1
|
Schwientek M, Rügner H, Haderlein SB, Schulz W, Wimmer B, Engelbart L, Bieger S, Huhn C. Glyphosate contamination in European rivers not from herbicide application? WATER RESEARCH 2024; 263:122140. [PMID: 39096811 DOI: 10.1016/j.watres.2024.122140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 08/05/2024]
Abstract
The most widely used herbicide glyphosate contaminates surface waters around the globe. Both agriculture and urban applications are discussed as sources for glyphosate. To better delineate these sources, we investigated long-term time series of concentrations of glyphosate and its main transformation product aminomethylphosphonic acid (AMPA) in a large meta-analysis of about 100 sites in the USA and Europe. The U.S. data reveal pulses of glyphosate and AMPA when the discharge of the river is high, likely indicating mobilization by rain after herbicide application. In contrast, European concentration patterns of glyphosate and AMPA show a typical cyclic-seasonal component in their concentration patterns, correlating with patterns of wastewater markers such as pharmaceuticals, which is consistent with the frequent detection of these compounds in wastewater treatment plants. Our large meta-analysis clearly shows that for more than a decade, municipal wastewater was a very important source of glyphosate. In addition, European river water data show rather high and constant base mass fluxes of glyphosate all over the year, not expected from herbicide application. From our meta-analysis, we define criteria for a source of glyphosate, which was hidden so far. AMPA is known to be a transformation product not only of glyphosate but also of aminopolyphosphonates used as antiscalants in many applications. As they are used in laundry detergents in Europe but not in the USA, we hypothesize that glyphosate may also be a transformation product of aminopolyphosphonates.
Collapse
Affiliation(s)
- M Schwientek
- Eberhard Karls Universität Tübingen, Geo- and Environmental Sciences, Department of Geosciences, Germany
| | - H Rügner
- Eberhard Karls Universität Tübingen, Geo- and Environmental Sciences, Department of Geosciences, Germany
| | - S B Haderlein
- Eberhard Karls Universität Tübingen, Geo- and Environmental Sciences, Department of Geosciences, Germany
| | - W Schulz
- Zweckverband Landeswasserversorgung, Laboratory for Operation Control and Research, Germany
| | - B Wimmer
- Eberhard Karls Universität Tübingen, Institute of Physical and Theoretical Chemistry, Department of Chemistry, Germany
| | - L Engelbart
- Eberhard Karls Universität Tübingen, Institute of Physical and Theoretical Chemistry, Department of Chemistry, Germany
| | - S Bieger
- Eberhard Karls Universität Tübingen, Institute of Physical and Theoretical Chemistry, Department of Chemistry, Germany
| | - C Huhn
- Eberhard Karls Universität Tübingen, Institute of Physical and Theoretical Chemistry, Department of Chemistry, Germany.
| |
Collapse
|
2
|
Nagesh P, Gassmann M, Eitzinger J, de Boer HJ, Edelenbosch OY, van Vuuren DP, Dekker SC. Modelling the impacts of climate change on agrochemical fate and transport by water on a catchment scale. Heliyon 2024; 10:e35669. [PMID: 39170220 PMCID: PMC11336872 DOI: 10.1016/j.heliyon.2024.e35669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024] Open
Abstract
The export of agrochemicals and their transformation products (TPs) following their application in the agricultural fields poses a threat to water quality. Future changes in climatic conditions (e.g. extreme weather events such as heavy rainfall or extended dry periods) could alter the degradation and mobility of agrochemicals. In this research, we use an integrated modelling framework to understand the impact of extreme climate events on the fate and transport of the agrochemical S-Metolachlor and two of its TPs (M-OXA, Metolachlor Oxanilic Acid and M-ESA, Metolachlor Ethyl Sulfonic Acid). This is done by coupling climate model outputs to the Zin-AgriTra agrochemical reactive transport model in four simulation scenarios. 1) Reference (2015-2018), 2) Very dry (2038-2041), 3) Very wet (2054-2057) and 4) High temperature (2096-2099) conditions of a selected RCP8.5 based regional climate scenario. The modelling framework is tested on an agricultural catchment, Wulka, in Burgenland, Austria. The model results indicate that 13-14 % of applied S-Metolachlor is retained in the soil, and around 85 % is degraded into TPs in the different scenarios. In very dry and high-temperature scenarios, degradation is higher, and hence, there is less S-Metolachlor in the soil. However, a large share of formed M-OXA and M-ESA are retained in the soil, which is transported via overland and groundwater flow, leading to a build-up effect in M-OXA and M-ESA river concentrations over the years. Though a small share of S-Metolachlor and TPs are transported to rivers, their river export is affected by the intensity and amount of rainfall. The very wet and high-temperature scenarios show higher S-Metolachlor and TP concentrations at the catchment outlet due to higher river discharge. The reference scenario shows higher river peak concentrations associated with higher overland flow caused by measured hourly rainfall compared to disaggregated daily precipitation data in the other scenarios.
Collapse
Affiliation(s)
- Poornima Nagesh
- Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, the Netherlands
| | - Matthias Gassmann
- Department of Hydrology and Substance Balance, University of Kassel, Kassel, Germany
| | - Josef Eitzinger
- Institute of Meteorology and Climatology, University of Natural Resources and Life Sciences, Vienna, BOKU, Austria
| | - Hugo J. de Boer
- Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, the Netherlands
| | - Oreane Y. Edelenbosch
- Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, the Netherlands
| | - Detlef P. van Vuuren
- Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, the Netherlands
- PBL Netherlands Environmental Assessment Agency, the Netherlands
| | - Stefan C. Dekker
- Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
3
|
Yu X, Zhong G, Zhao G, Zhou T, Yu J, Zhang X, Gai Z, Xu Z, Lei H, Shen X. Enantioselectivity regulation of antibody against chiral herbicide metolachlor based on interaction at chiral center. Int J Biol Macromol 2024; 270:132471. [PMID: 38763235 DOI: 10.1016/j.ijbiomac.2024.132471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/29/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
Enantioselective antibodies have emerged as great potential biomaterials in the fields of immunoassays and chiral separation. However, cross-reactivity of antibodies to the distomer may severely restrict the application. Comprehending the interaction mechanism between antibodies and enantiomers could be beneficial to produce superior enantioselective antibodies. In this study, a pair of recombinant antibodies (RAbs) against metolachlor enantiomers at chiral carbon (αSS-MET and αSR-MET) were generated and characterized. The αSS-MET-RAb and αSR-MET-RAb showed comparable sensitivity and specificity to the parental monoclonal antibodies by icELISA, with IC50 values of 3.45 and 223.77 ng/mL, respectively. Moreover, the complex structures of RAbs and corresponding eutomer were constructed and analyzed, and site-specific mutagenesis was utilized to verify the reliability of the enantioselective mechanism elucidated. It demonstrated that the strength of the interaction between the chiral center region of eutomer and the antibody was the key factor for the enantioselectivity of antibody. Increasing this interaction could limit the conformational adjustment of the distomer in a specific chiral recognition cavity, thus decreasing the affinity of the antibody to the distomer. This work provided the in-depth analysis of enantioselective mechanism for two RAbs and paved the way to regulate antibody enantioselective performance for immunoassays of chiral compounds.
Collapse
Affiliation(s)
- Xiaoting Yu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Guohua Zhong
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Gang Zhao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Tao Zhou
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiayi Yu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xu Zhang
- College of Life Science and Engineering, Foshan University, Foshan 528225, China; Guangzhou Editgene Co., Ltd., Guangzhou 510642, China
| | - Zuoqi Gai
- College of Life Science and Engineering, Foshan University, Foshan 528225, China; Guangzhou Editgene Co., Ltd., Guangzhou 510642, China
| | - Zhenlin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Xing Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
4
|
Chen SF, Chen WJ, Huang Y, Wei M, Chang C. Insights into the metabolic pathways and biodegradation mechanisms of chloroacetamide herbicides. ENVIRONMENTAL RESEARCH 2023; 229:115918. [PMID: 37062473 DOI: 10.1016/j.envres.2023.115918] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/04/2023] [Accepted: 04/13/2023] [Indexed: 05/21/2023]
Abstract
Chloroacetamide herbicides are widely used around the world due to their high efficiency, resulting in increasing levels of their residues in the environment. Residual chloroacetamides and their metabolites have been frequently detected in soil, water and organisms and shown to have toxic effects on non-target organisms, posing a serious threat to the ecosystem. As such, rapid and efficient techniques that eliminate chloroacetamide residues from the ecosystem are urgently needed. Degradation of these herbicides in the environment mainly occurs through microbial metabolism. Microbial strains such as Acinetobacter baumannii DT, Bacillus altitudinis A16, Pseudomonas aeruginosa JD115, Sphingobium baderi DE-13, Catellibacterium caeni DCA-1, Stenotrophomonas acidaminiphila JS-1, Klebsiella variicola B2, and Paecilomyces marquandii can effectively degrade chloroacetamide herbicides. The degradation pathway of chloroacetamide herbicides in aerobic bacteria is mainly initiated by an N/C-dealkylation reaction, followed by aromatic ring hydroxylation and cleavage processes, whereas dechlorination is the initial reaction in anaerobic bacteria. The molecular mechanisms associated with bacterial degradation of chloroacetamide herbicides have been explored, with amidase, hydrolase, reductase, ferredoxin and cytochrome P450 oxygenase currently known to play a pivotal role in the catabolic pathways of chloroacetamides. The fungal pathway for the degradation of these herbicides is more complex with more diversified products, and the degradation enzymes and genes involved remain to be discovered. However, there are few reviews specifically summarizing the microbial degrading species and biochemical mechanisms of chloroacetamide herbicides. Here, we briefly summarize the latest progress resulting from research on microbial strain resources and enzymes involved in degradation of these herbicides and their corresponding genes. Furthermore, we explore the biochemical pathways and molecular mechanisms for biodegradation of chloroacetamide herbicides in depth, thereby providing a reference for further research on the bioremediation of such herbicides.
Collapse
Affiliation(s)
- Shao-Fang Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China; Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Wen-Juan Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China; Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yaohua Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China; Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Ming Wei
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China; Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Changqing Chang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China; Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
5
|
Jiang J, Liu Z, Li B, Yuan S, Lin R, Yu X, Liu X, Zhang X, Li K, Xiao D, Yu S, Mu W. Ecotoxicological risk assessment of 14 pesticides and corresponding metabolites to groundwater and soil organisms using China-PEARL model and RQ approach. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:3653-3667. [PMID: 36460934 DOI: 10.1007/s10653-022-01439-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 11/11/2022] [Indexed: 06/01/2023]
Abstract
Global use of pesticides brings uncertain risks to human and nontarget species via environmental matrix. Currently, various models for exposure risk assessment are developed and widely used to forecast the impact of pesticides on environmental organisms. In this study, five commonly used insecticides, seven herbicides and three fungicides were chosen to analyze the subsequent risks in groundwater in simulated scenarios using China-PEARL (Pesticide Emission Assessment at Regional and Local Scales) model. In addition, their exposure risks to soil organisms were characterized based on risk quotient (RQ) approach. The results indicated that 23.3% of the total 528 predicted environmental concentrations (PECs) of pesticides and respective metabolites in groundwater from six Chinese simulated locations with ten crops were above 10 μg L-1. Furthermore, acceptable human risks of pesticides in groundwater were observed for all simulation scenarios (RQ < 1). Based on the derived PECs in soil short-term and long-term exposure simulation scenarios, all compounds were evaluated to be with acceptable risks to soil organisms, except that imidacloprid was estimated to be with unacceptable chronic risk (RQ = 27.5) to earthworms. Overall, the present findings provide an opportunity for a more-comprehensive understanding of exposure toxicity risks of pesticides leaching into groundwater and soil.
Collapse
Affiliation(s)
- Jiangong Jiang
- College of Plant Protection, Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong, People's Republic of China
| | - Zhixin Liu
- Seaside Forest Farm, Weihai, 264300, Shandong, People's Republic of China
| | - Beixing Li
- College of Plant Protection, Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong, People's Republic of China
| | - Shankui Yuan
- Ministry of Agriculture and Rural Affairs, Institute for the Control of Agrochemicals, Beijing, 100125, People's Republic of China
| | - Ronghua Lin
- Ministry of Agriculture and Rural Affairs, Institute for the Control of Agrochemicals, Beijing, 100125, People's Republic of China
| | - Xin Yu
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Xiao Liu
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Xianxia Zhang
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Ke Li
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Dong Xiao
- Haiyang Plant Protection Station, Yantai, 265100, Shandong, People's Republic of China
| | - Shaoli Yu
- Haiyang Plant Protection Station, Yantai, 265100, Shandong, People's Republic of China
| | - Wei Mu
- College of Plant Protection, Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong, People's Republic of China.
| |
Collapse
|
6
|
Rodríguez-Bolaña C, Pérez-Parada A, Tesitore G, Goyenola G, Kröger A, Pacheco M, Gérez N, Berton A, Zinola G, Gil G, Mangarelli A, Pequeño F, Besil N, Niell S, Heinzen H, Teixeira de Mello F. Multicompartmental monitoring of legacy and currently used pesticides in a subtropical lake used as a drinking water source (Laguna del Cisne, Uruguay). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162310. [PMID: 36828068 DOI: 10.1016/j.scitotenv.2023.162310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/13/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
A pilot annual monitoring survey (April 2018-March 2019) was conducted to investigate the presence of pesticides in superficial water and fish in Laguna del Cisne, one of the most critical drinking water sources in Uruguay. A total of 25 pesticide residues were detected in superficial water (89.3 % of the samples). Pesticide's temporal distribution was associated with crops and livestock practices, with higher occurrences in spring and summer than in autumn and winter. The most frequent compounds in superficial water were the insecticide chlorantraniliprole, and the herbicides glyphosate (including its metabolite AMPA) and metolachlor. The levels of Organochlorine pesticide, p,p'-DDT, was in some cases two order of magnitude above the international water quality guidelines for Ambient Water Criteria. In fishes, eight different pesticides were detected, at concentrations from 1000 to 453,000 ng·kg-1. The most frequent pesticides found were propiconazole, chlorpyrifos, and p,p'-DDE. The widespread occurrence of pesticides in fish suggests potential exposure effects on fish populations and the aquatic ecosystem. The sampling approach of this work allowed monitoring the continuous concentrations of several pesticides in surface waters and fishes to establish the influence from past and current agriculture practices in Laguna del Cisne basin. For safety measures, continuous monitoring programs must be performed in this system to prevent toxicity impacts on aquatic organisms and human health.
Collapse
Affiliation(s)
- César Rodríguez-Bolaña
- Departamento de Ecologia y Gestion Ambiental, Centro Universitario Regional del Este (CURE), Universidad de la República, Tacuarembó entre Saravia y Bvar. Artigas, Maldonado CP 20000, Uruguay.
| | - Andrés Pérez-Parada
- Departamento de Desarrollo Tecnológico, Centro Universitario Regional del Este (CURE), Universidad de la República, Ruta 9 y Ruta 15, CP 27000 Rocha, Uruguay; Grupo de Análisis de Compuestos Traza, Cátedra de Farmacognosia y Productos Naturales, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, General Flores 2124, 11800 Montevideo, Uruguay
| | - Giancarlo Tesitore
- Departamento de Ecologia y Gestion Ambiental, Centro Universitario Regional del Este (CURE), Universidad de la República, Tacuarembó entre Saravia y Bvar. Artigas, Maldonado CP 20000, Uruguay
| | - Guillermo Goyenola
- Departamento de Ecologia y Gestion Ambiental, Centro Universitario Regional del Este (CURE), Universidad de la República, Tacuarembó entre Saravia y Bvar. Artigas, Maldonado CP 20000, Uruguay
| | - Alejandra Kröger
- Departamento de Ecologia y Gestion Ambiental, Centro Universitario Regional del Este (CURE), Universidad de la República, Tacuarembó entre Saravia y Bvar. Artigas, Maldonado CP 20000, Uruguay
| | - Martín Pacheco
- Departamento de Ecologia y Gestion Ambiental, Centro Universitario Regional del Este (CURE), Universidad de la República, Tacuarembó entre Saravia y Bvar. Artigas, Maldonado CP 20000, Uruguay
| | - Natalia Gérez
- Grupo de Análisis de Compuestos Traza, Cátedra de Farmacognosia y Productos Naturales, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, General Flores 2124, 11800 Montevideo, Uruguay
| | - Analia Berton
- Grupo de Análisis de Compuestos Traza, Cátedra de Farmacognosia y Productos Naturales, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, General Flores 2124, 11800 Montevideo, Uruguay
| | - Gianna Zinola
- Grupo de Análisis de Compuestos Traza, Cátedra de Farmacognosia y Productos Naturales, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, General Flores 2124, 11800 Montevideo, Uruguay
| | - Guillermo Gil
- Grupo de Análisis de Compuestos Traza, Cátedra de Farmacognosia y Productos Naturales, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, General Flores 2124, 11800 Montevideo, Uruguay
| | - Alejandro Mangarelli
- Grupo de Análisis de Compuestos Traza, Cátedra de Farmacognosia y Productos Naturales, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, General Flores 2124, 11800 Montevideo, Uruguay
| | - Fiamma Pequeño
- Grupo de Análisis de Compuestos Traza, Departamento de Química del Litoral, Facultad de Química, CENUR Litoral Norte, Universidad de la República, Ruta 3, Km 363, 60000 Paysandú, Uruguay
| | - Natalia Besil
- Grupo de Análisis de Compuestos Traza, Departamento de Química del Litoral, Facultad de Química, CENUR Litoral Norte, Universidad de la República, Ruta 3, Km 363, 60000 Paysandú, Uruguay
| | - Silvina Niell
- Grupo de Análisis de Compuestos Traza, Departamento de Química del Litoral, Facultad de Química, CENUR Litoral Norte, Universidad de la República, Ruta 3, Km 363, 60000 Paysandú, Uruguay
| | - Horacio Heinzen
- Grupo de Análisis de Compuestos Traza, Cátedra de Farmacognosia y Productos Naturales, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, General Flores 2124, 11800 Montevideo, Uruguay
| | - Franco Teixeira de Mello
- Departamento de Ecologia y Gestion Ambiental, Centro Universitario Regional del Este (CURE), Universidad de la República, Tacuarembó entre Saravia y Bvar. Artigas, Maldonado CP 20000, Uruguay.
| |
Collapse
|
7
|
Bianca MR, Rice CP, Lupitskyy R, Plummer RE, McCarty GW, Hapeman CJ. Trans enantiomeric separation of MESA and MOXA, two environmentally important metabolites of the herbicide, metolachlor. MethodsX 2022; 9:101884. [PMID: 36325380 PMCID: PMC9618976 DOI: 10.1016/j.mex.2022.101884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Complete separation of the trans-enantiomers of the two most abundant, persistent polar metabolites of metolachlor, metolachlor ethane sulfonic acid (MESA) and metolachlor oxanilic acid (MOXA), was achieved using UPLC equipped with a reverse phase chiral column and trace detection with an electrospray triple quadrupole mass spectrometer. Various conditions that influenced the separation and instrumental signal were investigated to achieve the optimum separation and instrument response within an analysis time of less than 30 minutes. Different eluting solvent compositions for each metabolite were required for optimized separation of of the 4 enantiomers. Standard curves were responsive to less than 13 ng/mL and 8 ng/mL for the least plentiful MOXA and MESA enantiomers, respectively with a linear coefficient of determination greater than 0.998. Suitability of the method for quantification of the 4 mixed enantiomers of each was demonstrated using natural surface water samples collected from the Choptank River watershed in Eastern Maryland.LC chiral separation parameters were varied to achieve optimal separation of the major enantiomers of the two metolachlor metabolites. LC/MS-MS parameters were adjusted to maximize response and minimize analysis time. Finished methods were used to quantitate enantiomers in archived stream water extracts from agricultural watersheds with corn/soybean production.
Collapse
Affiliation(s)
- Marla R. Bianca
- USDA-ARS, Sustainable Agricultural Systems Laboratory, Maryland 20705, USA 22
| | - Clifford P. Rice
- USDA-ARS, Sustainable Agricultural Systems Laboratory, Maryland 20705, USA 22,Corresponding author.
| | | | - Rebecca E. Plummer
- Formerly USDA-ARS, Hydrology and Remote Sensing Laboratory, Maryland 20705, USA
| | | | | |
Collapse
|
8
|
Gilevska T, Masbou J, Baumlin B, Chaumet B, Chaumont C, Payraudeau S, Tournebize J, Probst A, Probst JL, Imfeld G. Do pesticides degrade in surface water receiving runoff from agricultural catchments? Combining passive samplers (POCIS) and compound-specific isotope analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156735. [PMID: 35738369 DOI: 10.1016/j.scitotenv.2022.156735] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/12/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Pesticides lead to surface water pollution and ecotoxicological effects on aquatic biota. Novel strategies are required to evaluate the contribution of degradation to the overall pesticide dissipation in surface waters. Here, we combined polar organic chemical integrative samplers (POCIS) with compound-specific isotope analysis (CSIA) to trace in situ pesticide degradation in artificial ponds and agricultural streams. The application of pesticide CSIA to surface waters is currently restricted due to environmental concentrations in the low μg.L-1 range, requiring processing of large water volumes. A series of laboratory experiments showed that POCIS enables preconcentration and accurate recording of the carbon isotope signatures (δ13C) of common pesticides under simulated surface water conditions and for various scenarios. Commercial and in-house POCIS did not significantly (Δδ13C < 1 %) change the δ13C of pesticides during uptake, extraction, and δ13C measurements of pesticides, independently of the pesticide concentrations (1-10 μg.L-1) or the flow speeds (6 or 14 cm.s-1). However, simulated rainfall events of pesticide runoff affected the δ13C of pesticides in POCIS. In-house POCIS coupled with CSIA of pesticides were also tested under different field conditions, including three flow-through and off-stream ponds and one stream receiving pesticides from agricultural catchments. The POCIS-CSIA method enabled to determine whether degradation of S-metolachlor and dimethomorph mainly occurred in agricultural soil or surface waters. Comparison of δ13C of S-metolachlor in POCIS deployed in a stream with δ13C of S-metolachlor in commercial formulations suggested runoff of fresh S-metolachlor in the midstream sampling site, which was not recorded in grab samples. Altogether, our study highlights that the POCIS-CSIA approach represents a unique opportunity to evaluate the contribution of degradation to the overall dissipation of pesticides in surface waters.
Collapse
Affiliation(s)
- Tetyana Gilevska
- Université de Strasbourg, CNRS/ENGEES, ITES UMR 7063, Institut Terre et Environnement de Strasbourg, Strasbourg, France
| | - Jérémy Masbou
- Université de Strasbourg, CNRS/ENGEES, ITES UMR 7063, Institut Terre et Environnement de Strasbourg, Strasbourg, France
| | - Baptiste Baumlin
- Université de Strasbourg, CNRS/ENGEES, ITES UMR 7063, Institut Terre et Environnement de Strasbourg, Strasbourg, France
| | - Betty Chaumet
- Laboratoire Ecologie fonctionnelle et Environnement, Université de Toulouse, CNRS, 31326 Castanet Tolosan, France
| | | | - Sylvain Payraudeau
- Université de Strasbourg, CNRS/ENGEES, ITES UMR 7063, Institut Terre et Environnement de Strasbourg, Strasbourg, France
| | | | - Anne Probst
- Laboratoire Ecologie fonctionnelle et Environnement, Université de Toulouse, CNRS, 31326 Castanet Tolosan, France
| | - Jean Luc Probst
- Laboratoire Ecologie fonctionnelle et Environnement, Université de Toulouse, CNRS, 31326 Castanet Tolosan, France
| | - Gwenaël Imfeld
- Université de Strasbourg, CNRS/ENGEES, ITES UMR 7063, Institut Terre et Environnement de Strasbourg, Strasbourg, France.
| |
Collapse
|
9
|
Liu L, Li X, Wang X, Wang Y, Shao Z, Liu X, Shan D, Liu Z, Dai Y. Metolachlor adsorption using walnut shell biochar modified by soil minerals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119610. [PMID: 35700880 DOI: 10.1016/j.envpol.2022.119610] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 05/31/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
The removal of pesticide residues in soil is a research hotspot. The metolachlor (MET) adsorption by walnut shell biochar (BC) modified with montmorillonite (MBC), illite (IBC), and kaolinite (KBC), as well as the original BC (OBC) was investigated. The characteristics of samples were studied by scanning electron microscopy and mapping analysis, Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetry, and chemical stability analysis. The effects of the dosage, ionic strength, and pH, and determined the adsorption kinetics and isotherms for MET with the BCs were analyzed. In addition, response surface methodology regression model analysis was conducted and the adsorption mechanisms were investigated. The results showed that the thermal stability and chemical stability of MBC, IBC, and KBC were higher than those of OBC, and MBC had the greatest stability. The MET adsorption rates of OBC, MBC, IBC, and KBC were 62.15%, 92.47%, 87.97%, and 83.31%, respectively. The kinetic fitting results and adsorption mechanisms showed that the modification of BC with minerals enhanced the physical adsorption of MET. The maximum MET adsorption capacities by OBC, MBC, IBC, and KBC were 39.68 mg g-1, 68.49 mg g-1, 65.79 mg g-1, and 65.36 mg g-1, respectively. Hydrogen bonds, π-π bonds, coordination bonds, and hydrophobic interactions were the key adsorption mechanisms. Therefore, the mineral-modified BCs were characterized by high adsorption rates and stability. This approach can make BC more efficient, with higher performance as a low cost soil amendment.
Collapse
Affiliation(s)
- Lu Liu
- Key Laboratory of Agricultural Renewable Resource Utilization Technology of Heilongjiang Province, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin, 150030, China; School of Resources and Environment, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin, 150030, China; School of Environment, Harbin Institute of Technology, No.73, Huanghe Road, Nangang District, Harbin, 150090, China
| | - Xiaohan Li
- School of Resources and Environment, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin, 150030, China
| | - Xiaorou Wang
- Environment Research Institute, Shandong University, No.72 Binhai Road, Jimo District, Qingdao, 266237, China
| | - Yuxin Wang
- School of Resources and Environment, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin, 150030, China
| | - Ziyi Shao
- School of Resources and Environment, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin, 150030, China
| | - Xiao Liu
- School of Resources and Environment, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin, 150030, China
| | - Dexin Shan
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, No.319 Honghe Road, Yongchuan District, Chongqing, 402168, China
| | - Zhihua Liu
- School of Resources and Environment, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin, 150030, China
| | - Yingjie Dai
- School of Resources and Environment, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin, 150030, China.
| |
Collapse
|
10
|
Liu T, Yao B, Luo Z, Li W, Li C, Ye Z, Gong X, Yang J, Zhou Y. Applications and influencing factors of the biochar-persulfate based advanced oxidation processes for the remediation of groundwater and soil contaminated with organic compounds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155421. [PMID: 35472360 DOI: 10.1016/j.scitotenv.2022.155421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/17/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
Biochar (BC) is a low-cost material rich in carbon, which is being used increasingly as a catalyst in persulfate-based advanced oxidation processes (PS-AOPs) for the remediation of groundwater and soil contaminated with organic compounds. In this work, a general summary of preparation methods and applications of various BC (i.e., pristine BC, magnetic BC, and chemically modified BC) in PS-AOPs is presented. Different influence factors (e.g., pH, anions, natural organic matter) for the degradation of organic compounds are discussed. Meanwhile, the influence of external energy (e.g., solar irradiation, UV-Vis, ultrasonic) is also mentioned. Furthermore, the advantage of different BC in PS-AOPs are compared. Finally, potential problems, challenges, and prospects in the application of biochar-persulfate based advanced oxidation processes (BCPS-AOPs) are discussed in the conclusion and perspective.
Collapse
Affiliation(s)
- Tianhao Liu
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Bin Yao
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Zirui Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Wei Li
- School of Biology and Chemistry, Key Laboratory of Chemical Synthesis and Environmental Pollution Control-Remediation Technology of Guizhou Province, Minzu Normal University of Xingyi, Xingyi 562400, China.
| | - Changwu Li
- Aerospace Kaitian Environmental Technology Co., Ltd, Changsha 410100, China
| | - Ziyi Ye
- Aerospace Kaitian Environmental Technology Co., Ltd, Changsha 410100, China
| | - Xiaoxiang Gong
- School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Jian Yang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
11
|
Sarrazin B, Wezel A, Guerin M, Robin J. Pesticide contamination of fish ponds in relation to crop area in a mixed farmland-pond landscape (Dombes area, France). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:66858-66873. [PMID: 35513618 DOI: 10.1007/s11356-022-20492-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/24/2022] [Indexed: 11/03/2022]
Abstract
Pesticides are still widely used by agriculture, leading to the exposure of surface water. This may be the case for fish ponds located in farmland landscapes. To address this issue, the present study investigated the contamination by pesticides of fish ponds located in the mixed agriculture-pond landscape of the Dombes area, France. Ten ponds were selected in water catchments with a gradient of 3-57 ha of cropland with maize and winter cereals as the dominant crops. A total of 197 water samples were collected in the ponds during the fish production season over 3 years. Recently used pesticides were the most frequent residues occurring. Occurrences greater than 0.1 µgL-1 particularly concerned chlorotoluron and S-metolachlor. Maximum observed concentrations were slightly above 3 µgL-1 for S-metolachlor, acetochlor, and dimethenamide, all herbicides allowed for maize cultivation. Isoproturon and chlorotoluron, herbicides allowed in cereal crops, reached up to 1.2 and 1.0 µgL-1, respectively. We found a significant positive effect of crop area in catchments on the pond contamination frequency by pesticides and more significantly on the contamination frequency by broad-spectrum herbicides (glyphosate and AMPA residues). The cumulative antecedent rainfall was best correlated to the frequency of highest contaminations (> 0.5 µgL-1). In such a hydrological context, the crop area within catchment was identified as a good indicator of fish pond exposure to pesticide residues. Finally, we proposed to adapt some mitigation measures to reduce fish pond contamination.
Collapse
Affiliation(s)
- Benoit Sarrazin
- Agroecology and Environment Research Unit, ISARA, 23 rue Jean Baldassini, 69364, Lyon Cedex 07, France.
| | - Alexander Wezel
- Agroecology and Environment Research Unit, ISARA, 23 rue Jean Baldassini, 69364, Lyon Cedex 07, France
| | - Mathieu Guerin
- Agroecology and Environment Research Unit, ISARA, 23 rue Jean Baldassini, 69364, Lyon Cedex 07, France
| | - Joel Robin
- Agroecology and Environment Research Unit, ISARA, 23 rue Jean Baldassini, 69364, Lyon Cedex 07, France
| |
Collapse
|
12
|
Lopes-Ferreira M, Maleski ALA, Balan-Lima L, Bernardo JTG, Hipolito LM, Seni-Silva AC, Batista-Filho J, Falcao MAP, Lima C. Impact of Pesticides on Human Health in the Last Six Years in Brazil. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19063198. [PMID: 35328887 PMCID: PMC8951416 DOI: 10.3390/ijerph19063198] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 12/15/2022]
Abstract
Every year, Brazil intensifies its activity in agriculture and, as a result, it has become one of the biggest consumers of pesticides in the world. The high rate of these substances raises environmental and human health concerns. Therefore, we collected papers from PubMed, Scopus, Scielo, and Web of Science databases, from 2015 to 2021. After a blind selection using the software Rayyan QCRI by two authors, 51 studies were included. Researchers from the South and the Southeast Brazilian regions contributed to most publications, from areas that concentrate agricultural commodity complexes. Among the pesticides described in the studies, insecticides, herbicides, and fungicides were the most frequent. The articles reported multiple toxic effects, particularly in rural workers. The results obtained can be used to direct policies to reduce the use of pesticides, and to protect the health of the population.
Collapse
Affiliation(s)
- Monica Lopes-Ferreira
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, Vital Brazil Avenue, 1500, Butantan, São Paulo 05503-009, Brazil; (A.L.A.M.); (L.B.-L.); (J.T.G.B.); (L.M.H.); (A.C.S.-S.); (J.B.-F.); (M.A.P.F.); (C.L.)
- Correspondence:
| | - Adolfo Luis Almeida Maleski
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, Vital Brazil Avenue, 1500, Butantan, São Paulo 05503-009, Brazil; (A.L.A.M.); (L.B.-L.); (J.T.G.B.); (L.M.H.); (A.C.S.-S.); (J.B.-F.); (M.A.P.F.); (C.L.)
- Post-Graduation Program of Toxinology, Butantan Institute, São Paulo 05503-009, Brazil
| | - Leticia Balan-Lima
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, Vital Brazil Avenue, 1500, Butantan, São Paulo 05503-009, Brazil; (A.L.A.M.); (L.B.-L.); (J.T.G.B.); (L.M.H.); (A.C.S.-S.); (J.B.-F.); (M.A.P.F.); (C.L.)
| | - Jefferson Thiago Gonçalves Bernardo
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, Vital Brazil Avenue, 1500, Butantan, São Paulo 05503-009, Brazil; (A.L.A.M.); (L.B.-L.); (J.T.G.B.); (L.M.H.); (A.C.S.-S.); (J.B.-F.); (M.A.P.F.); (C.L.)
| | - Lucas Marques Hipolito
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, Vital Brazil Avenue, 1500, Butantan, São Paulo 05503-009, Brazil; (A.L.A.M.); (L.B.-L.); (J.T.G.B.); (L.M.H.); (A.C.S.-S.); (J.B.-F.); (M.A.P.F.); (C.L.)
| | - Ana Carolina Seni-Silva
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, Vital Brazil Avenue, 1500, Butantan, São Paulo 05503-009, Brazil; (A.L.A.M.); (L.B.-L.); (J.T.G.B.); (L.M.H.); (A.C.S.-S.); (J.B.-F.); (M.A.P.F.); (C.L.)
- Post-Graduation Program of Toxinology, Butantan Institute, São Paulo 05503-009, Brazil
| | - Joao Batista-Filho
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, Vital Brazil Avenue, 1500, Butantan, São Paulo 05503-009, Brazil; (A.L.A.M.); (L.B.-L.); (J.T.G.B.); (L.M.H.); (A.C.S.-S.); (J.B.-F.); (M.A.P.F.); (C.L.)
- Post-Graduation Program of Toxinology, Butantan Institute, São Paulo 05503-009, Brazil
| | - Maria Alice Pimentel Falcao
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, Vital Brazil Avenue, 1500, Butantan, São Paulo 05503-009, Brazil; (A.L.A.M.); (L.B.-L.); (J.T.G.B.); (L.M.H.); (A.C.S.-S.); (J.B.-F.); (M.A.P.F.); (C.L.)
| | - Carla Lima
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, Vital Brazil Avenue, 1500, Butantan, São Paulo 05503-009, Brazil; (A.L.A.M.); (L.B.-L.); (J.T.G.B.); (L.M.H.); (A.C.S.-S.); (J.B.-F.); (M.A.P.F.); (C.L.)
| |
Collapse
|
13
|
Simonsen D, Cady N, Zhang C, Shrode RL, McCormick ML, Spitz DR, Chimenti MS, Wang K, Mangalam A, Lehmler HJ. The Effects of Benoxacor on the Liver and Gut Microbiome of C57BL/6 Mice. Toxicol Sci 2022; 186:102-117. [PMID: 34850242 PMCID: PMC9019840 DOI: 10.1093/toxsci/kfab142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The toxicity of many "inert" ingredients of pesticide formulations, such as safeners, is poorly characterized, despite evidence that humans may be exposed to these chemicals. Analysis of ToxCast data for dichloroacetamide safeners with the ToxPi tool identified benoxacor as the safener with the highest potential for toxicity, especially liver toxicity. Benoxacor was subsequently administered to mice via oral gavage for 3 days at concentrations of 0, 0.5, 5, and 50 mg/kg bodyweight (b.w.). Bodyweight-adjusted liver and testes weights were significantly increased in the 50 mg/kg b.w. group. There were no overt pathologies in either the liver or the intestine. 16S rRNA analysis of the cecal microbiome revealed no effects of benoxacor on α- or β-diversity; however, changes were observed in the abundance of certain bacteria. RNAseq analysis identified 163 hepatic genes affected by benoxacor exposure. Benoxacor exposure expressed a gene regulation profile similar to dichloroacetic acid and the fungicide sedaxane. Metabolomic analysis identified 9 serum and 15 liver metabolites that were affected by benoxacor exposure, changes that were not significant after correcting for multiple comparisons. The activity of antioxidant enzymes was not altered by benoxacor exposure. In vitro metabolism studies with liver microsomes and cytosol from male mice demonstrated that benoxacor is enantioselectively metabolized by cytochrome P450 enzymes, carboxylesterases, and glutathione S-transferases. These findings suggest that the minor toxic effects of benoxacor may be due to its rapid metabolism to toxic metabolites, such as dichloroacetic acid. This result challenges the assumption that inert ingredients of pesticide formulations are safe.
Collapse
Affiliation(s)
- Derek Simonsen
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, Iowa 52242, USA
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, Iowa 52242, USA
- IIHR Hydroscience and Engineering, The University of Iowa, Iowa City, Iowa 52242, USA
| | - Nicole Cady
- Department of Pathology, The University of Iowa, Iowa City, Iowa 52242, USA
| | - Chunyun Zhang
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, Iowa 52242, USA
| | - Rachel L Shrode
- Department of Informatics, The University of Iowa, Iowa City, Iowa 52242, USA
| | - Michael L McCormick
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, The University of Iowa, Iowa City, Iowa 52242, USA
| | - Douglas R Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, The University of Iowa, Iowa City, Iowa 52242, USA
| | - Michael S Chimenti
- Iowa Institute of Human Genetics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa 52242, USA
| | - Kai Wang
- Department of Biostatistics, The University of Iowa, Iowa City, Iowa 52242, USA
| | - Ashutosh Mangalam
- Department of Pathology, The University of Iowa, Iowa City, Iowa 52242, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, Iowa 52242, USA
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, Iowa 52242, USA
- IIHR Hydroscience and Engineering, The University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
14
|
Baran N, Surdyk N, Auterives C. Pesticides in groundwater at a national scale (France): Impact of regulations, molecular properties, uses, hydrogeology and climatic conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148137. [PMID: 34126483 DOI: 10.1016/j.scitotenv.2021.148137] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/12/2021] [Accepted: 05/26/2021] [Indexed: 05/14/2023]
Abstract
Contaminants in groundwater are a major issue worldwide. Temporal trends of such occurrences in French groundwaters were evaluated for several active substances of pesticides belonging to different chemical classes, to identify key factors explaining groundwater contamination. Our study relied on exploitation of a French national database (ADES, created in the mid-1990s and remarkable for the available data, including over 88 million analyses). Temporal changes in the frequency of exceeding a reference value of 0.1 μg/L for several substances were determined at yearly and monthly scales. Such trends were examined by distinguishing different periods according to changes in regulations (new approval, withdrawal, or dose reduction), and were combined with data on effective rainfall as a proxy for groundwater recharge, on aquifer lithology, and on sales of active substances as a proxy for actual applications. A review of monthly data shows that a rapid transfer of pesticides with contrasting physico-chemical properties can occur after application in many aquifers, regardless of their lithology. For substances such as metolachlor, showing a sharp increase in sales, a clear relationship exists between quantities sold and frequency of exceeding the reference value. For other active substances, such as isoproturon or chlortoluron, frequencies of exceedance are governed by both sales and effective rainfall. Finally, the occurrence of active substances in groundwater several years after their withdrawal from the market is explained by at least three major mechanisms: the transfer time from soil into groundwater, processes of remobilization from soil and/or unsaturated zone, and no or low degradation in the saturated zone. While these processes are well documented for atrazine and different types of aquifers, they can be virtually unknown for other active substances.
Collapse
|
15
|
Yu X, Zhang X, Xu J, Guo P, Li X, Wang H, Xu Z, Lei H, Shen X. Generation of recombinant antibodies by mammalian expression system for detecting S-metolachlor in environmental waters. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126305. [PMID: 34118539 DOI: 10.1016/j.jhazmat.2021.126305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 05/24/2023]
Abstract
Current immunoassays for herbicide detection are usually based on polyclonal or monoclonal antibodies (MAbs) raised in animals. The mammalian expression system allows the procurement of specific and highly sensitive antibodies, avoiding animal immunization. In this study, S-metolachlor-specific IgG vectors bearing either Thosea asigna virus 2A or internal ribosome entry site (S-T2A or S-IRES) and single-chain variable fragment (scFv) vectors were designed and expressed. The recombinant antibodies (RAbs) were characterized by indirect competitive enzyme-linked immunosorbent assays (icELISA). The results showed that full-length RAbs exhibited significantly better performance than scFv, and both bicistronic vectors expressed antibodies of correct size, while RAb S-T2A elicited a higher yield than RAb S-IRES. Further analyses showed that RAb S-T2A and RAb S-IRES exhibited comparable reactivities and specificities to the parental MAb, with IC50 values of 3.44, 3.89 and 3.37 ng/mL, respectively. Finally, MAb- and RAb-based icELISAs were established for the determination of S-metolachlor in environmental waters. The recoveries were in the range of 73.0-128.1%, and the coefficients of variation were mostly below 10%. This article describes the production of RAbs for S-metolachlor from mammalian cells for the first time and paves the way to develop RAb-based immunoassays for monitoring herbicide residues in the environment.
Collapse
Affiliation(s)
- Xiaoting Yu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xu Zhang
- Guangzhou Editgene Co., Ltd., Guangzhou 510642, China; College of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Jingjing Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Pengyan Guo
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiangmei Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhenlin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Xing Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
16
|
Liu L, Dai Y. Strong adsorption of metolachlor by biochar prepared from walnut shells in water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:48379-48391. [PMID: 33913108 DOI: 10.1007/s11356-021-14117-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
In this study, we investigated the removal of metolachlor (MET) by biochar (BC) prepared from walnut shells (W-BC) compared with BCs made from cow dung (D-BC) and corn cobs (C-BC) by characterizing the adsorption kinetics, pH, adsorbent dose, and ionic strength, and using isotherm models. Weight analysis was also conducted to understand the adsorption capacity and adsorption mechanisms. The results showed that the MET removal rates were 87.89% (W-BC), 52.91% (D-BC), and 10.91% (C-BC), respectively. According to the results fitted to the Langmuir isotherm model, the saturated adsorption capacities for MET were 96.15 mg g-1, 37.88 mg g-1, and 11.98 mg g-1 with W-BC, D-BC, and C-BC, respectively. The results demonstrated that W-BC was particularly effective at MET removal. Analyses based on the weights of different factors showed that the correlation coefficient was highest for the BC type with 46.11% in the MET adsorption process, followed by the initial concentration of MET (19.29%). The adsorption of MET by BCs was probably influenced mostly by electron donor-acceptor interactions and pore filling. These results may facilitate further studies of the adsorption mechanism and optimization of the process.
Collapse
Affiliation(s)
- Lu Liu
- College of Resources and Environment, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, China
| | - Yingjie Dai
- College of Resources and Environment, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, China.
| |
Collapse
|
17
|
Thompson TJ, Briggs MA, Phillips PJ, Blazer VS, Smalling KL, Kolpin DW, Wagner T. Groundwater discharges as a source of phytoestrogens and other agriculturally derived contaminants to streams. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142873. [PMID: 33348482 DOI: 10.1016/j.scitotenv.2020.142873] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/04/2020] [Accepted: 10/05/2020] [Indexed: 06/12/2023]
Abstract
Groundwater discharge zones in streams are important habitats for aquatic organisms. The use of discharge zones for thermal refuge and spawning by fish and other biota renders them susceptible to potential focused discharge of groundwater contamination. Currently, there is a paucity of information about discharge zones as a potential exposure pathway of chemicals to stream ecosystems. Using thermal mapping technologies to locate groundwater discharges, shallow groundwater and surface water from three rivers in the Chesapeake Bay Watershed, USA were analyzed for phytoestrogens, pesticides and their degradates, steroid hormones, sterols and bisphenol A. A Bayesian censored regression model was used to compare groundwater and surface water chemical concentrations. The most frequently detected chemicals in both ground and surface water were the phytoestrogens genistein (79%) and formononetin (55%), the herbicides metolachlor (50%) and atrazine (74%), and the sterol cholesterol (88%). There was evidence suggesting groundwater discharge zones could be a unique exposure pathway of chemicals to surface water systems, in our case, metolachlor sulfonic acid (posterior mean concentration = 150 ng/L in groundwater and 4.6 ng/L in surface water). Our study also demonstrated heterogeneity of chemical concentration in groundwater discharge zones within a stream for the phytoestrogen formononetin, the herbicides metolachlor and atrazine, and cholesterol. Results support the hypothesis that discharge zones are an important source of exposure of phytoestrogens and herbicides to aquatic organisms. To manage critical resources within the Chesapeake Bay Watershed, more work is needed to characterize exposure in discharge zones more broadly across time and space.
Collapse
Affiliation(s)
- Tyler J Thompson
- Pennsylvania Cooperative Fish & Wildlife Research Unit, Pennsylvania State University, University Park, PA 16802, United States
| | - Martin A Briggs
- U.S. Geological Survey, Earth System Processes Division, University of Connecticut Storrs Mansfield, CT 06269, United States
| | - Patrick J Phillips
- US Geological Survey, New York Water Science Center, Troy, NY 12180, United States
| | - Vicki S Blazer
- U.S. Geological Survey, Fish Health Branch, Leetown Science Center, Kearneysville, WV 25430, United States
| | - Kelly L Smalling
- U.S. Geological Survey, New Jersey Water Science Center, Lawrenceville, NJ 08648, United States
| | - Dana W Kolpin
- U.S. Geological Survey, Central Midwest Water Science Center, Iowa City, IA 52240, United States
| | - Tyler Wagner
- U.S. Geological Survey, Pennsylvania Cooperative Fish and Wildlife Research Unit, Pennsylvania State University, University Park, PA, United States.
| |
Collapse
|
18
|
Piel S, Grandcoin A, Baurès E. Understanding the origins of herbicides metabolites in an agricultural watershed through their spatial and seasonal variations. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2021; 56:313-332. [PMID: 33560904 DOI: 10.1080/03601234.2021.1883390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The aim of this study is to understand the spatial and seasonal variations of persistent herbicides metabolites and to determine their origins in the Vilaine River watershed, Britany-France. Improving knowledge on herbicides metabolites sources and seasonality is important for drinking water resource management. Data were collected at 13 sampling stations during five sampling campaigns in 2016 and 2017. Relations between water quality parameters, herbicides and metabolites were analyzed using statistical methods. The influence of land use and wastewater treatment plants (WWTP) on streams water quality has been identified. Cluster Analysis revealed that two groups of sampling stations can be described as "urban" with stations downstream the urban area and as "agricultural" with stations located downstream of the watershed. Chloroacetamids metabolites have been associated together with nitrates and agricultural areas as could be expected. Thus, the drinking water treatment plant located in the estuary of the Vilaine River is exposed to high metolachlor ESA and nitrate loads all year long. Aminomethylphosphonic acid (AMPA) is associated to anthropogenic urban contamination and nutrient loads. AMPA has its major sources in both glyphosate and phosphonate detergents issued from WWTP. This can help to adapt surface water treatment process and water management policies concerning herbicides metabolites.
Collapse
Affiliation(s)
| | - Alexis Grandcoin
- SAUR R&D, Maurepas, France
- Univ Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Estelle Baurès
- Univ Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| |
Collapse
|
19
|
Tudi M, Daniel Ruan H, Wang L, Lyu J, Sadler R, Connell D, Chu C, Phung DT. Agriculture Development, Pesticide Application and Its Impact on the Environment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:1112. [PMID: 33513796 PMCID: PMC7908628 DOI: 10.3390/ijerph18031112] [Citation(s) in RCA: 550] [Impact Index Per Article: 183.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/13/2021] [Accepted: 01/19/2021] [Indexed: 12/12/2022]
Abstract
Pesticides are indispensable in agricultural production. They have been used by farmers to control weeds and insects, and their remarkable increases in agricultural products have been reported. The increase in the world's population in the 20th century could not have been possible without a parallel increase in food production. About one-third of agricultural products are produced depending on the application of pesticides. Without the use of pesticides, there would be a 78% loss of fruit production, a 54% loss of vegetable production, and a 32% loss of cereal production. Therefore, pesticides play a critical role in reducing diseases and increasing crop yields worldwide. Thus, it is essential to discuss the agricultural development process; the historical perspective, types and specific uses of pesticides; and pesticide behavior, its contamination, and adverse effects on the natural environment. The review study indicates that agricultural development has a long history in many places around the world. The history of pesticide use can be divided into three periods of time. Pesticides are classified by different classification terms such as chemical classes, functional groups, modes of action, and toxicity. Pesticides are used to kill pests and control weeds using chemical ingredients; hence, they can also be toxic to other organisms, including birds, fish, beneficial insects, and non-target plants, as well as air, water, soil, and crops. Moreover, pesticide contamination moves away from the target plants, resulting in environmental pollution. Such chemical residues impact human health through environmental and food contamination. In addition, climate change-related factors also impact on pesticide application and result in increased pesticide usage and pesticide pollution. Therefore, this review will provide the scientific information necessary for pesticide application and management in the future.
Collapse
Affiliation(s)
- Muyesaier Tudi
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, No. 11 Datun Road, Beijing 100101, China; (M.T.); (J.L.)
- Centre for Environment and Population Health, School of Medicine, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia; (H.D.R.); (R.S.); (C.C.); (D.T.P.)
| | - Huada Daniel Ruan
- Centre for Environment and Population Health, School of Medicine, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia; (H.D.R.); (R.S.); (C.C.); (D.T.P.)
- Environmental Science Program, Beijing Normal University-Hong Kong Baptist University United International College, 2000 Jintong Road, Tangjiawan, Zhuhai 519080, China
| | - Li Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, No. 11 Datun Road, Beijing 100101, China; (M.T.); (J.L.)
- Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Jia Lyu
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, No. 11 Datun Road, Beijing 100101, China; (M.T.); (J.L.)
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, No. 29 Nanwei Road, Beijing 100050, China
| | - Ross Sadler
- Centre for Environment and Population Health, School of Medicine, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia; (H.D.R.); (R.S.); (C.C.); (D.T.P.)
| | - Des Connell
- School of Environment and Science, Griffith University, 170 Kessel Road, Nathan, QLD 4111, Australia;
| | - Cordia Chu
- Centre for Environment and Population Health, School of Medicine, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia; (H.D.R.); (R.S.); (C.C.); (D.T.P.)
| | - Dung Tri Phung
- Centre for Environment and Population Health, School of Medicine, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia; (H.D.R.); (R.S.); (C.C.); (D.T.P.)
| |
Collapse
|
20
|
Rice C, Hively WD, McCarty GW, Hapeman CJ. Fluxes of agricultural nitrogen and metolachlor metabolites are highly correlated in a first order stream in Maryland, USA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 716:136590. [PMID: 32044477 DOI: 10.1016/j.scitotenv.2020.136590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
Nitrogen pollution in watersheds containing significant cropland area is generally problematic. Conservation practices intended to reduce nitrate-N (NO3--N) export from watersheds are being implemented by many regions without necessary tools to assess effectiveness of abatement. A commonly used herbicide metolachlor degrades in the vadose zone of croplands to form two metabolites (metolachlor ethane sulfonic acid (MESA) and metolachlor oxanilic acid (MOXA)) which are both highly soluble in soils. Study of metabolite fates in a first order watershed provided evidence that transport of these metabolites to stream water is highly correlated to transport of agricultural NO3--N that also forms in the cropland vadose zone. Linear models describing the relationships of stream flux of MESA and MOXA to NO3--N flux generated goodness of fit values of 0.93 and 0.81, respectively. These findings support a conclusion that both MESA and MOXA act as excellent transport analogs of NO3--N and become strongly correlated to agricultural NO3--N leaching from the cropland vadose zone. Moreover, their use as conservative tracers in agricultural watersheds can provide valuable information concerning movement and fate of agricultural nitrogen at watershed scales of observation.
Collapse
Affiliation(s)
- Clifford Rice
- US Department of Agriculture (USDA), Agricultural Research Service (ARS), Beltsville Agricultural Research Center (BARC), 10300 Baltimore Avenue, Beltsville, MD 20705, USA.
| | - W Dean Hively
- United States Geological Survey (USGS), Lower Mississippi-Gulf Water Science Center, 10300 Baltimore Avenue, Beltsville, Maryland, 20705 USA
| | - Gregory W McCarty
- US Department of Agriculture (USDA), Agricultural Research Service (ARS), Beltsville Agricultural Research Center (BARC), 10300 Baltimore Avenue, Beltsville, MD 20705, USA
| | - Cathleen J Hapeman
- US Department of Agriculture (USDA), Agricultural Research Service (ARS), Beltsville Agricultural Research Center (BARC), 10300 Baltimore Avenue, Beltsville, MD 20705, USA
| |
Collapse
|
21
|
Zhao L, Gao Y, Xie J, Zhang Q, Guo F, Liu S, Liu W. A strategy to reduce the dose of multichiral agricultural chemicals: The herbicidal activity of metolachlor against Echinochloa crusgalli. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 690:181-188. [PMID: 31288109 DOI: 10.1016/j.scitotenv.2019.06.521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/27/2019] [Accepted: 06/30/2019] [Indexed: 06/09/2023]
Abstract
Agricultural chemicals are normally used as mixtures of several isomers, e.g., enantiomers. In theory, in order to minimize the pesticides dose, it is desirable to use the most target-active isomer. Metolachlor is a typical multichiral herbicide belonging to amide herbicides. An asymmetric carbon atom and a chiral axis yield four stereoisomers. In this study, a novel laboratory method was developed to prepare the S-metolachlor and the four stereoisomers using high performance liquid chromatography. The separated isomers had a purity of >99%, with their absolute configurations assigned by electronic circular dichroism. The enantioseparation by ultra performance convergence chromatography tandem mass spectrometry was also performed for the rapid and sensitive detection of metolachlor stereoisomers. The enantioselective herbicidal activity toward the target weed (Echinochloa crusgalli) was systematically assessed for the first time by measuring the morphology of the weed after treatment with rac-, S-metolachlor and the four stereoisomers, respectively. Among the commercial pesticides, S-metolachlor was more effective in weed inhibition than rac-metolachlor, and to the four stereoisomers, the herbicidal activities were ranked as: SS > SR ≫ RS > RR, and the RR-isomer even had some stimulative effect to the weed growth at lower concentration (1 ppm). Thus, we concluded that in these cases, the chiral carbon feature played a major role in herbicidal activity rather than the chiral axis feature, and the higher bioactivity of the S-isomers was confirmed by more effective uptake and stronger interaction with target enzymes that were involved in the gibberellic acid biosynthesis. Although the SS-isomer shows the highest herbicidal activity, controlling the major chiral feature is still much easier and more economical than controlling two chiral features.
Collapse
Affiliation(s)
- Lu Zhao
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yue Gao
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jingqian Xie
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Qiong Zhang
- College of Biological and Environmental Engineering, Binzhou University, Binzhou 256600, China
| | - Fangjie Guo
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shuren Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weiping Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
22
|
Sun Y, Zhao L, Li X, Hao Y, Xu H, Weng L, Li Y. Stimulation of earthworms (Eisenia fetida) on soil microbial communities to promote metolachlor degradation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:219-228. [PMID: 30798023 DOI: 10.1016/j.envpol.2019.01.058] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/12/2019] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
Degradation of metolachlor in surface soil is extremely important to its potential mobility and overall persistence. In this study, the effects of earthworms (Eisenia fetida) on the degradation of metolachlor at two concentration levels (5 and 20 mg kg-1) in soil were investigated via the column experiment. The degradation kinetics of metolachlor indicate that addition of earthworms enhances metolachlor degradation significantly (P < 0.05), with the enhanced degradation rate of 30% and 63% in the low and high concentration treatments at the 15th day, respectively. Fungi rather than bacteria are primarily responsible for metolachlor degradation in soil, and earthworms stimulate metolachlor degradation mainly by stimulating the metolachlor-degrading functional microorganisms and improving fungal community structure. Earthworms prefer to promote the possible fungal degraders like order Sordariales, Microascales, Hypocreales and Mortierellales and the possible bacteria genus Rubritalea and strengthen the relationships between these primary fungi. Two metabolites metolachlor oxanilic (MOXA) and moetolachlor ethanesulfonic acid (MESA) are detected in soil and earthworms in the high concentration treatments. Earthworms stimulate the formation of MOXA and yet inhibit the formation of MESA in soil. Another metabolite metolachlor-2-hydroxy (M2H) is also detected in earthworms, which is reported firstly. The study provides an important information for the remediation of metolachlor-polluted soil.
Collapse
Affiliation(s)
- Yang Sun
- Agro-Environmental Protection Institute, Ministry of Agriculture, MOA Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Tianjin, 300191, China; Land and Environmental College, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Lixia Zhao
- Agro-Environmental Protection Institute, Ministry of Agriculture, MOA Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Tianjin, 300191, China
| | - Xiaojing Li
- Agro-Environmental Protection Institute, Ministry of Agriculture, MOA Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Tianjin, 300191, China
| | - Yueqi Hao
- Agro-Environmental Protection Institute, Ministry of Agriculture, MOA Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Tianjin, 300191, China
| | - Huijuan Xu
- College of Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Liping Weng
- Agro-Environmental Protection Institute, Ministry of Agriculture, MOA Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Tianjin, 300191, China
| | - Yongtao Li
- College of Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
23
|
Lam SS, Su MH, Nam WL, Thoo DS, Ng CM, Liew RK, Yuh Yek PN, Ma NL, Nguyen Vo DV. Microwave Pyrolysis with Steam Activation in Producing Activated Carbon for Removal of Herbicides in Agricultural Surface Water. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b03319] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Su Shiung Lam
- Pyrolysis Technology Research Group, Eastern Corridor Renewable Energy Group, School of Ocean Engineering, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Man Huan Su
- Pyrolysis Technology Research Group, Eastern Corridor Renewable Energy Group, School of Ocean Engineering, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Wai Lun Nam
- Pyrolysis Technology Research Group, Eastern Corridor Renewable Energy Group, School of Ocean Engineering, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Ding Shan Thoo
- Pyrolysis Technology Research Group, Eastern Corridor Renewable Energy Group, School of Ocean Engineering, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Chia Min Ng
- School of Fundamental Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Rock Keey Liew
- Pyrolysis Technology Research Group, Eastern Corridor Renewable Energy Group, School of Ocean Engineering, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
- NV Western PLT, 208B, Second Floor, Macalister Road, Georgetown, 10400 Penang, Malaysia
| | - Peter Nai Yuh Yek
- Pyrolysis Technology Research Group, Eastern Corridor Renewable Energy Group, School of Ocean Engineering, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
- School of Engineering and Technology, University College of Technology Sarawak, Lot 88, Persiaran Brooke, 96000 Sibu, Sarawak, Malaysia
| | - Nyuk Ling Ma
- School of Fundamental Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Dai Viet Nguyen Vo
- Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Pahang, Malaysia
| |
Collapse
|
24
|
Marie L, Sylvain P, Benoit G, Maurice M, Gwenaël I. Degradation and Transport of the Chiral Herbicide S-Metolachlor at the Catchment Scale: Combining Observation Scales and Analytical Approaches. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:13231-13240. [PMID: 29056040 DOI: 10.1021/acs.est.7b02297] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Evaluating pesticide degradation and transport in the soil-surface water continuum remains challenging at the catchment scale. Here we investigated the dissipation of the chiral herbicide S-metolachlor (SM) in soil in relation to its transport in runoff. Analyses of SM, transformation products (TPs, i.e., MESA and MOXA), and enantiomers were combined to determine SM degradation at plot and catchment scales. Assisted by modeling, we found that the main dissipation pathways of SM at the plot scale were degradation (71%), volatilization (5%), leaching (8%) and runoff (3%), while 13% of SM persisted in topsoil. This highlights the relevance of degradation processes. TPs could trace the different discharge contributions: MOXA prevailed in runoff water, whereas MESA was associated with slower flowpaths. At the catchment outlet, 11% of SM applied was exported in dissolved or particulate phases or as TPs (in SM mass equivalent). A single event 1 week after application exported 96% of SM, which underlined the potential importance of severe rainfall on seasonal SM export. Enantioselective degradation enriched SM in the R-enantiomer over longer periods and may be associated with slower flowpaths. Altogether, combining observation scales and analytical approaches enabled to quantify SM degradation and to identify how degradation controls SM export at the catchment scale.
Collapse
Affiliation(s)
- Lefrancq Marie
- Laboratory of Hydrology and Geochemistry of Strasbourg (LHyGeS UMR 7517), University of Strasbourg, CNRS, ENGEES , 1 Rue Blessig, 67084 Strasbourg cedex, France
- LETG-Angers (UMR CNRS 6554), University of Angers , 2 bd Lavoisier, 49045 Angers, France
| | - Payraudeau Sylvain
- Laboratory of Hydrology and Geochemistry of Strasbourg (LHyGeS UMR 7517), University of Strasbourg, CNRS, ENGEES , 1 Rue Blessig, 67084 Strasbourg cedex, France
| | - Guyot Benoit
- Laboratory of Hydrology and Geochemistry of Strasbourg (LHyGeS UMR 7517), University of Strasbourg, CNRS, ENGEES , 1 Rue Blessig, 67084 Strasbourg cedex, France
| | - Millet Maurice
- Atmospheric Physical Chemistry Department (ICPEES UMR 7515), University of Strasbourg, CNRS , 1 rue Blessig, 67084 Strasbourg cedex, France
| | - Imfeld Gwenaël
- Laboratory of Hydrology and Geochemistry of Strasbourg (LHyGeS UMR 7517), University of Strasbourg, CNRS, ENGEES , 1 Rue Blessig, 67084 Strasbourg cedex, France
| |
Collapse
|