1
|
Yang W, Cai C, Wang S, Wang X, Dai X. Unveiling the inactivation mechanisms of different viruses in sludge anaerobic digestion based on factors identification and damage analysis. BIORESOURCE TECHNOLOGY 2024; 413:131541. [PMID: 39341425 DOI: 10.1016/j.biortech.2024.131541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/05/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Despite anaerobic digestion having potential for pathogen reduction in sewage sludge, the behaviors of viruses as the primary health concern are rarely studied. This study investigated the inactivation kinetics and mechanisms of four typical virus surrogates with different structures in mesophilic (MAD) and thermophilic (TAD) anaerobic digestion of sludge. Virus inactivation in MAD was virus-type-dependent correspondingly to different function loss. Temperature drove the faster inactivation proceeding for enveloped Phi6, while temperature and ammonia were the critical inactivation factors for nonenveloped MS2, causing genome degradation and protein functional damage. Interaction with sludge solids played critical role in DNA viruses T4 and Phix174 inactivation via inducing host binding function damage. By comparison, TAD enhanced viral protein denaturation, bringing efficient inactivation with reducing heterogeneity among nonenveloped viruses. These insights into unique virus behaviors in anaerobic digestion systems can provide guidance for developing more effective disinfection protocols and improving sludge biosafety.
Collapse
Affiliation(s)
- Wan Yang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, PR China; State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Chen Cai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, PR China.
| | - Xiaozhi Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, PR China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
2
|
Chaqroun A, Bertrand I, Wurtzer S, Moulin L, Boni M, Soubies S, Boudaud N, Gantzer C. Assessing infectivity of emerging enveloped viruses in wastewater and sewage sludge: Relevance and procedures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173648. [PMID: 38825204 DOI: 10.1016/j.scitotenv.2024.173648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024]
Abstract
The emergence of SARS-CoV-2 has heightened the need to evaluate the detection of enveloped viruses in the environment, particularly in wastewater, within the context of wastewater-based epidemiology. The studies published over the past 80 years focused primarily on non-enveloped viruses due to their ability to survive longer in environmental matrices such as wastewater or sludge compared to enveloped viruses. However, different enveloped viruses survive in the environment for different lengths of time. Therefore, it is crucial to be prepared to assess the potential infectious risk that may arise from future emerging enveloped viruses. This will require appropriate tools, notably suitable viral concentration methods that do not compromise virus infectivity. This review has a dual purpose: first, to gather all the available literature on the survival of infectious enveloped viruses, specifically at different pH and temperature conditions, and in contact with detergents; second, to select suitable concentration methods for evaluating the infectivity of these viruses in wastewater and sludge. The methodology used in this data collection review followed the systematic approach outlined in the PRISMA (Preferred Reporting Items for Systematic Review and Meta-Analysis) guidelines. Concentration methods cited in the data gathered are more tailored towards detecting the enveloped viruses' genome. There is a lack of suitable methods for detecting infectious enveloped viruses in wastewater and sludge. Ultrafiltration, ultracentrifugation, and polyethylene glycol precipitation methods, under specific/defined conditions, appear to be relevant approaches. Further studies are necessary to validate reliable concentration methods for detecting infectious enveloped viruses. The choice of culture system is also crucial for detection sensitivity. The data also show that the survival of infectious enveloped viruses, though lower than that of non-enveloped ones, may enable environmental transmission. Experimental data on a wide range of enveloped viruses is required due to the variability in virus persistence in the environment.
Collapse
Affiliation(s)
- Ahlam Chaqroun
- Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France
| | | | | | | | - Mickael Boni
- French Armed Forces Biomedical Research Institute, 91220 Brétigny-sur-Orge, France
| | | | | | | |
Collapse
|
3
|
Sadare OO, Oke D, Olawuni OA, Olayiwola IA, Moothi K. Modelling and optimization of membrane process for removal of biologics (pathogens) from water and wastewater: Current perspectives and challenges. Heliyon 2024; 10:e29864. [PMID: 38698993 PMCID: PMC11064141 DOI: 10.1016/j.heliyon.2024.e29864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/30/2024] [Accepted: 04/16/2024] [Indexed: 05/05/2024] Open
Abstract
As one of the 17 sustainable development goals, the United Nations (UN) has prioritized "clean water and sanitation" (Goal 6) to reduce the discharge of emerging pollutants and disease-causing agents into the environment. Contamination of water by pathogenic microorganisms and their existence in treated water is a global public health concern. Under natural conditions, water is frequently prone to contamination by invasive microorganisms, such as bacteria, viruses, and protozoa. This circumstance has therefore highlighted the critical need for research techniques to prevent, treat, and get rid of pathogens in wastewater. Membrane systems have emerged as one of the effective ways of removing contaminants from water and wastewater However, few research studies have examined the synergistic or conflicting effects of operating conditions on newly developing contaminants found in wastewater. Therefore, the efficient, dependable, and expeditious examination of the pathogens in the intricate wastewater matrix remains a significant obstacle. As far as it can be ascertained, much attention has not recently been given to optimizing membrane processes to develop optimal operation design as related to pathogen removal from water and wastewater. Therefore, this state-of-the-art review aims to discuss the current trends in removing pathogens from wastewater by membrane techniques. In addition, conventional techniques of treating pathogenic-containing water and wastewater and their shortcomings were briefly discussed. Furthermore, derived mathematical models suitable for modelling, simulation, and control of membrane technologies for pathogens removal are highlighted. In conclusion, the challenges facing membrane technologies for removing pathogens were extensively discussed, and future outlooks/perspectives on optimizing and modelling membrane processes are recommended.
Collapse
Affiliation(s)
- Olawumi O. Sadare
- School of Chemical and Minerals Engineering, Faculty of Engineering, North-West University, Potchefstroom, 2520, South Africa
| | - Doris Oke
- Northwestern-Argonne Institute of Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Oluwagbenga A. Olawuni
- Department of Chemical Engineering, Faculty of Engineering and the Built Environment, Doornfontein Campus, University of Johannesburg, P.O. Box 17011, Johannesburg, 2028, South Africa
| | - Idris A. Olayiwola
- UNESCO-UNISA Africa Chair in Nanoscience and Nanotechnology College of Graduates Studies, University of South Africa, Pretoria 392, South Africa
| | - Kapil Moothi
- School of Chemical and Minerals Engineering, Faculty of Engineering, North-West University, Potchefstroom, 2520, South Africa
| |
Collapse
|
4
|
Taha AM, Katamesh BE, Hassan AR, Abdelwahab OA, Rustagi S, Nguyen D, Silva-Cajaleon K, Rodriguez-Morales AJ, Mohanty A, Bonilla-Aldana DK, Sah R. Environmental detection and spreading of mpox in healthcare settings: a narrative review. Front Microbiol 2023; 14:1272498. [PMID: 38179458 PMCID: PMC10764434 DOI: 10.3389/fmicb.2023.1272498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/16/2023] [Indexed: 01/06/2024] Open
Abstract
Monkeypox virus (MPXV), which causes Monkeypox (Mpox), has recently been found outside its usual geographic distribution and has spread to 117 different nations. The World Health Organization (WHO) designated the epidemic a Public Health Emergency of International Concern (PHEIC). Humans are at risk from MPXV's spread, which has raised concerns, particularly in the wake of the SARS-CoV-2 epidemic. The risk of virus transmission may rise due to the persistence of MPXV on surfaces or in wastewater. The risk of infection may also increase due to insufficient wastewater treatment allowing the virus to survive in the environment. To manage the infection cycle, it is essential to investigate the viral shedding from various lesions, the persistence of MPXV on multiple surfaces, and the length of surface contamination. Environmental contamination may contribute to virus persistence and future infection transmission. The best possible infection control and disinfection techniques depend on this knowledge. It is thought to spread mainly through intimate contact. However, the idea of virus transmission by environmental contamination creates great concern and discussion. There are more cases of environmental surfaces and wastewater contamination. We will talk about wastewater contamination, methods of disinfection, and the present wastewater treatment in this review as well as the persistence of MPXV on various environmental surfaces.
Collapse
Affiliation(s)
- Amira Mohamed Taha
- Faculty of Medicine, Fayoum University, Fayoum, Egypt
- Medical Research Group of Egypt (MRGE), Negida Academy, Arlington, MA, United States
| | - Basant E. Katamesh
- Faculty of Medicine, Tanta University, Tanta, Egypt
- Mayo Clinic, Rochester, MN, United States
| | | | - Omar Ahmed Abdelwahab
- Medical Research Group of Egypt (MRGE), Negida Academy, Arlington, MA, United States
- Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, India
| | - Dang Nguyen
- Massachusetts General Hospital, Corrigan Minehan Heart Center and Harvard Medical School, Boston, MA, United States
| | | | - Alfonso J. Rodriguez-Morales
- Faculty of Environmental Sciences, Universidad Científica del Sur, Lima, Peru
- Grupo de Investigación Biomedicina, Faculty of Medicine, Fundación Universitaria Autónoma de lasAméricas-Institución Universitaria Visión de las Américas, Pereira, Colombia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Aroop Mohanty
- Department of Clinical Microbiology, All India Institute of Medical Sciences, Gorakhpur, India
| | | | - Ranjit Sah
- Tribhuvan University Teaching Hospital, Kathmandu, Nepal
- Department of Clinical Microbiology, DY Patil Medical College, Hospital and Research Centre, DY Patil Vidyapeeth, Pune, India
| |
Collapse
|
5
|
Nasir AM, Adam MR, Mohamad Kamal SNEA, Jaafar J, Othman MHD, Ismail AF, Aziz F, Yusof N, Bilad MR, Mohamud R, A Rahman M, Wan Salleh WN. A review of the potential of conventional and advanced membrane technology in the removal of pathogens from wastewater. Sep Purif Technol 2022; 286:120454. [PMID: 35035270 PMCID: PMC8741333 DOI: 10.1016/j.seppur.2022.120454] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 01/04/2022] [Accepted: 01/04/2022] [Indexed: 12/23/2022]
Abstract
Consumption of pathogenic contaminated water has claimed the lives of many people. Hence, this scenario has emphasized the urgent need for research methods to avoid, treat and eliminate harmful pathogens in wastewater. Therefore, effective water treatment has become a matter of utmost importance. Membrane technology offers purer, cleaner, and pathogen-free water through the water separation method via a permeable membrane. Advanced membrane technology such as nanocomposite membrane, membrane distillation, membrane bioreactor, and photocatalytic membrane reactor can offer synergistic effects in removing pathogen through the integration of additional functionality and filtration in a single chamber. This paper also comprehensively discussed the application, challenges, and future perspective of the advanced membrane technology as a promising alternative in battling pathogenic microbial contaminants, which will also be beneficial and valuable in managing pandemics in the future as well as protecting human health and the environment. In addition, the potential of membrane technology in battling the ongoing global pandemic of coronavirus disease 2019 (COVID-19) was also discussed briefly.
Collapse
Affiliation(s)
- Atikah Mohd Nasir
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Mohd Ridhwan Adam
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | | | - Juhana Jaafar
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Farhana Aziz
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Norhaniza Yusof
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Muhammad Roil Bilad
- Department of Chemistry Education, Universitas Pendidikan Mandalika (UNDIKMA), Jl. Pemuda No. 59A, Mataram 83126, Indonesia
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Health Campus,Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Mukhlis A Rahman
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Wan Norhayati Wan Salleh
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| |
Collapse
|
6
|
Yang W, Cai C, Dai X. Interactions between virus surrogates and sewage sludge vary by viral analyte: Recovery, persistence, and sorption. WATER RESEARCH 2022; 210:117995. [PMID: 34998072 DOI: 10.1016/j.watres.2021.117995] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/14/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
Sewage sludge, as a reservoir of viruses, may pose threats to human health. Understanding how virus particles interact with sludge is the key to controlling virus exposure and transmission. In this study, we investigated the recovery, survivability, and sorption of four typical virus surrogates with different structures (Phi6, MS2, T4, and Phix174) in sewage sludge. The most effective elution method varies by viral analyte, while the ultrafiltration method could significantly reduce the recovery loss for all four viruses. Compared with nonenveloped viruses, the poor recoveries of Phi6 during elution (<15%) limited its efficient detection. The inactivation kinetics of four viruses in solid-containing sludge were significantly faster than those in solid-removed samples at 25 °C, indicating that the solid fraction of sludge played an important role in virus inactivation. Although enveloped Phi6 was more vulnerable in both solid-removed and solid-containing sludge samples, it could remain viable for several hours at 25 °C and several days at 4 °C, which may pose an infection risk during sludge collection, transportation, and treatment process. The adsorption and desorption behavior of viruses in sludge could be affected by virus envelope structure, capsid proteins, and virus particle size. Phi6 adsorption to sludge was great with log KF of 6.51 ± 0.53, followed by Phix174, MS2, and T4. Additionally, more than 95% of Phi6, MS2, and T4 adsorbed to sludge were strongly bound, and a considerable fraction of strongly-bound virus was confirmed to retain viability. These results shed light on the environmental behavior of viruses in sewage sludge and provide a theoretical basis for the risk assessment for sludge treatment and disposal.
Collapse
Affiliation(s)
- Wan Yang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Chen Cai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
7
|
Nag R, Auer A, Nolan S, Russell L, Markey BK, Whyte P, O'Flaherty V, Bolton D, Fenton O, Richards KG, Cummins E. Evaluation of pathogen concentration in anaerobic digestate using a predictive modelling approach (ADRISK). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149574. [PMID: 34399337 DOI: 10.1016/j.scitotenv.2021.149574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
Farmyard manure and slurry (FYM&S) is a valuable feedstock for anaerobic digestion (AD) plants. However, FYM&S may contain high concentrations of pathogens, and complete inactivation through the AD process is unlikely. Thus, following land application of digestate, pathogens may contaminate a range of environmental media posing a potential threat to public health. The present study aimed to combine primary laboratory data with literature-based secondary data to develop an Excel-based exposure assessment model (ADRISK) using a gamma generalised linear model to predict the final microorganism count in the digestate. This research examines the behaviour of a suite of pathogens (Cryptosporidium parvum, norovirus, Mycobacterium spp., Salmonella spp., Listeria monocytogenes, Clostridium spp., and pathogenic Escherichia coli) and indicators (total coliforms, E. coli, and enterococci) during mesophilic anaerobic digestion (M-AD) at 37 °C, pre/post-AD pasteurisation, and after a period of storage (with/without lime) for different feedstock proportions (slurry:food waste: 0:1, 1:3, 2:1, and 3:1). ADRISK tool simulations of faecal indicator bacteria levels across all scenarios show that the digestate can meet the EU standard without pasteurisation if the AD runs at 37 °C or a higher temperature with a higher C:N ratio (recipe 3) and a hydraulic retention time ≥ 7 days. The storage of digestate also reduced levels of microorganisms in the digestate. The Irish pasteurisation process (60 °C for 4 days), although more energy-intensive, is more effective than the EU pasteurisation (70 °C for 1 h) specification. Pre-AD pasteurisation was more effective for C. parvum, norovirus, Mycobacterium thermoresistibile. However, post-AD literature-based pasteurisation is most likely to assure the safety of the digestate. The information generated from this model can inform policy-makers regarding the optimal M-AD process parameters necessary to maximise the inactivation of microorganisms, ensuring adverse environmental impact is minimised, and public health is protected.
Collapse
Affiliation(s)
- Rajat Nag
- University College Dublin School of Biosystems and Food Engineering, Belfield, Dublin 4, Ireland.
| | - Agathe Auer
- University College Dublin School of Veterinary Medicine, Belfield, Dublin 4, Ireland.
| | - Stephen Nolan
- National University of Ireland Galway, School of Natural Sciences and Ryan Institute, University Road, Galway, Ireland.
| | - Lauren Russell
- University College Dublin School of Veterinary Medicine, Belfield, Dublin 4, Ireland; TEAGASC, Ashtown Food Research Centre, Ashtown, Dublin 15, Ireland.
| | - Bryan K Markey
- University College Dublin School of Veterinary Medicine, Belfield, Dublin 4, Ireland.
| | - Paul Whyte
- University College Dublin School of Veterinary Medicine, Belfield, Dublin 4, Ireland.
| | - Vincent O'Flaherty
- National University of Ireland Galway, School of Natural Sciences and Ryan Institute, University Road, Galway, Ireland.
| | - Declan Bolton
- TEAGASC, Ashtown Food Research Centre, Ashtown, Dublin 15, Ireland.
| | - Owen Fenton
- TEAGASC, Environment Research Centre, Johnstown Castle, County Wexford, Ireland.
| | - Karl G Richards
- TEAGASC, Environment Research Centre, Johnstown Castle, County Wexford, Ireland.
| | - Enda Cummins
- University College Dublin School of Biosystems and Food Engineering, Belfield, Dublin 4, Ireland.
| |
Collapse
|
8
|
Varbanov M, Bertrand I, Philippot S, Retourney C, Gardette M, Hartard C, Jeulin H, Duval RE, Loret JF, Schvoerer E, Gantzer C. Somatic coliphages are conservative indicators of SARS-CoV-2 inactivation during heat and alkaline pH treatments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149112. [PMID: 34346352 PMCID: PMC8280372 DOI: 10.1016/j.scitotenv.2021.149112] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/25/2021] [Accepted: 07/13/2021] [Indexed: 05/03/2023]
Abstract
High concentrations of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome have been described in wastewater and sewage sludge. It raises the question of the security of land sludge disposal practices during a pandemic. This study aimed to compare SARS-CoV-2's resistance to the main inactivating factors in sludge treatments, pH and heat, to that of native wastewater somatic coliphages. The latest can be easily used as an indicator of treatment efficiency in the field. The effects of heat treatment and pH on the survival of SARS-CoV-2 and somatic coliphages were investigated in simple media. The T90 value (time required for a 90% reduction in the virus or a 1 × log10 decline) at 50 °C was about 4 min for infectious SARS-CoV-2, and around 133 min for infectious somatic coliphages, with no decrease in SARS-CoV-2 genome. For infectious SARS-CoV-2, a slight decrease (<1 log10 unit) was observed at pH 9 or 10 for 10 min; the decrease was over 5 log10 units at pH 11. However, both SARS-CoV-2 genome and infectious somatic coliphages decreased by less than 1 log10 unit at pH 12. All thermal or pH-based treatments that can remove or significantly reduce infectious somatic coliphages (>4 log10) can be considered efficient treatments for infectious SARS-CoV-2. We concluded that somatic coliphages can be considered highly conservative and easy to use indicators of the inactivation of SARS-CoV-2 during treatments based on heat and alkaline pH.
Collapse
Affiliation(s)
- M Varbanov
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France
| | - I Bertrand
- Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France
| | - S Philippot
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France
| | - C Retourney
- Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France
| | - M Gardette
- Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France
| | - C Hartard
- Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France; Laboratoire de Virologie, CHRU de Nancy Brabois, F-54500 Vandœuvre-lès-Nancy, France
| | - H Jeulin
- Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France; Laboratoire de Virologie, CHRU de Nancy Brabois, F-54500 Vandœuvre-lès-Nancy, France
| | - R E Duval
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France
| | - J-F Loret
- SUEZ, CIRSEE, 38 rue du Président Wilson, F-78230 Le Pecq, France
| | - E Schvoerer
- Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France; Laboratoire de Virologie, CHRU de Nancy Brabois, F-54500 Vandœuvre-lès-Nancy, France
| | - C Gantzer
- Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France.
| |
Collapse
|
9
|
Saba B, Hasan SW, Kjellerup BV, Christy AD. Capacity of existing wastewater treatment plants to treat SARS-CoV-2. A review. BIORESOURCE TECHNOLOGY REPORTS 2021; 15:100737. [PMID: 34179735 PMCID: PMC8216935 DOI: 10.1016/j.biteb.2021.100737] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/12/2021] [Accepted: 06/12/2021] [Indexed: 12/16/2022]
Abstract
Water is one of many viral transmission routes, and the presence of Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) in wastewater has brought attention to its treatment. SARS CoV-2 primarily transmits in the air but the persistence of the virus in the water possibly can serve as a secondary source even though current studies do not show this. In this paper, an evaluation of the current literature with regards to the treatment of SARS-CoV-2 in wastewater treatment plant (WWTP) effluents and biosolids is presented. Treatment efficiencies of WWTPs are compared for viral load reduction on the basis of publicly available data. The results of this evaluation indicate that existing WWTPs are effectively removing 1-6 log10 viable SARS-CoV-2. However, sludge and biosolids provide an umbrella of protection from treatment and inactivation to the virus. Hence, sludge treatment factors like high temperature, pH changes, and predatory microorganisms can effectively inactivate SARS-CoV-2.
Collapse
Affiliation(s)
- Beenish Saba
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, 590 Woody Hayes Drive, Columbus, OH 43210, USA
- Department of Environmental Sciences, PMAS Arid Agriculture University Rawalpindi, 46300, Rawalpindi, Pakistan
| | - Shadi W Hasan
- Center for Membranes and Advanced Water Technology (CMAT), Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Birthe V Kjellerup
- Department of Civil and Environmental Engineering, University of Maryland at College Park, College Park, MD, USA
| | - Ann D Christy
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, 590 Woody Hayes Drive, Columbus, OH 43210, USA
| |
Collapse
|
10
|
Brisolara KF, Maal-Bared R, Sobsey MD, Reimers RS, Rubin A, Bastian RK, Gerba C, Smith JE, Bibby K, Kester G, Brown S. Assessing and managing SARS-CoV-2 occupational health risk to workers handling residuals and biosolids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145732. [PMID: 33611008 PMCID: PMC7869681 DOI: 10.1016/j.scitotenv.2021.145732] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 04/14/2023]
Abstract
Current wastewater worker guidance from the United States Environmental Protection Agency (USEPA) aligns with the Centers for Disease Control and Prevention (CDC) and the Occupational Safety and Health Administration (OSHA) recommendations and states that no additional specific protections against SARS-CoV-2, the virus that causes COVID-19 infections, are recommended for employees involved in wastewater management operations with residuals, sludge, and biosolids at water resource recovery facilities. The USEPA guidance references a document from 2002 that summarizes practices required for protection of workers handling class B biosolids to minimize exposure to pathogens including viruses. While there is no documented evidence that residuals or biosolids of any treatment level contain infectious SARS-CoV-2 or are a source of transmission of this current pandemic strain of coronavirus, this review summarizes and examines whether the provided federal guidance is sufficient to protect workers in view of currently available data on SARS-CoV-2 persistence and transmission. No currently available epidemiological data establishes a direct link between wastewater sludge or biosolids and risk of infection from the SARS-CoV-2. Despite shedding of the RNA of the virus in feces, there is no evidence supporting the presence or transmission of infectious SARS-CoV-2 through the wastewater system or in biosolids. In addition, this review presents previous epidemiologic data related to other non-enveloped viruses. Overall, the risk for exposure to SARS-CoV-2, or any pathogen, decreases with increasing treatment measures. As a result, the highest risk of exposure is related to spreading and handling untreated feces or stool, followed by untreated municipal sludge, the class B biosolids, while lowest risk is associated with spreading or handling Class A biosolids. This review reinforces federal recommendations and the importance of vigilance in applying occupational risk mitigation measures to protect public and occupational health.
Collapse
Affiliation(s)
- Kari Fitzmorris Brisolara
- Louisiana State University Health Sciences Center, School of Public Health, 2020 Gravier Street, New Orleans, LA 70112, United States of America.
| | | | - Mark D Sobsey
- Gillings School of Global Public Health at the University of North Carolina, Chapel Hill, United States of America
| | - Robert S Reimers
- Tulane University School of Public Health and Tropical Medicine and Environmental Solutions, Pinnacle Waste Solutions, LLC Richmond, TX, United States of America
| | - Albert Rubin
- North Carolina State University, Department of Biological and Agricultural Engineering, Raleigh, NC, United States of America
| | - Robert K Bastian
- Retired - former USEPA, Washington, DC, United States of America
| | - Charles Gerba
- University of Arizona, Department of Environmental Science, Tucson, AZ, United States of America
| | - James E Smith
- Retired - former USEPA, Washington, DC, United States of America
| | - Kyle Bibby
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN, United States of America
| | - Greg Kester
- California Association of Sanitation Agencies, Sacramento, CA, United States of America
| | - Sally Brown
- University of Washington, Seattle, WA, United States of America
| |
Collapse
|
11
|
Bardi MJ, Oliaee MA. Impacts of different operational temperatures and organic loads in anaerobic co-digestion of food waste and sewage sludge on the fate of SARS-CoV-2. PROCESS SAFETY AND ENVIRONMENTAL PROTECTION : TRANSACTIONS OF THE INSTITUTION OF CHEMICAL ENGINEERS, PART B 2021; 146:464-472. [PMID: 33262558 PMCID: PMC7694560 DOI: 10.1016/j.psep.2020.11.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/16/2020] [Accepted: 11/21/2020] [Indexed: 05/05/2023]
Abstract
The impacts of different operational temperatures, and organic load (OL) on the fate of SARS-CoV-2 during the anaerobic co-digestion of food waste (FW) and sewage sludge (SS) was evaluated. The lab-scaled batch reactors (i.e. R1-R7) were performed under psychrophilic, mesophilic, and thermophilic conditions and the OL of systems was 1.5, 3.5, 6 gVS/L. The performance parameters showed that at higher OL the stability of systems failed and low biogas was produced. In contrast, increasing of operational temperature of systems induced more biogas generation due to the increment of metabolic activity of bacteria. Therefore, R1-R7 achieved biogas yield of 202.5, 249, 187, 260, 246, 163, and 300 mL/gVS respectively. Both SARS-CoV-2 genes i.e. ORF1ab, and N genes were detected in the effluent of psychrophilic reactors i.e. R1, and R2, with a total concentration of 46 × 103, and 11 × 103 copies/L respectively. In R3, no viral genes were observed, when the VFAs was accumulated up to 2000 mg/L and caused a pH drop to 5.6. At the mesophilic condition, the viral concentration was significantly declined, and no viral genes were observed at an OL of 3.5 gVS/L. Furthermore, the synergistic effect of temperature and accumulation of intermediate metabolites provided a sever condition for SARS-CoV-2 survival at an operational temperature and OL of 50 °C, and 1.5 gVS/L respectively.
Collapse
Affiliation(s)
- Mohammad Javad Bardi
- Faculty of Civil Engineering, Division of Environmental Engineering, Babol Noshirvani University of Technology, Babol, Iran
| | - Mohammad Amin Oliaee
- Faculty of Civil Engineering, Division of Environmental Engineering, Babol Noshirvani University of Technology, Babol, Iran
| |
Collapse
|
12
|
Siwek M, Edgecock T. Application of electron beam water radiolysis for sewage sludge treatment-a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:42424-42448. [PMID: 32892286 PMCID: PMC7603450 DOI: 10.1007/s11356-020-10643-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
A review of the applicability of electron beam water radiolysis for sewage sludge treatment is presented. Electron beam treatment has been proven to be a successful approach to the disinfection of both wastewater and sewage sludge. Nevertheless, before 2000, there were concerns about the perceived high capital costs of the accelerator and with public acceptance of the usage of radiation for water treatment purposes. Nowadays, with increased knowledge and technological development, it may be not only possible but also desirable to use electron beam technology for risk-free sewage sludge treatment, disposal and bio-friendly fertiliser production. Despite the developing interest in this method, there has been no attempt to perform a review of the pertinent literature relating to this technology. It appears that understanding of the mechanism and primary parameters of disinfection is key to optimising the process. This paper aims to reliably characterise the sewage sludge electron beam treatment process to elucidate its major issues and make recommendations for further development and research. Graphical abstract.
Collapse
Affiliation(s)
- Malgorzata Siwek
- University of Huddersfield, HD13DH, Queensgate, Huddersfield, West Yorkshire UK
| | - Thomas Edgecock
- University of Huddersfield, HD13DH, Queensgate, Huddersfield, West Yorkshire UK
| |
Collapse
|
13
|
Amoah ID, Kumari S, Bux F. Coronaviruses in wastewater processes: Source, fate and potential risks. ENVIRONMENT INTERNATIONAL 2020; 143:105962. [PMID: 32711332 PMCID: PMC7346830 DOI: 10.1016/j.envint.2020.105962] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/04/2020] [Accepted: 07/05/2020] [Indexed: 05/18/2023]
Abstract
The last 17 years have seen three major outbreaks caused by coronaviruses, with the latest outbreak, COVID-19, declared a pandemic by the World Health Organization. The frequency of these outbreaks, their mortality and associated disruption to normal life calls for concerted efforts to understand their occurrence and fate in different environments. There is an increased interest in the occurrence of coronaviruses in wastewater from the perspective of wastewater-based epidemiology. However, there is no comprehensive review of the knowledge on coronavirus occurrence, fate and potential transmission in wastewater. This paper, provides a review of the literature on the occurrence of coronaviruses in wastewater treatment processes. We discuss the presence of viral RNA in feces as a result of diarrhoea caused by gastrointestinal infections. We also reviewed the literature on the presence, survival and potential removal of coronaviruses in common wastewater treatment processes. The detection of infectious viral particles in feces of patients raises questions on the potential risks of infection for people exposed to untreated sewage/wastewater. We, therefore, highlighted the potential risk of infection with coronaviruses for workers in wastewater treatment plants and the public that may be exposed through faulty plumbing or burst sewer networks. The mortalities and morbidities associated with the current COVID-19 pandemic warrants a much more focused research on the role of environments, such as wastewater and surface water, in disease transmission. The current wealth of knowledge on coronaviruses in wastewater based on the reviewed literature is scant and therefore calls for further studies.
Collapse
Affiliation(s)
- Isaac Dennis Amoah
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| | - Sheena Kumari
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa.
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| |
Collapse
|
14
|
Wood JP, Richter W, Sunderman M, Calfee MW, Serre S, Mickelsen L. Evaluating the Environmental Persistence and Inactivation of MS2 Bacteriophage and the Presumed Ebola Virus Surrogate Phi6 Using Low Concentration Hydrogen Peroxide Vapor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:3581-3590. [PMID: 32073830 PMCID: PMC7371032 DOI: 10.1021/acs.est.9b06034] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Ebola virus (EBOV) disease outbreaks, as well as the ability of EBOV to persist in the environment under certain conditions, highlight the need to develop effective decontamination techniques against the virus. We evaluated the efficacy of hydrogen peroxide vapor (HPV) to inactivate MS2 and Phi6 bacteriophages, the latter a recommended surrogate for EBOV. The phages were inoculated onto six material types with and without the presence of whole human blood. The inoculated materials were then exposed to either a high or low concentration of HPV for various elapsed times. The phages were also recovered from positive controls at these same elapsed times, to assess environmental persistence and decontamination efficacy. Low concentration hydrogen peroxide vapor (LCHP; 25 ppm) was effective against both phages on all materials without the presence of blood at 2 h. LCHP was ineffective against the phages in the presence of blood, on all materials, even with a 3-day contact time. Higher concentrations of HPV (>400 ppm) with contact times of 24-32 h achieved approximately 2-6 log reduction of the phages in the presence of blood.
Collapse
Affiliation(s)
- Joseph P. Wood
- U.S. Environmental Protection Agency, Office of Research and Development, National Homeland Security Research Center, Research Triangle Park, NC 27711
| | - William Richter
- Battelle Memorial Institute, 505 King Avenue, Columbus OH, 43201
| | | | - M. Worth Calfee
- U.S. Environmental Protection Agency, Office of Research and Development, National Homeland Security Research Center, Research Triangle Park, NC 27711
| | - Shannon Serre
- U.S. Environmental Protection Agency, Office of Land and Emergency Management, Chemical, Biological, Radiological, and Nuclear Consequence Management Advisory Division, Research Triangle Park, NC 27711
| | - Leroy Mickelsen
- U.S. Environmental Protection Agency, Office of Land and Emergency Management, Chemical, Biological, Radiological, and Nuclear Consequence Management Advisory Division, Research Triangle Park, NC 27711
| |
Collapse
|
15
|
Ma J, Zhang L, Mu L, Zhu K, Li A. Multivariate insights of bulking agents influence on co-biodrying of sewage sludge and food waste: Process performance, organics degradation and microbial community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 681:18-27. [PMID: 31102814 DOI: 10.1016/j.scitotenv.2019.05.101] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 06/09/2023]
Abstract
As a prerequisite additive, bulking agent played an essential role on organic wastes biodrying by affecting the organics degradation and microbial consortia. In this study, a series of experiments were conducted to explore the relationships among the type of bulking agents, organics degradation and microbial community evolution. In line with the excellent physiochemical properties, corncob was found to be more desirable for biodrying with more water removal (62.13% vs. 53.70% for sawdust and 51.72% for straw) and higher energy efficiency. Furthermore, different bulking agents showed different biodegradability and affected co-existed organics degradation. In detail, corncob upgraded the amylase and lipase activities, thus promoting the degradation of readily degradable carbohydrates and lipids in feedstocks, which accounted for >60% of the bio-heat sources for water evaporation. In addition, pyrosequencing analysis revealed that Bacillus (>50%) and Ochrobactrum (>40%) were the dominant genera in thermophilic and cooling phases, with degradation capacities of readily degradable substrate and lignocellulose, respectively. And the pathogens, e.g., E. coli and K. pneumonia, were seriously inhibited by high matrix temperatures in corncob trial. These results not only suggested the corncob was a promising bulking agent, but the potential microbial mechanisms for organics degradation were also revealed.
Collapse
Affiliation(s)
- Jiao Ma
- School of Environmental Science & Technology, Dalian University of Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian 116024, Liaoning, China
| | - Lei Zhang
- School of Environmental Science & Technology, Dalian University of Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian 116024, Liaoning, China.
| | - Lan Mu
- School of Environmental Science & Technology, Dalian University of Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian 116024, Liaoning, China
| | - Kongyun Zhu
- School of Environmental Science & Technology, Dalian University of Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian 116024, Liaoning, China
| | - Aimin Li
- School of Environmental Science & Technology, Dalian University of Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian 116024, Liaoning, China
| |
Collapse
|
16
|
|