1
|
Shunthirasingham C, Hoang M, Lei YD, Gawor A, Wania F. A Decade of Global Atmospheric Monitoring Delivers Mixed Report Card on the Stockholm Convention. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2024; 11:573-579. [PMID: 38882203 PMCID: PMC11172704 DOI: 10.1021/acs.estlett.4c00316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 06/18/2024]
Abstract
Time trends in atmospheric concentrations serve to evaluate how effective the Stockholm Convention is in reducing or eliminating environmental releases of persistent organic pollutants (POPs). Twelve years (2005-2016) of continuous monitoring with a global network of 20 sampling sites reveals that concentrations of the pesticide endosulfan began to drop coincident with its listing as POP in 2011. Concentrations of other POPs started to decrease prior to listing and during the sampling period declined very slowly or not at all. Concentrations of some unintentionally produced POPs (hexachlorobenzene, hexachlorobutadiene) increased to become the most abundant and most widely dispersed POPs in the global atmosphere. Their formation processes and release locations need to be identified to facilitate the Convention's goal of curbing releases from unintentional production.
Collapse
Affiliation(s)
- Chubashini Shunthirasingham
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Michelle Hoang
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Ying Duan Lei
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Anya Gawor
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Frank Wania
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| |
Collapse
|
2
|
Qadeer A, Mubeen S, Liu M, Bekele TG, Ohoro CR, Adeniji AO, Alraih AM, Ajmal Z, Alshammari AS, Al-Hadeethi Y, Archundia D, Yuan S, Jiang X, Wang S, Li X, Sauvé S. Global environmental and toxicological impacts of polybrominated diphenyl ethers versus organophosphate esters: A comparative analysis and regrettable substitution dilemma. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133543. [PMID: 38262318 DOI: 10.1016/j.jhazmat.2024.133543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/25/2024]
Abstract
The prevalence of organophosphate esters (OPEs) in the global environment is increasing, which aligns with the decline in the usage of polybrominated diphenyl ethers (PBDEs). PBDEs, a category of flame retardants, were banned and classified as persistent organic pollutants (POPs) through the Stockholm Convention due to their toxic and persistent properties. Despite a lack of comprehensive understanding of their ecological and health consequences, OPEs were adopted as replacements for PBDEs. This research aims to offer a comparative assessment of PBDEs and OPEs in various domains, specifically focusing on their persistence, bioaccumulation, and toxicity (PBT) properties. This study explored physicochemical properties (such as molecular weight, octanol-water partition coefficient, octanol-air partition coefficient, Henry's law constant, and vapor pressures), environmental behaviors, global concentrations in environmental matrices (air, water, and soil), toxicities, bioaccumulation, and trophic transfer mechanisms of both groups of compounds. Based on the comparison and analysis of environmental and toxicological data, we evaluate whether OPEs represent another instance of regrettable substitution and global contamination as much as PBDEs. Our findings indicate that the physical and chemical characteristics, environmental behaviors, and global concentrations of PBDEs and OPEs, are similar and overlap in many instances. Notably, OPE concentrations have even surged by orders of several magnitude compared to PBDEs in certain pristine regions like the Arctic and Antarctic, implying long-range transport. In many instances, air and water concentrations of OPEs have been increased than PBDEs. While the bioaccumulation factors (BAFs) of PBDEs (ranging from 4.8 to 7.5) are slightly elevated compared to OPEs (-0.5 to 5.36) in aquatic environments, both groups of compounds exhibit BAF values beyond the threshold of 5000 L/kg (log10 BAF > 3.7). Similarly, the trophic magnification factors (TMFs) for PBDEs (ranging from 0.39 to 4.44) slightly surpass those for OPEs (ranging from 1.06 to 3.5) in all cases. Metabolic biotransformation rates (LogKM) and hydrophobicity are potentially major factors deciding their trophic magnification potential. However, many compounds of PBDEs and OPEs show TMF values higher than 1, indicating biomagnification potential. Collectively, all data suggest that PBDEs and OPEs have the potential to bioaccumulate and transfer through the food chain. OPEs and PBDEs present a myriad of toxicity endpoints, with notable overlaps encompassing reproductive issues, oxidative stress, developmental defects, liver dysfunction, DNA damage, neurological toxicity, reproductive anomalies, carcinogenic effects, and behavior changes. Based on our investigation and comparative analysis, we conclude that substituting PBDEs with OPEs is regrettable based on PBT properties, underscoring the urgency for policy reforms and effective management strategies. Addressing this predicament before an exacerbation of global contamination is imperative.
Collapse
Affiliation(s)
- Abdul Qadeer
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China.
| | - Sidra Mubeen
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China; Faculty of Computer Science and Information Technology, Superior University Lahore, Pakistan
| | - Mengyang Liu
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong 999077, Hong Kong SAR China
| | - Tadiyose Girma Bekele
- Department of Biology, Eastern Nazarene College, 23 East Elm Avenue, Quincy, MA 02170, USA
| | - Chinemerem R Ohoro
- Water Research Group, Unit for Environmental Sciences and Management, North, West University, Potchefstroom 2520, South Africa
| | - Abiodun O Adeniji
- Department of Chemistry and Chemical Technology, Faculty of Science and Technology, National University of Lesotho, Lesotho
| | - Alhafez M Alraih
- Department of Chemistry, College of Science and Arts, Mohail Aseer, King Khalid University, Saudi Arabia
| | - Zeeshan Ajmal
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, PR China
| | - Ahmad S Alshammari
- King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Yas Al-Hadeethi
- Physics Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Denisse Archundia
- Instituto de Geología, Universidad Nacional Autónoma de México, Coyoacán, CDMX, México 04510, Mexico
| | - Shengwu Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China
| | - Xia Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China.
| | - Shuhang Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China.
| | - Xixi Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China.
| | - Sébastien Sauvé
- Department of Chemistry, Université de Montréal, Campus MIL, 1375 Av. Thérèse-Lavoie-Roux, Montréal H2V 0B3, QC, Canada
| |
Collapse
|
3
|
Nos D, Montalvo T, Cortés-Francisco N, Figuerola J, Aymí R, Giménez J, Solé M, Navarro J. Sources of persistent organic pollutants and their physiological effects on opportunistic urban gulls. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133129. [PMID: 38056272 DOI: 10.1016/j.jhazmat.2023.133129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
Urbanization is associated with drastic shifts in biodiversity. While some species thrive in urban areas, the impact of inhabiting these human-altered environments on organism physiology remains understudied. We investigated how exposure to polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) affects the physiology of yellow-legged gulls (Larus michahellis) inhabiting a densely populated, industrialized city. We analyzed blood samples from 50 gulls (20 immatures and 30 adults) and assessed 27 physiological parameters and biomarkers related to xenobiotic protection, health, and feeding habits in these same individuals. We also tracked the movements of 25 gulls (15 immatures and 10 adults) to identify potential sources of persistent organic pollutants (POPs). Both adult and immature gulls primarily inhabited urban areas, followed by marine habitats. Immature gulls spent more time in freshwater, landfills, and agricultural areas. Bioaccumulated ΣPCB (median = 92.7 ng g-1 ww, 1.86-592) and ΣPBDE (median = 1.44 ng g-1 ww, 0.022-9.58) showed no significant differences between age and sex groups. Notably, immature males exhibited the highest correlations with POP concentrations, particularly with the activity of carboxylesterases (CEs), suggesting a higher sensitivity than adults. These findings highlight the potential of plasmatic CEs in immature yellow-legged gulls as effective tracers of POPs exposure and effects, offering insights into the anthropogenic impacts on urban biodiversity.
Collapse
Affiliation(s)
- David Nos
- Institut de Ciències del Mar (ICM), CSIC, Passeig Marítim de la Barceloneta, 37-49, 08003 Barcelona, Spain.
| | - Tomas Montalvo
- Agència de Salut Pública de Barcelona, Pl. Lesseps, 1, 08023 Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Institut d'Investigació Biomèdica Sant Pau - IIB St. Pau, Barcelona, Spain
| | - Núria Cortés-Francisco
- Agència de Salut Pública de Barcelona, Pl. Lesseps, 1, 08023 Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Institut d'Investigació Biomèdica Sant Pau - IIB St. Pau, Barcelona, Spain
| | - Jordi Figuerola
- Estación Biológica de Doñana - CSIC, Avenida Américo Vespucio 26, 41092 Sevilla, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Raül Aymí
- Institut Català d'Ornitologia, Museu de Ciències Naturals de Barcelona, Pl. Leonardo da Vinci, 4-5, 08019, Barcelona, Spain
| | - Joan Giménez
- Institut de Ciències del Mar (ICM), CSIC, Passeig Marítim de la Barceloneta, 37-49, 08003 Barcelona, Spain
| | - Montserrat Solé
- Institut de Ciències del Mar (ICM), CSIC, Passeig Marítim de la Barceloneta, 37-49, 08003 Barcelona, Spain
| | - Joan Navarro
- Institut de Ciències del Mar (ICM), CSIC, Passeig Marítim de la Barceloneta, 37-49, 08003 Barcelona, Spain
| |
Collapse
|
4
|
White K, Kalina J, Scheringer M, Přibylová P, Kukučka P, Kohoutek J, Prokeš R, Klánová J. Spatial and Temporal Trends of Persistent Organic Pollutants across Europe after 15 Years of MONET Passive Air Sampling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11583-11594. [PMID: 37494593 PMCID: PMC10413948 DOI: 10.1021/acs.est.3c00796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 07/28/2023]
Abstract
The Global Monitoring Plan of the Stockholm Convention on Persistent Organic Pollutants (POPs) was established to generate long-term data necessary for evaluating the effectiveness of regulatory measures at a global scale. After 15 years of passive air monitoring (2003-2019), MONET is the first network to produce sufficient data for the analysis of continuous long-term temporal trends of POPs in air across the entire European continent. This study reports long-term concentrations of 20 POPs monitored at 32 sites in 27 European countries. As of January 1, 2019, the concentration ranges (pg/m3) were 1.1-52.8 (∑6PCB), 0.3-8.5 (∑12dl-PCB), 0.007-0.175 (∑17PCDD/F), 0.02-2.2 (∑9PBDE), 0.4-24.7 (BDE 209), 0.5-247 (∑6DDT), 1.7-818 (∑4HCH), 15.8-74.7 (HCB), and 5.9-21.5 (PeCB). Temporal trends indicate that concentrations of most POPs have declined significantly over the past 15 years, with median annual decreases ranging from -8.0 to -11.5% (halving times of 6-8 years) for ∑6PCB, ∑17PCDD/F, HCB, PeCB, and ∑9PBDE. Furthermore, no statistically significant differences were observed in either the trends or the concentrations of specific POPs at sites in Western Europe (WEOG) compared to sites in Central and Eastern Europe (CEE), which suggests relatively uniform compound-specific distribution and removal at the continental scale.
Collapse
Affiliation(s)
- Kevin
B. White
- RECETOX, Masaryk University, 625 00 Brno, Czech Republic
| | - Jiří Kalina
- RECETOX, Masaryk University, 625 00 Brno, Czech Republic
| | - Martin Scheringer
- RECETOX, Masaryk University, 625 00 Brno, Czech Republic
- Institute
of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
| | | | - Petr Kukučka
- RECETOX, Masaryk University, 625 00 Brno, Czech Republic
| | - Jiří Kohoutek
- RECETOX, Masaryk University, 625 00 Brno, Czech Republic
| | - Roman Prokeš
- RECETOX, Masaryk University, 625 00 Brno, Czech Republic
| | - Jana Klánová
- RECETOX, Masaryk University, 625 00 Brno, Czech Republic
| |
Collapse
|
5
|
Sanguos CL, Suárez OL, Martínez-Carballo E, Couce ML. Postnatal exposure to organic pollutants in maternal milk in north-western Spain. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120903. [PMID: 36549446 DOI: 10.1016/j.envpol.2022.120903] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Evaluation of postnatal exposure to organic pollutants is especially important for suckling infants during breastfeeding, a crucial perinatal growth period when organs and hormonal systems develop. We determined levels of 60 pollutants, including organochlorine pesticides (OCPs), organophosphorus pesticides (OPPs), pyrethroids (PYRs), polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and polybrominated diphenyl ethers (PBDEs), in 81 breast milk samples from breastfeeding mothers from Santiago de Compostela (north-western Spain). For most detected organic pollutants, levels were correlated with the season of milk sampling, maternal age at delivery, and place of residence. Dietary consumption habits (eggs, molluscs, and vegetable oils) were also correlated with OCP, OPP, PCB, PBDE and PYR levels. We also assessed the risk to infant health of exposure to organic pollutants in breast milk. PAHs, OCPs, OPPs, and PYRs accounted for almost 95% of the targeted organic pollutants in the samples analysed.
Collapse
Affiliation(s)
- Carolina López Sanguos
- Department of Neonatology, University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, 15704, Spain; IDIS-Health Research Institute of Santiago de Compostela, Santiago de Compostela, 15704, Spain; Faculty of Medicine, University of Santiago de Compostela, Santiago de Compostela, 15704, Spain; Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin (RICORS), Instituto de Salud Carlos III, Madrid, Spain.
| | - Olalla López Suárez
- Department of Neonatology, University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, 15704, Spain; IDIS-Health Research Institute of Santiago de Compostela, Santiago de Compostela, 15704, Spain; Faculty of Medicine, University of Santiago de Compostela, Santiago de Compostela, 15704, Spain; Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin (RICORS), Instituto de Salud Carlos III, Madrid, Spain.
| | - Elena Martínez-Carballo
- Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin (RICORS), Instituto de Salud Carlos III, Madrid, Spain; Food and Health Omics, Department of Analytical and Food Chemistry, Faculty of Sciences, Campus da Auga, University of Vigo, Ourense, 32004, Spain.
| | - María Luz Couce
- Department of Neonatology, University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, 15704, Spain; IDIS-Health Research Institute of Santiago de Compostela, Santiago de Compostela, 15704, Spain; Faculty of Medicine, University of Santiago de Compostela, Santiago de Compostela, 15704, Spain; Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin (RICORS), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
6
|
Muñoz-Arnanz J, Bartalini A, Alves L, Lemos MF, Novais SC, Jiménez B. Occurrence and distribution of persistent organic pollutants in the liver and muscle of Atlantic blue sharks: Relevance and health risks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119750. [PMID: 35839970 DOI: 10.1016/j.envpol.2022.119750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/28/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Blue shark score among the most abundant, widely distributed and worldwide consumed elasmobranchs. In this work contents of PCBs, PCDD/Fs and PBDEs were studied by means of GC-HRMS in muscle and liver of sixty blue sharks from the North East Atlantic sampled in 2019. Concentrations relatively similar were found for PCBs and PCDD/Fs in comparison with those in Atlantic specimens from the same area sampled in 2015. In contrast, PBDE loads doubled, likely mirroring the increased environmental presence of these pollutants. This, together with the different congener profiles reported for the same species in other geographical areas, highlighted the blue shark's potential as bioindicator of the degree and fingerprints of regional pollution by POPs. Interesting dissimilarities between muscle and liver concentrations were detected, most likely ascribed to distinct toxicokinetics involved for the different pollutants. Whereas most POPs preferentially accumulated in liver, some did the opposite in muscle. BDE-209 was the most prominent example, being almost negligible its presence in liver (0.3%) while accounting for ca. 14% of the total PBDE content in muscle. Different findings in this regard described for other shark species call for focused research to ascertain the role of the species in this apparent favored metabolization of BDE-209 in the liver. From a consumption perspective, the concentrations found in muscle -the most relevant part in the human diet-for PCBs and dioxin-like POPs were below the EU maximum allowed levels in foodstuff. Conversely, in liver about 58% and 78% of samples overpassed the European levels for tolerable intake of i-PCBs and dioxin POPs, respectively. Concentrations of PBDEs exceeded EQS (0.0085 ng/g w.w.) established by the European Water Framework Directive in 100% and 92% of liver and muscle samples, respectively, which adds to the open debate of such as a reduce value for this current EQS.
Collapse
Affiliation(s)
- Juan Muñoz-Arnanz
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry, IQOG-CSIC, Madrid, Spain.
| | - Alice Bartalini
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry, IQOG-CSIC, Madrid, Spain
| | - Luis Alves
- MARE- Marine and Environmental Sciences Centre & ARNET - Aquatic Research Infrastructure Network Associated Laboratory, ESTM, Polytechnic of Leiria, Peniche, Portugal
| | - Marco Fl Lemos
- MARE- Marine and Environmental Sciences Centre & ARNET - Aquatic Research Infrastructure Network Associated Laboratory, ESTM, Polytechnic of Leiria, Peniche, Portugal
| | - Sara C Novais
- MARE- Marine and Environmental Sciences Centre & ARNET - Aquatic Research Infrastructure Network Associated Laboratory, ESTM, Polytechnic of Leiria, Peniche, Portugal
| | - Begoña Jiménez
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry, IQOG-CSIC, Madrid, Spain
| |
Collapse
|
7
|
Wang Z, Adu-Kumi S, Diamond ML, Guardans R, Harner T, Harte A, Kajiwara N, Klánová J, Liu J, Moreira EG, Muir DCG, Suzuki N, Pinas V, Seppälä T, Weber R, Yuan B. Enhancing Scientific Support for the Stockholm Convention's Implementation: An Analysis of Policy Needs for Scientific Evidence. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2936-2949. [PMID: 35167273 DOI: 10.1021/acs.est.1c06120] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The Stockholm Convention is key to addressing the global threats of persistent organic pollutants (POPs) to humanity and the environment. It has been successful in identifying new POPs, but its national implementation remains challenging, particularly by low- and middle-income Parties. Concerted action is needed to assist Parties in implementing the Convention's obligations. This analysis aims to identify and recommend research and scientific support needed for timely implementation of the Convention. We aim this analysis at scientists and experts from a variety of natural and social sciences and from all sectors (academia, civil society, industry, and government institutions), as well as research funding agencies. Further, we provide practical guidance to scientists and experts to promote the visibility and accessibility of their work for the Convention's implementation, followed by recommendations for sustaining scientific support to the Convention. This study is the first of a series on analyzing policy needs for scientific evidence under global governance on chemicals and waste.
Collapse
Affiliation(s)
- Zhanyun Wang
- Institute of Environmental Engineering, ETH Zürich, 8093 Zürich, Switzerland
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, CH-9014 St. Gallen, Switzerland
| | - Sam Adu-Kumi
- Chemicals Control and Management Centre, Environmental Protection Agency, Ministries, P.O. Box MB 326, Accra GR, Ghana
| | - Miriam L Diamond
- Department of Earth Sciences and School of the Environment, University of Toronto, Toronto, Ontario M5S 3B1, Canada
| | - Ramon Guardans
- WEOG Region Representative for the Global Monitoring Plan of the Stockholm Convention on POPs, Adviser on POPs, Ministry for the Ecological Transition and Demographic Challenge (MITECO), 28046 Madrid, Spain
| | - Tom Harner
- WEOG Region Representative for the Global Monitoring Plan of the Stockholm Convention on POPs, Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Agustín Harte
- National Chemicals and Hazardous Waste Directorate, Secretariat of Environmental Control and Monitoring, Ministry of Environment and Sustainable Development, San Martin 451, Autonomous City of Buenos Aires C1004AAI, Argentina
| | - Natsuko Kajiwara
- Material Cycles Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Jana Klánová
- RECETOX Centre of Masaryk University, the Stockholm Convention Regional Centre for Capacity Building and the Transfer of Technology in Central and Eastern Europe, 611 37 Brno, Czech Republic
| | - Jianguo Liu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | | | - Derek C G Muir
- Environment and Climate Change Canada, Canada Centre for Inland Waters, Burlington, Ontario L7S 1A1, Canada
| | - Noriyuki Suzuki
- Planning Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Victorine Pinas
- Institute for Graduate Studies and Research, Anton de Kom University of Suriname, P.O.B: 9212, Paramaribo, Suriname
| | - Timo Seppälä
- Finnish Environment Institute, Contaminants Unit, 00790, Helsinki, Finland
| | - Roland Weber
- POPs Environmental Consulting, 73527, Schwäbisch Gmünd Germany
| | - Bo Yuan
- Department of Environmental Science, Stockholm University, 106 91 Stockholm, Sweden
- Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
8
|
Roscales JL, Suárez de Puga BR, Vicente A, Muñoz-Arnanz J, Sánchez AI, Ros M, Jiménez B. Levels and trends of perfluoroalkyl acids (PFAAs) in water (2013-2020) and fish from selected riverine basins in Spain. CHEMOSPHERE 2022; 286:131940. [PMID: 34435575 DOI: 10.1016/j.chemosphere.2021.131940] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/05/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
The aim of the present study was to assess the presence of perfluoroalkyl acids (PFAAs), namely perfluoroalkane sulfonates and perfluoroalkyl carboxylic acids, in Spanish river basins in order to: identify potential spatiotemporal variations; evaluate the effectiveness of the measures implemented for the reduction/elimination of these pollutants; verify the fulfillment of the Environmental Quality Standards (EQSs) in the European Union. PFOS and PFOA were determined in 116 water samples from four sites in the Duero basin, the largest in the Iberian Peninsula, collected seasonally from 2013 to 2020. In addition, 30 fish sample composites from the sample banks of Duero, Tagus, Ebro, Eastern Cantabrian and Catalonian basins were analyzed for 15 PFAAs. Median PFOS and PFOA concentrations were 0.72 and 0.42 ng/L, ranging from values below the limit of quantification (LOQ) to 81 and 22 ng/L, respectively. During the studied period, 51% of water samples were above the EQS of 0.65 ng/L for PFOS. In the case of fish, the PFOS range was <LOQ-59 with 33% of the samples above the EQS of 9.1 ng/g wet weight. Moreover, fish from the Tagus and Catalonian basins showed median concentrations above the EQS. Particularly, fish collected around highly populated areas such as Madrid and Barcelona showed the greatest PFAA concentrations. Overall, PFAA concentrations in water and fish increased significantly with population density suggesting urban areas as their main source. Although our results suggested decreasing tendencies for PFOS and PFOA in water, significant trends only could be confirmed at two sampling sites.
Collapse
Affiliation(s)
- Jose L Roscales
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry (IQOG-CSIC). Juan de la Cierva 3, 28006, Madrid, Spain
| | - Belén R Suárez de Puga
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry (IQOG-CSIC). Juan de la Cierva 3, 28006, Madrid, Spain
| | - Alba Vicente
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry (IQOG-CSIC). Juan de la Cierva 3, 28006, Madrid, Spain
| | - Juan Muñoz-Arnanz
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry (IQOG-CSIC). Juan de la Cierva 3, 28006, Madrid, Spain
| | - Ana I Sánchez
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry (IQOG-CSIC). Juan de la Cierva 3, 28006, Madrid, Spain
| | - María Ros
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry (IQOG-CSIC). Juan de la Cierva 3, 28006, Madrid, Spain
| | - Begoña Jiménez
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry (IQOG-CSIC). Juan de la Cierva 3, 28006, Madrid, Spain.
| |
Collapse
|
9
|
Riaz R, Malik RN, de Wit CA. Soil-air partitioning of semivolatile organic compounds in the Lesser Himalaya region: Influence of soil organic matter, atmospheric transport processes and secondary emissions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118006. [PMID: 34543955 DOI: 10.1016/j.envpol.2021.118006] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
After decades of imposed regulations about reducing the primary emissions of persistent organic pollutants (POPs), these pollutants are still present in the environment. Soils are important repositories of such persistent semivolatile organic contaminants (SVOCs), and it is assumed that SVOCs sequestered in these reservoirs are being re-mobilized due to anthropogenic influence. In this study, concentrations of organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs) in soil and air, their fugacities, fluxes and the soil-air partition coefficient (KSA) were determined for three different land cover types (glacial, remote/mountainous and urban) of the Lesser Himalayan Region (LHR). The concentrations of OCPs, PCBs and PBDEs in soils and air ranged between 0.01 and 2.8, 0.81-4.8, 0.089-0.75 ng g-1; 0.2-106, 0.027-182, and 0.011-7.26 pg m-3, respectively. The levels of SVOCs in the soil were correlated with soil organic matter (SOM) indicating that SOM is a substrate for the organic pollutants in soils. The Clausius-Clapeyron plots between ln P and inverse of temperature (1000/T) suggested that long range atmospheric transport was the major input source of PBDEs and higher chlorinated PCBs over the LHR. The uneven and wide distribution of local sources in LHR and up-slope enrichment of SVOCs explained the spatial variability and altitudinal patterns. The soils near mountain and urban lakes act as local sinks of SVOCs such as β-HCH, pp΄-DDT, CB-28, -118, -153, BDE-47, -99, and -154, with soil-air exchange fluxes tending more toward deposition. However, the soils near glacial lakes acted as local sources of more volatile congeners of α-HCH, γ-HCH, op'-DDT, pp'-DDE and lower to medium chlorinated PCBs such as CB-18, -28, -53, -42 and BDE-47, -99, with soil-air exchange tending more toward volatilization flux.
Collapse
Affiliation(s)
- Rahat Riaz
- Environmental Biology and Ecotoxicology Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, PO 45320, Pakistan
| | - Riffat Naseem Malik
- Environmental Biology and Ecotoxicology Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, PO 45320, Pakistan.
| | - Cynthia A de Wit
- Department of Environmental Science, Stockholm University, SE-10691, Stockholm, Sweden
| |
Collapse
|
10
|
Melymuk L, Nizzetto PB, Harner T, White KB, Wang X, Tominaga MY, He J, Li J, Ma J, Ma WL, Aristizábal BH, Dreyer A, Jiménez B, Muñoz-Arnanz J, Odabasi M, Dumanoglu Y, Yaman B, Graf C, Sweetman A, Klánová J. Global intercomparison of polyurethane foam passive air samplers evaluating sources of variability in SVOC measurements. ENVIRONMENTAL SCIENCE & POLICY 2021; 125:1-9. [PMID: 34733112 PMCID: PMC8525512 DOI: 10.1016/j.envsci.2021.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 07/14/2021] [Accepted: 08/03/2021] [Indexed: 05/07/2023]
Abstract
Polyurethane foam passive air samplers (PUF-PAS) are the most common type of passive air sampler used for a range of semi-volatile organic compounds (SVOCs), including regulated persistent organic pollutants (POPs) and polycyclic aromatic hydrocarbons (PAHs), and emerging contaminants (e.g., novel flame retardants, phthalates, current-use pesticides). Data from PUF-PAS are key indicators of effectiveness of global regulatory actions on SVOCs, such as the Global Monitoring Plan of the Stockholm Convention on Persistent Organic Pollutants. While most PUF-PAS use similar double-dome metal shielding, there is no standardized dome size, shape, or deployment configuration, with many different PUF-PAS designs used in regional and global monitoring. Yet, no information is available on the comparability of data from studies using different PUF-PAS designs. We brought together 12 types of PUF-PAS used by different research groups around the world and deployed them in a multi-part intercomparison to evaluate the variability in reported concentrations introduced by different elements of PAS monitoring. PUF-PAS were deployed for 3 months in outdoor air in Kjeller, Norway in 2015-2016 in three phases to capture (1) the influence of sampler design on data comparability, (2) the influence of analytical variability when samplers are analyzed at different laboratories, and (3) the overall variability in global monitoring data introduced by differences in sampler configurations and analytical methods. Results indicate that while differences in sampler design (in particular, the spacing between the upper and lower sampler bowls) account for up to 50 % differences in masses collected by samplers, the variability introduced by analysis in different laboratories far exceeds this amount, resulting in differences spanning orders of magnitude for POPs and PAHs. The high level of variability due to analysis in different laboratories indicates that current SVOC air sampling data (i.e., not just for PUF-PAS but likely also for active air sampling) are not directly comparable between laboratories/monitoring programs. To support on-going efforts to mobilize more SVOC data to contribute to effectiveness evaluation, intercalibration exercises to account for uncertainties in air sampling, repeated at regular intervals, must be established to ensure analytical comparability and avoid biases in global-scale assessments of SVOCs in air caused by differences in laboratory performance.
Collapse
Affiliation(s)
- Lisa Melymuk
- RECETOX, Masaryk University, Brno, Czech Republic
- Corresponding author.
| | | | - Tom Harner
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, Canada
| | | | - Xianyu Wang
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Australia
| | | | - Jun He
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, China
| | - Jun Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Jianmin Ma
- College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Wan-Li Ma
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Harbin Institute of Technology, Harbin, China
| | - Beatriz H. Aristizábal
- Hydraulic Engineering and Environmental Research Group (GTAIHA), Universidad Nacional de Colombia, Manizales, Colombia
| | - Annekatrin Dreyer
- Eurofins GfA GmbH (Now Operating Under the Name ANECO Institut für Umweltschutz GmbH & Co), Germany
| | - Begoña Jiménez
- Department of Instrumental Analysis and Environmental Chemistry, IQOG-CSIC, Madrid, Spain
| | - Juan Muñoz-Arnanz
- Department of Instrumental Analysis and Environmental Chemistry, IQOG-CSIC, Madrid, Spain
| | - Mustafa Odabasi
- Department of Environmental Engineering, Dokuz Eylul University, Buca-Izmir, Turkey
| | - Yetkin Dumanoglu
- Department of Environmental Engineering, Dokuz Eylul University, Buca-Izmir, Turkey
| | - Baris Yaman
- Department of Environmental Engineering, Dokuz Eylul University, Buca-Izmir, Turkey
| | - Carola Graf
- Lancaster Environment Centre, Lancaster University, UK
| | | | - Jana Klánová
- RECETOX, Masaryk University, Brno, Czech Republic
| |
Collapse
|
11
|
Dreyer A, Neugebauer F, Lohmann N, Rüdel H, Tarricone K, Rauert C, Koschorreck J. Long-term trends of airborne halogenated flame retardants (HFRs) by means of tree leaf and shoot analyses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117342. [PMID: 34023657 DOI: 10.1016/j.envpol.2021.117342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/26/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
The historical air pollution with halogenated flame retardants (HFRs) in Germany was assessed by investigating tree leaf and shoot samples which have been archived in the German environmental specimen bank. Samples covered the period from 1985 to 2016. 43 HFRs comprising polybrominated diphenyl ethers as well as emerging brominated and chlorinated compounds such as Dechlorane Plus, DBDPE, or DPTE, were analysed in 115 samples from ten sub sites originating from six areas characterised by different land uses, including urban as well as a background site. HFRs were observed in each sample showing the widespread distribution of HFRs in Germany in tree leaves and shoots as bioindicators of past and present atmospheric pollution. Analytes observed at elevated concentrations were BDE 209, DBDPE and DPTE. Observed HFR-levels differed between analytes as well as sampling locations, particularly prior to the year 2000. They were typically highest at conurbation areas. Concentrations at the background site often belonged to the lowest ones observed, however, lowest values were not exclusively found there. The quantification frequencies appeared to decrease from the past to most recent samples. With few exceptions, atmospheric pollution of both, legacy and emerging HFRs, decreased significantly.
Collapse
Affiliation(s)
| | | | | | - Heinz Rüdel
- Fraunhofer Institute for Molecular Biology and Applied Ecology (Fraunhofer IME), Schmallenberg, Germany
| | | | | | | |
Collapse
|
12
|
Dien NT, Hirai Y, Koshiba J, Sakai SI. Factors affecting multiple persistent organic pollutant concentrations in the air above Japan: A panel data analysis. CHEMOSPHERE 2021; 277:130356. [PMID: 34384189 DOI: 10.1016/j.chemosphere.2021.130356] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 06/13/2023]
Abstract
Numerous reports have elucidated different statistical approaches to identify temporal trends in atmospheric persistent organic pollutant (POP) time series. However, the correlation of industrial activity with concentrations of atmospheric POPs in Japan has not yet been determined. Herein, a panel data analysis of a 16-year monitoring program (2003-2018) conducted by the Japanese Ministry of Environment was used to investigate a range of POPs in the atmosphere above Japan. This work focuses on polychlorinated biphenyls (PCBs), polychlorinated naphthalenes (PCNs), polybrominated diphenyl ethers (PBDEs), hexachlorobenzene (HCB), and pentachlorobenzene (PeCBz) collected each year at 53 sites across Japan. The panel analysis revealed that PCB, PCN, and PBDE concentrations were influenced by a combination of factors including year, industrial activity (municipal and industrial waste incinerators, cement kilns, steel industry, and secondary zinc production), population, temperature, and atmospheric boundary layer. However, HCB and PeCBz were not significantly affected by these factors. Industrial activity showed stronger positive correlations with all homologues of PCBs, PCNs, and PBDEs as compared to those demonstrated by population. Significant decreasing trends were identified for the atmospheric ∑PBDEs (half-life t1/2 = 9.4 years), ∑PCNs (t1/2 = 8.9 years), and ∑PCBs (t1/2 = 13.5 years) concentrations, while HCB and PeCBz showed slightly increasing or steady levels. As a statistical tool, panel data analysis can contribute to the assessment of spatial and temporal trends of POPs at a national scale, while elucidating different behavioral responses to numerous environmental variables.
Collapse
Affiliation(s)
- Nguyen Thanh Dien
- Environment Preservation Research Center, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan.
| | - Yasuhiro Hirai
- Environment Preservation Research Center, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan.
| | - Junichiro Koshiba
- Environment Preservation Research Center, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan.
| | - Shin-Ichi Sakai
- Environment Preservation Research Center, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
13
|
Li M, Zhou Y, Wang G, Zhu G, Zhou X, Gong H, Sun J, Wang L. Evaluation of atmospheric sources of PCDD/Fs, PCBs and PBDEs around an MSWI plant using active and passive air samplers. CHEMOSPHERE 2021; 274:129685. [PMID: 33540302 DOI: 10.1016/j.chemosphere.2021.129685] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/07/2021] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
This study evaluated the spatial distributions and concentrations of polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) in ambient air around a municipal solid waste incineration (MSWI) plant located in eastern China in two sampling campaigns within one year. Twenty high-volume samples and 27 passive air samples were collected from May 2012 to May 2013. The mean sampling rate of the passive sampler was estimated to be 3.8 ± 1.8 m3 d-1 in summer and autumn, while the mean sampling rate was 2.8 ± 1.0 m3 d-1 in winter and spring. Hence, the annual mean sampling rate was approximately 3.2 ± 1.4 m3 d-1. The mean levels of PCDD/Fs, PCBs, PBDEs (excluding BDE-209) and BDE-209 in the passive air samples varied in the ranges of 0.086 ± 0.058-0.76 ± 0.51 pg TEQ m-3, 39 ± 26-170 ± 120 pg m-3, 3.3 ± 2.2-36 ± 24 pg m-3 and 58 ± 39-300 ± 150 pg m-3, respectively. The levels, congener profiles and spatial distributions of PCDD/Fs, PCBs and PBDEs were investigated. The results showed that the concentrations of PCDD/Fs and PCBs decreased with increasing distance from the emission source and that different sampling sites had slightly different effects. However, this trend was opposite to that observed for PBDEs. Moreover, principal component analysis (PCA) demonstrated that the MSWI emission source was the primary factor for PCDD/Fs in ambient air. Further monitoring should be conducted to evaluate the noticeable impact on the environment and human health due to exposure.
Collapse
Affiliation(s)
- Mufei Li
- Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Zhejiang Ecological and Environmental Monitoring Center, Hangzhou, 310012, China
| | - Yanxiao Zhou
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Gaosheng Wang
- Zhejiang Province Chemical Products Quality Supervision and Inspection Station, Hangzhou, 310023, China
| | - Guohua Zhu
- Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Zhejiang Ecological and Environmental Monitoring Center, Hangzhou, 310012, China
| | - Xin Zhou
- Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Zhejiang Ecological and Environmental Monitoring Center, Hangzhou, 310012, China
| | - Hongping Gong
- Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Zhejiang Ecological and Environmental Monitoring Center, Hangzhou, 310012, China
| | - Junjun Sun
- Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Zhejiang Ecological and Environmental Monitoring Center, Hangzhou, 310012, China
| | - Ling Wang
- Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Zhejiang Ecological and Environmental Monitoring Center, Hangzhou, 310012, China
| |
Collapse
|
14
|
A highly sensitive photoelectrochemical aptasensor based on BiVO 4 nanoparticles-TiO 2 nanotubes for detection of PCB72. Talanta 2021; 233:122551. [PMID: 34215054 DOI: 10.1016/j.talanta.2021.122551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 12/27/2022]
Abstract
In this work, a simple and highly sensitive photoelectrochemical (PEC) aptasensor has been developed for detecting PCB72 based on TiO2 nanotubes (NTs) decorated with BiVO4 nanoparticles (NPs). The BiVO4 NPs-TiO2 NTs composites prepared through a simple hydrothermal method exhibit good visible-light adsorption ability, high PEC response and perfect photo-excited stability. The synthesized composites were explored as the photoactive sensing materials for development of a PEC sensing platform for the first time. Here, Au nanoparticles (NPs) were first deposited the composites, and the anti-PCB72 aptamer molecules were immobilized on the Au NPs-deposited BiVO4 NPs-TiO2 NTs. The developed PEC aptasensor exhibits high sensitivity and specificity for PCB72 with a wide linear range from 1 ng/L to 500 ng/L and a low detection limit of 0.23 ng/L. The application of the aptasensor was evaluated by determining PCB 72 in the environment water samples. Thus, a simple and efficient PEC sensing platform was established for detecting the content of PCBs in the environment.
Collapse
|
15
|
Wania F, Shunthirasingham C. Passive air sampling for semi-volatile organic chemicals. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:1925-2002. [PMID: 32822447 DOI: 10.1039/d0em00194e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
During passive air sampling, the amount of a chemical taken up in a sorbent from the air without the help of a pump is quantified and converted into an air concentration. In an equilibrium sampler, this conversion requires a thermodynamic parameter, the equilibrium sorption coefficient between gas-phase and sorbent. In a kinetic sampler, a time-averaged air concentration is obtained using a sampling rate, which is a kinetic parameter. Design requirements for kinetic and equilibrium sampling conflict with each other. The volatility of semi-volatile organic compounds (SVOCs) varies over five orders of magnitude, which implies that passive air samplers are inevitably kinetic samplers for less volatile SVOCs and equilibrium samplers for more volatile SVOCs. Therefore, most currently used passive sampler designs for SVOCs are a compromise that requires the consideration of both a thermodynamic and a kinetic parameter. Their quantitative interpretation depends on assumptions that are rarely fulfilled, and on input parameters, that are often only known with high uncertainty. Kinetic passive air sampling for SVOCs is also challenging because their typically very low atmospheric concentrations necessitate relatively high sampling rates that can only be achieved without the use of diffusive barriers. This in turn renders sampling rates dependent on wind conditions and therefore highly variable. Despite the overall high uncertainty arising from these challenges, passive air samplers for SVOCs have valuable roles to play in recording (i) spatial concentration variability at scales ranging from a few centimeters to tens of thousands of kilometers, (ii) long-term trends, (iii) air contamination in remote and inaccessible locations and (iv) indoor inhalation exposure. Going forward, thermal desorption of sorbents may lower the detection limits for some SVOCs to an extent that the use of diffusive barriers in the kinetic sampling of SVOCs becomes feasible, which is a prerequisite to decreasing the uncertainty of sampling rates. If the thermally stable sorbent additionally has a high sorptive capacity, it may be possible to design true kinetic samplers for most SVOCs. In the meantime, the passive air sampling community would benefit from being more transparent by rigorously quantifying and explicitly reporting uncertainty.
Collapse
Affiliation(s)
- Frank Wania
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada.
| | | |
Collapse
|
16
|
Klinčić D, Dvoršćak M, Jagić K, Mendaš G, Herceg Romanić S. Levels and distribution of polybrominated diphenyl ethers in humans and environmental compartments: a comprehensive review of the last five years of research. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:5744-5758. [PMID: 31933075 DOI: 10.1007/s11356-020-07598-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 01/01/2020] [Indexed: 06/10/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are a class of brominated flame retardants (BFRs), present in the environment, animals, and humans. Their levels, distribution, and human exposure have been studied extensively, and over the last decade, various legal measures have been taken to prohibit or minimize their production and use due to the increasing amount of evidence of their harmful effects on human and animal health.Our aim here was to make a comprehensive and up-to-date review of the levels and distribution of PBDEs in the aquatic environment, air, and soil, in indoor dust, and in humans. To fulfill this, we searched through Web of Science for literature data reported in the last five years (2015-2019) on levels of at least six key PBDE congeners in abovementioned matrices. According to our summarized data, significant PBDE mass concentrations/fractions are still being detected in various sample types across the world, which implies that PBDE contamination is an ongoing problem. Secondary sources of PBDEs like contaminated soils and landfills, especially those with electronic and electrical waste (e-waste), represent a particular risk to the future and therefore require a special attention of scientists.
Collapse
Affiliation(s)
- Darija Klinčić
- Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10001, Zagreb, Croatia
| | - Marija Dvoršćak
- Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10001, Zagreb, Croatia.
| | - Karla Jagić
- Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10001, Zagreb, Croatia
| | - Gordana Mendaš
- Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10001, Zagreb, Croatia
| | - Snježana Herceg Romanić
- Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10001, Zagreb, Croatia
| |
Collapse
|
17
|
Hu Z, Li J, Li B, Zhang Z. Annual changes in concentrations and health risks of PCDD/Fs, DL-PCBs and organochlorine pesticides in ambient air based on the Global Monitoring Plan in São Paulo. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113310. [PMID: 31600699 DOI: 10.1016/j.envpol.2019.113310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 06/10/2023]
Abstract
Ambient air contains a number of persistent organic pollutants (POPs), to which inhalation exposure has drawn worldwide concern. However, information regarding annual changes in the concentrations and health risks of POPs in the ambient air of São Paulo, Brazil, are limited. This study provides comprehensive information on annual changes in polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), dioxin-like polychlorinated biphenyls (DL-PCBs), and 10 groups of organochlorine pesticides (OCPs) in the ambient air of São Paulo between 2010 and 2015 based on the Global Monitoring Plan. The mass concentrations of the studied POPs (PCDD/Fs, DL-PCBs, and OCPs) showed declining trends from 2010 to 2015 (from 2.65 × 10-2 to 1.33 × 10-2 pg m-3, from 9.89 × 10-2 to 3.12 × 10-2 pg m-3, and from 0.313 to 0.100 ng m-3, respectively), which might be due to the decrease of non-intentional emissions. The carcinogenic risk (CR) and non-carcinogenic risk (Non-CR) of the studied POPs were 1.48 × 10-11 to 6.08 × 10-7 and 3.44 × 10-8 to 3.34 × 10-3, respectively, which are lower than the generally accepted threshold values (10-6/10-5 and 1 for CR and Non-CR, respectively), suggesting that the health risks posed by the studied POPs were acceptable. PCDD/Fs had the highest CR (6.08 × 10-8-4.81 × 10-7), whereas the 95th percentile CR of DL-PCBs and nine of the OCPs were lower than 10-7, suggesting that among the studied POPs, PCDD/Fs in the ambient air warrant special attention. The 95th percentile CRs of dichlorodiphenyltrichloroethane (2.30 × 10-8), dieldrin (1.30 × 10-8), hexachlorocyclohexanes (1.05 × 10-8), heptachlor (8.97 × 10-9), hexachlorobenzene (6.47 × 10-9), chlordane (5.89 × 10-9), heptachlor epoxide (1.42 × 10-9), aldrin (1.33 × 10-9), and mirex (2.71 × 10-10) in ambient air were relatively low, suggesting that their threats to human health were negligible. In general, PCDD/Fs, DL-PCBs, and OCPs in the ambient air of São Paulo did not pose serious threats to human health during 2010-2015.
Collapse
Affiliation(s)
- Zhiyong Hu
- Department of Occupational and Environmental Health, School of Public Health, Medical College of SoochowUniversity, Suzhou, China; Center of Disease Control and Prevention, Lishui, China
| | - Jiafu Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Bingyan Li
- Department of Occupational and Environmental Health, School of Public Health, Medical College of SoochowUniversity, Suzhou, China
| | - Zengli Zhang
- Department of Occupational and Environmental Health, School of Public Health, Medical College of SoochowUniversity, Suzhou, China.
| |
Collapse
|
18
|
Abbasi G, Li L, Breivik K. Global Historical Stocks and Emissions of PBDEs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:6330-6340. [PMID: 31083912 DOI: 10.1021/acs.est.8b07032] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The first spatially and temporally resolved inventory of BDE28, 47, 99, 153, 183, and 209 in the anthroposphere and environment is presented here. The stock and emissions of PBDE congeners were estimated using a dynamic substance flow analysis model, CiP-CAFE. To evaluate our results, the emission estimates were used as input to the BETR-Global model. Estimated concentrations were compared with observed concentrations in air from background areas. The global (a) in-use and (b) waste stocks of ∑5BDE(28, 47, 99, 153, 183) and BDE209 are estimated to be (a) ∼25 and 400 kt and (b) 13 and 100 kt, respectively, in 2018. A total of 6 (0.3-13) and 10.5 (9-12) kt of ∑5BDE and BDE209, respectively, has been emitted to the atmosphere by 2018. More than 70% of PBDE emissions during production and use occurred in the industrialized regions, while more than 70% of the emissions during waste disposal occurred in the less industrialized regions. A total of 70 kt of ∑5BDE and BDE209 was recycled within products since 1970. As recycling rates are expected to increase under the circular economy, an additional 45 kt of PBDEs (mainly BDE209) may reappear in new products.
Collapse
Affiliation(s)
- Golnoush Abbasi
- Norwegian Institute for Air Research , Box 100, NO-2027 Kjeller , Norway
| | - Li Li
- Department of Physical and Environmental Sciences , University of Toronto Scarborough , 1265 Military Trail , Toronto , Ontario , Canada M1C 1A4
| | - Knut Breivik
- Norwegian Institute for Air Research , Box 100, NO-2027 Kjeller , Norway
- Department of Chemistry , University of Oslo , Box 1033, NO-0315 Oslo , Norway
| |
Collapse
|
19
|
Pegoraro CN, Wannaz ED. Occurrence of persistent organic pollutants in air at different sites in the province of Córdoba, Argentina. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:18379-18391. [PMID: 31044375 DOI: 10.1007/s11356-019-05088-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 04/04/2019] [Indexed: 06/09/2023]
Abstract
The occurrence of persistent organic pollutants (POPs) and polycyclic aromatic hydrocarbons (PAHs) in the atmosphere of six sites with different emission sources in the province of Córdoba, Argentina, was analyzed. The sites included urban, industrial, agricultural, and mountain areas. Samples were collected using passive air samplers (PAS) consisting of polyurethane foam disks (PUF). Samples were analyzed for 12 PAHs, 31 polychlorinated biphenyls (PCBs), 12 organochlorine pesticides (OCPs), and 11 polybrominated diphenyl ethers (PBDEs). The concentrations of PAHs in the atmosphere were elevated at urban sites and were even higher at the industrial site. With respect to OCPs, it was observed that the concentrations of endosulfan were greater at the agricultural site (AGR) (416 ± 4 pg m-3). For hexachlorocyclohexanes (HCHs), only the alpha isomer was detected and there were minimal differences between the different sampling sites (5.9-13.3 pg m-3). In the case of dieldrin, the highest concentrations (33.6 pg m-3) were found at the mountain site, which may have been due to its use for insect control. Although heptachlor epoxide was not detected, the concentration of heptachlor was significantly higher at the agricultural and downtown sites (∼ 3.6 pg m-3). Regarding DDTs, the isomers p,p'-DDT and p,p'-DDE showed the highest concentrations at the mountain site (ΣDDT 120 ± 12 pg m-3) and downtown site (ΣDDT 157 ± 62 pg m-3). The relationship between the isomers suggested that at the downtown site, the contribution of this pesticide to the environment was recent, probably for the control of diseases vectors. The congener pattern of PBDEs was dominated by BDE-47, and BDE-99 at all sites, with the downtown site having the highest concentrations of compound esters (ΣPBDEs 118 ± 38 pg m-3). Finally, high concentrations of PCBs were found at the industrial site (ΣPCBs 1677 ± 134 pg m-3), and the predominating homologs were 5-Cl and 6-Cl, in contrast to the other sites where PCBs were dominated by 3-Cl and 4-Cl. This is the first study of POPs carried out in the province of Córdoba.
Collapse
Affiliation(s)
- Cesar N Pegoraro
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina.
| | - Eduardo D Wannaz
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET - Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
20
|
Zhu N, Yang Y, Xu H, Wang Q, Wei Y, Li M, Li F, Wang Y, Zhang H, Liu Y, Wang X, Fang Y. Bioaccumulation of decabromodiphenyl ether affects the antioxidant system in the clam Mactra veneriformis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 68:19-26. [PMID: 30861468 DOI: 10.1016/j.etap.2019.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/19/2019] [Accepted: 03/03/2019] [Indexed: 06/09/2023]
Abstract
Antioxidant enzymes play vital roles against oxidative stress induced by decabromodiphenyl ether (BDE-209), being widespread in marine environment. However, the effect of BDE-209 on antioxidant enzymes remains poorly understood in marine bivalves. In this study, the clams Mactra veneriformis were exposed to 0.1, 1, and 10 μg/L BDE-209 for 7 days and then maintained in clean seawater for 3 days as the depuration. The bioaccumulation of BDE-209 and the effects on superoxide dismutase, catalase, and glutathione peroxidase were investigated. BDE-209 accumulation was concentration-dependent and decreased by 36%-52% after recovery. Malondialdehyde contents increased in a time- and dose-dependent manner. mRNA expression and activity of antioxidant enzymes changed with different patterns and recovered after depuration. These results suggested that antioxidant systems were triggered to protect the clams from oxidative damage caused by BDE-209. Thus, this research is helpful in elucidating the effect of BDE-209 on antioxidant system in marine bivalves.
Collapse
Affiliation(s)
- Na Zhu
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Yanyan Yang
- Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Shandong Marine Resource and Environment Research Institute, Yantai, 264006, China
| | - Hua Xu
- Yantai Environmental Monitoring Center, Yantai, 264000, China
| | - Qing Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Yanyan Wei
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Mingzhu Li
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Fan Li
- Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Shandong Marine Resource and Environment Research Institute, Yantai, 264006, China
| | - Yiqi Wang
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Huawei Zhang
- Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Shandong Marine Resource and Environment Research Institute, Yantai, 264006, China
| | - Yihao Liu
- Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Shandong Marine Resource and Environment Research Institute, Yantai, 264006, China
| | - Xiaomeng Wang
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Yan Fang
- School of Agriculture, Ludong University, Yantai, 264025, China.
| |
Collapse
|
21
|
Shi C, Hu Y, Kobayashi T, Zhang N, Zhang Z, Kuramochi H, Matsukami H, Zhang Z, Xu KQ. Distribution characteristics of poly-brominated diphenyl ethers between water and dissolved organic carbon from anaerobic digestate: Effects of digestion conditions. CHEMOSPHERE 2019; 223:358-365. [PMID: 30784742 DOI: 10.1016/j.chemosphere.2019.02.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/12/2019] [Accepted: 02/12/2019] [Indexed: 06/09/2023]
Abstract
It is becoming increasingly urgent to investigate the partition coefficients (expressed as log KDOC values) of polybrominated diphenyl ethers (PBDEs) in dissolved organic carbon (DOC) present in wastewater. In the current study, after 72 h of equilibration, the concentrations of four common PBDEs were measured in the presence of four DOC solutions from two laboratories and two full-scale anaerobic digestion plants. Sixteen log KDOCs were determined by calculation and unit conversion. The results for the laboratory samples, such as log KDOCs for 2,2',4,4',5,5'-hexabromodiphenyl ether being 6.38 and 5.46 at different reaction temperatures during the cultivate procedure, suggest that a thermophilic environment promotes the solubility of PBDEs to a greater extent than mesophilic conditions. DOC composition directly influences the solubility of PBDEs, even at the same cultivating temperature: the highest log KDOCs for 2,2',4,4',5,6'-hexabromodiphenyl ether were 6.71 and 6.33 in different full-scale plant digestates. A linear regression with an R2 of 0.9863 was used to construct a model describing the potential relationship between log KDOC and the composition of DOC, which includes proteins, polysaccharides and lipids, and which takes into account the positions of bromine atoms, for use in predicting the log KDOC values of PBDEs in different water systems.
Collapse
Affiliation(s)
- Chen Shi
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Yong Hu
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Takuro Kobayashi
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan.
| | - Nan Zhang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhenyi Zhang
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Hidetoshi Kuramochi
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Hidenori Matsukami
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Zhenya Zhang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Kai-Qin Xu
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| |
Collapse
|
22
|
Saini A, Clarke J, Jariyasopit N, Rauert C, Schuster JK, Halappanavar S, Evans GJ, Su Y, Harner T. Flame retardants in urban air: A case study in Toronto targeting distinct source sectors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 247:89-97. [PMID: 30665191 DOI: 10.1016/j.envpol.2019.01.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 05/22/2023]
Abstract
Based on distinct land-use categories, a sampling campaign was carried out at eight locations across Toronto and the Greater Toronto Area in 2016-2017. Source sectors' dependent patterns of atmospheric concentrations of 9 organophosphate esters (OPEs), 9 polybrominated diphenyl ethers (PBDEs) and 5 novel flame retardants (NFRs) showed dominance of OPEs and PBDEs at highly commercialised urban and traffic sites, while NFRs, were dominant at residential sites. Overall, average concentrations of Σ9OPEs (1790 pg/m3) were two orders of magnitude higher than Σ9PBDEs (9.17 pg/m3) and Σ5NFRs (8.14 pg/m3). The atmospheric concentrations of given chemical classes also showed a general trend of lower levels in winter as compared to summer months. Statistically significant negative correlations between the natural logarithm of concentrations and inverse of temperature for some OPEs and PBDEs highlighted the role of volatilization from local sources at given sites as primarily influencing their atmospheric concentrations. Overall, this study adds to the current knowledge of urban settings as a major emitter of the chemicals of emerging concern and their replacements, as well as the ongoing problem of phased out PBDEs due to their presence in existing inventories of commercial/recycled products. It is recommended that long-term monitoring programs targeting flame retardants (FRs) include urban sites, which provide an early indicator of effectiveness of control measures of targeted FRs, while at the same time providing information on emission sources and trends of replacement FR chemicals.
Collapse
Affiliation(s)
- Amandeep Saini
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, Ontario, Canada
| | - Jenna Clarke
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, Ontario, Canada
| | - Narumol Jariyasopit
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, Ontario, Canada; Siriraj Center of Research for Excellence, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Cassandra Rauert
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, Ontario, Canada
| | - Jasmin K Schuster
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, Ontario, Canada
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Greg J Evans
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Ontario, Canada
| | - Yushan Su
- Environmental Monitoring and Reporting Branch, Ontario Ministry of the Environment, Conservation and Parks, Toronto, Ontario, Canada
| | - Tom Harner
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, Ontario, Canada.
| |
Collapse
|
23
|
Zhang F, Peng L, Huang Y, Lin X, Zhou L, Chen J. Chronic BDE-47 Exposure Aggravates Malignant Phenotypes and Chemoresistance by Activating ERK Through ERα and GPR30 in Endometrial Carcinoma. Front Oncol 2019; 9:1079. [PMID: 31737560 PMCID: PMC6834531 DOI: 10.3389/fonc.2019.01079] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 09/30/2019] [Indexed: 02/05/2023] Open
Abstract
Environmental exposure to certain compounds contribute to cell plasticity, tumor progression and even chemoresistance. 2,2',4,4'-tetrabromo diphenyl ether (BDE-47), one of the most frequently detected polybrominated diphenyl ethers (PBDEs) in environmental and biological samples, is a known estrogen disruptor closely associated with the development of hormone-dependent cancers. However, the effect of BDE-47 on endometrial carcinoma (EC), an estrogen-dependent cancer, remains to be elucidated. Mechanisms of estrogen receptor α (ERα) and G-protein-coupled receptor-30 (GPR30) involved in BDE-47 carcinogenesis are yet to be identified. This study aims to investigate the effect of BDE-47 on the invasive phenotype of estrogen-dependent EC cells. BDE-47-treated cells, such as Ishikawa-BDE-47 and HEC-1B-BDE-47 cells, exhibited increased cell viability and enhanced metastatic ability. In vivo studies showed larger tumor volumes and more metastasis in mice injected with Ishikawa-BDE-47 cells compared with parental Ishikawa cells. MTT assay showed that BDE-47 exposure could attenuate sensitivity of EC cells to cisplatin or paclitaxel treatment in vitro. Western blotting revealed overexpression of ERα, GPR30, pEGFR (phosphorylated epidermal growth factor receptor), and pERK (phosphorylated extracellular-regulated protein kinase) in Ishikawa-BDE-47 and HEC-1B-BDE-47 cells. Knockdown of ERα or GPR30 by small interfering RNA reversed the stimulating effect of BDE-47 on cell growth, migration and invasion of EC cells. Additionally, treatment with pEGFR or pERK inhibitor impaired cell viability, migration and invasion in Ishikawa-BDE-47 and HEC-1B-BDE-47 cells. Overall, our results indicate that chronic BDE-47 exposure triggers phenotypic plasticity, promotes progression and even chemoresistance in EC cells, at least in part, via ERα/GPR30 and EGFR/ERK signaling pathways.
Collapse
Affiliation(s)
- Fan Zhang
- Oncology Research Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Lin Peng
- Department of Laboratory Medicine, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Yiteng Huang
- Health Care Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Xueqiong Lin
- Department of Laboratory Medicine, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Li Zhou
- Department of Gynecologic Oncology, Cancer Hospital of Shantou University Medical College, Shantou, China
- *Correspondence: Li Zhou
| | - Jiongyu Chen
- Oncology Research Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou, China
- Jiongyu Chen
| |
Collapse
|
24
|
Muñoz-Arnanz J, Roscales JL, Vicente A, Ros M, Barrios L, Morales L, Abad E, Jiménez B. Assessment of POPs in air from Spain using passive sampling from 2008 to 2015. Part II: Spatial and temporal observations of PCDD/Fs and dl-PCBs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 634:1669-1679. [PMID: 29685685 DOI: 10.1016/j.scitotenv.2018.04.164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 04/11/2018] [Accepted: 04/11/2018] [Indexed: 05/20/2023]
Abstract
Time series (2008-2015) of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (dl-PCBs) in ambient air from the Spanish Monitoring Program were analyzed. A total of 321 samples were collected seasonally each year in 5 urban and 7 background sites by means of passive air sampling. Air concentrations were higher at urban than background sites (urban vs. background concentration ranges): PCDD/Fs (26.9-1010 vs. 20.0-357 fg/m3), non-ortho PCBs (0.113-3.14 vs. 0.042-2.00 pg/m3) and mono-ortho PCBs (0.644-41.3 vs. 0.500-32.8 pg/m3). Results showed significant decreases from 2009 for non-ortho PCBs and PCDD/Fs as well as for WHO2006-TEQs. These declines were sharper, and sometimes only significant, in urban places resulting in converging levels at urban and background sites for these pollutants at the end of the study period. In contrast, mono-ortho PCBs did not show any significant variation but a steady flat temporal behavior in their concentrations, suggesting the existence of different sources between mono-ortho and non-ortho PCBs. Seasonality was observed for air burdens of all these POPs. PCDD/Fs were mostly measured at higher concentrations in colder than in hot seasons, and the opposite was true for dl-PCBs. Seasonal variations for PCDD/Fs appeared to be related to changes in their sources (e.g. domestic heating, open burning) rather than to temperature per se. In contrast, environmental temperature dependent factors (e.g. increased partitioning into the gas phase) drove seasonal variations in dl-PCBs instead of seasonal changes in their sources. Regarding spatial patterns, significant greater levels of PCDD/Fs and dl-PCBs were generally found in cities compared to background areas, pointing out the role of densely populated areas as sources for these pollutants in Spain. As proven by our results, long-term monitoring activities are essential to assess and understand temporal behaviors for these POPs, as well as to evaluate the achievement of Stockholm Convention objectives.
Collapse
Affiliation(s)
- Juan Muñoz-Arnanz
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry, (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Jose L Roscales
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry, (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Alba Vicente
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry, (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - María Ros
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry, (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Laura Barrios
- Statistics Department, Computing Center (SGAI-CSIC), Pinar 19, 28006 Madrid, Spain
| | - Laura Morales
- Laboratory of Dioxins, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18-26, 08034 Barcelona, Spain
| | - Esteban Abad
- Laboratory of Dioxins, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18-26, 08034 Barcelona, Spain
| | - Begoña Jiménez
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry, (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|