1
|
Zheng H, Zhu Z, Li S, Niu J, Dong X, Leong YK, Chang JS. Dissecting the ecological risks of sulfadiazine degradation intermediates under different advanced oxidation systems: From toxicity to the fate of antibiotic resistance genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 941:173678. [PMID: 38848919 DOI: 10.1016/j.scitotenv.2024.173678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/20/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024]
Abstract
The incomplete degradation of antibiotics in water can produce intermediates that carry environmental risks and thus warrant concerns. In this study, the degradation of high concentrations of antibiotic sulfadiazine (SDZ) by advanced oxidation processes that leverage different reactive oxide species was systematically evaluated in terms of the influence of different degradation intermediates on the propagation of antibiotic resistance genes (ARGs). The ozone, persulfate, and photocatalytic oxidation systems for SDZ degradation are dominated by ozone, direct electron transfer, and singlet oxygen, hole, and superoxide radicals, respectively. These processes produce 15 intermediates via six degradation pathways. Notably, it was determined that three specific intermediates produced by the ozone and persulfate systems were more toxic than SDZ. In contrast, the photocatalytic system did not produce any intermediates with toxicity exceeding that of SDZ. Microcosm experiments combined with metagenomics confirmed significant changes in microbiota community structure after treatment with SDZ and its intermediates, including significant changes in the abundance of Flavobacterium, Dungenella, Archangium, and Comamonas. This treatment also led to the emergence of sulfonamide ARGs. The total abundance of sulfonamide ARGs was found to be positively correlated with residual SDZ concentration, with the lowest total abundance observed in the photocatalytic system. Additionally, the correlation analysis unveiled microbiota carrying sulfonamide ARGs.
Collapse
Affiliation(s)
- Heshan Zheng
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Zhiwei Zhu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Shuo Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China.
| | - Junfeng Niu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Xu Dong
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Yoong Kit Leong
- Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering, National Cheng-Kung University, Tainan, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li 32003, Taiwan.
| |
Collapse
|
2
|
Strotmann U, Durand MJ, Thouand G, Eberlein C, Heipieper HJ, Gartiser S, Pagga U. Microbiological toxicity tests using standardized ISO/OECD methods-current state and outlook. Appl Microbiol Biotechnol 2024; 108:454. [PMID: 39215841 PMCID: PMC11365844 DOI: 10.1007/s00253-024-13286-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Microbial toxicity tests play an important role in various scientific and technical fields including the risk assessment of chemical compounds in the environment. There is a large battery of normalized tests available that have been standardized by ISO (International Organization for Standardization) and OECD (Organization for Economic Co-operation and Development) and which are worldwide accepted and applied. The focus of this review is to provide information on microbial toxicity tests, which are used to elucidate effects in other laboratory tests such as biodegradation tests, and for the prediction of effects in natural and technical aqueous compartments in the environment. The various standardized tests as well as not normalized methods are described and their advantages and disadvantages are discussed. In addition, the sensitivity and usefulness of such tests including a short comparison with other ecotoxicological tests is presented. Moreover, the far-reaching influence of microbial toxicity tests on biodegradation tests is also demonstrated. A new concept of the physiological potential of an inoculum (PPI) consisting of microbial toxicity tests whose results are expressed as a chemical resistance potential (CRP) and the biodegradation adaptation potential (BAP) of an inoculum is described that may be helpful to characterize inocula used for biodegradation tests. KEY POINTS: • Microbial toxicity tests standardized by ISO and OECD have large differences in sensitivity and applicability. • Standardized microbial toxicity tests in combination with biodegradability tests open a new way to characterize inocula for biodegradation tests. • Standardized microbial toxicity tests together with ecotoxicity tests can form a very effective toolbox for the characterization of toxic effects of chemicals.
Collapse
Affiliation(s)
- Uwe Strotmann
- Dept. of Chemistry, Westfälische Hochschule, Recklinghausen, Germany
| | - Marie-José Durand
- UMR 6144, Nantes Université, ONIRIS, CNRS, GEPEA, 85000, La Roche Sur Yon, France
| | - Gerald Thouand
- UMR 6144, Nantes Université, ONIRIS, CNRS, GEPEA, 85000, La Roche Sur Yon, France
| | - Christian Eberlein
- Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Hermann J Heipieper
- Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.
| | | | - Udo Pagga
- , Rüdigerstr. 49, 67069, Ludwigshafen, Germany
| |
Collapse
|
3
|
Chu L, Wang J. Pretreatment of alkali/surfactant/polymer (ASP)-flooding produced wastewater by electron beam radiation to improve oil-water separation. CHEMOSPHERE 2024; 351:141252. [PMID: 38244868 DOI: 10.1016/j.chemosphere.2024.141252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/22/2024]
Abstract
The management of wastewater produced from alkali/surfactant/polymer (ASP) flooding, known for its considerable volume and high emulsion stability, poses a challenge in oilfields globally. This study has demonstrated that ionizing irradiation is a promising pretreatment method for ASP wastewater to improve oil-water separation. After a settling time of 1 h, approximately 69.5% of oil remained in the raw ASP wastewater, while only 20-29% of the oil persisted in the liquid phase following radiation at absorbed doses ranging from 0.1 to 5.0 kGy. A noticeable increase in the size of oil droplets and reduction in turbidity was observed after irradiation. Further analysis revealed that the combination of surfactant, sodium dodecyl sulfate (SDS) and alkali exhibits a synergistic impact, leading to a substantial reduction in interface tension of ASP wastewater. Notably, ionizing irradiation induces several key changes that are crucial for efficient demulsification. The transformation of the wastewater's rheological behavior from pseudoplastics to a Newtonian fluid accompanied by a reduction in viscosity, the increased interfacial tension at both liquid-air and liquid-oil interfaces, along with the degradation of organic components such as partly hydrolyzed polyacrylamide (HPAM) and SDS, all contribute to the coalescence and floatation of oil droplets.
Collapse
Affiliation(s)
- Libing Chu
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
4
|
Wu JH, Yang TH, Chen F, Yu HQ. Unexpected side reactions dominate the oxidative transformation of aromatic amines in the Co(II)/peracetic acid system. PNAS NEXUS 2024; 3:pgae040. [PMID: 38328784 PMCID: PMC10849606 DOI: 10.1093/pnasnexus/pgae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/22/2024] [Indexed: 02/09/2024]
Abstract
Aromatic amines (AAs), ubiquitous in industrial applications, pose significant environmental hazards due to their resistance to conventional wastewater treatments. Peracetic acid (PAA)-based advanced oxidation processes (AOPs) have been proposed as effective strategies for addressing persistent AA contaminants. While the organic radicals generated in these systems are believed to be selective and highly oxidative, acetate residue complicates the evaluation of AA removal efficiency. In this work, we explored transformation pathways of AAs in a representative Co(II)-catalyzed PAA system, revealing five side reactions (i.e. nitrosation, nitration, coupling, dimerization, and acetylation) that yield 17 predominantly stable and toxic by-products. The dominant reactive species was demonstrated as Co-OOC(O)CH3, which hardly facilitated ring-opening reactions. Our findings highlight the potential risks associated with PAA-based AOPs for AA degradation and provide insights into selecting suitable catalytic systems aimed at efficient and by-product-free degradation of pollutants containing aromatic -NH2.
Collapse
Affiliation(s)
- Jing-Hang Wu
- Department of Environmental Science and Engineering, CAS Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei 230026, China
| | - Tian-Hao Yang
- Department of Environmental Science and Engineering, CAS Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei 230026, China
| | - Fei Chen
- Department of Environmental Science and Engineering, CAS Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei 230026, China
| | - Han-Qing Yu
- Department of Environmental Science and Engineering, CAS Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
5
|
Chen L, Maqbool T, Nazir G, Hou C, Xu Y, Yang Y, Zhang X. Peroxymonosulfate activated by composite ceramic membrane for the removal of pharmaceuticals and personal care products (PPCPs) mixture: Insights of catalytic and noncatalytic oxidation. WATER RESEARCH 2023; 229:119444. [PMID: 36470049 DOI: 10.1016/j.watres.2022.119444] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 11/15/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
A composite manganese-based catalytic ceramic membrane (Mn-CCM) was developed by a solid-state sintering method, and its effectiveness toward activation of peroxymonosulfate (PMS) for the degradation of 11 pharmaceutical and personal care products (PPCPs) mixture was tested. The optimized Mn-CCMs/PMS system showed remarkable degradation efficiencies for PPCPs mixture with total removal >90% in ultrapure water, river water and natural organic matter (NOM) solution. The Mn-CCMs/PMS system showed the contribution of different phenomena in PPCPs removal in the order of catalytic oxidation (54.7%, Mn-CCMs/PMS) > noncatalytic oxidation (42.3%, PMS oxidation) > adsorption (3.0%, by Mn-CCMs). The singlet oxygen (1O2) was the dominant reactive oxygen specie for the degradation of PPCPs in all water matrices proved by the quenching experiments and electro-paramagnetic resonance (EPR) spectroscopy. The extraordinary stability of Mn-CCMs for the activation of PMS has been noted in terms of repeatability experiments for PPCPs degradation with fewer leaching of Mn (1.9 to 3.6 µg/L). Mineralization was achieved in the range of 28-65% for different water matrices. The toxicity of the PPCPs mixture was reduced by 85.9%. The Mn-CCMs/PMS system showed a reduction (25-100%) in precursors of different carbon- and nitrogen-based disinfection by-products. This study found the Mn-CCMs/PMS system as a feasible purification unit for removing trace concentrations of PPCPs (ng/L) in real drinking water matrices.
Collapse
Affiliation(s)
- Li Chen
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Tahir Maqbool
- Department of Civil, Construction and Environmental Engineering, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Ghazanfar Nazir
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Congyu Hou
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Yanna Xu
- Testing Technology Center for Materials and Devices, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yulong Yang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Xihui Zhang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
6
|
Yu Z, Huang L, Zhang Z, Li G. Magnetic Ti3C2T /Fe3O4/Ag substrate for rapid quantification of trace sulfonamides in aquatic products by surface enhanced Raman spectroscopy. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Wang S, Hu J, He S, Wang J. Removal of ammonia and phenol from saline chemical wastewater by ionizing radiation: Performance, mechanism and toxicity. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128727. [PMID: 35364541 DOI: 10.1016/j.jhazmat.2022.128727] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/07/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Saline chemical wastewater containing ammonia and toxic organic pollutants has been a challenge for conventional wastewater treatment technology. Advanced treatment is thus required. In this study, the removal of ammonia and phenol in saline chemical wastewater by radiation was investigated in detail. The results showed that chloridion in saline chemical wastewater could be transferred to •Cl and •ClO by radiation, which promoted ammonia oxidation, but inhibited phenol degradation. Solution pH affected the types of reactive species, which further affected the removal of ammonia and phenol. When ammonia and phenol co-existed in saline chemical wastewater, the removal efficiency of ammonia was depressed compared to that in the absence of phenol. Similarly, the phenol removal efficiency was also depressed in the presence of ammonia when the solution pH was lower than 7.0. Interestingly, the phenol removal efficiency was improved with increase of either chloridion concentration (2-8 g/L) or dose (2-5 kGy), which was attributed to the formation of intermediate nitrogen-centered radicals that can react with phenol. In addition, the intermediate products of phenol degradation under different conditions were identified. The acute toxicity of saline chemical wastewater after radiation treatment was evaluated. The results of this study could provide an insight into the removal of ammonia and phenol from saline chemical wastewater by radiation technology.
Collapse
Affiliation(s)
- Shizong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing 100084, PR China
| | - Jun Hu
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Shijun He
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Dasheng Electron Accelerator Device Co., Ltd., China Guangdong Nuclear Group, Suzhou, Jiangsu 215214, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
8
|
Delgado-Vargas CA, Espinosa-Barrera PA, Villegas-Guzman P, Martínez-Pachón D, Moncayo-Lasso A. An efficient simultaneous degradation of sulfamethoxazole and trimethoprim by photoelectro-Fenton process under non-modified pH using a natural citric acid source: study of biodegradability, ecotoxicity, and antibacterial activity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:42275-42289. [PMID: 34993786 DOI: 10.1007/s11356-021-17751-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 11/21/2021] [Indexed: 06/14/2023]
Abstract
In this work, the use of natural organic wastes (orange and lemon peels) as sources of citric acid was evaluated along with the application of the photoelectro-Fenton (PEF) system under non-modified pH as a novel alternative to degrade a complex mixture of pharmaceuticals: sulfamethoxazole (SMX-7.90 × 10-5 mol/L) and trimethoprim (TMP-6.89 × 10-5 mol/L). The system was equipped with a carbon felt air diffusion cathode (GDE) and a Ti/IrO2 anode doped with SnO2 (DSA). A 3.6 × 10-5 mol/L solution of commercial citric acid was used as a reference. The pharmaceuticals' evolution in the mixture was followed by high-performance liquid chromatography (HPLC). The addition of natural products showed an efficient simultaneous degradation of the antibiotics (100% of SMX and TMP at 45 min and 90 min, respectively) similar to the performance produced by adding the commercial citric acid to the PEF system. Moreover, the addition of natural products allowed for an increment of biodegradability (100% removal of TOC by a modified Zahn Wellens test) and a decrease in ecotoxicity (0% in the bioassay with D. Magna) of the treated solutions. The antibacterial activity was eliminated after only 45 min of treatment, suggesting that the degradation by-products do not represent a significant risk to human health or the environment in general. Results suggest that, because of the efficient formation of Fe-citrate complexes, the PEF could be enhanced by the addition of natural organic wastes as a sustainable alternative ecological system for water contaminated pharmaceuticals. Additionally, the potential of reusing natural organic wastes has been exposed, contributing to an improved low-cost PEF by decreasing the environmental contamination produced by this type of waste.
Collapse
Affiliation(s)
- Carlos Andrés Delgado-Vargas
- Grupo de Investigación en Ciencias Biológicas Y Químicas, Facultad de Ciencias, Universidad Antonio Nariño, Bogotá, D.C, Colombia
- Doctorado en Ciencias Aplicadas, Universidad Antonio Nariño, Bogotá, D.C, Colombia
| | - Paula Andrea Espinosa-Barrera
- Grupo de Investigación en Ciencias Biológicas Y Químicas, Facultad de Ciencias, Universidad Antonio Nariño, Bogotá, D.C, Colombia
- Doctorado en Ciencias Aplicadas, Universidad Antonio Nariño, Bogotá, D.C, Colombia
| | - Paola Villegas-Guzman
- Grupo de Investigación Materiales, Ambiente y Desarrollo, Facultad de Ciencias Básicas, Universidad de La Amazonia, Florencia, Colombia
| | - Diana Martínez-Pachón
- Grupo de Investigación en Ciencias Biológicas Y Químicas, Facultad de Ciencias, Universidad Antonio Nariño, Bogotá, D.C, Colombia
| | - Alejandro Moncayo-Lasso
- Grupo de Investigación en Ciencias Biológicas Y Químicas, Facultad de Ciencias, Universidad Antonio Nariño, Bogotá, D.C, Colombia.
| |
Collapse
|
9
|
Matrix effect in the hydroxyl radical induced degradation of β-lactam and tetracycline type antibiotics. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.109980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Jiang B, Shen Y, Lu X, Du Y, Jin N, Li G, Zhang D, Xing Y. Toxicity assessment and microbial response to soil antibiotic exposure: differences between individual and mixed antibiotics. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:460-473. [PMID: 35166274 DOI: 10.1039/d1em00405k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Increasing amounts of antibiotics are introduced into soils, raising great concerns on their ecotoxicological impacts on the soil environment. This work investigated the individual and joint toxicity of three antibiotics, tetracycline (TC), sulfonamide (SD) and erythromycin (EM) via a whole-cell bioreporter assay. TC, SD and EM in aqueous solution demonstrated cytotoxicity, whilst soil exposure showed genotoxicity, indicating that soil particles possibly affected the bioavailability of antibiotics. Toxicity of soils exposed to TC, SD and EM changed over time, demonstrating cytotoxic effects within 14-d exposure and genotoxic effects after 30 days. Joint toxicity of TC, SD and EM in soils instead showed cytotoxicity, suggesting a synergetic effect. High-throughput sequencing suggested that the soil microbial response to individual antibiotics and their mixtures showed a different pattern. Soil microbial community composition was more sensitive to TC, in which the abundance of Pseudomonas, Pirellula, Subdivision3_genera_incertae_sedis and Gemmata varied significantly. Microbial community functions were significantly shifted by EM amendments, including signal transduction mechanisms, cytoskeleton, cell wall/membrane/envelope biogenesis, transcription, chromatin structure and dynamics, and carbohydrate transport and metabolism. This work contributes to a better understanding of the ecological effects and potential risks of individual and joint antibiotics on the soil environment.
Collapse
Affiliation(s)
- Bo Jiang
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, 100083, PR China.
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, 100083, PR China
- National Environmental and Energy Science and Technology International Cooperation Base, University of Science & Technology Beijing, Beijing, 100083, PR China
- State Key Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing, 100084, PR China
| | - Yaoxin Shen
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, 100083, PR China.
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, 100083, PR China
- National Environmental and Energy Science and Technology International Cooperation Base, University of Science & Technology Beijing, Beijing, 100083, PR China
| | - Xin Lu
- Petrochina North China Gas Marketing Company, Beijing, 100029, PR China
| | - Yufan Du
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, 100083, PR China.
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, 100083, PR China
- National Environmental and Energy Science and Technology International Cooperation Base, University of Science & Technology Beijing, Beijing, 100083, PR China
| | - Naifu Jin
- School of Environment, Tsinghua University, Beijing, 100084, PR China
- State Key Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing, 100084, PR China
| | - Guanghe Li
- School of Environment, Tsinghua University, Beijing, 100084, PR China
- State Key Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing, 100084, PR China
| | - Dayi Zhang
- School of Environment, Tsinghua University, Beijing, 100084, PR China
- State Key Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing, 100084, PR China
| | - Yi Xing
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, 100083, PR China.
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, 100083, PR China
- National Environmental and Energy Science and Technology International Cooperation Base, University of Science & Technology Beijing, Beijing, 100083, PR China
| |
Collapse
|
11
|
Takács E, Wang J, Chu L, Tóth T, Kovács K, Bezsenyi A, Szabó L, Homlok R, Wojnárovits L. Elimination of oxacillin, its toxicity and antibacterial activity by using ionizing radiation. CHEMOSPHERE 2022; 286:131467. [PMID: 34346325 DOI: 10.1016/j.chemosphere.2021.131467] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
The chemical changes caused by electron beam and γ irradiations and the biochemical characteristics of degradation products of a frequently used antibiotic oxacillin were investigated and compared with those of cloxacillin by applying pulse radiolysis, chemical and biochemical oxygen demand, total organic carbon content, oxygen uptake rate, toxicity and antibacterial activity measurements. Oxacillin was found to be non-toxic, but poorly biodegradable by the mixed microbial population of the activated sludge of a wastewater treatment plant. Therefore, it can significantly contribute to the spread of β-lactam antibiotic resistant bacteria. However, the products formed by γ-irradiation were more easily biodegradable as they were utilized as nutrient source by the microbes of the activated sludge and the products did not show antibacterial activity. During irradiation treatment of aerated aqueous solutions mainly hydroxyl radicals induce the elimination of antimicrobial activity by making alterations at the bicyclic β-lactam part of these antibiotics. Since the β-lactam part is the same in oxacillin and cloxacillin, the biochemical characteristics of products of the two antibiotics are similar. The attack of hydrated electron takes place on the carbonyl groups. When the irradiation is made under anoxic conditions these reactions may also contribute considerably to alterations at the β-lactam part and thereby to the loss of antibacterial activity.
Collapse
Affiliation(s)
- Erzsébet Takács
- Radiation Chemistry Department, Institute for Energy Security and Environmental Safety, Centre for Energy Research, H-1121, Konkoly-Thege Miklós út 29-33, Budapest, Hungary.
| | - Jianlong Wang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, PR China
| | - Libing Chu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, PR China
| | - Tünde Tóth
- Radiation Chemistry Department, Institute for Energy Security and Environmental Safety, Centre for Energy Research, H-1121, Konkoly-Thege Miklós út 29-33, Budapest, Hungary; Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1111, Szent Gellért Tér 4, Budapest, Hungary
| | - Krisztina Kovács
- Radiation Chemistry Department, Institute for Energy Security and Environmental Safety, Centre for Energy Research, H-1121, Konkoly-Thege Miklós út 29-33, Budapest, Hungary
| | - Anikó Bezsenyi
- Budapest Sewage Works Pte Ltd, H-1087, Asztalos Sándor út 4, Budapest, Hungary; Óbuda University, H-1034, Bécsi út 96b, Budapest, Hungary
| | - László Szabó
- Radiation Chemistry Department, Institute for Energy Security and Environmental Safety, Centre for Energy Research, H-1121, Konkoly-Thege Miklós út 29-33, Budapest, Hungary
| | - Renáta Homlok
- Radiation Chemistry Department, Institute for Energy Security and Environmental Safety, Centre for Energy Research, H-1121, Konkoly-Thege Miklós út 29-33, Budapest, Hungary
| | - László Wojnárovits
- Radiation Chemistry Department, Institute for Energy Security and Environmental Safety, Centre for Energy Research, H-1121, Konkoly-Thege Miklós út 29-33, Budapest, Hungary
| |
Collapse
|
12
|
Chu L, Wang J, He S, Chen C, Wojnárovits L, Takács E. Treatment of pharmaceutical wastewater by ionizing radiation: Removal of antibiotics, antimicrobial resistance genes and antimicrobial activity. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125724. [PMID: 34088196 DOI: 10.1016/j.jhazmat.2021.125724] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
In present study, the treatment of real pharmaceutical wastewater from an erythromycin (ERY) production factory by gamma irradiation was investigated. Results showed that a variety of antimicrobial resistance genes (ARGs), involving MLSB, tet, bla, multidrug, sul, MGEs and van genes and plentiful 9 bacterial phyla were identified in the raw wastewater. In addition to ERY, sulfamethoxazole (SMX) and tetracycline (TC) were also identified with the concentration of 3 order of magnitude lower than ERY. Results showed that the abatement of ARGs and antibiotics was much higher than that of antimicrobial activity and COD. With the absorbed dose of 50 kGy, the removal percentage of ARGs, ERY, antimicrobial activity and COD was 96.5-99.8%, 90.0%, 47.8% and 10.3%, respectively. The culturable bacteria were abated fast and completely at 5.0 kGy during gamma irradiation. The genus Pseudomonas was predominant in raw wastewater (56.7%) and its relative abundance decreased after gamma irradiation, to 1.3% at 50 kGy. With addition of peroxymonosulfate (PMS, 50 mM), the antimicrobial activity disappeared completely and ERY removal reached as high as 99.2% at the lower absorbed dose of 25 kGy. Ionizing radiation-coupled technique is a potential option to treat pharmaceutical wastewater for reduction of antibiotics, ARGs and antimicrobial activity.
Collapse
Affiliation(s)
- Libing Chu
- Laboratory of Environmental Technology, Institute of Nuclear and New Energy of Technology (INET), Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Radioactive Waste Treatment, Tsinghua University, Beijing 100084, China
| | - Jianlong Wang
- Laboratory of Environmental Technology, Institute of Nuclear and New Energy of Technology (INET), Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Radioactive Waste Treatment, Tsinghua University, Beijing 100084, China.
| | - Shijun He
- Laboratory of Environmental Technology, Institute of Nuclear and New Energy of Technology (INET), Tsinghua University, Beijing 100084, China; CGN Dasheng Technology Co., Ltd., Suzhou 215214, China
| | | | - László Wojnárovits
- Institute for Energy Security and Environmental Safety, Centre for Energy Research, Hungarian Academy of Sciences, P.O. Box 49, Budapest H-1525, Hungary
| | - Erzsébet Takács
- Institute for Energy Security and Environmental Safety, Centre for Energy Research, Hungarian Academy of Sciences, P.O. Box 49, Budapest H-1525, Hungary
| |
Collapse
|
13
|
Espinosa-Barrera PA, Delgado-Vargas CA, Martínez-Pachón D, Moncayo-Lasso A. Using computer tools for the evaluation of biodegradability, toxicity, and activity on the AT1 receptor of degradation products identified in the removal of valsartan by using photo-electro-Fenton process. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:23984-23994. [PMID: 33405147 DOI: 10.1007/s11356-020-11949-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
This work deals with the theoretical approach of biodegradability, lipophilicity, and physiological activity of VAL and four degradation products (DPs) detected after 20 min of the photo-electro-Fenton (PEF) process. The biodegradability calculation, taking into account the change in the theoretical oxygen demand, showed that the four DPs had a more negative value than VAL, indicating that they are more susceptible to oxidation. However, these results do not imply more accessible biotransformation pathways than VAL, as observed using the EAWAG-BBD program, through which neutral biotransformation pathway prediction for VAL and DPs was made. Subsequently, by calculating the theoretical lipophilicity of the molecules (log P), the theoretical toxicity of the DPs was proposed, where the DPs had log P values between 1 and 3, lower values than those of VAL (log P = 4), indicating that DPs could be less toxic than the original compound (VAL). Both results suggest that VAL degradation (by photo-electro-Fenton process proposed) yields a positive effect on the environment. Finally, when molecular dynamic simulations were carried out, it was observed that DP1, DP2, and DP3 maintained similar interactions to those of VAL with the binding site of the AT1R. DP4 did not show any interaction. These results indicated that, despite the presence of DPs, generated after 20 min of the treatment, they could not exert a physiological activity in any organism the same way that does VAL.
Collapse
Affiliation(s)
- Paula Andrea Espinosa-Barrera
- Grupo de Investigación en Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad Antonio Nariño, Bogota D.C., Colombia
| | - Carlos Andrés Delgado-Vargas
- Grupo de Investigación en Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad Antonio Nariño, Bogota D.C., Colombia
| | - Diana Martínez-Pachón
- Grupo de Investigación en Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad Antonio Nariño, Bogota D.C., Colombia.
| | - Alejandro Moncayo-Lasso
- Grupo de Investigación en Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad Antonio Nariño, Bogota D.C., Colombia.
| |
Collapse
|
14
|
Lu H, Wang T, Lu S, Liu H, Wang H, Li C, Liu X, Guo X, Zhao X, Liu F. Performance and bacterial community dynamics of hydroponically grown Iris pseudacorus L. during the treatment of antibiotic-enriched wastewater at low/normal temperature. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 213:111997. [PMID: 33582416 DOI: 10.1016/j.ecoenv.2021.111997] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/31/2020] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
Antibiotics are widely detected in the water environment, posing a serious threat to the health of humans and animals. The effect of levofloxacin (LOFL) on pollutant removal and the difference in the influence mechanisms at normal and low temperatures in constructed wetlands are worth discussing. A hydroponic culture experiment was designed with Iris pseudacorus L. at low and normal temperatures. LOFL (0-100 µg/L) was added to the systems. The results indicated that the removal of pollutants was affected most by temperature, followed by LOFL concentration. At the same concentration of LOFL, the pollutant removal rate was significantly higher at normal temperature than at low temperature. Low concentrations of LOFL promoted the degradation of pollutants except TN under normal-temperature conditions. Compared with the results at low temperature, the bacterial community richness was higher and the diversity of bacterial communities was lower under normal-temperature conditions. The genera and the function of bacteria were greatly affected by antibiotic concentration, temperature and test time. A series of microorganisms resistant to antibiotics and low temperature were identified in this study. The results will provide valuable information and a reference for our understanding of the ecological effects of LOFL.
Collapse
Affiliation(s)
- Hongbin Lu
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China; National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), State Environmental Protection Key Laboratory for Lake Pollution Control, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Tao Wang
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), State Environmental Protection Key Laboratory for Lake Pollution Control, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; College of Environmental Science and Engineering, Liaoning Technical University, Fuxin 123000, PR China
| | - Shaoyong Lu
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), State Environmental Protection Key Laboratory for Lake Pollution Control, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Huaqing Liu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Jinan 250100, PR China
| | - Huanhua Wang
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), State Environmental Protection Key Laboratory for Lake Pollution Control, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Chaojun Li
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Xiaohui Liu
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), State Environmental Protection Key Laboratory for Lake Pollution Control, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Xiaochun Guo
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), State Environmental Protection Key Laboratory for Lake Pollution Control, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Xiaoliang Zhao
- College of Environmental Science and Engineering, Liaoning Technical University, Fuxin 123000, PR China
| | - Fuchun Liu
- College of Life Science, Cangzhou Normal University, Cangzhou 061001, PR China
| |
Collapse
|
15
|
Leng Y, Xiao H, Li Z, Liu Y, Wang J. Transformation of sulfadiazine in humic acid and polystyrene microplastics solution by horseradish peroxidase coupled with 1-hydroxybenzotriazole. CHEMOSPHERE 2021; 269:128705. [PMID: 33109357 DOI: 10.1016/j.chemosphere.2020.128705] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/11/2020] [Accepted: 10/17/2020] [Indexed: 06/11/2023]
Abstract
Enzyme catalyzed coupling with redox mediators are considered as great interesting and viable technologies to transform antibiotics. This work demonstrated the horseradish peroxidase (HRP) was effective in transforming sulfadiazine (SDZ) transformation coupled with 1-hydroxybenzotriazole (HBT) at varying conditions. The removal of SDZ was independent of Na+ and its ionic strength, but Ca2+ could enhance transformation efficiency by increasing the enzyme activity of HRP. The presence of humic acid (HA) and polystyrene (PS) microplastics showed inhibition on the transformation of SDZ, and the transformation rate constants (k) decreased with the concentration of HA and PS particles increased. These primarily attributed to covalent coupling and electrostatic interaction between SDZ and HA, SDZ and PS, respectively, which reduced the concentration of free SDZ in the reaction solution. The presence of cation recovered the inhibition of SDZ transformation by HA and PS particles, which ascribed to compete between cation and SDZ. The divalent cations (Ca2+) showed more substantial competitiveness than mono (Na+) due to more carried charge. Eight possible transformation products were identified, and potential SDZ transformation pathways were proposed, which include δ-cleavage, γ-cleavage, carbonylation, hydroxylation, SO2 extrusion and SO3 extrusion. In addition, HA and PS particles couldn't affect the transformation pathways of SDZ. These findings provide novel understandings of the transformation and the fate of antibiotics in the natural environment by HRP coupled with redox mediators.
Collapse
Affiliation(s)
- Yifei Leng
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, 430068, PR China
| | - Henglin Xiao
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, 430068, PR China
| | - Zhu Li
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, 430068, PR China
| | - Ying Liu
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, 430068, PR China
| | - Jun Wang
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, 430068, PR China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, 571158, China.
| |
Collapse
|
16
|
Pi X, Yang Y, Sun Y, Wang X, Wan Y, Fu G, Li X, Cheng J. Food irradiation: a promising technology to produce hypoallergenic food with high quality. Crit Rev Food Sci Nutr 2021; 62:6698-6713. [PMID: 33775183 DOI: 10.1080/10408398.2021.1904822] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The increasing incidence of food allergy cases is a public health problem of global concern. Producing hypoallergenic foods with high quality, low cost, and eco-friendly is a new trend for the food industry in the coming decades. Food irradiation, a non-thermal food processing technology, is a powerful tool to reduce the allergenicity with the above advantages. This review presents a summary of recent studies about food irradiation to reduce the allergenicity of food, including shellfish, soy, peanut, milk, tree nut, egg, wheat and fish. Principles of food irradiation, including mechanisms of allergenicity-reduction, irradiation types and characteristics, are discussed. Specific effects of food irradiation are also evaluated, involving microbial decontamination, improvement or preservation of nutritional value, harmful substances reduction of food products. Furthermore, the advantages, disadvantages and limitations of food irradiation are analyzed. It is concluded that food irradiation is a safety tool to reduce the allergenicity of food effectively, with high nutritional value and long shelf-life, making it a competitive alternative technology to traditional techniques such as heating treatments. Of note, a combination of irradiation with additional processing may be a trend for food irradiation.
Collapse
Affiliation(s)
- Xiaowen Pi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yili Yang
- Suzhou Institute of Systems Medicine, Center for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, Jiangsu, China
| | - Yuxue Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xibo Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yin Wan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Guiming Fu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Xin Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Jianjun Cheng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
17
|
Sodhi KK, Kumar M, Balan B, Dhaulaniya AS, Shree P, Sharma N, Singh DK. Perspectives on the antibiotic contamination, resistance, metabolomics, and systemic remediation. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-020-04003-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
AbstractAntibiotics have been regarded as the emerging contaminants because of their massive use in humans and veterinary medicines and their persistence in the environment. The global concern of antibiotic contamination to different environmental matrices and the emergence of antibiotic resistance has posed a severe impact on the environment. Different mass-spectrometry-based techniques confirm their presence in the environment. Antibiotics are released into the environment through the wastewater steams and runoff from land application of manure. The microorganisms get exposed to the antibiotics resulting in the development of antimicrobial resistance. Consistent release of the antibiotics, even in trace amount into the soil and water ecosystem, is the major concern because the antibiotics can lead to multi-resistance in bacteria which can cause hazardous effects on agriculture, aquaculture, human, and livestock. A better understanding of the correlation between the antibiotic use and occurrence of antibiotic resistance can help in the development of policies to promote the judicious use of antibiotics. The present review puts a light on the remediation, transportation, uptake, and antibiotic resistance in the environment along with a novel approach of creating a database for systemic remediation, and metabolomics for the cleaner and safer environment.
Collapse
|
18
|
Hong M, Wang Y, Lu G. UV-Fenton degradation of diclofenac, sulpiride, sulfamethoxazole and sulfisomidine: Degradation mechanisms, transformation products, toxicity evolution and effect of real water matrix. CHEMOSPHERE 2020; 258:127351. [PMID: 32563068 DOI: 10.1016/j.chemosphere.2020.127351] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/30/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
Four common refractory pharmaceuticals, diclofenac (DF), sulpiride (SP), sulfamethoxazole (SMX) and sulfisomidine (SIM) were detected in the Disc Tubular Reverse Osmosis (DTRO) concentrates with higher concentrations ranging from 0.85 to 11.57 μg/L from the local landfill. The effect of complex matrix of DTRO concentrates on the UV-Fenton degradation kinetics of DF, SP, SMX and SIM and their transformation products (TPs) were studied. All the four pharmaceuticals could be degraded more efficiently in the ultrapure water than that in the DTRO-concentrate matrix, which also had a significant negative effect on the kinetic constants of the degradation. Twenty-two out of forty-nine TPs were newly identified by HPLC-QTOF-MS and their peak-area evolution was presented. The main degradation pathways for four pharmaceuticals were identified. When assessing cytotoxicity by using HepG2 cells, there appeared to be an obvious toxicity-increase region for each of SP, SMX and SIM. Eleven TPs were identified as the potential toxicity-increase causing TPs by combination of the QSAR prediction, HepG2 cytotoxicity assessment and peak-area evolution of TPs. Therefore, UV-Fenton process was a promising method for the refractory pharmaceutical degradation even in the complex water matrix and choosing appropriate reaction parameters for the UV-Fenton could eliminate the cytotoxicity of the TPs.
Collapse
Affiliation(s)
- Mianwei Hong
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| | - Yang Wang
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| | - Gang Lu
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China; Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore, 117576, Singapore.
| |
Collapse
|
19
|
Rodríguez-Blanco LAJ, Ocampo-Pérez R, Gómez-Durán CFA, Mojica-Sánchez JP, Razo-Hernández RS. Removal of sulfamethoxazole, sulfadiazine, and sulfamethazine by UV radiation and HO • and SO 4•- radicals using a response surface model and DFT calculations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:41609-41622. [PMID: 32691321 DOI: 10.1007/s11356-020-10071-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
In this work, the degradation of sulfamethazine (SMT), sulfadiazine (SMD), and sulfamethoxazole (SMX) by using UV light, UV/H2O2, and UV/S2O8-2 was analyzed. Direct photolysis was studied by varying the lamp power and the solution pH. DFT calculations were carried out to corroborate the efficiency of the degradation as a function of the solution pH. The variation of the apparent rate constant, kap, was determined in the indirect photolysis by employing an experimental Box-Behnken-type response surface design. The results evidenced that SMX can be efficiently degraded by applying UV radiation independent of the operating conditions. Nevertheless, the quantum yields for SMT and SMD were close to zero, indicating a low energy efficiency for their photochemical transformation. The effect of the solution pH showed that the photodegradation of sulfonamides depends both on the amount of radiation absorbed as the electronic density. Calculations based on density functional theory and supported by the quantum theory of atoms in molecules allowed to describe fragmentation patterns in the systems under study, proving the lability of S14-C2, N17-C18, and N22-O22 bonds, for SMT, SMD, and SMX, respectively. From response surface methodology, four statistically reliable equations were obtained to determine the kap value as a function of the system operating conditions. Finally, SO4•- radicals proved to have a higher reactivity to degrade SMT and SMD compared with HO• radicals regardless of the operating conditions of the system.
Collapse
Affiliation(s)
- Luis A J Rodríguez-Blanco
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, 78260, San Luis Potosí, Mexico
| | - Raúl Ocampo-Pérez
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, 78260, San Luis Potosí, Mexico.
| | - Cesar F A Gómez-Durán
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, 78260, San Luis Potosí, Mexico
| | - Juan P Mojica-Sánchez
- Tecnológico Nacional de México, Instituto Tecnológico José Mario Molina Pasquel y Henríquez Campus Tamazula de Gordiano, Carretera Tamazula-Santa Rosa No. 329, 49650, Tamazula de Gordiano, Jalisco, Mexico
| | - Rodrigo S Razo-Hernández
- Centro de Investigación en Dinámica Celular-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, 62209, Cuernavaca, Mexico
| |
Collapse
|
20
|
Comparison of the efficiency of gamma irradiation and pyrolysis on the reduction of antibiotic and cephalosporin resistance gene from cephalosporin fermentation residues. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2020.109059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
21
|
Sharma K, Talwar S, Verma AK, Choudhury D, Mansouri B. Innovative approach of in-situ fixed mode dual effect (photo-Fenton and photocatalysis) for ofloxacin degradation. KOREAN J CHEM ENG 2020. [DOI: 10.1007/s11814-019-0427-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Wang J, Zhuan R, Chu L. The occurrence, distribution and degradation of antibiotics by ionizing radiation: An overview. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 646:1385-1397. [PMID: 30235624 DOI: 10.1016/j.scitotenv.2018.07.415] [Citation(s) in RCA: 226] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 07/29/2018] [Accepted: 07/29/2018] [Indexed: 05/18/2023]
Abstract
Antibiotics have been extensively applied, making them ubiquitous in aquatic environment. As emerging contaminants, the occurrence and distribution of antibiotics in the environment has received increasing attention due to their potential adverse effects on human health and ecosystem. However, antibiotics cannot be effectively removed in conventional biological treatment processes, and their natural biodegradation is also ineffective. In this review, the occurrence and distribution of antibiotics in aquatic environments, including surface water, wastewater and effluent of wastewater treatment plants, were analyzed and summarized. Recent progress of antibiotics degradation by ionizing radiation was reviewed. The various influencing factors, such as absorbed dose, initial concentration, inorganic anions and organic matters, on the removal efficiency of antibiotics were introduced and discussed. To improve their removal efficiency, several advanced oxidation processes (AOPs) such as H2O2, Fe2+, Fe2+/H2O2, as well as biological treatment processes, are combined with ionizing radiation. Some suggestions for future studies of antibiotics degradation by ionizing radiation were proposed. Ionizing radiation may be a promising technology for removal of antibiotics from water and wastewater.
Collapse
Affiliation(s)
- Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, Tsinghua University, Beijing 100084, PR China.
| | - Run Zhuan
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Libing Chu
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
23
|
Acosta-Rangel A, Sánchez-Polo M, Polo AMS, Rivera-Utrilla J, Berber-Mendoza MS. Sulfonamides degradation assisted by UV, UV/H 2O 2 and UV/K 2S 2O 8: Efficiency, mechanism and byproducts cytotoxicity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 225:224-231. [PMID: 30092549 DOI: 10.1016/j.jenvman.2018.06.097] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/15/2018] [Accepted: 06/30/2018] [Indexed: 06/08/2023]
Abstract
The objective of this study was to analyze the effectiveness of UVC, UVC/H2O2 and UVC/K2S2O8 on the degradation of SAs. Rate constant values increased in the order SMZ < SDZ < SML and showed the higher photodegradation of sulfonamides with a penta-heterocycle. Quantum yields were 1.72 × 10-5 mol E-1, 3.02 × 10-5 mol E-1, and 6.32 × 10-5 mol E-1 for SMZ, SDZ and SML, respectively, at 60 min of treatment. R254 values show that the dose habitually utilized for water disinfection is inadequate to remove this type of antibiotic. The initial sulfonamide concentration has a major impact on the degradation rate. The degradation rates were higher at pH 12 for SMZ and SML. SMZ and SML photodegradation kλ values are higher in tap versus distilled water. The presence of radical promoters generates a greater increase in the degradation rate, UVC/K2S2O8 cost less energy, a mechanism was proposed, and the degradation by-products are less toxic than the original product.
Collapse
Affiliation(s)
- A Acosta-Rangel
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, 18071 Granada, Spain; Center of Postgraduate Research and Studies, Faculty of Engineering, University Autonomous of San Luis Potosí, Av. Dr. M. Nava No. 8, San Luis Potosí, S.L.P., 78290, Mexico.
| | - M Sánchez-Polo
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, 18071 Granada, Spain
| | - A M S Polo
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, 18071 Granada, Spain
| | - J Rivera-Utrilla
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, 18071 Granada, Spain
| | - M S Berber-Mendoza
- Center of Postgraduate Research and Studies, Faculty of Engineering, University Autonomous of San Luis Potosí, Av. Dr. M. Nava No. 8, San Luis Potosí, S.L.P., 78290, Mexico
| |
Collapse
|
24
|
Sági G, Szabacsi K, Szabó L, Homlok R, Kovács K, Mohácsi-Farkas C, Pillai SD, Takács E, Wojnárovits L. Influence of ionizing radiation on the antimicrobial activity of the antibiotics sulfamethoxazole and trimethoprim. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2018; 53:687-693. [PMID: 29485359 DOI: 10.1080/10934529.2018.1439821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The response of the antimicrobial compounds sulfamethoxazole (SMX) and trimethoprim (TMP) - individually and in mixtures - to ionizing radiation was investigated using laboratory prepared mixtures and a commercial pharmaceutical formulation. The residual antibacterial activity of the solutions was monitored using Staphylococcus aureus and Escherichia coli test strains. Based on antibacterial activity, SMX was more susceptible to ionizing radiation as compared to TMP. The antibacterial activity of SMX and TMP was completely eliminated at 0.2 kGy and 0.8 kGy, respectively. However, when SMX and TMP were in a mixture, the dose required to eliminate the antibacterial activity was 10 kGy, implying a synergistic antibacterial activity when these are present in mixtures. Only when the antibiotic concentration was below the Minimum Inhibitory Concentration of TMP (i.e., 2 µmol dm-3) did the antibacterial activity of the SMX and TMP mixture disappear. These results imply that the synergistic antimicrobial activity of antimicrobial compounds in pharmaceutical waste streams is a strong possibility. Therefore, antimicrobial activity assays should be included when evaluating the use of ionizing radiation technology for the remediation of pharmaceutical or municipal waste streams.
Collapse
Affiliation(s)
- G Sági
- a Radiation Chemistry Department , Institute for Energy Security and Environmental Safety, Centre for Energy Research, Hungarian Academy of Sciences , Budapest , Hungary
| | - K Szabacsi
- b Department of Microbiology and Biotechnology , Szent István University , Budapest , Hungary
| | - L Szabó
- a Radiation Chemistry Department , Institute for Energy Security and Environmental Safety, Centre for Energy Research, Hungarian Academy of Sciences , Budapest , Hungary
| | - R Homlok
- a Radiation Chemistry Department , Institute for Energy Security and Environmental Safety, Centre for Energy Research, Hungarian Academy of Sciences , Budapest , Hungary
| | - K Kovács
- a Radiation Chemistry Department , Institute for Energy Security and Environmental Safety, Centre for Energy Research, Hungarian Academy of Sciences , Budapest , Hungary
| | - C Mohácsi-Farkas
- b Department of Microbiology and Biotechnology , Szent István University , Budapest , Hungary
| | - S D Pillai
- c Departments of Nutrition and Food Science and Poultry Science , National Center for Electron Beam Research, Texas A&M University , College Station , Texas , USA
| | - E Takács
- a Radiation Chemistry Department , Institute for Energy Security and Environmental Safety, Centre for Energy Research, Hungarian Academy of Sciences , Budapest , Hungary
| | - L Wojnárovits
- a Radiation Chemistry Department , Institute for Energy Security and Environmental Safety, Centre for Energy Research, Hungarian Academy of Sciences , Budapest , Hungary
| |
Collapse
|