1
|
Li X, Zhu Q, Pang K, Lang Z. Effective removal of Rhodamine B using the hydrothermal carbonization and citric acid modification of furfural industrial processing waste. ENVIRONMENTAL TECHNOLOGY 2024; 45:3303-3314. [PMID: 37194688 DOI: 10.1080/09593330.2023.2215451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/15/2023] [Indexed: 05/18/2023]
Abstract
In this study, the removal of RhB from water by furfural residue (FR) biochar was prepared by hydrothermal carbonization (HTC) and citric acid (CA) modification and named this biochar as CHFR (C refers to citric acid, H refers to hydrothermal carbonization and FR is furfural residue). The CHFR were characterized by SEM, FT-IR and XPS, and CHFR was investigated by the effects of initial concentration, adsorbent dosage, pH, and contact time on the removal of RhB, and the experimental data were analyzed using the adsorption isotherm models, the adsorption kinetic models and thermodynamics, et al. The results showed that CHFR has strong adsorption performance, and the theoretical maximum adsorption capacity of RhB was 39.46 mg·g-1 under the reaction conditions of pH3, the dosage of 1.5 g·L-1, and 120 min contact time, with a removal efficiency close to 100%. the adsorption of RhB by CHFR is spontaneous and endothermic, which is consistent with the Freundlich adsorption, and the isotherm model fits well with the pseudo-second-order model, and the adsorption rate could still be as high as 92.74% after five regenerations, therefore, CHFR is an environmentally friendly and efficient adsorbent with excellent adsorption regeneration performance.
Collapse
Affiliation(s)
- Xiao Li
- Department of Chemistry, Chemical and Materials, Resource and Environment Major, Heilongjiang University, Harbin, People's Republic of China
| | - Qi Zhu
- Department of Chemistry, Chemical and Materials, Resource and Environment Major, Heilongjiang University, Harbin, People's Republic of China
| | - Kai Pang
- Department of Chemistry, Chemical and Materials, Resource and Environment Major, Heilongjiang University, Harbin, People's Republic of China
| | - Ze Lang
- Department of Chemistry, Chemical and Materials, Resource and Environment Major, Heilongjiang University, Harbin, People's Republic of China
| |
Collapse
|
2
|
Pantoja F, Beszédes S, Gyulavári T, Illés E, Kozma G, László Z. Ammonium ion removal from aqueous solutions in the presence of organic compounds, using biochar from banana leaves. Competitive isotherm models. Heliyon 2024; 10:e31495. [PMID: 38826707 PMCID: PMC11141371 DOI: 10.1016/j.heliyon.2024.e31495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/04/2024] Open
Abstract
Industrial, e.g. food industrial and domestic wastewaters contain huge amount of compounds causing eutrophication, and should be removed with high cost during wastewater treatment. However, these compounds could be utilized as fertilizers too. Biochar can remove a wide range of pollutants from water, such as ammonium, which can be found in relatively high concentration in dairy wastewaters. However, adsorption performance may be affected by the presence of other wastewater pollutants. Thus, this study aims to determine the efficiency of biochar as an adsorbent of ammonium in aqueous solutions in the presence of some selected organic compounds of typical dairy wastewaters such as bovine serum albumin (BSA), lactose, and acetic acid. Methods: The biochar was produced from banana leaves at 300 °C, modified with NaOH, and characterized by Scanning Electron Microscope - Energy Dispersive X-Ray Spectroscopy (SEM-EDX), Fourier-transform infrared spectra (FTIR) analysis, and specific surface area measurements. Batch experiments were carried out to investigate the ammonium adsorption capacity and the ion competitive adsorption mechanism. Significant Findings: Results show that the surface structure of the biochar derived from banana leaves is different from other biochars previously studied; although the specific surface area is not very considerable and despite having nitrogen within the elemental composition, the biochar studied is capable of adsorbing 2.60 mg NH4+/m2, the highest ammonium removal in 2 h occurs at pH 9 and 500 mg biochar dose. Langmuir model in the monolayer phase analysis fits better for all scenarios and the maximum NH4+ adsorption capacity was 0.97 mg/g without organic compounds. In the multilayer adsorption phase, the isotherm model that best fits the data obtained is the Harkins-Jura model without organic compounds. The presence of organic compounds in the aqueous solution significantly impacts the adsorption of ammonium by biochar since it improves the adsorption capacity (1.132 mg/g BSA, 0.975 mg/g lactose, and 1.874 mg/g acetic acid). The Aranovich-Donohue isotherm model fitted the data obtained during ion competitive adsorption experiments well.
Collapse
Affiliation(s)
- Fernanda Pantoja
- Doctoral School of Environmental Sciences, University of Szeged, H-6720, Szeged, Hungary
| | - Sándor Beszédes
- Department of Process Engineering, University of Szeged, H-6725, Szeged, Hungary
| | - Tamás Gyulavári
- Department of Applied and Environmental Chemistry, Institute of Chemistry, University of Szeged, Rerrich Béla Sqr. 1, H-6720, Szeged, Hungary
| | - Erzsébet Illés
- Department of Food Engineering, University of Szeged, H-6725, Szeged, Hungary
| | - Gábor Kozma
- Department of Applied and Environmental Chemistry, Institute of Chemistry, University of Szeged, Rerrich Béla Sqr. 1, H-6720, Szeged, Hungary
| | - Zsuzsanna László
- Department of Process Engineering, University of Szeged, H-6725, Szeged, Hungary
| |
Collapse
|
3
|
Gonçalves JO, Crispim MM, Rios EC, Silva LF, de Farias BS, Sant'Anna Cadaval Junior TR, de Almeida Pinto LA, Nawaz A, Manoharadas S, Dotto GL. New and effective cassava bagasse-modified biochar to adsorb Food Red 17 and Acid Blue 9 dyes in a binary mixture. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:5209-5220. [PMID: 38110688 DOI: 10.1007/s11356-023-31489-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/07/2023] [Indexed: 12/20/2023]
Abstract
A promissory technic for reducing environmental contaminants is the production of biochar from waste reuse and its application for water treatment. This study developed biochar (CWb) and NH4Cl-modified biochar (MCWb) using cassava residues as precursors. CWb and MCWb were characterized and evaluated in removing dyes (Acid Blue 9 and Food Red 17) in a binary system. The adsorbent demonstrated high adsorption capacity at all pH levels studied, showing its versatility regarding this process parameter. The equilibrium of all adsorption experiments was reached in 30 min. The adsorption process conformed to pseudo-first-order kinetics and extended Langmuir isotherm model. The thermodynamic adsorption experiments demonstrated that the adsorption process is physisorption, exhibiting exothermic and spontaneous characteristics. MCWb exhibited highly efficient and selective adsorption behavior towards the anionic dyes, indicating maximum adsorption capacity of 131 and 150 mg g-1 for Food Red 17 and Acid Blue 9, respectively. Besides, MCWb could be reused nine times, maintaining its original adsorption capacity. This study demonstrated an excellent adsorption capability of biochars in removing dyes. In addition, it indicated the recycling of wastes as a precursor of bio composts, a strategy for utilization in water treatment with binary systems. It showed the feasibility of the reuse capacity that indicated that the adsorbent may have many potential applications.
Collapse
Affiliation(s)
- Janaína Oliveira Gonçalves
- Department of Civil and Environmental, Universidad de la Costa, Calle 58 #55-66, 080002, Barranquilla, Atlántico, Colombia
| | - Marssele Martins Crispim
- Industrial Technology Laboratory, School of Chemistry and Food Federal University of Rio Grande, Rio Grande, Brazil
| | - Estefani Cardillo Rios
- Industrial Technology Laboratory, School of Chemistry and Food Federal University of Rio Grande, Rio Grande, Brazil
| | - Luis Felipe Silva
- Department of Civil and Environmental, Universidad de la Costa, Calle 58 #55-66, 080002, Barranquilla, Atlántico, Colombia
| | - Bruna Silva de Farias
- Industrial Technology Laboratory, School of Chemistry and Food Federal University of Rio Grande, Rio Grande, Brazil
| | | | | | - Asad Nawaz
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Salim Manoharadas
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Guilherme Luiz Dotto
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
4
|
Zhang H, Zhou X, Luo D. Calcined Bean Dregs-Hydrocalumite Composites as Efficient Adsorbents for the Removal of Ofloxacin. ACS OMEGA 2023; 8:49191-49200. [PMID: 38162733 PMCID: PMC10753558 DOI: 10.1021/acsomega.3c07473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/26/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024]
Abstract
Calcined bean dregs-hydrocalumite composites were prepared through in situ self-assembly of hydrocalumite on the surface of bean dregs and used for the adsorption of ofloxacin from water. The adsorbents were characterized by scanning electron microscopy, X-ray powder diffraction, and N2 physical adsorption. The results showed that the adsorption performance of calcined bean dregs-hydrocalumite composites for ofloxacin was much better than that of a single bean dreg carbon or calcined hydrocalumite. The effects of preparation and adsorption conditions on the adsorption property of calcined bean dregs-hydrocalumite for ofloxacin were also investigated. The adsorption ratio of ofloxacin reached up to 99.93% using 4 g·L-1 adsorbent dosage with 20 mg·L-1 initial concentration of ofloxacin at 30 °C in 2 h. The adsorption process mainly occurred in the first 5 min. In addition, the adsorption of ofloxacin by calcined bean dregs-hydrocalumite was more in line with pseudo-second-order dynamics and the Langmuir isotherm model.
Collapse
Affiliation(s)
- Haohui Zhang
- Department of Food and Chemical
Engineering, Shaoyang University, Shaoyang, Hunan 422000, PR China
| | - Xi Zhou
- Department of Food and Chemical
Engineering, Shaoyang University, Shaoyang, Hunan 422000, PR China
| | - Deyi Luo
- Department of Food and Chemical
Engineering, Shaoyang University, Shaoyang, Hunan 422000, PR China
| |
Collapse
|
5
|
Du L, Ahmad S, Liu L, Wang L, Tang J. A review of antibiotics and antibiotic resistance genes (ARGs) adsorption by biochar and modified biochar in water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159815. [PMID: 36328262 DOI: 10.1016/j.scitotenv.2022.159815] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/15/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Antibiotics have been used in massive quantities for human and animal medical treatment, and antibiotic resistance genes (ARGs) are of great concern worldwide. Antibiotics and ARGs are exposed to the natural environment through the discharge of medical wastewater, causing great harm to the environment and human health. Biochar has been widely used as a green and efficient adsorbent to remove pollutants. However, pristine and unmodified biochars are not considered sufficient and efficient to cope with the current serious water pollution. Therefore, researchers have chosen to improve the adsorption capacity of biochar through different modification methods. To have a better understanding of the application of modified biochar, this review summarizes the biochar modification methods and their performance, particularly, molecular imprinting and biochar aging are outlined as new modification methods, influencing factors of biochar and modified biochar in adsorption of antibiotics and ARGs and adsorption mechanisms, wherein adsorption mechanism of ARGs on biochar is found to be different than that of antibiotics. After that, the directions of biochar and modified biochar worthy of research and the issues that need attention are proposed. It can be noted that under the current dual carbon policy, biochar may have wider application prospects in future.
Collapse
Affiliation(s)
- Linqing Du
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shakeel Ahmad
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Linan Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lan Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jingchun Tang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
6
|
Zou M, Tian W, Chu M, Gao H, Zhang D. Biochar composite derived from cellulase hydrolysis apple branch for quinolone antibiotics enhanced removal: Precursor pyrolysis performance, functional group introduction and adsorption mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120104. [PMID: 36075339 DOI: 10.1016/j.envpol.2022.120104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/16/2022] [Accepted: 09/01/2022] [Indexed: 05/27/2023]
Abstract
In this study, magnetic biochar (MAB) and humic acid (HA)-coated magnetic biochar produced from apple branches without and after cellulase hydrolysis (HMAB and CHMAB, respectively) were prepared and tested as adsorbents of enrofloxacin (ENR) and moxifloxacin (MFX) in aqueous solution. Compared with MAB and HMAB, novel adsorbent CHMAB possessed a superior mesoporous structure, greater graphitization degree and abundant functional groups. When antibiotic solutions ranged from 2 to 20 mg L-1, the theoretical maximum adsorption capacities of CHMAB for ENR and MFX were 48.3 and 61.5 mg g-1 at 35 °C with adsorbent dosage of 0.4 g L-1, respectively, while those of MAB and HMAB were 39.6 and 54.4 mg g-1, and 44.7 and 59.0 mg g-1, respectively. The pseudo-second-order kinetic model and Langmuir model presented a better fitting to the spontaneous and endothermic adsorption process. The maximum adsorption capacity of ENR and MFX onto CHMAB was achieved at initial pH values of 5 and 8, respectively. Additionally, the adsorption capacity of ENR and MFX decreased with increasing concentrations of K+ and Ca2+ (0.02-0.1 mol L-1). Synergism between the pore-filling effect, π-π electron-donor-acceptor interactions, regular and negative charge-assisted H-bonding, surface complexation, electrostatic interactions and hydrophobic interactions may dominate the adsorption process. This study demonstrated that a novel magnetic biochar composite prepared through pyrolysis of agricultural waste lignocellulose hydrolyzed by cellulase in combination with HA coating was a promising adsorbent for eliminating quinolone antibiotics from aqueous media.
Collapse
Affiliation(s)
- Mengyuan Zou
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, PR China
| | - Weijun Tian
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, PR China; Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266234, PR China.
| | - Meile Chu
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, PR China
| | - Huizi Gao
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, PR China
| | - Dantong Zhang
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, PR China
| |
Collapse
|
7
|
Zhang Y, Qv Z, Wang J, Yang Y, Chen X, Wang J, Zhang Y, Zhu L. Natural biofilm as a potential integrative sample for evaluating the contamination and impacts of PFAS on aquatic ecosystems. WATER RESEARCH 2022; 215:118233. [PMID: 35248909 DOI: 10.1016/j.watres.2022.118233] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/19/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Natural biofilm can be a suitable medium for the monitoring of pollutants. Limited information is currently available regarding the occurrence of per- and polyfluoroalkyl substances (PFAS) in periphytic biofilm and low-trophic level organisms of freshwater ecosystems. In this study, surface water, biofilm, phytoplankton, and freshwater snails were collected from Taihu Lake, China, and characterized for 16 PFAS, including legacy compounds (PFSAs/PFCAs) and PFAS of emerging concern (fluorotelomer sulfonates and F-53B). The colonized biofilms effectively bioaccumulated PFAS from water, with the total concentration (∑PFAS) in the range of 1.96-20.1 ng/g wet weight, and the bioaccumulation factor increased with the PFAS log Kow values. As compared with phytoplankton, the ∑PFAS in biofilms displayed a stronger correlation with those in water. PFAS distinctly biomagnified from the biofilm to freshwater snail, with the biomagnification factor in the range of 3.09 ± 2.03 - 17.8 ± 10.2, implying the important role of biofilm in PFAS transfer in aquatic environment. Extracellular proteins production in biofilm increased with the water PFAS concentrations. The total extracellular polymeric substances (EPS) content increased with the water PFAS concentration firstly and then declined to a steady level, while the algal chlorophyll level exhibited a similar relationship with the PFAS in biofilm. High PFAS levels were also associated with depressed alpha diversity of fungal community in biofilms. Biofilm appears as a relevant indicator to characterize the occurrence of PFAS in aquatic ecosystems.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Zhiqian Qv
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Jingwen Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Yi Yang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Xin Chen
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Jingzhen Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Yanfeng Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China.
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
8
|
De Bhowmick G, Briones RM, Thiele-Bruhn S, Sen R, Sarmah AK. Adsorptive removal of metformin on specially designed algae-lignocellulosic biochar mix and techno-economic feasibility assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118256. [PMID: 34606970 DOI: 10.1016/j.envpol.2021.118256] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/01/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Batch sorption of metformin hydrochloride (MET) onto a specially designed biochar mix consisting of both macro (MAC) and micro (MIC) algae, rice husk and pine sawdust was conducted. Pyrolysis of both MAC and MIC algae mixture was done followed by chemical activation with hydrogen-peroxide. Additionally, sorption of MET under the influence of pH was separately investigated. Batch studies of isotherms were well described by Freundlich model with high non-linearity and Freundlich exponent values ranged anywhere from 0.12 to 1.54. Heterogeneity of MET adsorption to the bonding sites was attributed to the surface functional groups of the modified biochar. Amongst the four biochars, the activated macroalgae biochar (MACAC) and microalgae biochar (MICAC) depicted favourable adsorption of MET with maximum adsorption at pH 7. Up to 76% of MET removal from the environment was obatained using the MACAC biochar. Scanning electron micrographs coupled with energy dispersive X-ray, as well as elemental analyses confirmed formation of oxygen containing surface functional groups due to activation strengthening chemisorption as the main sorption mechanism. Further, Fourier transform infra-red spectroscopy and other surface functional group analyses along with Zeta potential measurements reinforced our proposed sorption mechanism. Lowest zeta potential observed at pH 7 enhanced the electrostatic force of attraction for both the biochars. Negative zeta potential value of the biochars under different pH indicated potential of the biochars to adsorb other positively charged contaminants. From a techno-economic perspective, capital expenditure cost is not readily available, however, it is envisaged that production of pyrolyzed biochar from algal biomass could make the process economically attractive especially when the biochar could be utilised for high-end applications.
Collapse
Affiliation(s)
- Goldy De Bhowmick
- Department of Civil and Environmental Engineering, The Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Rowena M Briones
- Department of Civil and Environmental Engineering, The Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Sören Thiele-Bruhn
- Universität Trier, Bodenkunde, FB VI Raum- & Umweltwissenschaften, Behringstr. 21, Trier, D-54286, Germany
| | - Ramkrishna Sen
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal, Kharagpur, 721302, India
| | - Ajit K Sarmah
- Department of Civil and Environmental Engineering, The Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.
| |
Collapse
|
9
|
Yang C, Wu W, Zhou X, Hao Q, Li T, Liu Y. Comparing the sorption of pyrene and its derivatives onto polystyrene microplastics: Insights from experimental and computational studies. MARINE POLLUTION BULLETIN 2021; 173:113086. [PMID: 34695688 DOI: 10.1016/j.marpolbul.2021.113086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
In this study, the sorption behaviors and mechanisms between polystyrene microplastics (micro-PS) and 4-rings polycyclic aromatic hydrocarbons (PAHs) pyrene (Pyr) and its derivatives (S-Pyr), including 1-methylpyrene (P-CH3), 1-hydroxypyrene (P-OH), 1-aminopyrene (P-NH2), 1-pyrenecarboxylic acid (P-COOH) were investigated at neutrality. The results revealed that the sorption rates of micro-PS for S-Pyr were higher than those for parent Pyr. Meanwhile, -CH3 could slightly facilitate the sorption, whereas -OH, P-NH2, and P-COOH intensively inhibit the sorption of S-Pyr onto micro-PS. The sorption capacities of Pyr/S-Pyr increased with decreasing size of micro-PS. Besides, the effects of salinity and temperature on the sorption characteristics of micro-PS for Pyr/S-Pyr depended on their substituents. Combined with experimental and computational methods, it could be concluded that the main sorption mechanisms were possibly hydrophobic interaction, π-π interaction and pore-filling. The observations reported here could improve predictions of environmental behaviors and bioavailability of PAHs and micro-PS.
Collapse
Affiliation(s)
- Chenghu Yang
- Marine Fisheries Research Institute of Zhejiang, Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province, Zhoushan 316021, China; Marine and Fishery institute of Zhejiang Ocean University, Zhoushan 316021, China
| | - Wei Wu
- Marine Fisheries Research Institute of Zhejiang, Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province, Zhoushan 316021, China; Marine and Fishery institute of Zhejiang Ocean University, Zhoushan 316021, China
| | - Xiaotian Zhou
- Marine Fisheries Research Institute of Zhejiang, Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province, Zhoushan 316021, China; Marine and Fishery institute of Zhejiang Ocean University, Zhoushan 316021, China
| | - Qing Hao
- Marine Fisheries Research Institute of Zhejiang, Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province, Zhoushan 316021, China; Marine and Fishery institute of Zhejiang Ocean University, Zhoushan 316021, China
| | - Tiejun Li
- Marine Fisheries Research Institute of Zhejiang, Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province, Zhoushan 316021, China; Marine and Fishery institute of Zhejiang Ocean University, Zhoushan 316021, China
| | - Yangzhi Liu
- Marine Fisheries Research Institute of Zhejiang, Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province, Zhoushan 316021, China; The Institute of Environment, Resources, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
10
|
Al-Wabel MI, Ahmad M, Al-Swadi HA, Ahmad J, Abdin Y, Usman ARA, Al-Farraj ASF. Sorption–Desorption Behavior of Doxycycline in Soil–Manure Systems Amended with Mesquite Wood Waste Biochar. PLANTS 2021; 10:plants10122566. [PMID: 34961036 PMCID: PMC8709227 DOI: 10.3390/plants10122566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/24/2021] [Accepted: 11/15/2021] [Indexed: 11/16/2022]
Abstract
Elevated levels of doxycycline (DC) have been detected in the environment due to its extensive utilization as a veterinary antibiotic. Sorption–desorption behavior of DC in soil affects its transport, transformation, and availability in the environment. Thus, sorption–desorption behavior of DC was explored in three soils (S1, S2, and S3) after manure application with and without mesquite wood-waste-derived biochar (BC) pyrolyzed at 600 °C. Sorption batch trials demonstrated the highest DC sorption in soil S1 as compared to S2 and S3, either alone or in combination with manure or manure + BC. Chemical sorption and pore diffusion were involved in DC sorption, as indicated by the kinetic models. Soil S1 with manure + BC exhibited the highest Langmuir model predicted sorption capacity (18.930 mg g−1) compared with the other two soils. DC sorption capacity of soils was increased by 5.0–6.5-fold with the addition of manure, and 10–13-fold with BC application in a soil–manure system. In desorption trials, manure application resulted in 67%, 40%, and 41% increment in DC desorption in soil S1, S2, and S3, respectively, compared to the respective soils without manure application. In contrast, BC application reduced DC desorption by 73%, 66%, and 65%, in S1, S2, and S3, respectively, compared to the soils without any amendment. The highest DC sorption after BC application could be due to H bonding, π–π EDA interactions, and diffusion into the pores of BC. Hence, mesquite wood-waste-derived BC can effectively be used to enhance DC retention in contaminated soil to ensure a sustainable ecosystem.
Collapse
Affiliation(s)
- Mohammad I. Al-Wabel
- Soil Sciences Department, College of Food & Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (M.A.); (H.A.A.-S.); (J.A.); (Y.A.); (A.R.A.U.); (A.S.F.A.-F.)
- Correspondence: author: ; Tel.: +966-1-467-8442; Fax: +966-1-467-8440
| | - Munir Ahmad
- Soil Sciences Department, College of Food & Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (M.A.); (H.A.A.-S.); (J.A.); (Y.A.); (A.R.A.U.); (A.S.F.A.-F.)
| | - Hamed A. Al-Swadi
- Soil Sciences Department, College of Food & Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (M.A.); (H.A.A.-S.); (J.A.); (Y.A.); (A.R.A.U.); (A.S.F.A.-F.)
- Department of Soil, Water and Environment, Faculty of Agriculture, Sana’a University, Sana’a 31220, Yemen
| | - Jahangir Ahmad
- Soil Sciences Department, College of Food & Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (M.A.); (H.A.A.-S.); (J.A.); (Y.A.); (A.R.A.U.); (A.S.F.A.-F.)
| | - Yassir Abdin
- Soil Sciences Department, College of Food & Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (M.A.); (H.A.A.-S.); (J.A.); (Y.A.); (A.R.A.U.); (A.S.F.A.-F.)
| | - Adel R. A. Usman
- Soil Sciences Department, College of Food & Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (M.A.); (H.A.A.-S.); (J.A.); (Y.A.); (A.R.A.U.); (A.S.F.A.-F.)
- Department of Soils and Water, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt
| | - Abdullah S. F. Al-Farraj
- Soil Sciences Department, College of Food & Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (M.A.); (H.A.A.-S.); (J.A.); (Y.A.); (A.R.A.U.); (A.S.F.A.-F.)
| |
Collapse
|
11
|
Luo J, Li X, Ge C, Müller K, Yu H, Deng H, Shaheen SM, Tsang DCW, Bolan NS, Rinklebe J, Ok YS, Gao B, Wang H. Preparation of ammonium-modified cassava waste-derived biochar and its evaluation for synergistic adsorption of ternary antibiotics from aqueous solution. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 298:113530. [PMID: 34411800 DOI: 10.1016/j.jenvman.2021.113530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/08/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
Mono- and co-sorption of the three antibiotics i.e., norfloxacin (NOR), sulfamerazine (SMR) and oxytetracycline (OTC), to raw and NH4+-modified cassava waste biochar added to aqueous solutions were investigated. The NH4+-modified biochar showed higher sorption affinity for both NOR and SMR than the raw biochar, while the raw biochar showed higher sorption affinity for OTC than the modified biochar. The highest sorption to both biochars in both the mono- and competitive sorption systems was found for OTC followed by NOR and SMR. Sorption equilibrium in all systems analyzed was reached within 15 h. Electrostatic interactions among the ionic antibiotics in the multicomponent solution increased NOR and SMR sorption to both biochars. Antibiotics' mono- and co-sorption to biochars decreased with increasing solution pH. The co-sorption of NOR and SMR to the two biochars was regulated by π-π electron-donor-acceptor (EDA) interactions; besides, electrostatic interactions and Hydrogen (H-) bonding played an important part. Cation bridging might have been a potential mechanism to contribute to SMR sorption to the raw biochar, and OTC sorption to the NH4+-modified biochar. These observations will improve our understanding of the simultaneous removal of multiple antibiotics from water or wastewater.
Collapse
Affiliation(s)
- Jiwei Luo
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, Renmin Road, Haikou, 570228, China
| | - Xue Li
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, Renmin Road, Haikou, 570228, China
| | - Chengjun Ge
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, Renmin Road, Haikou, 570228, China; College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Karin Müller
- The New Zealand Institute for Plant & Food Research Limited, Ruakura Research Centre, Private Bag, 3123, Hamilton, New Zealand
| | - Huamei Yu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, Renmin Road, Haikou, 570228, China
| | - Hui Deng
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, Renmin Road, Haikou, 570228, China
| | - Sabry M Shaheen
- University of Wuppertal, Institute of Foundation Engineering, Water- and Waste-Management, School of Architecture and Civil Engineering, Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589, Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516, Kafr El-Sheikh, Egypt
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Nanthi S Bolan
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia; School of Engineering, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Jörg Rinklebe
- University of Wuppertal, Institute of Foundation Engineering, Water- and Waste-Management, School of Architecture and Civil Engineering, Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, Seoul, 05006, Republic of Korea
| | - Yong Sik Ok
- Korea Biochar Research Center& Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| |
Collapse
|
12
|
Zhang Z, Zhou M, Liu J, Li J, Yang J, Chang H. Preparation and characterization of cornstalk microspheric hydrochar and adsorption mechanism of mesotrione. ROYAL SOCIETY OPEN SCIENCE 2021; 8:202209. [PMID: 34234952 PMCID: PMC8242927 DOI: 10.1098/rsos.202209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/26/2021] [Indexed: 06/13/2023]
Abstract
In this study, cornstalk was pyrolysed to obtain hydrochar (HC), which was used to remove mesotrione from aqueous solutions. HC characterization and batch experiments were conducted to investigate mesotrione adsorption and the underlying mechanism. The characterization revealed microspheres on the HC surface. FT-IR spectra showed that the HC contained a large number of -OH groups, C=C bonds of aromatic rings, C-H groups in aromatic rings and phenolic C-O bonds. The adsorption results showed that the mesotrione adsorption ability gradually increased as the HC preparation temperature increased. The quasi-second-order kinetic equation (R2 ≥ 0.9860, p < 0.05) agreed well with the mesotrione adsorption process. The maximum monolayer adsorption capacity, which was obtained at pH 7 and 45°C with HC prepared at 240°C, was 3181.7 mg kg-1 with the Langmuir isotherm model (R2 ≥ 0.9491, p < 0.05). Van der Waals and dipole forces and hydrogen bonds were inferred as the main adsorption mechanisms. HC has potential as an effective and energy-saving adsorbent for mesotrione to reduce environmental pollution.
Collapse
Affiliation(s)
- Zhongqing Zhang
- College of Resources and Environmental Science, Jilin Agricultural University, Changchun 130118, Jilin, People's Republic of China
| | - Mengmeng Zhou
- College of Resources and Environmental Science, Jilin Agricultural University, Changchun 130118, Jilin, People's Republic of China
| | - Jinhua Liu
- College of Resources and Environmental Science, Jilin Agricultural University, Changchun 130118, Jilin, People's Republic of China
| | - Jiahao Li
- College of Resources and Environmental Science, Jilin Agricultural University, Changchun 130118, Jilin, People's Republic of China
| | - Jingmin Yang
- College of Resources and Environmental Science, Jilin Agricultural University, Changchun 130118, Jilin, People's Republic of China
| | - Haibo Chang
- College of Resources and Environmental Science, Jilin Agricultural University, Changchun 130118, Jilin, People's Republic of China
| |
Collapse
|
13
|
Ashiq A, Vithanage M, Sarkar B, Kumar M, Bhatnagar A, Khan E, Xi Y, Ok YS. Carbon-based adsorbents for fluoroquinolone removal from water and wastewater: A critical review. ENVIRONMENTAL RESEARCH 2021; 197:111091. [PMID: 33794177 DOI: 10.1016/j.envres.2021.111091] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/23/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
This review summarizes the adsorptive removal of Fluoroquinolones (FQ) from water and wastewater. The influence of different physicochemical parameters on the adsorptive removal of FQ-based compounds is detailed. Further, the mechanisms involved in the adsorption of FQ-based antibiotics on various adsorbents are succinctly described. As the first of its kind, this paper emphasizes the performance of each adsorbent for FQ-type antibiotic removal based on partition coefficients of the adsorbents that is a more sensitive parameter than adsorption capacity for comparing the performances of adsorbents under various adsorbate concentrations and heterogeneous environmental conditions. It was found that π-π electron donor-acceptor interactions, electrostatic interactions, and pore-filling were the most prominent mechanisms for FQ adsorption by carbon and clay-based adsorbents. Among all the categories of adsorbents reviewed, graphene showed the highest performance for the removal of FQ antibiotics from water and wastewater. Based on the current state of knowledge, this review fills the gap through methodolically understanding the mechanism for further improvement of FQ antibiotics adsorption performance from water and wastewater.
Collapse
Affiliation(s)
- Ahmed Ashiq
- Ecosphere Resilience Research Centre, Faculty of Applied Science, University of Sri Jayewardenepura, Sri Lanka
| | - Meththika Vithanage
- Ecosphere Resilience Research Centre, Faculty of Applied Science, University of Sri Jayewardenepura, Sri Lanka.
| | - Binoy Sarkar
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom
| | - Manish Kumar
- Department of Earth Sciences, Indian Institute of Technology Gandhinagar, India
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130, Mikkeli, Finland
| | - Eakalak Khan
- Civil and Environmental Engineering and Construction Department, University of Nevada - Las Vegas, Las Vegas, NV, USA
| | - Yunfei Xi
- Institute for Future Environments & School of Earth and Atmospheric Sciences, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland, 4001, Australia
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, South Korea.
| |
Collapse
|
14
|
Yu M, Liang S, Dai Z, Li Y, Luo Y, Tang C, Xu J. Plant material and its biochar differ in their effects on nitrogen mineralization and nitrification in a subtropical forest soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:143048. [PMID: 33129543 DOI: 10.1016/j.scitotenv.2020.143048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/11/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
Natural wildfires have a great effect on soil N transformation in subtropical forest. The pyrogenic organic matter (PyOM) in forest soils is mainly derived from the plant material burnt during forest fires, which affects soil N composition, N mineralization and nitrification. This study examined the effects of typical fresh plant material (leaves and twigs of Castanopsis sclerophylla, representing litter) and its biochar (representing PyOM) on N mineralization and nitrification in a subtropical forest soil. The soils were incubated with the plant material (PM), its biochar (BC) and their combinations for 84 days. Both PM and BC considerably increased soil pH and dissolved organic C, whereas PM decreased NO3--N and dissolved organic N. The additions of PM alone, and its combinations with BC resulted in net N immobilization. The rates of net N mineralization rapidly increased in first 14 days and then became stable following the addition of PM to soil. Moreover, the additions of PM and BC increased the abundances of archaeal amoA and bacterial amoA, especially with PM. The abundance of bacterial amoA correlated positively with soil pH and dissolved organic C, while archaeal amoA showed the opposite. Biochar affected soil properties and N transformation more significantly in the presence of PM, highlighting the need for further research on the interactions of plant litter and its biochar.
Collapse
Affiliation(s)
- Mengjie Yu
- Institute of Soil and Water Resources and Environmental Science, College of Environment and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Sijie Liang
- Institute of Soil and Water Resources and Environmental Science, College of Environment and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Zhongmin Dai
- Institute of Soil and Water Resources and Environmental Science, College of Environment and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Yong Li
- Institute of Soil and Water Resources and Environmental Science, College of Environment and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Yu Luo
- Institute of Soil and Water Resources and Environmental Science, College of Environment and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Caixian Tang
- Department of Animal, Plant & Soil Sciences, Centre for AgriBioscience, La Trobe University (Melbourne Campus), Bundoora, VIC 3086, Australia
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environment and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China.
| |
Collapse
|
15
|
Yang C, Miao S, Li T. Influence of water washing treatment on Ulva prolifera-derived biochar properties and sorption characteristics of ofloxacin. Sci Rep 2021; 11:1797. [PMID: 33469099 PMCID: PMC7815725 DOI: 10.1038/s41598-021-81314-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/06/2021] [Indexed: 11/02/2022] Open
Abstract
The influences of water washing treatment on the properties of Ulva prolifera-derived biochar (U.P-biochar) and its sorption characteristics of ofloxacin (OFL) were investigated. The results showed that the water washing treatment significantly changed the physiochemical structures of U.P-biochars, and improved the sorption capacity of OFL. The sorption capacity of OFL by U.P-biochar was closely dependent on pyrolysis temperature (200-600 °C) and equilibrium solution pH (3-11). Different sorption mechanisms (e.g. cation exchange, electrostatic attraction, H-bond and cationic-π and π-π interactions) were dominant for specific U.P-biochars under various pH regions (acidic, neutral and alkaline). Moreover, the unwashed and washed U.P-biochars prepared at 200 °C (BC200 and BCW200) showed a higher sorption capacity of OFL at pH = 7. The two-compartment first-order model provided an appropriate description of the sorption kinetics of OFL by BC200 and BCW200 (R2 > 0.98), which revealed that the contribution ratios between the fast and slow sorption compartments (ffast/fslow, 1.55 for BC200 and 1.25 for BCW200) reduced after water washing treatment of U.P-biochar. The values of n for the Freundlich model were less than 1, which demonstrated that the sorption of OFL by BC200 and BCW200 was favourable and nonlinear. Also, the sorption of OFL by BC200 and BCW200 increased with an increase in solution temperature and the sorption process was spontaneous and endothermic. This study provides valuable information for being a primary consideration in the production and application of U.P-biochar.
Collapse
Affiliation(s)
- Chenghu Yang
- Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan, 316021, Zhejiang, People's Republic of China
- Marine and Fishery Institute, Zhejiang Ocean University, Zhoushan, 316021, People's Republic of China
| | - Shichao Miao
- Marine and Fishery Institute, Zhejiang Ocean University, Zhoushan, 316021, People's Republic of China
| | - Tiejun Li
- Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan, 316021, Zhejiang, People's Republic of China.
| |
Collapse
|
16
|
Russell JN, Yost CK. Alternative, environmentally conscious approaches for removing antibiotics from wastewater treatment systems. CHEMOSPHERE 2021; 263:128177. [PMID: 33297145 DOI: 10.1016/j.chemosphere.2020.128177] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/13/2020] [Accepted: 08/26/2020] [Indexed: 05/11/2023]
Abstract
Prevalence of antibiotic resistance in the environment is of critical concern from a public health perspective, with many human impacted environments showing increased incidence of antibiotic resistant bacteria. Wastewater treatment environments are of particular interest due to their high levels of antibiotic residuals, which can select for antibiotic resistance genes in bacteria. However, wastewater treatment plants are generally not designed to remove antibiotics from collected waste, and many of the currently proposed methods are unsafe for environmental use. This has prompted researchers to identify alternative environmentally safe methods for removing antibiotics from wastewater to be used in parallel with conventional wastewater treatment, as it is a potential strategy towards the mitigation of environmental antibiotic resistance selection. This paper reviews several methods developed to absorb and/or degrade antibiotics from aqueous solutions and wastewater biosolids, which includes ligninolytic fungi and ligninolytic enzymes, algae-driven photobioreactors and algae-activated sludge, and organically-sourced biochars.
Collapse
|
17
|
Huang P, Zhang P, Min L, Tang J, Sun H. Synthesis of cellulose carbon aerogel via combined technology of wet ball-milling and TEMPO-mediated oxidation and its supersorption performance to ionic dyes. BIORESOURCE TECHNOLOGY 2020; 315:123815. [PMID: 32682265 DOI: 10.1016/j.biortech.2020.123815] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
In this study, modified cellulose aerogels (CAs) were obtained via wet ball-milling and 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-mediated oxidation and were further applied to prepare cellulose-derived carbon aerogels (CCAs) by pyrolyzing. The results showed that the successive treatments by ball-milling and oxidation completely opened the CA fibers and converted them into plane or wrinkle structures. CCAs contained porous and graphite-like structures and its specific surface area reached up to 2825 m2/g. The maximum adsorption capacities of CCAs were 1078 mg/g for methylene blue (MB) and 644 mg/g for alizarin reds (ARS). The sorption of dyes occurred via hydrophobic partition, pore-filling, H-bonding, p/π-π electron donor-acceptor interactions. For the cationic MB, electrostatic attraction reinforced the sorption, while the electrostatic repulsion between the anionic ARS and CCAs was weakened by high salty. Besides, CCAs showed excellent salt tolerance. The present study provides an excellent CCA adsorbent by successive modification of ball-milling and oxidation of CAs.
Collapse
Affiliation(s)
- Peng Huang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Peng Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lujuan Min
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jingchun Tang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
18
|
Zhang J, Zhai J, Zheng H, Li X, Wang Y, Li X, Xing B. Adsorption, desorption and coadsorption behaviors of sulfamerazine, Pb(II) and benzoic acid on carbon nanotubes and nano-silica. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 738:139685. [PMID: 32526408 DOI: 10.1016/j.scitotenv.2020.139685] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/18/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
In this study, nano-silica (Nano-SiO2), oxidized (O-CNTs) and graphitized multi-walled carbon nanotubes (G-CNTs) were applied as model adsorbents to study the adsorption, desorption and coadsorption behaviors of sulfamerazine (SMR), Pb(II) and benzoic acid (BA). The results showed that charge assisted H-bond (CAHB) formation played an important role in adsorption of SMR and BA on O-riched nanomaterials. The adsorption capacities of Pb(II) on CNTs were 21.46- 26.77 times higher than that on Nano-SiO2, which was mainly attributed to surface complexation and cation-π interaction. The fraction of Pb2+ adsorbed in the inside channel of CNTs should not be ignored. In coexisting systems, the absolute sorption inhibition of the SMR (ΔQeSMR) was compared with the amount of competitor adsorbed. Competitive sorption was observed as indicated by adding Pb(II) decreased adsorption of SMR on Nano-SiO2 (ΔQeSMR > 0), but hardly affected SMR adsorption on CNTs (ΔQeSMR ≈ 0) which was attributed to cation-π interaction. In addition, CAHB formed between SMR and Nano-SiO2 (ΔpKa ≈ 4.34) was weaker than that formed between SMR and O-CNTs (ΔpKa ≈ 3.15), which also consequently resulted in stronger competition of Pb(II) to SMR on Nano-SiO2 than that on O-CNTs. Moreover, coexisting BA increased adsorption of SMR on Nano-SiO2 and G-CNTs (ΔQeSMR < 0), but did not result in an apparent competition on SMR adsorption by O-CNTs (ΔQeSMR ≈ 0). These results emphasize that the environmental behaviors of a certain pollutant should be assessed carefully by considering the presence of other pollutants.
Collapse
Affiliation(s)
- Jinlong Zhang
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China; International Joint Research Centre of Shaanxi Province for Pollutants Exposure and Eco-environmental Health, Xi'an 710119, China
| | - Jieru Zhai
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China; International Joint Research Centre of Shaanxi Province for Pollutants Exposure and Eco-environmental Health, Xi'an 710119, China
| | - Hao Zheng
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100, China
| | - Xiaoyun Li
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China; International Joint Research Centre of Shaanxi Province for Pollutants Exposure and Eco-environmental Health, Xi'an 710119, China.
| | - Yuru Wang
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Xiaoping Li
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China; International Joint Research Centre of Shaanxi Province for Pollutants Exposure and Eco-environmental Health, Xi'an 710119, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States.
| |
Collapse
|
19
|
Ma Y, Li P, Yang L, Wu L, He L, Gao F, Qi X, Zhang Z. Iron/zinc and phosphoric acid modified sludge biochar as an efficient adsorbent for fluoroquinolones antibiotics removal. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 196:110550. [PMID: 32247244 DOI: 10.1016/j.ecoenv.2020.110550] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/18/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
Iron/zinc (Fe/Zn), phosphoric acid (H3PO4) or in combination (Fe/Zn + H3PO4) modified sludge biochar (SBC) were prepared and tested in this study to adsorb fluoroquinolones antibiotics including ciprofloxacin (CIP), norfloxacin (NOR) and ofloxacin (OFL) from water. Fe/Zn + H3PO4-SBC had an increased surface area (SBET), total pore volume (Vtot), mesoporous volume (Vmes), pore diameter (Dp) and oxygen-containing functional groups. It exhibited superior adsorption performance for CIP, NOR and OFL with the maximum adsorption amount of 83.7, 39.3, 25.4 mg g-1, respectively. Pseudo-second kinetic and Freundlich isotherm model presented the better fitting. The results of models and characterization analysis in combination indicated that physisorption and chemisorption, including pore filling, hydrogen bonding, π-π interaction, electrostatic interaction and functional groups complexation on a heterogeneous surface were the dominant process and mechanism. Liquid film diffusion was the main rate-limiting step. The adsorption process of CIP, NOR and OFL onto Fe/Zn + H3PO4-SBC were a spontaneous endothermic process. This study demonstrated that Fe/Zn + H3PO4 modified SBC exhibited high adsorption capacity, which was a promising adsorbent for fluoroquinolones as well as for other antibiotics effective removal from waters.
Collapse
Affiliation(s)
- Yongfei Ma
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
| | - Ping Li
- China-UK Water and Soil Resources Sustainable Utilization Joint Research Centre, Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, 453002, China
| | - Lie Yang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China.
| | - Li Wu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China.
| | - Liuyang He
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
| | - Feng Gao
- China-UK Water and Soil Resources Sustainable Utilization Joint Research Centre, Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, 453002, China
| | - Xuebin Qi
- China-UK Water and Soil Resources Sustainable Utilization Joint Research Centre, Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, 453002, China
| | - Zulin Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China; The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK.
| |
Collapse
|
20
|
Xia S, Song Z, Jeyakumar P, Bolan N, Wang H. Characteristics and applications of biochar for remediating Cr(VI)-contaminated soils and wastewater. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:1543-1567. [PMID: 31673917 DOI: 10.1007/s10653-019-00445-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
Chromium (Cr) is a common environmental contaminant due to industrial processes and anthropogenic activities such as mining of chrome ore, electroplating, timber treatment, leather tanning, fertilizer and pesticide, etc. Cr exists mainly in both hexavalent [Cr(VI)] and trivalent [Cr(III)] form, being Cr(VI) with non-degradability and potential to be hidden, thereby affecting surrounding environment and being toxic to human health. Therefore, researches on remediation of Cr pollution in the environment have received much attention. Biochar is a low-cost adsorbent, which has been identified as a suitable material for Cr(VI) immobilization and removal from soil and wastewater. This review incorporates existing literature to provide a detailed examination into the (1) Cr chemistry, the source and current status of Cr pollution, and Cr toxicity and health; (2) feedstock and characterization of biochar; (3) processes and mechanisms of immobilization and removal of Cr by biochar, including oxidation-reduction, electrostatic interactions, complexation, ion exchange, and precipitation; (4) applications of biochar for Cr(VI) remediation and the modification of biochar to improve its performance; (5) factors affecting removal efficiency of Cr(VI) with respect to its physico-chemical conditions, including pH, temperature, initial concentration, reaction time, biochar characteristics, and coexisting contaminants. Finally, we identify current issues, challenges, and put forward recommendations as well as proposed directions for future research. This review provides a thorough understanding of using biochar as an emerging biomaterial adsorbent in Cr(VI)-contaminated soils and wastewater.
Collapse
Affiliation(s)
- Shaopan Xia
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Zhaoliang Song
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China.
| | - Paramsothy Jeyakumar
- Environmental Sciences, School of Agriculture and Environment, Massey University, Private Bag 11 222, Palmerston North, 4442, New Zealand
| | - Nanthi Bolan
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan, NSW, Australia
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environment and Chemical Engineering, Foshan University, Foshan, Guangdong, China.
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou, Zhejiang, China.
| |
Collapse
|
21
|
Chen H, Yang X, Wang H, Sarkar B, Shaheen SM, Gielen G, Bolan N, Guo J, Che L, Sun H, Rinklebe J. Animal carcass- and wood-derived biochars improved nutrient bioavailability, enzyme activity, and plant growth in metal-phthalic acid ester co-contaminated soils: A trial for reclamation and improvement of degraded soils. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 261:110246. [PMID: 32148312 DOI: 10.1016/j.jenvman.2020.110246] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
Reclamation of degraded soils such as those with low organic carbon content and soils co-contaminated with toxic elements and phthalic acid esters (PAEs) is of great concern. Little is known about the efficiency of plant- and animal-derived biochars for improving plant growth and physicochemical and biological properties of co-contaminated soils, particularly under low content of organic matter. Hence, a pot trial was carried out by growing pak choi (Brassica chinensis L.) to assess the influence of different doses (0, 0.5, 1, 2, and 4%) of animal (pig carcass) and wood (Platanus orientalis) derived biochars on soil properties, nutrient availabilities, plant growth, and soil enzyme activities in two soils containing low (LOC) and high (HOC) organic carbon contents and co-contaminated with di-(2-ethylhexyl) phthalic acid (DEHP) and cadmium (Cd). Biochar applications improved pH, salinity, carbon content, and cation exchange capacity of both soils. Addition of biochars significantly increased the bioavailability and uptake of phosphorus and potassium in the plants in both soils with greater effects from pig biochar than wood biochar. Biochar additions also significantly enhanced urease, sucrase, and catalase activities, but suppressed acid phosphatase activity in both soils. The impact of pig biochar was stronger on urease and acid phosphatase, while the wood biochar was more effective with sucrase and catalase activities. The biomass yield of pak choi was significantly increased after biochar addition to both soils, especially in 2% pig biochar treatment in the LOC soil. The positive response of soil enzymes activities and plant growth for biochar addition to the Cd and DEHP co-contaminated soils indicate that both biochars, particularly the pig biochar can mitigate the risk of these pollutants and prove to be eco-friendly and low-cost amendments for reclaiming these degraded soils.
Collapse
Affiliation(s)
- Hanbo Chen
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China
| | - Xing Yang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China; University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China.
| | - Binoy Sarkar
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589, Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33 516, Kafr El-Sheikh, Egypt
| | - Gerty Gielen
- Scion, Private Bag 3020, Rotorua, 3046, New Zealand
| | - Nanthi Bolan
- Global Centre for Environmental Remediation, University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Jia Guo
- Chengbang Eco-Environment Co. Ltd, Hangzhou, Zhejiang, 310008, China
| | - Lei Che
- School of Engineering, Huzhou University, Huzhou, Zhejiang 313000, China
| | - Huili Sun
- Key Laboratory of Marine Bio-resources Sustainable Utilization, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, 510301, China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; University of Sejong, Department of Environment, Energy and Geoinformatics, 98 Gunja-Dong, Guangjin-Gu, Seoul, South Korea
| |
Collapse
|
22
|
Abstract
Removal of aquatic cadmium ions using biochar is a low-cost method, but the results are usually not satisfactory. Modified biochar, which can be a low-cost and efficient material, is urgently required for Cd-polluted water and soil remediation. Herein, poplar bark (SB) and poplar sawdust (MB) were used as raw materials to prepare modified biochar, which is rich in N- and S- containing groups, i.e., TSBC-600 and TMBC-600, using a co-pyrolysis method with thiourea. The adsorption characteristics of Cd2+ in simulated wastewater were explored. The results indicated that the modification optimized the surface structure of biochar, Cd2+ adsorption process by both TSBC-600 and TMBC-600 was mainly influenced by the initial pH, biochar dosage, and contact time, sthe TSBC-600 showed a higher adsorption capacity compared to TMBC-600 under different conditions. The Langmuir adsorption isotherm model and pseudo-second-order kinetic model were more consistent with the adsorption behavior of TSBC-600 and TMBC-600 to Cd2+, the maximum adsorption capacity of TSBC-600 and TMBC-600 calculated by the Langmuir adsorption isotherm model was 19.998 mg/g and 9.631 mg/g, respectively. The modification method for introducing N and S into biochar by the co-pyrolysis of biomass and thiourea enhanced the removal rate of aquatic cadmium ions by biochar.
Collapse
|
23
|
Li Z, Li M, Che Q, Li Y, Liu X. Synergistic removal of tylosin/sulfamethoxazole and copper by nano-hydroxyapatite modified biochar. BIORESOURCE TECHNOLOGY 2019; 294:122163. [PMID: 31563739 DOI: 10.1016/j.biortech.2019.122163] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/14/2019] [Accepted: 09/18/2019] [Indexed: 06/10/2023]
Abstract
Antibiotics and heavy metals are frequently detected simultaneously in aquatic environment. In this study, we investigated the removal performance of biochar modified with nano-hydroxyapatite (nHAP, nHAP@biochar) on tylosin (TYL) /sulfamethoxazole (SMX) and Cu(II) simultaneously. Six nHAP@biochars were prepared with different feedstock and nHAP and biomass ratios. The influences of feedstock and nHAP and biomass ratios, interaction of TYL/SMX and Cu(II) and thermodynamic study were investigated. The adsorption quantities on nHAP@biochars prepared by wood-processing residues were higher than by Chinese medicine residues. The adsorption amounts of TYL decreased with the addition of Cu(II), while the adsorption quantities of SMX increased. The adsorptions of Cu(II) were promoted by TYL and changed slightly with the increasing of SMX. Specific surface area and pore size were two of the main factors influencing the adsorption capacities of nHAP@biochars. According to density functional theory, nHAP@biochar-TYL-Cu and nHAP@biochar-Cu-SMX were more existed in the systems.
Collapse
Affiliation(s)
- Zhen Li
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Miao Li
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Qi Che
- College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang 150025, China
| | - Yandan Li
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiang Liu
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
24
|
Li Z, Li M, Zheng T, Li Y, Liu X. Removal of tylosin and copper from aqueous solution by biochar stabilized nano-hydroxyapatite. CHEMOSPHERE 2019; 235:136-142. [PMID: 31255753 DOI: 10.1016/j.chemosphere.2019.06.091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/09/2019] [Accepted: 06/12/2019] [Indexed: 06/09/2023]
Abstract
Antibiotics and heavy metals are frequently detected simultaneously in water environment. Effective elimination methods for antibiotics and heavy metals pollution should deserve our attention. This study investigates the adsorption performance of biochar modified with nano-hydroxyapatite (nHAP) on tylosin (TYL) and Cu from water simultaneously. Composite adsorbents of nHAP and biomass, derived from three waste residues, which were wood-processing residues (WR), wheat straw (WS) and Chinese medicine residues (CMR), were prepared. According to the results of orthogonal experiment, the degree of influence of the three factors on TYL and Cu were the pyrolysis temperature > the proportion of nHAP and biomass > the sources of biomass, and pyrolysis temperature> the sources of biomass> the proportion of nHAP and biomass, respectively. The optimum conditions for nHAP@biochar were screened. At pH < 7.0, the adsorption quality of TYL increased with pH increased, while at pH > 7.0, the adsorption quality of TYL changed slightly. At low pH, Cu and TYL could compete for the same adsorption sites on nHAP@biochars. The adsorption amount of TYL and Cu were both increased with increasing of the temperature. Compared with Langmuir model, Freundlich model could better fit the TYL adsorption on nHAP@biochars, with Kf values of TYL 62.35 (mmol/kg) (L/mmol)n (WR1) and 4.84 (mmol/kg) (L/mmol)n (CMR1), respectively.
Collapse
Affiliation(s)
- Zhen Li
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Miao Li
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Tongli Zheng
- Jinan Municipal Hospital of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yandan Li
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xiang Liu
- School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
25
|
Zhao J, Liang G, Zhang X, Cai X, Li R, Xie X, Wang Z. Coating magnetic biochar with humic acid for high efficient removal of fluoroquinolone antibiotics in water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 688:1205-1215. [PMID: 31726551 DOI: 10.1016/j.scitotenv.2019.06.287] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/12/2019] [Accepted: 06/19/2019] [Indexed: 06/10/2023]
Abstract
As antibiotics are widely consumed, fluoroquinolones (FQs) behave to have huge hidden danger to human health. Various agricultural residues have potential to produce biochar rich in porous structure for adsorption of contaminants. In this study, potato leaves and stems were pyrolyzed at 500 °C under anoxic condition for biochar (BC) preparation. At the same conditions, magnetic biochar (MBC) and humic acid (HA) coated magnetic biochar (HAB) were also prepared. In particular, characterizations of HAB showed the extensive coating of HA on MBC surface and introducing more oxygen-containing groups, which may promote the adsorption capacity of biochar. Three typical FQs (ciprofloxacin (CIP), norfloxacin (NOR) and enrofloxacin (ENR)) were used as target contaminants to further investigate the adsorption property of HAB. Compared with BC and MBC, novel adsorbent HAB due to introduction of HA exhibited better FQs adsorption ability, and its maximum adsorption capacity for CIP, NOR and ENR were 1.80, 1.67 and 1.70 times higher than those of MBC and were 3.40, 2.88, 2.96 times higher than those of raw BC, respectively. Pseudo-second-order kinetic model and Langmuir isotherm model could describe the process of FQs adsorbed on HAB more appropriately, and thermodynamic results illustrated that the sorption process was spontaneous and endothermic. In addition, FQs adsorption by HAB was increased with initial solution pH from 3.0 to 10.0, while it was slightly decreased with ionic strength rising (0.001-0.1 M CaCl2). Combined with FTIR results, high FQs removal efficiency could be attributed to electrostatic, hydrophobic, H-bond and π-π EDA interactions.
Collapse
Affiliation(s)
- Jing Zhao
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Guiwei Liang
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaoli Zhang
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xuewei Cai
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Ruining Li
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaoyun Xie
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zhaowei Wang
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
26
|
Wang L, Hua X, Zhang L, Song N, Dong D, Guo Z. Influence of organic carbon fractions of freshwater biofilms on the sorption for phenanthrene and ofloxacin: The important role of aliphatic carbons. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 685:818-826. [PMID: 31238285 DOI: 10.1016/j.scitotenv.2019.06.203] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 06/13/2019] [Accepted: 06/13/2019] [Indexed: 06/09/2023]
Abstract
Sorption to biofilms is thought to be a crucial process controlling the fate of trace organic contaminants in aquatic systems. The organic composition of biofilms is regarded as the determining factor in the sorption mechanism of biofilm organic carbon fractions; however, its role is not well known. Here, the sorption of phenanthrene and ofloxacin was modeled with classic and emerging organic contaminants, respectively, by comparatively investigating nine type of freshwater biofilms cultured in a river, lake, and reservoir in spring, summer, and autumn. The chemical features of the nine biofilms were analyzed using elemental analysis, infrared spectroscopy, X-ray photoelectron spectroscopy, and carbon-13 nuclear magnetic resonance. Results showed that the freshwater biofilms were aliphatic-rich natural amorphous solid substances with O-containing functional groups, and their surface polarity was significantly lower than their bulk polarity. All the isotherms of phenanthrene and ofloxacin sorption by the biofilms were linear. The organic carbon-normalized partition coefficient values for phenanthrene and ofloxacin on the nine biofilms ranged from 91.9 to 364.2 L g-1 and 3.2 to 43.2 L g-1, respectively. The van der Waals interaction between a majority of aliphatic carbon (73.4%-83.9%) in biofilms and the two sorbates was much stronger than π-π interactions between a minority of aromatic carbon (12.7%-21.7%) and sorbates. The surface polarity of the biofilms regulated polar interactions including the hydrogen bonding and electron donor-acceptor interactions. Both the aliphatic carbon and surface polarity in the biofilms enhanced the sorption of phenanthrene and ofloxacin. The sorption characteristics and mechanisms of polycyclic aromatic hydrocarbons and antibiotics on biofilms shown in our present and previous studies are different from those of other ubiquitous natural solid materials such as soils and sediments. This study provides insight into the importance of aliphatic carbon fractions of freshwater biofilms for the sorption of classic and emerging organic contaminants.
Collapse
Affiliation(s)
- Liting Wang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Xiuyi Hua
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Liwen Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Na Song
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Deming Dong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Zhiyong Guo
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China.
| |
Collapse
|
27
|
Guo M, Wang J, Wang C, Strong PJ, Jiang P, Ok YS, Wang H. Carbon nanotube-grafted chitosan and its adsorption capacity for phenol in aqueous solution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 682:340-347. [PMID: 31125747 DOI: 10.1016/j.scitotenv.2019.05.148] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/10/2019] [Accepted: 05/11/2019] [Indexed: 06/09/2023]
Abstract
Chitosan was covalently grafted onto the surface of multi-walled carbon nanotubes to create a novel chitosan/multi-walled carbon nanotube. The structure of the new material was characterized using Fourier transform-infrared spectroscopy, cross polarization magic angle spinning 13C nuclear magnetic resonance, thermogravimetric analysis, XRD ray diffraction analysis, differential scanning calorimetry and scanning electron microscopy. The phenol adsorption capacity was determined and the Langmuir and Freundlich models were used to describe the adsorption isotherms. The adsorption capacity of the novel chitosan/multi-walled carbon nanotube material for phenol (86.96 mg/g) was improved compared to the original chitosan (61.69 mg/g). The kinetic studies showed rapid adsorption, exhibiting Lagergren second-order kinetics. Therefore, this study provides a reference for preparing functional materials from biological substrates that are able to remove toxic pollutants from an aqueous environment.
Collapse
Affiliation(s)
- Ming Guo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China; School of Science, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Jue Wang
- School of Science, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Chunge Wang
- School of Science, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - P J Strong
- Queensland University of Technology, GPO Box 2432, 2 George St, Brisbane, QLD 4001, Australia
| | - Peikun Jiang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Yong Sik Ok
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Hailong Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China; Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China.
| |
Collapse
|
28
|
Chen H, Yang X, Gielen G, Mandal S, Xu S, Guo J, Shaheen SM, Rinklebe J, Che L, Wang H. Effect of biochars on the bioavailability of cadmium and di-(2-ethylhexyl) phthalate to Brassica chinensis L. in contaminated soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 678:43-52. [PMID: 31075602 DOI: 10.1016/j.scitotenv.2019.04.417] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/22/2019] [Accepted: 04/27/2019] [Indexed: 05/08/2023]
Abstract
Soil co-contamination of potentially toxic elements (PTEs) and phthalate esters has become prominent due to its potential adverse effect on human food supply. There is limited information on using wood- and animal-derived biochars for the remediation of co-contaminated soils. Therefore, a pot experiment was conducted using Brassica chinensis L. as a bio-indicator plant to investigate the effect of P. orientalis biochar and pig biochar application on the bioavailability of cadmium (Cd) and di-(2-ethylhexyl) phthalate (DEHP) and on plant physiological parameters (malondialdehyde, proline and soluble sugars). Biochar materials were applied to two soils containing low (LOC) and high (HOC) organic carbon content at rates of 0, 0.5, 1, 2, and 4%. To better understand the influence of biochar, physicochemical properties and X-ray diffraction (XRD), energy dispersive X-ray spectrometry (EDS), Fourier transform-infrared spectrometry (FTIR), scanning electron microscopy (SEM) were characterized. Biochar application increased soil pH, organic carbon content, and available phosphorus content. Increasing biochar application rates decreased DTPA-extractable Cd and extractable DEHP concentrations in both soils. Biochar application reduced the plant uptake of both Cd and DEHP from co-contaminated soils; the maximum reduction of Cd (92.7%) and DEHP (52.0%) was observed in 2% pig biochar-treated LOC soil. The responses of plant physiological parameters to increased biochar applications indicated that less Cd and DEHP were taken up by plants. Pig biochar was more effective (P < 0.05) at reducing the bioavailability of Cd and DEHP in both soils than P. orientalis biochar; therefore, pig biochar had greater potential for improving the quality of the crop. However, the highest application rate (4%) of pig biochar restricted plant seed germination. Key factors influencing the bioavailability of Cd and DEHP in soils were soil organic carbon content, biochar properties (such as surface alkalinity, available phosphorus content and ash content) and biochar application rates.
Collapse
Affiliation(s)
- Hanbo Chen
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, School of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Xing Yang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China; University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Gerty Gielen
- Scion, Private Bag 3020, Rotorua 3046, New Zealand
| | - Sanchita Mandal
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK; Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095. Australia
| | - Song Xu
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China
| | - Jia Guo
- Chengbang Eco-Environment Co. Ltd, Hangzhou, Zhejiang 310008, China
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516 Kafr El-Sheikh, Egypt
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; University of Sejong, Department of Environment, Energy and Geoinformatics, 98 Gunja-Dong, Guangjin-Gu, Seoul, Republic of Korea
| | - Lei Che
- School of Engineering, Huzhou University, Huzhou, Zhejiang 313000, China
| | - Hailong Wang
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, School of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China; Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China.
| |
Collapse
|
29
|
Ma S, Jing F, Sohi SP, Chen J. New insights into contrasting mechanisms for PAE adsorption on millimeter, micron- and nano-scale biochar. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:18636-18650. [PMID: 31054059 DOI: 10.1007/s11356-019-05181-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 04/15/2019] [Indexed: 06/09/2023]
Abstract
Biochar is being examined as a potential sorbent for organic pollutants in the environment including phthalate esters (PAEs). It has been noted that nano-scale biochar particles displayed stronger migration potential than other particles, which poses the potential risk of pollutant transfer through the environment. In this present study, we examined the influence of sub-millimeter (200-600 μm), micron-scale (10-60 μm), and nano-scale (0.1-0.6 μm) biochar on diethyl phthalate (DEP, as a model) adsorption using particles derived from corn straw and rice husk biochar. Meanwhile, the interaction between adsorption capacity and initial pH was also considered. Our results showed that the adsorption capacity of biochar for DEP increased with decreasing particle size, and was considerably higher for nano-scale biochar than for other particles. This was attributable to its developed pore structure and higher specific surface area (SSA), especially the dominant micropore (292.73 m2/g), suggesting that the adsorption of DEP to nano-scale biochar was dominated by pore-filling rather than π-π EDA and H bonding that was applied to biochar of larger, more typical dimensions. The adsorption capacity of nano-scale biochar for DEP was markedly decreased when initial pH was decreased from 9.0 to 3.0. Because an acid environment could reduce the absolute surface charge on nano-scale biochar, it was easier for the particles to agglomerate. Nano-scale biochar therefore have higher activity in alkaline conditions, which could pose certain risks through their application into the environment.
Collapse
Affiliation(s)
- Shaoqiang Ma
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, People's Republic of China
- School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, People's Republic of China
| | - Fanqi Jing
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, People's Republic of China
- School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, People's Republic of China
| | - Saran P Sohi
- UK Biochar Research Centre, School of GeoSciences, University of Edinburgh, Edinburgh, EH9 3FF, UK
| | - Jiawei Chen
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, People's Republic of China.
- School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, People's Republic of China.
| |
Collapse
|
30
|
Wang Z, Yang X, Qin T, Liang G, Li Y, Xie X. Efficient removal of oxytetracycline from aqueous solution by a novel magnetic clay-biochar composite using natural attapulgite and cauliflower leaves. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:7463-7475. [PMID: 30656586 DOI: 10.1007/s11356-019-04172-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 01/04/2019] [Indexed: 06/09/2023]
Abstract
A novel magnetic attapulgite-biochar composite (MABC) derived from natural attapulgite, cauliflower leaves, and FeCl3 was successfully prepared as a low-cost adsorbent for oxytetracycline (OTC) removal from aqueous solution. Characterization experiments by different techniques suggested that attapulgite clay particles and Fe3O4 nanoparticles were successfully covered on the MABC surface. Compared with the pristine biochar (CLB) and attapulgite-biochar composite (ABC), MABC had the largest surface area, well-developed pore structure, and more surface oxygen-containing functional groups which could interact with organic pollutant via hydrogen bonding, π-π electron coupling, complexation, and ion exchange. The maximum adsorption capacity of MABC by the Langmuir model was 33.31 mg/g, which was dramatically higher than that of CLB and ABC. The effects of solution initial pH had little difference on the adsorption of OTC because of the buffering effect. Adsorbent-regeneration studies of MABC exhibited good reusability and separation property. All the results indicated that MABC could be used as a potential adsorbent because of its easy preparation and separation, high efficiency, wide pH range application, and abundant and cheap raw materials in the global ecosystem. Graphical abstract.
Collapse
Affiliation(s)
- Zhaowei Wang
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Xing Yang
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Tingting Qin
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Guiwei Liang
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yan Li
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xiaoyun Xie
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
31
|
ZIF-8-Derived Hollow Carbon for Efficient Adsorption of Antibiotics. NANOMATERIALS 2019; 9:nano9010117. [PMID: 30669389 PMCID: PMC6358953 DOI: 10.3390/nano9010117] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/09/2019] [Accepted: 01/15/2019] [Indexed: 01/15/2023]
Abstract
The harmful nature of high concentrations of antibiotics to humans and animals requires the urgent development of novel materials and techniques for their absorption. In this work, CTAB (Cetyltrimethyl Ammonium Bromide)-assisted synthesis of ZIF-8 (zeolitic imidazolate framework)-derived hollow carbon (ZHC) was designed, prepared, and used as a high-performance adsorbent, and further evaluated by Langmuir and Freundlich isothermal adsorption experiments, dynamic analysis, as well as theoretical calculation. The maximum capacities of ZHC for adsorbing tetracycline (TC), norfloxacin (NFO), and levofloxacin (OFO) are 267.3, 125.6, and 227.8 mg g−1, respectively, which delivers superior adsorptive performance when compared to widely studied inorganic adsorbates. The design concept of ZIF-8-derived hollow carbon material provides guidance and insights for the efficient adsorbent of environmental antibiotics.
Collapse
|
32
|
Li C, Zhu X, He H, Fang Y, Dong H, Lü J, Li J, Li Y. Adsorption of two antibiotics on biochar prepared in air-containing atmosphere: Influence of biochar porosity and molecular size of antibiotics. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.10.142] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
33
|
Sun H, Lu H, Feng Y. Greenhouse gas emissions vary in response to different biochar amendments: an assessment based on two consecutive rice growth cycles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:749-758. [PMID: 30414032 DOI: 10.1007/s11356-018-3636-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/30/2018] [Indexed: 06/08/2023]
Abstract
The efficiency of biochar to mitigate greenhouse gas (GHG) emission from rice paddy soils is not consistent. Furthermore, which factor dominates this mitigation efficiency is not clear. In the present 2-year greenhouse experiment, the effects of biochars derived from two feedstocks (wheat straw and saw dust) and two pyrolysis temperatures (500 °C and 700 °C), and applied at two different rates (0.5 wt% and 3 wt%) on methane (CH4) and nitrous oxide (N2O) emissions, and the total global warming potential (GWPt), and GHG intensity (GHGI) were measured. The results showed that biochar applications did not alter GHG emission flux patterns in either rice cycle. In 2015, the N2O emissions were 24.6-71.2% lower under six biochar treatments than under the urea control treatment. Moreover, total CH4 emissions were mitigated by 13.3-92.6% and 27.7-53.5% under six and five biochar treatments in 2015 and 2016, respectively. Overall, lower GWPt and GHGI were observed under most of the biochar treatments compared with the urea control treatment in both rice cycles. The multivariate analysis of variance (MANOVA) results of the data from both years suggested that the biochar effects on reducing GHG emissions changed with either individual factors or their interactive effects. The responses of the GWPt and GHGI varied mainly with biochar application rate and pyrolysis temperature (P < 0.005); compared with that derived from a relatively low pyrolysis temperature and applied at a relatively low rate, biochar derived from a relatively high pyrolysis temperature and applied at a relatively high rate exerted relatively higher GWPt and GHGI mitigation efficiencies. The influence of the feedstock source was not as prominent as the application rate and pyrolysis temperature, which will expand the scope of biochar applications.
Collapse
Affiliation(s)
- Haijun Sun
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Haiying Lu
- Jiangsu Academy of Agricultural Sciences, Institute of Agricultural Resources and Environment, Nanjing, 210014, China
| | - Yanfang Feng
- Jiangsu Academy of Agricultural Sciences, Institute of Agricultural Resources and Environment, Nanjing, 210014, China.
| |
Collapse
|
34
|
Li R, Wang Z, Zhao X, Li X, Xie X. Magnetic biochar-based manganese oxide composite for enhanced fluoroquinolone antibiotic removal from water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:31136-31148. [PMID: 30187413 DOI: 10.1007/s11356-018-3064-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 08/24/2018] [Indexed: 06/08/2023]
Abstract
Magnetic biochar-based manganese oxide composite (MMB) and raw biochar (BC) were synthesized via pyrolysis at a temperature of 500 °C under anoxic conditions of potato stems and leaves, characterized, and successfully used for the removal of norfloxacin (NOR), ciprofloxacin (CIP), and enrofloxacin (ENR) as representative compounds of fluoroquinolone antibiotics (FQs). Characterization results suggested that Fe3O4 and MnOx are the dominant crystals in MMB. MMB possessed large surface area and pore volume than BC. Batch adsorption experiments showed that the maximum adsorption abilities of MMB for norfloxacin (NOR), ciprofloxacin (CIP), and enrofloxacin (ENR) were 6.94, 8.37, and 7.19 mg g-1. In comparison to BC, the adsorption abilities of MMB increased 1.2, 1.5, and 1.6 times for NOR, CIP, and ENR, respectively. The pseudo-second-order kinetic model and the Langmuir model correlated satisfactorily to the experimental data. Thermodynamic studies revealed that the adsorption processes were spontaneous and endothermic. The adsorption capacity of MMB decreased with increasing solution pH (between 3.0 and 10.0) and increasing ionic strength (0.001-0.1). The MMB with high FQ removal efficiency, easy separation, and desirable regeneration ability may have promising environmental applications for the removal of fluoroquinolone antibiotics from water environment.
Collapse
Affiliation(s)
- Ruining Li
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Zhaowei Wang
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xiating Zhao
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xi Li
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Xiaoyun Xie
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
35
|
Luo J, Li X, Ge C, Müller K, Yu H, Huang P, Li J, Tsang DCW, Bolan NS, Rinklebe J, Wang H. Sorption of norfloxacin, sulfamerazine and oxytetracycline by KOH-modified biochar under single and ternary systems. BIORESOURCE TECHNOLOGY 2018; 263:385-392. [PMID: 29763802 DOI: 10.1016/j.biortech.2018.05.022] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/02/2018] [Accepted: 05/07/2018] [Indexed: 05/10/2023]
Abstract
Pollution of water by single antibiotics has been investigated in depth. However, in reality, a wide range of different contaminants is often mixed in the aquatic environment (contaminant cocktail). Here, single and competitive sorption dynamics of ionizable norfloxacin (NOR), sulfamerazine (SMR) and oxytetracycline (OTC) by both pristine and modified biochars were investigated. Sorption kinetics of the three antibiotics was faster in ternary-solute than single-solute system. Sorption efficiency was enhanced in the competitive system for NOR by the pristine biochar, and for OTC by both the pristine biochar and the modified biochar, while SMR sorption by the pristine biochar and the KOH-modified biochar was inhibited. Sorption was governed by electrostatic interactions, π-π EDA and H-bonds for antibiotics sorption by biochar. SMR and OTC sorption by biochar was influenced by cation bridging and surface complexation, respectively. This research finding will guide the development of treatment procedures for water polluted by multiple antibiotics.
Collapse
Affiliation(s)
- Jiwei Luo
- College of Resources and Environment, Institute of Tropical Agriculture and Forestry, Hainan University, Renmin Road, Haikou 570228, China; Environmental and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Xue Li
- College of Resources and Environment, Institute of Tropical Agriculture and Forestry, Hainan University, Renmin Road, Haikou 570228, China
| | - Chengjun Ge
- College of Resources and Environment, Institute of Tropical Agriculture and Forestry, Hainan University, Renmin Road, Haikou 570228, China; College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Karin Müller
- The New Zealand Institute for Plant & Food Research Limited, Ruakura Research Centre, Private Bag 3123, Hamilton, New Zealand
| | - Huamei Yu
- College of Resources and Environment, Institute of Tropical Agriculture and Forestry, Hainan University, Renmin Road, Haikou 570228, China.
| | - Peng Huang
- College of Resources and Environment, Institute of Tropical Agriculture and Forestry, Hainan University, Renmin Road, Haikou 570228, China
| | - Jiatong Li
- College of Resources and Environment, Institute of Tropical Agriculture and Forestry, Hainan University, Renmin Road, Haikou 570228, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Nanthi S Bolan
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan, NSW, Australia
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, Seoul 05006, Republic of Korea
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environment and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China; Guangdong Dazhong Agriculture Science Co. Ltd., Hongmei Town, Dongguan, Guangdong 523169, China
| |
Collapse
|