE 2021; 263:128177. [PMID: 33297145 DOI: 10.1016/j.chemosphere.2020.128177] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/13/2020] [Accepted: 08/26/2020] [Indexed: 05/11/2023]
Abstract
Prevalence of antibiotic resistance in the environment is of critical concern from a public health perspective, with many human impacted environments showing increased incidence of antibiotic resistant bacteria. Wastewater treatment environments are of particular interest due to their high levels of antibiotic residuals, which can select for antibiotic resistance genes in bacteria. However, wastewater treatment plants are generally not designed to remove antibiotics from collected waste, and many of the currently proposed methods are unsafe for environmental use. This has prompted researchers to identify alternative environmentally safe methods for removing antibiotics from wastewater to be used in parallel with conventional wastewater treatment, as it is a potential strategy towards the mitigation of environmental antibiotic resistance selection. This paper reviews several methods developed to absorb and/or degrade antibiotics from aqueous solutions and wastewater biosolids, which includes ligninolytic fungi and ligninolytic enzymes, algae-driven photobioreactors and algae-activated sludge, and organically-sourced biochars.
Collapse
|
26
|
Madduri S, Elsayed I, Hassan EB. Novel oxone treated hydrochar for the removal of Pb(II) and methylene blue (MB) dye from aqueous solutions. CHEMOSPHERE 2020; 260:127683. [PMID: 32758774 DOI: 10.1016/j.chemosphere.2020.127683] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
This study represents the first ever work on a novel oxone treated hydrochar as an adsorbent for the efficient removal of different contaminants from aqueous solutions. Pine wood hydrochar (HC) was prepared by hydrothermal treatment at 300 °C and oxidized with oxone to produce oxidized pine wood hydrochar (OHC). Different analytical tools such as elemental analysis, FTIR, TGA, FE-SEM, and BET were used for the characterization of the OHC. Conductometric titration of OHC showed a substantial increase from 22 μmol/g to 600 μmol/g in the hydrochar carboxylic content. The OHC sorption performance was assessed by using Pb(II) ions and methylene blue (MB) dye as two models of contaminants. Sorption benchmarks were performed by varying the contaminant initial concentration, time, and temperatures. Sorption kinetic data was fitted well to the pseudo-second order kinetic model with high correlation coefficients (R2 > 0.99) and isothermal data was fitted to the Langmuir model. The highest adsorption capacities for MB and Pb(II) were 86.7 mg/g and 46.7 mg/g, respectively. This study proves that oxone treatment could be a potential sustainable oxidation method to tune the hydrochar surface to increase selectivity towards heavy metal ions and dye sorption.
Collapse
Affiliation(s)
- Sunith Madduri
- Department of Sustainable Bioproducts, Mississippi State University, Box 9820 Mississippi State, MS, 39762, USA
| | - Islam Elsayed
- Department of Sustainable Bioproducts, Mississippi State University, Box 9820 Mississippi State, MS, 39762, USA
| | - El Barbary Hassan
- Department of Sustainable Bioproducts, Mississippi State University, Box 9820 Mississippi State, MS, 39762, USA.
| |
Collapse
|
27
|
Shirani Z, Song H, Bhatnagar A. Efficient removal of diclofenac and cephalexin from aqueous solution using Anthriscus sylvestris-derived activated biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:140789. [PMID: 32721620 DOI: 10.1016/j.scitotenv.2020.140789] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/23/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
The objective of this study was to investigate the adsorption of diclofenac (DF) and cephalexin (CPX) by Anthriscus sylvestris-derived activated biochar. The raw biochar (R-BC) and activated biochar (ACT-B) were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy and elemental analyses techniques to obtain information regarding the morphology, functional groups and elements of the adsorbents. Batch studies were carried out to examine the effect of various operational parameters. The maximum adsorption capacity of ACT-B was 392.94 mg g-1 for DF and 724.54 mg g-1 for CPX. The removal of DF and CPX was influenced by temperature and the co-existing ions. The kinetic data fitted well with the pseudo-second-order kinetic model, whereas the isotherm data showed the best correlation with Langmuir isotherm model. Electrostatic adsorption, hydrophobic interaction and π-π bonding play a key role in adsorption of both adsorbates by ACT-B. Additionally, column studies were conducted using ACT-B at different flow rates and different concentrations of DF and CPX to investigate the practical applicability of ACT-B in removal of the target contaminants. Thus, this study provides a feasible approach to synthesize activated biochar that can minimize pharmaceuticals pollution in water bodies.
Collapse
Affiliation(s)
- Zahra Shirani
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| | - Hocheol Song
- Department of Environment and Energy, Sejong University, 209 Neungdong-ro, Gwnagjin-gu, Seoul 05006, Republic of Korea
| | - Amit Bhatnagar
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| |
Collapse
|
28
|
Chen X, Li H, Liu W, Meng Z, Wu Z, Wang G, Liang Y, Bi S. Low-temperature constructing N-doped graphite-like mesoporous structure biochar from furfural residue with urea for removal of chlortetracycline from wastewater and hydrothermal catalytic degradation mechanism. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124873] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
29
|
Dutta J, Mala AA. Removal of antibiotic from the water environment by the adsorption technologies: a review. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 82:401-426. [PMID: 32960788 DOI: 10.2166/wst.2020.335] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Antibiotics are known as emergent pollutants because of their toxicological properties. Due to continuous discharge and persistence in the aquatic environment, antibiotics are detected almost in every environmental matrix. Therefore antibiotics that are polluting the aquatic environment have gained significant research interest for their removal. Several techniques have been used to remove pollutants, but appropriate technology is still to be found. This review addresses the use of modified and cheap materials for antibiotic removal from the environment.
Collapse
Affiliation(s)
- Joydeep Dutta
- Department of Zoology School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India E-mail:
| | - Aijaz Ahmad Mala
- Department of Zoology School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India E-mail:
| |
Collapse
|
30
|
Jiang Y, Zhang Q, Deng X, Nan Z, Liang X, Wen H, Huang K, Wu Y. Single and competitive sorption of sulfadiazine and chlortetracycline on loess soil from Northwest China ☆. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114650. [PMID: 33618482 DOI: 10.1016/j.envpol.2020.114650] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 03/31/2020] [Accepted: 04/20/2020] [Indexed: 06/12/2023]
Abstract
The fate of veterinary antibiotics (VAs) in soil environment is determined by the hydrophilic performance and solubility of VAs and the type of soil. In this study, sulfadiazine (SDZ) and chlortetracycline (CTC) were selected as target pollutants, and a batch sorption method was used to find out the single and sorption competitive behavior and mechanism of the target pollutants on loess soil. Kinetic studies showed the apparent sorption equilibrium was reached 0-6 h for CTC and 0-12 h for SDZ. The sorption kinetics of VAs on loess soil were fitted well with a pseudo-second order kinetic model. Sorption thermodynamic data indicated the isotherm sorption of both SDZ and CTC on loess soil was fitted well with Freundlich isothermal (R2, 0.960-0.975) and linear models (R2, 0.908-0.976). The sorption affinity of CTC (Kd, 290-1620 L/kg for CTC) was much greater than that of SDZ (Kd, 0.6-4.9 L/kg for SDZ). The results also suggest that SDZ may be easily mobilized or leached from loess soil at neutral and alkaline pH, while CTC may be easily mobilized or leached at neutral pH. The sorption of each single target pollutant on the outer layer complex decreased with increasing ionic strength. Higher initial concentrations resulted in greater sorption capacity of target pollutants on loess soil increased. The sorption capacities of CTC and SDZ in the mixed system were lower than the sorption capacity of each single system, showing a competitive sorption behavior of CTC and SDZ during the sorption process. Overall, CTC showed the highest sorption potential in loess soil, whereas SDZ showed a high leaching risk in loess soil. These findings contribute to understanding the fate of different VAs in loess in the natural environment.
Collapse
Affiliation(s)
- Yufeng Jiang
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, 730070, China.
| | - Qian Zhang
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, 730070, China
| | - Xueru Deng
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, 730070, China
| | - Zhijiang Nan
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, 730070, China
| | - Xinru Liang
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, 730070, China
| | - Hong Wen
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, 730070, China
| | - Kui Huang
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, 730070, China
| | - Yingqin Wu
- Key Laboratory of Petroleum Resources Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| |
Collapse
|
31
|
Zeng S, Kan E. Chemical Activation of Forage Grass-Derived Biochar for Treatment of Aqueous Antibiotic Sulfamethoxazole. ACS OMEGA 2020; 5:13793-13801. [PMID: 32566845 PMCID: PMC7301585 DOI: 10.1021/acsomega.0c00983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/22/2020] [Indexed: 05/27/2023]
Abstract
Chemically activated forage Bermudagrass-derived biochar (A-BC) was produced, characterized, and utilized for adsorption of sulfamethoxazole (SMX) in water for the first time. After NaOH activation, A-BC showed a higher surface area (1991.59 m2/g) and maximum adsorption capacity for SMX (425 mg SMX/g BC) than those of various biochars and commercial activated carbons. The detailed analysis for adsorption of SMX onto A-BC indicated the efficient sorption of SMX through π-π EDA and hydrophobic and hydrogen bond interactions. Additionally, the adsorption of SMX on A-BC was limited by pore and liquid film diffusions. The SMX adsorption on A-BC was found to be endothermic and spontaneous from thermodynamic studies. Furthermore, the highly efficient regeneration of SMX-saturated A-BC over multiple cycles was achieved by NaOH-driven desorption, indicating that the adsorption of SMX onto A-BC would have high potential for cost-effective solution for elimination of SMX from water.
Collapse
Affiliation(s)
- Shengquan Zeng
- Department
of Biological and Agricultural Engineering & Texas A&M AgriLife
Research Center, Texas A&M University, College Station, Texas 76401, United States
| | - Eunsung Kan
- Department
of Biological and Agricultural Engineering & Texas A&M AgriLife
Research Center, Texas A&M University, College Station, Texas 76401, United States
- Department
of Wildlife, Sustainability, and Ecosystem Sciences, Tarleton State University, Stephenville, Texas 76401, United States
| |
Collapse
|
32
|
Cheng D, Ngo HH, Guo W, Chang SW, Nguyen DD, Zhang X, Varjani S, Liu Y. Feasibility study on a new pomelo peel derived biochar for tetracycline antibiotics removal in swine wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137662. [PMID: 32325595 DOI: 10.1016/j.scitotenv.2020.137662] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/29/2020] [Accepted: 02/29/2020] [Indexed: 06/11/2023]
Abstract
Removal of tetracycline antibiotics (TCs) by biochar adsorption is emerging as a cost-effective and environmentally friendly strategy. This study developed a novel pomelo peel derived biochar, which was prepared at 400 °C (BC-400) and 600 °C (BC-600) under nitrogen conditions. To enhance the adsorption capacity, BC-400 was further activated by KOH at 600 °C with a KOH: BC-400 ratio of 4:1. The activated biochar (BC-KOH) displayed a much larger surface area (2457.37 m2/g) and total pore volume (1.14 cm3/g) than BC-400 and BC-600. High adsorption capacity of BC-KOH was achieved for removing tetracycline (476.19 mg/g), oxytetracycline (407.5 mg/g) and chlortetracycline (555.56 mg/g) simultaneously at 313.15 K, which was comparable with other biochars derived from agricultural wastes reported previously. The adsorption data could be fitted by the pseudo-second-order kinetic model and Langmuir isotherm model successfully. The initial solution pH indicated the potential influence of TCs adsorption capacity on BC-KOH. These results suggest that pore filling, electrostatic interaction and π-π interactions between the adsorbent and adsorbate may constitute the main adsorption mechanism. BC-KOH can be used as a potential adsorbent for removing TCs from swine wastewater effectively, cheaply and in an environmentally friendly way.
Collapse
Affiliation(s)
- Dongle Cheng
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Department of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; NTT Institute of Hi-Technology, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam.
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Department of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Soon Woong Chang
- Department of Environmental Energy Engineering, Kyonggi University, 442-760, Republic of Korea
| | - Dinh Duc Nguyen
- Department of Environmental Energy Engineering, Kyonggi University, 442-760, Republic of Korea; Institution of Research and Development, Duy Tan University, Da Nang, Viet Nam
| | - Xinbo Zhang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Department of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Sunita Varjani
- Gujarat Pollution Control Board, Paryavaran Bhavan, CHH Road, Sector 10A, Gandhinagar 382 010, Gujarat, India
| | - Yi Liu
- Department of Environmental Science and Engineering, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| |
Collapse
|
33
|
Singh P, Sarswat A, Pittman CU, Mlsna T, Mohan D. Sustainable Low-Concentration Arsenite [As(III)] Removal in Single and Multicomponent Systems Using Hybrid Iron Oxide-Biochar Nanocomposite Adsorbents-A Mechanistic Study. ACS OMEGA 2020; 5:2575-2593. [PMID: 32095682 PMCID: PMC7033674 DOI: 10.1021/acsomega.9b02842] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/04/2019] [Indexed: 05/04/2023]
Abstract
Rice and wheat husks were converted to biochars by slow pyrolysis (1 h) at 600 °C. Iron oxide rice husk hybrid biochar (RHIOB) and wheat husk hybrid biochar (WHIOB) were synthesized by copyrolysis of FeCl3-impregnated rice or wheat husks at 600 °C. These hybrid sorbents were characterized using X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy (SEM), SEM-energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, physical parameter measurement system, and Brunauer-Emmett-Teller (BET) surface area techniques. Fe3O4 was the predominant iron oxide present with some Fe2O3. RHIOB and WHIOB rapidly chemisorbed As(III) from water (∼24% removal in first half an hour reaching up to ∼100% removal in 24 h) at surface Fe-OH functions forming monodentate ≡Fe-OAs(OH)2 and bidentate (≡Fe-O)2AsOH complexes. Optimum removal occurred in the pH 7.5-8.5 range for both RHIOB and WHIOB, but excellent removal occurred from pH 3 to 10. Batch kinetic studies at various initial adsorbate-adsorbent concentrations, temperatures, and contact times gave excellent pseudo-second-order model fits. Equilibrium data were fitted to different sorption isotherm models. Fits to isotherm models (based on R 2 and χ2) on RHIOB and WHIOB followed the order: Redlich-Peterson > Toth > Sips = Koble-Corrigan > Langmuir > Freundlich = Radke-Prausnitz > Temkin and Sips = Koble-Corrigan > Toth > Redlich-Peterson > Langmuir > Temkin > Freundlich = Radke-Prausnitz, respectively. Maximum adsorption capacities, Q RHIOB 0 = 96 μg/g and Q WHIOB 0 = 111 μg/g, were obtained. No As(III) oxidation to As(V) was detected. Arsenic adsorption was endothermic. Particle diffusion was a rate-determining step at low (≤50 μg/L) concentrations, but film diffusion controls the rate at ≥100-200 μg/L. Binding interactions with RHIOB and WHIOB were established, and the mechanism was carefully discussed. RHIOB and WHIOB can successfully be used for As(III) removal in single and multicomponent systems with no significant decrease in adsorption capacity in the presence of interfering ions mainly Cl-, HCO3 -, NO3 -, SO4 2-, PO4 3-, K+, Na+, Ca2+. Simultaneous As(III) desorption and regeneration of RHIOB and WHIOB was successfully achieved. A very nominal decrease in As(III) removal capacity in four consecutive cycles demonstrates the reusability of RHIOB and WHIOB. Furthermore, these sustainable composites had good sorption efficiencies and may be removed magnetically to avoid slow filtration.
Collapse
Affiliation(s)
- Prachi Singh
- School
of Environmental Sciences, Jawaharlal Nehru
University, New Delhi 110067, India
| | - Ankur Sarswat
- School
of Environmental Sciences, Jawaharlal Nehru
University, New Delhi 110067, India
| | - Charles U. Pittman
- Department
of Chemistry, Mississippi State University, Starkville, Mississippi
State 39762, United
States
| | - Todd Mlsna
- Department
of Chemistry, Mississippi State University, Starkville, Mississippi
State 39762, United
States
| | - Dinesh Mohan
- School
of Environmental Sciences, Jawaharlal Nehru
University, New Delhi 110067, India
- E-mail: . Phone: 0091-11-26704616. Fax: 0091-11-26704616
| |
Collapse
|
34
|
Al-Wabel MI, Ahmad M, Usman ARA, Sallam AS, Hussain Q, Binyameen RB, Shehu MR, Ok YS. Evaluating the efficiency of different natural clay sediments for the removal of chlortetracycline from aqueous solutions. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121500. [PMID: 31727527 DOI: 10.1016/j.jhazmat.2019.121500] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 06/10/2023]
Abstract
Natural clay sediments were collected from ten different localities in Saudi Arabia (S-1 from eastern, S-2 to S-4 from middle and S-5 to S-10 from western regions), characterized and evaluated for their efficiency towards chlortetracycline (CTC) removal from aqueous solutions. Sediment S-4 exhibited highest surface area (288.5 m2 g-1), followed by S-5, S-9, and S-1 (252.1, 249.6, and 110.4 m2 g-1, respectively). Sediments S-5, S-9, S-2, and S-4 showed the highest cation exchange capacities (CEC) (62.33, 56.54, 52.72, and 46.85 cmol kg-1, respectively). The pH range of 3.5-5.5 was optimum for the highest CTC removal. Freundlich model was best fitted to CTC sorption data (R2 = 0.96-0.99), followed by Dubinin-Radushkevich model (R2 = 0.89-0.97). The sediments S-4, S-5, and S-9 exhibited the highest CTC removal efficiency (98.80-99.05%), which could be due to higher smectite and kaolinite contents, CEC, surface area and layered structure. Post-sorption XRD patterns shown new peaks and peak shifts confirming the sorption of CTC. Electrostatic interactions, interlayer sorption and H-π bonding were the potential CTC sorption mechanisms. Therefore, natural clay sediments with high sorption capacities could efficiently remove CTC from contaminated aqueous media.
Collapse
Affiliation(s)
- Mohammad I Al-Wabel
- Soil Sciences Department, College of Food & Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia.
| | - Munir Ahmad
- Soil Sciences Department, College of Food & Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Adel R A Usman
- Soil Sciences Department, College of Food & Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; Department of Soils and Water, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt
| | - Abdulazeem S Sallam
- Soil Sciences Department, College of Food & Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Qaiser Hussain
- Institute of Soil Science, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Pakistan
| | - Ridwan B Binyameen
- Soil Sciences Department, College of Food & Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Muhammed R Shehu
- Soil Sciences Department, College of Food & Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Yong Sik Ok
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
35
|
Dai Y, Li J, Shan D. Adsorption of tetracycline in aqueous solution by biochar derived from waste Auricularia auricula dregs. CHEMOSPHERE 2020; 238:124432. [PMID: 31421464 DOI: 10.1016/j.chemosphere.2019.124432] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/17/2019] [Accepted: 07/21/2019] [Indexed: 05/27/2023]
Abstract
This study investigated the adsorption of tetracycline (TC) on biochar (BC) derived from waste Auricularia auricula dregs obtained at different pyrolysis temperatures. The characterization of BC and batch experiment results showed that BC prepared at a higher temperature was more suitable for removing TC, where the maximum adsorption capacities of BC samples prepared at 300 °C, 500 °C, and 700 °C were 7.22 mg/g, 9.90 mg/g, and 11.90 mg/g, respectively. A pseudo-first order kinetics model and Freundlich, Temkin, and Dubinin-Radushkevich isotherm models fitted well to the adsorption data. Liquid film diffusion was the rate-controlling step. In addition, π-π electron donor-acceptor interactions may have played a dominant role in the adsorption mechanism between the enone structure of TC and aromatic C of BC. These results may facilitate further investigations of the adsorption mechanism and optimization of the process.
Collapse
Affiliation(s)
- Yingjie Dai
- College of Resources and Environment, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin, 150030, China
| | - Jingjing Li
- College of Resources and Environment, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin, 150030, China
| | - Dexin Shan
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, No.319 Honghe Road, Yongchuan District, Chongqing, 402168, China.
| |
Collapse
|
36
|
Pine-wood derived nanobiochar for removal of carbamazepine from aqueous media: Adsorption behavior and influential parameters. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2016.12.025] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
37
|
Prajapati AK, Mondal MK. Hazardous As(III) removal using nanoporous activated carbon of waste garlic stem as adsorbent: Kinetic and mass transfer mechanisms. KOREAN J CHEM ENG 2019. [DOI: 10.1007/s11814-019-0376-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
38
|
Tunç MS, Hanay Ö, Yıldız B. Adsorption of chlortetracycline from aqueous solution by chitin. CHEM ENG COMMUN 2019. [DOI: 10.1080/00986445.2019.1677628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Müslün Sara Tunç
- Department of Environmental Engineering, Firat University, Elazig, Turkey
| | - Özge Hanay
- Department of Environmental Engineering, Firat University, Elazig, Turkey
| | - Burçin Yıldız
- Department of Environmental Engineering, Firat University, Elazig, Turkey
- Department of Environmental Engineering, Yuzuncu Yil University, Van, Turkey
| |
Collapse
|
39
|
Tailored mesoporous biochar sorbents from pinecone biomass for the adsorption of natural organic matter from lake water. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111248] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
40
|
Ma J, Zhou B, Zhang H, Zhang W, Wang Z. Activated municipal wasted sludge biochar supported by nanoscale Fe/Cu composites for tetracycline removal from water. Chem Eng Res Des 2019. [DOI: 10.1016/j.cherd.2019.07.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
41
|
Wang Z, Yang X, Qin T, Liang G, Li Y, Xie X. Efficient removal of oxytetracycline from aqueous solution by a novel magnetic clay-biochar composite using natural attapulgite and cauliflower leaves. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:7463-7475. [PMID: 30656586 DOI: 10.1007/s11356-019-04172-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 01/04/2019] [Indexed: 06/09/2023]
Abstract
A novel magnetic attapulgite-biochar composite (MABC) derived from natural attapulgite, cauliflower leaves, and FeCl3 was successfully prepared as a low-cost adsorbent for oxytetracycline (OTC) removal from aqueous solution. Characterization experiments by different techniques suggested that attapulgite clay particles and Fe3O4 nanoparticles were successfully covered on the MABC surface. Compared with the pristine biochar (CLB) and attapulgite-biochar composite (ABC), MABC had the largest surface area, well-developed pore structure, and more surface oxygen-containing functional groups which could interact with organic pollutant via hydrogen bonding, π-π electron coupling, complexation, and ion exchange. The maximum adsorption capacity of MABC by the Langmuir model was 33.31 mg/g, which was dramatically higher than that of CLB and ABC. The effects of solution initial pH had little difference on the adsorption of OTC because of the buffering effect. Adsorbent-regeneration studies of MABC exhibited good reusability and separation property. All the results indicated that MABC could be used as a potential adsorbent because of its easy preparation and separation, high efficiency, wide pH range application, and abundant and cheap raw materials in the global ecosystem. Graphical abstract.
Collapse
Affiliation(s)
- Zhaowei Wang
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Xing Yang
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Tingting Qin
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Guiwei Liang
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yan Li
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xiaoyun Xie
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
42
|
Yu LL, Luo ZF, Zhang YY, Wu SC, Yang C, Cheng JH. Contrastive removal of oxytetracycline and chlortetracycline from aqueous solution on Al-MOF/GO granules. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:3685-3696. [PMID: 30535742 DOI: 10.1007/s11356-018-3874-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/27/2018] [Indexed: 06/09/2023]
Abstract
The presence of tetracycline antibiotics (TCS) in the water and wastewater has raised growing concern due to its potential environmental impacts; thus, their removal is of high importance. In this study, a novel aluminum-based MOF/graphite oxide (Al-MOF/GO) granule was prepared as an adsorbent for the removal of TCS including oxytetracycline (OTC) and chlortetracycline (CTC). The adsorbent was characterized via XRD, FTIR, BET, SEM, and XPS methods. The granules exhibited similar crystal structure and some new mesopores appearing compared to the parent Al-MOF/GO powder. In addition, the adsorption behavior of OTC and CTC on samples was explored as a function of initial concentration, contact time, pH, and ionic strength by means of batch experiments. The adsorption capacity reached to 224.60 and 240.13 mg·L-1 for OTC and CTC, at C0 = 60 mg·L-1 as well as ambient temperature respectively. Moreover, the adsorption process of OTC and CTC on Al-MOF/GO samples can be better delineated by pseudo-second-order kinetics and Freundlich isotherm models. Besides, the adsorption mechanism over Al-MOF/GO granules was proposed, which could be ascribed to π-π interaction, cation-π bonding, and hydrogen bond. Finally, the great water stability, separation performance, and regeneration efficiency of these novel granules indicated their potential application in the OTC and CTC removals from aqueous solution.
Collapse
Affiliation(s)
- Lin-Ling Yu
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Zi-Fen Luo
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Ying-Ying Zhang
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Shi-Chuan Wu
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Cao Yang
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Jian-Hua Cheng
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China.
- South China Institute of Collaboration Innovation, Dongguan, 523808, China.
| |
Collapse
|
43
|
Wei X, Zhang R, Zhang W, Yuan Y, Lai B. High-efficiency adsorption of tetracycline by the prepared waste collagen fiber-derived porous biochar. RSC Adv 2019; 9:39355-39366. [PMID: 35540645 PMCID: PMC9076124 DOI: 10.1039/c9ra07289f] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/12/2019] [Indexed: 11/21/2022] Open
Abstract
Porous biochar (PBC) derived from Cr-containing waste collagen fibers was prepared by two-step pyrolysis to 800 °C (PBC-800) and alkali activation.
Collapse
Affiliation(s)
- Xinxing Wei
- State Key Laboratory of Hydraulics and Mountain River Engineering
- College of Architecture and Environment
- Sichuan University
- Chengdu 610065
- China
| | - Renjing Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering
- College of Architecture and Environment
- Sichuan University
- Chengdu 610065
- China
| | - Wenchao Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering
- College of Architecture and Environment
- Sichuan University
- Chengdu 610065
- China
| | - Yue Yuan
- Department of Biomass and Leather Engineering
- Chengdu 610065
- China
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering
- College of Architecture and Environment
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
44
|
Zhang L, Tong L, Zhu P, Huang P, Tan Z, Qin F, Shi W, Wang M, Nie H, Yan G, Huang H. Adsorption of chlortetracycline onto biochar derived from corn cob and sugarcane bagasse. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2018; 78:1336-1347. [PMID: 30388090 DOI: 10.2166/wst.2018.407] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Biochar was prepared from two different types of biological waste materials, corn cob (CC) and sugarcane bagasse (SB). The adsorption capacity of each class of adsorbent was determined by chlortetracycline (CTC) adsorption tests. The adsorption kinetics and isotherms of chlortetracycline onto sugarcane bagasse biochar (SBB) and corn cob biochar (CCB) were studied. Experimental results indicated that pseudo-second-order adsorption kinetics of CTC onto SBB and CCB were more reasonable than pseudo-first-order kinetics, and the adsorption kinetic model of CTC onto SBB was slightly better than that onto CCB. The maximum adsorption capacity of CTC onto SBB was 16.96 mg/g at pH 4, while the highest adsorption efficiency of CTC onto CCB was achieved at pH 5 with a maximum adsorption of 12.39 mg/g. The Freundlich isotherm model was better than the Langmuir model at illustrating the adsorption process of CTC onto SBB and CCB. These results provide a way to understand the value of specific biochars, which can be used as efficient and effective adsorbents for CTC removal from waste-water. Compared with raw pinewood, SBB and CBB were considered as alternative materials to remove antibiotics from aqueous environments.
Collapse
Affiliation(s)
- Lin Zhang
- School of Environmental Studies, China University of Geosciences, Lumo road 388#, Hongshan district, Wuhan, Hubei 430074, China E-mail:
| | - Lei Tong
- School of Environmental Studies, China University of Geosciences, Lumo road 388#, Hongshan district, Wuhan, Hubei 430074, China E-mail:
| | - Pengguang Zhu
- School of Environmental Studies, China University of Geosciences, Lumo road 388#, Hongshan district, Wuhan, Hubei 430074, China E-mail:
| | - Peng Huang
- School of Environmental Studies, China University of Geosciences, Lumo road 388#, Hongshan district, Wuhan, Hubei 430074, China E-mail:
| | - Zhengyu Tan
- School of Environmental Studies, China University of Geosciences, Lumo road 388#, Hongshan district, Wuhan, Hubei 430074, China E-mail:
| | - Fangling Qin
- School of Environmental Studies, China University of Geosciences, Lumo road 388#, Hongshan district, Wuhan, Hubei 430074, China E-mail:
| | - Wen Shi
- School of Environmental Studies, China University of Geosciences, Lumo road 388#, Hongshan district, Wuhan, Hubei 430074, China E-mail:
| | - Mengyun Wang
- School of Environmental Studies, China University of Geosciences, Lumo road 388#, Hongshan district, Wuhan, Hubei 430074, China E-mail:
| | - Han Nie
- School of Environmental Studies, China University of Geosciences, Lumo road 388#, Hongshan district, Wuhan, Hubei 430074, China E-mail:
| | - Guicheng Yan
- School of Environmental Studies, China University of Geosciences, Lumo road 388#, Hongshan district, Wuhan, Hubei 430074, China E-mail:
| | - Hongtao Huang
- School of Environmental Studies, China University of Geosciences, Lumo road 388#, Hongshan district, Wuhan, Hubei 430074, China E-mail:
| |
Collapse
|
45
|
Removal Processes of Carbamazepine in Constructed Wetlands Treating Secondary Effluent: A Review. WATER 2018. [DOI: 10.3390/w10101351] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
It is widely believed that constructed wetlands (CWs) own great potentiality as polishing wastewater treatment methods for removing carbamazepine (CBZ). Although the typical CBZ removal efficiencies in CWs are quite low, the CBZ removal performance could be improved to some extend by optimizing the CW design parameters. A comparison of current relevant studies indicates that horizontal sub-surface flow CWs (HSSF-CWs) and hybrid wetlands are attracting more interest for the treatment of CBZ wastewater. According to CBZ’s physicochemical properties, substrate adsorption (25.70–57.30%) and macrophyte uptake (22.30–51.00%) are the two main CBZ removal pathways in CWs. The CBZ removal efficiency of CWs employing light expanded clay aggregate (LECA) as a substrate could reach values higher than 90%, and the most favorable macrophyte species is Iris sibirica, which has shown the highest total CBZ assimilation capacity. Several methods for enhancement have been proposed to optimize CBZ removal in CWs, including development of hydraulic models for optimization of CW operation, introduction of extra new CBZ removal ways into CW through substrate modification, design of combined/integrated CW, etc.
Collapse
|
46
|
Zhu X, Li C, Li J, Xie B, Lü J, Li Y. Thermal treatment of biochar in the air/nitrogen atmosphere for developed mesoporosity and enhanced adsorption to tetracycline. BIORESOURCE TECHNOLOGY 2018; 263:475-482. [PMID: 29775903 DOI: 10.1016/j.biortech.2018.05.041] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 06/08/2023]
Abstract
For the purpose of producing carbons with developed mesoporosity, a wood biochar was thermally treated at 600-800 °C in the air/nitrogen atmosphere. The mesopore development was observed when the air flux increased to 50-90 mL/min, and the carbon product having high mesopore surface area (316 m2/g) and mesopore pore volume (0.284 cm3/g) was produced at the treatment temperature of 700 °C. The mesopores were developed mainly in the temperature holding stage of thermal treatment, with size mainly ranged from 20 to 60 Å. The carbons' adsorption to the antibiotic tetracycline was enhanced by 5.5-9.2 folds when the air/nitrogen mixture was used instead of nitrogen atmosphere in thermal treatment, and the enhanced adsorption is positively related to the mesopore development. In general, this research provides a facile way to produce carbons with developed mesoporosity, so as to improve their adsorption to bulky organic molecules.
Collapse
Affiliation(s)
- Xiaoxiao Zhu
- College of Chemistry & Chemical Engineering, Shaoxing University, Zhejiang 312000, China
| | - Chunyan Li
- College of Chemistry & Chemical Engineering, Shaoxing University, Zhejiang 312000, China
| | - Jianfa Li
- College of Chemistry & Chemical Engineering, Shaoxing University, Zhejiang 312000, China.
| | - Bin Xie
- College of Chemistry & Chemical Engineering, Shaoxing University, Zhejiang 312000, China
| | - Jinhong Lü
- College of Chemistry & Chemical Engineering, Shaoxing University, Zhejiang 312000, China
| | - Yimin Li
- College of Chemistry & Chemical Engineering, Shaoxing University, Zhejiang 312000, China
| |
Collapse
|
47
|
Tang J, Zong L, Mu B, Kang Y, Wang A. Attapulgite/carbon composites as a recyclable adsorbent for antibiotics removal. KOREAN J CHEM ENG 2018. [DOI: 10.1007/s11814-018-0066-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Khalil A, Sergeevich N, Borisova V. Removal of ammonium from fish farms by biochar obtained from rice straw: Isotherm and kinetic studies for ammonium adsorption. ADSORPT SCI TECHNOL 2018. [DOI: 10.1177/0263617418768944] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Ammonium is a water pollutant that harms the environment, particularly fisheries. Rice straw is also an economic waste of rice, with millions of tons produced per year around the world. In this paper, physical and chemical procedures for the modification of rice straw were studied. The kinetic and isothermal adsorption trends were investigated, including the ammonium removal efficiency, the contact time of the adsorbent, the amount of adsorbent, and the initial concentration of NH4+. The effect of temperature and pH on the adsorption process was discussed. The removal efficiency of NH4+ recorded 43, 53.7, and 69.5%, with maximum adsorption values of 2.9, 3.5, and 4.5 mg/g at temperatures of 25 ± 5, 35 ± 5, and 45 ± 5°C, respectively, at pH 7.5. The biochar obtained from rice follows the pseudo-second-order equation for ammonium adsorption kinetics (R2 = 0.98). The adsorption isotherm follows Freundlich’s model (R2 = 0.99) and Langmuir’s model (R2 = 0.98).
Collapse
Affiliation(s)
- Ahmed Khalil
- Don State Technical University, Russian Federation; Kafrelsheikh University, Egypt
| | | | - Vita Borisova
- Peter the Great St Petersburg Polytechnic University, Russian Federation
| |
Collapse
|
49
|
Genuino DAD, de Luna MDG, Capareda SC. Improving the surface properties of municipal solid waste-derived pyrolysis biochar by chemical and thermal activation: Optimization of process parameters and environmental application. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 72:255-264. [PMID: 29198521 DOI: 10.1016/j.wasman.2017.11.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 11/07/2017] [Accepted: 11/22/2017] [Indexed: 06/07/2023]
Abstract
Biochar produced from the slow pyrolysis of municipal solid waste was activated with KOH and thermal treatments to enhance its surface and adsorptive properties. The effects of KOH concentration, activation temperature and time on the specific surface area (SSA) of the activated biochar were evaluated and optimized using central composite design (CCD) of the response surface methodology (RSM). Results showed that the activation of biochar enhanced its SSA from 402.8 ± 12.5 to 662.4 ± 28.6 m2 g-1. The adsorptive capacities of the pristine biochar (PBC) and activated biochar (ABC) were compared using methylene blue (MB) dye as model compound. For MB concentrations up to 25 mg L-1, more than 99% dye removal was achieved with ABC, while only a maximum of 51% was obtained with PBC. Results of the isotherm study showed that the Langmuir model best described MB adsorption on ABC with adsorption capacity of 37.0-41.2 mg g-1.
Collapse
Affiliation(s)
- Divine Angela D Genuino
- Environmental Engineering Program, National Graduate School of Engineering, University of the Philippines Diliman, 1101 Quezon City, Philippines
| | - Mark Daniel G de Luna
- Environmental Engineering Program, National Graduate School of Engineering, University of the Philippines Diliman, 1101 Quezon City, Philippines; Department of Chemical Engineering, University of the Philippines Diliman, 1101 Quezon City, Philippines.
| | - Sergio C Capareda
- Bio-Energy Testing and Analysis Laboratory, Biological and Agricultural Engineering Department, Texas A&M University, College Station, 77840 TX, USA
| |
Collapse
|
50
|
Ahmed MB, Zhou JL, Ngo HH, Guo W, Johir MAH, Sornalingam K, Sahedur Rahman M. Chloramphenicol interaction with functionalized biochar in water: sorptive mechanism, molecular imprinting effect and repeatable application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 609:885-895. [PMID: 28783901 DOI: 10.1016/j.scitotenv.2017.07.239] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 07/26/2017] [Accepted: 07/26/2017] [Indexed: 05/24/2023]
Abstract
Biochar and functionalized biochar (fBC-1 and fBC-2) were prepared and applied to remove antibiotic chloramphenicol from deionized water, lake water and synthetic wastewater. Results showed that chloramphenicol removal on biochar was pH dependent and maximum sorption occurred at pH4.0-4.5. The sorption data of chloramphenicol fitted better with the Langmuir isotherm model than the Freundlich isotherm model with the maximum Langmuir sorption capacity of 233μMg-1 using fBC-2. Chloramphenicol sorption on fBC-2 followed the trend: deionized water>lake water>synthetic wastewater. The presence of humic acid decreased the sorption distribution coefficient (Kd) while the presence of low ionic strength and soil in solution increased Kd value significantly. The mechanism of sorption on fBC mainly involved electron-donor-acceptor (EDA) interactions at pH<2.0; formation of charge assisted hydrogen bond (CAHB) and hydrogen bonds in addition to EDA in the pH4.0-4.5; and CAHB and EDA interactions at pH>7.0. Additionally, solvent and thermal regeneration of fBC-2 for repeatable applications showed excellent sorption of chloramphenicol under the same condition, due to the creation of a molecular imprinting effect in fBC-2. Consequently, fBC-2 can be applied with excellent reusability properties to remove chloramphenicol and other similar organic contaminants.
Collapse
Affiliation(s)
- Mohammad Boshir Ahmed
- School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW 2007, Australia
| | - John L Zhou
- School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW 2007, Australia.
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW 2007, Australia
| | - Wenshan Guo
- School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW 2007, Australia
| | - Md Abu Hasan Johir
- School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW 2007, Australia
| | - Kireesan Sornalingam
- School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW 2007, Australia
| | - M Sahedur Rahman
- Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh
| |
Collapse
|