1
|
Kaushal SS, Shelton SA, Mayer PM, Kellmayer B, Utz RM, Reimer JE, Baljunas J, Bhide SV, Mon A, Rodriguez-Cardona BM, Grant SB, Newcomer-Johnson TA, Malin JT, Shatkay RR, Collison DC, Papageorgiou K, Escobar J, Rippy MA, Likens GE, Najjar RG, Mejia AI, Lassiter A, Li M, Chant RJ. Freshwater faces a warmer and saltier future from headwaters to coasts: climate risks, saltwater intrusion, and biogeochemical chain reactions. BIOGEOCHEMISTRY 2025; 168:31. [PMID: 40078318 PMCID: PMC11893707 DOI: 10.1007/s10533-025-01219-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 02/21/2025] [Indexed: 03/14/2025]
Abstract
Alongside global climate change, many freshwater ecosystems are experiencing substantial shifts in the concentrations and compositions of salt ions coming from both land and sea. We synthesize a risk framework for anticipating how climate change and increasing salt pollution coming from both land and saltwater intrusion will trigger chain reactions extending from headwaters to tidal waters. Salt ions trigger 'chain reactions,' where chemical products from one biogeochemical reaction influence subsequent reactions and ecosystem responses. Different chain reactions impact drinking water quality, ecosystems, infrastructure, and energy and food production. Risk factors for chain reactions include shifts in salinity sources due to global climate change and amplification of salinity pulses due to the interaction of precipitation variability and human activities. Depending on climate and other factors, salt retention can range from 2 to 90% across watersheds globally. Salt retained in ecosystems interacts with many global biogeochemical cycles along flowpaths and contributes to 'fast' and 'slow' chain reactions associated with temporary acidification and long-term alkalinization of freshwaters, impacts on nutrient cycling, CO2, CH4, N2O, and greenhouse gases, corrosion, fouling, and scaling of infrastructure, deoxygenation, and contaminant mobilization along the freshwater-marine continuum. Salt also impacts the carbon cycle and the quantity and quality of organic matter transported from headwaters to coasts. We identify the double impact of salt pollution from land and saltwater intrusion on a wide range of ecosystem services. Our salinization risk framework is based on analyses of: (1) increasing temporal trends in salinization of tributaries and tidal freshwaters of the Chesapeake Bay and freshening of the Chesapeake Bay mainstem over 40 years due to changes in streamflow, sea level rise, and watershed salt pollution; (2) increasing long-term trends in concentrations and loads of major ions in rivers along the Eastern U.S. and increased riverine exports of major ions to coastal waters sometimes over 100-fold greater than forest reference conditions; (3) varying salt ion concentration-discharge relationships at U.S. Geological Survey (USGS) sites across the U.S.; (4) empirical relationships between specific conductance and Na+, Cl-, SO4 2-, Ca2+, Mg2+, K+, and N at USGS sites across the U.S.; (5) changes in relationships between concentrations of dissolved organic carbon (DOC) and different salt ions at USGS sites across the U.S.; and (6) original salinization experiments demonstrating changes in organic matter composition, mobilization of nutrients and metals, acidification and alkalinization, changes in oxidation-reduction potentials, and deoxygenation in non-tidal and tidal waters. The interaction of human activities and climate change is altering sources, transport, storage, and reactivity of salt ions and chain reactions along the entire freshwater-marine continuum. Our salinization risk framework helps anticipate, prevent, and manage the growing double impact of salt ions from both land and sea on drinking water, human health, ecosystems, aquatic life, infrastructure, agriculture, and energy production. Supplementary Information The online version contains supplementary material available at 10.1007/s10533-025-01219-6.
Collapse
Affiliation(s)
- Sujay S. Kaushal
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD USA
| | - Sydney A. Shelton
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD USA
| | - Paul M. Mayer
- Pacific Ecological Systems Division, US Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Corvallis, OR USA
| | - Bennett Kellmayer
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD USA
| | | | - Jenna E. Reimer
- Department of Soil & Water Sciences, University of Florida, Gainesville, FL USA
| | | | - Shantanu V. Bhide
- The Charles E. Via Jr Department of Civil and Environmental Engineering, Occoquan Watershed Monitoring Laboratory, Virginia Tech, Manassas, VA USA
| | - Ashley Mon
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD USA
| | - Bianca M. Rodriguez-Cardona
- Groupe de Recherche Interuniversitaire en Limnologie (GRIL), Université du Québec à Montréal, Montréal, Canada
| | - Stanley B. Grant
- The Charles E. Via Jr Department of Civil and Environmental Engineering, Occoquan Watershed Monitoring Laboratory, Virginia Tech, Manassas, VA USA
| | - Tamara A. Newcomer-Johnson
- Watershed and Ecosystem Characterization Division, US Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, Cincinnati, OH USA
| | - Joseph T. Malin
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD USA
| | - Ruth R. Shatkay
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD USA
| | - Daniel C. Collison
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD USA
| | - Kyriaki Papageorgiou
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD USA
| | - Jazmin Escobar
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD USA
| | - Megan A. Rippy
- The Charles E. Via Jr Department of Civil and Environmental Engineering, Occoquan Watershed Monitoring Laboratory, Virginia Tech, Manassas, VA USA
| | - Gene E. Likens
- Cary Institute of Ecosystem Studies, Millbrook, NY USA
- University of Connecticut, Storrs, CT USA
| | - Raymond G. Najjar
- Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, PA USA
| | - Alfonso I. Mejia
- Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA USA
| | - Allison Lassiter
- University of Pennsylvania Weitzman School of Design, Philadelphia, PA USA
| | - Ming Li
- Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, MD USA
| | - Robert J. Chant
- Institute of Marine and Coastal Science, Rutgers, The State University of New Jersey, New Brunswick, NJ USA
| |
Collapse
|
2
|
Long S, Rippy MA, Krauss L, Stacey M, Fausey K. The impact of deicer and anti-icer use on plant communities in stormwater detention basins: Characterizing salt stress and phytoremediation potential. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 962:178310. [PMID: 39818486 DOI: 10.1016/j.scitotenv.2024.178310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/25/2024] [Accepted: 12/26/2024] [Indexed: 01/18/2025]
Abstract
We present the results of a 1-year study that quantified salt levels in stormwater, soils, and plant tissues from 14 stormwater detention basins across Northern VA in an above-average snow year. We characterize (1) the level of salt stress plants experience, (2) the extent to which current plant communities feature salt tolerant species, and (3) the capacity of these species to phytoremediate soils and reduce the impacts of deicer and anti-icer use. Our results suggest that detention basin vegetation experience a range of salt stress levels that depend on drainage area type (roads: moderate to high > parking lots: low to moderate > pervious areas: none). Established thresholds for salt sensitive vegetation (Na+, Cl+, electrical conductivity, sodium adsorption ratio, exchangeable sodium percentage) were exceeded at least twice in stormwater or soils from all systems draining roads and half of systems draining parking lots. Winter exceedances were most common, but saline conditions did persist into the growing season, particularly at sites draining roads. Two hundred fifty-five plant species were identified across all detention basins, including 48 natives capable of tolerating elevated salt levels (electrical conductivity ≥2 dS/m). Within-tissue concentrations of sodium and chloride ions were highest in Typha (latifolia and angustifolia) (11.1 mg Na+/g; 30 mg Cl-/g), making it our top phytoremediation candidate. Scaling these concentrations up, we estimate that a standard-size highway detention basin (2000-3000 m2) with 100 % cattail cover can phytoremediate up to 100 kg of Na+ and 200 kg of Cl- per year. Uptake at this level is not sufficient to offset winter salt application, constituting only 5-6 % of basin inputs. This suggests that phytoremediation should not be considered a standalone solution to basin salinization, although it could be one approach of many in a broader salt management strategy.
Collapse
Affiliation(s)
- S Long
- Occoquan Watershed Monitoring Laboratory, The Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 9408 Prince William Street, Manassas, VA, USA
| | - M A Rippy
- Occoquan Watershed Monitoring Laboratory, The Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 9408 Prince William Street, Manassas, VA, USA; Disaster Resilience and Risk Management (DRRM), 1068A Derring Hall, 405 Perry Street, Blacksburg, VA 17 24061, USA.
| | - L Krauss
- Occoquan Watershed Monitoring Laboratory, The Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 9408 Prince William Street, Manassas, VA, USA
| | - M Stacey
- Occoquan Watershed Monitoring Laboratory, The Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 9408 Prince William Street, Manassas, VA, USA
| | - K Fausey
- Occoquan Watershed Monitoring Laboratory, The Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 9408 Prince William Street, Manassas, VA, USA
| |
Collapse
|
3
|
Fanelli RM, Moore J, Stillwell CC, Sekellick AJ, Walker RH. Predictive Modeling Reveals Elevated Conductivity Relative to Background Levels in Freshwater Tributaries within the Chesapeake Bay Watershed, USA. ACS ES&T WATER 2024; 4:4978-4989. [PMID: 39539760 PMCID: PMC11555677 DOI: 10.1021/acsestwater.4c00589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Elevated conductivity (i.e., specific conductance or SC) causes osmotic stress in freshwater aquatic organisms and may increase the toxicity of some contaminants. Indices of benthic macroinvertebrate integrity have declined in urban areas across the Chesapeake Bay watershed (CBW), and more information is needed about whether these declines may be due to elevated conductivity. A predictive SC model for the CBW was developed using monitoring data from the National Water Quality Portal. Predictor variables representing SC sources were compiled for nontidal reaches across the CBW. Random forests modeling was conducted to predict SC at four time periods (1999-2001, 2004-2006, 2009-2011, and 2014-2016), which were then compared to a national data set of background SC to quantify departures from background SC. Carbonate geology, impervious cover, forest cover, and snow depth were the most important variables for predicting SC. Observations and modeled results showed snow depth amplified the effect of impervious cover on SC. Elevated SC was predicted in two-thirds of reaches in the CBW, and these elevated conditions persisted over time in many areas. These results can be used in stressor identification assessments to prioritize future monitoring and to determine where management activities could be implemented to reduce salinization.
Collapse
Affiliation(s)
- Rosemary M. Fanelli
- U.S.
Geological Survey, South Atlantic Water
Science Center, 3916 Sunset Ridge Road, Raleigh, North Carolina 27607, United States
| | - Joel Moore
- Towson
University, 8000 York Road, Towson, Maryland 21252, United
States
| | - Charles C. Stillwell
- U.S.
Geological Survey, South Atlantic Water
Science Center, 3916 Sunset Ridge Road, Raleigh, North Carolina 27607, United States
| | - Andrew J. Sekellick
- U.S.
Geological Survey, MD-DE-DC Water Science
Center, 5522 Research Park Drive, Catonsville, Maryland 21228, United States
| | - Richard H. Walker
- University
of Tennessee, 615 McCallie
Ave, Chattanooga, Tennessee 37403, United States
| |
Collapse
|
4
|
Marks NK, Cravotta CA, Rossi ML, Silva C, Kremer P, Goldsmith ST. Exploring spatial and temporal symptoms of the freshwater salinization syndrome in a rural to urban watershed. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174266. [PMID: 38960200 DOI: 10.1016/j.scitotenv.2024.174266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 07/05/2024]
Abstract
The freshwater salinization syndrome (FSS), a concomitant watershed-scale increase in salinity, alkalinity, and major-cation and trace-metal concentrations, over recent decades, has been described for major rivers draining extensive urban areas, yet few studies have evaluated temporal and spatial FSS variations, or causal factors, at the subwatershed scale in mixed-use landscapes. This study examines the potential influence of land-use practices and wastewater treatment plant (WWTP) effluent on the export of major ions and trace metals from the mixed-use East Branch Brandywine Creek watershed in southeastern Pennsylvania, during the 2019 water year. Separate analysis of baseflow and stormflow subsets revealed similar correlations among land-use characteristics and streamwater chemistry. Positive associations between percent impervious surface cover, which ranged from 1.26 % to 21.9 % for the 13 sites sampled, and concentrations of Ca2+, Mg2+, Na+, and Cl- are consistent with road-salt driven reverse cation exchange and weathering of the built environment. The relative volume of upstream WWTP was correlated with Cu and Zn, which may be derived in part from corroded water-conveyance infrastructure; chloride to sulfate mass ratios (CSMR) ranged from ~6.3 to ~7.7× the 0.5 threshold indicating serious corrosivity potential. Observed exceedances of U.S. Environmental Protection Agency Na+ and Cl- drinking water and aquatic life criteria occurred in winter months. Finally, correlations between percent cultivated cropland and As and Pb concentrations may be explained by the persistence of agricultural pesticides that had been used historically. Study results contribute to the understanding of FSS solute origin, fate, and transport in mixed-use watersheds, particularly those in road salt-affected regions. Study results also emphasize the complexity of trace-metal source attribution and explore the potential for FSS solutes to affect human health, aquatic life, and infrastructure.
Collapse
Affiliation(s)
- Nicole K Marks
- Department of Geography and the Environment, Villanova University, Villanova, PA 19085, United States of America
| | - Charles A Cravotta
- Cravotta Geochemical Consulting, Bethel, PA 19507, United States of America
| | - Marissa L Rossi
- Department of Geography and the Environment, Villanova University, Villanova, PA 19085, United States of America; U.S. Geological Survey, Pennsylvania Water Science Center, 408 Boot Road, Downingtown, PA 19335, United States of America
| | - Camila Silva
- Department of Geography and the Environment, Villanova University, Villanova, PA 19085, United States of America
| | - Peleg Kremer
- Department of Geography and the Environment, Villanova University, Villanova, PA 19085, United States of America
| | - Steven T Goldsmith
- Department of Geography and the Environment, Villanova University, Villanova, PA 19085, United States of America.
| |
Collapse
|
5
|
Shelton SA, Kaushal SS, Mayer PM, Shatkay RR, Rippy MA, Grant SB, Newcomer-Johnson TA. Salty chemical cocktails as water quality signatures: Longitudinal trends and breakpoints along different U.S. streams. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172777. [PMID: 38670384 PMCID: PMC11371123 DOI: 10.1016/j.scitotenv.2024.172777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Along urban streams and rivers, various processes, including road salt application, sewage leaks, and weathering of the built environment, contribute to novel chemical cocktails made up of metals, salts, nutrients, and organic matter. In order to track the impacts of urbanization and management strategies on water quality, we conducted longitudinal stream synoptic (LSS) monitoring in nine watersheds in five major metropolitan areas of the U.S. During each LSS monitoring survey, 10-53 sites were sampled along the flowpath of streams as they flowed along rural to urban gradients. Results demonstrated that major ions derived from salts (Ca2+, Mg2+, Na+, and K+) and correlated elements (e.g. Sr2+, N, Cu) formed 'salty chemical cocktails' that increased along rural to urban flowpaths. Salty chemical cocktails explained 46.1% of the overall variability in geochemistry among streams and showed distinct typologies, trends, and transitions along flowpaths through metropolitan regions. Multiple linear regression predicted 62.9% of the variance in the salty chemical cocktails using the six following significant drivers (p < 0.05): percent urban land, wastewater treatment plant discharge, mean annual precipitation, percent silicic residual material, percent volcanic material, and percent carbonate residual material. Mean annual precipitation and percent urban area were the most important in the regression, explaining 29.6% and 13.0% of the variance. Different pollution sources (wastewater, road salt, urban runoff) in streams were tracked downstream based on salty chemical cocktails. Streams flowing through stream-floodplain restoration projects and conservation areas with extensive riparian forest buffers did not show longitudinal increases in salty chemical cocktails, suggesting that there could be attenuation via conservation and restoration. Salinization represents a common urban water quality signature and longitudinal patterns of distinct chemical cocktails and ionic mixtures have the potential to track the sources, fate, and transport of different point and nonpoint pollution sources along streams across different regions.
Collapse
Affiliation(s)
- Sydney A Shelton
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, Geology Building 237, College Park, MD 20742, USA; ORISE Fellow at Pacific Ecological Systems Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, 200 SW 35th Street, Corvallis, OR 97333, USA.
| | - Sujay S Kaushal
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, Geology Building 237, College Park, MD 20742, USA.
| | - Paul M Mayer
- Office of Research and Development, Center for Public Health and Environmental Assessment, Pacific Ecological Systems Division, U.S. Environmental Protection Agency, 200 SW 35th Street, Corvallis, OR 97333, USA.
| | - Ruth R Shatkay
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, Geology Building 237, College Park, MD 20742, USA.
| | - Megan A Rippy
- Occoquan Watershed Monitoring Laboratory, The Charles E. Via Jr Department of Civil and Environmental Engineering, Virginia Tech, 9408 Prince William St, Manassas, VA 20110, USA; Center for Coastal Studies, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Stanley B Grant
- Occoquan Watershed Monitoring Laboratory, The Charles E. Via Jr Department of Civil and Environmental Engineering, Virginia Tech, 9408 Prince William St, Manassas, VA 20110, USA; Center for Coastal Studies, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Tammy A Newcomer-Johnson
- United States Environmental Protection Agency, Center for Environmental Measurement and Modeling, Watershed and Ecosystem Characterization Division, 26 Martin Luther King Dr W, Cincinnati, OH 45220, USA.
| |
Collapse
|
6
|
Tsai MH, Chao SJ, Luo CL, Hua LC, Hu CC, Mahata BK, Huang C. Selective dissolution of zinc and lead from duplex β-phase brasses in low and high conductivity water. CHEMOSPHERE 2024; 355:141835. [PMID: 38552799 DOI: 10.1016/j.chemosphere.2024.141835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/01/2024]
Abstract
This study provides insights regarding the selective metal leaching of brass in various tap water conditions, which benefits water utilities to predict the potential of metal released from brass water meters. The long-term time-dependent selective metal dissolution of brass with various β phase fractions have not previously been investigated. In this study, a 201-d immersion experiment was carried out in low and high conductivity tap water (LCTW and HCTW, respectively). Three commercialized brass samples in different β phase fractions (β = 51%, β = 43%, β = 39%), named brass 51, brass 43, and brass 39, respectively, were used. The results showed that brass 51 had the most negative corrosion potential (-0.17 V) and the lowest polarization resistance (8.5 kΩ) compared to brass 43 and brass 39 (-0.04 V and 10.1-14.7 kΩ, respectively) in LCTW. This trend was verified by the 201-d immersion experiment in which brass 51 exhibited the highest zinc leaching rate (21-30 μg L-1 cm-2 d-1), followed by brass 43 and brass 39 (16-23 μg L-1 cm-2 d-1) in both waters. The leaching amounts of lead and copper were extremely low compared to zinc. In LCTW, the uniform corrosion (UC) mechanism dominated from day 1 to day 120. Afterwards, UC was replaced by the galvanic corrosion (GC) mechanism, with the selective leaching coefficient of Zn over Cu (SZn/Cu) increasing from 10 to 25 to 40-80. In HCTW, however, the SZn/Cu reached 300-1000, and the transition of UC to GC occurred earlier on day 30 due to the rapid formation of the ZnO layer on the brass surface that hindered the ion attack.
Collapse
Affiliation(s)
- Ming-Han Tsai
- Institute of Environmental Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | - Shu-Ju Chao
- Division of Water Research Technology, Material and Chemical Research Laboratories, Industrial Technology Research Institute (ITRI), Hsinchu, 300, Taiwan
| | - Cai-Lin Luo
- Institute of Environmental Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | - Lap-Cuong Hua
- IHE-Delft Institute for Water Education, Water Supply, Sanitation and Environmental Engineering Department, Westvest 7, 2611, AX Delft, the Netherlands
| | - Chi-Chang Hu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300, Taiwan.
| | - Biplab Kumar Mahata
- International College of Semiconductor Technology, National Chiao Tung University, 1001 University Road, Hsinchu, 30013, Taiwan; Department of Civil Engineering, Indian Institute of Technology, Kanpur, UP, 208016, India
| | - Chihpin Huang
- Institute of Environmental Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan.
| |
Collapse
|
7
|
Boualem B, Egbueri JC. Graphical, statistical and index-based techniques integrated for identifying the hydrochemical fingerprints and groundwater quality of In Salah, Algerian Sahara. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:158. [PMID: 38592363 DOI: 10.1007/s10653-024-01931-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/20/2024] [Indexed: 04/10/2024]
Abstract
Groundwater, a predominant reservoir of freshwater, plays a critical role in providing a sustainable potable water and water for agricultural and industry uses in the In Salah desert region of Algeria. This research collected 82 underground water samples from Albian aquifers to assess water quality and identify hydrogeochemical processes influencing mineralization. To achieve this objective, various methods were employed to evaluate water quality based on its intended uses. The drinking water quality index utilized revealed the water potability status, while the indicators of irrigation potability were employed to evaluate its quality for agricultural purposes. Additionally, an assessment of groundwater susceptibility to corrosion and scaling in an industrial context was conducted using several indices, e.g., Langelier index, Larson-Skold index, Ryznar index, chloride-sulfate mass ratio, Puckorius index, aggressiveness index, and the Revelle index. The findings of this study revealed that the groundwater quality for consumption fell into four categories: good (2.44%), fair (29.27%), poor (65.85%), and non-potable (2.44%). Concerning agricultural irrigation, the indexical results indicated that 15.85% of the waters exhibited adequate quality, while 84.15% were questionable for irrigation. Calculations based on various corrosion and scaling evaluation indices showed that most wells were prone to corrosion, with a tendency for calcium bicarbonate deposit formation. Furthermore, the hydrochemical study identified three water types: Na-Cl (53.66%), Ca-Mg-Cl (37.80%), and Ca-Cl (8.54%) waters. Analyses of correlation matrices, R-type clustering, factor loadings, Gibbs diagrams, scatterplots, and chloro-alkaline indices highlighted that the chemistry of the Albian groundwater is fundamentally impacted by a number of processes such as silicate weathering, evaporite dissolution, ionic exchange, and anthropogenic inputs, that played impactful role in the aquifer's water chemistry.
Collapse
Affiliation(s)
- Bouselsal Boualem
- Laboratory of Underground Oil, Gas and Aquifer Reservoirs, Department of Earth and Universe Sciences, University of Kasdi Merbah, Route de Ghardaia, BP 511, 30000, Ouargla, Algeria
| | - Johnbosco C Egbueri
- Department of Geology, Chukwuemeka Odumegwu Ojukwu University, Uli, 431124, Nigeria.
| |
Collapse
|
8
|
Zhang H, Zhang S, Liu Y, Yang M, Zhou X, Abbas G, Wang L, Lu J. Effects of chloride on corrosion scale compositions and heavy metal release in drinking water distribution systems. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133452. [PMID: 38198869 DOI: 10.1016/j.jhazmat.2024.133452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/16/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Variations in water chemistry may lead to the release of harmful heavy metals in drinking water distribution systems (DWDSs). In this study, the effects of chloride on the release of heavy metals such as Fe, Mn, As, Cr, Mo, V, Sr, and Co were examined using steel and cast iron pipe loops. After chloride was added, the relative contents of goethite (α-FeOOH), lepidocrocite (γ-FeOOH), and siderite (FeCO3) in pipe scales increased, but the contents of magnetite (Fe3O4) decreased. The most prevalent compounds were α-FeOOH and γ-FeOOH. When the chloride levels were increased, the effluent concentrations of Fe, Mn, As, Cr, Mo, V, Sr, and Co significantly increased. These heavy metals were released presumably because of the destabilization and dissolution of corrosion scales induced by chloride and adsorption site competition. Strong positive correlations were also observed between Fe&Mn, Fe/Mn&As, Fe/Mn&Cr, Fe/Mn&Mo, Fe/Mn&V, Fe/Mn&Sr, and Fe/Mn&Co, indicating the co-release of Fe, Mn, and other metals. This study may be helpful for the potential strategies on avoidance of heavy metal release and improvement of water supply security.
Collapse
Affiliation(s)
- Hui Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Shan Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Yuekai Liu
- Qingdao Municiple Engineering Design & Research Institute, Qingdao 266000, PR China
| | - Min Yang
- China Northwest Architecture Design and Research Institute Co. Ltd, Xi'an 710018, PR China
| | - Xue Zhou
- Shenzhen Water Resources Planning and Design Institute Co., Ltd, Shenzhen 518000, PR China
| | - Ghulam Abbas
- Department of Chemical Engineering and Technology, University of Gujrat, Gujrat 50700, Pakistan
| | - Long Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Jinsuo Lu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China.
| |
Collapse
|
9
|
Keithley AE, Woodruff P, Williams DJ, Dugan NR, Lytle DA. Nitrogen-sparging assisted anoxic biological drinking water treatment system. AWWA WATER SCIENCE 2023; 5:1-14. [PMID: 38268712 PMCID: PMC10805249 DOI: 10.1002/aws2.1359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/25/2023] [Indexed: 01/26/2024]
Abstract
Existing heterotrophic denitrification reactors rely on microorganisms to consume dissolved oxygen (DO) and create conditions suitable for denitrification, but this practice leads to excessive microbial growth and increased organic carbon doses. An innovative reactor that uses nitrogen gas sparging through a contactor to strip DO was developed and tested in the lab. It reduced influent nitrate from 15 to <1 mg/L as N with nitrite accumulation <1 mg/L as N. It maintained a consistent flow rate and developed minimal headloss, making it easier to operate than the denitrifying dual-media filter that was operated in parallel. Gravel, polyvinyl chloride pieces, and no packing media were assessed as options for the nitrogen-sparged contactor, and gravel was found to support denitrification at the highest loading rate and was resilient to nitrogen-sparging shutoffs and intermittent operation. This innovative reactor appears promising for small drinking water systems.
Collapse
Affiliation(s)
- Asher E. Keithley
- U.S. Environmental Protection Agency, Office of Research & Development, Cincinnati, Ohio, USA
| | - Peyton Woodruff
- Oak Ridge Institute for Science and Education (ORISE) intern at U.S. Environmental Protection Agency, Office of Research & Development, Cincinnati, Ohio, USA
| | - Daniel J. Williams
- U.S. Environmental Protection Agency, Office of Research & Development, Cincinnati, Ohio, USA
| | - Nicholas R. Dugan
- U.S. Environmental Protection Agency, Office of Research & Development, Cincinnati, Ohio, USA
| | - Darren A. Lytle
- U.S. Environmental Protection Agency, Office of Research & Development, Cincinnati, Ohio, USA
| |
Collapse
|
10
|
Schramm MP. Linking watershed nutrient loading to estuary water quality with generalized additive models. PeerJ 2023; 11:e16073. [PMID: 37780377 PMCID: PMC10540774 DOI: 10.7717/peerj.16073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/20/2023] [Indexed: 10/03/2023] Open
Abstract
Evaluating estuary water quality responses to reductions (or increases) in nutrient loading attributed to on the ground management actions can be challenging due to the strong influence of environmental drivers on nutrient loads and non-linear relationships. This study applied generalized additive models to calculate watershed nutrient loads and assess responses in estuary water quality to seasonally-adjusted freshwater inflow and flow-adjusted nutrient loads in Lavaca Bay, Texas. Lavaca Bay is a secondary embayment on the Texas coast displaying early potential for eutrophication and water quality degradation. Use of flow-adjusted nutrient loads allowed the study to evaluate the response in water quality to changes in nutrient loads driven by anthropogenic sources. Cross-validation indicated that, despite data constraints, semiparametric models performed well at nutrient load prediction. Based on these models, delivered annual nutrient loads varied substantially from year to year. In contrast, minimal changes in flow-normalized loads indicate that nutrient loadings were driven by natural variation in precipitation and runoff as opposed to changes in management of nonpoint sources. Models indicated no evidence of long-term changes in dissolved oxygen or chlorophyll-a within Lavaca Bay. However, site specific long-term increases in both organic and inorganic nitrogen are concerning for their potential to fuel eutrophication. Further analysis found freshwater inflow had strong influences on nutrient and chlorophyll-a concentrations but there was no evidence that changes in watershed nutrient loading explained additional variation in dissolved oxygen and limited evidence that watershed nutrient loadings explained chlorophyll-a concentrations. In addition to providing a baseline assessment of watershed nutrient loading and water quality responses in the Lavaca Bay watershed, this study provides methodological support for the use of semiparametric models in load regression models and estuary assessments.
Collapse
Affiliation(s)
- Michael P. Schramm
- Texas A&M AgriLife Research, Texas Water Resources Institute, Texas A&M University, College Station, TX, United States of America
| |
Collapse
|
11
|
Stefan DS, Bosomoiu M, Teodorescu G. The Behavior of Polymeric Pipes in Drinking Water Distribution System-Comparison with Other Pipe Materials. Polymers (Basel) 2023; 15:3872. [PMID: 37835921 PMCID: PMC10575437 DOI: 10.3390/polym15193872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
The inner walls of the drinking water distribution system (DWDS) are expected to be clean to ensure a safe quality of drinking water. Complex physical, chemical, and biological processes take place when water comes into contact with the pipe surface. This paper describes the impact of leaching different compounds from the water supply pipes into drinking water and subsequent risks. Among these compounds, there are heavy metals. It is necessary to prevent these metals from getting into the DWDS. Those compounds are susceptible to impacting the quality of the water delivered to the population either by leaching dangerous chemicals into water or by enhancing the development of microorganism growth on the pipe surface. The corrosion process of different pipe materials, scale formation mechanisms, and the impact of bacteria formed in corrosion layers are discussed. Water treatment processes and the pipe materials also affect the water composition. Pipe materials act differently in the flowing and stagnation conditions. Moreover, they age differently (e.g., metal-based pipes are subjected to corrosion while polymer-based pipes have a decreased mechanical resistance) and are susceptible to enhanced bacterial film formation. Water distribution pipes are a dynamic environment, therefore, the models that are used must consider the changes that occur over time. Mathematical modeling of the leaching process is complex and includes the description of corrosion development over time, correlated with a model for the biofilm formation and the disinfectants-corrosion products and disinfectants-biofilm interactions. The models used for these processes range from simple longitudinal dispersion models to Monte Carlo simulations and 3D modeling. This review helps to clarify what are the possible sources of compounds responsible for drinking water quality degradation. Additionally, it gives guidance on the measures that are needed to maintain stable and safe drinking water quality.
Collapse
Affiliation(s)
- Daniela Simina Stefan
- Department of Analytical Chemistry and Environmental Engineering, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania; (D.S.S.); (G.T.)
| | - Magdalena Bosomoiu
- Department of Analytical Chemistry and Environmental Engineering, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania; (D.S.S.); (G.T.)
| | - Georgeta Teodorescu
- Department of Analytical Chemistry and Environmental Engineering, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania; (D.S.S.); (G.T.)
- Doctoral School, Specialization of Environmental Engineering, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania
| |
Collapse
|
12
|
Li Z, Lei T, Pei T, Chen K, Zhao Z, Wang M, He Y. Facile Synthesis of MXene-Ti 3C 2/Co Nanosheet Hydrogel Sensor with the Assistance of a Smartphone for On-Site Monitoring of Glucose in Beverages. Molecules 2023; 28:5075. [PMID: 37446737 DOI: 10.3390/molecules28135075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
A one-step cobaltous chloride (CoCl2) molten salt method was employed to prepare multilayer MXene-Ti3C2/Co materials with further ultrasonic treatment to acquire single-layer MXene-Ti3C2/Co nanosheets (NSs). MXene-Ti3C2/Co NSs were characterized, and their enzyme-like activities were investigated. Under the catalysis of MXene-Ti3C2/Co NSs, 3,3',5,5'-tetramethylbenzidine (TMB) could be oxidized by H2O2, with the color changing from colorless to blue. The affinity of MXene-Ti3C2/Co NSs to H2O2 and TMB was better than that of nanozymes reported in previous studies. The MXene-Ti3C2/Co NSs were used for the colorimetric determination of H2O2/glucose, with limits of detection (LODs) of 0.033 mM and 1.7 μM, respectively. MXene-Ti3C2/Co NSs embedded in sodium alginate (SA) hydrogel were used to construct a sensor platform. The digital pictures combined with a smartphone-installed app (color recognizer) could be used to analyze RGB values for colorimetric detection of glucose in beverages. This point-of-care testing platform has the advantages of cost-effectiveness and good transferability, with the potential to realize quick, intelligent and on-site detection.
Collapse
Affiliation(s)
- Ziling Li
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Tiantian Lei
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Ting Pei
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Keyan Chen
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Zhidong Zhao
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Manman Wang
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Yu He
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| |
Collapse
|
13
|
Xu P, Fu Q, Zhao M. The influence of calcium on copper corrosion and its by-product release in drinking water. RSC Adv 2023; 13:17842-17855. [PMID: 37323460 PMCID: PMC10261913 DOI: 10.1039/d3ra01696j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/31/2023] [Indexed: 06/17/2023] Open
Abstract
Copper is a high-quality material commonly used in drinking water supply pipes. Calcium is a prevalent cation found in drinking water. However, the effects of calcium on copper corrosion and its by-product release remain unclear. This study discusses the influences of Ca2+ on copper corrosion and its by-product release in drinking water under different conditions of Cl-, SO42-, and Cl-/SO42-, using electrochemical and scanning electron microscopy techniques. The results indicate that Ca2+ slows down the corrosion reaction of copper to some extent in comparison with Cl-, and the Ecorr shifts positively by 0.022 V, while Icorr decreases by 0.235 μA cm-2. However, the by-product release rate increases by 0.5 μg cm-2. The addition of Ca2+ causes the anodic process to become the controlling factor for corrosion, with an increase in resistance observed in both the inner and outer layers of the corrosion product film through SEM analysis. The corrosion product film becomes denser due to the reaction between Ca2+ and Cl-, forming a product that inhibits the entry of Cl- into the passive film on the copper surface. Adding Ca2+ promotes copper corrosion with the help of SO42- and the release of corrosion by-products. The anodic reaction resistance decreases while the cathodic reaction resistance increases, resulting in a small potential difference of only 10 mV between the anode and cathode. The resistance of the inner layer film decreases, while that of the outer layer film increases. SEM analysis shows that the surface becomes rougher with the addition of Ca2+, and 1-4 mm granular corrosion products are formed. This is due to the fact that Cu4(OH)6SO4 has low solubility and forms a relatively dense passive film that inhibits the corrosion reaction. The added Ca2+ also reacts with SO42- to form CaSO4, which reduces the amount of Cu4(OH)6SO4 generated at the interface, thus damaging the integrity of the passive film. Adding Ca2+ promotes the corrosion of copper by Cl- and SO42- and enhances the release of corrosion by-products, with the highest corrosion rate observed under the Cl-/SO42-/Ca2+ conditions. The resistance of the inner layer membrane decreases, while the mass transfer resistance of the outer layer membrane increases. Under the Cl-/SO42- conditions, the SEM surface of the Cu2O particles is uniform in size, arranged in an orderly and compact manner. After adding Ca2+, the size of the particles becomes uneven, and the surface becomes rough and uneven. This is because Ca2+ firstly combines with SO42-, thus promoting corrosion. And then the remaining Ca2+ combines with Cl-, which inhibits corrosion. Despite the amount of remaining Ca2+ being small, it still promotes corrosion. The amount of released corrosion by-products is mainly controlled by the redeposition reaction that occurs in the outer layer membrane, determining the amount of Cu2O to which the copper ions are converted. The increase in resistance of the outer layer membrane means that the charge transfer resistance of the redeposition reaction increases, and the reaction rate slows down. Consequently, the amount of Cu(ii) converted to Cu2O decreases, leading to an increase in Cu(ii) in the solution. Therefore, adding Ca2+ in all three conditions results in an increase in the release of corrosion by-products.
Collapse
Affiliation(s)
- Ping Xu
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture Beijing 100044 China
| | - Qiang Fu
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture Beijing 100044 China
| | - Meihui Zhao
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture Beijing 100044 China
| |
Collapse
|
14
|
Rumsey CA, Hammond JC, Murphy J, Shoda M, Soroka A. Spatial patterns and seasonal timing of increasing riverine specific conductance from 1998 to 2018 suggest legacy contamination in the Delaware River Basin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159691. [PMID: 36302437 DOI: 10.1016/j.scitotenv.2022.159691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/28/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Increasing salinization of freshwater threatens water supplies that support a range of human and ecological uses. The latest assessments of Delaware River Basin (DRB) surface-water-quality changes indicate widespread salinization has occurred in recent decades, which may lead to meaningful degradation in water quality. To better understand how and when salinity transport occurs and implications for DRB streams, this study: 1) explores the variability of specific conductance (SC) trends spatially and seasonally from 1998 to 2018, and 2) investigates how trends relate to streamflow, land disturbance, and impervious surface area to better understand regional salinization drivers. We find widespread increases in SC across the DRB, with several sites in the lower basin exceeding thresholds for aquatic life and experiencing increasing frequencies of exceedance over time. In general, the greatest basin wide increases in SC occurred during low flow conditions, indicating that a legacy component resulting from subsurface retention and transport processes has driven observed changes in riverine SC. For a subset of sites in the lower basin, where impervious area and cumulative land disturbance are higher, the greatest SC increases occurred during high flow conditions in winter months. Given the patterns of SC and watershed changes across the basin, as well as strong relationships between SC trends and sodium and chloride trends, deicing salt appears to be a likely driver of observed SC change. Even if deicing salt application plateaus or declines in coming years, the continued release and transport of the legacy subsurface component may still contribute to elevated DRB riverine SC.
Collapse
Affiliation(s)
- Christine A Rumsey
- U.S. Geological Survey, Utah Water Science Center, 2329 Orton Circle, Salt Lake City, UT 84119, USA.
| | - John C Hammond
- U.S. Geological Survey, Maryland-Delaware-D.C. Water Science Center, 5522 Research Park Drive, Catonsville, MD 21228, USA.
| | - Jennifer Murphy
- U.S. Geological Survey, Central Midwest Water Science Center, 650 Peace Road, Dekalb, IL 60115, USA.
| | - Megan Shoda
- U.S. Geological Survey, Water Mission Area, 6460 Busch Boulevard, Suite 100, Columbus, OH 43229, USA.
| | - Alexander Soroka
- U.S. Geological Survey, Maryland-Delaware-D.C. Water Science Center, 5522 Research Park Drive, Catonsville, MD 21228, USA.
| |
Collapse
|
15
|
Zhang P, Zhou H, Xu Z, Li W, Guan Y, Feng L. Study on the adsorption mechanism of Chloride ion in aqueous solution on Mg/Al-CLDH modified by High temperature calcination. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
16
|
Utz R, Bidlack S, Fisher B, Kaushal S. Urbanization drives geographically heterogeneous freshwater salinization in the northeastern United States. JOURNAL OF ENVIRONMENTAL QUALITY 2022; 51:952-965. [PMID: 35687714 DOI: 10.1002/jeq2.20379] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Rising trends in freshwater salinity, collectively termed the Freshwater Salinization Syndrome (FSS), constitute a global environmental concern. Given that the FSS has been observed in diverse settings, key questions regarding the causes, trend magnitudes, and consequences remain. Prior work hypothesized that FSS is driven by state factors, such as human-centered land use change, geology, and climate. Here, we identify the fundamental overriding factors driving FSS within the northeastern United States and quantify the diversity of FSS severity within the region. Specifically, we analyzed decadal-scale trends in specific conductance (a salinity proxy) for 333 lotic sites over four decades. Next, we quantified potential variables driving the rising or falling trends, including impervious surface cover (ISC), winter temperature and precipitation, watershed size, and ambient conductance. Temperature and ISC were considered the most likely candidates for predicting FSS severity because road salts have previously emerged as the fundamental regional driver. Most (62.5%) sites exhibited patterns of significantly increasing conductance; thus, the overall regional state reflects advancing FSS. However, others exhibited an absence of change (28.8%) or decreasing values (8.7%), and slope magnitude did change with latitude. Linear modeling demonstrated that two variables-ISC and watershed size-constitute the best predictors of long-term conductance trends and that an intercept not significantly different than zero suggests that the FSS does not reign in the absence of urbanization. We also detected areas with consistently decreasing trends despite moderate ISC. Therefore, within the region, advancing urbanization causes the typical condition of advancing FSS, but heterogeneity also exists.
Collapse
Affiliation(s)
- Ryan Utz
- Falk School of Sustainability, Chatham Univ., 6035 Ridge Road, Gibsonia, PA, 15044, USA
| | - Samantha Bidlack
- Falk School of Sustainability, Chatham Univ., 6035 Ridge Road, Gibsonia, PA, 15044, USA
| | - Burch Fisher
- Earth Research Institute, Univ. of California, Santa Barbara, CA, 93106, USA
| | - Sujay Kaushal
- Dep. of Geology & Earth System Science Interdisciplinary Center, Univ, of Maryland, College Park, 20740, USA
| |
Collapse
|
17
|
Egbueri JC. Incorporation of information entropy theory, artificial neural network, and soft computing models in the development of integrated industrial water quality index. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:693. [PMID: 35984527 DOI: 10.1007/s10661-022-10389-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Keeping purpose and targeted end-users in perspective, several water quality indices have been developed over the past decades to summarily convey water quality information to decision-makers and the general public. Industrial water quality is often analyzed based on the corrosion and scaling potentials (CSPs) of water. The commonly used CSP index parameters are chloride-sulfate mass ratio, Langelier index, Larson-Skold index, aggressive index, Ryznar stability index, and Puckorius scaling index. Simultaneous application of these index parameters often classifies a sample into multiple water quality categories, thereby introducing bias in assessment and decision-making. No previous numerical model integrated the CSP indices to provide a single, composite index value for a more unbiased interpretation of industrial water quality. Therefore, this paper proposes an integrated industrial water quality index (IIWQI) that integrates the six CSP index parameters for direct and concise assessment of industrial water resources. To achieve its aim, this research incorporated information entropy theory and soft computing techniques. The developed IIWQI was applied to water samples from southeastern Nigeria. Different classification groups were observed based on the six CSP indices. However, the IIWQI summarized the classifications of the water samples into three categories: Class 1 (28.57%, slight-medium corrosivity, significant scaling potential); Class 2 (46.43%, medium-high corrosivity, no scaling); and Class 3 (25.00%, high-very high corrosion, no scaling). Correlation analysis revealed the relationships between the physicochemical variables, CSP index parameters, IIWQI, and the entropy-based variability of the IIWQI. The spatiotemporal water quality groups were revealed by Q-mode hierarchical dendrograms. Multiple linear regression and two multilayer perceptron neural networks accurately predicted the IIWQI. The findings of this paper could help in better evaluation, interpretation, and management of industrial water quality.
Collapse
Affiliation(s)
- Johnbosco C Egbueri
- Department of Geology, Chukwuemeka Odumegwu Ojukwu University, Uli, Nigeria.
| |
Collapse
|
18
|
Ombadi M, Varadharajan C. Urbanization and aridity mediate distinct salinity response to floods in rivers and streams across the contiguous United States. WATER RESEARCH 2022; 220:118664. [PMID: 35671686 DOI: 10.1016/j.watres.2022.118664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Salinity is an important water quality parameter that affects ecosystem health and the use of freshwaters for industrial, agricultural, and other beneficial purposes. Although a number of studies have investigated the variability and trends of salinity in rivers and streams, the effects of floods on salinity across a wide range of watersheds have not been determined. Here, we examine this question by utilizing long-term observational records of daily streamflow and specific conductance (SC; a proxy for salinity) in addition to catchment characteristics for 259 United States Geological Survey (USGS) monitoring sites in the contiguous United States spanning a wide range of climatic, geologic and hydrologic conditions. We used a combination of statistical methods, random forest machine learning models, and information-theoretic causal inference algorithms to determine the response of SC to floods and the factors that impact salinity changes within sites (intra-site variability) and across sites (inter-site variability). Our results show that changes to SC during flood events exhibited substantial variability ranging from a 100% decrease to 34% increase relative to the long-term mean. We found that dilution is the prevailing mechanism that decreases SC levels during floods for most sites, but other mechanisms caused an increase of SC for 6.1% (n = 5521) of flood events. Our analysis revealed that antecedent conditions of SC in the few days preceding the flood are the most important factor in explaining intra-site variability. The response of salinity to floods also varied considerably across sites with different characteristics, with a notable effect of urbanization in temperate climates resulting in increased dilution of SC, and mining in arid climates, which adversely increases SC levels. Overall, we find that the combined effect of aridity and anthropogenic factors is of primary importance in determining how salinity responds to floods, and it bears strongly on water quality conditions in a future world - one in which floods are expected to increase in frequency and intensity, concurrent with shifting aridity patterns and increasing urbanization.
Collapse
Affiliation(s)
- Mohammed Ombadi
- Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA.
| | - Charuleka Varadharajan
- Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA
| |
Collapse
|
19
|
Pidoux L, Shorney-Darby H, Vaudevire E, Martijn B, Jarvis P, Carra I. Impact of resin loading on ion exchange equilibrium for removal of organic matter and inorganic ions. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128530. [PMID: 35220125 DOI: 10.1016/j.jhazmat.2022.128530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Ion Exchange (IEX) applications for drinking water can be limited due to high volumes of brine, brine waste and treated water corrosivity. Reusing the resin by operating at reduced regeneration frequency can overcome this. However, assessing changes on the resin loading over reuse cycles is complex because multiple presaturant ions participate in the exchange and existing models only account for the exchange with one presaturant ion. This study developed a theoretical multicomponent model for the determination of IEX equilibria when the resin loading increases due to reuse. The model suggested that both electrostatic interactions and admicelle formation were the separation mechanisms. The model revealed that under reduced regeneration frequencies, brine use and waste generation can be reduced by more than 90%, where the bicarbonate-form resin offered the potential for lower corrosivity. However, changes in resin loading after 5 reuse cycles showed that the risk of corrosion increased. For the tested source water, reusing the bicarbonate-form resin every 5 cycles would achieve the most sustainable option with 41% NOM removal and 79% brine and waste reduction. Under these conditions, almost 100% of exchange capacity is recovered after regeneration.
Collapse
Affiliation(s)
- Lucie Pidoux
- Cranfield Water Science Institute, Cranfield University, Building 52a, Cranfield MK43 0AL, UK
| | - Holly Shorney-Darby
- PWN Technologies R&D, Dijkweg 1, 1619 HA P.O. Box 66, Andijk 1619 ZH, The Netherlands
| | - Elisabeth Vaudevire
- PWN Technologies R&D, Dijkweg 1, 1619 HA P.O. Box 66, Andijk 1619 ZH, The Netherlands
| | - Bram Martijn
- PWN Technologies R&D, Dijkweg 1, 1619 HA P.O. Box 66, Andijk 1619 ZH, The Netherlands
| | - Peter Jarvis
- Cranfield Water Science Institute, Cranfield University, Building 52a, Cranfield MK43 0AL, UK
| | - Irene Carra
- Cranfield Water Science Institute, Cranfield University, Building 52a, Cranfield MK43 0AL, UK.
| |
Collapse
|
20
|
Li Y, Yang Z, Yang K, Wei J, Li Z, Ma C, Yang X, Wang T, Zeng G, Yu G, Yu Z, Zhang C. Removal of chloride from water and wastewater: Removal mechanisms and recent trends. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153174. [PMID: 35051452 DOI: 10.1016/j.scitotenv.2022.153174] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/30/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Increased chloride concentration can cause salinization, which has become a serious and widespread environmental problem nowadays. This review aims at providing comprehensive and state-of-the-art knowledge and insights of technologies for chloride removal. Mechanisms for chloride removal mainly include chemical precipitation, adsorption, oxidation and membrane separation. In chemical precipitation, chloride removal by forming CuCl, AgCl, BiOCl and Friedel's salt. Adsorbents used in chloride removal mainly include ion exchangers, bimetal oxides and carbon-based electrodes. Oxidation for chloride removal contains ozone-based, electrochemical and sulfate radical-based oxidation. Membrane separation for chloride removal consists of diffusion dialysis, nanofiltration, reverse osmosis and electrodialysis. In this review, we specifically proposed the factors that affect chloride removal process and the corresponding strategies for improving removal efficiency. In the last section, the remaining challenges of method explorations and material developments were stated to provide guidelines for future development of chloride removal technologies.
Collapse
Affiliation(s)
- Yiming Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zhongzhu Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Kaihua Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jingjing Wei
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zihao Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Chi Ma
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xu Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Tantan Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Guanlong Yu
- School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha 410014, PR China
| | - Zhigang Yu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia.
| | - Chang Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| |
Collapse
|
21
|
Cao KF, Chen Z, Wu YH, Mao Y, Shi Q, Chen XW, Bai Y, Li K, Hu HY. The noteworthy chloride ions in reclaimed water: Harmful effects, concentration levels and control strategies. WATER RESEARCH 2022; 215:118271. [PMID: 35298995 DOI: 10.1016/j.watres.2022.118271] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/27/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Chloride ions (Cl-), which are omnipresent in reclaimed water, can cause various problems in water reuse systems, especially during water transmission and at end use sites. Although reverse osmosis (RO) is considered as an effective technology to reduce chloride, its high investment and complex maintenance requirements hinder its application in many water reclamation plants (WRPs). Recently, several technologies bringing new options to better deal with chloride have gained increased attention. This review provides detailed information on the harmful effects, concentration levels, and sources of chloride in reclaimed water and summarizes and discusses various chloride removal technologies, including non-selective methods (e.g., membrane filtration, adsorption and ion exchange, oxidation, and electrochemical methods) and selective methods (e.g. precipitation and specially designed electrochemical methods). Among these, Friedel's salt precipitation and capacitive deionization showed attractive development potential. This review also proposes a holistic framework for chloride control from aspects of "Fit-for-Purpose" planning, technical system development, and whole process optimization, which could facilitate the planning and operation of long-term sustainable water reuse practices.
Collapse
Affiliation(s)
- Ke-Fan Cao
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Zhuo Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China.
| | - Yin-Hu Wu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Yu Mao
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Qi Shi
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Xiao-Wen Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Yu Bai
- Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China; Research and Development Center, Beijing Drainage Group Co., Ltd, Beijing 100124, PR China
| | - Kuixiao Li
- Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China; Research and Development Center, Beijing Drainage Group Co., Ltd, Beijing 100124, PR China
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China; Research Institute for Environmental Innovation (Suzhou), Tsinghua, Jiangsu, Suzhou, 215163, PR China
| |
Collapse
|
22
|
da Luz N, Tobiason JE, Kumpel E. Water quality monitoring with purpose: Using a novel framework and leveraging long-term data. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151729. [PMID: 34801499 DOI: 10.1016/j.scitotenv.2021.151729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/20/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
Water quality monitoring programs are developed to meet goals including attaining regulatory compliance, evaluating long-term environmental changes, or quantifying the impact of an emergency event. Methods for developing these programs often fail to address multiple aspects of development (hazard identification, parameter selection, monitoring locations/frequency) simultaneously. We develop a framework for monitoring program development that is both versatile and systematic, the Hazard Based Water Quality Monitoring Planning framework, and apply it to the Quabbin watershed in Massachusetts, USA. We use a novel application of dataset deconstruction of long-term water quality datasets and the Seasonal Kendall test for trends to evaluate the effects of sampling frequency on long-term trend detection at several watershed sites. Results showed that when sampling frequency is decreased, ability to detect statistically significant trends often decreases. Absolute error in trend slopes between biweekly (twice monthly) and reduced sampling frequencies was relatively small for specific conductance and turbidity but was high for total coliform, likely due to interannual variation in rainfall and temperature We found that no one sampling reduction method resulted in a consistently lower absolute error compared to the "truth" (biweekly sampling), highlighting the importance of evaluating conditions that may affect water quality at sites in different parts of a watershed. We demonstrate the framework's usefulness, particularly for parameter and sampling frequency selection, using methods that can be readily applied to other watershed systems.
Collapse
Affiliation(s)
- Nelson da Luz
- Department of Civil and Environmental Engineering, University of Massachusetts, Amherst, MA 01003, USA
| | - John E Tobiason
- Department of Civil and Environmental Engineering, University of Massachusetts, Amherst, MA 01003, USA
| | - Emily Kumpel
- Department of Civil and Environmental Engineering, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
23
|
Zhang M, Qu Y, Li D, Liu X, Niu Y, Xu Y. To Love and to Kill: Accurate and Selective Colorimetry for Both Chloride and Mercury Ions Regulated by Electro-Synthesized Oxidase-like SnTe Nanobelts. Anal Chem 2021; 93:10132-10140. [PMID: 34255490 DOI: 10.1021/acs.analchem.1c01017] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Herein, SnTe nanobelts (NBs) with efficient oxidase-mimetic activity were synthesized by the simple electrochemical exfoliation method. A specific inhibition effect of Cl- on the enzymatic behavior of the pure SnTe NBs was discovered, which was accordingly used for establishing a highly feasible, sensitive, selective, and stable Cl- colorimetric assay. The detection concentration range was 50 nM to 1 mM, and the lowest detection limit was 20 nM for Cl-. In addition, a signal on-off-on route based on the SnTe NB nanozyme was designed to realize the reliable and specific detection of Hg2+. Therein, the SnTe NBs were grafted with gold nanoparticles to form a hybrid of SnTe/Au, resulting in the depression of the oxidase-like activity, which can then be recovered in the presence of the Hg2+ due to the formation of a gold amalgam. Especially, it was found that the high concentration of Cl- over 3 mM could again exert suppression influence toward the enzymatic activity of the SnTe/Au-Hg system. Based on the to-love-and-to-kill interaction between Cl- and Hg2+, the detection range for Cl- can be extended to 40 to 250 mM. In return, the assays of Cl- could avoid in advance its interference toward the accurate Hg2+ assays. We systematically clarified the oxidase-like catalytic mechanism of the SnTe-derived nanozyme systems. The as-proposed colorimetry can be successfully applied in practical samples including the sweat, human serum, or seawater/tap water, relating to cystic fibrosis, hyper-/hypochloremia, or environmental control, respectively.
Collapse
Affiliation(s)
- Meng Zhang
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, China
| | - Yue Qu
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, China
| | - Danxia Li
- Department of Urology, Key Laboratory of Urinary System Diseases, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Xiangyong Liu
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, China
| | - Yusheng Niu
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, China
| | - Yuanhong Xu
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, China.,Department of Urology, Key Laboratory of Urinary System Diseases, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| |
Collapse
|
24
|
Overbo A, Heger S, Gulliver J. Evaluation of chloride contributions from major point and nonpoint sources in a northern U.S. state. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 764:144179. [PMID: 33385652 DOI: 10.1016/j.scitotenv.2020.144179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/20/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
Chloride pollution of groundwater and surface water resources is an environmental concern in many regions. While use of road salt for winter road maintenance is known to be a major source of chloride in the environment, limited research has investigated the environmental impacts of chloride discharged from water softeners, particularly in areas with hard water. A chloride budget was developed for the state of Minnesota to estimate the amount of chloride discharged from household water softeners as well as other domestic, agricultural, commercial, and industrial sources. The analysis used multiple data sources, including salt sales records and wastewater monitoring data, and used statistical, spatial, and survey methods to estimate chloride loading from major sources statewide. Annual chloride mass contributions were estimated for the following sources: household water softener use; human excretions; household product use; chloride concentrations in drinking water; atmospheric deposition; road salt use; dust suppressant use; fertilizer application; industrial discharge; and livestock excretions. A mass balance for 96 wastewater treatment plants with effluent monitoring data showed that across these facilities, discharge from water softeners was the largest chloride source. A statewide chloride budget found that road salt was the largest source of chloride to the environment, but that WWTPs and fertilizer were also substantial sources, discharging 221,300 t and 209,900 t annually. Water softeners were estimated to contribute 65% of the chloride discharged to all 613 municipal WWTPs statewide. Methods used in this analysis could be applied to other communities, watersheds, or states with similar conditions. The results of the analyses indicate that water softening is an important chloride source in areas with hard water and underscore the importance of identifying and characterizing chloride sources in less urban areas, where deicing salt may be a less important contributor and receiving water bodies are often lakes, reservoirs, and streams.
Collapse
Affiliation(s)
- Alycia Overbo
- Water Resources Center, University of Minnesota, 1985 Buford Avenue, St. Paul, MN 55108, USA.
| | - Sara Heger
- Water Resources Center, University of Minnesota, 1985 Buford Avenue, St. Paul, MN 55108, USA.
| | - John Gulliver
- Department of Civil, Environmental, and Geo- Engineering, 500 Pillsbury Drive S.E., Minneapolis, MN 55455, USA.
| |
Collapse
|
25
|
Baraza T, Hasenmueller EA. Road salt retention and transport through vadose zone soils to shallow groundwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142240. [PMID: 33022462 DOI: 10.1016/j.scitotenv.2020.142240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/31/2020] [Accepted: 09/04/2020] [Indexed: 06/11/2023]
Abstract
Increasing background salinity in watersheds has largely been attributed to road salt retention in groundwaters due to their long residence times. However, laboratory studies demonstrate that soils temporarily store salts, either in porewater or adsorbed onto particles. Field studies of road salt retention in soils are nevertheless rare, and mechanisms of salt transport across multiple hydrological reservoirs (e.g., from soil to groundwater) are unknown. Thus, we collected roadside soil porewater and karst spring water weekly for ~1.5 yr to determine salt transport through the vadose zone into the phreatic zone. We observed dual retention mechanisms of sodium (Na+) and chloride (Cl-) in soils due to slow porewater movement, causing ion movement through the soil as slow as 1.3 cm/day, and cation exchange processes, leading to initial Na+ retention followed by later release months after application. Cation exchange processes also caused base cation loss from exchange sites into mobile porewater. Rapid Na+ and Cl- delivery to groundwater occurred through karst conduits during the winter. However, elevated background levels of salt ions in groundwater during the non-salting months indicated accumulation in the catchment due to slower porewater flow in the soil and rock matrix and delayed Na+ release from soil exchange sites.
Collapse
Affiliation(s)
- Teresa Baraza
- Department of Earth and Atmospheric Sciences, Saint Louis University, Saint Louis, MO 63108, United States.
| | - Elizabeth A Hasenmueller
- Department of Earth and Atmospheric Sciences, Saint Louis University, Saint Louis, MO 63108, United States
| |
Collapse
|
26
|
Bakshi B, Doucette EM, Kyser SJ. Centralized softening as a solution to chloride pollution: An empirical analysis based on Minnesota cities. PLoS One 2021; 16:e0246688. [PMID: 33544771 PMCID: PMC7864447 DOI: 10.1371/journal.pone.0246688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 01/23/2021] [Indexed: 02/01/2023] Open
Abstract
Chloride is a key component of salt, used in many activities such as alkali production, water treatment, and de-icing. Chloride entering surface and groundwater is a concern due to its toxicity to aquatic life and potential to degrade drinking water sources. Minnesota being a hard-water state, has a high demand for water softening. Recent research has found that home-based water softeners contribute significantly to chloride loading at municipal wastewater treatment plants (WWTPs). Because of this, many WWTPs would now require water quality based effluent limits (WQBELs) to comply with the state’s chloride water quality standards (WQS), unless they install chloride treatment technologies, which are limited and cost-prohibitive to most communities. A potential solution to this problem, is shifting from home-based water softening to a system where water is softened at drinking water plants, before reaching homes, i.e. centralized softening, analyzed in this paper based on its ability to address both chloride pollution and water softening needs, at reasonable cost. We estimate lifetime costs of three alternative solutions: centralized softening, home-based softening, and a Business as Usual (BAU) or baseline alternative, using annualized 20-year loan payments and Net Present Value (NPV), applied to 84 Minnesota cities with matching data on drinking water plants and WWTPs. We find that centralized softening using either Reverse Osmosis (RO) or lime-softening technologies is the more cost-effective solution, compared to the alternative of home-based softening with end-of-pipe chloride treatment, with a cost ratio in the range 1:3–1:4. Between the two centralized softening options, we find RO-softening to be the lower cost option, only slightly more costly (1.1 cost ratio) than the BAU option. Considering additional environmental and public health benefits, and cost savings associated with removal of home-based softeners, our results provide helpful information to multiple stakeholders interested in an effective solution to chloride pollution.
Collapse
Affiliation(s)
- Baishali Bakshi
- Water Quality Standards Unit, Water Assessment Section, Environmental Analysis and Outcomes Division, Minnesota Pollution Control Agency, Saint Paul, Minnesota, United States of America
- * E-mail:
| | - Elise M. Doucette
- Effluent Limits Unit, Water Assessment Section, Environmental Analysis and Outcomes Division, Minnesota Pollution Control Agency, Saint Paul, Minnesota, United States of America
| | - Scott J. Kyser
- Effluent Limits Unit, Water Assessment Section, Environmental Analysis and Outcomes Division, Minnesota Pollution Control Agency, Saint Paul, Minnesota, United States of America
| |
Collapse
|
27
|
Grimes RT, Leginze JA, Zochowski R, Bennett JW. Surface Transformations of Lead Oxides and Carbonates Using First-Principles and Thermodynamics Calculations. Inorg Chem 2021; 60:1228-1240. [PMID: 33404221 DOI: 10.1021/acs.inorgchem.0c03398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lead (Pb)-containing solids find widespread commercial use in batteries, piezoelectrics, and as starting materials for synthesis. Here, we combine density functional theory (DFT) and thermodynamics in a DFT + solvent ion model to compare the surface reactivity of Pb oxides and carbonates, specifically litharge, massicot, and cerussite, in contact with water. The information provided by this model is used to delineate structure-property relationships for surfaces that are able to release Pb as Pb2+. We find that Pb2+ release is dependent on pH and chemical bonding environment and go on to correlate changes in the surface bonding to key features of the electronic structure through a projected density of states analysis. Collectively, our analyses link the atomistic structure to i) specific electronic states and ii) the thermodynamics of surface transformations, and the results presented here can be used to guide synthetic efforts of Pb2+-containing materials in aqueous media or be used to better understand the initial steps in solid decomposition.
Collapse
Affiliation(s)
- Ryan T Grimes
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Joshua A Leginze
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Robert Zochowski
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Joseph W Bennett
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| |
Collapse
|
28
|
Esfandiari K, Banihashemi M, Soleimani P. Influence of impressed current cathodic protection systems on chemical characteristics of underground water. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:2105-2111. [PMID: 32502329 DOI: 10.1002/wer.1371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
Despite well-known corrosion inhibition behavior of cathodic protection (CP) system, this process might be a potential hazard to surrounding ecosystem resulted mostly from continuous electrical current which is applied to the adjacent environment and metallic anode dissolution as well. In this research, deepwater CP wells at different locations of Golestan province, Iran, were taken into consideration to evaluate the impact of these protective systems on underground waters from viewpoint of chemical and physicochemical characteristics resulted from anode dissolution. For this purpose, concentration of metallic constituents of the anode as well as the amount of pH, total dissolved solids (TDS), electrical conductivity (EC), and total hardness were determined. On the basis of obtained results, the concentration of Mn, Cr, and Fe in CP well located nearby an industrial district (i.e., 0.087, 0.475, and 8.5 mg/L, respectively) was higher than both WHO and USEPA standards. This fact can be resulted from the position where the well was dug as well as the CP anode dissolution within the deep CP water wells. PRACTITIONER POINTS: The impact of impressed current cathodic protection (ICCP) system on chemical and physicochemical characteristics of underground water has been evaluated. Anode dissolution of ICCP systems influences the water characteristics nearby the anodes. Despite low dissolution rate of high silicon cast iron anodes, their long-term utilization might be harmful for adjacent ecosystem. The amount of heavy metals in underground waters was demonstrated to be influenced by the employment of ICCP system. Both anode dissolution and the geological properties of the Earth`s crust surrounding the wellbore might be responsible for significant increase of heavy metals concentration.
Collapse
Affiliation(s)
- Kourosh Esfandiari
- Chemical Engineering Department, Babol Noshirvani University of Technology, Babol, Iran
| | - Morteza Banihashemi
- Chemical Engineering Department, Babol Noshirvani University of Technology, Babol, Iran
| | - Parinaz Soleimani
- Department of Chemical Engineering, Islamic Azad University, Shahrood, Iran
| |
Collapse
|
29
|
Egbueri JC, Ezugwu CK, Unigwe CO, Onwuka OS, Onyemesili OC, Mgbenu CN. Multidimensional Analysis of the Contamination Status, Corrosivity and Hydrogeochemistry of Groundwater from Parts of the Anambra Basin, Nigeria. ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1843049] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- J. C. Egbueri
- Department of Geology, Chukwuemeka Odumegwu Ojukwu University, Uli, Nigeria
| | - C. K. Ezugwu
- Department of Geology, University of Nigeria, Nsukka, Nigeria
| | - C. O. Unigwe
- Department of Physics/Geology/Geophysics, Alex Ekwueme Federal University, Ndufu-Alike, Ikwo, Nigeria
| | - O. S. Onwuka
- Department of Geology, University of Nigeria, Nsukka, Nigeria
| | - O. C. Onyemesili
- Department of Geology, Chukwuemeka Odumegwu Ojukwu University, Uli, Nigeria
| | - C. N. Mgbenu
- Department of Physics/Geology/Geophysics, Alex Ekwueme Federal University, Ndufu-Alike, Ikwo, Nigeria
| |
Collapse
|
30
|
Stevanović SD, Krstić JN, Stojanović BT, Paunović DĐ, Dimitrijević DS, Veličković JM, Stanković NJ. Monitoring of drinking water from the karst springs of the Ljuberadja-Niš water supply system (Serbia). SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03674-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
31
|
Mann E, Rutter A, Zeeb B. Evaluating the efficacy of Atriplex spp. in the phytoextraction of road salt (NaCl) from contaminated soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114963. [PMID: 32806446 DOI: 10.1016/j.envpol.2020.114963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/18/2020] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
Soil and freshwater salinization are growing issues worldwide. Road salt, primarily sodium chloride (NaCl), is a significant contributor to this issue in North America. In this study, the ability of three native Canadian halophytes (Atriplex patula, Atriplex hortensis, and Atriplex canescans) to remove Na+ and Cl- from contaminated soil was investigated. Field and greenhouse studies determined plant survivability in roadside areas, as well as Na+ and Cl- extraction levels. The Atriplex spp. accumulated 18-55 mg Na+ g-1 dry weight (DW) and 41-64 mg Cl- g-1 DW when grown for a two-month period in soil spiked with NaCl to simulate a very highly contaminated roadside. Using A. patula, it would theoretically take 6 growing seasons to remove all salt from an area contaminated with 1540 μg Cl- g-1, while A. hortensis and A. canescens would take 19 and 9 years, respectively. Salt content in shoot components (seeds, stem, leaves) was determined to provide further insight on phytoextraction processes. In all three Atriplex species, the leaves had the highest Cl- concentration, followed by the seeds (bracteoles included), with the lowest concentrations found in the stem. These novel findings provide important information for road salt remediation and indicate that using Atriplex spp. may be a viable way in which to reduce the environmental impact of road salting.
Collapse
Affiliation(s)
- Ellen Mann
- Department of Environmental Studies, Queen's University, Kingston, ON, Canada.
| | - Allison Rutter
- Department of Environmental Studies, Queen's University, Kingston, ON, Canada
| | - Barbara Zeeb
- Department of Environmental Studies, Queen's University, Kingston, ON, Canada
| |
Collapse
|
32
|
Investigating the Potential Impact of Louisiana Coastal Restoration on the Trace Metal Geochemistry of Constructed Marshlands. SOIL SYSTEMS 2020. [DOI: 10.3390/soilsystems4030055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Coastal restoration through diversion of suspended sediments from the Lower Mississippi River (LMR) into hydrologically isolated marshlands of Mid-Barataria Bay and Mid-Breton Sounds in southern Louisiana has the potential to mobilize lead (Pb), and other trace elements. We investigate the potential impact(s) of the diversion on marsh porewater through analysis of modern riverbank and suspended sediments, compared to sediments from pre-industrial deltaic deposits of LMR. Sequential extraction methods were used to evaluate Pb, cobalt (Co), copper (Cu), nickel (Ni), and zinc (Zn) in the sediments. Our results show that metal contents are higher (e.g., 8- to 10-fold for Pb) in the modern sediments relative to pre-industrial deposits. Also, the reducible fraction, presumably iron/manganese (Fe/Mn) oxides/oxyhydroxides, is the chief reservoir of environmentally available metals. The substantially higher trace metal contents of the modern relative to pre-industrial sediments suggest that the modern sediments contain a sizeable amount of anthropogenic contributions. Furthermore, the concentration of the trace metals in the reducible fraction suggests bioavailability to marsh organisms upon reductive dissolution within the planned, constructed coastal marshes. Still, additional sediment samples from the marshlands during the diversion implementation phase will be necessary to support the preliminary findings in this contribution as it affects coastal marshes and vital local fisheries.
Collapse
|
33
|
Jamshidi A, Goodarzi AR, Razmara P. Long-term impacts of road salt application on the groundwater contamination in urban environments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:30162-30177. [PMID: 32451894 DOI: 10.1007/s11356-020-09261-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
This study explores the contamination potential of groundwater due to the use of sodium chloride (NaCl) in the wintertime. The research was conducted in two Iranian cities, Malayer and Hamedan, where groundwater is the major source of water for drinking and irrigating purposes. However, the amount of deicing salt used in the former is about 10 times less than that used in the latter. The assessment of geochemical dataset from 2004 to 2018 revealed no significant trend in the groundwater characteristics of Malayer where the water quality indices were in the range of WHO and USEPA permissible limits. In contrast, the indices had a continually increasing trend (~ 2.3% annually) in Hamedan's supply wells over the same period and particularly near the urban areas that showed higher levels (> 5 times on average) than those observed in Malayer. This could mainly be ascribed to the influx of halite. Based on the USSL diagram, the water samples retrieved from the latter system were mostly classified as C3-S1 (decreasing the soil fertility) and even as C4-S2 (harmful for agriculture activities). Chloride contamination rates also reached 250 mg/L, which could negatively affect the water potability and threaten the aquatics microorganisms. In this region, a rather similar distribution of NaCl and arsenic was observed, implying mobilization of toxic trace metals with the increased salt encroachment into the aquifer. Based on such findings, it is suggested that in snow-influenced cities (e.g., Hamedan), new approaches for winter maintenance be considered to prevent the gradual deterioration of water resources.
Collapse
Affiliation(s)
- Amir Jamshidi
- Faculty of Engineering, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Amir Reza Goodarzi
- Faculty of Engineering, Hamedan Branch, Islamic Azad University, Hamedan, Iran.
| | - Parisa Razmara
- Faculty of Engineering, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| |
Collapse
|
34
|
McDevitt B, McLaughlin MC, Vinson DS, Geeza TJ, Blotevogel J, Borch T, Warner NR. Isotopic and element ratios fingerprint salinization impact from beneficial use of oil and gas produced water in the Western U.S. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 716:137006. [PMID: 32069772 DOI: 10.1016/j.scitotenv.2020.137006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/16/2020] [Accepted: 01/28/2020] [Indexed: 05/13/2023]
Abstract
Salinization of global freshwater resources is a concerning health and economic issue of the 21st century and requires serious management and study to understand how, and by what mechanism, Total Dissolved Solids (TDS) is changing in major watersheds. Oil and gas (O&G) produced water is a complex and saline (10-300 g/L TDS) wastewater often disposed to surface waters post-treatment. However, in western U.S. states, beneficial use of minimally treated O&G produced water discharged to ephemeral streams is permitted through the USEPA National Pollutant Discharge Elimination System (NPDES) for agriculture and wildlife propagation. In a remote Wyoming study region, beneficial use of O&G NPDES effluents annually contributes 13 billion L of water to surface water resources. The primary O&G TDS constituents are sulfate and sodium followed by chloride and calcium. Significant TDS increases from 2013 to 2016 in a large perennial river (River C) impacted by O&G effluent disposal, slight TDS increases in a perennial river (River B) and chronically elevated TDS (upwards of 2500 mg/L) in a smaller tributary (Tributary A) comprised mainly of O&G effluents led to an investigation of O&G impacts to surface waters in the region. Chloride-normalized metal ratios such as Br/Cl and δ2H and δ18O distinguished evaporation as the mechanism for increasing TDS derived from O&G on Tributary A, which is causing O&G effluents that meet NPDES regulations to not only exceed outfall regulations downstream where it is beneficially used for irrigation and drinking water but also exceed aquatic life and livestock recommended limits. 87Sr/86Sr and δ34SSO4 suggested minor impacts from O&G TDS loading on River C but also support an additional salinity source, such as streambed geological controls, the cause of significantly increasing TDS. While lithium isotopes provided insight into the O&G effluent origin (δ7Li ranged 9-10‰) and water-sediment interactions along O&G effluent streams, they did not function as distinct salinity tracers in the larger downstream rivers. This study suggests a multi-isotope (87Sr/86Sr and δ34SSO4) approach is often necessary for fingerprinting salinization sources and determining best management practices because multiple salinity sources and environmental mechanisms may need to be identified to protect water quality.
Collapse
Affiliation(s)
- Bonnie McDevitt
- Department of Civil and Environmental Engineering, The Pennsylvania State University, United States of America
| | - Molly C McLaughlin
- Department of Civil and Environmental Engineering, Colorado State University, United States of America
| | - David S Vinson
- Department of Geography and Earth Sciences, University of North Carolina at Charlotte, United States of America
| | - Thomas J Geeza
- Department of Civil and Environmental Engineering, The Pennsylvania State University, United States of America; EES-14, Los Alamos National Laboratory, Los Alamos, NM 87544, United States of America
| | - Jens Blotevogel
- Department of Civil and Environmental Engineering, Colorado State University, United States of America
| | - Thomas Borch
- Department of Civil and Environmental Engineering, Colorado State University, United States of America; Department of Chemistry, Colorado State University, United States of America; Department of Soil and Crop Sciences, Colorado State University, United States of America
| | - Nathaniel R Warner
- Department of Civil and Environmental Engineering, The Pennsylvania State University, United States of America.
| |
Collapse
|
35
|
Stets EG, Sprague LA, Oelsner GP, Johnson HM, Murphy JC, Ryberg K, Vecchia AV, Zuellig RE, Falcone JA, Riskin ML. Landscape Drivers of Dynamic Change in Water Quality of U.S. Rivers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:4336-4343. [PMID: 32216285 DOI: 10.1021/acs.est.9b05344] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Water security is a top concern for social well-being, and dramatic changes in the availability of freshwater have occurred as a result of human uses and landscape management. Elevated nutrient loading and perturbations to major ion composition have resulted from human activities and have degraded freshwater resources. This study addresses the emerging nature of streamwater quality in the 21st century through analysis of concentrations and trends in a wide variety of constituents in streams and rivers of the U.S. Concentrations of 15 water quality constituents including nutrients, major ions, sediment, and specific conductance were analyzed over the period 1982-2012 and a targeted trend analysis was performed from 1992 to 2012. Although environmental policy is geared toward addressing the long-standing problem of nutrient overenrichment, these efforts have had uneven success, with decreasing nutrient concentrations at urbanized sites and little to no change at agricultural sites. Additionally, freshwaters are being salinized rapidly in all human-dominated land use types. While efforts to control nutrients are ongoing, rapid salinity increases are ushering in a new set of poorly defined issues. Increasing salinity negatively affects biodiversity, mobilizes sediment-bound contaminants, and increases lead contamination of drinking water, but its effects are not well integrated into current paradigms of water management.
Collapse
Affiliation(s)
- Edward G Stets
- U.S. Geological Survey, Earth System Process Division, 3215 Marine St, Ste E-127, Boulder, Colorado 80303, United States
| | - Lori A Sprague
- U.S. Geological Survey, Earth System Process Division, W Sixth Ave Kipling St 415, Lakewood, Colorado 80225, United States
| | - Gretchen P Oelsner
- U.S. Geological Survey, New Mexico Water Science Center, 6700 Edith Blvd NE, Albuquerque, New Mexico 87113, United States
| | - Hank M Johnson
- U.S. Geological Survey, Oregon Water Science Center, 2130 SW Fifth Ave, Portland, Oregon 97201, United States
| | - Jennifer C Murphy
- U.S. Geological Survey, Lower Mississippi-Gulf Water Science Center, 640 Grassmere Park, Ste. 100, Nashville, Tennessee 37211, United States
| | - Karen Ryberg
- U.S. Geological Survey, Dakota Water Science Center, 821 East Interstate Ave, Bismarck, North Dakota 58503, United States
| | - Aldo V Vecchia
- U.S. Geological Survey, Dakota Water Science Center, 821 East Interstate Ave, Bismarck, North Dakota 58503, United States
| | - Robert E Zuellig
- U.S. Geological Survey, Colorado Water Science Center, Denver Federal Center, W Sixth Ave Kipling St 415, Lakewood, Colorado 80225, United States
| | - James A Falcone
- U.S. Geological Survey, Earth System Process Division, 12201 Sunrise Valley Dr 413 Reston, Virginia 20192, United States
| | - Melissa L Riskin
- U.S. Geological Survey, New Jersey Water Science Center, 3450 Princeton Pike Lawrenceville, New Jersey 08648, United States
| |
Collapse
|
36
|
Shannon TP, Ahler SJ, Mathers A, Ziter CD, Dugan HA. Road salt impact on soil electrical conductivity across an urban landscape. JOURNAL OF URBAN ECOLOGY 2020. [DOI: 10.1093/jue/juaa006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Road salt application is a necessary component of winter road maintenance but comes with an environmental cost. Salts are transported via stormwater drainage or overland and soil throughflow to surface waterbodies, where excess ions create unfavorable or even uninhabitable conditions for freshwater organisms. Soils may retain salts during the process of overland and subsurface flow, thus acting as reservoirs that slow the transport of salt into freshwaters. Understanding the capacity and consistency of anthropogenic salt storage in urban soils may allow us to discover when and where deicing salt applications are most harmful. This article investigates the degree to which soils across a heterogeneous urban landscape retain salts. We measured the electrical conductivity (EC) of soils in an urban setting. Land covers included forests, grasslands, open spaces, low- and medium-density developments and along roadsides. We found that across land-cover types, soil carbon and porosity were correlated to EC in late summer, which suggests that pore space is an important and long-lasting reservoir for salt. In addition, more developed areas, had higher mean soil EC and greater EC variability within and between sites, with 75% of overall variance occurring within individual sites. We hypothesize that this within-site heterogeneity is driven by anthropogenic modifications to salt inputs and soil characteristics. The high EC variance in highly developed urban soils is a previously undiscussed phenomenon and highlights the fine-scale complexity of heterogeneous urban landscapes and the need for high-resolution sampling to accurately characterize urban ecosystems.
Collapse
Affiliation(s)
- Thomas P Shannon
- Center for Limnology, University of Wisconsin-Madison, 680 N. Park St, Madison, WI 53706, USA
| | - Sam J Ahler
- Center for Limnology, University of Wisconsin-Madison, 680 N. Park St, Madison, WI 53706, USA
| | - Alex Mathers
- Center for Limnology, University of Wisconsin-Madison, 680 N. Park St, Madison, WI 53706, USA
| | - Carly D Ziter
- Biology Department, Concordia University, 7141 Sherbrooke St W, Montreal, QC H4B 2A7, Canada
| | - Hilary A Dugan
- Center for Limnology, University of Wisconsin-Madison, 680 N. Park St, Madison, WI 53706, USA
| |
Collapse
|
37
|
Moore J, Fanelli RM, Sekellick AJ. High-Frequency Data Reveal Deicing Salts Drive Elevated Specific Conductance and Chloride along with Pervasive and Frequent Exceedances of the U.S. Environmental Protection Agency Aquatic Life Criteria for Chloride in Urban Streams. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:778-789. [PMID: 31845802 DOI: 10.1021/acs.est.9b04316] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Increasing specific conductance (SC) and chloride concentrations [Cl] negatively affect many stream ecosystems. We characterized spatial variability in SC, [Cl], and exceedances of Environmental Protection Agency [Cl] criteria using nearly 30 million high-frequency observations (2-15 min intervals) for SC and modeled [Cl] from 93 sites across three regions in the eastern United States: Southeast, Mid-Atlantic, and New England. SC and [Cl] increase substantially from south to north and within regions with impervious surface cover (ISC). In the Southeast, [Cl] weakly correlates with ISC, no [Cl] exceedances occur, and [Cl] concentrations are constant with time. In the Mid-Atlantic and New England, [Cl] and [Cl] exceedances strongly correlate with ISC. [Cl] criteria are frequently exceeded at sites with greater than 9-10% ISC and median [Cl] higher than 30-80 mg/L. Tens to hundreds of [Cl] exceedances observed annually at most of these sites help explain previous research where stream ecosystems showed changes at (primarily nonwinter) [Cl] as low as 30-40 mg/L. Mid-Atlantic chronic [Cl] exceedances occur primarily in December-March. In New England, exceedances are common in nonwinter months. [Cl] is increasing at nearly all Mid-Atlantic and New England sites with the largest increases at sites with higher [Cl].
Collapse
Affiliation(s)
| | - Rosemary M Fanelli
- U.S. Geological Survey , Maryland-Delaware-District of Columbia Water Science Center , 5522 Research Park Drive , Catonsville , Maryland 21228 , United States
| | - Andrew J Sekellick
- U.S. Geological Survey , Maryland-Delaware-District of Columbia Water Science Center , 5522 Research Park Drive , Catonsville , Maryland 21228 , United States
| |
Collapse
|
38
|
Natasha, Dumat C, Shahid M, Khalid S, Murtaza B. Lead Pollution and Human Exposure: Forewarned is Forearmed, and the Question Now Becomes How to Respond to the Threat! RADIONUCLIDES AND HEAVY METALS IN THE ENVIRONMENT 2020. [DOI: 10.1007/978-3-030-21638-2_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
39
|
Haake DM, Knouft JH. Comparison of Contributions to Chloride in Urban Stormwater from Winter Brine and Rock Salt Application. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:11888-11895. [PMID: 31532196 DOI: 10.1021/acs.est.9b02864] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The use of road salt to increase roadway safety during winter storms releases high concentrations of chloride into urban and suburban stormwater. This stormwater flows into nearby streams, resulting in concentrations of chloride that can exceed water quality standards intended to protect aquatic life. As chloride pollution is not readily filtered by soil or plants, mitigation will require reductions in the amount of salt used. In this study, cities in St. Louis County, Missouri, U.S., were used as a test case for brining as a best management practice (BMP) to reduce salt use relative to the standard practice of spreading solid rock salt. The practice of brining involves the dissolution of road salt in water and the application of the resulting brine solution to roadways in advance of a forecasted winter storm. During the winters of 2016-2017 and 2017-2018, stormwater runoff from residential areas was monitored in paired cities to determine if the availability of brining as a BMP for salt application on residential roads would result in a decrease in chloride in stormwater and, therefore, a decrease in chloride reaching urban streams. The use of brining by city governments resulted in a 45% average reduction of chloride loads conveyed to streams, demonstrating that brining is a highly viable BMP for local municipal operations.
Collapse
Affiliation(s)
- Danelle M Haake
- Department of Biology , Saint Louis University , 3507 Laclede Avenue , St. Louis , Missouri 63108 , United States
| | - Jason H Knouft
- Department of Biology , Saint Louis University , 3507 Laclede Avenue , St. Louis , Missouri 63108 , United States
| |
Collapse
|
40
|
Ma X, Lytle DA, Lee WH. Microelectrode Investigation on the Corrosion Initiation at Lead-Brass Galvanic Interfaces in Chlorinated Drinking Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:12947-12954. [PMID: 31498996 PMCID: PMC7906095 DOI: 10.1021/acs.langmuir.9b02168] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this study, the effects of pH, dissolved inorganic carbon (DIC), and flow on changes in surface chemistry (pH, dissolved oxygen, and free chlorine) of lead-brass joints at initial stages of corrosion were investigated using microelectrodes. Surface measurements showed that the water chemistry at the metal surfaces was highly heterogeneous. At pH 7 and during water stagnation, local pH difference between anodic (leaded-solder) and cathodic (brass) regions differed by as much as 7.5 pH units. High DIC water under the water flowing condition showed minimal pH changes on the surface, whereas in low DIC water, a pH range of 7.6-5.4 (ΔpH 2.2) was observed over the surface. Free chlorine consumption near the lead-brass surface was greater under stagnation, regardless of bulk pH. It was also found that flow can move the low pH plume that originated at the anode. Overall, this study provides direct evidence for highly localized galvanic corrosion in a chlorinated drinking water environment.
Collapse
Affiliation(s)
- Xiangmeng Ma
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, People’s Republic of China
| | - Darren A. Lytle
- National Risk Management Research Laboratory, United States Environmental Protection Agency, Cincinnati, Ohio 45268, United States
| | - Woo Hyoung Lee
- Department of Civil, Environmental and Construction Engineering, University of Central Florida, Orlando, Florida 32816, United States
| |
Collapse
|
41
|
Sprague LA, Mitchell RM, Pollard AI, Falcone JA. Assessing water-quality changes in US rivers at multiple geographic scales using results from probabilistic and targeted monitoring. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:348. [PMID: 31055662 PMCID: PMC6500507 DOI: 10.1007/s10661-019-7481-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 04/16/2019] [Indexed: 06/01/2023]
Abstract
Two commonly used approaches for water quality monitoring are probabilistic and targeted. In a probabilistic approach like the US Environmental Protection Agency's National Rivers and Streams Assessment, monitoring sites are selected using a statistically representative approach. In a targeted approach like that used by many monitoring organizations, monitoring sites are chosen individually to answer specific questions. One important goal of both approaches is documenting long-term changes in water quality. Here, we compare chloride change results in US rivers and streams between the early 2000s and early 2010s from both approaches. The probabilistic approach provided an unbiased representation of change in all US rivers and streams, but was designed to measure low-streamflow conditions within a spring/summer index period during periodic survey years. The targeted approach was focused on larger, more developed watersheds but samples were collected frequently throughout the assessment period in different seasons and streamflows. The probabilistic results showed a small decrease in chloride concentrations in rivers and streams with the lowest concentrations, but no consistent increase or decrease in the remainder. The increased granularity of the targeted results showed that there was, in fact, a mix of changes occurring, with increases at 132 sites, decreases at 112 sites, and relatively stable conditions at 55 sites. The combined results suggest that chloride is not responding to a widespread, common driver across the USA and that management of chloride would be most effective when targeted regionally or locally.
Collapse
Affiliation(s)
- Lori A Sprague
- National Water Quality Program, US Geological Survey, Denver, CO, USA.
| | - Richard M Mitchell
- Office of Water, US Environmental Protection Agency, Washington, DC, USA
| | - Amina I Pollard
- Office of Water, US Environmental Protection Agency, Washington, DC, USA
| | - James A Falcone
- National Water Quality Program, US Geological Survey, Reston, VA, USA
| |
Collapse
|
42
|
Zhang Q, Blomquist JD, Moyer DL, Chanat JG. Estimation Bias in Water-Quality Constituent Concentrations and Fluxes: A Synthesis for Chesapeake Bay Rivers and Streams. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
43
|
Oswald CJ, Giberson G, Nicholls E, Wellen C, Oni S. Spatial distribution and extent of urban land cover control watershed-scale chloride retention. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 652:278-288. [PMID: 30366328 DOI: 10.1016/j.scitotenv.2018.10.242] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/15/2018] [Accepted: 10/17/2018] [Indexed: 06/08/2023]
Abstract
In some cold regions up to 97% of the chloride (Cl-) entering rivers and lakes is derived from road salts that are applied to impervious surfaces to maintain safe winter travel conditions. While a portion of the Cl- applied as road salt is quickly flushed into streams during melt events via overland flow and flow through storm sewer pipes, the remainder enters the subsurface. Previous studies of individual watersheds have shown that between 28 and 77% of the applied Cl- is retained on an annual basis, however a systematic evaluation of the spatial variability in Cl- retention and potential driving factors has not been carried out. Here we used a mass balance approach to estimate annual Cl- retention in 11 watersheds located in southern Ontario, Canada, which span a gradient of urbanization. We evaluated the influence of multiple landscape variables on the magnitude of Cl- retention as well as the long-term rate of change in stream Cl-concentration for the same systems. We found that mean annual Cl- retention ranged from 40 to 90% and was higher for less urbanized watersheds and for watersheds with urban areas located farther from the stream outlet. This result suggests that less urbanized watersheds and ones with longer flow pathways have more Cl- partitioned into storage and hence the potential for legacy Cl- effects on aquatic organisms. While we did measure statistically significant increasing trends in stream Cl- concentration in some watersheds, there was no consistent relationship between the long-term rate of change in stream Cl- concentrations and patterns of urbanization and the magnitude of Cl- retention. Based on our results we present a detailed conceptual model of watershed Cl- dynamics that can be used to guide future research into the mechanisms of Cl- retention and release within a watershed.
Collapse
Affiliation(s)
- Claire J Oswald
- Department of Geography and Environmental Studies, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada.
| | - Greg Giberson
- Department of Geography and Environmental Studies, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Erin Nicholls
- Department of Geography and Environmental Studies, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada; School of Geography and Earth Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Christopher Wellen
- Department of Geography and Environmental Studies, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Stephen Oni
- Department of Biology, Trent University, 1600 West Bank Drive, Peterborough, Ontario K9L 1Z8, Canada
| |
Collapse
|
44
|
Wilhelm JF, Bain DJ, Green MB, Bush KF, McDowell WH. Trace metals in Northern New England streams: Evaluating the role of road salt across broad spatial scales with synoptic snapshots. PLoS One 2019; 14:e0212011. [PMID: 30759149 PMCID: PMC6373959 DOI: 10.1371/journal.pone.0212011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 01/26/2019] [Indexed: 11/19/2022] Open
Abstract
Mobilization of trace metals from soils to surface waters can impact both human and ecosystem health. This study resamples a water sample archive to explore the spatial pattern of streamwater total concentrations of arsenic, cadmium, copper, lead, and zinc and their associations with biogeochemical controls in northern New England. Road deicing appears to result in elevated trace metal concentrations, as trace metal concentrations are strongly related to sodium concentrations and are most elevated when the sodium: chloride ratio is near 1.0 (~halite). Our results are consistent with previous laboratory and field studies that indicate cation exchange as a metal mobilization mechanism when road salt is applied to soils containing metals. This study also documents associations among sodium, chloride, dissolved organic carbon, iron, and metal concentrations, suggesting cation exchange mechanisms related to road deicing are not the only mechanisms that increase trace metal concentrations in surface waters. In addition to cation exchange, this study considers dissolved organic carbon complexation and oxidation-reduction conditions affecting metal mobility from soils in a salt-rich environment. These observations demonstrate that road deicing has the potential to increase streamwater trace metal concentrations across broad spatial scales and increase risks to human and ecosystem health.
Collapse
Affiliation(s)
- Jessica F. Wilhelm
- Center for the Environment, Plymouth State University, Plymouth, New Hampshire, United States of America
| | - Daniel J. Bain
- Department of Geology and Environmental Science, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Mark B. Green
- Center for the Environment, Plymouth State University, Plymouth, New Hampshire, United States of America
- Northern Research Station, United States Forest Service, Durham, New Hampshire, United States of America
| | - Kathleen F. Bush
- Center for the Environment, Plymouth State University, Plymouth, New Hampshire, United States of America
- New Hampshire Department of Health and Human Services, Concord, New Hampshire, United States of America
| | - William H. McDowell
- Natural Resources and the Environment, University of New Hampshire, Durham, New Hampshire, United States of America
| |
Collapse
|
45
|
Pieper KJ, Tang M, Jones CN, Weiss S, Greene A, Mohsin H, Parks J, Edwards MA. Impact of Road Salt on Drinking Water Quality and Infrastructure Corrosion in Private Wells. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:14078-14087. [PMID: 30407803 DOI: 10.1021/acs.est.8b04709] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Increased road salt use and resulting source water contamination has widespread implications for corrosion of drinking water infrastructure, including chloride acceleration of galvanic corrosion and other premature plumbing failures. In this study, we utilized citizen science sampling, bench-scale corrosion studies, and state-level spatial modeling to examine the potential extent of chloride concentrations in groundwater and the resulting impact on private wells in New York. Across the sampled community, chloride levels varied spatially, with the highest levels in private wells downgradient of a road salt storage facility followed by wells within 30 m of a major roadway. Most well users surveyed (70%) had stopped drinking their well water for aesthetic and safety reasons. In the bench-scale experiment, increasing chloride concentration in water increased galvanic corrosion and dezincification of plumbing materials, resulting in increased metal leaching and pipe wall thinning. Our simple spatial analysis suggests that 2% of private well users in New York could potentially be impacted by road salt storage facilities and 24% could potentially be impacted by road salt application. Our research underscores the need to include the damage to public and privately owned drinking water infrastructure in future discussion of road salt management.
Collapse
Affiliation(s)
- Kelsey J Pieper
- Civil and Environmental Engineering , Virginia Polytechnic Institute and State University , 418 Durham Hall , Blacksburg , Virginia 24061 , United States
| | - Min Tang
- Civil and Environmental Engineering , Virginia Polytechnic Institute and State University , 418 Durham Hall , Blacksburg , Virginia 24061 , United States
| | - C Nathan Jones
- The National Socio-Environmental Synthesis Center , University of Maryland , 1 Park Place, Suite 300 , Annapolis , Maryland 21401 , United States
| | - Stephanie Weiss
- Citizen Scientist , Town of Orleans , New York 20558 , United States
| | - Andrew Greene
- Citizen Scientist , Town of Orleans , New York 20558 , United States
| | - Hisyam Mohsin
- Civil and Environmental Engineering , Virginia Polytechnic Institute and State University , 418 Durham Hall , Blacksburg , Virginia 24061 , United States
| | - Jeffrey Parks
- Civil and Environmental Engineering , Virginia Polytechnic Institute and State University , 418 Durham Hall , Blacksburg , Virginia 24061 , United States
| | - Marc A Edwards
- Civil and Environmental Engineering , Virginia Polytechnic Institute and State University , 418 Durham Hall , Blacksburg , Virginia 24061 , United States
| |
Collapse
|
46
|
Olson JR. Predicting combined effects of land use and climate change on river and stream salinity. Philos Trans R Soc Lond B Biol Sci 2018; 374:rstb.2018.0005. [PMID: 30509907 DOI: 10.1098/rstb.2018.0005] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2018] [Indexed: 11/12/2022] Open
Abstract
Agricultural, industrial and urban development have all contributed to increased salinity in streams and rivers, but the likely effects of future development and climate change are unknown. I developed two empirical models to estimate how these combined effects might affect salinity by the end of this century (measured as electrical conductivity, EC). The first model predicts natural background from static (e.g. geology and soils) and dynamic (i.e. climate and vegetation) environmental factors and explained 78% of the variation in EC. I then compared the estimated background EC with current measurements at 2001 sites chosen probabilistically from all conterminous USA streams. EC was more than 50% greater at 34% of these sites. The second model predicts deviation of EC from background as a function of human land use and environmental factors and explained 60% of the variation in alteration from background. I then predicted the effects of climate and land use change on EC at the end of the century by replacing dynamic variables with published projections of future conditions based on the A2 emissions scenario. By the end of the century, the median EC is predicted to increase from 0.319 mS cm-1 to 0.524 mS cm-1 with over 50% of streams having greater than 50% increases in EC and 35% more than doubling their EC. Most of the change is related to increases in human land use, with climate change accounting for only 12% of the increase. In extreme cases, increased salinity may make water unsuitable for human use, but widespread moderate increases are likely a greater threat to stream ecosystems owing to the elimination of low EC habitats.This article is part of the theme issue 'Salt in freshwaters: causes, ecological consequences and future prospects'.
Collapse
Affiliation(s)
- John R Olson
- California State University Monterey Bay, School of Natural Sciences, 100 Campus Center, Seaside, CA 93955, USA
| |
Collapse
|
47
|
Jackson JK, Funk DH. Temperature affects acute mayfly responses to elevated salinity: implications for toxicity of road de-icing salts. Philos Trans R Soc Lond B Biol Sci 2018; 374:rstb.2018.0081. [PMID: 30509923 DOI: 10.1098/rstb.2018.0081] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2018] [Indexed: 11/12/2022] Open
Abstract
Salinity in freshwater ecosystems has increased significantly at numerous locations throughout the world, and this increase often reflects the use or production of salts from road de-icing, mining/oil and gas drilling activities, or agricultural production. When related to de-icing salts, highest salinity often occurs in winter when water temperature is often low relative to mean annual temperature at a site. Our study examined acute (96 h) responses to elevated salinity (NaCl) concentrations at five to seven temperature treatments (5-25°C) for four mayfly species (Baetidae: Neocloeon triangulifer, Procloeon fragile; Heptageniidae: Maccaffertium modestum; Leptophlebiidae: Leptophlebia cupida) that are widely distributed across eastern North America. Based on acute LC50s at 20°C, P. fragile was most sensitive (LC50 = 767 mg l-1, 1447 µS cm-1), followed by N. triangulifer (2755 mg l-1, 5104 µS cm-1), M. modestum (2760 mg l-1, 5118 µS cm-1) and L. cupida (4588 mg l-1, 8485 µS cm-1). Acute LC50s decreased as temperature increased for all four species (n = 5-7, R 2 = 0.65-0.88, p = 0.052-0.002). Thus, acute salt toxicity is strongly temperature dependent for the mayfly species we tested, which suggests that brief periods of elevated salinity during cold seasons or in colder locations may be ecologically less toxic than predicted by standard 20 or 25°C laboratory bioassays.This article is part of the theme issue 'Salt in freshwaters: causes, ecological consequences and future prospects'.
Collapse
Affiliation(s)
- John K Jackson
- Stroud Water Research Center, 970 Spencer Road, Avondale, PA 19311, USA
| | - David H Funk
- Stroud Water Research Center, 970 Spencer Road, Avondale, PA 19311, USA
| |
Collapse
|
48
|
Kaushal SS, Likens GE, Pace ML, Haq S, Wood KL, Galella JG, Morel C, Doody TR, Wessel B, Kortelainen P, Räike A, Skinner V, Utz R, Jaworski N. Novel 'chemical cocktails' in inland waters are a consequence of the freshwater salinization syndrome. Philos Trans R Soc Lond B Biol Sci 2018; 374:20180017. [PMID: 30509916 PMCID: PMC6283973 DOI: 10.1098/rstb.2018.0017] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2018] [Indexed: 11/12/2022] Open
Abstract
Widespread changes in water temperatures, salinity, alkalinity and pH have been documented in inland waters in North America, which influence ion exchange, weathering rates, chemical solubility and contaminant toxicity. Increasing major ion concentrations from pollution, human-accelerated weathering and saltwater intrusion contribute to multiple ecological stressors such as changing ionic strength and pH and mobilization of chemical mixtures resulting in the freshwater salinization syndrome (FSS). Here, we explore novel combinations of elements, which are transported together as chemical mixtures containing salts, nutrients and metals as a consequence of FSS. First, we show that base cation concentrations have increased in regions primarily in North America and Europe over 100 years. Second, we show interactions between specific conductance, pH, nitrate and metals using data from greater than 20 streams located in different regions of the USA. Finally, salinization experiments and routine monitoring demonstrate mobilization of chemical mixtures of cations, metals and nutrients in 10 streams draining the Washington, DC-Baltimore, MD metropolitan regions. Freshwater salinization mobilizes diverse chemical mixtures influencing drinking water quality, infrastructure corrosion, freshwater CO2 concentrations and biodiversity. Most regulations currently target individual contaminants, but FSS requires managing mobilization of multiple chemical mixtures and interacting ecological stressors as consequences of freshwater salinization.This article is part of the theme issue 'Salt in freshwaters: causes, ecological consequences and future prospects'.
Collapse
Affiliation(s)
- Sujay S Kaushal
- Department of Geology, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
| | - Gene E Likens
- Cary Institute of Ecosystem Studies, Millbrook, NY, USA
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Michael L Pace
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA, USA
| | - Shahan Haq
- Department of Geology, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
| | - Kelsey L Wood
- Department of Geology, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
| | - Joseph G Galella
- Department of Geology, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
| | - Carol Morel
- Department of Geology, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
| | - Thomas R Doody
- Department of Geology, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
| | - Barret Wessel
- Department of Environmental Science and Technology, University of Maryland, College Park, MD, USA
| | | | - Antti Räike
- Finnish Environment Institute, Helsinki, Finland
| | | | - Ryan Utz
- Chattham University, Gibsonia, PA, USA
| | | |
Collapse
|
49
|
Bird DL, Groffman PM, Salice CJ, Moore J. Steady-State Land Cover but Non-Steady-State Major Ion Chemistry in Urban Streams. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:13015-13026. [PMID: 30338996 DOI: 10.1021/acs.est.8b03587] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Sources of many major ions in urban streams remain ambiguous, particularly for ions unrelated to deicing salt use, and temporal patterns in concentrations are unstudied. We used 16 years of water chemistry data based on weekly samples from the Baltimore, MD, USA, metropolitan area and the Weighted Regressions on Time, Discharge, and Season approach to investigate connections between major ions, land cover, and time. All watersheds were underlain by silicate bedrock, contained no regulated point sources, and had stable land cover. Major ion concentrations were higher with greater urban land cover. Notably, concentrations of most ions increased with time in (sub)urban streams and had higher annual variability than in watersheds without impervious surface cover. Nonpoint source contributions from deicing salt and concrete were the predominant influences on major ion concentrations and produced stream chemistry that was distinctly different from forested streams. The novel finding that concentrations of most major ions were not only elevated but increasing in urban streams even with no substantial changes in land cover during the study period has important implications for ecosystem health and water quality, particularly given recent work demonstrating the high correlation between elevated ion concentrations and changes in freshwater biotic communities.
Collapse
Affiliation(s)
| | - Peter M Groffman
- City University of New York Advanced Science Research Center at the Graduate Center, Department of Earth and Environmental Sciences , Brooklyn College , New York , New York 10031 , United States
- Cary Institute of Ecosystem Studies , Millbrook , New York 12545 , United States
| | | | | |
Collapse
|
50
|
Wen T, Niu X, Gonzales M, Zheng G, Li Z, Brantley SL. Big Groundwater Data Sets Reveal Possible Rare Contamination Amid Otherwise Improved Water Quality for Some Analytes in a Region of Marcellus Shale Development. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:7149-7159. [PMID: 29783843 DOI: 10.1021/acs.est.8b01123] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Eleven thousand groundwater samples collected in the 2010s in an area of Marcellus shale-gas development are analyzed to assess spatial and temporal patterns of water quality. Using a new data mining technique, we confirm previous observations that methane concentrations in groundwater tend to be naturally elevated in valleys and near faults, but we also show that methane is also more concentrated near an anticline. Data mining also highlights waters with elevated methane that are not otherwise explained by geologic features. These slightly elevated concentrations occur near 7 out of the 1,385 shale-gas wells and near some conventional gas wells in the study area. For ten analytes for which uncensored data are abundant in this 3,000 km2 rural region, concentrations are unchanged or improved as compared to samples analyzed prior to 1990. Specifically, TDS, Fe, Mn, sulfate, and pH show small but statistically significant improvement, and As, Pb, Ba, Cl, and Na show no change. Evidence from this rural area could document improved groundwater quality caused by decreased acid rain (pH, sulfate) since the imposition of the Clean Air Act or decreased steel production (Fe, Mn). Such improvements have not been reported in groundwater in more developed areas of the U.S.
Collapse
Affiliation(s)
- Tao Wen
- Earth and Environmental Systems Institute , Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Xianzeng Niu
- Earth and Environmental Systems Institute , Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Matthew Gonzales
- Earth and Environmental Systems Institute , Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Guanjie Zheng
- College of Information Sciences and Technology , Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Zhenhui Li
- College of Information Sciences and Technology , Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Susan L Brantley
- Earth and Environmental Systems Institute , Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| |
Collapse
|