1
|
Liu C, Bai Z, Luo Y, Zhang Y, Wang Y, Liu H, Luo M, Huang X, Chen A, Ma L, Chen C, Yuan J, Xu Y, Zhu Y, Mu J, An R, Yang C, Chen H, Chen J, Li Z, Li X, Dong Y, Zhao J, Shen X, Jiang L, Feng X, Yu P, Wang D, Chen X, Li N. Multiomics dissection of Brassica napus L. lateral roots and endophytes interactions under phosphorus starvation. Nat Commun 2024; 15:9732. [PMID: 39523413 PMCID: PMC11551189 DOI: 10.1038/s41467-024-54112-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Many plants associate with endophytic microbes that improve root phosphorus (P) uptake. Understanding the interactions between roots and endophytes can enable efforts to improve P utilization. Here, we characterize the interactions between lateral roots of endophytes in a core collection of 50 rapeseed (Brassica napus L.) genotypes with differing sensitivities to low P conditions. With the correlation analysis result between bacterial abundance and plant physiological indices of rapeseeds, and inoculation experiments on plates and soil, we identify one Flavobacterium strain (C2) that significantly alleviates the P deficiency phenotype of rapeseeds. The underlying mechanisms are explored by performing the weighted gene coexpression network analysis (WGCNA), and conducting genome-wide association studies (GWAS) using Flavobacterium abundance as a quantitative trait. Under P-limited conditions, C2 regulates fatty acid and lipid metabolic pathways. For example, C2 improves metabolism of linoleic acid, which mediates root suberin biosynthesis, and enhances P uptake efficiency. In addition, C2 suppresses root jasmonic acid biosynthesis, which depends on α-linolenic acid metabolism, improving C2 colonization and activating P uptake. This study demonstrates that adjusting the endophyte composition can modulate P uptake in B. napus plants, providing a basis for developing agricultural microbial agents.
Collapse
Affiliation(s)
- Can Liu
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, 400715, China
| | - Zhen Bai
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Yu Luo
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, 400715, China
| | - Yanfeng Zhang
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi, 712100, China
| | - Yongfeng Wang
- College of Agriculture, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, 475004, Henan, China
| | - Hexin Liu
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, 400715, China
| | - Meng Luo
- Shanghai Majorbio Research Institute, Shanghai, 201203, PR China
| | - Xiaofang Huang
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Anle Chen
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, 400715, China
| | - Lige Ma
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, 400715, China
| | - Chen Chen
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Jinwei Yuan
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Ying Xu
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Yantao Zhu
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi, 712100, China
| | - Jianxin Mu
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi, 712100, China
| | - Ran An
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi, 712100, China
| | - Cuiling Yang
- College of Agriculture, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, 475004, Henan, China
| | - Hao Chen
- College of Agriculture, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, 475004, Henan, China
| | - Jiajie Chen
- Research Center for Intelligent Computing Platforms, Zhejiang Lab, Hangzhou, 310012, China
| | - Zaifang Li
- Research Center for Intelligent Computing Platforms, Zhejiang Lab, Hangzhou, 310012, China
| | - Xiaodan Li
- Shanghai Majorbio Research Institute, Shanghai, 201203, PR China
| | - Yachen Dong
- Shanghai Majorbio Research Institute, Shanghai, 201203, PR China
| | - Jianhua Zhao
- Shanghai Majorbio Research Institute, Shanghai, 201203, PR China
| | - Xingxing Shen
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
- Research Center for Intelligent Computing Platforms, Zhejiang Lab, Hangzhou, 310012, China
| | - Lixi Jiang
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Xianzhong Feng
- Research Center for Intelligent Computing Platforms, Zhejiang Lab, Hangzhou, 310012, China
| | - Peng Yu
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany.
- Plant Genetics, School of Life Sciences, Technical University of Munich, Freising, D-85354, Germany.
| | - Daojie Wang
- College of Agriculture, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, 475004, Henan, China.
| | - Xinping Chen
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China.
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, 400715, China.
| | - Nannan Li
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China.
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, 400715, China.
- Research Center for Intelligent Computing Platforms, Zhejiang Lab, Hangzhou, 310012, China.
- Yazhouwan National Laboratory, Sanya, 572025, China.
| |
Collapse
|
2
|
He L, Huang Y, Tang C, Xu J. Combined use of arbuscular mycorrhizal fungi and alkaline lignin enhance phosphorus nutrition and alleviate cadmium stress in lettuce (Lactuca sativa L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175335. [PMID: 39117195 DOI: 10.1016/j.scitotenv.2024.175335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/03/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
The excessive application of phosphorus (P) fertiliser and its poor utilisation efficiency have led to significant amounts of P being retained in agricultural soils in unavailable forms. The application of alkaline lignin to soil and its inoculation with arbuscular mycorrhizal fungi (AMF) have both been shown to improve plant P nutrition. However, their combined effects on soil P transformation remain unclear, particularly in cadmium (Cd)-contaminated soils. A potting experiment was conducted to examine the combined effects of AMF and alkaline lignin on soil P and Cd bioavailability and on the uptake of P and Cd by lettuce (Lactuca sativa L.) that were grown for 56 d in a growth chamber. Combined AMF and alkaline lignin treatment increased soil P availability and alkaline phosphatase activity. It furthermore increased bioavailable Cd concentrations of rhizosphere and bulk soils by 48 % and 72 %, respectively, and the Cd concentration in roots by 85 %, but the Cd concentration was not affected in the edible parts (shoots) of the lettuce. Moreover, the combined treatment increased shoot biomass by 26-70 % and root biomass by 99-164 %. Our findings suggested that the combined use of AMF and alkaline lignin mobilised both P and Cd in soil but did not increase the accumulation of Cd in the shoots of plants growing in Cd-contaminated soils, these results would provide guideline for increasing Cd tolerance of plants and their yield.
Collapse
Affiliation(s)
- Lizhi He
- College of Environment and Resources, College of Carbon Neutrality, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China; Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu Huang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Caixian Tang
- La Trobe Institute for Sustainable Agriculture and Food, Department of Animal, Plant & Soil Sciences, La Trobe University, Bundoora, Vic 3086, Australia
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
3
|
Wei W, Ma M, Jiang X, Meng F, Cao F, Chen H, Guan D, Li L, Li J. Soil P-stimulating bacterial communities: response and effect assessment of long-term fertilizer and rhizobium inoculant application. ENVIRONMENTAL MICROBIOME 2024; 19:86. [PMID: 39511696 DOI: 10.1186/s40793-024-00633-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND Phosphorus (P) plays a vital role in plant growth. The pqqC and phoD genes serve as molecular markers for inorganic and organic P breakdown, respectively. However, the understanding of how P-mobilizing bacteria in soil respond to long-term fertilization and rhizobium application is limited. Herein, soil that had been treated with fertilizer and rhizobium for 10 years was collected to investigate the characteristics of P-mobilizing bacterial communities. Five treatments were included: no fertilization (CK), phosphorus fertilizer (P), urea + potassium fertilizer (NK), NPK, and PK + Bradyrhizobium japonicum 5821 (PK + R). RESULTS The soybean nodule dry weight was highest in the P treatment (1.93 g), while the soybean yield peaked in the PK + R treatment (3025.33 kg ha- 1). The abundance of the pqqC gene increased in the rhizosphere soil at the flowering-podding stage and in the bulk soil at the maturity stage under the P treatment, while its abundance increased in the bulk soil at the flowering-podding stage and in the rhizosphere soil at the maturity stage under the PK + R treatment. The abundance of the phoD gene was enhanced in the bulk soil at the flowering-podding stage under the PK + R treatment. The Shannon and Ace indexes of pqqC- and phoD-harboring bacteria were higher in the rhizosphere soil at maturity under the PK + R treatment compared to other treatments. Furthermore, a comprehensive analysis of the neutral community model and co-occurrence pattern demonstrated that the application of P fertilizer alone led to an increase in the distribution and dynamic movement of pqqC-harboring bacteria, but resulted in a decrease in complexity of network structure. On the other hand, rhizobium inoculation enhanced the distribution and dynamic movement of phoD-harboring bacteria, as well as the stability and complexity of the network structure. Pseudomonas and Nitrobacter, as well as Steptomyces, Stella, and Nonomuraea, may be crucial genera regulating the composition and function of pqqC- and phoD-harboring communities, respectively. CONCLUSIONS These findings affirm the crucial role of fertilization and rhizobium inoculation in regulating pqqC- and phoD-harboring bacterial communities, and highlight the significance of long-term phosphate-only fertilization and rhizobium inoculation in enhancing dissolved inorganic phosphorus and mineralized organophosphorus, respectively.
Collapse
Affiliation(s)
- Wanling Wei
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, South Zhongguancun Street No.12, Beijing, 100081, China
| | - Mingchao Ma
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, South Zhongguancun Street No.12, Beijing, 100081, China
- Laboratory of Quality and Safety Risk Assessment for Microbial Products, Ministry of Agriculture, Beijing, 100081, China
| | - Xin Jiang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, South Zhongguancun Street No.12, Beijing, 100081, China
- Laboratory of Quality and Safety Risk Assessment for Microbial Products, Ministry of Agriculture, Beijing, 100081, China
| | - Fangang Meng
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Jilin, 132011, China
| | - Fengming Cao
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, South Zhongguancun Street No.12, Beijing, 100081, China
- Laboratory of Quality and Safety Risk Assessment for Microbial Products, Ministry of Agriculture, Beijing, 100081, China
| | - Huijun Chen
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, South Zhongguancun Street No.12, Beijing, 100081, China
| | - Dawei Guan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, South Zhongguancun Street No.12, Beijing, 100081, China
| | - Li Li
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, South Zhongguancun Street No.12, Beijing, 100081, China
- Laboratory of Quality and Safety Risk Assessment for Microbial Products, Ministry of Agriculture, Beijing, 100081, China
| | - Jun Li
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, South Zhongguancun Street No.12, Beijing, 100081, China.
- Laboratory of Quality and Safety Risk Assessment for Microbial Products, Ministry of Agriculture, Beijing, 100081, China.
| |
Collapse
|
4
|
Babar S, Baloch A, Qasim M, Wang J, Wang X, Li Y, Khalid S, Jiang C. Unearthing the soil-bacteria nexus to enhance potassium bioavailability for global sustainable agriculture: A mechanistic preview. Microbiol Res 2024; 288:127885. [PMID: 39236472 DOI: 10.1016/j.micres.2024.127885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/02/2024] [Accepted: 08/25/2024] [Indexed: 09/07/2024]
Abstract
Established as a plant macronutrient, potassium (K) substantially bestows plant growth and thus, global food production. It is absorbed by plants as potassium cation (K+) from soil solution, which is enriched through slow-release from soil minerals or addition of soluble fertilizers. Contribution of bioavailable K+ from soil is usually insignificant (< 2 %), although the earth's crust is rich in K-bearing minerals. However, K is fixed largely in interlayer spaces of K-bearing minerals, which can be released by K-solubilizing bacteria (KSB) such as Bacillus, Pseudomonas, Enterobacter, and Acidithiobacillus. The underlying mechanisms of K dissolution by KSB include acidolysis, ion exchange reactions, chelation, complexolysis, and release of various organic and inorganic acids such as citric, oxalic, acetic, gluconic, and tartaric acids. These acids cause disintegration of K-bearing minerals and bring K+ into soil solution that becomes available to the plants. Current literature review updates the scientific information about microbial species, factors, and mechanisms governing the bio-intrusion of K-bearing minerals. Moreover, it explores the potential of KSB not only for K-solubilization but also to enhance bioavailability of phosphorus, nitrogen, and micronutrients, as well as its other beneficial impact on plant growth. Thus, in the context of sustainable agricultural production and global food security, utilization of KSB may facilitate plant nutrient availability, conserve natural resources, and reduce environmental impacts caused by chemical fertilizers.
Collapse
Affiliation(s)
- Saba Babar
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Amanullah Baloch
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Muhammad Qasim
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| | - Jiyuan Wang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xiangling Wang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Yuxuan Li
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Sarmand Khalid
- Key Laboratory of Horticulture Plant Biology of Ministry of Education, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| | - Cuncang Jiang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| |
Collapse
|
5
|
Kouas S, Djedidi S, Ben Slimene Debez I, Sbissi I, Alyami NM, Hirsch AM. Halotolerant phosphate solubilizing bacteria isolated from arid area in Tunisia improve P status and photosynthetic activity of cultivated barley under P shortage. Heliyon 2024; 10:e38653. [PMID: 39397981 PMCID: PMC11470655 DOI: 10.1016/j.heliyon.2024.e38653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024] Open
Abstract
Forty-seven (47) bacterial strains were isolated from soil of Gabes (an arid region in southern Tunisia) and were screened for their ability to produce Indole-3-Acetic Acid (IAA) and to solubilize phosphate (P). The characterization and molecular identification of the most successful P-solubilizing bacteria (PSB) were then carried out. When grown on suitable artificial media, the most salt-tolerant strains also showed the highest P solubilization capacity (up to 126.8 μg ml-1 of released phosphorus after 7 day incubation) and the strongest ability to produce IAA (up to 101.86 μg ml-1 after 3 day incubation). Overall, bacterial isolates displayed a different tolerance to varying pH, temperatures, and salinity. The molecular identification revealed that 11 strains belonged to three genera: Bacillus, Pseudomonas and Mesorhizobium. Inoculation of barley with P-solubilizing bacteria under tricalcium phosphate-induced P shortage significantly improved plant growth (biomass, shoot height, and root length) together with increasing total chlorophyll contents and photosynthetic activity. This was concomitant with (i) higher P uptake and translocation and (ii) increased phosphorus absorption and utilization efficiencies (PAE and PUE), which is indicative of a better plant P nutrition under P scarcity. Taken together, we provide strong arguments showing that bacteria native to extreme environments display PSB potential making them promising candidates to mitigate low Pi availability for crop plants.
Collapse
Affiliation(s)
- Saber Kouas
- Laboratory of Plant Physiology and Functional Genomics, Institute of Biotechnology, University of Sfax, BP “1175”, 3038, Sfax, Tunisia
- Faculty of Sciences of Gabes, University of Gabes, Zrig, 6072, Gabes, Tunisia
| | - Salem Djedidi
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Saiwai-cho, Fuchushi, Tokyo, 183–8509, Japan
| | - Imen Ben Slimene Debez
- Laboratory of Bioactive Substances, Center of Biotechnology of Borj Cedria (CBBC), BP 901, Hammam-Lif, 2050, Tunisia
| | - Imed Sbissi
- Pastoral Ecosystems and Valorization of Spontaneous Plants and Associated Microorganisms Laboratory, Arid Regions Institute, University of Gabes, 4100, Medenine, Tunisia
| | - Nouf M. Alyami
- Department of Zoology, College of Science, King Saud University, PO Box-2455, Riyadh, 11451, Saudi Arabia
| | - Ann M. Hirsch
- Department of Molecular, Cell, and Developmental Biology and Molecular Biology Institute, University of California, Los Angeles, CA, USA, 90095, USA
| |
Collapse
|
6
|
Jolaosho TL, Mustapha AA, Hundeyin ST. Hydrogeochemical evolution and heavy metal characterization of groundwater from southwestern, Nigeria: An integrated assessment using spatial, indexical, irrigation, chemometric, and health risk models. Heliyon 2024; 10:e38364. [PMID: 39430452 PMCID: PMC11490828 DOI: 10.1016/j.heliyon.2024.e38364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 10/22/2024] Open
Abstract
This study examines the hydrogeochemical and heavy metal parameters of groundwater in Ojo District to determine its suitability for use, potential sources, and human health implications. Ten groundwater samples were assessed, and hydrogeochemical modelling was performed via the Aquachem software. The chemical ions were in the following order: EC > (107.78-448.65 μS/cm) > TDS (182.02-320.77 mg/l) > TH (46.22-182.45 mg/l) > pH (5.55-6.35); HCO3 - (64.13-125.82 mg/l) > Na+ (36.87-96.49 mg/l) > Ca2+ (47.65-58.88 mg/l) > SO4 2- (19.94-53.67) > NO3 - (15.55-44.25 mg/l) > Cl- (20.43-27.16 mg/l) > Mg2+ (11.09-16.87 mg/l) and K+ (2.55-7.86 mg/l). The concentrations of heavy metals in groundwater were in the range of: Fe (0.11-0.27 mg/l) > Mn (0.003-0.16 mg/l) > Ni (0.05-0.12 mg/l) > Zn (0.003-0.05 mg/l) > Pb (0.001-0.03 mg/l) > As (0.001-0.005 mg/l) > Cr (0.002-0.005 mg/l) > Cd (0.001-0.003 mg/l) and Cu (0.001-0.0002 mg/l), with Pb, Mn, and Ni exceeding their allowable limits. The Schoeller and Gibbs plots revealed that the major mechanisms controlling the aquifer groundwater in Ojo region are geological rock weathering and mineralization, with a minimal influence of saltwater intrusion. The piper trilinear diagram also revealed that none of the cation was dominant while the anions were strongly dominated by HCO3 - (weak acids). The hydrogeochemical facies which describes the geochemical characteristics of the groundwater were classified into 3 types; "Ca2+-Mg+-HCO3 - (65 %)", "mixing zones (30 %)", and "Na+-K+-Cl--HCO3 - (5 %)". The hydrogeochemical modelling revealed that the groundwater is characterized by forward cation exchange, while rock-water interactions (silicate dissolution) were heavily involved in the geochemical processes. The single pollution index showed that Pb, Ni, and Mn contributed significantly to contamination, and the multi-pollution indices showed that the groundwater was slightly-moderately polluted. The integrated groundwater quality index revealed that only 10 % were clean, 50 % were poor or moderately unclean, 30 % were highly unclean, and only 10 % were extremely unclean (unfit for utilization). The water pollution index showed that 70 % of the groundwater was good. The irrigation indices suggest that the groundwater would enhance soil quality and support plant growth. Multivariate analysis revealed that the groundwater is being influenced by geogenic factors and anthropogenic activities. The health risk assessment (Hazard Quotient and Hazard Index) showed that exposure of adults to the investigated groundwaters could result in noncarcinogenic adverse effects. The cancer risk values also exceeded the minimum limit (1.0 x 10-6) and thresholds (1.0 x 10-4) for adults, indicating the carcinogenic potential of the groundwater.
Collapse
Affiliation(s)
- Toheeb Lekan Jolaosho
- Department of Fisheries, Faculty of Science, Lagos State University, Ojo, Lagos State, Nigeria
| | | | | |
Collapse
|
7
|
Chu X, Rao Y, Qu J, Zhang J, Zeng R, Kong Y, Xi Z, Zhu Z, Li D, Li J, Zhao Q. Phosphorus-loaded coconut biochar: A novel strategy for cadmium remediation and soil fertility enhancement. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117074. [PMID: 39342758 DOI: 10.1016/j.ecoenv.2024.117074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024]
Abstract
The management of cadmium (Cd) contamination in soils poses a significant environmental challenge. This study investigates the effectiveness of phosphorus (P)-loaded coconut biochar, synthesized at various pyrolysis temperatures (450°C, 500°C, 550°C, and 600°C), in immobilizing Cd and enhancing P availability in soil environments. The biochar underwent a series of treatments including activation and P enrichment, followed by incubation trials to evaluate its performance in Cd immobilization and P bioavailability enhancement across varying soil concentrations (0.5 %, 1.0 %, and 2.0 %) over time periods of 15, 30, and 45 days. Remediation progress was monitored using phytotoxicity assessments with radish (Raphanus sativus) root length as a bioindicator, supplemented by urease activity analyses. Notably, the activation process increased the P loading capacity of biochar produced at 450°C, 500°C, and 550°C by 54.6 %, 72.4 %, and 51.8 %, respectively, while reducing the P retention capacity of biochar prepared at 600°C by 31.0 %. The biochar activated at 550°C presented the highest efficiency in remediating Cd-contaminated soils. Key findings indicate that the enhanced specific surface area and oxygenated functional group content of the activated biochar facilitated Cd adsorption and P uptake. The P-loaded biochar exhibited a substantial adsorption capacity for Cd, particularly effective at lower concentrations, rendering it highly suitable for soil remediation purposes. Additionally, the study revealed that the application of biochar led to an increase in soil pH, resulting in precipitation of Cd as hydroxide species and formation of insoluble complexes with phosphate ions, thereby reducing its bioavailability. In summary, incorporating P-loaded biochar into soil significantly improved soil quality and enhanced Cd passivation in contaminated soils. The utilization of biochar produced at 550°C, which exhibited optimal performance, suggests a practical and sustainable approach for soil remediation. Future research endeavors should prioritize the refinement of the biochar production process to enhance cost-effectiveness while maintaining high P loading efficiency.
Collapse
Affiliation(s)
- Xiao Chu
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571700, China; Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Yingzhi Rao
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571700, China
| | - Jizhen Qu
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571700, China
| | - Jingmin Zhang
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Ri Zeng
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571700, China
| | - Yipeng Kong
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571700, China
| | - Zimin Xi
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571700, China
| | - Zhiqiang Zhu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Dong Li
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Jianhong Li
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Danzhou Soil Environment of Rubber Plantation, Hainan Observation and Research Station, Danzhou 571700, China.
| | - Qingjie Zhao
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571700, China.
| |
Collapse
|
8
|
Tao M, Huang Y, Luo J, Wang Y, Luo X. The role of proton excreted by Advenella kashmirensis DF12 during ammonium assimilation in phosphate solubilization. World J Microbiol Biotechnol 2024; 40:346. [PMID: 39397206 DOI: 10.1007/s11274-024-04087-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/18/2024] [Indexed: 10/15/2024]
Abstract
Phosphate-solubilizing bacteria (PSB) can solubilize soil fixed phosphorus (P) to plant available forms. In previous studies, the mechanisms of inorganic phosphate solubilization by PSB mostly focused on the acidolysis of organic acids. Here we screened a highly efficient PSB, Advenella kashmirensis DF12, with the maximum P solubilization of 590 mg L- 1 at 6 days. In addition to its P solubilizing ability, DF12 also showed a tolerance to pH from 5 to 10 and a nitrogen fixation potential. The multiple functions of DF12 and its wide adaptability to various environmental conditions make it a promising biofertilizer candidate. The combined analysis of extracellular metabolites and intracellular metabolome data revealed that the production of organic acid (mainly gluconic acid) is not the only mechanism of P solubilized by DF12, the solubilized P content was not correlated with the gluconic acid concentration but was in a highly significant positive correlation with proton concentration, extrusion of proton during NH4+ assimilation plays a key role in phosphate solubilization. Moreover, the contribution of NH4+ assimilation to phosphorus solubilization is generally present in PSB. Therefore, we proposed that applying ammonium fertilizer in P-deficient soil is more appropriate, it can not only supplement nitrogen fertilizer, but also enhance P use efficiency, which contributes to worldwide fertilizer use reduction and efficiency improvement.
Collapse
Affiliation(s)
- Mei Tao
- School of Environment and Resources, Southwest University of Science and Technology, Mianyang, 621010, China
- Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Yan Huang
- Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Jing Luo
- School of Life Sciences, Northeast Forestry University, Heilongjiang, 150040, China
| | - Yiwang Wang
- Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Xuegang Luo
- Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China.
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
| |
Collapse
|
9
|
Khusna RY, Geraldi A, Wibowo AT, Fatimah U, Clement C, Manuhara YSW, Santoso H, Fauzia FN, Putro YK, Arsad RN, Setiawan R, Luqman A, Hariyanto S. Isolation and identification of plant growth-promoting rhizobacteria from Spinifex littoreus in Parangkusumo Coastal Sand Dunes, Indonesia. BRAZ J BIOL 2024; 84:e284907. [PMID: 39383412 DOI: 10.1590/1519-6984.284907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/17/2024] [Indexed: 10/11/2024] Open
Abstract
Utilizing coastal land for agriculture presents challenges such as low water content, high soil salinity, and low organic compound content. To support plant growth under these conditions, biofertilizers composed of plant growth promoting Rhizobacteria (PGPR), especially those inhabiting coastal areas, are needed. The Parangkusumo sand dunes on the southern coast of Java, Indonesia, is a unique coastal ecosystem characterized by arid conditions, high temperatures, and high soil salinity. To date, no studies have reported the isolation of PGPR from this ecosystem. This study is the first to isolate and identify PGPR associated with Spinifex littoreus, a dominant plant species in the Parangkusumo sand dunes, which are adapted to the harsh condition of Parangkusumo sand dunes. Ten rhizobacterial isolates were obtained, with five identified as members of the Bacillaceae family. All isolates demonstrated phosphate solubilization activity, while seven exhibited cellulolytic activity. One isolate, Priestia aryabhattai strain 2, notably showed phosphate solubilization and nitrogen fixation activities. The findings of this PGPR activity screening offer valuable insights for developing biofertilizers tailored for coastal agricultural applications.
Collapse
Affiliation(s)
- R Y Khusna
- Universitas Airlangga, Faculty of Science and Technology, Department of Biology, Surabaya, Indonesia
| | - A Geraldi
- Universitas Airlangga, Faculty of Science and Technology, Department of Biology, Surabaya, Indonesia
- Universitas Airlangga, Biotechnology of Tropical Medicinal Plants Research Group, Surabaya, Indonesia
- Universitas Airlangga, University CoE-Research Center for Bio-Molecule Engineering, Surabaya, Indonesia
- Universitas Airlangga, Institute of Life Science, Technology and Engineering - LIHTR, Surabaya, Indonesia
| | - A T Wibowo
- Universitas Airlangga, Faculty of Science and Technology, Department of Biology, Surabaya, Indonesia
- Universitas Airlangga, Biotechnology of Tropical Medicinal Plants Research Group, Surabaya, Indonesia
| | - Undefined Fatimah
- Universitas Airlangga, Faculty of Science and Technology, Department of Biology, Surabaya, Indonesia
- Universitas Airlangga, University CoE-Research Center for Bio-Molecule Engineering, Surabaya, Indonesia
| | - C Clement
- Universitas Airlangga, Faculty of Science and Technology, Department of Biology, Surabaya, Indonesia
| | - Y S W Manuhara
- Universitas Airlangga, Faculty of Science and Technology, Department of Biology, Surabaya, Indonesia
- Universitas Airlangga, Biotechnology of Tropical Medicinal Plants Research Group, Surabaya, Indonesia
| | - H Santoso
- Generasi Biologi Indonesia (Genbinesia) Foundation, Gresik, Indonesia
| | - F N Fauzia
- Universitas Airlangga, Faculty of Science and Technology, Department of Biology, Surabaya, Indonesia
| | - Y K Putro
- Universitas Airlangga, Faculty of Science and Technology, Department of Biology, Surabaya, Indonesia
| | - R N Arsad
- Universitas Airlangga, Faculty of Science and Technology, Department of Biology, Surabaya, Indonesia
| | - R Setiawan
- Universitas Airlangga, Faculty of Science and Technology, Department of Biology, Surabaya, Indonesia
| | - A Luqman
- Institute Teknologi Sepuluh Nopember, Department of Biology, Surabaya, Indonesia
- Julius Maximilians University of Wuerzburg, Institute for Molecular Infection Biology - IMIB, Wuerzburg, Germany
| | - S Hariyanto
- Universitas Airlangga, Faculty of Science and Technology, Department of Biology, Surabaya, Indonesia
| |
Collapse
|
10
|
Yu C, Guan Y, Wang Q, Li Y, Wang L, Yu W, Wu J. Effects of calcium phosphate and phosphorus-dissolving bacteria on microbial structure and function during Torreya Grandis branch waste composting. BMC Microbiol 2024; 24:385. [PMID: 39358715 PMCID: PMC11445941 DOI: 10.1186/s12866-024-03535-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND BURKHOLDERIA: is a phosphorus solubilizing microorganism discovered in recent years, which can dissolve insoluble phosphorus compounds into soluble phosphorus. To investigate the effects of Burkholderia and calcium phosphate on the composting of Torreya grandis branches and leaves, as well as to explain the nutritional and metabolic markers related to the composting process. METHODS In this study, we employed amplicon sequencing and untargeted metabolomics analysis to examine the interplay among phosphorus (P) components, microbial communities, and metabolites during T. grandis branch and leaf waste composting that underwent treatment with calcium phosphate and phosphate-solubilizing bacteria (Burkholderia). There were four composting treatments, 10% calcium phosphate (CaP) or 5 ml/kg (1 × 108/ml Burkholderia) microbial inoculum (WJP) or both (CaP + WJP), and the control group (CK). RESULTS The results indicated that Burkholderia inoculation and calcium phosphate treatment affected the phosphorus composition, pH, EC, and nitrogen content. Furthermore, these treatments significantly affected the diversity and structure of bacterial and fungal communities, altering microbial and metabolite interactions. The differential metabolites associated with lipids and organic acids and derivatives treated with calcium phosphate treatment are twice as high as those treated with Burkholderia in both 21d and 42d. The results suggest that calcium phosphate treatment alters the formation of some biological macromolecules. CONCLUSION Both Burkholderia inoculation and calcium phosphate treatment affected the phosphorus composition, nitrogen content and metabolites of T. grandis branch and leaf waste compost.These results extend our comprehension of the coupling of matter transformation and community succession in composting with the addition of calcium phosphate and phosphate-solubilizing bacteria.
Collapse
Affiliation(s)
- Chenliang Yu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Yuanyuan Guan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Qi Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Yi Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Lei Wang
- Department of Landscape Architecture, Jiyang College, Zhejiang A&F University, Hangzhou, People's Republic of China
| | - Weiwu Yu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, China.
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China.
- NFGA Engineering Research Center for Torreya grandis 'Merrillii', Zhejiang A&F University, Hangzhou, China.
| | - Jiasheng Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, China.
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China.
- NFGA Engineering Research Center for Torreya grandis 'Merrillii', Zhejiang A&F University, Hangzhou, China.
| |
Collapse
|
11
|
Liu H, Li C, Zhang J, Ji H, Liao Y, Ma X, Li Q, Zhang Y, Jiang L, Wang R, Han X, Jiang Y. Differential responses of soil phosphorus fractions to varied nitrogen compound additions in a meadow steppe. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 369:122337. [PMID: 39222588 DOI: 10.1016/j.jenvman.2024.122337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/24/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Nitrogen (N) addition can greatly influence soil inorganic phosphorus (Pi) and organic phosphorus (Po) transformations. However, whether and how the N compound forms may differentially affect the soil P fractions remain unclear. Here, we investigated the responses of soil Pi (labile Pi, moderately-occluded Pi, and recalcitrant Pi) and Po fractions (labile Po and stable Po) to varying addition rates of three N compounds ((NH4)2SO4, NH4NO3, and urea) in a meadow steppe in northern China. Our studies revealed that with increasing N addition rate, soil labile and moderately-occluded Pi increased, accompanied by decreases in soil recalcitrant Pi. This shift was attributed to N-induced soil acidification, which accelerated the conversion of recalcitrant Pi into labile and moderately-occluded Pi. Soil labile Po decreased with increasing rate of N addition, whilst soil stable Po was not affected. Regardless of the compound forms, N addition increased soil Olsen-P, suggesting a potential alleviation of P limitation in this grassland ecosystem. The effect of N addition on soil labile Pi was significantly greater with addition of urea than with addition of either (NH4)2SO4 or NH4NO3, indicating that urea was more efficient in enhancing soil P availability. Addition of (NH4)2SO4 imposed a more pronounced positive effect on soil moderately-occluded Pi than the addition of either NH4NO3 or urea, mainly due to the greater mobilization of recalcitrant Pi as a result of higher soil acidification strength of (NH4)2SO4. These findings underscore the importance of considering the distinct effects of different N compounds when studying grassland soil P dynamics and availability in response to N addition.
Collapse
Affiliation(s)
- Heyong Liu
- College of Life Sciences, Hebei University, Baoding, 071002, Hebei, China.
| | - Chunbo Li
- College of Life Sciences, Hebei University, Baoding, 071002, Hebei, China.
| | - Jiayun Zhang
- College of Life Sciences, Hebei University, Baoding, 071002, Hebei, China.
| | - Hong Ji
- College of Life Sciences, Hebei University, Baoding, 071002, Hebei, China.
| | - Yinhong Liao
- College of Life Sciences, Hebei University, Baoding, 071002, Hebei, China.
| | - Xiaomeng Ma
- College of Life Sciences, Hebei University, Baoding, 071002, Hebei, China.
| | - Qiuhua Li
- College of Life Sciences, Hebei University, Baoding, 071002, Hebei, China.
| | - Yuxue Zhang
- College of Life Sciences, Hebei University, Baoding, 071002, Hebei, China.
| | - Liangchao Jiang
- College of Life Sciences, Hebei University, Baoding, 071002, Hebei, China.
| | - Ruzhen Wang
- College of Life Sciences, Hebei University, Baoding, 071002, Hebei, China; Erguna Forest-Steppe Ecotone Ecosystem Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| | - Xingguo Han
- College of Life Sciences, Hebei University, Baoding, 071002, Hebei, China.
| | - Yong Jiang
- College of Life Sciences, Hebei University, Baoding, 071002, Hebei, China.
| |
Collapse
|
12
|
Ducousso‐Détrez A, Morvan S, Fontaine J, Hijri M, Sahraoui AL. How do high phosphate concentrations affect soil microbial communities after a century of ecosystem self-reclamation? ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70003. [PMID: 39440691 PMCID: PMC11497093 DOI: 10.1111/1758-2229.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/27/2024] [Indexed: 10/25/2024]
Abstract
The use of rock phosphate (RP) instead of soluble phosphate fertilizers is preferred for the development of more sustainable agriculture. However, the impact of high concentrations in RP on bacterial and fungal communities remains poorly documented. Thus, next-generation sequencing was used to characterize bacterial and fungal communities in the soils and roots of four plant species growing naturally in a self-restored ecosystem, on former open-pit phosphate mines where past exploitation generated locally a substantial phosphate enrichment of the soil. Our results show that bacterial communities are dominated by Actinobacteria and Proteobacteria phyla, while the Ascomycota and Basidiomycota phyla predominate in the fungal community. The alpha and beta diversities of both bacterial and fungal communities differ significantly between the root and soil compartments but are not significantly affected by RP inputs. However, Amplicon Sequence Variants (ASVs) indicative of RP-enriched soils have been identified; among them are bacteria representative of Streptomyces, Bacillus, Mycobacterium or Agromyces. Implications of these results open new ways of reflection to understand the microbial response following RP-inputs and long-term soil restoration, as well as to formulate microbial-based bioinoculants for sustainable agriculture applications based on microorganisms better adapted to high concentrations of RP.
Collapse
Affiliation(s)
- Amandine Ducousso‐Détrez
- Université du Littoral Côte d'Opale, UR 4492Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV)Calais CedexFrance
- Institut de Recherche en Biologie Végétale (IRBV), Département de Sciences BiologiquesUniversité de MontréalMontréalQuebecCanada
| | - Simon Morvan
- Institut de Recherche en Biologie Végétale (IRBV), Département de Sciences BiologiquesUniversité de MontréalMontréalQuebecCanada
| | - Joël Fontaine
- Université du Littoral Côte d'Opale, UR 4492Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV)Calais CedexFrance
| | - Mohamed Hijri
- Institut de Recherche en Biologie Végétale (IRBV), Département de Sciences BiologiquesUniversité de MontréalMontréalQuebecCanada
- African Genome CenterMohammed VI Polytechnic University (UM6P)Ben GuerirMorocco
| | - Anissa Lounès‐Hadj Sahraoui
- Université du Littoral Côte d'Opale, UR 4492Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV)Calais CedexFrance
| |
Collapse
|
13
|
Bi R, Fu W, Fu X. Phosphorus dynamics in volcanic soils of Weizhou Island, China: implications for environmental and agricultural applications. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:458. [PMID: 39348006 PMCID: PMC11442536 DOI: 10.1007/s10653-024-02238-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024]
Abstract
The dynamics of phosphorus are intricately governed by geological and ecological processes. Examining phosphorus dynamics in volcanic islands can enhance our comprehension of its behavior within such unique geological systems. However, research on phosphorus dynamics in volcanic islands remains limited. We investigated the phosphorus content of volcaniclastic rocks and basalt soils from Weizhou Island, China, to understand the influencing factors on phosphorus dynamics. The results indicate that in the volcaniclastic profile, phosphorus concentrates at 20-40 cm (17 mg/kg), decreases at 40-60 cm (11.9 mg/kg), and increases at 80-200 cm up to 46.4 mg/kg proximate to the bedrock, for the basalt profile, phosphorus content increases from the surface (80.2 mg/kg) towards the bedrock (83.9 mg/kg). The differences in phosphorus distribution between volcaniclastic rocks and basalts reflect the influence of parent material, rock weathering degree, carbonate content, topographic elevation, sea level changes, and geological activities. A strong positive correlation (R = 0.96907) between total and available phosphorus has been observed, suggesting that total phosphorus content effectively predicts available phosphorus content. Volcaniclastic rocks in wharves and high-elevation areas show low total phosphorus, while forest land with dense vegetation and neutral to alkaline soil supports higher total phosphorus due to enhanced bioavailability for plant absorption and utilization. Overall, the basalt soil of the volcanic island Weizhou Island demonstrates superior long-term fertility compared to the volcaniclastic soil. Despite its low total phosphorus content, it mainly exists in a highly bioavailable form, facilitating plant absorption, which is crucial for enhancing agricultural yields and ecosystem restoration on volcanic islands.
Collapse
Affiliation(s)
- Ran Bi
- Department of Earth Sciences, Guilin University of Technology, Guilin, 541004, China
| | - Wei Fu
- Department of Earth Sciences, Guilin University of Technology, Guilin, 541004, China.
- Collaborative Innovation Center for Exploration of Nonferrous Metal Deposits and Efficient Utilization of Resources by the Province and Ministry, Guilin University of Technology, Guilin, 541004, Guangxi, China.
| | - Xuanni Fu
- Department of Earth Sciences, Guilin University of Technology, Guilin, 541004, China
| |
Collapse
|
14
|
Khadka D, Pande KR, Tripathi BP, Bajracharya RM. Soil phosphorus fractionations as affected by cropping systems in the central mid-hills region of Nepal. PLoS One 2024; 19:e0307139. [PMID: 39316610 PMCID: PMC11421792 DOI: 10.1371/journal.pone.0307139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 07/02/2024] [Indexed: 09/26/2024] Open
Abstract
Soil plays a critical role as the primary reservoir of phosphorus (P) in terrestrial ecosystems. Sequential fractionation has been extensively utilized to gain insights into the characteristics and dynamics of soil P. However, there is a knowledge gap regarding the different P pools in Nepalese soils. Therefore, this study aimed to investigate the impact of cropping systems on soil P fractions in the central mid-hills of Nepal. The study focused on four cropping systems: vegetable, fruit, rice, and maize-based systems, which exhibited variations in nutrient management, topography, and cropping intensity. A total of 240 soil samples (60 samples from each cropping system) were collected from multiple sites within the central mid-hill region. Standard analytical methods were used to determine the general parameters of the soils, while the sequential fractionation method was employed to assess the organic and inorganic P pools. The results indicated that the effect of cropping systems on soil pH, calcium carbonate (CaCO3) content, and the proportion of sand, silt, and clay was not statistically significant in terms of general parameters. However, significant differences were observed among the different cropping systems in organic matter (OM), electrical conductivity (EC), cation exchange capacity (CEC), and available phosphorus. Similarly, in terms of inorganic phosphorus fractions, loosely bound P (LB-P), aluminum bound P (Al-P), iron bound P (Fe-P), and reductant soluble P (RS-P) were significantly affected, while calcium bound P (Ca-P) did not show a significant difference. Furthermore, in terms of organic phosphorus fractions, labile organic P (L-Po), fluvic acid organic P (FA-Po), and non-labile organic P (NL-Po) exhibited significant differences, whereas moderately labile organic P (ML-Po) and humic acid organic P (HA-Po) did not show a significant difference. Additionally, reductant soluble P showed a significant difference, while total P did not differ significantly. The vegetable-based system exhibited higher levels of the majority of P fractions, followed by the fruit-based, maize-based, and rice-based systems. These findings emphasize the importance of considering cropping systems and their response to different phosphorus pools, as this knowledge can contribute to the development of improved soil phosphorus management strategies and promote sustainable agricultural practices in the region.
Collapse
Affiliation(s)
- Dinesh Khadka
- Department of Soil Science and Agricultural Engineering, Agriculture and Forestry University, Rampur, Chitwan, Nepal
- National Soil Science Research Centre, Nepal Agricultural Research Council, Khumaltar, Lalitpur, Nepal
| | - Keshab Raj Pande
- Department of Soil Science and Agricultural Engineering, Agriculture and Forestry University, Rampur, Chitwan, Nepal
| | - Bhaba Prasad Tripathi
- Department of Soil Science and Agri-Engineering, Institute of Agriculture and Animal Science, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Roshan Man Bajracharya
- Department of Environmental Science and Engineering, Kathmandu University, Dhulikhel, Kavre, Nepal
| |
Collapse
|
15
|
Tang Q, Duckworth OW, Obenour DR, Kulesza SB, Slaton NA, Whitaker AH, Nelson NG. Relationships between soil test phosphorus and county-level agricultural surplus phosphorus. JOURNAL OF ENVIRONMENTAL QUALITY 2024. [PMID: 39252672 DOI: 10.1002/jeq2.20622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 07/26/2024] [Indexed: 09/11/2024]
Abstract
National nutrient inventories provide surplus phosphorus (P) estimates derived from county-scale mass balance calculations using P inputs from manure and fertilizer sales and P outputs from crop yield data. Although bioavailable P and surplus P are often correlated at the field scale, few studies have investigated the relationship between measured soil P concentrations of large-scale soil testing programs and inventory-based surplus P estimates. In this study, we assessed the relationship between national surplus P data from the NuGIS dataset and laboratory-measured soil test phosphorus (STP) at the county scale for Arkansas, North Carolina, and Oklahoma. For optimal periods of surplus P aggregation, surplus P was positively correlated with STP based on both Pearson (Arkansas: r = 0.65, North Carolina: r = 0.45, Oklahoma: r = 0.52) and Spearman correlation coefficients (Arkansas: ρ = 0.57, North Carolina: ρ = 0.28, and Oklahoma: ρ = 0.66). Based on Pearson correlations, the optimal surplus P aggregation periods were 10, 30, and 4 years for AR, NC, and OK, respectively. On average, STP was more strongly correlated with surplus P than with individual P inventory components (fertilizer, manure, and crop removal), except in North Carolina. In Arkansas and North Carolina, manure P was positively correlated with STP, and fertilizer P was negatively correlated with STP. Altogether, results suggest that surplus P moderately correlates with STP concentrations, but aggregation period and location-specific factors influence the strength of the relationship.
Collapse
Affiliation(s)
- Qicheng Tang
- Department of Biological and Agricultural Engineering, North Carolina State University, Raleigh, North Carolina, USA
- Plant Sciences Initiative, North Carolina State University, Raleigh, North Carolina, USA
| | - Owen W Duckworth
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Daniel R Obenour
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, North Carolina, USA
- Center for Geospatial Analytics, North Carolina State University, Raleigh, North Carolina, USA
| | - Stephanie B Kulesza
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Nathan A Slaton
- Crop, Soil, and Environmental Sciences Department, University of Arkansas Division of Agriculture, Fayetteville, Arkansas, USA
| | - Andrew H Whitaker
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
- Center for Undergraduate Research and Learning Lab, College of Health and Sciences, East Central University, Ada, Oklahoma, USA
| | - Natalie G Nelson
- Department of Biological and Agricultural Engineering, North Carolina State University, Raleigh, North Carolina, USA
- Plant Sciences Initiative, North Carolina State University, Raleigh, North Carolina, USA
- Center for Geospatial Analytics, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
16
|
Wang C, Yao S, Liao R, Šimůnek J. Humic acid enhances the co-transport of colloids and phosphorus in saturated porous media. CHEMOSPHERE 2024; 364:143300. [PMID: 39245219 DOI: 10.1016/j.chemosphere.2024.143300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/28/2024] [Accepted: 09/06/2024] [Indexed: 09/10/2024]
Abstract
Phosphorus (P) has been widely recognized as a substance that is difficult to transport due to its tendency to become easily fixed in the soil. However, many reports demonstrate that groundwater P pollution is rising in humus-rich areas. Research is urgently needed to confirm (or reject) the hypothesis that increased P pollution is related to humus, as there is currently limited quantitative research on this topic. In this study, we conducted a series of batch equilibrium adsorption-desorption experiments and column experiments to quantify the effects of montmorillonite colloids (MCs) and humic acids (HCs, the main components of humus) on the P transport behavior. The results indicate that P's adsorption and desorption behavior on MCs can be well simulated using the Langmuir and Temkin models (R2 > 0.91). Compared to the non-HC treatments, HCs significantly increased MCs' P adsorption and desorption capacity 5.18 and 7.21 times, respectively. Moreover, HCs facilitated the transport ability of the MC-P mixture through the saturated quartz sand column. In a 0.1 M NaCl solution, the MC-P mixture is nearly completely adsorbed on the surface of quartz sand, with a penetration rate of only 0.5%. In contrast, the HC-MC-P mixture can evidently penetrate further at a rate of 26.1%. The transport parameters fitted using HYDRUS-1D further indicated that the presence of humic acids significantly decreased the deposition coefficients of colloids, thereby enhancing the co-transport of colloids and P through the quartz sand porous medium. The potential mechanism of P pollution in humus-rich areas is likely enhanced by the formation of an HC-colloid-P mixture, which greatly increases the adsorption amount of P on colloids and enhances the electrostatic and spatial repulsion between colloids as well as between colloids and quartz sand. It reduces the aggregation and adsorption of colloids, ultimately transferring P into groundwater through colloid-facilitated co-transport. The findings of this study clarified the relationship between the transport of P, colloids, and HCs, which provides a theoretical basis for explaining the P pollution mechanism in humus-rich areas.
Collapse
Affiliation(s)
- Changxi Wang
- College of Land Science and Technology, China Agricultural University, Beijing, 100083, PR China
| | - Simin Yao
- College of Land Science and Technology, China Agricultural University, Beijing, 100083, PR China
| | - Renkuan Liao
- College of Land Science and Technology, China Agricultural University, Beijing, 100083, PR China.
| | - Jirka Šimůnek
- Department of Environmental Sciences, University of California Riverside, Riverside, CA, 92521, United States
| |
Collapse
|
17
|
Vitorino LC, da Silva EJ, Oliveira MS, Silva IDO, Santos LDS, Mendonça MAC, Oliveira TCS, Bessa LA. Effect of a Bacillus velezensis and Lysinibacillus fusiformis-based biofertilizer on phosphorus acquisition and grain yield of soybean. FRONTIERS IN PLANT SCIENCE 2024; 15:1433828. [PMID: 39246810 PMCID: PMC11378753 DOI: 10.3389/fpls.2024.1433828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/25/2024] [Indexed: 09/10/2024]
Abstract
Introduction Phosphate-solubilizing bacteria that function through acidification (organic acid synthesis) or mineralization (production of enzymes such as phytase and phosphatases) have been explored as a biotechnological alternative to enhance plant access to phosphorus (P) retained in organic and inorganic forms in agricultural soils. This study tested the hypothesis that applying a biofertilizer composed of a recognized phosphate-solubilizing bacterium (Bacillus velezensis - endophytic strain BVPS01) and an underexplored plant growth-promoting bacterium (Lysinibacillus fusiformis - endophytic strain BVPS02) would improve the growth and grain yield of Glycine max L. plants. Methods Initial in vitro tests assessed the functional traits of these bacteria, and a mix of strains BVPS01 and BVPS02 was produced and tested under field conditions to evaluate its agronomic efficiency. Results The results confirmed the hypothesis that the tested biofertilizer enhances the agronomic performance of G. max plants in the field. The B. velezensis strain (BVPS01) was found to be more effective than the L. fusiformis strain (BVPS02) in solubilizing phosphates via the phosphatase enzyme production pathway, indicated by the expression of the phoC and phoD genes. In contrast, L. fusiformis was more effective in solubilizing phosphates through organic acid and phytase-related pathways, in addition to synthesizing indole-3-acetic acid and increasing the mitotic index in the root meristem of G. max plants. These strains exhibited biological compatibility, and the formulated product based on these rhizobacteria enhanced root development and increased the number of nodules and flowers, positively affecting 1000-grain weight, grain yield, and grain P content. Discussion Thus, the tested biofertilizer demonstrated potential to improve root growth and increase both the yield and quality of soybean crops, making it a sustainable and low-cost strategy.
Collapse
Affiliation(s)
- Luciana Cristina Vitorino
- Laboratory of Agricultural Microbiology, Federal Institute Goiano, Rio Verde, GO, Brazil
- Simple Verde Bio-Industry, Simple Agro Corporation, Rio Verde, GO, Brazil
| | | | | | | | | | | | | | - Layara Alexandre Bessa
- Simple Verde Bio-Industry, Simple Agro Corporation, Rio Verde, GO, Brazil
- Laboratory of Metabolism and Genetics of Biodiversity, Federal Institute Goiano, Rio Verde, GO, Brazil
| |
Collapse
|
18
|
Chen Q, Li W, Chen A, Min J, Hu W, Wang C, Fu B, Zhang D. Shallow groundwater table fluctuations promote the accumulation and loss of phosphorus from surface soil to deeper soil in croplands around plateau lakes in Southwest China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121744. [PMID: 38971072 DOI: 10.1016/j.jenvman.2024.121744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
The continuous excessive application of phosphorus (P) fertilizers in intensive agricultural production leads to a large accumulation of P in surface soils, increasing the risk of soil P loss by runoff and leaching. However, there are few studies on the accumulation and loss of P from surface soil to deep soil profiles driven by shallow groundwater table (SGT) fluctuations. This study used the intensive cropland around 7 plateau lakes in Yunnan Province as an example and conducted in situ monitoring of P storage in the soil profile and SGT during the rainy season (RS) and dry season (DS) as well as simulation experiments on soil P loss. The aim was to study the spatiotemporal variation in P accumulation in the soil profile of cropland driven by SGT fluctuations in the RS and DS and estimate the P loss in the soil profile driven by SGT fluctuations. The results showed that fluctuations in the SGT promoted P accumulation from the surface soil to deeper soil. The proportions of P stored in various forms in the 30-60 cm and 60-100 cm soil layers in the RS were greater than those in the DS, while the average proportion in the 0-30 cm soil layer in the DS was as high as 48%. Compared with those in the DS, the maximum decreases in the proportion of P stored as TP and Olsen-P in the 0-100 cm soil layer in the RS were 16% and 58%, respectively, due to the rise in the SGT (SGT <30 cm), while the soil TP storage decreased by only 1% when the SGT was maintained at 60-100 cm. The critical thresholds for soil Olsen-P and TP gradually decreased with increasing soil depth, and the risk of P loss in deeper soil increased. The loss of soil P was increased by fluctuations in the SGT. Based on the cropland area around the 7 plateau lakes, P storage, and SGT fluctuations, the average loss intensity and loss amount of TP in the 0-100 cm soil layer around the 7 plateau lakes were estimated to be 25 kg/ha and 56 t, respectively. Therefore, reducing exogenous P inputs, improving soil endogenous P utilization efficiency and maintaining deep soil P retention are the basic strategies for preventing and controlling P accumulation and loss in deep soil caused by SGT fluctuations.
Collapse
Affiliation(s)
- Qingfei Chen
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China; Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650201, China
| | - Wenchao Li
- College of Resources and Environmental Sciences, State Key Laboratory of North China Crop Improvement and Regulation, Hebei Province Key Laboratory for Farmland Eco-Environment, Hebei Agricultural University, Baoding, 071000, China
| | - Anqiang Chen
- Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650201, China.
| | - Jinheng Min
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Wanli Hu
- Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650201, China
| | - Chi Wang
- Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650201, China
| | - Bin Fu
- Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650201, China
| | - Dan Zhang
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
19
|
Qian S, Xu Y, Zhang Y, Wang X, Niu X, Wang P. Effect of AMF Inoculation on Reducing Excessive Fertilizer Use. Microorganisms 2024; 12:1550. [PMID: 39203391 PMCID: PMC11356082 DOI: 10.3390/microorganisms12081550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/15/2024] [Accepted: 07/28/2024] [Indexed: 09/03/2024] Open
Abstract
Excessive use of chemical fertilizer is a global concern. Arbuscular mycorrhizal fungi (AMF) are considered a potential solution due to their symbiotic association with crops. This study assessed AMF's effects on maize yield, fertilizer efficiency, plant traits, and soil nutrients under different reduced-fertilizer regimes in medium-low fertility fields. We found that phosphorus supplementation after a 30% fertilizer reduction enhanced AMF's positive impact on grain yield, increasing it by 3.47% with pure chemical fertilizers and 6.65% with mixed fertilizers. The AMF inoculation did not significantly affect the nitrogen and phosphorus fertilizer use efficiency, but significantly increased root colonization and soil mycelium density. Mixed fertilizer treatments with phosphorus supplementation after fertilizer reduction showed greater mycorrhizal effects on plant traits and soil nutrient contents compared to chemical fertilizer treatments. This study highlights that AMF inoculation, closely linked to fertilization regimes, can effectively reduce fertilizer use while sustaining or enhancing maize yields.
Collapse
Affiliation(s)
- Siru Qian
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130024, China; (S.Q.); (Y.X.); (X.W.); (X.N.)
| | - Ying Xu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130024, China; (S.Q.); (Y.X.); (X.W.); (X.N.)
| | - Yifei Zhang
- Jilin Provincial Academy of Forestry Sciences, Changchun 130033, China;
| | - Xue Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130024, China; (S.Q.); (Y.X.); (X.W.); (X.N.)
| | - Ximei Niu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130024, China; (S.Q.); (Y.X.); (X.W.); (X.N.)
| | - Ping Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130024, China; (S.Q.); (Y.X.); (X.W.); (X.N.)
| |
Collapse
|
20
|
Leite HMF, Calonego JC, de Moraes MF, Mota LHDSDO, da Silva GF, do Nascimento CAC. How a Long-Term Cover Crop Cultivation Impacts Soil Phosphorus Availability in a No-Tillage System? PLANTS (BASEL, SWITZERLAND) 2024; 13:2057. [PMID: 39124176 PMCID: PMC11313840 DOI: 10.3390/plants13152057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024]
Abstract
The growth of cover crops can contribute to the increase in phosphorus content at depth by root decomposition. The aim of this work was to verify the effect of cover crops on soil phosphorus availability and use by successive plants, and the accumulation of soil P in a no-tillage system conducted for 14 years. This research was carried out during the 2016/2017 and 2017/2018 crop seasons, whose treatments have been installed and maintained since 2003. The experimental design was a randomized block design, and the plots consisted of spring crops: pearl millet, forage sorghum, sunn hemp, and additionally, a fallow/chiseling area. The evaluation of available P was determined by P fractionation. In general, in the two years of evaluation, the accumulation of P in the shoot dry matter was higher in sunn hemp growth, on average 25% higher than pearl millet in 2016 and 40% higher than sorghum in 2017. The highest contents of labile inorganic P were in the sorghum-soybean and fallow/chiseling-soybean successions, with values higher than 50 mg kg-1 of P in the 0-0.1 m soil layer. However, in the other layers analyzed, the cover crops obtained higher availability of labile inorganic P. The systems using cover crops recovered 100% of the P fertilized in soybean.
Collapse
Affiliation(s)
- Hugo Mota Ferreira Leite
- Multidisciplinary Center, Federal University of Acre (UFAC), Forest Campus, Cruzeiro do Sul 69980-000, AC, Brazil;
| | - Juliano Carlos Calonego
- Department of Crop Science, School of Agriculture, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (J.C.C.); (M.F.d.M.)
| | - Matheus Froés de Moraes
- Department of Crop Science, School of Agriculture, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (J.C.C.); (M.F.d.M.)
| | | | - Gustavo Ferreira da Silva
- Department of Crop Science, School of Agriculture, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (J.C.C.); (M.F.d.M.)
| | - Carlos Antonio Costa do Nascimento
- Department of Soil Science, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba 13418-260, SP, Brazil;
| |
Collapse
|
21
|
Tang Y, Zhou Y, Wang P, Ge L, Lou W, Yan X, Li S, Wang X, Hu C, Zhao X. Selenium-Mediated Shaping of Citrus Rhizobiome for Promotion in Root Growth and Soil Phosphorus Activation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39018060 DOI: 10.1021/acs.jafc.4c02761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Selenium (Se) has been widely reported to affect plant growth, nutrient cycling, and the rhizobiome. However, how Se shapes the rhizobiome and interacts with plants remains largely elusive. Pot and hydroponic experiments were employed to elucidate the regulatory mechanism of Se in the citrus rhizobiome. Compared to the control, soil Se application significantly increased the root biomass (34.7%) and markedly reduced rhizosphere HCl-P, H2O-P, NaHCO3-IP, and residual-P of citrus, which were related to the variation of citrus rhizobiome. Se primarily enriched Proteobacteria and Actinobacteria as well as the phosphorus (P) functional genes phod and pqqc. Further study revealed that Se altered the metabolite profile of root exudate, particularly enhancing the abundance of l-cyclopentylglycine, cycloleucine, l-proline, l-pipecolic acid, and inositol, which played a key role in reshaping the citrus rhizobiome. These metabolites could serve as both nutrient sources and signaling molecules, thus supporting the growth or chemotaxis of the functional microbes. These bacterial taxa have the potential to solubilize P or stimulate plant growth. These findings provide a novel mechanistic understanding of the intriguing interactions between Se, root exudate, and rhizosphere microbiomes, and demonstrate the potential for utilizing Se to regulate rhizobiome function and enhance soil P utilization in citrus cultivation.
Collapse
Affiliation(s)
- Yanni Tang
- College of Resources and Environment/National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingjie Zhou
- College of Resources and Environment/National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Pengwei Wang
- College of Resources and Environment/National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Liqiang Ge
- National Research Center for Geoanalysis/Key Laboratory of Eco-geochemistry, Ministry of Natural Resources, Beijing 100037, China
| | - Wei Lou
- Ganzhou Citrus Research Institute, Gannan Academy of Sciences, Ganzhou 341000, China
| | - Xiang Yan
- Ganzhou Citrus Research Institute, Gannan Academy of Sciences, Ganzhou 341000, China
| | - Shiqian Li
- Fujian Universities and Colleges Engineering Research Center of Modern Facility Agriculture, Fuqing 350300, China
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Chengxiao Hu
- College of Resources and Environment/National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaohu Zhao
- College of Resources and Environment/National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
22
|
Ernst D, Kolenčík M, Šebesta M, Žitniak Čurná V, Qian Y, Straka V, Ducsay L, Kratošová G, Ďurišová Ľ, Gažo J, Baláži J. Enhancing Maize Yield and Quality with Metal-Based Nanoparticles without Translocation Risks: A Brief Field Study. PLANTS (BASEL, SWITZERLAND) 2024; 13:1936. [PMID: 39065463 PMCID: PMC11280334 DOI: 10.3390/plants13141936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
Our previous studies have shown physiological and yield intensification of selected crops with the application of nanoparticles (NPs). However, the impact on the quantitative, qualitative, and yield parameters of maize (Zea mays L.) in field conditions remains highly debated. This study aimed to evaluate the effects of zinc oxide (ZnO-NPs), gold NPs anchored to meso-biosilica (Au-NP-bioSi), and titanium dioxide (TiO2-NPs) as biological stimulants under field conditions during the vegetation season of 2021 in the Central European region. The study assessed the effects on the number of plants, yield, yield components, and nutritional quality, including mineral nutrients, starch, and crude protein levels. The potential translocation of these chemically-physically stable NPs, which could pose a hazard, was also investigated. The results indicate that Au-NP-bioSi and ZnO-NPs-treatments were the most beneficial for yield and yield components at a statistically significant level. Mineral nutrient outcomes were varied, with the NP-free variant performing the best for phosphorus-levels, while Au-NP-bioSi and ZnO-NPs were optimal for crude protein. Starch content was comparable across the TiO2-NPs, Au-NP-bioSi, and control variants. Importantly, we observed no hazardous translocation of NPs or negative impacts on maize grain quality. This supports the hypothesis that NPs can serve as an effective tool for precise and sustainable agriculture.
Collapse
Affiliation(s)
- Dávid Ernst
- Institute of Agronomic Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (D.E.); (V.Ž.Č.); (V.S.); (L.D.)
| | - Marek Kolenčík
- Institute of Agronomic Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (D.E.); (V.Ž.Č.); (V.S.); (L.D.)
| | - Martin Šebesta
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská Dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia;
| | - Veronika Žitniak Čurná
- Institute of Agronomic Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (D.E.); (V.Ž.Č.); (V.S.); (L.D.)
| | - Yu Qian
- School of Ecology and Environmental Science, Yunnan University, 2 Cuihubei Lu, Kunming 650091, China;
| | - Viktor Straka
- Institute of Agronomic Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (D.E.); (V.Ž.Č.); (V.S.); (L.D.)
| | - Ladislav Ducsay
- Institute of Agronomic Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (D.E.); (V.Ž.Č.); (V.S.); (L.D.)
| | - Gabriela Kratošová
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB Technical University of Ostrava, 17. Listopadu 15/2172, 708 00 Ostrava, Czech Republic;
| | - Ľuba Ďurišová
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (Ľ.Ď.); (J.G.)
| | - Ján Gažo
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (Ľ.Ď.); (J.G.)
| | - Juraj Baláži
- Institute of Design and Engineering Technologies, Faculty of Engineering, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
| |
Collapse
|
23
|
Song M, Lin X, Wei X, Zeng Q, Mu C, Zhou X. Trichoderma viride improves phosphorus uptake and the growth of Chloris virgata under phosphorus-deficient conditions. Front Microbiol 2024; 15:1425034. [PMID: 39027109 PMCID: PMC11255847 DOI: 10.3389/fmicb.2024.1425034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
Introduction Phosphorus (P) readily forms insoluble complexes in soil, thereby inhibiting the absorption and utilization of this essential nutrient by plants. Phosphorus deficiency can significantly impede the growth of forage grass. While Trichoderma viride (T. viride) has been recognized for promoting the assimilation of otherwise unobtainable nutrients, its impact on P uptake remains understudied. Consequently, it is imperative to gain a more comprehensive insight into the role of T. viride in facilitating the uptake and utilization of insoluble P in forage grass. Methods This research explored the influence of T. viride inoculation on P absorption and the growth of Chloris virgata (C. virgata) across various P sources. We treated plants with control P (P), tricalcium phosphate (TCP), calcium phytate (PHY), and low P (LP), with and without T. viride inoculation (P+T, TCP+T, PHY+T, LP+T). We analyzed photosynthesis parameters, growth indices, pigment accumulation, P content, leaf acid phosphatase activity. Results Results demonstrated that T. viride inoculation alleviated inhibition of photosynthesis, reduced leaf acid phosphatase activity, and enhanced growth of C. virgata in the presence of insoluble P sources. Additionally, T. viride inoculation enabled the plants to extract more available P from insoluble P sources, as evidenced by a substantial increase in P content: shoot P content surged by 58.23 to 59.08%, and root P content rose by 55.13 to 55.2%. Biomass P-use efficiency (PUE) declined by 38% upon inoculation with T. viride compared to the non-inoculated insoluble P sources, paralleled by a reduction in photosynthetic P-use efficiency (PPUE) by 26 to 29%. Inoculation under insoluble P sources further triggered a lower allocation to root biomass (25 to 26%) and a higher investment in shoot biomass (74 to 75%). However, its application under low P condition curtailed the growth of C. virgata. Discussion Our results suggest that T. viride inoculation represents an innovative approach for plants to acquire available P from insoluble P sources, thereby promoting growth amid environmental P limitations. This insight is crucial for comprehending the synergy among forage grass, P, and T. viride.
Collapse
Affiliation(s)
- Mingxia Song
- Key Laboratory of Vegetation Ecology of the Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
- School of Life Sciences, Tonghua Normal University, Tonghua, China
- Key Laboratory for Plant Resources Science and Green Production, Jilin Normal University, Siping, China
| | - Xiaoru Lin
- Key Laboratory for Plant Resources Science and Green Production, Jilin Normal University, Siping, China
| | - Xiaowei Wei
- Key Laboratory for Plant Resources Science and Green Production, Jilin Normal University, Siping, China
| | - Qingpan Zeng
- Key Laboratory for Plant Resources Science and Green Production, Jilin Normal University, Siping, China
| | - Chunsheng Mu
- Key Laboratory of Vegetation Ecology of the Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Xiaofu Zhou
- Key Laboratory for Plant Resources Science and Green Production, Jilin Normal University, Siping, China
| |
Collapse
|
24
|
Shahid M, Altaf M, Danish M. The halotolerant exopolysaccharide-producing Rhizobium azibense increases the salt tolerance mechanism in Phaseolus vulgaris (L.) by improving growth, ion homeostasis, and antioxidant defensive enzymes. CHEMOSPHERE 2024; 360:142431. [PMID: 38797209 DOI: 10.1016/j.chemosphere.2024.142431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Globally, agricultural productivity is facing a serious problem due to soil salinity which often causes osmotic, ionic, and redox imbalances in plants. Applying halotolerant rhizobacterial inoculants having multifarious growth-regulating traits is thought to be an effective and advantageous approach to overcome salinity stress. Here, salt-tolerant (tolerating 300 mM NaCl), exopolysaccharide (EPS) producing Rhizobium azibense SR-26 (accession no. MG063740) was assessed for salt alleviation potential by inoculating Phaseolus vulgaris (L.) plants raised under varying NaCl regimes. The metabolically active cells of strain SR-26 produced a significant amount of phytohormones (indole-3-acetic acid, gibberellic acid, and cytokinin), ACC deaminase, ammonia, and siderophore under salt stress. Increasing NaCl concentration variably affected the EPS produced by SR-26. The P-solubilization activity of the SR-26 strain was positively impacted by NaCl, as demonstrated by OD shift in NaCl-treated/untreated NBRIP medium. The detrimental effect of NaCl on plants was lowered by inoculation of halotolerant strain SR-26. Following soil inoculation, R. azibense significantly (p ≤ 0.05) enhanced seed germination (10%), root (19%) shoot (23%) biomass, leaf area (18%), total chlorophyll (21%), and carotenoid content (32%) of P. vulgaris raised in soil added with 40 mM NaCl concentration. Furthermore, strain SR-26 modulated the relative leaf water content (RLWC), proline, total soluble protein (TSP), and sugar (TSS) of salt-exposed plants. Moreover, R. azibense inoculation lowered the concentrations of oxidative stress biomarkers; MDA (29%), H2O2 content (24%), electrolyte leakage (31%), membrane stability (36%) and Na+ ion uptake (28%) when applied to 40 mM NaCl-treated plants. Further, R. azibense increases the salt tolerance mechanism of P. vulgaris by upregulating the antioxidant defensive responses. Summarily, it is reasonable to propose that EPS-synthesizing halotolerant R. azibense SR-26 should be applied as the most cost-effective option for increasing the yields of legume crops specifically P. vulgaris in salinity-challenged soil systems.
Collapse
Affiliation(s)
- Mohammad Shahid
- Department of Agricultural Microbiology, Faculty of Agriculture Science, Aligarh Muslim University, Aligarh, U.P, 202002, India.
| | - Mohammad Altaf
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Mohammad Danish
- Botany Section, School of Sciences, Maulana Azad National University, Hyderabad, India
| |
Collapse
|
25
|
Zhao W, Xie X, He T, Zhang J, Liu J. Study on vertical variation characteristics of soil phosphorus adsorption and desorption in black soil region of Northeast China. PLoS One 2024; 19:e0306145. [PMID: 38913687 PMCID: PMC11195998 DOI: 10.1371/journal.pone.0306145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/11/2024] [Indexed: 06/26/2024] Open
Abstract
The adsorption and desorption of phosphorus (P) in soil constitute a crucial internal cycle that is closely associated with soil fertility, exerting direct influence on the quantity, form, and availability of P within the soil. The vertical spatial variation characteristics of soil adsorption and desorption were investigated for the 0-100 cm soil layer in the northeast black soil region in this study. The maximum adsorption capacity (Qmax) and maximum adsorption buffer capacity (MBC) of black soil in the study area ranged from 313.8 to 411.9 mg kg-1 and from 3.1 to 28.8 L kg-1, respectively, within the soil layer of 0-100 cm depth, exhibiting an increasing trend with greater soil depth. The degree of P adsorption saturation (DPS) exhibited a contrasting trend with the variations in Qmax and MBC, ranging from 3.8% to 21.6%. The maximum desorption capacity (Dmax) and desorption rate (Dr) of soil P ranged from 112.8 to 215.7 mg kg-1 and 32.1% to 52.5%, respectively, while the readily desorbable P (RDP) in soil was within the range of 1.02 to 3.35 mg kg-1. Both Dmax, Dr, and RDP exhibited a decreasing trend with increasing soil depth before showing an upward trend. These research findings not only provide essential background data for the systematic investigation of soil P in the black soil region but also serve as a valuable reference for assessing soil quality in this area.
Collapse
Affiliation(s)
- Wenzhi Zhao
- Key Laboratory of Coupling Process and Effect of Natural Resources Elements, Beijing, P. R. China
- Northeast Geological S&T Innovation Center of China Geological Survey, China Geological Survey, Shenyang, P. R. China
- Center for Harbin Natural Resources Comprehensive Survey, China Geological Survey, Harbin, P. R. China
| | - Xu Xie
- Center for Harbin Natural Resources Comprehensive Survey, China Geological Survey, Harbin, P. R. China
| | - Tian He
- Center for Harbin Natural Resources Comprehensive Survey, China Geological Survey, Harbin, P. R. China
| | - Jintao Zhang
- Center for Harbin Natural Resources Comprehensive Survey, China Geological Survey, Harbin, P. R. China
| | - Jiufen Liu
- Key Laboratory of Coupling Process and Effect of Natural Resources Elements, Beijing, P. R. China
| |
Collapse
|
26
|
Forján R, Arias-Estévez M, Gallego JLR, Santos E, Arenas-Lago D. Biochar-nanoparticle combinations enhance the biogeochemical recovery of a post-mining soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172451. [PMID: 38641107 DOI: 10.1016/j.scitotenv.2024.172451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024]
Abstract
Here we addressed the capacity of distinct amendments to reduce arsenic (As), copper (Cu), selenium (Se) and zinc (Zn) associated risks and improve the biogeochemical functions of post-mining soil. To this, we examined nanoparticles (NPs) and/or biochar effects, combined with phytostabilization using Lolium perenne L. Soil samples were taken in a former metal mine surroundings. Ryegrass seeds were sown in pots containing different combinations of NPs (zero-valent iron (nZVI) or hydroxyapatite (nH)) (0 and 2 %), and biochar (0, 3 and 5 %). Plants were grown for 45 days and the plant yield and element accumulation were evaluated, also soil properties (element distribution within the soil fractions, fertility, and enzymatic activities associated with microbiota functionality and nutrient cycling) were determined. Results showed biochar-treated soil had a higher pH, and much higher organic carbon (C) content than control soil and NP-treated soils, and it revealed increased labile C, total N, and available P concentrations. Soil treatment with NP-biochar combinations increased exchangeable non-acid cation concentrations and reduced exchangeable Na%, improved soil fertility, reduced sodicity risk, and increased ryegrass biomass. Enzymatic activities, particularly dehydrogenase and glucosidase, increased upon the addition of biochar, and this effect was fostered by NPs. Most treatments led to a significant reduction of metal(loid)s contents in biomass, mitigating contamination risks. The two different NPs had similar effects in many parameters, nH outperformed nZVI in terms of increased nutrients, C content, and enzymatic activities. On the basis of our results, combined biochar-NP amendments use, specially nH, emerges as a potential post-mining soil restoration strategy.
Collapse
Affiliation(s)
- Rubén Forján
- INDUROT and Environmental Biogeochemistry and Raw Materials Group, University of Oviedo, Mieres, Spain; Department of Organisms and Systems Biology, University of Oviedo, Mieres, Asturias, Spain.
| | - Manuel Arias-Estévez
- Department of Plant Biology and -Soil Science, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias, Universidade de Vigo, 32004 Ourense, Spain; Instituto de Agroecoloxía e Alimentación (IAA), Campus Auga, Universidade de Vigo, 32004 Ourense, Spain
| | - José Luis R Gallego
- INDUROT and Environmental Biogeochemistry and Raw Materials Group, University of Oviedo, Mieres, Spain
| | - Erika Santos
- Universidade de Lisboa, Instituto Superior de Agronomia, Associate Laboratory TERRA, LEAF-Linking Landscape, Environment, Agriculture and Food Research Centre, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - Daniel Arenas-Lago
- Department of Plant Biology and -Soil Science, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias, Universidade de Vigo, 32004 Ourense, Spain; Instituto de Agroecoloxía e Alimentación (IAA), Campus Auga, Universidade de Vigo, 32004 Ourense, Spain
| |
Collapse
|
27
|
Hu M, Sardans J, Sun D, Yan R, Wu H, Ni R, Peñuelas J. Microbial diversity and keystone species drive soil nutrient cycling and multifunctionality following mangrove restoration. ENVIRONMENTAL RESEARCH 2024; 251:118715. [PMID: 38490631 DOI: 10.1016/j.envres.2024.118715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/28/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Vegetation restoration exerts transformative effects on nutrient cycling, microbial communities, and ecosystem functions. While extensive research has been conducted on the significance of mangroves and their restoration efforts, the effectiveness of mangrove restoration in enhancing soil multifunctionality in degraded coastal wetlands remains unclear. Herein, we carried out a field experiment to explore the impacts of mangrove restoration and its chronosequence on soil microbial communities, keystone species, and soil multifunctionality, using unrestored aquaculture ponds as controls. The results revealed that mangrove restoration enhanced soil multifunctionality, with these positive effects progressively amplifying over the restoration chronosequence. Furthermore, mangrove restoration led to a substantial increase in microbial diversity and a reshaping of microbial community composition, increasing the relative abundance of dominant phyla such as Nitrospirae, Deferribacteres, and Fusobacteria. Soil multifunctionality exhibited positive correlations with microbial diversity, suggesting a link between variations in microbial diversity and soil multifunctionality. Metagenomic screening demonstrated that mangrove restoration resulted in a simultaneous increase in the abundance of nitrogen (N) related genes, such as N fixation (nirD/H/K), nitrification (pmoA-amoA/B/C), and denitrification (nirK, norB/C, narG/H, napA/B), as well as phosphorus (P)-related genes, including organic P mineralization (phnX/W, phoA/D/G, phnJ/N/P), inorganic P solubilization (gcd, ppx-gppA), and transporters (phnC/D/E, pstA/B/C/S)). The relationship between the abundance of keystone species (such as phnC/D/E) and restoration-induced changes in soil multifunctionality indicates that mangrove restoration enhances soil multifunctionality through an increase in the abundance of keystone species associated with N and P cycles. Additionally, it was observed that changes in microbial community and multifunctionality were largely associated with shifts in soil salinity. These findings demonstrate that mangrove restoration positively influences soil multifunctionality and shapes nutrient dynamics, microbial communities, and overall ecosystem resilience. As global efforts continue to focus on ecosystem restoration, understanding the complexity of mangrove-soil interactions is critical for effective nutrient management and mangrove conservation.
Collapse
Affiliation(s)
- Minjie Hu
- Key Laboratory of Humid Sub-tropical Eco-geographical Processes of Ministry of Education, Fujian Normal University, Fuzhou, 350007, China; School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China.
| | - Jordi Sardans
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, 08193, Barcelona, Catalonia, Spain; CREAF, Cerdanyola del Vallès, 08193, Barcelona, Catalonia, Spain
| | - Dongyao Sun
- School of Geography Science and Geomatics Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Ruibing Yan
- School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Hui Wu
- School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Ranxu Ni
- School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, 08193, Barcelona, Catalonia, Spain; CREAF, Cerdanyola del Vallès, 08193, Barcelona, Catalonia, Spain
| |
Collapse
|
28
|
Negi R, Sharma B, Jan T, Kaur T, Chowdhury S, Kapoor M, Singh S, Kumar A, Rai AK, Rustagi S, Shreaz S, Kour D, Ahmed N, Kumar K, Yadav AN. Microbial Consortia: Promising Tool as Plant Bioinoculants for Agricultural Sustainability. Curr Microbiol 2024; 81:222. [PMID: 38874817 DOI: 10.1007/s00284-024-03755-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/31/2024] [Indexed: 06/15/2024]
Abstract
In the present scenario, growing population demands more food, resulting in the need for sustainable agriculture. Numerous approaches are explored in response to dangers and obstacles to sustainable agriculture. A viable approach is to be exploiting microbial consortium, which generate diverse biostimulants with growth-promoting characteristics for plants. These bioinoculants play an indispensable role in optimizing nutrient uptake efficiency mitigating environmental stress. Plant productivity is mostly determined by the microbial associations that exist at the rhizospheric region of plants. The engineered consortium with multifunctional attributes can be effectively employed to improve crop growth efficacy. A number of approaches have been employed to identify the efficient consortia for plant growth and enhanced crop productivity. Various plant growth-promoting (PGP) microbes with host growth-supporting characteristics were investigated to see if they might work cohesively and provide a cumulative effect for improved growth and crop yield. The effective microbial consortia should be assessed using compatibility tests, pot experimentation techniques, generation time, a novel and quick plant bioassay, and sensitivity to external stimuli (temperature, pH). The mixture of two or more microbial strains found in the root microbiome stimulates plant growth and development. The present review deals with mechanism, formulation, inoculation process, commercialization, and applications of microbial consortia as plant bioinoculants for agricultural sustainability.
Collapse
Affiliation(s)
- Rajeshwari Negi
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, 173101, Himachal Pradesh, India
| | - Babita Sharma
- Department of Microbiology, Akal College of Basic Science, Eternal University, Baru Sahib, Sirmaur, 173101, Himachal Pradesh, India
| | - Tawseefa Jan
- Department of Food Technology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, 173101, Himachal Pradesh, India
| | - Tanvir Kaur
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, 173101, Himachal Pradesh, India
| | - Sohini Chowdhury
- Chitkara Center for Research and Development, Chitkara University, Baddi, Himachal Pradesh, India
| | - Monit Kapoor
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab, India
| | - Sangram Singh
- Department of Biochemistry, Dr. Ram Manohar Lohia Avadh University, Faizabad, Uttar Pradesh, India
| | - Anu Kumar
- University Institute of Biotechnology, Chandigarh University, Mohali, 140413, Punjab, India
| | - Ashutosh Kumar Rai
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Sarvesh Rustagi
- Department of Food Technology, School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Sheikh Shreaz
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, PO Box 24885, 13109, Safat, Kuwait
| | - Divjot Kour
- Department of Microbiology, Akal College of Basic Science, Eternal University, Baru Sahib, Sirmaur, 173101, Himachal Pradesh, India
| | - Naseer Ahmed
- Department of Food Technology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, 173101, Himachal Pradesh, India
| | - Krishan Kumar
- Department of Food Technology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, 173101, Himachal Pradesh, India
| | - Ajar Nath Yadav
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, 173101, Himachal Pradesh, India.
| |
Collapse
|
29
|
Pathania S, Dhiman SR, Kashyap B, Kumar A, Kaushal R, Gupta RK, Saleh IA, Okla MK, Elshikh MS. Influence of planting dates and fertilizer modules on yield of chrysanthemum and soil health. BMC PLANT BIOLOGY 2024; 24:510. [PMID: 38844838 PMCID: PMC11157749 DOI: 10.1186/s12870-024-05241-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND Optimum planting date and appropriate fertilizer module are essential facets of chrysanthemum cultivation, to enhance quality yield, and improve soil health. A field-based study was undertaken over multiple growing seasons in 2022 and 2023, where six different planting dates, viz., P1:June 15, P2:June 30, P3:July 15, P4:July 30, P5:August 15 and P6:August 30 and two fertilizer modules, FM1:Jeevamrit @ 30 ml plant-1 and FM2:NPK @ 30 g m-2 were systematically examined using a Randomized Block Design (factorial), replicated thrice. RESULTS P6 planting resulted in early bud formation (44.03 days) and harvesting stage (90.78 days). Maximum plant height (79.44 cm), plant spread (34.04 cm), cut stem length (68.40 cm), flower diameter (7.83 cm), stem strength (19.38˚), vase life (14.90 days), flowering duration (24.08 days), available soil N (314 kg ha-1), available P (37 kg ha-1), available K (347 kg ha-1), bacterial count (124.87 × 107 cfu g-1 soil), actinomycetes count (60.72 × 102 cfu g-1 soil), fungal count (30.95 × 102 cfu g-1 soil), microbial biomass (48.79 µg g-1 soil), dehydrogenase enzyme (3.64 mg TPF h-1 g-1 soil) and phosphatase enzyme (23.79 mol PNP h-1 g-1 soil) was recorded in P1 planting. Among the fertilization module, minimum days to bud formation (74.94 days) and days to reach the harvesting stage (120.95 days) were recorded with the application of NPK @30 g m-2. However, maximum plant height (60.62 cm), plant spread (23.10 cm), number of cut stems m-2 (43.88), cut stem length (51.34 cm), flower diameter (6.92 cm), stem strength (21.24˚), flowering duration (21.75 days), available soil N (317 kg ha-1), available P (37 kg ha-1) and available K (349 kg ha-1) were also recorded with the application of NPK @300 kg ha-1. Maximum vase life (13.87 days), OC (1.13%), bacterial count (131.65 × 107 cfu g-1 soil), actinomycetes count (60.89 × 102 cfu g-1 soil), fungal count (31.11 × 102 cfu g-1 soil), microbial biomass (51.27 µg g-1 soil), dehydrogenase enzyme (3.77 mg TPF h-1 g-1 soil) and phosphatase enzyme (21.72 mol PNP h-1 g-1 soil) were observed with the application of Jeevamrit @ 30 ml plant-1. CONCLUSION Early planting (P1) and inorganic fertilization (NPK @ 30 g m-2) resulted in improved yield and soil macronutrient content. The soil microbial population and enzymatic activity were improved with the jeevamrit application. This approach highlights the potential for improved yield and soil health in chrysanthemum cultivation, promoting a more eco-friendly and economically viable agricultural model.
Collapse
Affiliation(s)
- Sabhya Pathania
- Department of Floriculture and Landscape Architecture, Dr YS Parmar University of Horticulture and Forestry, Nauni, Solan, 173230, India
| | - Sita Ram Dhiman
- Department of Floriculture and Landscape Architecture, Dr YS Parmar University of Horticulture and Forestry, Nauni, Solan, 173230, India
| | - Bharati Kashyap
- Department of Floriculture and Landscape Architecture, Dr YS Parmar University of Horticulture and Forestry, Nauni, Solan, 173230, India
| | - Anshul Kumar
- Department of Floriculture and Landscape Architecture, Dr YS Parmar University of Horticulture and Forestry, Nauni, Solan, 173230, India.
| | - Rajesh Kaushal
- Department of Soil Science and Water Management, Dr YS Parmar University of Horticulture and Forestry, Nauni, Solan, 173230, India
| | - Rakesh Kumar Gupta
- Department of Basic Sciences, Dr YS Parmar University of Horticulture and Forestry, Nauni, Solan, 173230, India
| | | | - Mohammad K Okla
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mohamed Soliman Elshikh
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
30
|
Wei L, Zhou Y, Yin G, Cui J, Yin J, Liu R, Chen Q, Zhang S. Ammonium addition reduces phosphorus leaching in a long-term mineral or organic fertilized calcareous soil during flooding conditions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121167. [PMID: 38749136 DOI: 10.1016/j.jenvman.2024.121167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/19/2024] [Accepted: 05/10/2024] [Indexed: 06/05/2024]
Abstract
Organic amendment substitutes mineral fertilizers has been proven to increase the organic matter content of soils, which in turn may induce phosphorus (P) mobilization by triggering the redox reaction. However, under flooded conditions according to local agricultural practices, as one of the factors restricting the decomposition of organic matter, the role ammonium plays in P transformation and leaching from soils with different organic matter remains unclear. To address the knowledge gap, the calcareous soils were collected from a long-term field trial (>13 years) containing two treatments with equal P inputs: a long-term mineral fertilization and a long-term organic amendment. Both long-term mineral fertilized soil and long-term organic amended soil were split into ammonium applications or no ammonium applications. A series of column devices were deployed to create flooded conditions and monitor the P leaching from the collected soils. The K-edge X-ray absorption near-edge structure and sequential extraction method were employed jointly to detect soil P fractions and speciation, and the P sorption/desorption characteristics of soil were evaluated by Langmuir fitting. The results showed a reduction of cumulative leached P from soils by 33.2%-43.3% after ammonium addition, regardless of previous long-term mineral fertilization or organic amendment history. A significant enhancement of soil labile P pool (indicated by the H2O-P fraction and NaHCO3-P fraction) after ammonium addition results in the reduction in soil P leaching. The reduced P sorption capacity coupled with the transformation from hydroxyapatite to β-tricalcium phosphate indicated that the phosphate retention is attributed to the precipitation formation rather than phosphate sorption by soil. The present study highlights that the ammonium addition could affect the phosphate precipitation transformation. This may be attributed to the effect of ammonium addition on the calcium and magnesium ion content and molar ratio in this soil, thereby regulating the form of soil phosphate precipitation. The mechanisms revealed in this study can support developing optimized agricultural management practices to alleviate soil P loss.
Collapse
Affiliation(s)
- Lulu Wei
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-Control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan Xilu, Haidian, Beijing, 100193, PR China
| | - Yan Zhou
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-Control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan Xilu, Haidian, Beijing, 100193, PR China
| | - Guiming Yin
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-Control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan Xilu, Haidian, Beijing, 100193, PR China
| | - Jianyu Cui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-Control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan Xilu, Haidian, Beijing, 100193, PR China
| | - Junhui Yin
- School of Agriculture, Sun Yat-sen University, Shenzhen, 518107, PR China
| | - Rui Liu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-Control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan Xilu, Haidian, Beijing, 100193, PR China
| | - Qing Chen
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-Control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan Xilu, Haidian, Beijing, 100193, PR China.
| | - Shuai Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-Control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan Xilu, Haidian, Beijing, 100193, PR China; Key Laboratory of Arable Land Quality Monitoring and Evaluation, State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, PR China.
| |
Collapse
|
31
|
Murad S, Ahmad M, Hussain A, Ali S, Al-Ansari N, Mattar MA. Efficacy of DAP coated with bacterial strains and their metabolites for soil phosphorus availability and maize growth. Sci Rep 2024; 14:11389. [PMID: 38762518 PMCID: PMC11102545 DOI: 10.1038/s41598-024-61817-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/09/2024] [Indexed: 05/20/2024] Open
Abstract
Phosphorus (P) use efficiency in alkaline/calcareous soils is only 20% due to precipitation of P2O5 with calcium and magnesium. However, coating Diammonium Phosphate (DAP) with phosphorus solubilizing bacteria (PSB) is more appropriate to increase fertilizer use efficiency. Therefore, with the aim to use inorganic fertilizers more effectively present study was conducted to investigate comparative effect of coated DAP with PSB strains Bacillus subtilis ZE15 (MN003400), Bacillus subtilis ZR3 (MN007185), Bacillus megaterium ZE32 (MN003401) and Bacillus megaterium ZR19 (MN007186) and their extracted metabolites with uncoated DAP under axenic conditions. Gene sequencing was done against various sources of phosphorus to analyze genes responsible for phosphatase activity. Alkaline phosphatase (ALP) gene amplicon of 380bp from all tested strains was showed in 1% w/v gel. Release pattern of P was also improved with coated fertilizer. The results showed that coated phosphatic fertilizer enhanced shoot dry weight by 43 and 46% under bacterial and metabolites coating respectively. Shoot and root length up to 44 and 42% with metabolites coated DAP and 41% with bacterial coated DAP. Physiological attributes also showed significant improvement with coated DAP over conventional. The results supported the application of coated DAP as a useful medium to raise crop yield even at lower application rates i.e., 50 and 75% DAP than non-coated 100% DAP application which advocated this coating technique a promising approach for advancing circular economy and sustainable development in modern agriculture.
Collapse
Affiliation(s)
- Sadia Murad
- Department of Soil Science, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Maqshoof Ahmad
- Department of Soil Science, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Azhar Hussain
- Department of Soil Science, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Sajjad Ali
- Department of Entomology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Nadhir Al-Ansari
- Department of Civil, Environmental and Natural Resources Engineering, Lulea University of Technology, 97187, Lulea, Sweden.
| | - Mohamed A Mattar
- Department of Agricultural Engineering, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
32
|
Jensen CNG, Pang JKY, Gottardi M, Kračun SK, Svendsen BA, Nielsen KF, Kovács ÁT, Moelbak L, Fimognari L, Husted S, Schulz A. Bacillus subtilis promotes plant phosphorus (P) acquisition through P solubilization and stimulation of root and root hair growth. PHYSIOLOGIA PLANTARUM 2024; 176:e14338. [PMID: 38740528 DOI: 10.1111/ppl.14338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/03/2024] [Accepted: 04/12/2024] [Indexed: 05/16/2024]
Abstract
Bacteria can be applied as biofertilizers to improve crop growth in phosphorus (P)-limited conditions. However, their mode of action in a soil environment is still elusive. We used the strain ALC_02 as a case study to elucidate how Bacillus subtilis affects dwarf tomato cultivated in soil-filled rhizoboxes over time. ALC_02 improved plant P acquisition by increasing the size and P content of P-limited plants. We assessed three possible mechanisms, namely root growth stimulation, root hair elongation, and solubilization of soil P. ALC_02 produced auxin, and inoculation with ALC_02 promoted root growth. ALC_02 promoted root hair elongation as the earliest observed response and colonized root hairs specifically. Root and root hair growth stimulation was associated with a subsequent increase in plant P content, indicating that a better soil exploration by the root system improved plant P acquisition. Furthermore, ALC_02 affected the plant-available P content in sterilized soil differently over time and released P from native P pools in the soil. Collectively, ALC_02 exhibited all three mechanisms in a soil environment. To our knowledge, bacterial P biofertilizers have not been reported to colonize and elongate root hairs in the soil so far, and we propose that these traits contribute to the overall effect of ALC_02. The knowledge gained in this research can be applied in the future quest for bacterial P biofertilizers, where we recommend assessing all three parameters, not only root growth and P solubilization, but also root hair elongation. This will ultimately support the development of sustainable agricultural practices.
Collapse
Affiliation(s)
- Camilla Niketa Gadomska Jensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
- Plant Health Innovation, Novonesis A/S, Taastrup, Denmark
| | - Janet Ka Yan Pang
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | | | | | | | - Ákos T Kovács
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kgs. Lyngby, Denmark
- Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Lars Moelbak
- Plant Health Innovation, Novonesis A/S, Taastrup, Denmark
| | | | - Søren Husted
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Alexander Schulz
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
33
|
Tuan HNA, Phan BTC, Giang HN, Nguyen GT, Le TDH, Phuong H. Impact of Modifications from Potassium Hydroxide on Porous Semi-IPN Hydrogel Properties and Its Application in Cultivation. Polymers (Basel) 2024; 16:1195. [PMID: 38732665 PMCID: PMC11085908 DOI: 10.3390/polym16091195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
This study synthesized and modified a semi-interpenetrating polymer network hydrogel from polyacrylamide, N,N'-dimethylacrylamide, and maleic acid in a potassium hydroxide solution. The chemical composition, interior morphology, thermal properties, mechanical characteristics, and swelling behaviors of the initial hydrogel (SH) and modified hydrogel (SB) in water, salt solutions, and buffer solutions were investigated. Hydrogels were used as phosphate fertilizer (PF) carriers and applied in farming techniques by evaluating their impact on soil properties and the growth of mustard greens. Fourier-transform infrared spectra confirmed the chemical composition of SH, SB, and PF-adsorbed hydrogels. Scanning electron microscopy images revealed that modification increased the largest pore size from 817 to 1513 µm for SH and SB hydrogels, respectively. After modification, the hydrogels had positive changes in the swelling ratio, swelling kinetics, thermal properties, mechanical and rheological properties, PF absorption, and PF release. The modification also increased the maximum amount of PF loaded into the hydrogel from 710.8 mg/g to 770.9 mg/g, while the maximum % release of PF slightly increased from 84.42% to 85.80%. In addition, to evaluate the PF release mechanism and the factors that influence this process, four kinetic models were applied to confirm the best-fit model, which included zero-order, first-order, Higuchi, and Korsmeyer-Peppas. In addition, after six cycles of absorption and release in the soil, the hydrogels retained their original shapes, causing no alkalinization or acidification. At the same time, the moisture content was higher as SB was used. Finally, modifying the hydrogel increased the mustard greens' lifespan from 20 to 32 days. These results showed the potential applications of modified semi-IPN hydrogel materials in cultivation.
Collapse
Affiliation(s)
- Huynh Nguyen Anh Tuan
- Faculty of Chemical and Food Technology, Ho Chi Minh City University of Technology and Education, No. 1, Vo Van Ngan Street, Linh Chieu Ward, Thu Duc, Ho Chi Minh City 71307, Vietnam; (B.T.C.P.); (G.T.N.); (T.D.H.L.); (H.P.)
| | - Bui Thi Cam Phan
- Faculty of Chemical and Food Technology, Ho Chi Minh City University of Technology and Education, No. 1, Vo Van Ngan Street, Linh Chieu Ward, Thu Duc, Ho Chi Minh City 71307, Vietnam; (B.T.C.P.); (G.T.N.); (T.D.H.L.); (H.P.)
| | - Ha Ngoc Giang
- Faculty of Chemical Technology, Ho Chi Minh City University of Industry and Trade, No. 140, Le Trong Tan Street, Tay Thanh Ward, Tan Phu District, Ho Chi Minh City 72009, Vietnam;
| | - Giang Tien Nguyen
- Faculty of Chemical and Food Technology, Ho Chi Minh City University of Technology and Education, No. 1, Vo Van Ngan Street, Linh Chieu Ward, Thu Duc, Ho Chi Minh City 71307, Vietnam; (B.T.C.P.); (G.T.N.); (T.D.H.L.); (H.P.)
| | - Thi Duy Hanh Le
- Faculty of Chemical and Food Technology, Ho Chi Minh City University of Technology and Education, No. 1, Vo Van Ngan Street, Linh Chieu Ward, Thu Duc, Ho Chi Minh City 71307, Vietnam; (B.T.C.P.); (G.T.N.); (T.D.H.L.); (H.P.)
| | - Ho Phuong
- Faculty of Chemical and Food Technology, Ho Chi Minh City University of Technology and Education, No. 1, Vo Van Ngan Street, Linh Chieu Ward, Thu Duc, Ho Chi Minh City 71307, Vietnam; (B.T.C.P.); (G.T.N.); (T.D.H.L.); (H.P.)
| |
Collapse
|
34
|
Li Q, Yang X, Li C, He A, He S, Li X, Zhang Y, Yao T. Comparison of bio-beads combined with Pseudomonas edaphica and three phosphate materials for lead immobilization: Performance, mechanism and plant growth. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 357:120797. [PMID: 38574707 DOI: 10.1016/j.jenvman.2024.120797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/06/2024]
Abstract
Phosphate materials (PMs) combine with phosphate solubilizing bacteria play an essential roles in lead (Pb) immobilization, but their resulting ability to reduce Pb bioavailability may vary depending on PMs used. In this study, Pseudomonas edaphica GAU-665 and three PMs: tricalcium phosphate, calcium phytate and nano-hydroxyapatite were respectively encapsulated into bio-beads by sodium alginate, which immobilization efficiency of Pb2+ were 99.11%, 97.76% and 99.02% at initial Pb2+ concentration of 200 mg L-1, respectively. The Pb2+ immobilization performance of bio-beads under different conditions and their organic acids secreted were examined. Most Pb2+ was immobilized by bio-beads through combined functions of adsorption, precipitation, ion exchange and biomineralization, accompanied by the formation of more stable compounds such as Pb3(PO4)2, Pb5(PO4)3OH and Pb5(PO4)3Cl. Meanwhile, pot experimental results indicated that the inoculation of CPhy (calcium phytate) bio-beads with PSB have highest biomass and root growth of oat (Avena sativa L.) in Pb-stressed compared with CK, which increased the content of chlorophyll b (167.51%) in shoot. In addition, the CPhy bio-beads enhance the peroxidase, catalase activities and reduce the malondialdehyde content to alleviating lead physiological toxicity in oat, which reductions the Pb accumulation in shoot (52.06%) and root (81.04%), and increased the residual fraction of Pb by 165.80% in soil. These findings suggest the bio-beads combined with P. edaphica GAU-665 and calcium phytate is an efficient Pb immobilization material and provided feasible way to improve safety agricultural production and Pb-contaminated soil remediation.
Collapse
Affiliation(s)
- Qi Li
- College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, Gansu, China; Key Laboratory of Grassland Ecosystem, Gansu Agricultural University, Ministry of Education, Lanzhou, 730070, Gansu, China
| | - Xiaolei Yang
- College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, Gansu, China; Key Laboratory of Grassland Ecosystem, Gansu Agricultural University, Ministry of Education, Lanzhou, 730070, Gansu, China
| | - Changning Li
- College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, Gansu, China; Key Laboratory of Grassland Ecosystem, Gansu Agricultural University, Ministry of Education, Lanzhou, 730070, Gansu, China
| | - Aolei He
- College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, Gansu, China; Key Laboratory of Grassland Ecosystem, Gansu Agricultural University, Ministry of Education, Lanzhou, 730070, Gansu, China
| | - Shanmu He
- College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, Gansu, China; Key Laboratory of Grassland Ecosystem, Gansu Agricultural University, Ministry of Education, Lanzhou, 730070, Gansu, China
| | - Xuemei Li
- College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, Gansu, China; Key Laboratory of Grassland Ecosystem, Gansu Agricultural University, Ministry of Education, Lanzhou, 730070, Gansu, China
| | - Ying Zhang
- College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, Gansu, China; Key Laboratory of Grassland Ecosystem, Gansu Agricultural University, Ministry of Education, Lanzhou, 730070, Gansu, China
| | - Tuo Yao
- College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, Gansu, China; Key Laboratory of Grassland Ecosystem, Gansu Agricultural University, Ministry of Education, Lanzhou, 730070, Gansu, China.
| |
Collapse
|
35
|
Pang F, Li Q, Solanki MK, Wang Z, Xing YX, Dong DF. Soil phosphorus transformation and plant uptake driven by phosphate-solubilizing microorganisms. Front Microbiol 2024; 15:1383813. [PMID: 38601943 PMCID: PMC11005474 DOI: 10.3389/fmicb.2024.1383813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/14/2024] [Indexed: 04/12/2024] Open
Abstract
Phosphorus (P) is an important nutrient for plants, and a lack of available P greatly limits plant growth and development. Phosphate-solubilizing microorganisms (PSMs) significantly enhance the ability of plants to absorb and utilize P, which is important for improving plant nutrient turnover and yield. This article summarizes and analyzes how PSMs promote the absorption and utilization of P nutrients by plants from four perspectives: the types and functions of PSMs, phosphate-solubilizing mechanisms, main functional genes, and the impact of complex inoculation of PSMs on plant P acquisition. This article reviews the physiological and molecular mechanisms of phosphorus solubilization and growth promotion by PSMs, with a focus on analyzing the impact of PSMs on soil microbial communities and its interaction with root exudates. In order to better understand the ability of PSMs and their role in soil P transformation and to provide prospects for research on PSMs promoting plant P absorption. PSMs mainly activate insoluble P through the secretion of organic acids, phosphatase production, and mycorrhizal symbiosis, mycorrhizal symbiosis indirectly activates P via carbon exchange. PSMs can secrete organic acids and produce phosphatase, which plays a crucial role in soil P cycling, and related genes are involved in regulating the P-solubilization ability. This article reviews the mechanisms by which microorganisms promote plant uptake of soil P, which is of great significance for a deeper understanding of PSM-mediated soil P cycling, plant P uptake and utilization, and for improving the efficiency of P utilization in agriculture.
Collapse
Affiliation(s)
- Fei Pang
- College of Agriculture, Guangxi University, Nanning, China
| | - Qing Li
- College of Agriculture, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Smart Agricultural College, Yulin Normal University, Yulin, China
| | - Manoj Kumar Solanki
- Department of Life Sciences and Biological Sciences, IES University, Bhopal, India
| | - Zhen Wang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Smart Agricultural College, Yulin Normal University, Yulin, China
| | - Yong-Xiu Xing
- College of Agriculture, Guangxi University, Nanning, China
| | - Deng-Feng Dong
- College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
36
|
Ding S, Li J, Wang Y, He S, Xie H, Fu H, Feng Y, Shaheen SM, Rinklebe J, Xue L. Manure derived hydrochar reduced phosphorus loss risk via an alteration of phosphorus fractions and diversified microbial community in rice paddy soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170582. [PMID: 38309349 DOI: 10.1016/j.scitotenv.2024.170582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/16/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Phosphorus (P) loss caused by the irrational use of manure organic fertilizer has become a worldwide environmental problem, which has caused a potential threat to water safety and intensified agricultural non-point source pollution. Hydrothermal carbonization is method with a low-energy consumption and high efficiency to deal with environmental problems. Application of pig manure-derived hydrochar (PMH) to soil exhibited potential of sustainable development compared with the pristine pig manure (PM). However, the effects of PMH on the distribution of P among the fractions/forms and the interaction between microorganisms and P forms and its relevance to the potential loss of P in paddy fields has not been clarified. Therefore, in this study, a soil column experiment was conducted using the untreated soil (control), and the PM, PMH1 (PMH derived at 180 °C), and PMH2 (PMH derived at 260 °C) treated soils (at the dose of 0.05 %) and rice was cultivated to investigate the effects of PM and PMH on the P fractions, mobilization, ad potential loss via the induced changes on soil microbial community after a complete growing season of rice. The trend of P utilization was evaluated by P speciation via continuous extraction and 31P NMR. The addition of PMH reduced the proportion of residual P in soil by 23.8-26.3 %, and increased the proportion of HCl-P and orthophosphate by 116.2-158.6 % and 6.1-6.8 % compared to PM. The abundance of gcd gene developed after the application of PMH2, which enhanced the mobile forms of soil P utilization via secreting gluconic acid. The network diagram analysis concluded that the changes in various P forms were mainly related to Proteobacteria, Bacteroides, Firmicutes and Acidobacteria. The results illustrated that PMH mitigate the potential risk of P loss more than PM by altering P fractions and affecting soil microbial community.
Collapse
Affiliation(s)
- Shudong Ding
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, National Agricultural Experiment Station for Agricultural Environment, (Liu He), Ministry of Agriculture and Rural Affairs; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jing Li
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, National Agricultural Experiment Station for Agricultural Environment, (Liu He), Ministry of Agriculture and Rural Affairs; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yu Wang
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Shiying He
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, National Agricultural Experiment Station for Agricultural Environment, (Liu He), Ministry of Agriculture and Rural Affairs; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Huifang Xie
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Haibin Fu
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, National Agricultural Experiment Station for Agricultural Environment, (Liu He), Ministry of Agriculture and Rural Affairs; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yanfang Feng
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, National Agricultural Experiment Station for Agricultural Environment, (Liu He), Ministry of Agriculture and Rural Affairs; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516 Kafr El-Sheikh, Egypt
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Lihong Xue
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, National Agricultural Experiment Station for Agricultural Environment, (Liu He), Ministry of Agriculture and Rural Affairs; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
37
|
Lei J, Yin J, Chen S, Fenton O, Liu R, Chen Q, Fan B, Zhang S. Understanding phosphorus mobilization mechanisms in acidic soil amended with calcium-silicon-magnesium-potassium fertilizer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170294. [PMID: 38272080 DOI: 10.1016/j.scitotenv.2024.170294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/16/2023] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Calcium-silicon-magnesium-potassium fertilizer (CSMP) is usually used as an amendment to counteract soil acidification caused by historical excessive nitrogen (N) applications. However, the impact of CSMP addition on phosphorus (P) mobilization in acidic soils and the related mechanisms are not fully understood. Specifically, a knowledge gap exists with regards to changes in soil extracellular enzymes that contribute to P release. Such a knowledge gap was investigated by an incubation study with four treatments: i) initial soil (Control), ii) urea (60 mg kg-1) addition (U); iii) CSMP (1%) addition (CSMP) and iv) urea (60 mg kg-1) and CSMP (1%) additions (U + CSMP). Phosphorus mobilization induced by different processes was distinguished by biologically based P extraction. The Langmuir equation, K edge X-ray absorption near-edge structure spectroscopy, and ecoenzyme vector analysis according to the extracellular enzyme activity stoichiometry were deployed to investigate soil P sorption intensity, precipitation species, and microbial-driven turnover of organophosphorus. Results showed that CaCl2 extractable P (or citric acid extractable P) content increased by 63.4% (or 39.2%) in the soil with CSMP addition, compared with the study control. The accelerated mobilization of aluminum (Al)/iron (Fe)-bound P after CSMP addition, indicated by the reduction of the sum of FePO4·2H2O and AlPO4 proportion, contributed to this increase. The decrease of P sorption capacity can also be responsible for it. The CSMP addition increased enzyme extractable P in the soil nearly 7-fold and mitigated the limitations of carbon (C) and P for soil microorganisms (indicated by the enzyme stoichiometry and ecoenzyme vector analysis), suggesting that microbial turnover processes also contribute to P mobilization in amended acidic soil. These findings indicate that the P mobilization in CSMP amended acidic soil not only attributed to both decreasing P sorption capacity and dissolving phosphate precipitation, but also to the increase of the microbial turnover of the organophosphorus pool.
Collapse
Affiliation(s)
- Jilin Lei
- Beijing Key Laboratory of Farmyard Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Junhui Yin
- Beijing Key Laboratory of Farmyard Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China; School of Agriculture, Sun Yat-sen University, Shenzhen 518107, PR China
| | - Shuo Chen
- Beijing Key Laboratory of Farmyard Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Owen Fenton
- Teagasc, Environmental Research Centre, Johnstown Castle, Co. Wexford, Ireland
| | - Rui Liu
- Beijing Key Laboratory of Farmyard Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Qing Chen
- Beijing Key Laboratory of Farmyard Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Bingqian Fan
- Key laboratory of Nonpoint Source Pollution Control, Ministry of Agriculture and Rural Affairs of PR China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, PR China.
| | - Shuai Zhang
- Beijing Key Laboratory of Farmyard Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China; Key Laboratory of Arable Land Quality Monitoring and Evaluation, State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, PR China.
| |
Collapse
|
38
|
Nabi F, Chen H, Sajid S, Yang G, Kyung Y, Shah SMM, Wang X, Hu Y. Degradation of agricultural waste is dependent on chemical fertilizers in long-term paddy-dry rotation field. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 355:120460. [PMID: 38430881 DOI: 10.1016/j.jenvman.2024.120460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/25/2024] [Accepted: 02/20/2024] [Indexed: 03/05/2024]
Abstract
The practice of returning straw to agricultural fields is a globally employed technique. Such agricultural fields also receive a significant amount of nitrogen (N) and phosphorus (P) fertilizers, because these two macronutrients are essential for plant growth and development. However, the consequences of such macronutrients input on straw decomposition, soil dissolved organic matter (DOM), key microbes, and lignocellulolytic enzymes are still unclear. In a similar aim, we designed a long-term straw returning study without and with different N and P nutrient supplementation: CK (N0P0), T1 (N120P0), T2 (N120P60), T3 (N120P90), T4 (N120P120), T5 (N0P90), T6 (N60P90), and T7 (N180P90), and evaluated their impact on rice and oilseed rape yield, soil DOM, enzymes, lignocellulose content, microbial diversity, and composition. We found straw returning improved overall yield in all treatments and T7 showed the highest yield for oilseed rape (30.31-38.87 g/plant) and rice (9.14-9.91 t/ha) during five-years of study. The fertilizer application showed a significant impact on soil physicochemical properties, such as water holding capacity and soil porosity decreased, and bulk density increased in fertilized treatments, as compared to CK. Similarly, significantly low OM, cellulose, hemicellulose, and lignin content were found in T7, T4, T3, and T2, while high values were found in CK and T5, respectively. The fluorescence excitation-emission matrix spectra of DOM of different treatments revealed that T3, T7, T4, and T6 showed high peak M (microbial by-products), peak A and peak C (humic acid-like) as compared to others. The microbial composition was also distinctive in each treatment and a high relative abundance of Chloroflexi, Actinobacteriota, Ascomycota, and Basidiomycota were found in T2 and T3 treatments, respectively. These findings indicate that the decomposition of straw in the agricultural field was dependent on nutrients input, which facilitated key microbial growth and impacted positively on lignocellulolytic enzymes, which further aided the breakdown of all components of straw in the field efficiently. On the other hand, high input of chemical based fertilizers to soil can lead to several environmental issues, such as nutrient imbalance, nutrient runoff, soil pH change and changes in microbial activities. Keeping that in consideration, we recommend moderate fertilizer dosage (N120P90) in such fields to achieve higher decomposition of crop straw with a small yield compromise.
Collapse
Affiliation(s)
- Farhan Nabi
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China; College of Nature Resources and Environment, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Hong Chen
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China
| | - Sumbal Sajid
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China; Shenzhen Institute of Guangdong Ocean University, Binhai 2nd Road, Shenzhen, 518120, China
| | - Guotao Yang
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China
| | - Yun Kyung
- Department of Environment and Energy, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, South Korea; Department of Environmental Engineering and Earth Science, Clemson University, SC, 29634, USA
| | - Syed Muhammad Mustajab Shah
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China
| | - Xuechun Wang
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China.
| | - Yungao Hu
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China.
| |
Collapse
|
39
|
Bini D, Mattos BB, Figueiredo JEF, Dos Santos FC, Marriel IE, Dos Santos CA, de Oliveira-Paiva CA. Parameter evaluation for developing phosphate-solubilizing Bacillus inoculants. Braz J Microbiol 2024; 55:737-748. [PMID: 38008804 PMCID: PMC10920567 DOI: 10.1007/s42770-023-01182-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/11/2023] [Indexed: 11/28/2023] Open
Abstract
Bacterial inoculants have been used in agriculture to improve plant performance. However, laboratory and field requirements must be completed before a candidate can be employed as an inoculant. Therefore, this study aimed to evaluate the parameters for inoculant formulation and the potential of Bacillus subtilis (B70) and B. pumilus (B32) to improve phosphorus availability in maize (Zea mays L.) crops. In vitro experiments assessed the bacterial ability to solubilize and mineralize phosphate, their adherence to roots, and shelf life in cassava starch (CS), carboxymethyl cellulose (CMC), peat, and activated charcoal (AC) stored at 4 °C and room temperature for 6 months. A field experiment evaluated the effectiveness of strains to increase the P availability to plants growing with rock phosphate (RP) and a mixture of RP and triple superphosphate (TS) and their contribution to improving maize yield and P accumulation in grains. The B70 was outstanding in solubilizing RP and phytate mineralization and more stable in carriers and storage conditions than B32. However, root adherence was more noticeable in B32. Among carriers, AC was the most effective for preserving viable cell counts, closely similar to those of the initial inoculum of both strains. Maize productivity using the mixture RPTS was similar for B70 and B32. The best combination was B70 with RP, which improved the maize yield (6532 kg ha-1) and P accumulation in grains (15.95 kg ha-1). Our results indicated that the inoculant formulation with AC carrier and B70 is a feasible strategy for improving phosphorus mobilization in the soil and maize productivity.
Collapse
Affiliation(s)
- Daniel Bini
- Embrapa Milho E Sorgo, Sete Lagoas, MG, 35701-970, Brazil
| | | | | | | | | | | | | |
Collapse
|
40
|
Zeng Q, Dong J, Lin X, Zhou X, Xu H. Isolation and Identification of Acer truncatum Endophytic Fungus Talaromyces verruculosus and Evaluation of Its Effects on Insoluble Phosphorus Absorption Capacity and Growth of Cucumber Seedlings. J Fungi (Basel) 2024; 10:136. [PMID: 38392808 PMCID: PMC10890576 DOI: 10.3390/jof10020136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
The symbiosis between endophytic fungi and plants can promote the absorption of potassium, nitrogen, phosphorus, and other nutrients by plants. Phosphorus is one of the indispensable nutrient elements for plant growth and development. However, the content of available phosphorus in soil is very low, which limits the growth of plants. Phosphorus-soluble microorganisms can improve the utilization rate of insoluble phosphorus. In this study, Talaromyces verruculosus (T. verruculosus), a potential phosphorus-soluble fungus, was isolated from Acer truncatum, a plant with strong stress resistance, and its phosphorus-soluble ability in relation to cucumber seedlings under different treatment conditions was determined. In addition, the morphological, physiological, and biochemical indexes of the cucumber seedlings were assessed. The results show that T. verruculosus could solubilize tricalcium phosphate (TCP) and lecithin, and the solubilization effect of lecithin was higher than that of TCP. After the application of T. verruclosus, the leaf photosynthetic index increased significantly. The photosynthetic system damage caused by low phosphorus stress was alleviated, and the root morphological indexes of cucumber seedlings were increased. The plant height, stem diameter, and leaf area of cucumber seedlings treated with T. verruculosus were also significantly higher than those without treatment. Therefore, it was shown that T. verruculosus is a beneficial endophytic fungus that can promote plant growth and improve plant stress resistance. This study will provide a useful reference for further research on endophytic fungi to promote growth and improve plant stress resistance.
Collapse
Affiliation(s)
- Qingpan Zeng
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping 136000, China
| | - Jiawei Dong
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping 136000, China
| | - Xiaoru Lin
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping 136000, China
| | - Xiaofu Zhou
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping 136000, China
| | - Hongwei Xu
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping 136000, China
| |
Collapse
|
41
|
Cai R, Li R, Cao X, Xu C. Available sulfur and phosphorus transformation mechanism and functional microorganisms during sheep manure composting on Qinghai-Tibet Plateau under two moisture contents. BIORESOURCE TECHNOLOGY 2024; 394:130191. [PMID: 38081470 DOI: 10.1016/j.biortech.2023.130191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 02/04/2024]
Abstract
Understanding the mechanisms of sulfur and phosphorus transformation during composting is important for improving compost fertility. This study aims to investigate the microbial mechanism of available sulfur and phosphorus transformation during sheep manure composting under different moisture contents (45%: M45 and 60%: M60) on the Qinghai-Tibet Plateau using metagenomics technology. The results showed that the final available sulfur and phosphorus contents of M45 were 11% and 13% higher than those of M60, respectively. M45 enhanced sulfur oxidation, sulfate reduction, and thiosulfate disproportionation. These steps were significantly positively correlated with available sulfur, and Pseudomonas, Thermobifida, Luteimonas, Brevibacterium, Planifilum, and Xinfangfangia were the main participants. Available phosphorus was significantly positively correlated with polyphosphate degradation and inorganic P solubilization, and the main participants in these steps were Luteimonas, Brachybacterium, Corynebacterium, Jeotgalicoccus, Microbacterium, Streptomyces, and Pseudoxanthomonas. These findings reveal the microbial mechanisms of available and phosphorus transformation during composting at two moisture contents.
Collapse
Affiliation(s)
- Rui Cai
- College of Engineering, China Agricultural University, Beijing 100083, China; School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei Province 430074, China
| | - Rongrong Li
- College of Environment and Life Sciences, Weinan Normal University, Weinan, Shaanxi Province 714099, China
| | - Xiaohui Cao
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Chuncheng Xu
- College of Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
42
|
Tiong YW, Sharma P, Xu S, Bu J, An S, Foo JBL, Wee BK, Wang Y, Lee JTE, Zhang J, He Y, Tong YW. Enhancing sustainable crop cultivation: The impact of renewable soil amendments and digestate fertilizer on crop growth and nutrient composition. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123132. [PMID: 38081377 DOI: 10.1016/j.envpol.2023.123132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/13/2023] [Accepted: 12/07/2023] [Indexed: 01/26/2024]
Abstract
Utilizing digestate as a fertilizer enhances soil nutrient content, improves fertility, and minimizes nutrient runoff, mitigating water pollution risks. This alternative approach replaces commercial fertilizers, thereby reducing their environmental impact and lowering greenhouse gas emissions associated with fertilizer production and landfilling. Herein, this study aimed to evaluate the impact of various soil amendments, including carbon fractions from waste materials (biochar, compost, and cocopeat), and food waste anaerobic digestate application methods on tomato plant growth (Solanum lycopersicum) and soil fertility. The results suggested that incorporating soil amendments (biochar, compost, and cocopeat) into the potting mix alongside digestate application significantly enhances crop yields, with increases ranging from 12.8 to 17.3% compared to treatments without digestate. Moreover, the combination of soil-biochar amendment and digestate application suggested notable improvements in nitrogen levels by 20.3% and phosphorus levels by 14%, surpassing the performance of the those without digestate. Microbial analysis revealed that the soil-biochar amendment significantly enhanced biological nitrification processes, leading to higher nitrogen levels compared to soil-compost and soil-cocopeat amendments, suggesting potential nitrogen availability enhancement within the rhizosphere's ecological system. Chlorophyll content analysis suggested a significant 6.91% increase with biochar and digestate inclusion in the soil, compared to the treatments without digestate. These findings underscore the substantial potential of crop cultivation using soil-biochar amendments in conjunction with organic fertilization through food waste anaerobic digestate, establishing a waste-to-food recycling system.
Collapse
Affiliation(s)
- Yong Wei Tiong
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability Solutions for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore
| | - Pooja Sharma
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability Solutions for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore
| | - Shuai Xu
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Engineering Research Center of Edible and Medicinal Fungi of Ministry of Education, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Jie Bu
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability Solutions for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore
| | - Soobin An
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive, 117585, Singapore
| | - Jordan Bao Luo Foo
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive, 117585, Singapore
| | - Bryan Kangjie Wee
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive, 117585, Singapore
| | - Yueyang Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive, 117585, Singapore
| | - Jonathan Tian En Lee
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability Solutions for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore
| | - Jingxin Zhang
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 201306, China
| | - Yiliang He
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 201306, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yen Wah Tong
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability Solutions for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive, 117585, Singapore.
| |
Collapse
|
43
|
Ghoreshizadeh S, Calvo-Peña C, Ruiz-Muñoz M, Otero-Suárez R, Coque JJR, Cobos R. Pseudomonas taetrolens ULE-PH5 and Pseudomonas sp. ULE-PH6 Isolated from the Hop Rhizosphere Increase Phosphate Assimilation by the Plant. PLANTS (BASEL, SWITZERLAND) 2024; 13:402. [PMID: 38337935 PMCID: PMC10857139 DOI: 10.3390/plants13030402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
Most of the phosphorus incorporated into agricultural soils through the use of fertilizers precipitates in the form of insoluble salts that are incapable of being used by plants. This insoluble phosphorus present in large quantities in soil forms the well-known "phosphorus legacy". The solubilization of this "phosphorus legacy" has become a goal of great agronomic importance, and the use of phosphate-solubilizing bacteria would be a useful tool for this purpose. In this work, we have isolated and characterized phosphate-solubilizing bacteria from the rhizosphere of hop plants. Two particular strains, Pseudomonas taetrolens ULE-PH5 and Pseudomonas sp. ULE-PH6, were selected as plant growth-promoting rhizobacteria due to their high phosphate solubilization capability in both plate and liquid culture assays and other interesting traits, including auxin and siderophore production, phytate degradation, and acidic and alkaline phosphatase production. These strains were able to significantly increase phosphate uptake and accumulation of phosphorus in the aerial part (stems, petioles, and leaves) of hop plants, as determined by greenhouse trials. These strains are promising candidates to produce biofertilizers specifically to increase phosphate adsorption by hop plants.
Collapse
Affiliation(s)
| | | | | | | | - Juan José R. Coque
- Instituto de Investigación de la Viña y el Vino, Escuela de Ingeniería Agraria, Universidad de León, 24009 León, Spain; (S.G.); (C.C.-P.); (M.R.-M.); (R.O.-S.)
| | - Rebeca Cobos
- Instituto de Investigación de la Viña y el Vino, Escuela de Ingeniería Agraria, Universidad de León, 24009 León, Spain; (S.G.); (C.C.-P.); (M.R.-M.); (R.O.-S.)
| |
Collapse
|
44
|
de Carvalho AM, Ramos MLG, Dos Santos DCR, de Oliveira AD, de Carvalho Mendes I, Silva SB, de Sousa TR, Dantas RDA, Silva AMM, Marchão RL. Understanding the Relations between Soil Biochemical Properties and N 2O Emissions in a Long-Term Integrated Crop-Livestock System. PLANTS (BASEL, SWITZERLAND) 2024; 13:365. [PMID: 38337898 PMCID: PMC10857650 DOI: 10.3390/plants13030365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/12/2024]
Abstract
Edaphoclimatic conditions influence nitrous oxide (N2O) emissions from agricultural systems where soil biochemical properties play a key role. This study addressed cumulative N2O emissions and their relations with soil biochemical properties in a long-term experiment (26 years) with integrated crop-livestock farming systems fertilized with two P and K rates. The farming systems consisted of continuous crops fertilized with half of the recommended P and K rates (CCF1), continuous crops at the recommended P and K rates (CCF2), an integrated crop-livestock system with half of the recommended P and K rates (ICLF1), and an integrated crop-livestock at the recommended P and K rates (ICLF2). The ICLF2 may have promoted the greatest entry of carbon into the soil and positively influenced the soil's biochemical properties. Total carbon (TC) was highest in ICLF2 in both growing seasons. The particulate and mineral-associated fractions in 2016 and 2017, respectively, and the microbial biomass fraction in the two growing seasons were also very high. Acid phosphatase and arylsulfatase in ICLF1 and ICLF2 were highest in 2016. The soil properties correlated with cumulative N2O emissions were TC, total nitrogen (TN), particulate nitrogen (PN), available nitrogen (AN), mineral-associated organic carbon (MAC), and microbial biomass carbon (MBC). The results indicated that ICLF2 induces an accumulation of more stable organic matter (OM) fractions that are unavailable to the microbiota in the short term and result in lower N2O emissions.
Collapse
Affiliation(s)
| | - Maria Lucrécia Gerosa Ramos
- Faculty of Agronomy and Veterinary Medicine, University of Brasilia, Campus Darcy Ribeiro, Brasilia 70910-970, Brazil; (D.C.R.D.S.); (S.B.S.); (T.R.d.S.)
| | - Divina Cléia Resende Dos Santos
- Faculty of Agronomy and Veterinary Medicine, University of Brasilia, Campus Darcy Ribeiro, Brasilia 70910-970, Brazil; (D.C.R.D.S.); (S.B.S.); (T.R.d.S.)
| | | | - Ieda de Carvalho Mendes
- Embrapa Cerrados, BR-020, Km 18, Planaltina 73310-970, Brazil; (A.D.d.O.); (I.d.C.M.); (R.d.A.D.); (R.L.M.)
| | - Stefany Braz Silva
- Faculty of Agronomy and Veterinary Medicine, University of Brasilia, Campus Darcy Ribeiro, Brasilia 70910-970, Brazil; (D.C.R.D.S.); (S.B.S.); (T.R.d.S.)
| | - Thais Rodrigues de Sousa
- Faculty of Agronomy and Veterinary Medicine, University of Brasilia, Campus Darcy Ribeiro, Brasilia 70910-970, Brazil; (D.C.R.D.S.); (S.B.S.); (T.R.d.S.)
| | - Raíssa de Araujo Dantas
- Embrapa Cerrados, BR-020, Km 18, Planaltina 73310-970, Brazil; (A.D.d.O.); (I.d.C.M.); (R.d.A.D.); (R.L.M.)
| | | | - Robélio Leandro Marchão
- Embrapa Cerrados, BR-020, Km 18, Planaltina 73310-970, Brazil; (A.D.d.O.); (I.d.C.M.); (R.d.A.D.); (R.L.M.)
| |
Collapse
|
45
|
Luo X, Chen W, Liu Q, Wang X, Miao J, Liu L, Zheng H, Liu R, Li F. Corn straw biochar addition elevated phosphorus availability in a coastal salt-affected soil under the conditions of different halophyte litter input and moisture contents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168355. [PMID: 37952652 DOI: 10.1016/j.scitotenv.2023.168355] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 11/14/2023]
Abstract
Improving salt-affected soil health using different strategies is of great significance for Sustainable Development Goals. The effects of biochar as a sustainable carbon negative soil amendment on phosphorous (P) pools in the degraded salt-affected soils of the of coastal wetlands (as one of the primary blue carbon ecosystems) with halophyte litter input under different water conditions (the two intrinsic characteristics of coastal wetlands) are poorly understood. Thus, a corn straw derived biochar (CBC) was added into a coastal salt-affected soil collected from the Yellow River Delta to investigate its effect on P fractions and availability under the input of three different local halophyte litters (i.e., Suaeda salsa, Imperata cylindrica and Phragmites australis) and under the unflooded and flooded water conditions. The results showed that the individual input of Suaeda salsa increased soil P availability by 28.2-40.9 %, but Imperata cylindrica and Phragmites australis had little effect on P availability. CBC individual amendment more efficiently enhanced P availability in the unflooded soil than the flooded soil. However, the co-amendment of CBC with litters showed little synergistic effect on P availability. CBC sharply increased the proportion of Ca-bound labile P fraction, but moderately lifted the proportion of Al/Fe-bound mediumly labile P fraction. CBC-enhanced P availability and altered inorganic P fractions were mainly resulted from the provision of labile inherent P by biochar, improved soil properties (i.e., increased CEC), and altered bacterial community composition (i.e., elevated abundance of P-solubilizing and phosphate-accumulating bacteria). These findings give new insights into understanding P biogeochemical cycling in the coastal salt-affected soils amended with biochars, and will be helpful to develop biochar-based technologies for enhancing P pools and improving soil health of the blue carbon ecosystems.
Collapse
Affiliation(s)
- Xianxiang Luo
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Sanya Oceanographic Institution, Ministry of Education Key Laboratory of Marine Environment and Ecology, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China; Marine Ecology and Environmental Science Laboratory, Qingdao National Laboratory of Marine Science and Technology, Qingdao 266071, China
| | - Wenjie Chen
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Sanya Oceanographic Institution, Ministry of Education Key Laboratory of Marine Environment and Ecology, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Qiang Liu
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Sanya Oceanographic Institution, Ministry of Education Key Laboratory of Marine Environment and Ecology, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Xiao Wang
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; National Center of Technological Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China.
| | - Jing Miao
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Sanya Oceanographic Institution, Ministry of Education Key Laboratory of Marine Environment and Ecology, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Liuingqing Liu
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Sanya Oceanographic Institution, Ministry of Education Key Laboratory of Marine Environment and Ecology, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China.
| | - Hao Zheng
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Sanya Oceanographic Institution, Ministry of Education Key Laboratory of Marine Environment and Ecology, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China; Marine Ecology and Environmental Science Laboratory, Qingdao National Laboratory of Marine Science and Technology, Qingdao 266071, China
| | - Ruhai Liu
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Sanya Oceanographic Institution, Ministry of Education Key Laboratory of Marine Environment and Ecology, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China; Marine Ecology and Environmental Science Laboratory, Qingdao National Laboratory of Marine Science and Technology, Qingdao 266071, China
| | - Fengmin Li
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Sanya Oceanographic Institution, Ministry of Education Key Laboratory of Marine Environment and Ecology, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China; Marine Ecology and Environmental Science Laboratory, Qingdao National Laboratory of Marine Science and Technology, Qingdao 266071, China
| |
Collapse
|
46
|
Teles EAP, Xavier JF, Arcênio FS, Amaya RL, Gonçalves JVS, Rouws LFM, Zonta E, Coelho IS. Characterization and evaluation of potential halotolerant phosphate solubilizing bacteria from Salicornia fruticosa rhizosphere. FRONTIERS IN PLANT SCIENCE 2024; 14:1324056. [PMID: 38293620 PMCID: PMC10825674 DOI: 10.3389/fpls.2023.1324056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/20/2023] [Indexed: 02/01/2024]
Abstract
Soil salinization is a significant abiotic factor threatening agricultural production, while the low availability of phosphorus (P) in plants is another worldwide limitation. Approximately 95-99% of the P in soil is unavailable to plants. Phosphate-solubilizing bacteria (PSB) transform insoluble phosphates into soluble forms that plants can utilize. The application of PSB can replace or partially reduce the use of P fertilizers. Therefore, selecting bacteria with high solubilization capacity from extreme environments, such as saline soils, becomes crucial. This study aimed to identify twenty-nine bacterial strains from the rhizosphere of Salicornia fruticosa by sequencing the 16S rDNA gene, evaluate their development in increasing concentrations of NaCl, classify them according to their salinity response, and determine their P solubilization capability. The bacteria were cultivated in nutrient agar medium with NaCl concentrations ranging from 0.5% to 30%. The phosphate solubilization capacity of the bacteria was evaluated in angar and broth National Botanical Research Institute (NBRIP) media supplemented with calcium phosphate (CaHPO4) and aluminum phosphate (AlPO4), and increased with 3% NaCl. All bacterial strains were classified as halotolerant and identified to the genera Bacillus, Enterobacter, Halomonas, Kushneria, Oceanobacillus, Pantoea, Pseudomonas, and Staphylococcus, with only one isolate was not identified. The isolates with the highest ability to solubilize phosphorus from CaHPO4 in the liquid medium were Kushneria sp. (SS102) and Enterobacter sp. (SS186), with 989.53 and 956.37 mg·Kg-1 P content and final pH of 4.1 and 3.9, respectively. For the solubilization of AlPO4, the most effective isolates were Bacillus sp. (SS89) and Oceanobacillus sp. (SS94), which raised soluble P by 61.10 and 45.82 mg·Kg-1 and final pH of 2.9 and 3.6, respectively. These bacteria demonstrated promising results in in vitro P solubilization and can present potential for the development of bioinput. Further analyses, involving different phosphate sources and the composition of produced organic acids, will be conducted to contribute to a comprehensive understanding of their applications in sustainable agriculture.
Collapse
Affiliation(s)
- E. A. P. Teles
- Laboratory of Molecular Genetics of Microorganisms, Department of Veterinary Microbiology and Immunology, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropedica, Brazil
| | - J. F. Xavier
- Laboratory of Molecular Genetics of Microorganisms, Department of Veterinary Microbiology and Immunology, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropedica, Brazil
| | - F. S. Arcênio
- Laboratory of Molecular Genetics of Microorganisms, Department of Veterinary Microbiology and Immunology, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropedica, Brazil
| | - R. L. Amaya
- Laboratory of Molecular Genetics of Microorganisms, Department of Veterinary Microbiology and Immunology, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropedica, Brazil
| | - J. V. S. Gonçalves
- Laboratory of Molecular Genetics of Microorganisms, Department of Veterinary Microbiology and Immunology, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropedica, Brazil
| | | | - E. Zonta
- Laboratory of Soil-Plant Relationship, Department of Soils, Institute of Agronomy, UFRRJ, Seropedica, Brazil
| | - I. S. Coelho
- Laboratory of Molecular Genetics of Microorganisms, Department of Veterinary Microbiology and Immunology, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropedica, Brazil
| |
Collapse
|
47
|
Meng L, Chen Y, Tang L, Sun X, Huo H, He Y, Huang Y, Shao Q, Pan S, Li Z. Effects of temperature-related changes on charred bone in soil: From P release to microbial community. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 6:100221. [PMID: 38292865 PMCID: PMC10825478 DOI: 10.1016/j.crmicr.2024.100221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Phosphorus (P) is one of the most common limited nutrients in terrestrial ecosystems. Animal bones, with abundant bioapatite, are considerable P sources in terrestrial ecosystems. Heating significantly promotes P release from bone bioapatite, which may alleviate P limitation in soil. This study aimed to explore P release from charred bone (CB) under heating at various temperatures (based on common natural heating). It showed that heating at ∼300 °C significantly increased the P release (up to ∼30 mg/kg) from CB compared with other heating temperatures. Then, the subsequent changes of available P and pH induced evident alternation of soil microbial community composition. For instance, CB heated at ∼300 °C caused elevation of phosphate-solubilizing fungi (PSF) abundance. This further stimulated P mobility in the soil. Meanwhile, the fungal community assembly process was shifted from stochastic to deterministic, whereas the bacterial community was relatively stable. This indicated that the bacterial community showed fewer sensitive responses to the CB addition. This study hence elucidated the significant contribution of heated bone materials on P supply. Moreover, functional fungi might assist CB treated by natural heating (e.g., fire) to construct P "Hot Spots".
Collapse
Affiliation(s)
- Lingzi Meng
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- State Key Laboratory of Lake Science and Environment, Nanjing 210008, China
| | - Yunhui Chen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- State Key Laboratory of Lake Science and Environment, Nanjing 210008, China
| | - Lingyi Tang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xiaoqin Sun
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, Jiangsu 210014, China
| | - Hongxun Huo
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yuxin He
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yinan Huang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Qi Shao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Shang Pan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhen Li
- State Key Laboratory of Lake Science and Environment, Nanjing 210008, China
- State Key Laboratory of Biogeology and Environmental Geology, Wuhan 430074, China
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
48
|
Ge X, Fan Y, Zhai H, Chi J, Putnis CV, Wang L, Zhang W. Direct observations of nanoscale brushite dissolution by the concentration-dependent adsorption of phosphate or phytate. WATER RESEARCH 2024; 248:120851. [PMID: 37976955 DOI: 10.1016/j.watres.2023.120851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/05/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
With the development of agricultural intensification, phosphorus (P) accumulation in croplands and sediments has resulted in the increasingly widespread interaction between inorganic and organic P species, which has been, previously, underestimated or even ignored. We quantified the nanoscale dissolution kinetics of sparingly soluble brushite (CaHPO4·2H2O, DCPD) over a broad range of phosphate and/or phytate concentrations by using in situ atomic force microscopy (AFM). Compared to water, we found that low concentrations of phosphate (1-1000 µM) or phytate (1-100 µM) inhibited brushite dissolution by slowing single step retraction. However, with increasing phosphate or phytate concentrations to 10 mM, there was a reverse effect of dissolution promotion at brushite-water interfaces. In situ observations of the coupled dissolution-reprecipitation showed that phosphate precipitated more readily than phytate on brushite surfaces, with the formation of amorphous calcium phosphate (ACP). For a fundamental understanding, zeta potential and in situ Raman spectroscopy (RS) revealed that the concentration-dependent dissolution is attributed to the reverse of outer-sphere to inner-sphere adsorption with increasing phosphate or phytate concentrations. In addition, the mineralization of phytate with outer-sphere adsorption by phytase was higher than that with inner-spere adsorption, and the presence of phytate delayed ACP phase transformation to hydroxylapatite (HAP). These in situ observations and analyses may fill the knowledge gaps of interaction between inorganic and organic P species in P-rich terrestrial and aquatic environments, thereby implicating their biogeochemical cycling and the associated availability.
Collapse
Affiliation(s)
- Xinfei Ge
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Yuke Fan
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Hang Zhai
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Jialin Chi
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Christine V Putnis
- Institut für Mineralogie, University of Münster, Münster 48149, Germany; School of Molecular and Life Sciences, Curtin University, Perth 6845, Australia
| | - Lijun Wang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenjun Zhang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
49
|
Gao Z, Zhao L, Geng H, Li M, Chen D, Zhang Y. Bibliometric and literature review of the development of mineral fertilizers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:27-42. [PMID: 38017216 DOI: 10.1007/s11356-023-31209-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023]
Abstract
Mineral fertilizers are a new type of sustainable fertilizers, containing natural ores as the primary raw material with various nutrients and organic matters. This study combines two methods of bibliometric analysis to comprehensively review the progress of mineral fertilizers from 2000 to 2021. The results showed that the research on mineral fertilizers has increased in the past 21 years, especially after 2014. Developed countries studied mineral fertilizers more extensively than developing countries, but some developing countries, such as China and India, are also paying attention to this area in recent years. Chinese Academic of Sciences, Agriculture and Agri-Food Canada, and Chinese Academy of Agricultural Sciences were the main publishing institutions. Nutrient elements, changes in soil properties, and the effects on promoting crop growth were the main contents of the research. Still, such issues as bioremediation, soil environment improvement, and crop resistance are becoming hot spots. The field of mineral fertilizers showed a strong interdisciplinary nature and an increasingly comprehensive research perspective. The goal is that this synthesis will be used as a starting point for a broader study on responsible environmental management and research on improving fertilizer use efficiency.
Collapse
Affiliation(s)
- Zijie Gao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Lin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
- Tianjin Binhai Ecological Key Belt Protection and Function Construction Technology Engineering Center, Tianjin, 300456, China
| | - Hongzhi Geng
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Mengxiao Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Daying Chen
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Youjun Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
50
|
Shah SH, Hussain MB, Haider G, Haq TU, Zahir ZA, Danish S, Paray BA, Kammann C. Acidified manure and nitrogen-enriched biochar showed short-term agronomic benefits on cotton-wheat cropping systems under alkaline arid field conditions. Sci Rep 2023; 13:22504. [PMID: 38110507 PMCID: PMC10728090 DOI: 10.1038/s41598-023-48996-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 12/02/2023] [Indexed: 12/20/2023] Open
Abstract
Application of organic residues such as farm manure and biochar in various agricultural environments have shown positive effects on soil carbon sequestration. However, there is a lack of consensus regarding the agronomical benefits of a single and small dose of biochar and farm manure in arid alkaline soils. Therefore, a field experiment with the given treatments (1) control (no amendment), (2) acidified manure (AM) at 300 kg ha-1, (3) nitrogen (N) enriched biochar (NeB) at 3 Mg ha-1, and (4) an equal combination of AM + NeB (150 kg ha-1 AM + 1.5 Mg ha-1 NeB)) was conducted in a typical cotton-wheat cropping system. A parallel laboratory incubation study with the same amendments was carried out to account for soil carbon dioxide emission (CO2). The N enrichment of biochar and its co-application with acidified manure increased soil mineral N (NO3- and NH4+) in the topsoil (0-15 cm), and increased total N uptake (25.92% to 69.91%) in cotton over control, thus reducing N losses and increased uptake over control. Compared to the control, co-application of AM + NeB significantly improved soil N and P bioavailability, leading to increased plant biomass N, P, and K (32%, 40%, 6%, respectively) uptake over control. The plant's physiological and growth improvements [chlorophyll (+ 28.2%), height (+ 47%), leaf area (+ 17%), number of bolls (+ 7%), and average boll weight (+ 8%)] increased the agronomic yield in the first-season crop cotton by 25%. However, no positive response was observed in the second season wheat crop. This field study improved our understanding that co-application of acidified manure and N-enriched biochar in small dose can be a strategy to achieve short-term agronomic benefits and carbon sequestration in the long run.
Collapse
Affiliation(s)
- Suleman Haider Shah
- Department of Soil and Environmental Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Muhammad Baqir Hussain
- Department of Soil and Environmental Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan.
| | - Ghulam Haider
- Department of Plant Biotechnology, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Tanveer Ul Haq
- Department of Soil and Environmental Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Zahir Ahmad Zahir
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Subhan Danish
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Punjab, Pakistan.
| | - Bilal Ahamad Paray
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Claudia Kammann
- Climate Change Research for Special Crops, Department of Applied Ecology, Hochschule Geisenheim University, Von-Lade Str. 1, 65366, Geisenheim, Germany
| |
Collapse
|