1
|
Liu X, Pei X, Li J, Wei Y, Sun H, Wu Z, Wang S, Chen J, Lin Z, Yao Z. Occurrence, spatial distribution, and ecological risk of benzotriazole UV stabilizers (BUVs) in sediments from Bohai sea of China. ENVIRONMENTAL RESEARCH 2024; 260:119730. [PMID: 39117058 DOI: 10.1016/j.envres.2024.119730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/21/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
Benzotriazoles are a class of ultraviolet absorbents which absorb UV ranging from 280 to 400 nm and are widely used in personal care products and industrial production. Their residues in environmental matrices have received great concern in recent years, but most studies have focused on pollution in water and few have examined BUVs in marine sediments. In this study, we investigated the occurrence, potential sources, and ecological risk of 15 types of BUVs in the sediments of Bohai Sea in China for the first time. The total concentrations of the 15 BUVs ranged from 0.139 to 4.125 ng/g dw with a median concentration of 0.340 ng/g. UV-327 and UV-360 were predominant among the BUV congeners, accounting for 22.6% and 17.7% of the total concentration of Σ15BUVs, respectively. The detection frequencies of the BUV congeners generally exceeded 95%, reflecting the wide use and persistence of these chemicals. The concentrations of the BUV congeners in this study were one order of magnitude lower than those in other areas. Moreover, the distributions of BUVs presented a decreasing gradient from nearshore to offshore, indicating that coastal input was the main influencing factor. Two potential primary sources, plastic manufacturing and domestic wastewater, were identified via principle component analysis. The ecological risks of BUVs to aquatic organisms in the sediments were evaluated using the risk quotient (RQ) method. Generally, the risk to aquatic organisms from exposure to BUVs in Bohai Sea could be considered low at the measured concentrations. While our study provides important new insight into the ecological risks of BUVs in the estuary, further research on the pollution levels and toxicity risks of BUVs in Bohai Sea should be conducted to better understand the ecological effect of these pollutants.
Collapse
Affiliation(s)
- Xing Liu
- National Marine Environmental Monitoring Center, Dalian, 116023, PR China
| | - Xiaodan Pei
- National Marine Environmental Monitoring Center, Dalian, 116023, PR China
| | - JiaoJiao Li
- National Marine Environmental Monitoring Center, Dalian, 116023, PR China
| | - Yawen Wei
- National Marine Environmental Monitoring Center, Dalian, 116023, PR China
| | - Hao Sun
- National Marine Environmental Monitoring Center, Dalian, 116023, PR China.
| | - Zilan Wu
- National Marine Environmental Monitoring Center, Dalian, 116023, PR China
| | - Sha Wang
- Agilent Technologies (China) Co. Ltd., Beijing, 100102, PR China
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai, 200438, PR China
| | - Zhongsheng Lin
- National Marine Environmental Monitoring Center, Dalian, 116023, PR China
| | - Ziwei Yao
- National Marine Environmental Monitoring Center, Dalian, 116023, PR China
| |
Collapse
|
2
|
Mao W, Jin H, Guo R, Mao K. Presence of benzotriazole ultraviolet stabilizers in human urine. ENVIRONMENTAL RESEARCH 2024; 260:119556. [PMID: 38969313 DOI: 10.1016/j.envres.2024.119556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Health exposure to benzotriazole ultraviolet stabilizers (BUVSs) may pose diverse toxic impacts on health. Presently, the occurrence of BUVSs in human urine remains inadequately understood. This study analyzed 13 kinds of BUVSs in human urine (n = 182) from the general Chinese adult participants. Totally, nine BUVSs were measurable in these human urine samples. Among the detected BUVSs, 2-(2H-benzotriazol-2-yl)-p-cresol (UV-P) was the most predominant BUVS in the human urine, with the mean concentration of 1.6 μg/g creatinine (
Collapse
Affiliation(s)
- Weili Mao
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, PR China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China; Innovation Research Center of Advanced Environmental Technology, Eco-Industrial Innovation Institute ZJUT, Quzhou, Zhejiang, 324400, PR China
| | - Ruyue Guo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Kaili Mao
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, PR China.
| |
Collapse
|
3
|
Zhang Y, Guo J, Chen Z, Chang Y, Zhang X, Liu Z, Li X, Zha X, Sun G, Li Y. Triclocarban disrupts the activation and differentiation of human CD8 + T cells by suppressing the vitamin D receptor signaling. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136096. [PMID: 39383692 DOI: 10.1016/j.jhazmat.2024.136096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
Triclocarban (TCC) is a widely applied environmental endocrine-disrupting chemical (EDC). Similar to most of EDCs, TCC potentially damages the immunity of various species. However, whether and how TCC impacts the adaptive immunity in mammals has yet to be determined. Herein, we discovered that TCC disrupts the activation and differentiation of CD8+ T cells in primary human peripheral blood samples, purified CD8+ T cells, and in mice in vivo. Mechanistically, TCC might block the activation of the vitamin D receptor (VDR) and reduce the synthesis of cholesterol, a precursor of vitamin D, resulting in inhibition of VDR signaling due to the suppression of both its ligand and the receptor itself by TCC. Our findings elucidate the hazard and potential mechanisms of TCC in mammalian adaptive immunity and highlighted VDR as a potential therapeutic target for the immunodeficiency caused by TCC.
Collapse
Affiliation(s)
- Yikai Zhang
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital of Jinan University (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China; Department of Hematology, First Affiliated Hospital of Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, Guangzhou 510632, China
| | - Jiafan Guo
- Department of Clinical Laboratory, First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Zhixi Chen
- Department of Hematology, First Affiliated Hospital of Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, Guangzhou 510632, China
| | - Yiming Chang
- Department of Pediatrics, First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Xingwei Zhang
- Department of Clinical Laboratory, First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Zirui Liu
- Department of Hematology, First Affiliated Hospital of Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, Guangzhou 510632, China
| | - Xinye Li
- Department of Hematology, First Affiliated Hospital of Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, Guangzhou 510632, China
| | - Xianfeng Zha
- Department of Clinical Laboratory, First Affiliated Hospital of Jinan University, Guangzhou 510632, China.
| | - Guodong Sun
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital of Jinan University (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China.
| | - Yangqiu Li
- Department of Hematology, First Affiliated Hospital of Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
4
|
Yao Z, Li B, Xu L, Wei D, Ma Z, Li C. Distribution characteristics and sources of ultraviolet absorbents in facility agricultural soils in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125068. [PMID: 39366449 DOI: 10.1016/j.envpol.2024.125068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/18/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
The environmental contamination of ultraviolet absorbents (UVAs) has attracted global attention for the persistence, bioaccumulation and ecotoxicity. However, little is known about the content and distribution characteristics of UVAs in agricultural soils, especially in facility agricultural soils. In this study, the contents and distribution characteristics of 16 UVAs were surveyed in agricultural facility soils (N = 61) and field soil samples (N = 61) from 27 provinces in China. The total content of 16 UVAs (Σ16UVAs) in facility soils (mean 64.2 ± 55.4 ng/g) was higher than that in field soils (mean 9.66 ± 7.66 ng/g), suggesting that UVAs in facility soils are associated with mulch film. The Σ16UVAs content in the soil mulched with biodegradable (PBAT) film was higher than that in the soil mulched with polyethylene (PE) film, which indicated that the UVA pollution in the soil mulched with biodegradable film was more serious. With the continuous promotion of the use of biodegradable films may pose a threat to soil and ecological health. Therefore, studies on the content and distribution characteristics of UVAs in facility soils are needed to provide scientific basis for the controlling and monitoring of novel pollutants.
Collapse
Affiliation(s)
- Zhenzhen Yao
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Bingru Li
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Li Xu
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Dizhe Wei
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Zhihong Ma
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Cheng Li
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China.
| |
Collapse
|
5
|
Li B, Yao Z, Liu Q, Guo L, Ma Z, Li C. Insights into the uptake, accumulation, and metabolism of UV-328 in lettuce (Lactuca sativa L.) and radish (Raphanus sativus L.). CHEMOSPHERE 2024; 366:143488. [PMID: 39374669 DOI: 10.1016/j.chemosphere.2024.143488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
2-(2H-benzotriazole-2yl)-4,6-di-t-pentylphenol (UV-328), a newly listed persistent organic pollutant (POP) under the Stockholm Convention, has garnered significant attention. It is imperative to understand the uptake, translocation and metabolic pathways of UV-328 in plants to assess its bioaccumulation capacity and potential human health risks. In this study, the absorption, accumulation, and metabolic characteristics of UV-328 in lettuce (Lactuca sativa L.) and radish (Raphanus sativus L.) were assessed by hydroponic experiments. In the hydroponics experiment, UV-328 was significantly absorbed by the roots of the plants, with average root concentration factors (RCFs) ranging from 58.5 to 400 mL/g for lettuce and 84.4-154 mL/g for radish. However, UV-328 was poorly translocated from roots to shoots, with a translocation factor (TF) below 0.055. Furthermore, UV-328 underwent transformation and metabolism within the plant. Utilizing a nontarget screening strategy, fourteen phase I metabolites of UV-328 were firstly identified. The metabolic pathways of UV-328 in plants including hydroxylation, demethylation, oxidation, acetylation and deoxygenation were also suggested. It was worth noting that UV-328 has a significant adverse impact on plant growth and quality. The concentration of chlorophyll in plants exposed to UV-328 was significantly reduced, as were the concentrations of water, flavonoids, vitamin C and amino acids.
Collapse
Affiliation(s)
- Bingru Li
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Zhenzhen Yao
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Qi Liu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China
| | - Linlin Guo
- Shanghai AB Sciex Analytical Instrument Trading Co, Ltd, Beijing, 100015, China
| | - Zhihong Ma
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Cheng Li
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China; Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China.
| |
Collapse
|
6
|
Zhao Y, Bai L, Wang X, Huo M, Gao W, Jiang L, Jin J, Wang Y, Cao D. Exposure Assessment of Benzotriazole Ultraviolet Absorbers in Plastic Sports Field Dust and Indoor Dust: Are Plastic Sports Fields High Exposure Scenarios? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17419-17428. [PMID: 39292546 DOI: 10.1021/acs.est.4c03930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Benzotriazole ultraviolet absorbers (BUVs), as emerging contaminants of extensive use, especially in plastic sports fields, have aroused increasing concern due to their potential human and environmental impacts. However, BUV exposure from plastic sports field dust is still unknown. This study compared BUVs in plastic sports field dust and indoor dust for the first time. The order of the geometric mean concentrations of the total BUVs (ΣBUVs) in plastic sports field dust was indoor badminton courts (11023 ng g-1) > basketball courts (4777 ng g-1) > plastic tracks (3779 ng g-1) > synthetic turf (1920 ng g-1) > tennis courts (689 ng g-1). The geometric mean concentrations of ΣBUVs in indoor dust (1150 ng g-1) were lower than those in most plastic sports field dust. The dominant BUV was 2-hydroxy-4-(octyloxy)benzophenone (UV-531) in plastic sports field dust, while 2,2'-methylenebis[4-(1,1,3,3-tetramethylbutyl)-6-2H-benzotriazole-2-yl)phenol] (UV-360) was the dominant BUV in indoor dust. Releases from plastic track materials, sneaker soles, and friction between them might be important BUV sources in plastic track dust. The average estimated daily intakes of ΣBUVs from plastic sports field dust for general exercisers were lower than those from indoor dust, but those for exercisers with long time or professional athletes might be higher, potentially posing health risks.
Collapse
Affiliation(s)
- Yuqian Zhao
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Lu Bai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinying Wang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Mengmeng Huo
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Wei Gao
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Lu Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jie Jin
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Dandan Cao
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| |
Collapse
|
7
|
Chen H, Hu X, Yin D. Benzotriazole ultraviolet stabilizers in the environment: A review of occurrence, partitioning and transformation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176362. [PMID: 39306142 DOI: 10.1016/j.scitotenv.2024.176362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/26/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024]
Abstract
Benzotriazole ultraviolet stabilizers (BUVSs) are widely used as industrial additives to protect products from photoaging and are present in a variety of environmental matrices and organisms. It raised significant concerns that BUVSs are emerging pollutants with persistence, bioaccumulation and toxicity, of which 2-(3, 5-di-tert-amyl-2-hydroxyphenyl) benzotriazole (UV-328) has been recently listed in Annex A of the Stockholm Convention Persistent Organic Pollutants (POPs) list. A comprehensive understanding of the occurrence, partitioning and transformation of BUVSs in the environment is the basis for their environmental exposure and risk studies. However, the occurrence, partitioning and transformation of BUVSs are scarcely reviewed. In this paper, the environmental occurrence of BUVSs in various matrices, including water-suspended particulate matter and sediment, soil and dust, sludge, as well as biota, were summarized. Solid matrices and organisms are predominant reservoirs for BUVSs rather than waters, but there is a lack of systematical summary on the sorption/partitioning studies of BUVSs in abiotic phases and organisms. This paper analyzed and reviewed the possible sorption/partitioning processes and mechanisms. It was found that the partitioning is dependent on the hydrophobicity of BUVSs, environmental conditions and the organic carbon contents, and the bioaccumulation is also biota-species dependent. To further assess the potential risks of BUVSs, more progress has been made in the study of transformation of BUVSs. Focusing on the most important transformation processes in the environment, involving photodegradation, chemical degradation, biodegradation and metabolism in biota, the probable transformation pathways and mechanisms of BUVSs were summarized. It was emphasized that the hydrophobicity and toxicity of metabolites should not be overlooked. Finally, the future research direction was prospected from contaminant remediation and health risk perspectives. This paper provides fundamental knowledge of the environmental behavior of BUVSs, and will facilitate the research of environmental exposure and risk assessment of BUVSs.
Collapse
Affiliation(s)
- Huifan Chen
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xialin Hu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
8
|
Prasad DK, Shukla R, Ahammad SZ. Pharmaceuticals and personal care products and heavy metals in the Ganga River, India: Distribution, ecological and human health risk assessment. ENVIRONMENTAL RESEARCH 2024; 263:119993. [PMID: 39276830 DOI: 10.1016/j.envres.2024.119993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 08/17/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
In the present study, pharmaceuticals and personal care products (PPCPs), endocrine disrupting compounds (EDCs), and heavy metals (HMs), were measured in water and sediment of the Ganga River during summer and winter seasons for two consecutive years. Additionally, this study estimated the ecological and human health risks associated with PPCPs, EDCs, and HMs. HMs detected in the range of not detected (n.d.) to 23.59 μg/L and 0.01-391.44 μg/g in water and sediment samples, respectively. All studied HMs were within the permissible limits, except for As in water, and Cr and Ni in sediment. The geo-accumulation index (Igeo) indicated that Cr (0.71-5.98) and Pb (0.90-3.90) had high Igeo compared to other metals in sediment samples. Pb showed the highest ecological risk, followed by Cd, Co, Ni, Cu, Cr, As, and Zn. The maximum potential ecological risk index was observed at site G8. The hazard index (HI) value for water (0.08-0.89) and sediment (0.02-0.29) intake by adults remained within the acceptable limits, except at sites G8 (1.27) and G9 (1.34) for water intake. However, for children, the HI value was above the acceptable limit for water intake at sites G4 to G13 and for sediment at site G8. Among the studied compounds, metformin, triclosan, triclocarban, diclofenac, and methylparaben were the most abundant compounds present in the Ganga River. PPCPs and EDCs detected in the range of n.d. to 5850.04 ng/L and n.d. to 1080.41 ng/g in water and sediment samples, respectively. The environmental risk assessment identifies the maximum ecological risk in water exhibited by triclocarban followed by 17α-ethinylestradiol (EE2), diclofenac, and triclosan, while in sediment, the maximum ecological risk exhibited by triclocarban, followed by EE2, 17 β-estradiol (E2), triclosan, and diclofenac. However, none of the compounds showed human health risk, except for EE2, E2, and atenolol.
Collapse
Affiliation(s)
- Deepak Kumar Prasad
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Rishabh Shukla
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Shaikh Ziauddin Ahammad
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| |
Collapse
|
9
|
Sah R, Talukdar G, Khanduri M, Chaudhary P, Badola R, Hussain SA. Do dietary exposures to multi-class endocrine disrupting chemicals translate into health risks for Gangetic dolphins? An assessment and way forward. Heliyon 2024; 10:e35130. [PMID: 39170170 PMCID: PMC11336425 DOI: 10.1016/j.heliyon.2024.e35130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024] Open
Abstract
Dietary exposure risks of 39 multi-class Endocrine Disrupting Chemicals (EDCs) to the threatened Gangetic dolphins (Platanista gangetica) were investigated in a conservation-priority segment of the Ganga River. Elevated EDCs bioaccumulation was observed across prey fish species, with di(2-ethylhexyl) phthalate (DEHP) and di-n-butyl phthalate (DnBP) significantly contributing to the EDC burden. The concentrations of persistent organochlorines in prey revealed a shift from dioxin-like polychlorinated biphenyls (PCBs) to non-dioxin-like PCBs. The prevalence of regulated p,p' DDT (Dichlorodiphenyltrichloroethane) and γ-HCH (Lindane) residues suggests regional non-compliance with regulatory standards. The concentration of some EDCs is dependent on the habitat, foraging behavior, trophic level and fish growth. The potential drivers of EDCs contamination in catchment includes agriculture, vehicular emissions, poor solid waste management, textile industry, and high tourist influx. Risk quotients (RQs) based on toxicity reference value were generally below 1, while the RQ derived from the reference dose highlighted a high risk to Gangetic dolphins from DEHP, DDT, DnBP, arsenic, PCBs, mercury, and cadmium, emphasizing the need for their prioritization within monitoring programs. The study also proposes a monitoring framework to provide guidance on monitoring and assessment of chemical contamination in Gangetic dolphin and habitats.
Collapse
Affiliation(s)
- Ruchika Sah
- Wildlife Institute of India, Chandrabani, Dehradun, 248001, India
| | - Gautam Talukdar
- Wildlife Institute of India, Chandrabani, Dehradun, 248001, India
| | - Megha Khanduri
- Wildlife Institute of India, Chandrabani, Dehradun, 248001, India
| | - Pooja Chaudhary
- Wildlife Institute of India, Chandrabani, Dehradun, 248001, India
| | - Ruchi Badola
- Wildlife Institute of India, Chandrabani, Dehradun, 248001, India
| | | |
Collapse
|
10
|
Lu Z, De Silva AO, Spencer C, Tetreault GR, de Solla SR, Muir DCG. Distribution and trophodynamics of substituted diphenylamine antioxidants and benzotriazole UV stabilizers in a freshwater ecosystem and the adjacent riparian environment. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1031-1041. [PMID: 38770740 DOI: 10.1039/d4em00193a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Substituted diphenylamine antioxidants (SDPAs) and benzotriazole UV stabilizers (BZT-UVs) are industrial additives of emerging environmental concern. However, little is known about their environmental fate and bioaccumulation. This study investigated the concentrations of SDPAs and BZT-UVs in the water, sediment and biota samples in the freshwater ecosystem and adjacent riparian environment using Hamilton Harbour in the Great Lakes of North America as a study site. The bioaccumulation factors and trophodynamics of these contaminants were studied using field-collected samples. Eight target SDPAs and two BZT-UVs (2-(2H-benzotriazol-2-yl)-4,6-bis(1-methyl-1-phenylethyl)phenol (UV234) and 2-(2H-benzotriazol-2-yl)-4,6-di-tert-pentylphenol (UV328)) were frequently detected in the sediment, water and biota samples. UV328 showed significantly greater concentrations in water (0.28-2.8 ng L-1) and sediment (8.3-48 ng g-1, dry weight) than other target contaminants, implying greater contamination of UV328 in Hamilton Harbour. SDPAs exhibited trophic dilution in species living in the water, whereas UV234 was biomagnified in the same samples. No clear trophodynamic trend was found for UV328 for water-respiring species. Air-breathing invertebrates had higher concentrations of both SDPAs and BZT-UVs than water-respiring invertebrates, and biomagnification was observed particularly for adult dragonflies. These results suggest that the trophodynamics of SDPAs and BZT-UVs vary depending on whether the food web is terrestrial or aquatic. Future research should investigate the occurrence and partitioning of SDPAs and BZT-UVs in the air-water interface and evaluate the toxicities of these contaminants in air-breathing species.
Collapse
Affiliation(s)
- Zhe Lu
- Institut des Sciences de la Mer (ISMER), Université du Québec à Rimouski (UQAR), 310, allée des Ursulines, Rimouski, Québec, G5L 3A1, Canada.
| | - Amila O De Silva
- Environment and Climate Change Canada, Canada Centre for Inland Waters, Burlington, Ontario L7S 1A1, Canada.
| | - Christine Spencer
- Environment and Climate Change Canada, Canada Centre for Inland Waters, Burlington, Ontario L7S 1A1, Canada.
| | - Gerald R Tetreault
- Environment and Climate Change Canada, Canada Centre for Inland Waters, Burlington, Ontario L7S 1A1, Canada.
| | - Shane R de Solla
- Environment and Climate Change Canada, Canada Centre for Inland Waters, Burlington, Ontario L7S 1A1, Canada.
| | - Derek C G Muir
- Environment and Climate Change Canada, Canada Centre for Inland Waters, Burlington, Ontario L7S 1A1, Canada.
| |
Collapse
|
11
|
Chen Y, Guo R, Liao K, Yu W, Wu P, Jin H. Discovery of novel benzotriazole ultraviolet stabilizers in surface water. WATER RESEARCH 2024; 257:121709. [PMID: 38728781 DOI: 10.1016/j.watres.2024.121709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/20/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024]
Abstract
The comprehensive understanding of the occurrence of benzotriazole UV stabilizers (BZT-UVs) in environmental surface water is imperative due to their widespread application and potential aquatic toxicity. We conducted an analysis of 13 traditional BZT-UVs in surface water samples collected from Taihu Lake (TL, n = 23) and Qiantang River (QR, n = 22) in China. The results revealed that 5‑chloro-2-(3,5-di-tertbutyl-2-hydroxyphenyl)-benzotriazole (UV-327) was consistently the predominant BZT-UV in water samples from TL (mean 16 ng/L; detection frequency 96 %) and QR (14 ng/L; 91 %). Furthermore, we developed a characteristic fragment ion-based strategy to screen and identify unknown BZT-UVs in collected surface water, utilizing a high-resolution mass spectrometer. A total of seven novel BZT-UVs were discovered in water samples, and their chemical structures were proposed. Four of these novel BZT-UVs were further confirmed with standards provided by industrial manufacturers. Semi-quantitative analysis revealed that among discovered novel BZT-UVs, 2-(2‑hydroxy-3‑tert‑butyl‑5-methylphenyl)-benzotriazole was consistently the predominant novel BZT-UV in TL (mean 4.1 ng/L, detection frequency 70 %) and QR (2.8 ng/L, 77 %) water. In TL water, the second predominant novel BZT-UV was 2-(3-allyl-2‑hydroxy-5-methylphenyl)-2H-benzotriazole (mean 3.9 ng/L,
Collapse
Affiliation(s)
- Yuanchen Chen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Ruyue Guo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Kaizhen Liao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Wenfei Yu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Pengfei Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, PR China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China.
| |
Collapse
|
12
|
Amankwah BK, Šauer P, Grabicová K, von der Ohe PC, Ayıkol NS, Kocour Kroupová H. Organic UV filters: Occurrence, risks and (anti-)progestogenic activities in samples from the Czech aquatic environment and their bioaccumulation in fish. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134338. [PMID: 38643577 DOI: 10.1016/j.jhazmat.2024.134338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/05/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
The occurrence, environmental risks and contribution of organic UV filters to detected (anti-)progestogenic activities were examined in samples of wastewater treatment plant influents and effluents, various surface waters and fish from the Czech Republic. Of the 20 targeted UV filters, 15 were detected in the WWTP influent samples, 11 in the effluents, and 13 in the surface water samples. Benzophenone-3, benzophenone-4, and phenyl benzimidazole sulfonic acid (PBSA) were found in all water samples. Octocrylene, UV-327 and 4-methylbenzylidene camphor exceeded the risk quotient of 1 at some sites. In the anti-progestogenic CALUX assay, 10 out of the 20 targeted UV filters were active. Anti-progestogenic activities reaching up to 7.7 ng/L, 3.8 ng/L, and 4.5 ng/L mifepristone equivalents were detected in influents, effluents, and surface waters, respectively. UV filters were responsible for up to 37 % of anti-progestogenic activities in influents. Anti-progestogenic activities were also measured in fish tissues from the control pond and Podroužek (pond with the highest number of detected UV filters) and ranged from 2.2 to 9.5 and 1.9 to 8.6 ng/g dw mifepristone equivalents, respectively. However, only benzophenone was found in fish, but it does not display anti-progestogenic activity and thus could not explain the observed activities.
Collapse
Affiliation(s)
- Beatrice Kyei Amankwah
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic.
| | - Pavel Šauer
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| | - Kateřina Grabicová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| | - Peter C von der Ohe
- UBA - German Environment Agency (Umweltbundesamt), Wörlitzer Platz 1, D-06844 Dessau-Roßlau, Germany
| | - Nurhan Sultan Ayıkol
- Ankara University, Graduate School of Health Science, Department of Veterinary Pharmacology and Toxicology, Turkiye
| | - Hana Kocour Kroupová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| |
Collapse
|
13
|
Akinboye AJ, Kim K, Park J, Kim YS, Lee JG. Contamination of ultraviolet absorbers in food: toxicity, analytical methods, occurrence and risk assessments. Food Sci Biotechnol 2024; 33:1805-1824. [PMID: 38752111 PMCID: PMC11091012 DOI: 10.1007/s10068-024-01566-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/04/2024] [Accepted: 03/18/2024] [Indexed: 05/18/2024] Open
Abstract
Ultraviolet (UV) absorbers are chemical substances that are widely used as defenses against the damaging effects of solar radiations. UV absorbers, despite their benefits, are categorized as emerging pollutants because they have been demonstrated to be mutagenic, toxic, pseudo-persistent, bio-accumulative, and to have strong estrogenic effects. Because of their common use in personal care products, they continue to enter the environment. Several food samples, particularly those derived from aquatic sources, have been found to be contaminated with these compounds. Toxic effects on aquatic life, such as metabolic imbalance and developmental toxicity, result from the continued presence of UV absorbers in aquatic bodies. In addition, the degree of exposure to these pollutants in foods should be examined because there are certain risks associated with their consumption by humans. Therefore, this review focuses on the toxicity, analytical techniques, occurrence, and risk assessments of UV absorbers found in food.
Collapse
Affiliation(s)
- Adebayo J. Akinboye
- Department of Food Science and Biotechnology, Seoul National University of Science & Technology, Nowon-Gu, Seoul, 01811 Korea
| | - Kiyun Kim
- Department of Food Science and Biotechnology, Seoul National University of Science & Technology, Nowon-Gu, Seoul, 01811 Korea
| | - Junhyeong Park
- Department of Food Science and Biotechnology, Seoul National University of Science & Technology, Nowon-Gu, Seoul, 01811 Korea
| | - Young-Suk Kim
- Department of Food Science and Engineering, Ewha Women University, Seodammum-Gu, Seoul, 03760 Korea
| | - Joon-Goo Lee
- Department of Food Science and Biotechnology, Seoul National University of Science & Technology, Nowon-Gu, Seoul, 01811 Korea
| |
Collapse
|
14
|
Struk-Sokołowska J, Faszczewska A, Kotowska U, Mielcarek A. Comparison of benzotriazole ultraviolet stabilizers (BUVs) removal from wastewater after subsequent stages of sequencing batch reactor (SBR) treatment process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169813. [PMID: 38184258 DOI: 10.1016/j.scitotenv.2023.169813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/02/2023] [Accepted: 12/29/2023] [Indexed: 01/08/2024]
Abstract
The research focused on benzotriazole ultraviolet stabilizers (BUVs) which are commonly used compounds despite being found dangerous, e.g. promoting breast cancer cell proliferation, damaging vital organs such as hearts, brains livers and kidneys. The aim of the study was to analyse the efficiency and removal rate of BUVs from wastewater depending on the quantity of tested compounds and SBR anaerobic-aerobic conditions. The study was conducted in sequencing batch reactors (SBRs - 17 L) with real flocculent activated sludge (8 L) and model wastewater (5 L) containing UV-326, UV-327, UV-328, UV-329 and UV-P from 50 to 600 μg∙L-1. The SBR were operated in 390 cycles of 7 h and 10 min over 130 days. The similarity of the technological parameters of the treatment process to those used in a real wastewater treatment plant was maintained. Efficiency removal of individual BUVs was strictly dependent on the dose of compounds introduced into wastewater and ranged from 68.2 to 97 %. Removal of UV-329 occurred with lowest efficiency (from 68.2 to 85.2 %) while UV-326 was most efficiently removed from the wastewater (from 94.1 to 97 %). UV-329 was removed from wastewater with the lowest (0.0968-0.9524 μg∙L-1∙min-1) average removal rate while UV-327 with the highest (0.16-1.3357 μg∙L-1∙min-1), irrespective of BUVs dose in the influent. Secondary release of BUVs into the wastewater occurred in SBR during the settling phase and was dependent on the type and concentration of the BUVs in the raw wastewater. This occurrence was noted for UV-326 ≥ 100; UV-327 = 600; UV-328 ≥ 200; UV-329 ≥ 50 and UV-P ≥ 100 μg∙L-1. The settling phase needs to be shortened to the required minimum. This is an important conclusion for WWTPs in regards to SBR cycle duration and technological parameters of the treatment process.
Collapse
Affiliation(s)
- Joanna Struk-Sokołowska
- Białystok University of Technology, Faculty of Civil Engineering and Environmental Sciences, Wiejska 45A, 15-351 Białystok, Poland.
| | - Alicja Faszczewska
- Białystok University of Technology, Faculty of Civil Engineering and Environmental Sciences, Wiejska 45A, 15-351 Białystok, Poland
| | - Urszula Kotowska
- University of Bialystok, Faculty of Chemistry, Ciołkowskiego 1K, 15-245 Białystok, Poland.
| | - Artur Mielcarek
- University of Warmia and Mazury in Olsztyn, Faculty of Geoengineering, Warszawska 117a, 10-719 Olsztyn, Poland.
| |
Collapse
|
15
|
Li M, Ivantsova E, Liang X, Martyniuk CJ. Neurotoxicity of Benzotriazole Ultraviolet Stabilizers in Teleost Fishes: A Review. TOXICS 2024; 12:125. [PMID: 38393220 PMCID: PMC10891865 DOI: 10.3390/toxics12020125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024]
Abstract
Plastic additives that maintain integrity have been extensively studied for potential toxicity to fish; however, chemicals that protect polymers from (artificial) UV degradation are less studied. Benzotriazole UV stabilizers (BUVSs) are the most widely used UV stabilizers in plastics and are often used in sunscreens, cosmetics, paint, and food packaging. BUVSs can negatively affect aquatic wildlife when released into the environment via plastic degradation. In this review, we summarize the distribution of BUVSs globally and discuss neurotoxicological endpoints measured in fish to understand how these plastic additives can affect the neurological health of teleost fishes. BUVSs have been detected in aquatic environments at concentrations ranging from 0.05 up to 99,200 ng/L. Studies show that BUVSs affect behavioral responses and acetylcholinesterase activity, indicators of neurotoxicity. Our computational analysis using transcriptome data suggests certain pathways associated with neurodegeneration are responsive to exposure to BUVSs, like "Complement Activation in Alzheimer's Disease". Based on our review, we identify some research needs for future investigations: (1) molecular studies in the central nervous system to define precise mechanisms of neurotoxicity; (2) a wider range of tests for assessing aberrant behaviors given that BUVSs can affect the activity of larval zebrafish; and (3) histopathology of the nervous system to accompany biochemical analyses. These data are expected to enhance understanding of the neurotoxicity potential of benzotriazoles and other plastic additives.
Collapse
Affiliation(s)
- Mengli Li
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; (M.L.); (X.L.)
| | - Emma Ivantsova
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA;
| | - Xuefang Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; (M.L.); (X.L.)
| | - Christopher J. Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA;
| |
Collapse
|
16
|
Raza Y, Mertens E, Zink L, Lu Z, Doering JA, Wiseman S. Embryonic Exposure to the Benzotriazole Ultraviolet Stabilizer 2-(2H-benzotriazol-2-yl)-4-methylphenol Decreases Fertility of Adult Zebrafish (Danio rerio). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:385-397. [PMID: 37975561 DOI: 10.1002/etc.5790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/09/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023]
Abstract
Benzotriazole ultraviolet stabilizers (BUVSs) are emerging contaminants of concern. They are added to a variety of products, including building materials, personal care products, paints, and plastics, to prevent degradation caused by ultraviolet (UV) light. Despite widespread occurrence in aquatic environments, little is known regarding the effects of BUVSs on aquatic organisms. The aim of the present study was to characterize the effects of exposure to 2-(2H-benzotriazol-2-yl)-4-methylphenol (UV-P) on the reproductive success of zebrafish (Danio rerio) following embryonic exposure. Embryos were exposed, by use of microinjection, to UV-P at <1.5 (control), 2.77, and 24.25 ng/g egg, and reared until sexual maturity, when reproductive performance was assessed, following which molecular and biochemical endpoints were analyzed. Exposure to UV-P did not have a significant effect on fecundity. However, there was a significant effect on fertilization success. Using UV-P-exposed males and females, fertility was decreased by 8.75% in the low treatment group and by 15.02% in the high treatment group relative to control. In a reproduction assay with UV-P-exposed males and control females, fertility was decreased by 11.47% in the high treatment group relative to the control. Embryonic exposure to UV-P might have perturbed male sex steroid synthesis as indicated by small changes in blood plasma concentrations of 17β-estradiol and 11-ketotestosterone, and small statistically nonsignificant decreases in mRNA abundances of cyp19a1a, cyp11c1, and hsd17b3. In addition, decreased transcript abundances of genes involved in spermatogenesis, such as nanos2 and dazl, were observed. Decreases in later stages of sperm development were observed, suggesting that embryonic exposure to UV-P impaired spematogenesis, resulting in decreased sperm quantity. The present study is the first to demonstrate latent effects of BUVSs, specifically on fish reproduction. Environ Toxicol Chem 2024;43:385-397. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Yamin Raza
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Emily Mertens
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Lauren Zink
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Zhe Lu
- Institut des Sciences de la Mer de Rimouski, Université du Québec à Rimouski, Rimouski, Québec, Canada
| | - Jon A Doering
- Department of Environmental Sciences, College of the Coast & Environment, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Steve Wiseman
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|
17
|
Yu X, Wang Y, Watson P, Yang X, Liu H. Application of passive sampling device for exploring the occurrence, distribution, and risk of pharmaceuticals and pesticides in surface water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168393. [PMID: 37963530 DOI: 10.1016/j.scitotenv.2023.168393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/31/2023] [Accepted: 11/05/2023] [Indexed: 11/16/2023]
Abstract
Pharmaceuticals and pesticides are compounds of high concern in surface waters around the world. However, few studies have used passive sampling methods to screen and detect these compounds in natural waters. In this study, a self-developed passive sampler was employed to measure pharmaceuticals and pesticides in the rivers of Nanjing, China. A total of 41 pharmaceuticals and 11 pesticides were detected, among which antibiotic and insecticide were the predominant classes, respectively. Valproic acid, caffeine and triclosan from the pharmaceuticals, and isoprocarb and imidacloprid from the pesticides were found frequently with high concentrations. At most sampling sites, the concentration ratios of caffeine versus carbamazepine exceeded 10, and even above 50, indicating relatively poor efficiency of wastewater treatment, or possibly the direct discharge of raw sewage, or other unknown source of pollution. It was found that the concentrations and ecological risks in the northern area of Yangtze River were higher than those in the southern area of Yangtze River, implying that economic development and population density were not the main contributors to the discovered pollution. The total concentration of pharmaceuticals and pesticides in Qinhuai River increased gradually with the direction of water flow, demonstrating the success of water diversion project in flushing and scouring pollutants.
Collapse
Affiliation(s)
- Xinzhi Yu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yaqi Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Peter Watson
- Los Alamos National Laboratory, Los Alamos 87545, NM, United States
| | - Xianhai Yang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Huihui Liu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
18
|
Johnson H, Dubiel J, Collins CH, Eriksson ANM, Lu Z, Doering JA, Wiseman S. Assessing the Toxicity of Benzotriazole Ultraviolet Stabilizers to Fishes: Insights into Aryl Hydrocarbon Receptor-Mediated Effects. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:110-120. [PMID: 38112502 PMCID: PMC10785820 DOI: 10.1021/acs.est.3c06117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023]
Abstract
Benzotriazole ultraviolet stabilizers (BUVSs) are chemicals used to mitigate UV-induced damage to manufactured goods. Their presence in aquatic environments and biota raises concerns, as certain BUVSs activate the aryl hydrocarbon receptor (AhR), which is linked to adverse effects in fish. However, potencies of BUVSs as AhR agonists and species sensitivities to AhR activation are poorly understood. This study evaluated the toxicity of three BUVSs using embryotoxicity assays. Zebrafish (Danio rerio) embryos exposed to BUVSs by microinjection suffered dose-dependent increases in mortality, with LD50 values of 4772, 11 608, and 56 292 ng/g-egg for UV-P, UV-9, and UV-090, respectively. The potencies and species sensitivities to AhR2 activation by BUVSs were assessed using a luciferase reporter gene assay with COS-7 cells transfected with the AhR2 of zebrafish and eight other fishes. The rank order of potency for activation of the AhR2 from all nine species was UV-P > UV-9 > UV-090. However, AhR2s among species differed in sensitivities to activation by up to 100-fold. An approximate reversed rank order of species sensitivity was observed compared to the rank order of sensitivity to 2,3,7,8-tetrachlorodibenzo[p]dioxin, the prototypical AhR agonist. Despite this, a pre-existing quantitative adverse outcome pathway linking AhR activation to embryo lethality could predict embryotoxicities of BUVSs in zebrafish.
Collapse
Affiliation(s)
- Hunter
M. Johnson
- Department
of Biological Science, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Justin Dubiel
- Department
of Biological Science, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Cameron H. Collins
- Department
of Environmental Sciences, College of the Coast and Environmental, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Andreas N. M. Eriksson
- Department
of Biological Science, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Zhe Lu
- Institut
des Sciences de la Mer de Rimouski, Université du Québec
à Rimouski, Rimouski, Québec G5L 3A1, Canada
| | - Jon A. Doering
- Department
of Biological Science, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
- Department
of Environmental Sciences, College of the Coast and Environmental, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Steve Wiseman
- Department
of Biological Science, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
19
|
Jyoti D, Sinha R. Physiological impact of personal care product constituents on non-target aquatic organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167229. [PMID: 37741406 DOI: 10.1016/j.scitotenv.2023.167229] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
Personal care products (PCPs) are products used in cleaning, beautification, grooming, and personal hygiene. The rise in diversity, usage, and availability of PCPs has resulted in their higher accumulation in the environment. Thus, these constitute an emerging category of environmental contaminants due to the potential of its constituents (chemical and non-chemical) to induce various physiological effects even at lower concentrations (ng/L). For analyzing the impact of the PCPs constituents on the non-target organism about 300 article including research articles, review articles and guidelines were studied from 2000 to 2023. This review aims to firstly discuss the fate and accumulation of PCPs in the aquatic environment and organisms; secondly provides overview of environmental risks that are linked to PCPs; thirdly review the trends, current status of regulations and risks associated with PCPs and finally discuss the knowledge gaps and future perspectives for future research. The article discusses important constituents of PCPs such as antimicrobials, cleansing agents and disinfectants, fragrances, insect repellent, moisturizers, plasticizers, preservatives, surfactants, UV filters, and UV stabilizers. Each of them has been found to display certain toxic impact on the aquatic organisms especially the plasticizers and UV filters. These continuously and persistently release biologically active and inactive components which interferes with the physiological system of the non-target organism such as fish, corals, shrimps, bivalves, algae, etc. With a rise in the number of toxicity reports, concerns are being raised over the potential impacts of these contaminant on aquatic organism and humans. The rate of adoption of nanotechnology in PCPs is greater than the evaluation of the safety risk associated with the nano-additives. Hence, this review article presents the current state of knowledge on PCPs in aquatic ecosystems.
Collapse
Affiliation(s)
- Divya Jyoti
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Science, Solan, India
| | - Reshma Sinha
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, India.
| |
Collapse
|
20
|
Eriksson ANM, Dubiel J, Zink L, Lu Z, Doering JA, Wiseman S. Embryonic Exposure to Benzotriazole Ultraviolet Stabilizer 327 Alters Behavior of Rainbow Trout Alevin. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023. [PMID: 38088253 DOI: 10.1002/etc.5807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/18/2023] [Accepted: 12/09/2023] [Indexed: 01/17/2024]
Abstract
Benzotriazole ultraviolet (UV) stabilizers (BUVSs) are used in great quantities during industrial production of a variety of consumer and industrial goods. As a result of leaching and spill, BUVSs are detectable ubiquitously in the environment. As of May 2023, citing concerns related to bioaccumulation, biomagnification, and environmental persistence, (B)UV(S)-328 was recommended to be listed under Annex A of the Stockholm Convention on Persistent Organic Pollutants. However, a phaseout of UV-328 could result in a regrettable substitution because the replacement chemical(s) could cause similar or unpredicted toxicity in vivo, relative to UV-328. Therefore, the influence of UV-327, a potential replacement of UV-328, was investigated with respect to early life development of newly fertilized rainbow trout embryos (Oncorhynchus mykiss), microinjected with environmentally relevant concentrations of UV-327. Developmental parameters (standard length), energy consumption (yolk area), heart function, blue sac disease, mortality, and behavior were investigated. Alevins at 14 days posthatching, exposed to 107 ng UV-327 g-1 egg, presented significant signs of hyperactivity; they moved on average 1.8-fold the distance and at 1.5-fold the velocity of controls. Although a substantial reduction in body burden of UV-327 was observed at hatching, it is postulated that UV-327, due to its lipophilic properties, interfered with neurological development and signaling from the onset of neurogenesis. If these results hold true across multiple taxa and species, a potential contributor to neurodevelopmental disorders might have been identified. These findings suggest that UV-327 poses an unknown hazard to rainbow trout embryos and alevins, rendering UV-327 a potential regrettable substitution to UV-328. However, a qualified statement on a regrettable substitution requires a comparative investigation on the teratogenic effects between the two BUVSs. Environ Toxicol Chem 2024;00:1-10. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Andreas N M Eriksson
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Justin Dubiel
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Lauren Zink
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Zhe Lu
- Institut des Sciences de la Mer de Rimouski, Université du Québec à Rimouski, Rimouski, Québec, Canada
| | - Jon A Doering
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Steve Wiseman
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|
21
|
Khare A, Jadhao P, Vaidya AN, Kumar AR. Benzotriazole UV stabilizers (BUVs) as an emerging contaminant of concern: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:121370-121392. [PMID: 37996596 DOI: 10.1007/s11356-023-30567-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 10/16/2023] [Indexed: 11/25/2023]
Abstract
Benzotriazole UV stabilizers (BUVs) are a group of industrial chemicals used in various consumer products and industrial applications. Due to its large-scale production and use, BUVs have been detected in all environmental matrices. Humans are exposed to BUVs from environmental media, food, personal care products (PCPs), and consumer products. As a result, BUVs are detected in human breast milk, attracting researchers and regulatory bodies worldwide. BUVs such as UV-328 exhibit the characteristics of persistent organic pollutants (POPs); hence, it has been recently listed under Stockholm Convention POP list. The current review focuses on the occurrence of BUVs in the environment with emphasis on persistency, bioaccumulation, and toxicity (PBT). Scarcity of scientific data on BUVs' properties, environmental occurrence, exposure levels, and effects on organisms poses significant challenges to the policymakers and regulatory bodies in adopting management strategies. The need for a science-based integrated framework for risk assessment and management of BUVs is recommended. Considering the potential threat of BUVs to human health and the environment, it is recommended that BUVs should be taken as a subject of priority research. Studies on the degradation and transformation route of BUVs need to be explored for the sound management of BUVs.
Collapse
Affiliation(s)
- Ankur Khare
- Chemical and Hazardous Waste Management Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pradip Jadhao
- Chemical and Hazardous Waste Management Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Atul Narayan Vaidya
- Chemical and Hazardous Waste Management Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Asirvatham Ramesh Kumar
- Chemical and Hazardous Waste Management Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
22
|
Nan Y, Zhu X, Huang J, Zhang Z, Xing Y, Yang Y, Xiao M, Duan Y. Toxic effects of triclocarban on the histological morphology, physiological and immune response in the gills of the black tiger shrimp Penaeus monodon. MARINE ENVIRONMENTAL RESEARCH 2023; 192:106245. [PMID: 37926588 DOI: 10.1016/j.marenvres.2023.106245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/21/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023]
Abstract
Triclocarban (TCC) is a widely used broad-spectrum antimicrobial agent that has become a pollutant threatening the health of aquatic animals. However, the toxic effects of TCC on Penaeus monodon are still lacking. In this study, we exposed P. monodon to 1 μg/L (TCC-1) and 10 μg/L TCC (TCC-10) for 14 days, and the changes of histological morphology, physiological and immune responses in the gills were investigated. The results showed that TCC exposure caused the deformation of the gill vessels and the disordered arrangement of the gill filaments. Oxidative stress biochemical indexes such as H2O2 content, CAT and GPx activity and the relative expression levels of antioxidant-related genes (SOD, GPx and Nrf2) were increased in the TCC-1 and TCC-10 groups; the levels of CAT and HSP70 genes were increased but POD activity was decreased in the TCC-10 group. The relative expression levels of endoplasmic reticulum (ER) stress indexes such as ERP15 and ATF-6 genes were increased in the TCC-10 group, while the level of GRP78 gene was decreased in the TCC-1 and TCC-10 groups. The relative expression levels of apoptosis indexes such as p53 and JNK genes were increased, but CytC and Casp-3 genes were decreased in the TCC-1 and TCC-10 groups. Furthermore, the relative expression levels of detoxification metabolism-related genes (cytP450 and GST) and osmotic regulation-related genes (NKA-α, NKA-β, CA, AQP, CLC and CCP) were increased in the TCC-10 group. The results showed that TCC exposure could affect the physiological homeostasis in the gills of P. monodon, probably via damaging histological morphology, inducing oxidative stress, and disordering ER stress, apoptosis, detoxification and osmotic regulation.
Collapse
Affiliation(s)
- Yuxiu Nan
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, PR China; College of Marine Science, Hebei Agricultural University, Qinhuangdao, 066000, PR China
| | - Xuanyi Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, PR China
| | - Jianhua Huang
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, 518121, PR China
| | - Zhe Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, PR China
| | - Yifu Xing
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, PR China
| | - Yukai Yang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, PR China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, 518121, PR China
| | - Meng Xiao
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, PR China; College of Marine Science, Hebei Agricultural University, Qinhuangdao, 066000, PR China
| | - Yafei Duan
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, PR China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, 572018, PR China.
| |
Collapse
|
23
|
Khare A, Jadhao P, Kawre S, Kanade G, Patil M, Vaidya AN, Kumar AR. Occurrence, spatio-temporal variation and ecological risk assessment of benzotriazole ultraviolet stabilizers (BUVs) in water and sediment of rivers in central India. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163381. [PMID: 37030358 DOI: 10.1016/j.scitotenv.2023.163381] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/04/2023] [Accepted: 04/04/2023] [Indexed: 06/01/2023]
Abstract
Occurrence of benzotriazole ultraviolet stabilizers (BUVs) in different environmental matrices has attracted researchers and regulatory agencies worldwide due to its persistency, bioaccumulative and toxic properties. Environmental occurrence of BUVs in Indian freshwater is lacking. The present study analyzed six targeted BUVs in surface water and sediments of three rivers of Central India. BUVs were determined in pre- and post-monsoon seasons to reveal their concentration, spatio-temporal distribution and probable ecological risks. Results indicated that total concentration of BUVs (ƩBUVs) ranged from ND to 42.88 μg/L in water, and ND to 165.26 ng/g in sediments with UV-329 as the predominant BUV in surface water and sediments during pre- and post-monsoon seasons. Surface water samples from Pili River, and sediment of Nag River accounted for maximum BUVs concentration. Partitioning coefficient results confirmed the effective transfer of BUVs from overlaying water to sediments. The observed concentration of BUVs in water and sediments posed low ecological risk to planktons. Untreated municipal discharges and poor waste management practices including dumping of wastes might be the sources of BUVs in water bodies.
Collapse
Affiliation(s)
- Ankur Khare
- Chemical and Hazardous Waste Management Division, CSIR-National Environmental Engineering Research Institute, Nagpur 440020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pradip Jadhao
- Chemical and Hazardous Waste Management Division, CSIR-National Environmental Engineering Research Institute, Nagpur 440020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shatabdi Kawre
- Chemical and Hazardous Waste Management Division, CSIR-National Environmental Engineering Research Institute, Nagpur 440020, India
| | - Gajanan Kanade
- Chemical and Hazardous Waste Management Division, CSIR-National Environmental Engineering Research Institute, Nagpur 440020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mahendra Patil
- Chemical and Hazardous Waste Management Division, CSIR-National Environmental Engineering Research Institute, Nagpur 440020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Atul Narayan Vaidya
- Chemical and Hazardous Waste Management Division, CSIR-National Environmental Engineering Research Institute, Nagpur 440020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Asirvatham Ramesh Kumar
- Chemical and Hazardous Waste Management Division, CSIR-National Environmental Engineering Research Institute, Nagpur 440020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
24
|
Zhang L, Shen L, Huang Y, Cui S, Zhao Q, Zhang C, Zhuang S, Jiang G. Embryonic Exposure to UV-328 Impairs the Cell Cycle in Zebrafish ( Danio rerio) by Inhibiting the p38 MAPK/p53/Gadd45a Signaling Pathway. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37384941 DOI: 10.1021/acs.est.3c02842] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
The benzotriazole UV stabilizer UV-328 is well known for its potent antioxidative properties; however, there are concerns about how it may affect signaling nodes and lead to negative consequences. This study identified the key signaling cascades involved in oxidative stress in zebrafish (Danio rerio) larvae and evaluated the cell cycle arrests and associated developmental alternations. Exposure to UV-328 at 0.25, 0.50, 1.00, 2.00, and 4.00 μg/L downregulated gene expression associated with oxidative stress (cat, gpx, gst, and sod) and apoptosis (caspase-3, caspase-6, caspase-8, and caspase-9) at 3 days postfertilization (dpf). The transcriptome aberration in zebrafish with disrupted p38 mitogen-activated protein kinase (MAPK) cascades was validated based on decreased mRNA expressions of p38 MAPK (0.36-fold), p53 (0.33-fold), and growth arrest and DNA damage-inducible protein 45 α (Gadd45a) (0.52-fold) after a 3- and 14-day exposure alongside a correspondingly decreased protein expression. The percentage of cells in the Gap 1 (G1) phase increased from 69.60% to a maximum of 77.07% (p < 0.05) in the 3 dpf embryos. UV-328 inhibited the p38 MAPK/p53/Gadd45a regulatory circuit but promoted G1 phase cell cycle arrest, abnormally accelerating the embryo hatching and heart rate. This study provided mechanistic insights that enrich the risk profiles of UV-328.
Collapse
Affiliation(s)
- Liang Zhang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Lilai Shen
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yizhou Huang
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Shixuan Cui
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiming Zhao
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chunlong Zhang
- Department of Environmental Sciences, University of Houston-Clear Lake, 2700 Bay Area Boulevard, Houston, Texas 77058, United States
| | - Shulin Zhuang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
25
|
Zhang D, Lu S. A holistic review on triclosan and triclocarban exposure: Epidemiological outcomes, antibiotic resistance, and health risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162114. [PMID: 36764530 DOI: 10.1016/j.scitotenv.2023.162114] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/31/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Triclosan (TCS) and triclocarban (TCC) are antimicrobials that are widely applied in personal care products, textiles, and plastics. TCS and TCC exposure at low doses may disturb hormone levels and even facilitate bacterial resistance to antibiotics. In the post-coronavirus disease pandemic era, chronic health effects and the spread of antibiotic resistance genes associated with TCS and TCC exposure represent an increasing concern. This study sought to screen and review the exposure levels and sources and changes after the onset of the coronavirus disease (COVID-19) pandemic, potential health outcomes, bacterial resistance and cross-resistance, and health risk assessment tools associated with TCS and TCC exposure. Daily use of antimicrobial products accounts for most observed associations between internal exposure and diseases, while secondary exposure at trace levels mainly lead to the spread of antibiotic resistance genes. The roles of altered gut microbiota in multi-system toxicities warrant further attention. Sublethal dose of TCC selects ARGs without obviously increasing tolerance to TCC. But TCS induce persistent TCS resistance and reversibly select antibiotic resistance, which highlights the benefits of minimizing its use. To derive reference doses (RfDs) for humans, more sensitive endpoints observed in populational studies need to be confirmed using toxicological tests. Additionally, the human equivalent dose is recommended to be incorporated into the health risk assessment to reduce uncertainty of extrapolation.
Collapse
Affiliation(s)
- Duo Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
26
|
Zhang J, Chen H, Tong T, Liu R, Yan S, Liang X, Martyniuk CJ, Zha J. Comparative toxicogenomics of benzotriazole ultraviolet stabilizers at environmental concentrations in Asian clam (Corbicula fluminea): Insight into molecular networks and behavior. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130811. [PMID: 36669413 DOI: 10.1016/j.jhazmat.2023.130811] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/06/2023] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
Benzotriazole ultraviolet stabilizers (BUVSs) are widespread emerging pollutants, which can pose exposure risks to benthic organisms. However, the toxicity and mechanisms of BUVSs congeners in benthic clams are far from elucidated. In this study, Asian clams (Corbicula fluminea) were exposed to one of UV-234, UV-326, UV-329, or UV-P at environmentally relevant levels (0.1, 1, and 10 μg/L) for 21 days. Filtration rate (FR) was increased in clams exposed to all BUVSs and there were notable histopathologic changes, including irregular digestive lumen, lipid droplet vacuolation, and degraded epithelial cells. To determine the molecular underpinnings following BUVSs exposure, the transcriptome responses in digestive glands were compared. Differentially expressed genes shared among BUVSs treatments were associated with focal adhesion, TNF-α/NF-κB proinflammatory pathways, and apoptosis. Following this, biochemical analysis of biomarkers related to apoptosis were conducted to further validate response. Exposure to BUVSs inhibited anti-oxidant enzyme activity and induced oxidative stress. Heat shock proteins were also triggered with exposure, and there was an induction of caspase-3 and caspase-9 activity. Molecular responses were not identical in the digestive gland of C. fluminea when comparing responses to BUVSs; nevertheless conserved mechanism (impairment of the oxidative defense system, immune system disruption, and induction of apoptosis) among BUVSs congeners was noted. This study provides novel insight into the toxicity and hazards of BUVSs in benthic organisms.
Collapse
Affiliation(s)
- Jiye Zhang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Huihui Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Tianheng Tong
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Ruimin Liu
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Saihong Yan
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xuefang Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China.
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Jinmiao Zha
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
27
|
Zhang Y, He L, Yang Y, Cao J, Su Z, Zhang B, Guo H, Wang Z, Zhang P, Xie J, Li J, Ye J, Zha Z, Yu H, Hong A, Chen X. Triclocarban triggers osteoarthritis via DNMT1-mediated epigenetic modification and suppression of COL2A in cartilage tissues. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130747. [PMID: 36680903 DOI: 10.1016/j.jhazmat.2023.130747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/20/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Triclocarban (TCC) is a widely used environmental endocrine-disrupting chemical (EDC). Articular injury of EDCs has been reported; however, whether and how TCCs damage the joint have not yet been determined. Herein, we revealed that exposure to TCC caused osteoarthritis (OA) within the zebrafish anal fin. Mechanistically, TCC stimulates the expression of DNMT1 and initiates DNA hypermethylation of the type II collagen coding gene, which further suppresses the expression of type II collagen and other extracellular matrices. This further results in decreased cartilage tissue and narrowing of the intraarticular space, which is typical of the pathogenesis of OA. The regulation of OA occurrence by TCC is conserved between zebrafish cartilage tissue and human chondrocytes. Our findings clarified the hazard and potential mechanisms of TCC towards articular health and highlighted DNMT1 as a potential therapeutic target for OA caused by TCC.
Collapse
Affiliation(s)
- Yibo Zhang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China
| | - Liu He
- Department of Cell Biology, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China
| | - Yiqi Yang
- The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Jieqiong Cao
- Department of Cell Biology, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China
| | - Zijian Su
- Department of Cell Biology, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China
| | - Bihui Zhang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China
| | - Huiying Guo
- The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Zhenyu Wang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China
| | - Peiguang Zhang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China
| | - Junye Xie
- Department of Cell Biology, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China
| | - Jieruo Li
- The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Jinshao Ye
- School of Environment, Jinan University, Guangzhou 510632, China
| | - Zhengang Zha
- The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Hengyi Yu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - An Hong
- Department of Cell Biology, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China..
| | - Xiaojia Chen
- Department of Cell Biology, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China..
| |
Collapse
|
28
|
Zhang J, Huang Y, Pei Y, Wang Y, Li M, Chen H, Liang X, Martyniuk CJ. Biotransformation, metabolic response, and toxicity of UV-234 and UV-326 in larval zebrafish (Danio rerio). ENVIRONMENT INTERNATIONAL 2023; 174:107896. [PMID: 36966637 DOI: 10.1016/j.envint.2023.107896] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 06/18/2023]
Abstract
Benzotriazole ultraviolet stabilizers (BUVSs) are emerging pollutants that are widely detected in aquatic ecosystems. While structure-dependent effects of BUVSs are reported, the relationship between biotransformation and toxicity outcomes remains unclear. In this study, zebrafish embryos were exposed to two common BUVSs (UV-234 and UV-326) at 1, 10, and 100 µg/L for up to 7 days. Comparison of their uptake and biotransformation revealed that the bioaccumulation capacity of UV-234 was higher than that of UV-326, while UV-326 was more extensively biotransformed with additional conjugation reactions. However, UV-326 showed low metabolism due to inhibited phase II enzymes, which may result in the comparable internal concentrations of both BUVSs in larval zebrafish. Both BUVSs induced oxidative stress while decreased MDA, suggesting the disturbance of lipid metabolism. The subsequent metabolomic profiling revealed that UV-234 and UV-326 exerted different effects on arachidonic acid, lipid, and energy metabolism. However, both BUVSs negatively impacted the cyclic guanosine monophosphate / protein kinase G pathway. This converged metabolic change resulted in comparable toxicity of UV-234 and UV-326, which was confirmed by the induction of downstream apoptosis, neuroinflammation, and abnormal locomotion behavior. These data have important implications for understanding the metabolism, disposition, and toxicology of BUVSs in aquatic organisms.
Collapse
Affiliation(s)
- Jiye Zhang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Ying Huang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Youjun Pei
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yuyang Wang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Mingwan Li
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Huihui Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xuefang Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China.
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
29
|
Guo Z, Kodikara D, Albi LS, Hatano Y, Chen G, Yoshimura C, Wang J. Photodegradation of organic micropollutants in aquatic environment: Importance, factors and processes. WATER RESEARCH 2023; 231:118236. [PMID: 36682233 DOI: 10.1016/j.watres.2022.118236] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 06/17/2023]
Abstract
Photochemical reactions widely occur in the aquatic environment and play fundamental roles in aquatic ecosystems. In particular, solar-induced photodegradation is efficient for many organic micropollutants (OMPs), especially those that cannot undergo hydrolysis or biodegradation, and thus can mitigate chemical pollution. Recent reports indicate that photodegradation may play a more important role than biodegradation in many OMP transformations in the aquatic environment. Photodegradation can be influenced by the water matrix such as pH, inorganic ions, and dissolved organic matter (DOM). The effect of the water matrix such as DOM on photodegradation is complex, and new insights concerning the disparate effects of DOM have recently been reported. In addition, the photodegradation process is also influenced by physical factors such as latitude, water depth, and temporal variations in sunlight as these factors determine the light conditions. However, it remains challenging to gain an overview of the importance of photodegradation in the aquatic environment because the reactions involved are diverse and complex. Therefore, this review provides a concise summary of the importance of photodegradation and the major processes related to the photodegradation of OMPs, with particular attention given to recent progress on the major reactions of DOM. In addition, major knowledge gaps in this field of environmental photochemistry are highlighted.
Collapse
Affiliation(s)
- Zhongyu Guo
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8552, Japan
| | - Dilini Kodikara
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8552, Japan
| | - Luthfia Shofi Albi
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8552, Japan
| | - Yuta Hatano
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8552, Japan
| | - Guo Chen
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8552, Japan
| | - Chihiro Yoshimura
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8552, Japan.
| | - Jieqiong Wang
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| |
Collapse
|
30
|
Zhao ML, Chen Y, Yang GP, Chen R. Simultaneous determination of benzothiazoles, benzotriazoles, and benzotriazole UV absorbers by solid-phase extraction-gas chromatography-mass spectrometry. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:45315-45330. [PMID: 36702982 DOI: 10.1007/s11356-023-25503-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Benzotriazoles (BTRs), benzothiazoles (BTHs), and benzotriazole ultraviolet absorbers (BUVs) are common products in plastic rubber and personal care products. Due to their toxicity and bioaccumulation, they have been identified as emerging contaminants (ECs) in the environment. Solid-phase microextraction (SPME) and solid-phase extraction (SPE) combined with gas chromatography-mass spectrometry (GC-MS) were used for the enrichment and detection of the contaminants in seawater and sediment, respectively. The conditions of SPE and SPME were optimized in terms of material, temperature, time, pH, ionic strength, extraction solvent, and elution solvent. Although SPME requires a small sample volume, it is not reliable for the extraction efficiency and reproducibility of BTHs, BTRs, and BUVs in seawater. However, the precision of SPE-GC-MS for the determination of BTHs, BTRs, and BUVs was around 10%, with recoveries of 67.40-102.3% and 77.35-101.8% in seawater and sediment, respectively. The limits of detection of 14 contaminants in seawater and sediment were 0.03-0.47 ng/L and 0.01-0.58 ng/g, respectively. Secondly, BTHs, BTRs, and BUVs were detected with low ecological risk when SPE-GC-MS was applied to the analysis of seawater and sediment samples from the Yangtze estuary and its adjacent areas. The SPE-GC-MS was highly precise with lower detection limits relative to previous studies and thus was able to meet the requirements for the detection of BTHs, BTRs, and BUVs in seawater and sediments.
Collapse
Affiliation(s)
- Ming-Liang Zhao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Yan Chen
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Gui-Peng Yang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- Institute of Marine Chemistry, Ocean University of China, Qingdao, 266100, China
| | - Rong Chen
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
31
|
Li B, Liu Q, Yao Z, Ma Z, Li C. Mulch film: An overlooked diffuse source of organic ultraviolet absorbers in agricultural soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120935. [PMID: 36566917 DOI: 10.1016/j.envpol.2022.120935] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Ultraviolet absorbers (UVAs) are emerging pollutants of concern owing to their environmental persistence and endocrine-disrupting effects. UVAs are added to agricultural films to prevent UV-induced degradation, potentially leading to the release of UVAs into the soil. In this study, the occurrence of four frequently used UVAs (UV-324, UV-326, UV-328, and UV-531) in film-mulched agricultural soils (using conventional polyethylene films and biodegradable films) was investigated. Results showed that the UVA concentrations were several orders of magnitude higher in film-mulched soil (mean 91.4 μg/kg) than in unmulched soil (mean 0.08 μg/kg), indicating that mulch films are important sources of UVAs released into agricultural soil. Notably, the mean UVA concentration was up to 10 times higher in biodegradable-film-mulched soils than in polyethylene (PE) film-mulched soils; this result is consistent with our finding that the mean UVA concentration was 448 times higher in commercial biodegradable films than in PE films. In simulated migration experiments, UVAs migrated more readily into the soil from the biodegradable film than from the PE film. To our knowledge, this is the first report demonstrating that the use of mulch films may cause the accumulation of UVAs in agricultural soils as non-point sources. In particular, biodegradable plastic mulches can release more UVAs into soils.
Collapse
Affiliation(s)
- Bingru Li
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China; Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs, Beijing, 100097, China
| | - Qi Liu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhenzhen Yao
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Zhihong Ma
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China; Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs, Beijing, 100097, China
| | - Cheng Li
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China; Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs, Beijing, 100097, China; Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing, 100097, China.
| |
Collapse
|
32
|
Zhang ZY, Xu YH, Chen KY, Zhang MH, Meng CY, Wang XS, Wang MM. Flower-like molybdenum disulfide/cobalt ferrite composite for the extraction of benzotriazole UV stabilizers in environmental samples. Mikrochim Acta 2023; 190:75. [PMID: 36700977 DOI: 10.1007/s00604-023-05658-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/11/2023] [Indexed: 01/27/2023]
Abstract
Benzotriazole UV stabilizers (BUVSs) are a class of emerging contaminants of concern; the development of rapid and convenient monitoring method for these trace-level pollutants in waters is of crucial significance in environmental science. Here, a novel magnetic flower-like molybdenum disulfide/cobalt ferrite nanocomposite (MoS2/CoFe2O4) was synthesized by hydrothermal reaction. Compared with the conventional Fe3O4-based magnetic composites, the proposed material just required a minimum consumption of Co/Fe towards the equivalent of MoS2 while providing superior magnetization performance. Taking advantages of high adsorption capacity, extraordinary stability, and repeatability in construction, MoS2/CoFe2O4 was applied to the extraction to BUVSs. The enrichment factors of three BUVSs were in the range 164-193 when 20 mL of environmental water sample was loaded on 40 mg of the adsorbent. MoS2/CoFe2O4 could be regenerated and recycled at least 10 cycles of adsorption/desorption with recoveries of 80.1-111%. The method of MoS2/CoFe2O4-based extraction coupled with high-performance liquid chromatography-variable wavelength detector was applied to the monitoring of BUVSs in seawater, lake water, and wastewater, which gave detection limits (S/N = 3) of 0.023-0.030 ng·mL-1 and recoveries of 80.1-110%. The intra-day and inter-day precisions (relative standard deviation, RSDs, n = 3) were in the range 1.6-7.5% and 3.2-11.5%, respectively. The approach is an alternative for efficient and sensitive extraction and determination of trace-level environmental pollutants in waters.
Collapse
Affiliation(s)
- Zi-Yang Zhang
- School of Public Health, North China University of Science and Technology, No.21 Bohai Road, CaofeidianHebei, 063210, Tangshan, China
| | - Yi-Heng Xu
- School of Public Health, North China University of Science and Technology, No.21 Bohai Road, CaofeidianHebei, 063210, Tangshan, China
| | - Ke-Yan Chen
- School of Public Health, North China University of Science and Technology, No.21 Bohai Road, CaofeidianHebei, 063210, Tangshan, China
| | - Mei-Hang Zhang
- School of Public Health, North China University of Science and Technology, No.21 Bohai Road, CaofeidianHebei, 063210, Tangshan, China
| | - Chun-Yan Meng
- School of Public Health, North China University of Science and Technology, No.21 Bohai Road, CaofeidianHebei, 063210, Tangshan, China
| | - Xue-Sheng Wang
- School of Public Health, North China University of Science and Technology, No.21 Bohai Road, CaofeidianHebei, 063210, Tangshan, China
| | - Man-Man Wang
- School of Public Health, North China University of Science and Technology, No.21 Bohai Road, CaofeidianHebei, 063210, Tangshan, China.
| |
Collapse
|
33
|
Li Q, Wang P, Wang C, Hu B, Wang X, Li D. Benzotriazole UV stabilizer-induced genotoxicity in freshwater benthic clams: A survey on apoptosis, oxidative stress, histopathology and transcriptomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159055. [PMID: 36174688 DOI: 10.1016/j.scitotenv.2022.159055] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Benzotriazole UV stabilizer-329 (UV-329) is frequently detected in various environmental and biological matrices. However, the toxicity effect on freshwater benthos induced by UV-329 has rarely been described. In this study, genotoxicity, apoptosis, oxidative stress, histopathological alterations, siphoning behavior, and bioaccumulation in the gill and digestive gland of Corbicula fluminea exposed to UV-329 at 10, 100, and 1000 μg/L for 21 days were investigated. Toxicity screening using transcriptomics confirmed that UV-329 preferentially stimulated cellular process-related pathways including gap junctions, apoptosis, phagosomes and necroptosis. The transcript levels of a large number of apoptosis genes were significantly upregulated. This apoptosis mechanism was further confirmed by the fact that UV-329 exposure significantly increased the percentage of apoptotic cells, activated caspase-3, -8, and -9, and affected the antioxidant enzyme activities. Following exposure to 1000 μg/L UV-329, significant histological alterations were reflected in the corrosion of cilia, cellular swelling of epithelial cells in the gills, degeneration of digestive tubules, and necrosis of epithelial cells in the digestive glands. These results may aid in elucidating the toxicity mechanism of UV329 in bivalves and evaluating the hazards of UV-329 in benthic ecosystems.
Collapse
Affiliation(s)
- Qiang Li
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Bin Hu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Xun Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Dandan Li
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
34
|
Liang S, Zhang Y, Bo H, Duan W, Zhong L. Insights into the toxicities of UV-328, UV-329, UV-P in HepG2 cells and their roles in AHR-mediated pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 250:114478. [PMID: 36586167 DOI: 10.1016/j.ecoenv.2022.114478] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
The widespread high concentrations of benzotriazole ultraviolet stabilizers (BUVSs) in many biotic and abiotic samples have raised urgent concerns of their adverse effects on environmental and human health. In this study, we investigated the toxicity of three typical BUVSs (UV-328, UV-329, UV-P) with HepG2 cells in vitro. Results indicated that the three BUVSs showed weak cytotoxicity in HepG2 cells at concentrations lower than 50 μM. Transcriptional analysis indicated that the toxic effects of the three chemicals followed the order of UV-P > UV-329 > UV-328. UV-P and UV-329 may act as potential environmental diabetogens by significantly enriching several diabetic related items in both GO and KEGG analysis. Moreover, UV-P and UV-329 significantly upregulated the expression of AHR target genes (CYP1A1, CYP1A2, UGT1A1, etc.), and increased the ethoxyresorufin-O-deethylase (EROD) activity and exhibited agonistic activity toward AHR in the XRE-mediated luciferase reporter gene assay. Molecular docking assay also indicated that UV-329 and UV-P had higher binding affinities to AHR-LBD than UV-328. In brief, our findings indicated that UV-P and UV-329 were potential agonist of AHR ligand, and may exert more toxicity than UV-328 in inducing liver toxicity.
Collapse
Affiliation(s)
- Shengxian Liang
- Institute of Life Sciences and Green Development, College of Life Sciences, Hebei University, Baoding 071000, China.
| | - Yue Zhang
- Institute of Life Sciences and Green Development, College of Life Sciences, Hebei University, Baoding 071000, China
| | - Haimei Bo
- Institute of Life Sciences and Green Development, College of Life Sciences, Hebei University, Baoding 071000, China
| | - Wenzhao Duan
- Institute of Life Sciences and Green Development, College of Life Sciences, Hebei University, Baoding 071000, China
| | - Li Zhong
- Institute of Life Sciences and Green Development, College of Life Sciences, Hebei University, Baoding 071000, China; Western University of Health Sciences, Pomona, CA 91766, USA.
| |
Collapse
|
35
|
The Influence of the Chemical Composition of Natural Waters about the Triclocarban Sorption on Pristine and Irradiated MWCNTs. SEPARATIONS 2023. [DOI: 10.3390/separations10010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The influence of the chemical composition of natural waters on triclocarban (TCC) sorption on pristine and irradiated multi-walled carbon nanotubes (MWCNTs) at different temperatures was studied. Natural waters have been characterized in terms of the concentrations of cations and anions, pH, and electric conductivity. The sorption process of TCC on MWCNTs is influenced by both the chemical composition of natural waters and the variation of the temperature. The adsorption capacity of TCC on pristine and irradiated MWCNTs in the studied natural waters increased by increasing the temperature. The increase of the concentration of monovalent cations (Na+ and K+) in natural waters determined a significant decrease of the adsorption capacity of TCC on both pristine and irradiated MWCNTs while the increase of the bivalent cations (Ca2+ and Mg2+) determined an easy increase adsorption capacity. Freundlich and Langmuir models were selected to describe the steady adsorption of the TCC on the pristine and irradiated MWCNTs.
Collapse
|
36
|
Fischer C, Leibold E, Hiller J, Göen T. Human metabolism and excretion kinetics of benzotriazole UV stabilizer UV-327 after single oral administration. Arch Toxicol 2023; 97:165-176. [PMID: 36335248 PMCID: PMC9816242 DOI: 10.1007/s00204-022-03401-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
Abstract
UV-327 (2-(5-chloro-benzotriazol-2-yl)-4,6-di-(tert-butyl)phenol) is used as an ultraviolet (UV) absorber in plastic products and coatings. Due to its ubiquitous distribution in the environment, human exposure is conceivable. In the study presented herein, initial information on the human in vivo metabolism of UV-327 was obtained by single oral administration to three volunteers. Urine and blood samples were collected up to 72 h after exposure. One study participant additionally donated plasma samples. Maximum blood and plasma levels of UV-327 and its two monohydroxylated metabolites UV-327-6-mOH and UV-327-4-mOH were reached 6 h post-exposure. Almost the entire amount found in blood and plasma samples was identified as UV-327, whereas the two metabolites each accounted for only 0.04% of the total amount, indicating that UV-327 is well-absorbed from the intestine, but only partially metabolized. Plasma to blood ratios of UV-327, UV-327-6-mOH, and UV-327-4-mOH ranged from 1.5 to 1.6. Maximum urinary excretion rates of UV-327, UV-327-6-mOH, UV-327-4-mOH, and UV-327-4 + 6-diOH were reached 9-14 h post-exposure. However, only about 0.03% of the orally administered dose of UV-327 was recovered as UV-327 and its metabolites in urine, indicating that biliary excretion may be the major route of elimination of UV-327 and its hydroxylated metabolites. The present study complements the insight in the complex absorption, distribution, metabolism, and elimination (ADME) processes of benzotriazole UV stabilizers (BUVSs).
Collapse
Affiliation(s)
- Corinna Fischer
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 9-11, 91054, Erlangen, Germany
| | - Edgar Leibold
- BASF SE, Product Safety, Carl-Bosch‑Straße 38, 67056, Ludwigshafen Am Rhein, Germany
| | - Julia Hiller
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 9-11, 91054, Erlangen, Germany
| | - Thomas Göen
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 9-11, 91054, Erlangen, Germany.
| |
Collapse
|
37
|
Cui Z, He F, Li X, Li Y, Huo C, Wang H, Qi Y, Tian G, Zong W, Liu R. Response pathways of superoxide dismutase and catalase under the regulation of triclocarban-triggered oxidative stress in Eisenia foetida: Comprehensive mechanism analysis based on cytotoxicity and binding model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158821. [PMID: 36116645 DOI: 10.1016/j.scitotenv.2022.158821] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
Triclocarban (TCC) is an emerging environmental contaminant, posing potential ecological risks. Displaying a high accumulation effect and 120-day half-life in the soil environment, the toxic effects of TCC to soil organisms have been widely reported. Previous studies have confirmed that TCC can induce the oxidative stress and changes in superoxide dismutase (SOD) and catalase (CAT) activities in earthworms, but the underlying mechanisms of oxidative stress and disorder in antioxidant enzyme activities induced by TCC have not yet been elucidated. Here, we explored the multiple response mechanisms of SOD and CAT under the regulation of oxidative stress induced by TCC. Results indicated that higher-dose (0-2.0 mg/L) TCC exposure triggered the overproduction of ROS in Eisenia foetida coelomocytes, causing oxidative damage and a decrease in cell viability that was response to ROS accumulation. The TCC-induced inhibition of intracellular SOD/CAT activity was found under the regulation of oxidative stress (SOD: 29.2 %; CAT: 18.5 %), and this effect was blunted by antioxidant melatonin. At the same time, the interaction between antioxidative enzymes and TCC driven by various forces (SOD: electrostatic interactions; CAT: van der Waals forces and hydrogen bonding) led to inhibited SOD activity (9.84 %) and enhanced CAT activity (17.5 %). Then, to elucidate the binding mode of TCC, we explored the changes in SOD and CAT structure (protein backbone and secondary structure), the microenvironment of aromatic amino acids, and aggregation behavior through multispectral techniques. Molecular docking results showed that TCC inhibited SOD activity in a substrate competitive manner and enhanced CAT activity by the stabilizing effects of TCC on the heme groups. Collectively, this study reveals the response mechanisms of SOD/CAT under the regulation of TCC-triggered oxidative stress and shed a new light on revealing the toxic pathways of exogenous pollutants on antioxidant-related proteins function.
Collapse
Affiliation(s)
- Zhihan Cui
- School of Environmental Science and Engineering, Shandong University, PR China; America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Falin He
- School of Environmental Science and Engineering, Shandong University, PR China; America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Xiangxiang Li
- School of Environmental Science and Engineering, Shandong University, PR China; America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Yuze Li
- School of Environmental Science and Engineering, Shandong University, PR China; America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Chengqian Huo
- School of Environmental Science and Engineering, Shandong University, PR China; America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Hao Wang
- School of Environmental Science and Engineering, Shandong University, PR China; America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Yuntao Qi
- School of Environmental Science and Engineering, Shandong University, PR China; America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Guang Tian
- School of Environmental Science and Engineering, Shandong University, PR China; America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Wansong Zong
- College of Geography and Environment, Shandong Normal University, 88# East Wenhua Road, Jinan, Shandong 250014, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, PR China; America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China.
| |
Collapse
|
38
|
Cao X, Zhu F, Zhang C, Sun X. Degradation of UV-P mediated by hydroxyl radical, sulfate radical and singlet oxygen in aquatic solution: DFT and experimental studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120416. [PMID: 36240969 DOI: 10.1016/j.envpol.2022.120416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/04/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
2-(2'-hydroxy-5'-methylphenyl) benzotriazole (UV-P) is a type of emerging persistent organic pollutant that is reported harmful to organisms. However, its degradation mechanisms and transformation behaviors in aquatic environments are not yet clear, which are significant for better understanding its environmental fate and potential toxicological impacts. In present work, the degradation mechanisms, kinetics, half-life times and eco-toxicity assessment of UV-P initiated by hydroxyl radical (•OH), sulfate radical (SO4•‾), and singlet oxygen (1O2) are systematically studied using density functional theory (DFT) and experimental methods. The initiated reaction results show that benzene ring of UV-P is vulnerable to attack by •OH, while benzotriazole is easily attacked by SO4•‾. The kinetic calculations indicate that •OH-addition reaction R15 is dominant initial pathway. And the half-life (t1/2) of UV-P is calculated according to rate constants, t1/2 decreases rapidly with [ROS] increasing. UV-P exhibits environmental persistence when [•OH] ≤ 10-17 M. The subsequent degradation mechanisms of hydroxylated UV-P react with •OH and O2 are also calculated. A novel ring-opening reaction channel is proposed that O2-addition intermediate combines with hydroperoxyl radical (HO2•) to cleave aromatic ring. The rate-determining step is intramolecular dehydration reaction with the energy barrier of 32.98 kcal mol-1 and 41.13 kcal mol-1 to cleave benzene ring and benzotriazole ring, respectively. The degradation experiments of UV-P are conducted in Co3O4 activated potassium peroxymonosulfate (PMS) system, and liquid chromatograph-mass spectrometer (LC-MS) results identified that dihydroxylated species are main intermediates, which is consistent with theoretical calculation results. Furthermore, the eco-toxicity assessment shows that the acute and chronic toxicities of most degradation products are reduced compared with UV-P, however, their toxicity levels still keep at toxic and harmful. The environmental risk of UV-P deserves more attention.
Collapse
Affiliation(s)
- Xuesong Cao
- Environment Research Institute, Shandong University, Qingdao, 266200, PR China
| | - Fanping Zhu
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266200, PR China
| | - Chenxi Zhang
- College of Biological and Environmental Engineering, Binzhou University, Binzhou, 256600, PR China
| | - Xiaomin Sun
- Environment Research Institute, Shandong University, Qingdao, 266200, PR China.
| |
Collapse
|
39
|
Basiry D, Entezari Heravi N, Uluseker C, Kaster KM, Kommedal R, Pala-Ozkok I. The effect of disinfectants and antiseptics on co- and cross-selection of resistance to antibiotics in aquatic environments and wastewater treatment plants. Front Microbiol 2022; 13:1050558. [PMID: 36583052 PMCID: PMC9793094 DOI: 10.3389/fmicb.2022.1050558] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
The outbreak of the SARS-CoV-2 pandemic led to increased use of disinfectants and antiseptics (DAs), resulting in higher concentrations of these compounds in wastewaters, wastewater treatment plant (WWTP) effluents and receiving water bodies. Their constant presence in water bodies may lead to development and acquisition of resistance against the DAs. In addition, they may also promote antibiotic resistance (AR) due to cross- and co-selection of AR among bacteria that are exposed to the DAs, which is a highly important issue with regards to human and environmental health. This review addresses this issue and provides an overview of DAs structure together with their modes of action against microorganisms. Relevant examples of the most effective treatment techniques to increase the DAs removal efficiency from wastewater are discussed. Moreover, insight on the resistance mechanisms to DAs and the mechanism of DAs enhancement of cross- and co-selection of ARs are presented. Furthermore, this review discusses the impact of DAs on resistance against antibiotics, the occurrence of DAs in aquatic systems, and DA removal mechanisms in WWTPs, which in principle serve as the final barrier before releasing these compounds into the receiving environment. By recognition of important research gaps, research needs to determine the impact of the majority of DAs in WWTPs and the consequences of their presence and spread of antibiotic resistance were identified.
Collapse
Affiliation(s)
- Daniel Basiry
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Nooshin Entezari Heravi
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Cansu Uluseker
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Krista Michelle Kaster
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Roald Kommedal
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Ilke Pala-Ozkok
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| |
Collapse
|
40
|
Li P, Su W, Liang W, Zhu B, Li T, Ruan T, Jiang G. Occurrence and Temporal Trends of Benzotriazole UV Stabilizers in Mollusks (2010-2018) from the Chinese Bohai Sea Revealed by Target, Suspect, and Nontarget Screening Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16759-16767. [PMID: 36334087 DOI: 10.1021/acs.est.2c04143] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Benzotriazole UV stabilizers (BZT-UVs), including 2-(3,5-di-tert-amyl-2-hydroxyphenyl)benzotriazole (UV-328) that is currently under consideration for listing under the Stockholm Convention, are applied in many commodities and industrial products. However, limited information is available on the interannual variation of their environmental occurrence. In this study, an all-in-one strategy combining target, suspect, and nontarget screening analysis was established to comprehensively explore the temporal trends of BZT-UVs in mollusks collected from the Chinese Bohai Sea between 2010 and 2018. Significant residue levels of the target analytes were determined with a maximum total concentration of 6.4 × 103 ng/g dry weight. 2-(2-Hydroxy-3-tert-butyl-5-methyl-phenyl)-5-chloro-benzotriazole (UV-326), 5-chloro-2-(3,5-di-tert-butyl-2-hydroxyphenyl)benzotriazole (UV-327), and 2-(2-hydroxy-5-methylphenyl) benzotriazole (UV-P) were the predominant analogues, and UV-328 was the most frequently detected BZT-UV with a detection frequency (DF) of 87%. Whereas five biotransformation products and six impurity-like BZT-UVs were tentatively identified, their low DFs and semi-quantified concentrations suggest that the targeted analytes were the predominant BZT-UVs in the investigated area. A gradual decrease in the total concentrations of BZT-UVs was observed, accompanied by downward trends of the abundant compounds (e.g., UV-326 and UV-P). Consequently, the relative abundance of UV-327 increased because of its consistent environmental presence. These results suggest that continuous monitoring and risk assessment of BZT-UVs other than UV-328 are of importance in China.
Collapse
Affiliation(s)
- Pengyang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenyuan Su
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenqing Liang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bao Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingyu Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Ruan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
41
|
Vimalkumar K, Mayilsamy M, Arun E, Gobinath B, Prasanth S, Nikhil PN, Krishna-Kumar S, Srimurali S, Mkandawire M, Babu-Rajendran R. Screening of antimicrobials, fragrances, UV stabilizers, plasticizers and preservatives in sewage treatment plants (STPs) and their risk assessment in India. CHEMOSPHERE 2022; 308:136452. [PMID: 36116630 DOI: 10.1016/j.chemosphere.2022.136452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/16/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
Community/industrial wastewater is the prime source of anthropogenic chemicals, its treatment is often a daunting task and unaffordable for many countries. Emerging Contaminants (ECs) have been drained into wastewater after continuous use/misuse and Conventional treatments in STPs do not remove them completely. ECs including antimicrobial agents, synthetic musks, Benzotriazole UV stabilizers (BUVSs), plasticizers, and preservatives are frequently reported in environment, and cause health effects to non-target organisms. Monitoring of ECs is important to understand their status in aquatic environment. Hence, it was aimed to monitor ECs (n = 21) from 11 STPs in Tamil Nadu, India. The detection frequency of most of these analytes was >90%. Antimicrobials ranged from 247 to 22,714 ng/L and 11-14,369 ng/L in influents and effluents, respectively. The synthetic musks were in the order of Tonalide > Galaxolide > Musk Ketone. BUVSs ranged from 4 to 1632 ng/L (influents) and < LOD to 29,853 ng/L (effluents). Concentration of phthalates in influents and effluents were < LOD - 11,311 ng/L and < LOD - 17,618 ng/L, respectively. Parabens were found in the order of Prophyl > Methyl > Ethyl > Butyl in influents and Methyl > Prophyl > Butyl > Ethyl in effluents. Mass loads of ECs through STPs were found as antimicrobials > plasticizers > fragrances > BUVSs > Preservatives. This study reveals increasing usage of ECs and inadequate treatment processes at STPs in India. Also helps to adopt suitable treatment processes to remove ECs from wastewater and to reuse the wastewater.
Collapse
Affiliation(s)
- Krishnamoorthi Vimalkumar
- Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India; Department of Environmental Medicine and Pediatrics, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, 10016, USA
| | - Murugasamy Mayilsamy
- Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India; Hiyoshi India Ecological Services Private Limited, TICEL Biopark Ltd., Chennai, Tamil Nadu, India
| | - Elayaraja Arun
- Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - Balasubramanian Gobinath
- Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - Saravanan Prasanth
- Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - Patil Nishikant Nikhil
- Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - Selvaraj Krishna-Kumar
- Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India; School of Geography, Nanjing Normal University, Nanjing, 210023, Jiangsu Province, China
| | - Sampath Srimurali
- Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India; Food Chemistry Division, ICMR-National Institute of Nutrition, Hyderabad, India
| | - Martin Mkandawire
- Department of Chemistry, School of Science and Technology, Cape Breton University, Sydney, Novo Scotia, B1P 6L2, Canada
| | - Ramaswamy Babu-Rajendran
- Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India; Research Center for Inland Seas (KURCIS), Kobe University, Kobe, 658-0022, Japan.
| |
Collapse
|
42
|
Elaiyaraja A, Mayilsamy M, Vimalkumar K, Nikhil NP, Noorani PM, Bommuraj V, Thajuddin N, Mkandawire M, Rajendran RB. Aquatic and human health risk assessment of Humanogenic Emerging Contaminants (HECs), Phthalate Esters from the Indian Rivers. CHEMOSPHERE 2022; 306:135624. [PMID: 35810861 DOI: 10.1016/j.chemosphere.2022.135624] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/21/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
Phthalate esters (PEs) one of the widely used plasticizers, and are known for their environmental contamination and endocrine disruption. Hence, it is important to study their distribution in a riverine environment. This study was aimed to determine the Spatio-temporal trends of 16 PEs in surface water, sediment and fish from rivers in southern India, and to assess their environmental health risks. Phthalates were quantified in all matrices with the mean concentrations (∑16PEs) in water, sediment and fish as 35.6 μg/L, 1.25 μg/kg and 17.0 μg/kg, respectively. The Kaveri River is highly loaded with PEs compared to the Thamiraparani and Vellar Rivers. PEs such as DBP, DEHP, DCHP and DiBP were most frequently detected in all matrices, and at elevated concentrations in the dry season. The risk quotient (RQ < 1) suggests that the health risk of PEs from river water and fish to humans is negligible. However, DBP and DEHP from the Kaveri River pose some risk to aquatic organisms (HQ > 1). DEHP from the Vellar River may pose risks to algae and crustaceans. Non-priority phthalate (DiBP) may pose risks to Kaveri and Vellar River fish. The bioaccumulation factor of DCHP and DEHP was found to be very high in Sardinella longiceps and in Centropristis striata, and also exceeded the threshold limit of 5000 suggesting that PEs in the riverine environment may pose some health concerns. This is the first study to assess the spatio-temporal distribution, riverine flux and potential ecological effects of 16 PEs from the southern Indian Rivers.
Collapse
Affiliation(s)
- Arun Elaiyaraja
- Ecotoxicology and Toxicogenomics Lab, Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, 620024, India
| | - Murugasamy Mayilsamy
- Ecotoxicology and Toxicogenomics Lab, Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, 620024, India; Hiyoshi India Ecological Services Private Limited, TICEL Biopark Ltd., Taramani Road (CSIR Road), Chennai, India
| | - Krishnamoorthi Vimalkumar
- Ecotoxicology and Toxicogenomics Lab, Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, 620024, India; New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Nishikant Patil Nikhil
- Ecotoxicology and Toxicogenomics Lab, Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, 620024, India
| | - Peer Muhamed Noorani
- Division of Microbial Biodiversity and Bioenergy, Department of Microbiology, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, India
| | - Vijayakumar Bommuraj
- Ecotoxicology and Toxicogenomics Lab, Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, 620024, India
| | - Nooruddin Thajuddin
- Division of Microbial Biodiversity and Bioenergy, Department of Microbiology, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, India
| | - Martin Mkandawire
- Department of Chemistry, School of Science and Technology, Cape Breton University, Sydney, Nova Scotia, B1P 6L2, Canada
| | - Ramaswamy Babu Rajendran
- Ecotoxicology and Toxicogenomics Lab, Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, 620024, India; Research Center for Inland Seas, Kobe University, Kobe, 658-0022, Japan.
| |
Collapse
|
43
|
Xu W, Zhang L, Tian Y, Zhu X, Han X, Miao L, Yan W. Occurrence and distribution of organic corrosion inhibitors (OCIs) in riverine sediments from the Pearl River Delta, South China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:76961-76969. [PMID: 35670946 DOI: 10.1007/s11356-022-21192-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Although soluble organic corrosion inhibitors (OCIs) have been observed globally in surface water, data on their exposures in sediments are still scarce. In this study, a comprehensive investigation on spatial variations and potential sources of OCIs were conducted in riverine sediments from the Pearl River Delta (PRD), one of the most developed and urbanized areas in China. Of 12 OCIs, 7 were detected with the total concentrations ranging from 81.8 to 401.2 ng/g. When the results were compared with those of the water phase, OCIs in the riverine sediments exhibited relatively low concentrations, which was likely due to their low Kow, and they were not expected to be adsorbed onto sediments. The spatial variation of OCIs suggested that the discharge of sewage treatment plants (STPs) effluent could be a major source of OCIs in the PRD region. The total concentrations of OCIs had a significant positive correlation with total organic carbon (TOC) contents, suggesting that they have similar sources. This study strongly indicated that the high consumption of OCIs have led to their wide exposure in different environments in the PRD region and additional ecotoxicological data are needed to evaluate their potential risks in riverine sediments in the future.
Collapse
Affiliation(s)
- Weihai Xu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
- Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Sanya, 572000, China.
| | - Lulu Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuhang Tian
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Xiaowei Zhu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Xue Han
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Miao
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Wen Yan
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
44
|
Hafiz Rozaini MN, Saad B, Lim JW, Yahaya N, Ramachandran MR, Kiatkittipong W, Mohamad M, Chan YJ, Goh PS, Shaharun MS. Development of β-cyclodextrin crosslinked citric acid encapsulated in polypropylene membrane protected-μ-solid-phase extraction device for enhancing the separation and preconcentration of endocrine disruptor compounds. CHEMOSPHERE 2022; 303:135075. [PMID: 35618057 DOI: 10.1016/j.chemosphere.2022.135075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/22/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Endocrine disruptor compounds (EDCs) such as plasticisers, surfactants, pharmaceutical products, personal care products and pesticides are frequently released into the environmental waters. Therefore, a sensitive and environmentally friendly method is entailed to quantify these compounds at their trace level concentrations. This study encapsulated the β-cyclodextrin crosslinked with citric acid in a polypropylene membrane protected-μ-solid phase extraction (BCD-CA μ-SPE) device for preconcentrating the EDCs (triclosan, triclocarban, 2-phenylphenol, 4-tert-octylphenols and bisphenol A) in real water samples before the analysis by high-performance liquid chromatography. FT-IR and TGA results indicated that BCD-CA was successfully synthesised with the formation of ester linkage (1078.33 cm-1) and O-H stretching from carboxylic acid (3434.70 cm-1) with higher thermal stability as compared with native CD with the remaining weight above 72.1% at 500 °C. Several critical parameters such as the sorbent loading, type and amount of salts, extraction time, sample volume, sample pH, type and volume of desorption solvents and desorption time were sequentially optimised and statistically validated. Under the optimum condition, the use of BCD-CA μ-SPE device had manifested good linearity (0.5-500 μg L-1) with the determination of the coefficient range of 0.9807-0.9979. The p-values for the F-test and t-test (6.60 × 10-8 - 1.77 × 10-5) were lesser than 0.05 and low detection limits ranging from 0.27 to 0.84 μg L-1 for all studied EDCs. The developed technique was also successfully applied for EDC analyses in four distinct real water samples, namely, wastewater, river water, tap water and mineral water, with good EDCs recoveries (80.2%-99.9%), low relative standard deviations (0.1%-3.8%, n = 3) with enrichment factor ranging from 9 to 82 folds. These results signified the potential of the BCD-CA μ-SPE device as an efficient, sensitive, and environmentally friendly approach for analyzing EDCs.
Collapse
Affiliation(s)
- Muhammad Nur' Hafiz Rozaini
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Bahruddin Saad
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Jun Wei Lim
- Department of Fundamental and Applied Sciences, HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia.
| | - Noorfatimah Yahaya
- Integrative Medicine Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, 13200, Bertam, Penang, Malaysia
| | | | - Worapon Kiatkittipong
- Department of Chemical Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom, 73000, Thailand.
| | - Mardawani Mohamad
- Faculty of Bioengineering and Technology, Universiti Malaysia Kelantan, Jeli Campus, 17600, Jeli, Kelantan, Malaysia
| | - Yi Jing Chan
- Department of Chemical and Environmental Engineering, University of Nottingham Malaysia, Semenyih, 43500, Selangor, Malaysia
| | - Pei Sean Goh
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru, 81310, Johor, Malaysia
| | - Maizatul Shima Shaharun
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| |
Collapse
|
45
|
An Ionic-Liquid-Imprinted Nanocomposite Adsorbent: Simulation, Kinetics and Thermodynamic Studies of Triclosan Endocrine Disturbing Water Contaminant Removal. Molecules 2022; 27:molecules27175358. [PMID: 36080126 PMCID: PMC9457669 DOI: 10.3390/molecules27175358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022] Open
Abstract
The presence of triclosan in water is toxic to human beings, hazardous to the environment and creates side effects and problems because this is an endocrine-disturbing water pollutant. Therefore, there is a great need for the separation of this notorious water pollutant at an effective, economic and eco-friendly level. The interface sorption was achieved on synthesized ionic liquid-based nanocomposites. An N-methyl butyl imidazolium bromide ionic liquid copper oxide nanocomposite was prepared using green methods and characterized by using proper spectroscopic methods. The nanocomposite was used to remove triclosan in water with the best conditions of time 30 min, concentration 100 µg/L, pH 8.0, dose 1.0 g/L and temperature 25 °C, with 90.2 µg/g removal capacity. The results obeyed Langmuir, Temkin and D-Rs isotherms with a first-order kinetic and liquid-film-diffusion kinetic model. The positive entropy value was 0.47 kJ/mol K, while the negative value of enthalpy was −0.11 kJ/mol. The negative values of free energy were −53.18, −74.17 and −76.14 kJ/mol at 20, 25 and 30 °C. These values confirmed exothermic and spontaneous sorption of triclosan. The combined effects of 3D parameters were also discussed. The supramolecular model was developed by simulation and chemical studies and suggested electrovalent bonding between triclosan and N-methyl butyl imidazolium bromide ionic liquid. Finally, this method is assumed as valuable for the elimination of triclosan in water.
Collapse
|
46
|
Fujita KK, Doering JA, Stock E, Lu Z, Montina T, Wiseman S. Effects of dietary 2-(2H-benzotriazol-2-yl)-4-methylphenol (UV-P) exposure on Japanese medaka (Oryzias latipes) in a short-term reproduction assay. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 248:106206. [PMID: 35635984 DOI: 10.1016/j.aquatox.2022.106206] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 05/19/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
Benzotriazole ultraviolet stabilizers (BZT-UVs) are added to various products to prevent damage caused by UV light and have emerged as contaminants of concern. Although BZT-UVs are detected in aquatic biota globally, few studies have assessed their potential toxic effects. The objective of the present study was to assess effects of 2-(2H-Benzotriazol-2-yl)-4-methylphenol (UV-P) on reproductive success of Japanese medaka (Oryzias latipes) in a standard 21-day reproduction assay. Japanese medaka were exposed to dietary UV-P at concentrations of 0, 36, 158, and 634 ng UV-P/g food, for a total of 28 days which included 7 days of exposure prior to the start of the 21-day reproduction assay. No significant effect on egg production or fertilization success was observed. Abundances of transcripts of erα, vtgI, cyp1a, or cyp3a4 were not significantly different in livers from male or female fish exposed to UV-P. However, abundances of transcripts of cyp11a and cyp19a were significantly lower in gonads from female fish. There was a trend of increasing concentrations of E2 and a non-significant increase of T in the 634 ng/g treatment in plasma from female fish exposed to UV-P. Concentrations of 11-KT were unchanged in plasma from males exposed to UV-P. These responses suggest weak perturbation of steroidogenesis, consistent with an antiandrogenic mode of action. However, this perturbation was insufficient to impair reproductive performance. Metabolomics analysis of female livers suggests altered concentrations of various metabolites and biological pathways, including glutathione metabolism, suggesting that UV-P might cause responses related to oxidative stress or phase II metabolism. However, metabolomics revealed no obvious mechanism of toxicity. Overall, results of this study indicate that dietary exposure to UV-P up to 634 ng/g food does not significantly impact reproductive performance of Japanese medaka but impacts on steroidogenesis could indicate a potential mechanism of toxicity which might lead to reproductive impairment in more sensitive species.
Collapse
Affiliation(s)
- Kaden K Fujita
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Jon A Doering
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada; Department of Environmental Sciences, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Eric Stock
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Zhe Lu
- Institut des Sciences de la Mer de Rimouski, Université du Québec à Rimouski, Rimouski, Québec G5L 3A1, Canada
| | - Tony Montina
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada; Southern Alberta Genome Sciences Centre, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta T1K 3M4, Canada.
| | - Steve Wiseman
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada; Water Institute for Sustainable Environments, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada; Intersectoral Centre for Endocrine Disruptor Analysis (ICEDA), Institut National de la Recherche Scientifique (INRS), Centre Eau Terre Environnement, Québec City, Québec G1K 9A9, Canada.
| |
Collapse
|
47
|
Maheswaran B, Karmegam N, Al-Ansari M, Subbaiya R, Al-Humaid L, Sebastin Raj J, Govarthanan M. Assessment, characterization, and quantification of microplastics from river sediments. CHEMOSPHERE 2022; 298:134268. [PMID: 35276113 DOI: 10.1016/j.chemosphere.2022.134268] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/17/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Microplastic (MP), as a pollutant, is currently posing a biological hazard to the aquatic environment. The study aims to isolate, quantify, and characterize the MP pollutants in sediment samples from 14 study sites at Kaveri River, Killa Chinthamani, Tiruchirappalli, South India. With Sediment-MP Isolation (SMI) unit, density separation was done with a hydrogen peroxide solution. Four forms of MPs namely, fragments, films, foams, and fibers with orange, white, green, and saffron red were observed. The plenitude and distribution of four forms of MPs and natural substrates were geometrically independent, with large amounts of microfragments within the research region accounting for 79.72% variation by Principal Component Analysis. FT-IR analyses of MPs showed the presence of polyamide, polyethylene, polyethylene glycol, polyethylene terephthalate, polypropylene, and polystyrene. Additionally, the scanning electron microscopic analysis revealed that the MPs have differential surface morphology with rough surfaces, porous structures, fissures, and severe damage. Most MPs comprised Si, Mg, Cu, and Al, according to energy dispersive X-ray analyses. The combined SMI, instrumental analyses and evaluation (heat map) of MPs in river sediments help assess contamination levels and types of MPs. The findings might provide an insight into the status of MPs in Kavery River sediments that could help in formulating regulations for MPs reduction and contamination in rivers eventually to protect the environment.
Collapse
Affiliation(s)
- Baskaran Maheswaran
- Post Graduate and Research Department of Biotechnology, Jamal Mohamed College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli, 620 020, Tamil Nadu, India
| | - Natchimuthu Karmegam
- Department of Botany, Government Arts College (Autonomous), Salem, Tamil Nadu, India
| | - Mysoon Al-Ansari
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ramasamy Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box, 21692, Kitwe, Zambia
| | - Latifah Al-Humaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Joseph Sebastin Raj
- Post Graduate and Research Department of Biotechnology, Jamal Mohamed College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli, 620 020, Tamil Nadu, India.
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, India.
| |
Collapse
|
48
|
Wang W, Lee IS, Oh JE. Specific-accumulation and trophic transfer of UV filters and stabilizers in marine food web. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:154079. [PMID: 35202695 DOI: 10.1016/j.scitotenv.2022.154079] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/29/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
The occurrence and distribution of benzotriazole UV stabilizers (BUVs) and UV filters in marine environments (sediment and seawater) and 20 biota species in the South Korea were investigated to assess their transfer through the marine food web. The total concentrations in the seawater samples were 4.73-8.60 ng/L for BUVs and 1.20-4.88 ng/L for UV filters; while, the total concentrations in the sediment samples were 0.581-6.62 ng/g dw for BUVs and 1.05-6.79 ng/g dw for UV filters, respectively. The total concentrations of BUVs and UV filters were a little higher in benthic invertebrates (BUVs: 131 ng/g lipid weight [lw], UV filters: 41.7 ng/g lw) than fish (BUVs: 99.2 ng/g lw, UV filters: 28.0 ng/g lw) but there were no statistical differences (Mann-Whitney U test, p > 0.05). UV-326 was dominant (fish: 37.9%, benthic invertebrate: 48.7%) of the total BUVs. While, benzophenone-3 (fish: 34.1%, benthic invertebrate: 40.8%) and ethylhexyl methoxy cinnamate (fish: 41.0%, benthic invertebrate: 37.8%) were the dominant UV filters. The bioaccumulation factor and trophic magnification factor indicated that UV-326 can both bioaccumulate and biomagnify (bioaccumulation factor >5000 and biota-sediment accumulation and trophic magnification factors >1). Several other BUVs were found to be able to either bioaccumulate (UV-320, UV-P, UV-329, and UV-234) or biomagnify (UV-327 and UV-928). Most of the analyzed UV filters were found not to be likely to bioaccumulate.
Collapse
Affiliation(s)
- Wenting Wang
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea; Environmental Safety-Assessment Center, Korea Institute of Toxicology (KIT), Jinju 52834, Republic of Korea
| | - In-Seok Lee
- Marine Environment Research Division, National Institute of Fisheries Science, 216, GijangHaean-ro, Gijang-Eup, Gijang-Gun, Busan 46083, Republic of Korea
| | - Jeong-Eun Oh
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
49
|
Kubota A, Terasaki M, Sakuragi Y, Muromoto R, Ikeda-Araki A, Takada H, Kojima H. Effects of benzotriazole UV stabilizers, UV-PS and UV-P, on the differentiation of splenic regulatory T cells via aryl hydrocarbon receptor. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 238:113549. [PMID: 35500401 DOI: 10.1016/j.ecoenv.2022.113549] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Benzotriazole UV stabilizers (BUVSs) are widely used as additives in various materials, including plastics, to prevent damage from UV-irradiation. However, despite the extensive usage of BUVSs, information on their toxicological properties is limited. In this study, we investigated the effect of BUVSs on the immune regulatory system via the aryl hydrocarbon receptor (AhR). A cell-based transactivation assay using DR-EcoScreen cells revealed that, among 13 BUVSs tested, UV-P, UV-PS, UV-9, and UV-090 activated AhR in a dose-dependent manner. In particular, the AhR agonistic activity of UV-PS was about 10-fold more potent than those of UV-P, UV-090, and UV-9, and UV-PS acted as a full agonist against AhR. In order to investigate the immune regulatory effects of these BUVSs, we orally treated C57BL/6 mice with UV-PS or UV-P (10, 30, and 100 mg/kg) and studied the differentiation of regulatory T cells (Tregs) in spleen cells. Flow-cytometry analysis revealed that the administration of UV-PS (30 and 100 mg/kg) or UV-P (100 mg/kg) significantly increased the population of CD4+-/CD25+-/Foxp3+ Tregs in the spleen. In addition, we found that the in vitro exposure of mouse splenocytes to UV-PS (10 and 30 μM) or UV-P (30 μM) as well as to TCDD (0.1 nM) significantly induced Tregs. Notably, the induction of Tregs was eliminated by co-treatment with an AhR antagonist, CH-223191, in each case. Taken together, these findings suggest that some BUVSs might induce Tregs through direct AhR activation and act as immunosuppressive modulators.
Collapse
Affiliation(s)
- Atsuhito Kubota
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Masaru Terasaki
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; Advanced Research Promotion Center, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Yuuta Sakuragi
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Ryuta Muromoto
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Atsuko Ikeda-Araki
- Hokkaido University Faculty of Health Sciences, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan; Center for Environmental and Health Sciences, Hokkaido University, Kita-12, Nishi-7, Kita-ku, Sapporo 060-0812, Japan
| | - Hideshige Takada
- Laboratory of Organic Geochemistry, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Hiroyuki Kojima
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; Advanced Research Promotion Center, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan.
| |
Collapse
|
50
|
Degradation of Benzotriazole UV Stabilizers in PAA/d-Electron Metal Ions Systems-Removal Kinetics, Products and Mechanism Evaluation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103349. [PMID: 35630827 PMCID: PMC9145517 DOI: 10.3390/molecules27103349] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/19/2022] [Accepted: 05/21/2022] [Indexed: 11/30/2022]
Abstract
Benzotriazole UV stabilizers (BUVs) have gained popularity, due to their absorption properties in the near UV range (200–400 nm). They are used in the technology for manufacturing plastics, protective coatings, and cosmetics, to protect against the destructive influence of UV radiation. These compounds are highly resistant to biological and chemical degradation. As a result of insufficient treatment by sewage treatment plants, they accumulate in the environment and in the tissues of living organisms. BUVs have adverse effects on living organisms. This work presents the use of peracetic acid in combination with d-electron metal ions (Fe2+, Co2+), for the chemical oxidation of five UV filters from the benzotriazole group: 2-(2-hydroxy-5-methylphenyl)benzotriazole (UV-P), 2-tert-butyl-6-(5-chloro-2H-benzotriazol-2-yl)-4-methylphenol (UV-326), 2,4-di-tert-butyl-6-(5-chloro-2H-benzotriazol-2-yl)phenol (UV-327), 2-(2H-benzotriazol-2-yl)-4,6-di-tert-pentylphenol (UV-328), and 2-(2H-benzotriazol-2-yl)-4-(1,1,3,3-tetramethylbutyl)phenol (UV-329). The oxidation procedure has been optimized based on the design of experiments (DoE) methodology. The oxidation of benzotriazoles follows first order kinetics. The oxidation products of each benzotriazole were investigated, and the oxidation mechanisms of the tested compounds were proposed.
Collapse
|