1
|
Liang KH, Colombijn JMT, Verhaar MC, Ghannoum M, Timmermans EJ, Vernooij RWM. The general external exposome and the development or progression of chronic kidney disease: A systematic review and meta-analyses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124509. [PMID: 38968981 DOI: 10.1016/j.envpol.2024.124509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 06/07/2024] [Accepted: 07/03/2024] [Indexed: 07/07/2024]
Abstract
The impact of environmental risk factors on chronic kidney disease (CKD) remains unclear. This systematic review aims to provide an overview of the literature on the association between the general external exposome and CKD development or progression. We searched MEDLINE and EMBASE for case-control or cohort studies, that investigated the association of the general external exposome with a change in eGFR or albuminuria, diagnosis or progression of CKD, or CKD-related mortality. The risk of bias of included studies was assessed using the Newcastle-Ottawa Scale. Summary effect estimates were calculated using random-effects meta-analyses. Most of the 66 included studies focused on air pollution (n = 33), e.g. particulate matter (PM) and nitric oxides (NOx), and heavy metals (n = 21) e.g. lead and cadmium. Few studies investigated chemicals (n = 7) or built environmental factors (n = 5). No articles on other environment factors such as noise, food supply, or urbanization were found. PM2.5 exposure was associated with an increased CKD and end-stage kidney disease incidence, but not with CKD-related mortality. There was mixed evidence regarding the association of NO2 and PM10 on CKD incidence. Exposure to heavy metals might be associated with an increased risk of adverse kidney outcomes, however, evidence was inconsistent. Studies on effects of chemicals or built environment on kidney outcomes were inconclusive. In conclusion, prolonged exposure to PM2.5 is associated with an increased risk of CKD incidence and progression to kidney failure. Current studies predominantly investigate the exposure to air pollution and heavy metals, whereas chemicals and the built environment remains understudied. Substantial heterogeneity and mixed evidence were found across studies. Therefore, long-term high-quality studies are needed to elucidate the impact of exposure to chemicals or other (built) environmental factors and CKD.
Collapse
Affiliation(s)
- Kate H Liang
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Julia M T Colombijn
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, the Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Marc Ghannoum
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, the Netherlands; National Poison Information Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Erik J Timmermans
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Robin W M Vernooij
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, the Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
2
|
An Q, Wang Q, Liu R, Zhang J, Li S, Shen W, Zhou H, Liang Y, Li Y, Mu L, Lei L. Analysis of relationship between mixed heavy metal exposure and early renal damage based on a weighted quantile sum regression and Bayesian kernel machine regression model. J Trace Elem Med Biol 2024; 84:127438. [PMID: 38520795 DOI: 10.1016/j.jtemb.2024.127438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Occupation, environmental heavy metal exposure, and renal function impairment are closely related. The relationship between mixed metal exposure and chronic renal injury is inadequately described, and the interaction between each metal is poorly explored. OBJECTIVE This cross-sectional study assessed mixed heavy metal exposure in the general population and their relationship with early renal impairment, as well as possible interactions between metals. METHODS The study was conducted in two communities in Taiyuan City in northern China. Multiple linear regression, weighted quantile sum (WQS) and bayesian kernel machine regression (BKMR) regression were used to explore the relationship of mixed heavy metal exposure with indicators of early kidney injury (N-acetyl-β-D- glucosidase (UNAG), urinary albumin (UALB)). Meanwhile, BKMR was used to explore the possible interactions between mixed heavy metal and indicators of early kidney injury. RESULTS Based on the WQS regression results, we observed adjusted WQS coefficient β (β-WQS) of 0.711 (95% CI: 0.543, 0.879). Notably, this change was primarily driven by As (35.6%) and Cd (22.5%). In the UALB model, the adjusted β-WQS was 0.657 (95% CI: 0.567, 0.747), with Ni (30.5%), Mn (22.1%), Cd (21.2%), and As (18.6%) exhibiting higher weights in the overall effect. The BKMR results showed a negative interaction between As and other metals in the UNAG and UALB models, a positive interaction between Mn and Ni and other metals. No significant pairwise interaction was observed in the association of metals with indicators of early kidney injury. CONCLUSION Through multiple linear regression, WQS regression, and BKMR analyses, we found that exposure to mixed heavy metals such as Cd, Cr, Pb, Mn, As, Co and Ni was positively correlated with UNAG and UALB. Moreover, there are complex interactions between two or more heavy metals in more than one direction.
Collapse
Affiliation(s)
- Qi An
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, Taiyuan 030001, China
| | - Qingyao Wang
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, Taiyuan 030001, China
| | - Rujie Liu
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Jiachen Zhang
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Shuangjing Li
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Weitong Shen
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Han Zhou
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Yufen Liang
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Yang Li
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, Taiyuan 030001, China
| | - Lina Mu
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Lijian Lei
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, Taiyuan 030001, China.
| |
Collapse
|
3
|
Huang CY, Wu MY, Huang MC, Yu TS, Mayer PK, Yen HR. The Association between Acupuncture Therapy and the Risk of Disability Development in Dementia Patients: A Nationwide Cohort Study. Neuropsychiatr Dis Treat 2024; 20:295-305. [PMID: 38405423 PMCID: PMC10893787 DOI: 10.2147/ndt.s432556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/04/2024] [Indexed: 02/27/2024] Open
Abstract
Purpose Disability is the comorbidity of dementia for which there is no available preventive measure. The aim of this study was to investigate the association between acupuncture treatment and the risk of disability development in dementia patients. Patients and Methods A cohort study was performed using a nationwide health database in Taiwan. The included dementia patients were divided into acupuncture and non-acupuncture cohorts based on whether they received acupuncture treatment during the follow-up period. The variables in the two cohorts were controlled by 1:1 propensity-score matching. The difference in disability development in dementia patients between the acupuncture and non-acupuncture cohorts was also analyzed. Subgroup analyses were performed using socioeconomic variables, comorbidities and anti-dementia agents (donepezil, rivastigmine, galantamine and memantine) used for dementia treatment. Results A total of 9,760 dementia patients met our inclusion criteria, and patients were divided into an equal number (n=2,422) of acupuncture and non-acupuncture groups, respectively, after 1:1 propensity-score matching. The dementia patients had a lower risk of disability development after acupuncture treatment than those who did not receive acupuncture treatment (adjusted hazard ratio 0.65, 95% confidence interval 0.60-0.70, p < 0.001). The results were independent of basic variables or comorbidities in the two cohorts. Patients who did not use anti-dementia agents had a lower risk of developing disability after receiving acupuncture intervention than those who used anti-dementia agents. Conclusion Our results revealed the relationship between acupuncture intervention and decreased risk of developing disability in dementia patients. The results are useful for dementia treatment, trial design and further planning of care programs.
Collapse
Affiliation(s)
- Chia-Yu Huang
- Department of Family Medicine, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
- Graduate Institute of Chinese Medicine, School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Mei-Yao Wu
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Research Center for Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Ming-Cheng Huang
- Graduate Institute of Chinese Medicine, School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Teng-Shun Yu
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
| | - Peter Karl Mayer
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
- International Master Program in Acupuncture, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Hung-Rong Yen
- Graduate Institute of Chinese Medicine, School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
- Research Center for Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- International Master Program in Acupuncture, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| |
Collapse
|
4
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Vleminckx C, Wallace H, Barregård L, Benford D, Broberg K, Dogliotti E, Fletcher T, Rylander L, Abrahantes JC, Gómez Ruiz JÁ, Steinkellner H, Tauriainen T, Schwerdtle T. Update of the risk assessment of inorganic arsenic in food. EFSA J 2024; 22:e8488. [PMID: 38239496 PMCID: PMC10794945 DOI: 10.2903/j.efsa.2024.8488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2024] Open
Abstract
The European Commission asked EFSA to update its 2009 risk assessment on arsenic in food carrying out a hazard assessment of inorganic arsenic (iAs) and using the revised exposure assessment issued by EFSA in 2021. Epidemiological studies show that the chronic intake of iAs via diet and/or drinking water is associated with increased risk of several adverse outcomes including cancers of the skin, bladder and lung. The CONTAM Panel used the benchmark dose lower confidence limit based on a benchmark response (BMR) of 5% (relative increase of the background incidence after adjustment for confounders, BMDL05) of 0.06 μg iAs/kg bw per day obtained from a study on skin cancer as a Reference Point (RP). Inorganic As is a genotoxic carcinogen with additional epigenetic effects and the CONTAM Panel applied a margin of exposure (MOE) approach for the risk characterisation. In adults, the MOEs are low (range between 2 and 0.4 for mean consumers and between 0.9 and 0.2 at the 95th percentile exposure, respectively) and as such raise a health concern despite the uncertainties.
Collapse
|
5
|
Huang CY, Wu MY, Huang MC, Yu TS, Yen HR. The association between acupuncture therapy and the risk of reduced pressure ulcers in dementia patients: A retrospective matched cohort study. Integr Med Res 2023; 12:100981. [PMID: 37664454 PMCID: PMC10468362 DOI: 10.1016/j.imr.2023.100981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/26/2023] [Accepted: 08/05/2023] [Indexed: 09/05/2023] Open
Abstract
Background The pressure ulcer is a complication developed from dementia. The aim of this study is to study the association between the development of pressure ulcers and the use of acupuncture therapy in patients with dementia. Methods We performed a retrospective 1:1 propensity score-matched cohort study to investigate the association between acupuncture therapy and the risk of pressure ulcers in patients with dementia. Results A total of 8,994 patients were identified, 237 patients in the acupuncture cohort and 362 patients in the no-acupuncture cohort developed pressure ulcers. A reduced cumulative incidence of pressure ulcers was observed in the acupuncture cohort (P<0.001). The association between acupuncture and reducing the incidence of pressure ulcers was not affected by sex, age, residence, income, or comorbidities. The variables of etiologies to cause dementia did not change the final result. In the subgroups analyses, the patients without medication for dementia control had a significantly lower rate of pressure ulcers development when they had accepted acupuncture therapy (log-rank test, P<0.001). Conclusion Our results revealed the association between acupuncture therapy and a reduced incidence of pressure ulcer development in patients with dementia. This finding offers important ideas for further research.
Collapse
Affiliation(s)
- Chia-Yu Huang
- Department of Family Medicine, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
- Graduate Institute of Chinese Medicine, School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Mei-Yao Wu
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Research Center for Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Ming-Cheng Huang
- Graduate Institute of Chinese Medicine, School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Teng-Shun Yu
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
| | - Hung-Rong Yen
- Graduate Institute of Chinese Medicine, School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
- Research Center for Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- International Master Program in Acupuncture, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| |
Collapse
|
6
|
Govindappa H, Abdi G, Uthappa UT, Sriram G, Han SS, Kurkuri M. Efficient separation of arsenic species of oxyanion As (III) and As (V) by using effective polymer inclusion membranes (PIM). CHEMOSPHERE 2023; 316:137851. [PMID: 36642130 DOI: 10.1016/j.chemosphere.2023.137851] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/23/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
The heavy metal contaminant arsenic exist in the form of arsenite (As(III)) and arsenate (As(V)) ions. These ions are highly carcinogenic that are usually present in the ground water. To date, most of the designed polymer inclusion membrane (PIM) involved only about separation without differentiating the oxidation states. Thus, there is a research gap on separation of element with different oxidation states. Thus, this study addresses such research gap which have been not explored previously. To extract such ions from water, the present study involves fabrication of PIM by varying the compositions of the base polymer, carrier and plasticizer. Also effect of the strip solution, and transport properties were studied. High performance membrane was obtained with 50% (w/w) Aliquat 336 and 50% (w/w) Cellulose triacetate (CTA). The production of 1 m2 of PIM may cost approximately 0.08-0.16$. Also, we have combined the separation capacity of polymer inclusion membrane (PIM) with the sensitivity and elemental detection using atomic absorption spectrometry (AAS) to detect and separate As(III) and As(V). AAS is limited to detecting only elemental arsenic (As) and does not distinguish between As(III) and As(V). Further, to address such limitations in this current study we were able to separate As(V) from As(III) within 5 h. In addition, to provide sole solution a device was fabricated to extract As(V) in the field studies which displayed outstanding efficiency of 99.7 ± 0.2%. The extracted samples was tested in AAS to differentiate between oxidation states of the arsenic species and these important results are supportive in finding out the redox potential of water and for other geochemical explorations.
Collapse
Affiliation(s)
- Harshith Govindappa
- Centre for Research in Functional Materials (CRFM), JAIN (Deemed-to-be University), Jain Global Campus, Bengaluru, 562112, Karnataka, India
| | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, 75169, Bushehr, Iran
| | - U T Uthappa
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| | - Ganesan Sriram
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| | - Mahaveer Kurkuri
- Centre for Research in Functional Materials (CRFM), JAIN (Deemed-to-be University), Jain Global Campus, Bengaluru, 562112, Karnataka, India.
| |
Collapse
|
7
|
Hidayangsih PS, Tjandrarini DH, Sukoco NEW, Sitorus N, Dharmayanti I, Ahmadi F. Chronic kidney disease in Indonesia: evidence from a national health survey. Osong Public Health Res Perspect 2023; 14:23-30. [PMID: 36944342 DOI: 10.24171/j.phrp.2022.0290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/19/2023] [Indexed: 02/15/2023] Open
Abstract
OBJECTIVES Several previous studies have stated that consuming certain foods and beverages might increase the risk of chronic kidney disease (CKD). This study aimed to examine the relationships of food and beverage consumption with other risk factors for CKD. METHODS Data sources included the 2018 Basic Health Research (Riskesdas) and the National Socio-Economic Survey (Susenas), which were analyzed using a cross-sectional design. The study samples were households from 34 provinces in Indonesia, and the analysis was performed with provincial aggregates. Data were analyzed using risk factor analysis followed by linear regression to identify relationships with CKD. RESULTS The prevalence of CKD in Indonesia was 0.38%. The province with the highest prevalence was North Kalimantan (0.64%), while the lowest was found in West Sulawesi (0.18%). Five major groups were formed from 15 identified risk factors using factor analysis. A linear regression model presented 1 significant selected factor (p=0.006, R2 =31%). The final model of risk factors included water quality, consumption of fatty foods, and a history of diabetes. CONCLUSIONS Drinking water quality, fatty food consumption, and diabetes are associated with CKD. There is a need to monitor drinking water, as well as to promote health education and provide comprehensive services for people with diabetes, to prevent CKD.
Collapse
Affiliation(s)
- Puti Sari Hidayangsih
- Research Center for Public Health and Nutrition, National Research and Innovation Agency, Jakarta, Indonesia
| | - Dwi Hapsari Tjandrarini
- Research Center for Public Health and Nutrition, National Research and Innovation Agency, Jakarta, Indonesia
| | - Noor Edi Widya Sukoco
- Research Center for Public Health and Nutrition, National Research and Innovation Agency, Jakarta, Indonesia
| | - Nikson Sitorus
- Research Center for Public Health and Nutrition, National Research and Innovation Agency, Jakarta, Indonesia
| | - Ika Dharmayanti
- Research Center for Public Health and Nutrition, National Research and Innovation Agency, Jakarta, Indonesia
| | - Feri Ahmadi
- Research Center for Public Health and Nutrition, National Research and Innovation Agency, Jakarta, Indonesia
| |
Collapse
|
8
|
Singh RD, Tiwari R, Sharma V, Khan H, Gangopadhyay S, Singh S, Koshta K, Shukla S, Arjaria N, Mandrah K, Jagdale PR, Patnaik S, Roy SK, Singh D, Giri AK, Srivastava V. Prenatal arsenic exposure induces immunometabolic alteration and renal injury in rats. Front Med (Lausanne) 2023; 9:1045692. [PMID: 36714129 PMCID: PMC9874122 DOI: 10.3389/fmed.2022.1045692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/12/2022] [Indexed: 01/12/2023] Open
Abstract
Arsenic (As) exposure is progressively associated with chronic kidney disease (CKD), a leading public health concern present worldwide. The adverse effect of As exposure on the kidneys of people living in As endemic areas have not been extensively studied. Furthermore, the impact of only prenatal exposure to As on the progression of CKD also has not been fully characterized. In the present study, we examined the effect of prenatal exposure to low doses of As 0.04 and 0.4 mg/kg body weight (0.04 and 0.4 ppm, respectively) on the progression of CKD in male offspring using a Wistar rat model. Interestingly, only prenatal As exposure was sufficient to elevate the expression of profibrotic (TGF-β1) and proinflammatory (IL-1α, MIP-2α, RANTES, and TNF-α) cytokines at 2-day, 12- and 38-week time points in the exposed progeny. Further, alteration in adipogenic factors (ghrelin, leptin, and glucagon) was also observed in 12- and 38-week old male offspring prenatally exposed to As. An altered level of these factors coincides with impaired glucose metabolism and homeostasis accompanied by progressive kidney damage. We observed a significant increase in the deposition of extracellular matrix components and glomerular and tubular damage in the kidneys of 38-week-old male offspring prenatally exposed to As. Furthermore, the overexpression of TGF-β1 in kidneys corresponds with hypermethylation of the TGF-β1 gene-body, indicating a possible involvement of prenatal As exposure-driven epigenetic modulations of TGF-β1 expression. Our study provides evidence that prenatal As exposure to males can adversely affect the immunometabolism of offspring which can promote kidney damage later in life.
Collapse
Affiliation(s)
- Radha Dutt Singh
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India,Academy of Scientific and Innovative Research, New Delhi, India,Radha Dutt Singh, ,
| | - Ratnakar Tiwari
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Vineeta Sharma
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India,Department of Biotechnology, Faculty of Engineering and Technology, Manav Rachna International Institute of Research and Studies, Faridabad, Haryana, India
| | - Hafizurrahman Khan
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India,Academy of Scientific and Innovative Research, New Delhi, India
| | - Siddhartha Gangopadhyay
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India,Academy of Scientific and Innovative Research, New Delhi, India
| | - Sukhveer Singh
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India,Academy of Scientific and Innovative Research, New Delhi, India
| | - Kavita Koshta
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India,Academy of Scientific and Innovative Research, New Delhi, India
| | - Shagun Shukla
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Nidhi Arjaria
- Advanced Imaging Facility, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Kapil Mandrah
- Academy of Scientific and Innovative Research, New Delhi, India,Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Pankaj Ramji Jagdale
- Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Satyakam Patnaik
- Academy of Scientific and Innovative Research, New Delhi, India,Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Somendu Kumar Roy
- Academy of Scientific and Innovative Research, New Delhi, India,Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Dhirendra Singh
- Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Ashok Kumar Giri
- Molecular and Human Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Vikas Srivastava
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India,Academy of Scientific and Innovative Research, New Delhi, India,*Correspondence: Vikas Srivastava, ,
| |
Collapse
|
9
|
Kshirsagar AV, Zeitler EM, Weaver A, Franceschini N, Engel LS. Environmental Exposures and Kidney Disease. KIDNEY360 2022; 3:2174-2182. [PMID: 36591345 PMCID: PMC9802544 DOI: 10.34067/kid.0007962021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/04/2022] [Indexed: 12/31/2022]
Abstract
Accumulating evidence underscores the large role played by the environment in the health of communities and individuals. We review the currently known contribution of environmental exposures and pollutants on kidney disease and its associated morbidity. We review air pollutants, such as particulate matter; water pollutants, such as trace elements, per- and polyfluoroalkyl substances, and pesticides; and extreme weather events and natural disasters. We also discuss gaps in the evidence that presently relies heavily on observational studies and animal models, and propose using recently developed analytic methods to help bridge the gaps. With the expected increase in the intensity and frequency of many environmental exposures in the decades to come, an improved understanding of their potential effect on kidney disease is crucial to mitigate potential morbidity and mortality.
Collapse
Affiliation(s)
- Abhijit V. Kshirsagar
- UNC Kidney Center and Division of Nephrology and Hypertension, University of North Carolina, Chapel Hill, North Carolina
| | - Evan M. Zeitler
- UNC Kidney Center and Division of Nephrology and Hypertension, University of North Carolina, Chapel Hill, North Carolina
| | - Anne Weaver
- Center for Public Health and Environmental Assessment, Office of Research and Development, United States Environmental Protection Agency, Chapel Hill, North Carolina
| | - Nora Franceschini
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - Lawrence S. Engel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
10
|
Irshad MK, Noman A, Wang Y, Yin Y, Chen C, Shang J. Goethite modified biochar simultaneously mitigates the arsenic and cadmium accumulation in paddy rice (Oryza sativa) L. ENVIRONMENTAL RESEARCH 2022; 206:112238. [PMID: 34688646 DOI: 10.1016/j.envres.2021.112238] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/24/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) and arsenic (As) contamination of paddy soils is a serious global issue because of the opposite geochemical behavior of Cd and As in paddy soils. Rice plant (Oryza sativa L.) cultivation in Cd- and As- contaminated paddy soil is regarded as one of the main dietary cause of Cd and As entry in human beings. This study aimed to determine the impact of goethite-modified biochar (GB) on bioavailability of both Cd and As in Cd- and As- polluted paddy soil. Contrary to control and biochar (BC) amendments, the application of GB amendments significantly impeded the accumulation of both Cd and As in rice plants. The results confirmed an obvious reduction in Cd and As content of rice grains by 85% and 77%, respectively after soil supplementation with GB 2% amendment. BC 3% application minimized the Cd uptake by 59% in the rice grains as compared to the control but exhibited a little impact on As accumulation in rice grains. Sequential extraction results displayed an increase in immobile Cd and As fractions of the soil by decreasing the bioavailable fractions of both elements after GB treatments. Fe-plaque formation on the root surfaces was significantly variable (P ˂ 0.05) among all the amendments. GB 2% treatment significantly increased the Fe content (10 g kg-1) of root Fe-plaque by 48%, which ultimately enhanced the sequestration of Cd and As by Fe-plaque and minimized the transport of Cd and As in rice plants. Moreover, GB treatments significantly changed the relative abundance of the microbial community in the rice rhizosphere and minimized the metal(loid)s mobility in the soil. The relative abundance of Acidobacteria, Firmicutes and Verrucomicrobia increased with GB 2% treatment while those of Bacteroidetes and Choloroflexi decreased. Our findings confirmed improvement in the rice grains quality regarding enhanced amino acid contents with GB application. Overall, the results of this study demonstrated that GB amendment simultaneously alleviated the Cd and As concentrations in edible parts of rice plant and provided a new valuable method to protect the public health by effectively remediating the co-occurrence of Cd and As in paddy soils.
Collapse
Affiliation(s)
- Muhammad Kashif Irshad
- College of Land Science and Technology, China Agricultural University, Beijing, China; Department of Environmental Sciences and Engineering, Government College University Faisalabad, Pakistan
| | - Ali Noman
- Department of Botany, Government College University Faisalabad, Pakistan
| | - Yang Wang
- College of Land Science and Technology, China Agricultural University, Beijing, China
| | - Yingjie Yin
- College of Land Science and Technology, China Agricultural University, Beijing, China
| | - Chong Chen
- College of Land Science and Technology, China Agricultural University, Beijing, China
| | - Jianying Shang
- College of Land Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
11
|
Fabrication of a novel polymer inclusion membrane from recycled polyvinyl chloride for the real-time extraction of arsenic (V) from water samples in a continuous process. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.03.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Virk D, Kumar A, Jaggi AS, Singh N. Ameliorative role of rolipram, PDE-4 inhibitor, against sodium arsenite-induced vascular dementia in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:63250-63262. [PMID: 34226994 DOI: 10.1007/s11356-021-15189-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Arsenic exposure to the population leads to serious health problems like neurotoxicity, nephrotoxicity, and cardiovascular abnormality. In the present study, the work has been commenced to discover the prospect of rolipram a phosphodiestrase-4 (PDE-4) inhibitor against sodium arsenite (SA)-induced vascular endothelial dysfunction (EnDF) leading to dementia in rats. Wistar rats were treated with SA (5 mg/kg body weight/day orally) for 44 days for induction of vascular EnDF and dementia. Learning and memory were evaluated using Morris water maze (MWM) test. Vascular EnDF was evaluated using aortic ring preparation. Various biochemical parameters were also evaluated like brain oxidative stress (viz. reduced glutathione and thiobarbituric acid reactive substances level), serum nitrite/nitrate activity, acetylcholinesterase activity, and inflammatory markers (viz. neutrophil infiltration in brain and myeloperoxidase). SA-treated rats showed poor performance in water maze trials indicating attenuated memory and ability to learn with significant rise (p < 0.05) in brain acetylcholinesterase activity, brain oxidative stress, neutrophil count, and significant decrease (p < 0.05) in serum nitrite/nitrate levels and vascular endothelial functions. Rolipram (PDE-4 inhibitor) treatment (0.03 mg/kg and 0.06 mg/kg body weight, intraperitoneally daily for 14 days) significantly improved memory and learning abilities, and restored various biochemical parameters and EnDF. It is concluded that PDE-4 modulator may be considered the prospective target for the treatment of SA-induced vascular EnDF and related dementia.
Collapse
Affiliation(s)
- Divjot Virk
- Department of Pharmaceutical Sciences and Drug Research, CNS Research Lab., Pharmacology Division, Faculty of Medicine, Punjabi University, Patiala, Punjab, 147002, India
| | - Amit Kumar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, CNS Research Lab., Pharmacology Division, Faculty of Medicine, Punjabi University, Patiala, Punjab, 147002, India
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, CNS Research Lab., Pharmacology Division, Faculty of Medicine, Punjabi University, Patiala, Punjab, 147002, India.
| |
Collapse
|
13
|
Farkhondeh T, Naseri K, Esform A, Aramjoo H, Naghizadeh A. Drinking water heavy metal toxicity and chronic kidney diseases: a systematic review. REVIEWS ON ENVIRONMENTAL HEALTH 2021; 36:359-366. [PMID: 33128529 DOI: 10.1515/reveh-2020-0110] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/03/2020] [Indexed: 06/11/2023]
Abstract
Heavy metals in drinking water can threat human health and may induce several diseases. The association between heavy metals exposure and chronic kidney disease (CKD) has been indicated by few epidemiological studies. We conducted a systematic review of the epidemiologic publications of the association between exposure to heavy metals through drinking water and CKD. Keywords related to heavy metals and kidney diseases on MeSH were identified and searched in PubMed, Google Scholar, Scopus, Ovid-Medline and Web of Science until July 2020. 14 publications met our inclusion criteria and included in the current review. The included articles were conducted on the association between arsenic, cadmium, lead and chromium in drinking water and CKD. Our study could not find strong evidence between heavy exposure to through drinking water and CKD, except for arsenic. The negative association was found between arsenic and lead and glomerular filtration rate (eGFR). The positive correlation was observed between cadmium exposure and urinary N-acetyl-β-d-glucosaminidase (NAG) concentrations, and also arsenic and chromium exposure and kidney injury molecule (KIM-1). Assessment of studies showed an association between arsenic, cadmium, lead and chromium and albuminuria and proteinuria, without CKD outcomes. Current systematic study showed few evidence for exposure to arsenic, cadmium, lead and chromium through drinking water and incidence of kidney problems. However, more epidemiological studies are required to confirm this association.
Collapse
Affiliation(s)
- Tahereh Farkhondeh
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
- Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Kobra Naseri
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
- Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Adeleh Esform
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
- Student Research Committee, Birjand University of Medical Sciences (BUMS), Birjand, Iran
| | - Hamed Aramjoo
- Student Research Committee, Birjand University of Medical Sciences (BUMS), Birjand, Iran
| | - Ali Naghizadeh
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
- Department of Environmental Health Engineering, Faculty of Health, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
14
|
Sharma S, Kaur T, Sharma AK, Singh B, Pathak D, Yadav HN, Singh AP. Betaine attenuates sodium arsenite-induced renal dysfunction in rats. Drug Chem Toxicol 2021; 45:2488-2495. [PMID: 34380335 DOI: 10.1080/01480545.2021.1959699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Exposure to higher levels of arsenic is a serious threat affecting human health worldwide. We investigated the protective role of betaine (N,N,N-trimethylglycine) against sodium arsenite-induced renal dysfunction in rats. Sodium arsenite (5 mg/kg, oral) was given to rats for 4 weeks to induce nephrotoxicity. Betaine (125 and 250 mg/kg, oral) was administered in rats for 4 weeks along with sodium-arsenite feeding. Arsenic-induced renal dysfunction was demonstrated by measuring serum creatinine, creatinine clearance, urea, uric acid, potassium, fractional excretion of sodium, and microproteinuria. Oxidative stress in rat kidneys was determined by assaying thiobarbituric acid reactive substances, superoxide anion generation, and reduced glutathione levels. Furthermore, hydroxyproline assay was done to assess renal fibrosis in arsenic intoxicated rats. Hematoxylin-eosin and picrosirius red staining revealed pathological alterations in rat kidneys. Renal endothelial nitric oxide synthase (eNOS) expression was determined by immuno-histochemistry. Concurrent administration of betaine abrogated arsenic-induced renal biochemical and histological changes in rats. Betaine treatment significantly attenuated arsenic-induced decrease in renal eNOS expression. In conclusion, betaine is protective against sodium arsenite-induced renal dysfunction, which may be attributed to its anti-oxidant activity and modulation of renal eNOS expression in rat kidneys.
Collapse
Affiliation(s)
- Sumedha Sharma
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, Guru Nanak Dev University, Amritsar, India
| | - Tajpreet Kaur
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, Guru Nanak Dev University, Amritsar, India.,Department of Pharmacology, Khalsa College of Pharmacy, Amritsar, India
| | - Ashwani Kumar Sharma
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, Guru Nanak Dev University, Amritsar, India
| | - Balbir Singh
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, Guru Nanak Dev University, Amritsar, India
| | - Devendra Pathak
- Department of Veterinary Anatomy, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | | | - Amrit Pal Singh
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
15
|
Zeng Q, Wei S, Sun B, Zhang A. Assessing the potential value and mechanism of Ginkgo biloba L. On coal-fired arsenic-induced skin damage: In vitro and human evidence. Hum Exp Toxicol 2021; 40:2113-2122. [PMID: 34085585 DOI: 10.1177/09603271211021887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Exposure through arsenic-contaminated air and food caused by the burning of coal is a major environmental public health concern in Guizhou Province of China. Previous studies have shown that immunological dysfunction is involved in the pathogenesis and carcinogenesis of arsenic; however, knowledge regarding effective prevention measures have not been fully examined. The effect of Ginkgo biloba extract (EGb761) on arsenic-induced skin damage of human immortalized keratinocyte cells (HaCaT) was first evaluated in this study. The results showed that 200 μg/mL EGb761 can reduce the expression of miR-155-5p, and the indicators reflecting arsenic-induced skin damage (Krt1, Krt6c and Krt10) in arsenic-exposed cells (P < 0.05), the expression levels of NF-AT1; the indicators reflecting arsenic-induced immunological dysfunction (IL-2, IFN-γ) in cells; and the levels of secreted IL-2 and IFN-γ in cell supernatants were significantly increased (P < 0.05). Further randomized controlled double-blind experiments showed that compared to the placebo control group, the expression level of miR-155-5p in the plasma of the Ginkgo biloba intervention group, the indicators in the serum reflecting arsenic-induced skin damage (Krt1, Krt6c, and Krt10) and the epithelial-mesenchymal transformation (EMT) vimentin were significantly reduced (P < 0.05), but the levels of NF-AT1 and the indicators reflecting arsenic-induced immunological dysfunction (IL-2, IFN-γ) and EMT (E-cadherin) in serum were significantly increased (P < 0.05). Our study provides some limited evidence that Ginkgo biloba L. can increase the expression of NF-AT1 by downregulating the level of miR-155-5p, alleviating immunological dysfunction, and decreasing the expression of EMT biomarkers, thus indirectly improving arsenic-induced skin damage.
Collapse
Affiliation(s)
- Qibing Zeng
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education & School of Public Helath, Guizhou Medical University, Guiyang, China
| | - Shaofeng Wei
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education & School of Public Helath, Guizhou Medical University, Guiyang, China
| | - Baofei Sun
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education & School of Public Helath, Guizhou Medical University, Guiyang, China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education & School of Public Helath, Guizhou Medical University, Guiyang, China
| |
Collapse
|
16
|
Sharma AK, Kaur J, Kaur T, Singh B, Yadav HN, Pathak D, Singh AP. Ameliorative role of bosentan, an endothelin receptor antagonist, against sodium arsenite-induced renal dysfunction in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:7180-7190. [PMID: 33026618 DOI: 10.1007/s11356-020-11035-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
Arsenic exposure is well documented to cause serious health hazards, such as cardiovascular abnormalities, neurotoxicity and nephrotoxicity. In the present study, we intended to explore the role of bosentan, an endothelial receptor antagonist, against sodium arsenite-induced nephrotoxicity and hepatotoxicity in rats. Sodium arsenite (5 mg/kg, oral) was administered for 4 weeks to induce renal dysfunction in rats. Sodium arsenite intoxicated rats were treated with bosentan (50 and 100 mg/kg, oral) for 4 weeks. Arsenic led renal damage was demonstrated by significant increase in serum creatinine, urea, uric acid, potassium, fractional excretion of sodium, microproteinuria and decreased creatinine clearance in rats. Sodium arsenite resulted in marked oxidative stress in rat kidneys as indicated by profound increase in lipid peroxides, and superoxide anion generation alongwith decrease in reduced glutathione levels. Hydroxyproline assay highlighted arsenic-induced renal fibrosis in rats. Hematoxylin-eosin staining indicated glomerular and tubular changes in rat kidneys. Picrosirius red staining highlighted collagen deposition in renal tissues of arsenic treated rats. Immunohistological results demonstrated the reduction of renal eNOS expression in arsenic treated rats. Notably, treatment with bosentan attenuated arsenic-induced renal damage and resisted arsenic-led reduction in renal eNOS expression. In addition, sodium arsenite-induced alteration in hepatic parameters (serum aspartate aminotransferase, alanine transferase, alkaline phosphatase, bilirubin), oxidative stress and histological changes were abrogated by bosentan treatment in rats. Hence, we conclude that bosentan treatment attenuated sodium arsenite-induced oxidative stress, fibrosis and reduction in renal eNOS expression in rat kidneys. Moreover, bosentan abrogated arsenic led hepatic changes in rats.
Collapse
Affiliation(s)
- Ashwani Kumar Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Japneet Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Tajpreet Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
- Department of Pharmacology, Khalsa College of Pharmacy, Amritsar, India
| | - Balbir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | | | - Devendra Pathak
- Department of Veterinary Anatomy, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Amrit Pal Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India.
| |
Collapse
|
17
|
Navarro-Espinoza S, Angulo-Molina A, Meza-Figueroa D, López-Cervantes G, Meza-Montenegro M, Armienta A, Soto-Puebla D, Silva-Campa E, Burgara-Estrella A, Álvarez-Bajo O, Pedroza-Montero M. Effects of Untreated Drinking Water at Three Indigenous Yaqui Towns in Mexico: Insights from a Murine Model. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18020805. [PMID: 33477870 PMCID: PMC7832869 DOI: 10.3390/ijerph18020805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/18/2022]
Abstract
Background: Reports in a northwestern Mexico state linked arsenic (As) in drinking water to DNA damage in people from indigenous communities. However, this correlation remains under discussion due to unknown variables related to nutrition, customs, and the potential presence of other metal(oid)s. Methods: To determine this association, we sampled water from three Yaqui towns (Cócorit, Vícam, and Pótam), and analyzed the metals by ICP-OES. We exposed four separate groups, with five male CD-1 mice each, to provide further insight into the potential effects of untreated drinking water. Results: The maximum concentrations of each metal(oid) in µg·L−1 were Sr(819) > Zn(135) > As(75) > Ba(57) > Mo(56) > Cu(17) > Al(14) > Mn(12) > Se(19). Histological studies revealed brain cells with angulation, satellitosis, and reactive gliosis with significant statistical correlation with Mn and As. Furthermore, the liver cells presented hepatocellular degeneration. Despite the early response, there is no occurrence of both statistical and significative changes in hematological parameters. Conclusions: The obtained results provide experimental insights to understand the potential effects of untreated water with low As and Mn contents in murine models. This fact is noteworthy because of the development of histological changes on both the brain and liver at subchronic exposure.
Collapse
Affiliation(s)
- Sofia Navarro-Espinoza
- Department of Geology, University of Sonora, Rosales and Encinas, Hermosillo 83000, Sonora, Mexico;
| | - Aracely Angulo-Molina
- Department of Biological Chemical Sciences, University of Sonora, Rosales and Encinas, Hermosillo 83000, Sonora, Mexico;
- Department of Physics Research, University of Sonora, Rosales and Encinas, Hermosillo 83000, Sonora, Mexico; (D.S.-P.); (E.S.-C.); (A.B.-E.); (O.Á.-B.)
| | - Diana Meza-Figueroa
- Department of Geology, University of Sonora, Rosales and Encinas, Hermosillo 83000, Sonora, Mexico;
- Correspondence: (D.M.-F.); (M.P.-M.)
| | - Guillermo López-Cervantes
- Department of Medicine, University of Sonora, Rosales and Encinas, Hermosillo 83000, Sonora, Mexico;
| | - Mercedes Meza-Montenegro
- Department of Natural Resources, Sonora Technological Institute, 5 de Febrero 818 Sur, Obregon City 85000, Sonora, Mexico;
| | - Aurora Armienta
- Institute of Geophysics, National Autonomous University of Mexico-UNAM, Coyoacán 04510, Ciudad de Mexico, Mexico;
| | - Diego Soto-Puebla
- Department of Physics Research, University of Sonora, Rosales and Encinas, Hermosillo 83000, Sonora, Mexico; (D.S.-P.); (E.S.-C.); (A.B.-E.); (O.Á.-B.)
| | - Erika Silva-Campa
- Department of Physics Research, University of Sonora, Rosales and Encinas, Hermosillo 83000, Sonora, Mexico; (D.S.-P.); (E.S.-C.); (A.B.-E.); (O.Á.-B.)
| | - Alexel Burgara-Estrella
- Department of Physics Research, University of Sonora, Rosales and Encinas, Hermosillo 83000, Sonora, Mexico; (D.S.-P.); (E.S.-C.); (A.B.-E.); (O.Á.-B.)
| | - Osiris Álvarez-Bajo
- Department of Physics Research, University of Sonora, Rosales and Encinas, Hermosillo 83000, Sonora, Mexico; (D.S.-P.); (E.S.-C.); (A.B.-E.); (O.Á.-B.)
- Consejo Nacional de Ciencia y Tecnología CONACyT, Insurgentes 1582, Benito Juárez 03940, Ciudad de Mexico, Mexico
| | - Martín Pedroza-Montero
- Department of Physics Research, University of Sonora, Rosales and Encinas, Hermosillo 83000, Sonora, Mexico; (D.S.-P.); (E.S.-C.); (A.B.-E.); (O.Á.-B.)
- Correspondence: (D.M.-F.); (M.P.-M.)
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW Rapid economic growth and its huge population are putting tremendous pressure on water sustainability in China. Ensuring clean drinking water is a great challenge for public health due to water shortage and pollution. This article reviews current scientific findings on health-related issues on drinking water and discusses the challenges for safe and healthy drinking water in China. RECENT FINDINGS From literature published since 2010, a variety of emerging contaminants were detected in drinking water, including disinfection byproducts (DBPs), pharmaceuticals and personal care products (PPCPs), endocrine-disrupting compounds (EDCs), antibiotic resistance genes, and pathogens. Arsenic and fluoride are still the two major contaminants in groundwater. Microcystins, toxins produced by cyanobacteria, were also frequently detected in surface water for drinking. Health effects of exposure to arsenic, fluoride, nitrates, DBPs, and noroviruses in drinking water have been reported in several epidemiological studies. According to literature, water scarcity is still a severe ongoing issue, and regional disparity affects the access to safe and healthy drinking water. In addition, urbanization and climate change have strong influences on drinking water quality and water quantity. Multiple classes of contaminants of emerging concern have been detected in drinking water, while epidemiological studies on their health effects are still inadequate. Water scarcity, regional disparity, urbanization, and climate change are the major challenges for safe and healthy drinking water in China.
Collapse
Affiliation(s)
- Jianyong Wu
- Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
19
|
Lu ZH, Ou CH, Lin KC. Clinical features of patients with nonmalignant upper tract lesions mimicking urothelial cancer. UROLOGICAL SCIENCE 2021. [DOI: 10.4103/uros.uros_3_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
20
|
Liu C, Zhang A. ROS-mediated PERK-eIF2α-ATF4 pathway plays an important role in arsenite-induced L-02 cells apoptosis via regulating CHOP-DR5 signaling. ENVIRONMENTAL TOXICOLOGY 2020; 35:1100-1113. [PMID: 32506763 DOI: 10.1002/tox.22946] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Chronic exposure to arsenic remains a worldwide environmental health issue, affecting hundreds of millions of people. Although, arsenic-induced oxidative stress and apoptosis have been determined, the underlying apoptosis mechanism has not been fully elucidated yet. Oxidative stress integrated-ER stress plays an important role in Life-and-Death decision of cells. The current study was to investigate whether NaAsO2 utilizes oxidative stress integrated-ER stress signaling to exert pro-apoptotic activity in L-02 cells. Results showed that death receptor 5 (DR5) was a mediator of NaAsO2 -induced apoptosis by enhancing construction of the death-inducing signaling complex (DISC). NaAsO2 -sensitized DR5 elevation required maintainable transcription and its transcription factor C/EBP homologous protein (CHOP). Further results showed that NaAsO2 increased expression in biomarker of endoplasmic reticulum (ER) stress and activated the protein kinase R-like ER kinase (PERK)-eukaryotic translation initiation 2α (eIF2α)-activating transcription factor 4 (ATF4) pathway. PERK inhibitor and ATF4 siRNA significantly attenuated NaAsO2 -induced CHOP and DR5 expressions. In addition, the antioxidant N-acetyl-l-cysteine (NAC) treatment led to amelioration of NaAsO2 -induced production of reactive oxygen species (ROS) and some ER stress- and apoptosis- related protein levels and cell viability. Taken together, the results indicate that ROS-mediated PERK-eIF2α-ATF4 pathway activated by NaAsO2 is the critical upstream event for subsequent apoptosis induction via regulating CHOP-DR5 signaling in L-02 cells when chronic exposure to arsenic, and support that antioxidants might be potential therapeutic agents for preventing or delaying the onset and progress of arsenic-induced hepatotoxicity.
Collapse
Affiliation(s)
- Chunyan Liu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, Guizhou Medical University, Guiyang, China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, Guizhou Medical University, Guiyang, China
| |
Collapse
|
21
|
Electroanalytical sensing of trace amounts of As(III) in water resources by Gold–Rare Earth alloys. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Garnier R, Mathieu-Huart A, Ronga-Pezeret S, Nouyrigat E, Benoit P, Goullé JP, Granon C, Manel J, Manouchehri N, Nisse P, Normand JC, Roulet A, Simon F, Gabach P, Tournoud C. Exposition de la population française à l’arsenic inorganique. Identification de valeurs toxicologiques de référence. TOXICOLOGIE ANALYTIQUE ET CLINIQUE 2020. [DOI: 10.1016/j.toxac.2020.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Freire C, Vrhovnik P, Fiket Ž, Salcedo-Bellido I, Echeverría R, Martín-Olmedo P, Kniewald G, Fernández MF, Arrebola JP. Adipose tissue concentrations of arsenic, nickel, lead, tin, and titanium in adults from GraMo cohort in Southern Spain: An exploratory study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 719:137458. [PMID: 32112946 DOI: 10.1016/j.scitotenv.2020.137458] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/31/2020] [Accepted: 02/18/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Adipose tissue has been acknowledged as a potential target for obesogenic pollutants, including toxic metal(loid)s. However, the presence of these chemicals in the adipose tissue has been poorly characterized. OBJECTIVE To examine the distributions of adipose tissue concentrations of five toxic metal(loid)s (i.e., arsenic [As], nickel [Ni], lead [Pb], tin [Sn], and titanium [Ti]) in adults, and potential socio-demographic and lifestyle factors associated with metal(loid) concentrations. METHODS The study population consisted of a subsample of 228 subjects from GraMo cohort in Southern Spain (N = 387). Adipose tissue samples were intra-operatively collected from adults recruited in 2003-2004 in two public hospitals, and concentrations of metal(loid)s in adipose tissue were analyzed in 2015 by High-Resolution Inductively Coupled Plasma Mass Spectrometry. Data on socio-demographic and lifestyle factors were obtained by baseline questionnaire completion. Linear and multinomial regression was used to identify factors associated with metal(loid) levels. RESULTS Ni, Pb, Sn, and Ti were detected in all adipose tissue samples, and As in 51% of them. Ni was the metal showing the highest median concentration (0.56 μg/g), followed by Ti (0.31 μg/g), Pb (0.08 μg/g), Sn (0.06 μg/g), and As (0.003 μg/g). Predictors of As levels included area of residence, social class, and oily fish intake; for Ni: area of residence and consumption of cheese, meat, eggs, and canned food; for Pb: vegetables intake and industrial occupation; for Sn: age, body mass index, and consumption of lean fish, eggs, and milk; and cheese intake for Ti. Some of these predictors were sex-specific, particularly those regarding dietary intake. CONCLUSIONS This exploratory study provides the first evidence of the occurrence of Ni, Pb, Sn, Ti, and As in adipose tissue from adult population, and highlights the potential of this tissue as a biological matrix for studying exposure levels and chronic health effects of toxic metal(loid)s.
Collapse
Affiliation(s)
- Carmen Freire
- Instituto de Investigación Biosanitaria de Granada (ibs.Granada), Hospitales Universitarios de Granada, 18012 Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; Biomedical Research Centre, University of Granada, 18016 Granada, Spain.
| | - Petra Vrhovnik
- Slovenian National Building and Civil Engineering Institute (ZAG), SI-1000 Ljubljana, Slovenia.
| | - Željka Fiket
- Ruđer Bošković Institute, Division for Marine and Environmental Research, 10000 Zagreb, Croatia.
| | - Inmaculada Salcedo-Bellido
- Instituto de Investigación Biosanitaria de Granada (ibs.Granada), Hospitales Universitarios de Granada, 18012 Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; Department of Preventive Medicine and Public Health, University of Granada, 18016 Granada, Spain.
| | - Ruth Echeverría
- Department of Preventive Medicine and Public Health, University of Granada, 18016 Granada, Spain
| | - Piedad Martín-Olmedo
- Instituto de Investigación Biosanitaria de Granada (ibs.Granada), Hospitales Universitarios de Granada, 18012 Granada, Spain; Andalusian School of Public Health, 18011 Granada, Spain.
| | - Goran Kniewald
- Ruđer Bošković Institute, Division for Marine and Environmental Research, 10000 Zagreb, Croatia.
| | - Mariana F Fernández
- Instituto de Investigación Biosanitaria de Granada (ibs.Granada), Hospitales Universitarios de Granada, 18012 Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; Biomedical Research Centre, University of Granada, 18016 Granada, Spain; Department of Radiology and Physical Medicine, University of Granada, Granada 18016, Spain.
| | - Juan Pedro Arrebola
- Instituto de Investigación Biosanitaria de Granada (ibs.Granada), Hospitales Universitarios de Granada, 18012 Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; Department of Preventive Medicine and Public Health, University of Granada, 18016 Granada, Spain.
| |
Collapse
|
24
|
Tian X, Feng J, Dong N, Lyu Y, Wei C, Li B, Ma Y, Xie J, Qiu Y, Song G, Ren X, Yan X. Subchronic exposure to arsenite and fluoride from gestation to puberty induces oxidative stress and disrupts ultrastructure in the kidneys of rat offspring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 686:1229-1237. [PMID: 31412519 DOI: 10.1016/j.scitotenv.2019.04.409] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/26/2019] [Accepted: 04/27/2019] [Indexed: 06/10/2023]
Abstract
Underground drinking water is commonly contaminated with arsenite (As) and fluoride (F) associated with chronic kidney diseases in humans; however, the combined renal toxicity of these pollutants and the underlying mechanisms are still unclear. The aim of the present study was to investigate the interaction between As and F regarding toxic effects on the kidney of rat offspring exposed to pollutants during prenatal and postnatal development. Pregnant rats were randomly divided into four groups that received NaAsO2 (50 mg/L), NaF (100 mg/L), NaAsO2 (50 mg/L) and NaF (100 mg/L) in drinking water, or clean water, respectively, during gestation and lactation. After weaning, six male pups were randomly selected from each group and continued on the same treatment as their mothers for up to three months. The results revealed that subchronic exposure to high-dose As and/or F decreased the organ coefficient of the kidneys and disrupted kidney ultrastructure, moreover inhibited the activity of antioxidant enzymes and increased the generation of malondialdehyde in the kidney. As exposure alone or combined with F led to an upregulation of nuclear factor erythroid 2-related factor-2 (Nrf2) and its regulatory targets (Ho-1, Gclc, and Nqo1), whereas the effect of F alone was not significant. These results suggest that the renal toxicity of As and F is associated with the induction of mitochondrial damage and oxidative stress, and alters the expression of Nrf2 and its regulatory targets. Furthermore, variance analysis results showed that an interaction between As and F in the toxicity process.
Collapse
Affiliation(s)
- Xiaolin Tian
- Shanxi Key Laboratory of Experimental Animal and Human Disease Animal Models, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Jing Feng
- Shanxi Key Laboratory of Experimental Animal and Human Disease Animal Models, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Nisha Dong
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Yi Lyu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Cailing Wei
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Ben Li
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Yanqin Ma
- College of Life Science, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Jiaxin Xie
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Yulan Qiu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Guohua Song
- Shanxi Key Laboratory of Experimental Animal and Human Disease Animal Models, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Xuefeng Ren
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York, Buffalo, NY 14214, USA; Department of Pharmacology and Toxicology, School of Biomedical Sciences, The State University of New York, Buffalo, NY 14214, USA
| | - Xiaoyan Yan
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China.
| |
Collapse
|
25
|
Xu Y, Zou Z, Liu Y, Wang Q, Sun B, Zeng Q, Liu Q, Zhang A. miR-191 is involved in renal dysfunction in arsenic-exposed populations by regulating inflammatory response caused by arsenic from burning arsenic-contaminated coal. Hum Exp Toxicol 2019; 39:37-46. [DOI: 10.1177/0960327119874423] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Chronic exposure to arsenic may result in the manifestation of damage in multiple organs or systems of the body. Arsenic-induced renal dysfunction has been determined, but their pathogenesis has not been fully examined. In this study, we measured the expression levels of miR-191 in plasma, the contents of pro-inflammatory (interleukin (IL)-6 and tumor necrosis factor alpha) and anti-inflammatory (IL-2 and transforming growth factor beta) cytokines, and renal dysfunction indicators (blood urea nitrogen, blood creatinine, uric acid, and cystatin C) in serum from control and arsenic poisoning populations and analyzed the relationship between the miR-191, cytokines, and renal dysfunction indicators. The results clearly show the alteration of miR-191 expression was significantly associated with arsenic-induced renal dysfunction. Overall, the association of miR-191, inflammatory response and renal dysfunction, is clearly supported by the current findings. In other words, miR-191 is involved in renal dysfunction in exposed populations by regulating inflammatory response caused by coal-burning arsenic. The study provides a scientific basis for further studies of the causes of the arsenic-induced renal dysfunction, the biological role of miR-191, and targeted prevention strategies.
Collapse
Affiliation(s)
- Y Xu
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Z Zou
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Y Liu
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Q Wang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - B Sun
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Q Zeng
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Q Liu
- Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - A Zhang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| |
Collapse
|
26
|
Zeng Q, Zou Z, Wang Q, Sun B, Liu Y, Liang B, Liu Q, Zhang A. Association and risk of five miRNAs with arsenic-induced multiorgan damage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 680:1-9. [PMID: 31085440 DOI: 10.1016/j.scitotenv.2019.05.042] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/01/2019] [Accepted: 05/04/2019] [Indexed: 06/09/2023]
Abstract
Chronic exposure to arsenic remains a major environmental public health concern worldwide, affecting hundreds of millions of people. Arsenic-induced multiorgan damage and miRNA expression changes after arsenic exposure have been determined, but their associations and risks have not been fully examined. In this study, we measured the expression levels of five miRNAs in plasma from control and arsenic poisoned populations, and we analyzed the relationship between miRNAs and multiorgan damage. The results clearly show that the upregulation of miR-155 expression can increase the risk of arsenic induced skin damage (OR = 10.55; 95% CI: 6.02, 18.47); further, there is a link between the expression of miR-21 (OR = 11.84; 95% CI: 5.34, 26.28) and miR-145 (OR = 2.39; 95% CI: 1.61, 3.55) and liver damage, and miR-191 and kidney damage (OR = 3.65; 95% CI: 1.49, 8.93). In addition, we analyzed the diagnostic value of miRNAs associated with specific organ damage in arsenic-induced multiorgan damage. It was found that the miR-155 has a certain diagnostic value in arsenic-induced skin damage (AUC = 0.83), miR-21 and miR-145 have diagnostic value for liver damage (AUC = 0.80, 0.81) and miR-191 has diagnostic value for kidney damage (AUC = 0.83). This study provides the first comprehensive assessment of the association and risk of five miRNAs with arsenic-induced multiorgan damage. The study can provide a scientific basis for further understanding the causes of arsenic-induced multiorgan damage, identification of possible biological markers, and improvement of targeted prevention and control strategies.
Collapse
Affiliation(s)
- Qibing Zeng
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Zhonglan Zou
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Qingling Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Baofei Sun
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Yonglian Liu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Bing Liang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Qizhan Liu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China.
| |
Collapse
|
27
|
Gu JF, Zhou H, Tang HL, Yang WT, Zeng M, Liu ZM, Peng PQ, Liao BH. Cadmium and arsenic accumulation during the rice growth period under in situ remediation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 171:451-459. [PMID: 30639871 DOI: 10.1016/j.ecoenv.2019.01.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/22/2018] [Accepted: 01/02/2019] [Indexed: 06/09/2023]
Abstract
Rice (Oryza sativa L.) planted in cadmium (Cd)- and arsenic (As)-contaminated soil is considered the main source of dietary Cd and As intake for humans in Southeast Asia and thereby poses a threat to human health. Minimizing the transfer of these pollutants to rice grain is an urgent task for environmental researchers. The main objective of this study was to investigate the effects and the mechanisms of a combined amendment (hydroxyapatite + zeolite + biochar, HZB) on decreasing Cd and As accumulation in rice. In situ remediation and aqueous solution adsorption experiments were conducted. The results showed that after application of HZB, Cd and As concentrations of the exchangeable fraction and TCLP extraction in soil decreased with the growth of rice plants. Cd concentrations in rice tissues were decreased at the tillering, filling and maturing stages after in situ remediation, while As concentrations in rice tissues were decreased only at the maturing stage. When 8 kg·plot-1 (9000 kg ha-1) HZB was applied, concentrations of Cd and inorganic As in brown rice were decreased to 0.18 and 0.16 mg kg-1, respectively, lower than the levels permissible for grain in China, i.e., 0.2 mg kg-1. Application of HZB reduced Cd accumulation in rice tissues, and the suppression of Cd accumulation was significantly greater than that of As. Furthermore, HZB significantly increased rice grain yield. An aqueous solution adsorption experiment demonstrated that HZB could adsorb and covalently bind Cd and As (V) via -OH, -COOH, -Si-O-Si and CO32- groups to produce carboxylates, silicates and carbonates, thereby promoting in situ immobilization of Cd and As in soil solution.
Collapse
Affiliation(s)
- Jiao-Feng Gu
- College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Changsha 410004, China.
| | - Hang Zhou
- College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Changsha 410004, China.
| | - Hui-Ling Tang
- College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Wen-Tao Yang
- College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Min Zeng
- College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Zhi-Ming Liu
- College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA.
| | - Pei-Qin Peng
- College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Changsha 410004, China.
| | - Bo-Han Liao
- College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Changsha 410004, China.
| |
Collapse
|