1
|
Han J, Choong CE, Jang M, Lee J, Hyun S, Lee WS, Kim M. Causative mechanisms limiting the removal efficiency of short-chain per- and polyfluoroalkyl substances (PFAS) by activated carbon. CHEMOSPHERE 2024; 365:143320. [PMID: 39303790 DOI: 10.1016/j.chemosphere.2024.143320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/23/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Short-chain per and polyfluoroalkyl substances (PFAS) have been found to be relatively high in water treatment systems compared to long-chain PFAS because of the unsatisfactory adsorption efficiency of short-chain PFAS. Knowledge about why short-chain PFAS are less removed by porous carbon is very limited. The study focused on providing causal mechanisms that link the low adsorption of short-chain PFAS and proposing an improved method for removing both short- and long-chain PFAS. The long-chain PFAS with higher hydrophobicity diffused more quickly than the short-chain PFAS due to stronger partitioning driving forces. In the initial adsorption stage, therefore, pores of activated carbon were blocked by long-chain PFAS, which makes it difficult for the short-chain PFAS to enter the internal pores. Although several short-chain PFAS diffuse into the pores, the relatively more hydrophilic short-chain congeners cannot be fully adsorbed on activated carbon due to limited positively charged sites. Moreover, compared to larger particle sizes, smaller activated carbon particles have shorter pore channels near the surface, reducing the risk of pore-blocking and ensuring the pores remain accessible for more efficient adsorption. Additionally, these smaller particles offer a greater external surface area and more functional groups, which enhance the adsorption capacity. It indicates that the smaller particle size of activated carbon would have a positive effect on the short-chain PFAS removal.
Collapse
Affiliation(s)
- Junho Han
- Environmental Planning Institute, Seoul National University, Seoul, 08826, Republic of Korea; Department of Earth and Environmental Science, Rutgers University, New Jersey, 07102, United States
| | - Choe Earn Choong
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea; Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea; Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Junghee Lee
- Ministry of Environment, Hanam-si, Gyeonggi-do, 12902, Republic of Korea
| | - Seunghun Hyun
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Won-Seok Lee
- Yeongsan River Environment Research Center, National Institute of Environmental Research, Gwangju, 61945, Republic of Korea
| | - Minhee Kim
- Ministry of Environment, Hanam-si, Gyeonggi-do, 12902, Republic of Korea.
| |
Collapse
|
2
|
Ramasamy Chandrasekaran P, Chinnadurai J, Lim YC, Chen CW, Tsai PC, Huang PC, Gavahian M, Andaluri G, Dong CD, Lin YC, Ponnusamy VK. Advances in perfluoro-alkylated compounds (PFAS) detection in seafood and marine environments: A comprehensive review on analytical techniques and global regulations. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:424. [PMID: 39316302 DOI: 10.1007/s10653-024-02194-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/25/2024] [Indexed: 09/25/2024]
Abstract
Per- and poly-fluoroalkyl substances (PFAS) are persistent organic pollutants that severely threaten the environment and human health due to their distinct chemical composition, extensive production, widespread distribution, bioaccumulation in nature, and long-term persistence. This review focuses on the occurrence and sources of PFAS in seafood, with a particular emphasis on advanced detection methods viz. nanoparticle-based, biosensor-based, and metal-organic frameworks-based, and mass spectrometric techniques. The challenges associated with these advanced detection technologies are also discussed. Recent research and regulatory updates about PFAS, including hazardous and potential health effects, epidemiological studies, and various risk assessment models, have been reviewed. In addition, the need for global monitoring programs and regulations on PFAS are critically reviewed by underscoring their crucial role in protecting human health and the environment. Further, approaches for reducing PFAS in seafood are highlighted with future innovative remediation directions. Although advanced PFAS analytical methods are available, selectivity, sample preparation, and sensitivity are still significant challenges associated with detection of PFAS in seafood matrices. Moreover, crucial research gaps and solutions to essential concerns are critically explored in this review.
Collapse
Affiliation(s)
- Prasath Ramasamy Chandrasekaran
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung, 811, Taiwan
| | - Jeganathan Chinnadurai
- PhD Program in Life Science, College of Life Science, Kaohsiung Medical University (KMU), Kaohsiung, 807, Taiwan
| | - Yee Cheng Lim
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung, 811, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung, 811, Taiwan
| | - Pei-Chien Tsai
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung, 807, Taiwan
- Department of Computational Biology, Institute of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 602105, India
| | - Po-Chin Huang
- National Institute of Environmental Health Sciences, National Health Research Institutes (NHRI), Miaoli, 350, Taiwan
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan
- Department of Medical Research, China Medical University Hospital (CMUH), China Medical University (CMU), Taichung City, Taiwan
| | - Mohsen Gavahian
- Department of Food Science, Agriculture College, National Pingtung University of Science and Technology (NPUST), Pingtung, 91201, Taiwan
| | - Gangadhar Andaluri
- Civil and Environmental Engineering Department, College of Engineering, Temple University, Philadelphia, USA
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung, 811, Taiwan.
- Institute of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung City, 811, Taiwan.
| | - Yuan-Chung Lin
- Institute of Environmental Engineering, National Sun Yat-Sen University (NSYSU), Kaohsiung, Taiwan.
- Center for Emerging Contaminants Research, National Sun Yat-Sen University, Kaohsiung City, Taiwan.
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung, 807, Taiwan.
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan.
- Department of Food Science, Agriculture College, National Pingtung University of Science and Technology (NPUST), Pingtung, 91201, Taiwan.
- Institute of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung City, 811, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung City, 807, Taiwan.
| |
Collapse
|
3
|
Liang C, He Y, Mo XJ, Guan HX, Liu LY. Universal occurrence of organophosphate tri-esters and di-esters in marine sediments: Evidence from the Okinawa Trough in the East China Sea. ENVIRONMENTAL RESEARCH 2024; 248:118308. [PMID: 38281563 DOI: 10.1016/j.envres.2024.118308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Abstract
Despite numerous data on organophosphate tri-esters (tri-OPEs) in the environment, literatures on organophosphate di-esters (di-OPEs) in field environment, especially marine sediments remain scarce. This study addresses this gap by analyzing 35 abyssal sediment samples from the middle Okinawa Trough in the East China Sea. A total of 25 tri-OPEs and 10 di-OPEs were determined, but 13 tri-OPEs and 2 di-OPEs were nondetectable in any of these sediment samples. The concentrations of ∑12tri-OPE and ∑8di-OPE were 0.108-32.2 ng/g (median 1.11 ng/g) and 0.548-15.0 ng/g (median 2.74 ng/g). Chlorinated (Cl) tri-OPEs were the dominant tri-esters, accounting for 47.5 % of total tri-OPEs on average, whereas chlorinated di-OPEs represented only 19.2 % of total di-OPEs. This discrepancy between the relatively higher percentage of Cl-tri-OPEs and lower abundance of Cl-di-OPEs may be ascribed to the stronger environmental persistence of chlorinated tri-OPEs. Source assessment suggested that di-OPEs were primarily originated from the degradation of tri-OPEs rather than industrial production. Long range waterborne transport facilitated by oceanic currents was an important input pathway for OPEs in sediments from the Okinawa Trough. These findings enhance the understanding of the sources and transport of OPEs in marine sediments, particularly in the Okinawa Trough.
Collapse
Affiliation(s)
- Chan Liang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Yong He
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Gas Hydrate, Guangzhou, 510640, China
| | - Xiao-Jing Mo
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Hong-Xiang Guan
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Submarine Geosciences and Prospecting Techniques, MOE and College of Marine Geosciences, Ocean University of China, Qingdao, 266100, China.
| | - Liang-Ying Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China.
| |
Collapse
|
4
|
Park YT, Chung EY, Chae CH, Lee YH. Association between serum perfluoroalkyl substances concentrations and non-alcoholic fatty liver disease among Korean adults: a cross-sectional study using the National Environmental Health Survey cycle 4. Ann Occup Environ Med 2024; 36:e10. [PMID: 38872635 PMCID: PMC11168940 DOI: 10.35371/aoem.2024.36.e10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/20/2024] [Accepted: 03/28/2024] [Indexed: 06/15/2024] Open
Abstract
Background Perfluoroalkyl substances (PFAS) are widely used in industry and daily life due to their useful properties. They have a long half-life, accumulate in the body, and there is evidence that they are associated with biomarkers of lipid metabolism and liver damage. This may suggest non-alcoholic fatty liver disease (NAFLD) caused by PFAS. However, since there has been no study analyzing the relationship between PFAS and NAFLD in the entire population in Korea. We sought to confirm the relationship between serum PFAS concentration and NAFLD prevalence in Korean adults using the Korean National Environmental Health Survey (KoNEHS) cycle 4. Methods The study was conducted on 2,529 subjects in 2018-2019 among KoNEHS participants. For the diagnosis of NAFLD, the hepatic steatosis index (HSI) was used, and the geometric mean and concentration distribution of serum PFAS were presented. Logistic regression was performed to confirm the increase in the risk of NAFLD due to changes in PFAS concentration, and the odds ratio and 95% confidence interval (CI) were calculated. Results In both adjusted and unadjusted models, an increased odds ratio was observed with increasing serum concentrations of total PFAS and perfluorooctane sulfonate (PFOS) in the non-obese group. In the adjusted model, the odds ratios for serum total PFAS and PFOS were 6.401 (95% CI: 1.883-21.758) and 7.018 (95% CI: 2.688-18.319). Conclusions In this study, a higher risk of NAFLD based on HSI was associated with serum total PFAS, PFOS in non-obese group. Further research based on radiological or histological evidence for NAFLD diagnosis and long-term prospective studies are necessary. Accordingly, it is necessary to find ways to reduce exposure to PFAS in industry and daily life.
Collapse
Affiliation(s)
- Yong Tae Park
- Department of Occupational and Environmental Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Eui Yup Chung
- Department of Occupational and Environmental Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Chang Ho Chae
- Department of Occupational and Environmental Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Young Hoon Lee
- Department of Occupational and Environmental Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| |
Collapse
|
5
|
Wang X, Song F. The neurotoxicity of organophosphorus flame retardant tris (1,3-dichloro-2-propyl) phosphate (TDCPP): Main effects and its underlying mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123569. [PMID: 38369091 DOI: 10.1016/j.envpol.2024.123569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/04/2024] [Accepted: 02/12/2024] [Indexed: 02/20/2024]
Abstract
As a major alternative to the brominated flame retardants, the production and use of organophosphorus flame retardants (OPFRs) are increasing. And tris (1,3-dichloro-2-propyl) phosphate (TDCPP), one of the most widely used OPFRs, is now commonly found in a variety of products, such as building materials, furniture, bedding, electronic equipment, and baby products. TDCPP does not readily degrade in the water and tends to accumulate continuously in the environment. It has been detected in indoor dust, air, water, soil, and human samples. Considered as an emerging environmental pollutant, increasing studies have demonstrated its adverse effects on environmental organisms and human beings, with the nerve system identified as a sensitive target organ. This paper systematically summarized the progress of TDCPP application and its current exposure in the environment, with a focus on its neurotoxicity. In particular, we highlighted that TDCPP can be neurotoxic (including neurodevelopmentally toxic) to humans and animals, primarily through oxidative stress, neuroinflammation, mitochondrial damage, and epigenetic regulation. Additionally, this paper provided an outlook for further studies on neurotoxicity of TDCPP, as well as offered scientific evidence and clues for rational application of TDCPP in daily life and the prevention and control of its environmental impact in the future.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong, 250012, PR China
| | - Fuyong Song
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong, 250012, PR China.
| |
Collapse
|
6
|
Struzina L, Pineda M, Yargeau V. Occurrence and removal of legacy plasticizers and flame retardants through a drinking water treatment plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169333. [PMID: 38097079 DOI: 10.1016/j.scitotenv.2023.169333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 12/18/2023]
Abstract
The occurrence of thirty-four flame retardants and plasticizers throughout treatment steps in a drinking water treatment plant (DWTP) was analyzed to assess removal efficiencies of filtration, ultraviolet (UV) treatment, and chlorination. Legacy compounds and replacements were included to compare their presence and persistence. Twenty-four-hour composite sampling, offset to account for retention time, was performed at a direct filtration DWTP in Montreal, Canada over a three-day period. Polybrominated diphenyl ethers (PBDEs), considered legacy flame retardants, were infrequently detected or at concentrations <1 ng/L. When overall removal efficiencies could be calculated, the removal of ∑7PBDEs was 49 and 94 % for days 2 and 3, respectively. No removal could be calculated on day 1 as PBDEs were only detected in finished drinking water. Higher brominated PBDEs BDE-183 and BDE-154 were only detected in raw water. Organophosphate esters (OPEs), considered replacement flame retardants, were frequently detected in all water samples. The total average concentration of ∑15OPes was 501 ng/L in raw water and 162 ng/L in drinking water, with an average removal efficiency of 67 %. OPEs were mainly removed during filtration, with TCIPP, TDCIPP, and TPHP showing statistically significant removal of 76, 84, and 95 %, respectively. The total average concentration of ∑8plasticizers was 2938 ng/L in raw water and 116 ng/L in drinking water. All plasticizers, except for metabolite MEHP, had significant removal from filtration, and the overall removal of plasticizers ranged from 20 % for DEP to 99 % for DEHP. Drinking water treatment decreases the concentration of these contaminants in drinking water but was less effective in removing flame retardants than plasticizers, as indicated by their higher number of PBDEs detected and higher concentrations of OPEs measured. To our knowledge, it is the first report of the removal of PBDEs, OPE metabolites and plasticizer replacements (DEHA, DIDA, DINCH, DINP) during drinking water treatment.
Collapse
Affiliation(s)
- Leena Struzina
- Department of Chemical Engineering, McGill University, 3610 rue University, Montréal, Québec H3A 0C5, Canada
| | - Marco Pineda
- Department of Chemical Engineering, McGill University, 3610 rue University, Montréal, Québec H3A 0C5, Canada
| | - Viviane Yargeau
- Department of Chemical Engineering, McGill University, 3610 rue University, Montréal, Québec H3A 0C5, Canada.
| |
Collapse
|
7
|
Glassmeyer ST, Burns EE, Focazio MJ, Furlong ET, Gribble MO, Jahne MA, Keely SP, Kennicutt AR, Kolpin DW, Medlock Kakaley EK, Pfaller SL. Water, Water Everywhere, but Every Drop Unique: Challenges in the Science to Understand the Role of Contaminants of Emerging Concern in the Management of Drinking Water Supplies. GEOHEALTH 2023; 7:e2022GH000716. [PMID: 38155731 PMCID: PMC10753268 DOI: 10.1029/2022gh000716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 12/30/2023]
Abstract
The protection and management of water resources continues to be challenged by multiple and ongoing factors such as shifts in demographic, social, economic, and public health requirements. Physical limitations placed on access to potable supplies include natural and human-caused factors such as aquifer depletion, aging infrastructure, saltwater intrusion, floods, and drought. These factors, although varying in magnitude, spatial extent, and timing, can exacerbate the potential for contaminants of concern (CECs) to be present in sources of drinking water, infrastructure, premise plumbing and associated tap water. This monograph examines how current and emerging scientific efforts and technologies increase our understanding of the range of CECs and drinking water issues facing current and future populations. It is not intended to be read in one sitting, but is instead a starting point for scientists wanting to learn more about the issues surrounding CECs. This text discusses the topical evolution CECs over time (Section 1), improvements in measuring chemical and microbial CECs, through both analysis of concentration and toxicity (Section 2) and modeling CEC exposure and fate (Section 3), forms of treatment effective at removing chemical and microbial CECs (Section 4), and potential for human health impacts from exposure to CECs (Section 5). The paper concludes with how changes to water quantity, both scarcity and surpluses, could affect water quality (Section 6). Taken together, these sections document the past 25 years of CEC research and the regulatory response to these contaminants, the current work to identify and monitor CECs and mitigate exposure, and the challenges facing the future.
Collapse
Affiliation(s)
- Susan T. Glassmeyer
- U.S. Environmental Protection AgencyOffice of Research and DevelopmentCincinnatiOHUSA
| | | | - Michael J. Focazio
- Retired, Environmental Health ProgramEcosystems Mission AreaU.S. Geological SurveyRestonVAUSA
| | - Edward T. Furlong
- Emeritus, Strategic Laboratory Sciences BranchLaboratory & Analytical Services DivisionU.S. Geological SurveyDenverCOUSA
| | - Matthew O. Gribble
- Gangarosa Department of Environmental HealthRollins School of Public HealthEmory UniversityAtlantaGAUSA
| | - Michael A. Jahne
- U.S. Environmental Protection AgencyOffice of Research and DevelopmentCincinnatiOHUSA
| | - Scott P. Keely
- U.S. Environmental Protection AgencyOffice of Research and DevelopmentCincinnatiOHUSA
| | - Alison R. Kennicutt
- Department of Civil and Mechanical EngineeringYork College of PennsylvaniaYorkPAUSA
| | - Dana W. Kolpin
- U.S. Geological SurveyCentral Midwest Water Science CenterIowa CityIAUSA
| | | | - Stacy L. Pfaller
- U.S. Environmental Protection AgencyOffice of Research and DevelopmentCincinnatiOHUSA
| |
Collapse
|
8
|
Nyström-Kandola J, Ahrens L, Glynn A, Johanson G, Benskin JP, Gyllenhammar I, Lignell S, Vogs C. Low concentrations of perfluoroalkyl acids (PFAAs) in municipal drinking water associated with serum PFAA concentrations in Swedish adolescents. ENVIRONMENT INTERNATIONAL 2023; 180:108166. [PMID: 37708812 DOI: 10.1016/j.envint.2023.108166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/10/2023] [Accepted: 08/21/2023] [Indexed: 09/16/2023]
Abstract
While highly contaminated drinking water (DW) is a major source of exposure to perfluoroalkyl acids (PFAAs), the contribution of low-level contaminated DW (i.e. < 10 ng/L of individual PFAAs) to PFAA body burdens has rarely been studied. To address this knowledge gap, we evaluated the association between concentrations of perflurooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorohexane sulfonic acid (PFHxS) and perfluorooctane sulfonic acid (PFOS), and their sum (∑4PFAAs) in DW and serum in Swedish adolescents using weighted least squares regression. We paired serum PFAA concentrations in adolescents (age 10-21 years, n = 790) from the dietary survey Riksmaten Adolescents 2016-17 (RMA) with mean PFAA concentrations in water samples collected in 2018 from waterworks (n = 45) supplying DW to the participant residential and school addresses. The median concentrations of individual PFAAs in DW were < 1 ng/L. Median concentrations of PFNA and PFHxS in serum were < 1 ng/g, while those of PFOA and PFOS were 1-2 ng/g. Significant positive associations between PFAA concentrations in DW and serum were found for all four PFAAs and ∑4PFAAs, with estimated serum/DW concentration ratios ranging from 210 (PFOA) to 670 (PFHxS), taking exposure from sources other than DW (background) into consideration. The mean concentrations of PFHxS and ∑4PFAA in DW that would likely cause substantially elevated serum concentrations above background variation were estimated to 0.9 ng/L and 2.4 ng/L, respectively. The European Food Safety Authority has determined a health concern concentration of 6.9 ng ∑4PFAAs/mL serum. This level was to a large degree exceeded by RMA participants with DW ∑4PFAA concentrations above the maximum limits implemented in Denmark (2 ng ∑4PFAAs/L) and Sweden (4 ng ∑4PFAAs/L) than by RMA participants with DW concentrations below the maximum limits. In conclusion, PFAA exposure from low-level contaminated DW must be considered in risk assessment for adolescents.
Collapse
Affiliation(s)
- Jennifer Nyström-Kandola
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences (SLU), P.O. Box 7028, SE-750 07 Uppsala, Sweden.
| | - Lutz Ahrens
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), P.O. Box 7050, SE-750 07 Uppsala, Sweden
| | - Anders Glynn
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences (SLU), P.O. Box 7028, SE-750 07 Uppsala, Sweden
| | - Gunnar Johanson
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences (SLU), P.O. Box 7028, SE-750 07 Uppsala, Sweden; Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, P.O. Box 210, SE 171 77 Stockholm, Sweden
| | - Jonathan P Benskin
- Department of Environmental Science, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Irina Gyllenhammar
- Department of Risk and Benefit Assessment, Swedish Food Agency, P.O. Box 622, SE-751 26 Uppsala, Sweden
| | - Sanna Lignell
- Department of Risk and Benefit Assessment, Swedish Food Agency, P.O. Box 622, SE-751 26 Uppsala, Sweden
| | - Carolina Vogs
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences (SLU), P.O. Box 7028, SE-750 07 Uppsala, Sweden
| |
Collapse
|
9
|
Mojiri A, Zhou JL, Ozaki N, KarimiDermani B, Razmi E, Kasmuri N. Occurrence of per- and polyfluoroalkyl substances in aquatic environments and their removal by advanced oxidation processes. CHEMOSPHERE 2023; 330:138666. [PMID: 37068615 DOI: 10.1016/j.chemosphere.2023.138666] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/15/2023] [Accepted: 04/10/2023] [Indexed: 05/14/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS), one of the main categories of emerging contaminants, are a family of fluorinated organic compounds of anthropogenic origin. PFAS can endanger the environment and human health because of their wide application in industries, long-term persistence, unique properties, and bioaccumulation potential. This study sought to explain the accumulation of different PFAS in water bodies. In aquatic environments, PFAS concentrations range extensively from <0.03 (groundwater; Melbourne, Australia) to 51,000 ng/L (Groundwater, Sweden). Additionally, bioaccumulation of PFAS in fish and water biota has been stated to range from 0.2 (Burbot, Lake Vättern, Sweden) to 13,900 ng/g (Bluegill samples, U.S.). Recently, studies have focused on PFAS removal from aqueous solutions; one promising technique is advanced oxidation processes (AOPs), including microwaves, ultrasound, ozonation, photocatalysis, UV, electrochemical oxidation, the Fenton process, and hydrogen peroxide-based and sulfate radical-based systems. The removal efficiency of PFAS ranges from 3% (for MW) to 100% for UV/sulfate radical as a hybrid reactor. Therefore, a hybrid reactor can be used to efficiently degrade and remove PFAS. Developing novel, efficient, cost-effective, and sustainable AOPs for PFAS degradation in water treatment systems is a critical area of research.
Collapse
Affiliation(s)
- Amin Mojiri
- Department of Civil and Environmental Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima, 739-8527, Hiroshima, Japan.
| | - John L Zhou
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Noriatsu Ozaki
- Department of Civil and Environmental Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima, 739-8527, Hiroshima, Japan
| | - Bahareh KarimiDermani
- Department of Geological Sciences, Hydrogeology, University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Elham Razmi
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Norhafezah Kasmuri
- School of Civil Engineering, College of Engineering, Universiti Teknologi MARA (UiTM), Shah Alam, 40450, Selangor, Malaysia
| |
Collapse
|
10
|
Huang Q, Mao X, Pan F, Hu X, He Z, Wang Y, Wan Y. Organophosphate esters in source, finished, and tap water in Wuhan, China. CHEMOSPHERE 2023; 325:138288. [PMID: 36871801 DOI: 10.1016/j.chemosphere.2023.138288] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
As important plasticizers and flame retardants, organophosphate esters (OPEs) have resulted in the contamination of various water bodies worldwide. However, their removal efficiency by different tap water treatment processes and seasonal variations in drinking water in China are not fully understood. In this study, source (n = 20), finished (n = 20), and tap (n = 165) water samples sourced from the Hanshui and the Yangtze River were collected in Wuhan, central China from July 2018 to April 2019 to measure selected OPE concentrations. The OPE concentrations in the source water samples ranged 10.5-113 ng/L (median: 64.6 ng/L). Most OPEs were not removed effectively by conventional tap water treatment, except for tris(2-chloroisopropyl) phosphate (TCIPP). Interestingly, trimethyl phosphate content was found to increase significantly during chlorination for water sourced from the Yangtze River. The OPEs could be removed more effectively by advanced processes with ozone and activated carbon (maximum removal efficiency of specific OPE was 91.0%). Similar cumulative OPE concentrations (ΣOPEs) values were found for the finished water and tap water in February rather than in July. The ΣOPEs (ng/L) in the tap water ranged 21.2-365 (median: 45.1). TCIPP and tris(2-chloroethyl) phosphate were the predominant OPEs in the studied water samples. Significant seasonal variations in the OPE residues in tap water were observed in this study. OPE exposure via tap water ingestion posed low health risks to human beings. This is the first study reporting the removal efficiencies of OPEs and the seasonal variations in tap water from central China. This is also the first study documenting the occurrence of cresyl diphenyl phosphate and 2,2-bis(chloromethyl)propane-1,3-diyltetrakis (2-chloroethyl) bisphosphate in tap water. Based on currently available data, the contamination of tap water by OPEs is in the order of Korea > eastern China > central China > New York State, the United States. Additionally, this study provides a method involving a trap column, to eliminate OPE contamination from the liquid chromatography system.
Collapse
Affiliation(s)
- Qingzhu Huang
- Institute of Environmental Health, Wuhan Centers for Disease Control & Prevention, Wuhan, Hubei, 430024, PR China.
| | - Xiang Mao
- Institute of Environmental Health, Wuhan Centers for Disease Control & Prevention, Wuhan, Hubei, 430024, PR China.
| | - Feng Pan
- Institute of Environmental Health, Wuhan Centers for Disease Control & Prevention, Wuhan, Hubei, 430024, PR China.
| | - Xun Hu
- Institute of Environmental Health, Wuhan Centers for Disease Control & Prevention, Wuhan, Hubei, 430024, PR China.
| | - Zhenyu He
- Institute of Environmental Health, Wuhan Centers for Disease Control & Prevention, Wuhan, Hubei, 430024, PR China.
| | - Yao Wang
- Institute of Environmental Health, Wuhan Centers for Disease Control & Prevention, Wuhan, Hubei, 430024, PR China.
| | - Yanjian Wan
- Institute of Environmental Health, Wuhan Centers for Disease Control & Prevention, Wuhan, Hubei, 430024, PR China.
| |
Collapse
|
11
|
Zhang X, Bi Y, Fu M, Zhang X, Lei B, Huang X, Zhao Z. Organophosphate tri- and diesters in source water supply and drinking water treatment systems of a metropolitan city in China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:2401-2414. [PMID: 35976479 DOI: 10.1007/s10653-022-01333-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
The water contaminations with organophosphate triesters (tri-OPEs) and diesters (di-OPEs) have recently provoked concern. However, the distributions of these compounds in natural water sources and artificial water treatment facilities are poorly characterized. A comprehensive study was therefore performed to measure their concentrations in a water source, a long-distance water pipeline, and a drinking water treatment plant (DWTP). Eight tri-OPEs and 3 di-OPEs were found to be widely distributed, with total concentrations in source water and pipelines ranging from 290.6 to 843.9 ng/L. The most abundant pollutants were tris(1-chloro-2-propyl) phosphate (TCPP), triethyl phosphate, tri-n-butyl phosphate (TnBP), and diphenyl phosphate (DPhP). Di-OPEs appeared to be removed less efficiently in the DWTP than the parent tri-OPEs, and the elimination efficiencies of tri-OPEs were structure-dependent. Long-distance pipeline transportation had no significant effect on the distributions of tri- and di-OPEs. Statistical analysis suggested that the sources of di-OPEs and the corresponding tri-OPEs differed, as did those of DPhP and di-n-butyl phosphate. A risk analysis indicated that tri-OPEs present limited ecological risks that are mainly due to TnBP and TCPP, and that the human health risks of tri-OPEs are negligible. However, di-OPEs (especially DPhP) may increase these risks. Further studies on the risks posed by di-OPEs in aquatic environments are therefore needed.
Collapse
Affiliation(s)
- Xiaolan Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yuhao Bi
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Minghui Fu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Xinyu Zhang
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Bingli Lei
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Xin Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Zhenzhen Zhao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
12
|
Fernández-Arribas J, Moreno T, Eljarrat E. Human exposure to organophosphate esters in water and packed beverages. ENVIRONMENT INTERNATIONAL 2023; 175:107936. [PMID: 37088006 DOI: 10.1016/j.envint.2023.107936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
Drinks are an essential part of human diet, which makes them a source of human exposure to plasticizers such as organophosphate esters (OPEs). The current study provides new information about sixteen OPE levels in 75 different samples (tap water, packed water, cola drinks, juice, wine and hot drinks). Tap water mean levels (40.9 ng/L) were statistically higher than packed water mean levels (4.82 ng/L), mainly due to the contribution of tris(2-chloroisopropyl) phosphate (TCIPP) and tris(2-butoxyethyl) phosphate (TBOEP) that may come from PVC water pipes. Over 90% of samples presented at least one OPE, where regular cola drinks had the highest mean concentrations (2876 ng/L). There was a significantly higher presence of OPEs in added sugar beverages than sugar free drinks, especially for 2-ethylhexyl diphenyl phosphate (EHDPP), which might be related not only to packaging materials but to the added sugar content. Estimated daily intakes (EDIs) in normal and high-exposure scenarios were 2.52 ng/kg bw/day and 7.43 ng/kg bw/day, respectively. Human risk associated with beverages ingestion showed regular cola drinks, juice and tap water as the groups with the highest hazard quotients (HQs). Although OPE exposure was below to safety limits, it should be noted that EHDPP values for regular cola group must be cause of concern, and other routes of exposure such as food ingestion or air inhalation should be also considered.
Collapse
Affiliation(s)
- Julio Fernández-Arribas
- Institute of Environmental Assessment and Water Research (IDAEA)-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Teresa Moreno
- Institute of Environmental Assessment and Water Research (IDAEA)-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Ethel Eljarrat
- Institute of Environmental Assessment and Water Research (IDAEA)-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain.
| |
Collapse
|
13
|
Munoz G, Liu M, Vo Duy S, Liu J, Sauvé S. Target and nontarget screening of PFAS in drinking water for a large-scale survey of urban and rural communities in Québec, Canada. WATER RESEARCH 2023; 233:119750. [PMID: 36827766 DOI: 10.1016/j.watres.2023.119750] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Limited monitoring data are available regarding the occurrence of emerging per- and polyfluoroalkyl substances (PFAS) in drinking water. Here, we validated an analytical procedure for 42 PFAS with individual detection limits of 0.001-0.082 ng/L. We also evaluated how different sample pH conditions, dechlorinating agents, and storage holding times might affect method performance. PFAS were analyzed in tap water samples collected at a large spatial scale in Quebec, Canada, covering 376 municipalities within 17 administrative regions. Target and nontarget screening revealed the presence of 31 and 23 compounds, respectively, representing 24 homolog classes. Overall, 99.3% of the tap water samples were positive for at least one PFAS, and the ƩPFAS ranged from below detection limits to 108 ng/L (95th percentile: 13 ng/L). On average, ƩPFAS was 12 times higher in tap water produced from surface water than groundwater; however, 6 of the top 10 contaminated locations were groundwater-based. Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) had high detection rates (88% and 80%, respectively). PFOS (median: 0.15 ng/L; max: 13 ng/L) and PFOA (median: 0.27 ng/L; max: 8.1 ng/L) remained much lower than current Health Canada guidelines but higher than USEPA's interim updated health advisories. Short-chain (C3-C6) perfluoroalkyl sulfonamides were also recurrent, especially the C4 homolog (FBSA: detection rate of 50%). The 6:2 fluorotelomer sulfonyl propanoamido dimethyl ethyl sulfonate (6:2 FTSO2PrAd-DiMeEtS) was locally detected at ∼15 ng/L and recurred in 8% of our samples. Multiple PFAS that are most likely to originate from aqueous film-forming foams were also reported for the first time in tap water, including X:3 and X:1:2 fluorotelomer betaines, hydroxylated X:2 fluorotelomer sulfonates, N-trimethylammoniopropyl perfluoroalkane sulfonamides (TAmPr-FHxSA and TAmPr-FOSA), and N-sulfopropyl dimethylammoniopropyl perfluoroalkane sulfonamidopropyl sulfonates (N-SPAmP-FPeSAPS and N-SPAmP-FHxSAPS).
Collapse
Affiliation(s)
- Gabriel Munoz
- Department of Chemistry, Université de Montréal, Montreal, QC, Canada
| | - Min Liu
- Department of Civil Engineering, McGill University, Montreal, QC, Canada
| | - Sung Vo Duy
- Department of Chemistry, Université de Montréal, Montreal, QC, Canada
| | - Jinxia Liu
- Department of Civil Engineering, McGill University, Montreal, QC, Canada
| | - Sébastien Sauvé
- Department of Chemistry, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
14
|
Nganda A, Kumar M, Uday V, Srivastava P, Deka BJ, Zitouni F, Mahlknecht J. EI/IOT of PFCs: Environmental impacts/interactions, occurrences, and toxicities of perfluorochemicals. ENVIRONMENTAL RESEARCH 2023; 218:114707. [PMID: 36436554 DOI: 10.1016/j.envres.2022.114707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/26/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Various studies have been conducted on the perfluorochemicals (PFCs) family over the years. These compounds have been sought in various industrial aspects involving the synthesis of everyday utilities due to their broad range of applications. As a result, PFCs have built up in the environment, causing concern. The presence of PFCs in various environmental media, such as terrestrial and marine settings, as well as the mechanisms of transport, bioaccumulation, and physio-chemical interactions of PFCs within plants, aquatic organisms, microplastics, and, ultimately, the human body, are discussed in this review, which draws on a variety of research publications. The interaction of PFCs with proteins, translocation, and adsorption by hydrophobic interactions were observed, and this had an impact on the natural functioning of biological processes, resulting in events such as phylogenic clustering, competitive inhibition, and many others, posing potential hazards to human health and other relevant organisms in the ecosystem. However, further research is needed to have a better knowledge of PFCs and their interactions so that low-cost treatments can be developed to eliminate them. It is therefore, future research should focus on the role of soil matrix as a defensive mechanism for PFCs, as well as the impact of PFC chain length rejection.
Collapse
Affiliation(s)
- Armel Nganda
- Energy Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, 248007, India
| | - Manish Kumar
- Sustainability Cluster, School of Engineering, UPES, Dehradun, 248007, India; Escuela de Ingenieria y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Eugenio Garza Sada 2501 Sur, Monterrey, 64849, Mexico.
| | - Vismaya Uday
- Sustainability Cluster, School of Engineering, UPES, Dehradun, 248007, India
| | - Pankaj Srivastava
- Sustainability Cluster, School of Engineering, UPES, Dehradun, 248007, India
| | - Bhaskar Jyoti Deka
- Department of Hydrology, Indian Institute of Technology Roorkee, Haridwar, Uttarakhand, India 247667
| | - Faiza Zitouni
- College of Engineering, Applied Science University (ASU), Bahrain
| | - Jurgen Mahlknecht
- Escuela de Ingenieria y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Eugenio Garza Sada 2501 Sur, Monterrey, 64849, Mexico
| |
Collapse
|
15
|
Kim JH, Moon N, Lee JW, Mehdi Q, Yun MH, Moon HB. Time-course trend and influencing factors for per- and polyfluoroalkyl substances in the breast milk of Korean mothers. CHEMOSPHERE 2023; 310:136688. [PMID: 36202376 DOI: 10.1016/j.chemosphere.2022.136688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 09/01/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Many studies have reported that neonates and infants are exposed to several per- and polyfluoroalkyl substances (PFASs) via breastfeeding; however, these studies have had small sample sizes. This study aimed to determine the concentrations and time-course trend of PFASs in breast milk and identify influencing factors governing PFAS concentrations. Between July and September (2018), 207 low-risk primiparous women were recruited from a lactation counseling clinic in Korea and their breast milk samples were tested for 14 PFASs, including four perfluoroalkyl sulfonic acids. A questionnaire survey, comprising 84 questions covering the women's demographic, obstetrical, dietary, lifestyle, behavioral, and neonatal information, was conducted to investigate associations. Twelve of the 14 PFASs were detectable in breast milk samples. Perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), and perfluorodecanoic acid were detected in 100% of the samples, followed by perfluorohexanesulfonic acid (detection rate: 87%), perfluorononanoic acid (87%), and perfluorohexanoic acid (73%); the median concentrations were 0.05, 0.10, 0.031, 0.007, and 0.033 ng/mL, respectively. The PFAS concentrations in breast milk measured in our study were higher than those reported in other studies or countries. In 12 years, from 2007 to 18, the mean concentration of PFOA in breast milk increased by approximately three times (278%). The major factors associated with PFAS concentrations in the bivariate association analysis were body mass index; living area (non-metropolitan); neonatal age; and frequency of fish, ice cream, and canned food consumption. In the multiple regression model, fish consumption significantly influenced the PFOS concentrations in breast milk (β = 0.88, p = 0.033). Frequently, fish consumption has been analyzed as the main dietary factor related to PFOS concentration. Our findings suggest the need for a comprehensive cohort study on PFAS exposure and its association with infant health.
Collapse
Affiliation(s)
- Ju Hee Kim
- College of Nursing Science, Kyung Hee University, Seoul 02447, South Korea
| | - Nalae Moon
- College of Nursing Science, Kyung Hee University, Seoul 02447, South Korea
| | - Jae-Won Lee
- Department of Marine Science and Convergence Technology, College of Science and Convergence Technology, Hanyang University, Ansan 15588, South Korea
| | - Qaim Mehdi
- Department of Marine Science and Convergence Technology, College of Science and Convergence Technology, Hanyang University, Ansan 15588, South Korea
| | - Myoung-Hee Yun
- Moyusarang Lactation Consultant Clinic, 13590, Seongnam, South Korea
| | - Hyo-Bang Moon
- Department of Marine Science and Convergence Technology, College of Science and Convergence Technology, Hanyang University, Ansan 15588, South Korea.
| |
Collapse
|
16
|
Wang W, Hong X, Zhao F, Wu J, Wang B. The effects of perfluoroalkyl and polyfluoroalkyl substances on female fertility: A systematic review and meta-analysis. ENVIRONMENTAL RESEARCH 2023; 216:114718. [PMID: 36334833 DOI: 10.1016/j.envres.2022.114718] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/21/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVE The reproductive toxicity of perfluoroalkyl and polyfluoroalkyl substances (PFAS) has been verified in both animal and in vitro experiments, however, the association between PFAS and female fertility remains contradictory in population studies. Therefore, in this systematic review and meta-analysis, we evaluated the effects of PFAS on female fertility based on population evidence. METHODS Electronic searches of the Web of Science, PubMed, The Cochrane Library, and Embase databases were conducted (from inception to March 2022) to collect observational studies related to PFAS and female fertility. Two evaluators independently screened the literature, extracted information and evaluated the risk of bias for the included studies, meta-analysis was performed using R software. RESULTS A total of 5468 records were searched and 13 articles fully met the inclusion criteria. Meta-analysis showed that perfluorooctanoic acid (PFOA) exposure was negatively associated with the female fecundability odds ratio (FOR = 0.88, 95% confidence interval (Cl) [0.78; 0.98]) and positively associated with the odds ratio for infertility (OR = 1.33, 95%Cl [1.03; 1.73]). Perfluorooctane sulfonate (PFOS) exposure was negatively associated with the fecundability odds ratio (FOR = 0.94, 95% CI [0.90; 0.98]). Pooled effect values for perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), and perfluorohexane sulfonate (PFHxS) exposure did not find sufficient evidence for an association with female fertility. CONCLUSION Based on the evidence provided by the current study, increased levels of PFAS exposure are associated with reduced fertility in women, this was characterized by a reduction in fecundability odds ratio and an increase in odds ratio for infertility. This finding could partially explain the decline in female fertility and provide insight into risk assessment when manufacturing products containing PFAS.
Collapse
Affiliation(s)
- Wei Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Xiang Hong
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Fanqi Zhao
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Jingying Wu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Bei Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, Jiangsu, China.
| |
Collapse
|
17
|
Liang C, Mo XJ, Xie JF, Wei GL, Liu LY. Organophosphate tri-esters and di-esters in drinking water and surface water from the Pearl River Delta, South China: Implications for human exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120150. [PMID: 36103943 DOI: 10.1016/j.envpol.2022.120150] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Some organophosphate di-esters (di-OPEs) have been found to be more toxic than their respective tri-esters. The environmental occurrence of di-OPEs remains largely unclear. A total of 106 water samples, including 56 drinking water (bottled, barreled, and tap water) and 50 surface water (lake and river) samples were collected and analyzed for 10 organophosphate tri-esters (tri-OPEs) and 7 di-OPEs. The concentrations (range (median)) of ∑7di-OPE were 2.8-22 (9.7), 1.1-5.8 (2.6), 3.7-250 (120), 13-410 (220), and 92-930 (210) ng/L in bottled water, barreled water, tap water, lake water, and river water, respectively. In all types of water samples, tris(1-chloro-2-propyl) phosphate was the dominant tri-OPE compound. Diphenyl phosphate was the predominant di-OPE compound in tap water and surface water, while di-n-butyl phosphate and bis(2-ethylhexyl) phosphate was the dominant compound in bottled water and barreled water, respectively. Source analysis suggested diverse sources of di-OPEs, including industrial applications, effluents of municipal wastewater treatment plants, degradation from tri-OPEs during production/usage and under natural environmental conditions. The non-carcinogenic and carcinogenic risks of OPEs were lower than the theoretical threshold of risk, indicating the human health risks to OPEs via drinking water consumption were negligible. More studies are needed to explore environmental behaviors of di-OPEs in the aquatic environment and to investigate ecological risks.
Collapse
Affiliation(s)
- Chan Liang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Xiao-Jing Mo
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Jiong-Feng Xie
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Gao-Ling Wei
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Liang-Ying Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China.
| |
Collapse
|
18
|
Mohammadi A, Dobaradaran S, Schmidt TC, Malakootian M, Spitz J. Emerging contaminants migration from pipes used in drinking water distribution systems: a review of the scientific literature. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:75134-75160. [PMID: 36127528 DOI: 10.1007/s11356-022-23085-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 09/14/2022] [Indexed: 06/15/2023]
Abstract
Migration of emerging contaminants (ECs) from pipes into water is a global concern due to potential human health effects. Nevertheless, a review of migration ECs from pipes into water distribution systems is presently lacking. This paper reviews, the reported occurrence migration of ECs from pipes into water distribution systems in the world. Furthermore, the results related to ECs migration from pipes into water distribution systems, their probable sources, and their hazards are discussed. The present manuscript considered the existing reports on migration of five main categories of ECs including microplastics (MPs), bisphenol A (BPA), phthalates, nonylphenol (NP), perfluoroalkyl, and polyfluoroalkyl substances (PFAS) from distribution network into tap water. A focus on tap water in published literature suggests that pipes type used had an important role on levels of ECs migration in water during transport and storage of water. For comparison, tap drinking water in contact with polymer pipes had the highest mean concentrations of reviewed contaminants. Polyvinyl chloride (PVC), polyamide (PA), polypropylene (PP), polyethylene (PE), and polyethylene terephthalate (PET) were the most frequently detected types of microplastics (MPs) in tap water. Based on the risk assessment analysis of ECs, levels of perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluorohexane sulfonate (PFHxS), and perfluorooctane sulfonate (PFOS) were above 1, indicating a potential non-carcinogenic health risk to consumers. Finally, there are still scientific gaps on occurrence and migration of ECs from pipes used in distribution systems, and this needs more in-depth studies to evaluate their exposure hazards on human health.
Collapse
Affiliation(s)
- Azam Mohammadi
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran.
- Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany.
- Systems Environmental Health and Energy Research Center, Boostan 19 Alley, Imam Khomeini Street, Bushehr, 7514763448, Iran.
| | - Torsten C Schmidt
- Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
- IWW Water Centre, Moritzstraße 26, 45476, Mülheim an der Ruhr, Germany
- Centre for Water and Environmental Research (ZWU) Universitätsstraße 5, 45141, Essen, Germany
| | - Mohammad Malakootian
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Jörg Spitz
- Akademie Für Menschliche Medizin GmbH, Krauskopfallee 27, 65388, Schlangenbad, Germany
| |
Collapse
|
19
|
Kang HJ, Baek MJ, Kang JH, Bae YJ. DNA Barcoding of Chironomid Larvae (Diptera: Chironomidae) from Large Rivers in South Korea to Facilitate Freshwater Biomonitoring and Public Health Surveillance. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12035. [PMID: 36231335 PMCID: PMC9566745 DOI: 10.3390/ijerph191912035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Chironomid larvae are among the dominant benthic macroinvertebrates in all types of water systems in South Korea. They may pass through pipes in rivers (raw water) and occur in drinking water, thus creating public health issues. However, little is known about the larval stages of chironomids in large South Korean rivers. Therefore, we examined larval-adult associations in chironomids inhabiting major rivers used as water sources. The larvae were collected in 2015 and 2016 from nine locations along the four largest rivers in South Korea using a Ponar grab. Cytochrome oxidase subunit I (COI) sequences were generated from the larval specimens, and the species were identified by comparing these sequences to those in a newly constructed DNA barcode library of Chironomidae in South Korea. The samples from the four rivers yielded 61 mitochondrial COI sequences belonging to 18 species, including Hydrobaenus kondoi Saether, 1989, which was reported for the first time in the Korean Peninsula. Further, morphological identification of the larvae was conducted, and a pictorial taxonomic key to Chironomidae species in large rivers in South Korea was developed to facilitate freshwater biomonitoring research. Finally, an action flow chart was created for the rapid identification of chironomid larvae in infested drinking water or water purification facilities.
Collapse
Affiliation(s)
- Hyo Jeong Kang
- Department of Life Science, Graduate School, Korea University, Seoul 02841, Korea
| | - Min Jeong Baek
- National Institute of Biological Resources, Incheon 22689, Korea
| | - Ji Hyoun Kang
- Korean Entomological Institute, Korea University, Seoul 02841, Korea
| | - Yeon Jae Bae
- Korean Entomological Institute, Korea University, Seoul 02841, Korea
- Department of Environmental Science and Ecological Engineering, College of Life Sciences, Korea University, Seoul 02841, Korea
| |
Collapse
|
20
|
Struzina L, Pineda Castro MA, Kubwabo C, Siddique S, Zhang G, Fan X, Tian L, Bayen S, Aneck-Hahn N, Bornman R, Chevrier J, Misunis M, Yargeau V. Occurrence of legacy and replacement plasticizers, bisphenols, and flame retardants in potable water in Montreal and South Africa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 840:156581. [PMID: 35697219 DOI: 10.1016/j.scitotenv.2022.156581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/05/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
The occurrence of thirty-nine contaminants including plasticizers, bisphenols, and flame retardants in potable water from Montreal and South Africa was analyzed to determine their presence and concentrations in different water sources. In Montreal, five bottled water (BW) brands and three drinking water treatment plants (DWTP) were included. In South Africa, water was sampled from one urban DWTP located in Pretoria, Gauteng, and one rural DWTP located in Vhembe, along with water from the same rural DWTP which had been stored in small and large plastic containers. A combination of legacy compounds, typically with proven toxic effects, and replacement compounds was investigated. Bisphenols, Dechlorane-602, Dechlorane-603, and s-dechlorane plus (s-DP) were not detected in any water samples, and a-dechlorane plus (a-DP) was only detected in one sample from Pretoria at a concentration of 1.09 ng/L. Lower brominated polybrominated diphenyl ethers (PBDE)s were detected more frequently than higher brominated PBDEs, always at low concentrations of <2 ng/L, and total PBDE levels were statistically higher in South Africa than in Montreal. Replacement flame retardants, organophosphate esters (OPEs), were detected at statistically higher concentrations in Montreal's BW (68.56 ng/L), drinking water (DW) (421.45 ng/L) and Vhembe (198.33 ng/L) than legacy PBDEs. Total OPE concentrations did not demonstrate any geographical trend; however, levels were statistically higher in Montreal's DW than Montreal's BW. Plasticizers were frequently detected in all samples, with legacy compounds DEHP, DBP, and replacement DINCH being detected in 100 % of samples with average concentrations ranging from 6.89 ng/L for DEHP in Pretoria to 175.04 ng/L for DINCH in Montreal's DW. Total plasticizer concentrations were higher in Montreal than in South Africa. The replacement plasticizers (DINCH, DINP, DIDA, and DEHA) were detected at similar frequencies and concentrations as legacy plasticizers (DEHP, DEP, DBP, MEHP). For the compounds reported in earlier studies, the concentrations detected in the present study were similar to other locations. These compounds are not currently regulated in drinking water but their frequent detection, especially OPEs and plasticizers, and the presence of replacement compounds at similar or higher levels than their legacy compounds demonstrate the importance of further investigating the prevalence and the ecological or human health effects of these compounds.
Collapse
Affiliation(s)
- Leena Struzina
- Department of Chemical Engineering, McGill University, Quebec, Canada
| | | | - Cariton Kubwabo
- Exposure and Biomonitoring Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Shabana Siddique
- Exposure and Biomonitoring Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Gong Zhang
- Exposure and Biomonitoring Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Xinghua Fan
- Exposure and Biomonitoring Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Lei Tian
- Department of Food Science and Agricultural Chemistry, McGill University, Quebec, Canada
| | - Stephane Bayen
- Department of Food Science and Agricultural Chemistry, McGill University, Quebec, Canada
| | - Natalie Aneck-Hahn
- School of Health Systems and Public Health, University of Pretoria, Private Bag X323, Arcadia, 0007 Pretoria, South Africa
| | - Riana Bornman
- School of Health Systems and Public Health, University of Pretoria, Private Bag X323, Arcadia, 0007 Pretoria, South Africa
| | - Jonathan Chevrier
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, Quebec, Canada
| | | | - Viviane Yargeau
- Department of Chemical Engineering, McGill University, Quebec, Canada.
| |
Collapse
|
21
|
Jurikova M, Dvorakova D, Pulkrabova J. The occurrence of perfluoroalkyl substances (PFAS) in drinking water in the Czech Republic: a pilot study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:60341-60353. [PMID: 35420337 DOI: 10.1007/s11356-022-20156-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Drinking water is one of the main contributors to overall human exposure to per- and polyfluoroalkyl substances (PFAS), a broad group of environmental contaminants with arising concerns on the impact on human health; therefore, it is necessary to monitor its quality. Here, we present a solid-phase extraction-based method to determine 22 PFAS in water, using 100 mL of the sample. The instrumental analysis employing an ultra-high-performance liquid chromatography coupled with tandem mass spectrometry achieved low limits of quantification (0.025-0.25 ng/L). The validated method (recoveries 70-120% and repeatabilities ≤ 20% at tested concentrations (0.05, 0.1 and 0.5 ng/L)) was applied to 67 tap water and 31 bottled water samples collected in the Czech Republic. The most abundant compounds were perfluorononanoic acid (88% positives; 0.034-13.3 ng/L) and perfluoroheptanoic acid (23% positives; 0.035-0.106 ng/L), respectively. ∑PFAS in positive samples ranged from 0.029 to 300 ng/L (99% positives, median 2.34 ng/L) in tap water data and 0.033 to 4.48 ng/L (32% positives, median 0.097 ng/L) in bottled water samples. Current-use fluoroalkyl ethers, dodecafluoro-3H-4,8-dioxanonanoate and 11-chloroeicosafluoro-3-oxaundecane-1-sulfonate, were occasionally detected in tap. Based on the median data, PFAS intake by an adult from a tap or bottled water represented units of % of the tolerable weekly intake set by the European Food Safety Authority and therefore did not represent a severe risk. The described method and obtained first data on PFAS in the Czech drinking water provided a solid basis for an ongoing national study on the presence of PFAS in tap water.
Collapse
Affiliation(s)
- Martina Jurikova
- Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, University of Chemistry and Technology, Prague, Technicka 3, Prague, 166 28, Czech Republic
| | - Darina Dvorakova
- Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, University of Chemistry and Technology, Prague, Technicka 3, Prague, 166 28, Czech Republic
| | - Jana Pulkrabova
- Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, University of Chemistry and Technology, Prague, Technicka 3, Prague, 166 28, Czech Republic.
| |
Collapse
|
22
|
Han J, Tian J, Feng J, Guo W, Dong S, Yan X, Su X, Sun J. Spatiotemporal distribution and mass loading of organophosphate flame retardants (OPFRs) in the Yellow River of China (Henan segment). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118000. [PMID: 34482244 DOI: 10.1016/j.envpol.2021.118000] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
During three sampling periods in 2014, systematic investigations were conducted into contamination profiles of ten organophosphate flame retardants (OPFRs) in both suspended particulate phase and water phase in the Yellow River (Henan Area). This research shows that OPFRs exist at lower concentrations in the suspended phase than in the water phase. The median concentration of 10 OPFRs (∑10OPFRs) in the suspended particulate phase was 62.5 ng/g (fluctuating from ND to 6.17 × 103 ng/g, dw), while their median concentration in the water phase was 109 ng/L (fluctuating from 35.6 to 469 ng/L). Among the selected 10 OPFRs, triethylphosphate (TEP), tris(1-chloro-2-propyl) phosphate (TCPP), and tris(2-chloroethyl) phosphate (TCEP) were the predominant compounds in the water phase (occupying 91.6% of the ∑10OPFRs), while TCPP, TCEP, and tri-o-tolyl phosphate (o-TCP) were the most common in the suspended particulate phase, accounting for 90.1% of the ∑10OPFRs. Across the three sampling periods, there was no significant seasonable variation for OPFRs either in the water phase or in the suspended particulate phase, except for TCEP and TCPP in the water phase. Compared with research findings relating to concentrations of OPFRs around China and abroad, the OPFRs of the Yellow River (Henan Area) in the water phase were at a moderate level. Suspended particles (SS) had a very important impact on the transportation of OPFRs in the studied area, with about 83.9% of ∑10OPFRs inflow attributed to SS inflow and about 81.7% of ∑10OPFRs outflow attributed to SS outflow. The total annual inflow and outflow of OPFRs were 7.72 × 104 kg and 6.62 × 104 kg in the studied area, respectively.
Collapse
Affiliation(s)
- Jing Han
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan, 453007, PR China
| | - Jian Tian
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan, 453007, PR China
| | - Jinglan Feng
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan, 453007, PR China.
| | - Wei Guo
- Department of Chemistry, Xinxiang Medical University, Henan, 453003, PR China
| | - Shuying Dong
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan, 453007, PR China
| | - Xu Yan
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan, 453007, PR China
| | - Xianfa Su
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan, 453007, PR China
| | - Jianhui Sun
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan, 453007, PR China
| |
Collapse
|
23
|
Yao C, Yang H, Li Y. A review on organophosphate flame retardants in the environment: Occurrence, accumulation, metabolism and toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148837. [PMID: 34246143 DOI: 10.1016/j.scitotenv.2021.148837] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Organophosphate flame retardants (OPFRs), as a substitute for brominated flame retardants (BFRs), are widely used in industrial production and life. The presence of OPFRs in the environment has an adverse effect on the ecological environment system. This review provides comprehensive data for the occurrence of OPFRs and their diester metabolites (OP diesters) in wastewater treatment plants, surface water, drinking water, sediment, soil, air and dust in the environment. In particular, the accumulation and metabolism of OPFRs in organisms and the types of metabolites and metabolic pathways are discussed for animals and plants. In addition, the toxicity of OP triesters and OP diesters in organisms is discussed. Although research on OPFRs has gradually increased in recent years, there are still many gaps to be filled, especially for metabolic and toxicity mechanisms that need in-depth study. This review also highlights the shortcomings of current research and provides suggestions for a basis for future research on OPFRs.
Collapse
Affiliation(s)
- Chi Yao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, HoHai University, Nanjing 210098, China
| | - Hanpei Yang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, HoHai University, Nanjing 210098, China
| | - Ying Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, HoHai University, Nanjing 210098, China.
| |
Collapse
|
24
|
Pilli S, Pandey AK, Pandey V, Pandey K, Muddam T, Thirunagari BK, Thota ST, Varjani S, Tyagi RD. Detection and removal of poly and perfluoroalkyl polluting substances for sustainable environment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 297:113336. [PMID: 34325368 DOI: 10.1016/j.jenvman.2021.113336] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 07/17/2021] [Accepted: 07/18/2021] [Indexed: 06/13/2023]
Abstract
PFAs (poly and perfluoroalkyl compounds) are hazardous and bioaccumulative chemicals that do not readily biodegrade or neutralize under normal environmental conditions. They have various industrial, commercial, domestic and defence applications. According to the Organization for Economic Co-operation and Development, there are around 4700 PFAs registered to date. They are present in every stream of life, and they are often emerging and are even difficult to be detected by the standard chemical methods. This review aims to focus on the sources of various PFAs and the toxicities they impose on the environment and especially on humankind. Drinking water, food packaging, industrial areas and commercial household products are the primary PFAs sources. Some of the well-known treatment methods for remediation of PFAs presented in the literature are activated carbon, filtration, reverse osmosis, nano filtration, oxidation processes etc. The crucial stage of handling the PFAs occurs in determining and analysing the type of PFA and its remedy. This paper provides a state-of-the-art review of determination & tools, and techniques for remediation of PFAs in the environment. Improving new treatment methodologies that are economical and sustainable are essential for excluding the PFAs from the environment.
Collapse
Affiliation(s)
- Sridhar Pilli
- Department of Civil Engineering, National Institute of Technology Warangal, Fathimanagar, Telangana, 506004, India.
| | - Ashutosh Kumar Pandey
- Centre for Energy and Environmental Sustainability-India, Lucknow, 226 029, Uttar Pradesh, India
| | - Vivek Pandey
- Department of Geography, Allahabad Degree College (A.D.C.), Allahabad University, Prayagraj, 211003, Uttar Pradesh, India
| | - Kritika Pandey
- Department of Biotechnology, Dr. Ambedkar Institute of Technology for Handicapped, Kanpur, 208024, Uttar Pradesh, India
| | - Tulasiram Muddam
- Department of Civil Engineering, National Institute of Technology Warangal, Fathimanagar, Telangana, 506004, India
| | - Baby Keerthi Thirunagari
- Department of Civil Engineering, National Institute of Technology Warangal, Fathimanagar, Telangana, 506004, India
| | - Sai Teja Thota
- Department of Civil Engineering, National Institute of Technology Warangal, Fathimanagar, Telangana, 506004, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, 382 010, Gujarat, India.
| | - Rajeshwar Dayal Tyagi
- Chief Scientific Officer, BOSK Bioproducts, 399 Rue Jacquard, Suite 100, Quebec, Canada
| |
Collapse
|
25
|
Xu B, Liu S, Zhou JL, Zheng C, Weifeng J, Chen B, Zhang T, Qiu W. PFAS and their substitutes in groundwater: Occurrence, transformation and remediation. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125159. [PMID: 33951855 DOI: 10.1016/j.jhazmat.2021.125159] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/29/2020] [Accepted: 01/13/2021] [Indexed: 05/27/2023]
Abstract
Poly- and perfluoroalkyl substances (PFAS) are increasingly investigated due to their global occurrence and potential human health risk. The ban on PFOA and PFOS has led to the use of novel substitutes such as GenX, F-53B and OBS. This paper reviews the studies on the occurrence, transformation and remediation of major PFAS i.e. PFOA, PFNA, PFBA, PFOS, PFHxS, PFBS and the three substitutes in groundwater. The data indicated that PFOA, PFBA, PFOS and PFBS were present at high concentrations up to 21,200 ng L-1 while GenX and F-53B were found up to 30,000 ng L-1 and 0.18-0.59 ng L-1, respectively. PFAS in groundwater are from direct sources e.g. surface water and soil. PFAS remediation methods based on membrane, redox, sorption, electrochemical and photocatalysis are analyzed. Overall, photocatalysis is considered to be an ideal technology with low cost and high degradation efficacy for PFAS removal. Photocatalysis could be combined with electrochemical or membrane filtration to become more advantageous. GenX, F-53B and OBS in groundwater treatment by UV/sulfite system and electrochemical oxidation proved effective. The review identified gaps such as the immobilization and recycling of materials in groundwater treatment, and recommended visible light photocatalysis for future studies.
Collapse
Affiliation(s)
- Bentuo Xu
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Shuai Liu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - John L Zhou
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW 2007, Australia
| | - Chunmiao Zheng
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jin Weifeng
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Bei Chen
- Fisheries Research Institute of Fujian, Xiamen 361013, China
| | - Ting Zhang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wenhui Qiu
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
26
|
Gbadamosi MR, Abdallah MAE, Harrad S. A critical review of human exposure to organophosphate esters with a focus on dietary intake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:144752. [PMID: 33540161 DOI: 10.1016/j.scitotenv.2020.144752] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/09/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
Organophosphate esters (OPEs) are common additives in a wide range of commercial and industrial products. Elevated and prolonged exposure to OPEs may induce several adverse effects. This is concerning as they are ubiquitous in air, indoor dust, drinking water, and other environmental matrices. However, information on the presence of OPEs in foodstuffs and consequent health risks remains scant. This review critically evaluates available information on levels and sources of OPEs in food, discusses the relative significance of diet as a pathway of human exposure, identifies knowledge gaps, and suggests directions for future research. For toddlers, dermal uptake from dust ingestion appears the predominant pathway of exposure to chlorinated OPEs, as well as ethylhexyl diphenyl phosphate (EHDPP) and triphenyl phosphate (TPHP). In contrast, diet appears the main pathway of exposure to all eight OPEs considered for adults, and for tri n-butyl phosphate (TnBP), tris 2-ethylhexyl phosphate (TEHP), and tris (2-butoxyethyl) phosphate (TBOEP) for toddlers. While summed exposures via all pathways are within reference dose (RfD) values, they do not include high-end exposure estimates, and for highly-exposed individuals, the margin between exposure and RfD values is smaller. Moreover, our exposure estimates are based on a meta-analysis of multiple exposure assessments conducted over a range of points in space and time. There is an urgent need for assessments of human exposure to OPEs that examine all relevant pathways in a spatially and temporally-consistent fashion. Given food is an important exposure pathway to OPEs, regular monitoring of their presence as well as their metabolites (that may have toxicological significance) in foodstuffs is recommended. While dermal uptake from indoor dust appears an important human exposure pathway, no evaluations exist of exposure via dermal uptake from OPE-containing products such as foam-filled furniture. This review also highlights very few data exist on OPEs in drinking water.
Collapse
Affiliation(s)
| | | | - Stuart Harrad
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
27
|
Sim W, Choi S, Choo G, Yang M, Park JH, Oh JE. Organophosphate Flame Retardants and Perfluoroalkyl Substances in Drinking Water Treatment Plants from Korea: Occurrence and Human Exposure. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:2645. [PMID: 33807996 PMCID: PMC7967649 DOI: 10.3390/ijerph18052645] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 01/27/2023]
Abstract
In this study, the concentrations of organophosphate flame retardants (OPFR) and perfluoroalkyl substances (PFAS) were investigated in raw water and treated water samples obtained from 18 drinking water treatment plants (DWTPs). The ∑13OPFR concentrations in the treated water samples (29.5-122 ng/L; median 47.5 ng/L) were lower than those in the raw water (37.7-231 ng/L; median 98.1 ng/L), which indicated the positive removal rates (0-80%) of ∑13OPFR in the DWTPs. The removal efficiencies of ∑27PFAS in the DWTPs ranged from -200% to 50%, with the ∑27PFAS concentrations in the raw water (4.15-154 ng/L; median 32.0 ng/L) being similar to or lower than those in the treated water (4.74-116 ng/L; median 42.2 ng/L). Among OPFR, tris(chloroisopropyl) phosphate (TCIPP) and tris(2-chloroethyl) phosphate (TCEP) were dominant in both raw water and treated water samples obtained from the DWTPs. The dominant PFAS (perfluorooctanoic acid (PFOA) and perfluorohexanoic acid (PFHxA)) in the raw water samples were slightly different from those in the treated water samples (PFOA, L-perfluorohexane sulfonate (L-PFHxS), and PFHxA). The 95-percentile daily intakes of ∑13OPFR and ∑27PFAS via drinking water consumption were estimated to be up to 4.9 ng/kg/d and 0.22 ng/kg/d, respectively. The hazard index values of OPFR and PFAS were lower than 1, suggesting the risks less than known hazardous levels.
Collapse
Affiliation(s)
- Wonjin Sim
- Education & Research Center for Infrastructure of Smart Ocean City (i-SOC Center), Pusan National University, Busan 46241, Korea;
| | - Sol Choi
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Korea; (S.C.); (G.C.)
| | - Gyojin Choo
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Korea; (S.C.); (G.C.)
- National Fishery Products Quality Management Service, Busan 48943, Korea
| | - Mihee Yang
- Department of Environmental Infrastructure Research, National Institute of Environmental Research, Ministry of Environment, Incheon 22689, Korea; (M.Y.); (J.-H.P.)
| | - Ju-Hyun Park
- Department of Environmental Infrastructure Research, National Institute of Environmental Research, Ministry of Environment, Incheon 22689, Korea; (M.Y.); (J.-H.P.)
| | - Jeong-Eun Oh
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Korea; (S.C.); (G.C.)
| |
Collapse
|
28
|
Kim KY, Ndabambi M, Choi S, Oh JE. Legacy and novel perfluoroalkyl and polyfluoroalkyl substances in industrial wastewater and the receiving river water: Temporal changes in relative abundances of regulated compounds and alternatives. WATER RESEARCH 2021; 191:116830. [PMID: 33476798 DOI: 10.1016/j.watres.2021.116830] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
Concentrations of 28 novel and legacy perfluoroalkyl and polyfluoroalkyl substances (PFASs) in wastewater from 77 industrial plants in the largest industrial complex in Korea were determined. The industrial plants were of eight types (advanced electronic, battery, chemical, general electronic, glass and ceramic, metal, polymer, and textile). PFAS concentrations in river water receiving the wastewater were determined to assess the impact of wastewater from the industrial complex. Only 19 and nine target PFASs were detected in untreated industrial wastewater and river water, respectively. Novel PFASs such as F53B (6:2 chlorinated polyfluoroalkyl ether sulfonate) were not detected. The mean PFASs concentration in industrial wastewater treatment plant effluent was 5.18 µg/L. The mean total PFASs concentration was highest in advanced electronic plant effluent, second highest in general electronic plant effluent, and lowest in battery and chemical plant effluents. Perfluorohexane sulfonate was the dominant homolog, being detected in effluent from plants of all classes and contributing 96% of total discharged PFASs by mass. Perfluorooctane sulfonate (included in the Stockholm Convention) use has decreased markedly since previous studies. Perfluorooctane sulfonate has largely been replaced by PFASs with fewer than seven carbon atoms. A similar change was found for river water receiving industrial wastewater.
Collapse
Affiliation(s)
- Ki Yong Kim
- Department of Civil and Environmental Engineering, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Mlamuli Ndabambi
- Department of Civil and Environmental Engineering, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Sol Choi
- Department of Civil and Environmental Engineering, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Jeong-Eun Oh
- Department of Civil and Environmental Engineering, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 46241, Republic of Korea.
| |
Collapse
|
29
|
De Silva AO, Armitage JM, Bruton TA, Dassuncao C, Heiger-Bernays W, Hu XC, Kärrman A, Kelly B, Ng C, Robuck A, Sun M, Webster TF, Sunderland EM. PFAS Exposure Pathways for Humans and Wildlife: A Synthesis of Current Knowledge and Key Gaps in Understanding. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:631-657. [PMID: 33201517 PMCID: PMC7906948 DOI: 10.1002/etc.4935] [Citation(s) in RCA: 312] [Impact Index Per Article: 104.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/17/2020] [Accepted: 11/05/2020] [Indexed: 05/20/2023]
Abstract
We synthesize current understanding of the magnitudes and methods for assessing human and wildlife exposures to poly- and perfluoroalkyl substances (PFAS). Most human exposure assessments have focused on 2 to 5 legacy PFAS, and wildlife assessments are typically limited to targeted PFAS (up to ~30 substances). However, shifts in chemical production are occurring rapidly, and targeted methods for detecting PFAS have not kept pace with these changes. Total fluorine measurements complemented by suspect screening using high-resolution mass spectrometry are thus emerging as essential tools for PFAS exposure assessment. Such methods enable researchers to better understand contributions from precursor compounds that degrade into terminal perfluoroalkyl acids. Available data suggest that diet is the major human exposure pathway for some PFAS, but there is large variability across populations and PFAS compounds. Additional data on total fluorine in exposure media and the fraction of unidentified organofluorine are needed. Drinking water has been established as the major exposure source in contaminated communities. As water supplies are remediated, for the general population, exposures from dust, personal care products, indoor environments, and other sources may be more important. A major challenge for exposure assessments is the lack of statistically representative population surveys. For wildlife, bioaccumulation processes differ substantially between PFAS and neutral lipophilic organic compounds, prompting a reevaluation of traditional bioaccumulation metrics. There is evidence that both phospholipids and proteins are important for the tissue partitioning and accumulation of PFAS. New mechanistic models for PFAS bioaccumulation are being developed that will assist in wildlife risk evaluations. Environ Toxicol Chem 2021;40:631-657. © 2020 SETAC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Carla Ng
- University of Pittsburgh, Pittsburgh, PA, USA
| | - Anna Robuck
- University of Rhode Island, Graduate School of Oceanography, Narragansett, RI USA
| | - Mei Sun
- University of North Carolina at Charlotte, Charlotte, NC USA
| | | | | |
Collapse
|
30
|
Lu Y, Hua Z, Chu K, Gu L, Liu Y, Liu X. Distribution behavior and risk assessment of emerging perfluoroalkyl acids in multiple environmental media at Luoma Lake, East China. ENVIRONMENTAL RESEARCH 2021; 194:110733. [PMID: 33434608 DOI: 10.1016/j.envres.2021.110733] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/18/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Perfluoroalkyl acids (PFAAs) are ubiquitous in various environments. This has caused great public concern, particularly in the shallow freshwater lake region, where the lake, rivers, and estuaries form a highly interconnected continuum. However, little is known about the environmental behaviors of PFAAs in the continuum. For the first time, a high-resolution monitoring framework covering the river-estuary-lake continuum of Luoma Lake was built, and the concentrations, sources, and environmental fates of PFAAs were identified and analyzed. The results revealed that the total concentration of PFAAs was at a moderate level in the water and at a high level in the sediment compared to global levels respectively. Perfluorooctanesulfonate (PFOS) was the most abundant PFAA in the continuum. In particular, the ∑PFAA concentration in the particle phase was much higher than that in the sediment phase. Distinct spatial heterogeneities were observed in the behaviors of distribution and the multiphase fate of PFAAs in the continuum, mainly driven by the turbulent mixing during transport, dilution of lake water, and spatial differences of hydrodynamic features and sedimentary properties among the sub-regions. Interestingly, the pH of the sediment and water had significant effects on the water-sediment portioning of PFAAs in contrasting ways. Furthermore, based on the composition of the sediments, four possible migration paths for PFAAs were deduced and the main sources of PFAAs were identified as sewage, domestic, and industrial effluents using the positive matrix factorization model. During the human health assessment, no risk was found under the median exposure scenario; however, under the high exposure scenario, PFAAs posed uncertain risks to human health, which cannot be ignored. This study provides basic information for simulating the fate and transport of PFAAs in the continuum and is significant for developing cost-effective control and remediation strategies in the near future.
Collapse
Affiliation(s)
- Ying Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Zulin Hua
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; National Engineering Research of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing, 210098, China
| | - Kejian Chu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; National Engineering Research of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing, 210098, China.
| | - Li Gu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; National Engineering Research of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing, 210098, China
| | - Yuanyuan Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Xiaodong Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; National Engineering Research of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing, 210098, China
| |
Collapse
|
31
|
Park N, Jeon J. Emerging pharmaceuticals and industrial chemicals in Nakdong River, Korea: Identification, quantitative monitoring, and prioritization. CHEMOSPHERE 2021; 263:128014. [PMID: 33297041 DOI: 10.1016/j.chemosphere.2020.128014] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/30/2020] [Accepted: 08/13/2020] [Indexed: 06/12/2023]
Abstract
The extensive development and use of new anthropogenic chemicals have inevitably led to their presence in aquatic environments. Surface waters affected by sewage effluents have been exposed to these new substances. In the present study, the occurrence of anthropogenic substances, including pharmaceuticals and industrial chemicals, was investigated in one of the major rivers in Korea, the Nakdong River. Furthermore, seasonal variations in their content were determined via annual monitoring. Through the suspect and non-target screening (SNTS) technique, 58 substances were newly identified in the river and integrated in the quantitative monitoring practice. The results revealed that niflumic acid and melamine exhibited the highest median concentrations, i.e., 320 ng/L and 11,000 ng/L, respectively. The results associated with seasonal change revealed that the concentration of a considerable number of substances increased in winter when the flow rate was low. Conversely, some substances exhibited high concentrations in summer (e.g., polyethylene glycol) and spring (e.g., niflumic acid). This was attributed to the seasonal changes in the consumption, prescriptions, or the application of alternative substances. These changes were also reflected by the risk quotient (RQ) values calculated from the concentration and toxicity values. Pharmaceuticals such as telmisartan and carbamazepine and industrial chemicals such as organophosphorus flame retardants (OPFRs) and melamine accounted for approximately 90% of the total RQ. Major substances prioritized using the production of the RQ value and the detection frequency included OPFRs and telmisartan. It is recommended that these results be reflected in future water quality monitoring plans.
Collapse
Affiliation(s)
- Naree Park
- Graduate School of FEED of Eco-Friendly Offshore Structure, Changwon National University, Changwon, Gyeongsangnamdo, 51140, South Korea
| | - Junho Jeon
- Graduate School of FEED of Eco-Friendly Offshore Structure, Changwon National University, Changwon, Gyeongsangnamdo, 51140, South Korea; School of Civil, Environmental and Chemical Engineering, Changwon National University, Changwon, Gyeongsangnamdo, 51140, South Korea; Department of Smart Ocean Environmental Energy, Changwon National University, Changwon, Gyeongsangnamdo, 51140, South Korea.
| |
Collapse
|
32
|
Choi GH, Lee DY, Bruce-Vanderpuije P, Song AR, Lee HS, Park SW, Lee JH, Megson D, Kim JH. Environmental and dietary exposure of perfluorooctanoic acid and perfluorooctanesulfonic acid in the Nakdong River, Korea. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:347-360. [PMID: 32949006 DOI: 10.1007/s10653-020-00721-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 09/09/2020] [Indexed: 05/27/2023]
Abstract
This study performed the first environmental and dietary exposure assessment to explore plant uptake of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) from agricultural soil and irrigation water in the Nakdong River delta, South Korea. Annual average concentrations of total PFOA and PFOS ranged from 0.026 to 0.112 µg L-1 (irrigation water), and from 0.818 to 1.364 µg kg-1 (soil), respectively. PFOA and PFOS hotspots were identified downstream of the Nakdong River and were influenced by seasonal climatic variations. The observed average biennial concentration of the sum of PFOA and PFOS decreased in irrigation water, from 0.112 µg L-1 in 2013 to 0.026 µg L-1 in 2015, suggests that the 2013 Persistent Organic Pollutants Control Act may have helped to reduce levels of PFAS at this location. This study calculated some of the highest plant uptake factors reported to date, with values ranging from 0.962 in green onions to < 0.004 in plums. Leafy vegetables and rice are important components of the Korean diet; these groups had the largest contribution to the estimated dietary intake of PFOA and PFOS, which was calculated at 0.449 and 0.140 ng kg bw -1 day-1, respectively. This corresponded to 66.4% for PFOA and 7.9% for PFOS of the EFSA reference dose (RfD). The dietary intake of PFOA and PFOS from crops alone did not exceed the RfD. However, when the estimated daily intake (EDI) from other sources such as tap water, meat, fish, dairy, and beverages was included in the exposure risk assessment, both of the EDIs to PFOA and PFOS exceeded the RfDs, indicating that there may be a risk to human health. This study concludes that consumption of crops might, therefore, be a significant and underappreciated pathway for human exposure to PFAS.
Collapse
Affiliation(s)
- Geun-Hyoung Choi
- Chemical Safety Division, National Institute of Agriculture Science, RDA, Wanju, 55365, Republic of Korea
| | - Deuk-Yeong Lee
- Department of Agricultural Chemistry, Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Pennante Bruce-Vanderpuije
- Chemical Safety Division, National Institute of Agriculture Science, RDA, Wanju, 55365, Republic of Korea
- CSIR Water Research Institute, P. O. Box AH 38, Achimota, Accra, Ghana
| | - Ah-Reum Song
- Chemical Safety Division, National Institute of Agriculture Science, RDA, Wanju, 55365, Republic of Korea
| | - Hyo-Sub Lee
- Chemical Safety Division, National Institute of Agriculture Science, RDA, Wanju, 55365, Republic of Korea
| | - Sang-Won Park
- Chemical Safety Division, National Institute of Agriculture Science, RDA, Wanju, 55365, Republic of Korea
| | - Jin-Hwan Lee
- Department of Life Resource Industry, Dong-A University, Busan, 49315, Republic of Korea
| | - David Megson
- Ecology and Environment Research Centre, Manchester Metropolitan University, Manchester, M1 5GD, UK
| | - Jin-Hyo Kim
- Department of Agricultural Chemistry, Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
33
|
Yong ZY, Kim KY, Oh JE. The occurrence and distributions of per- and polyfluoroalkyl substances (PFAS) in groundwater after a PFAS leakage incident in 2018. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115395. [PMID: 33035874 DOI: 10.1016/j.envpol.2020.115395] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 05/21/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) concentrations of groundwater in three cities of the Nakdong River Basin in South Korea were quantified to investigate PFAS contamination and the effect of PFAS leakage incident that occurred in the study area in 2018. Groundwater PFASs concentration ranged from non-detectable (N.D.) to 36.9 ng/L (mean 14.1 ng/L), in which, perfluorooctanoic acid (PFOA), perfluorohexanoic acid (PFHxA), perfluoropentanoic acid (PFPeA), and perfluorohexane sulfonate (PFHxS) were commonly observed. Compared to long-chain (C ≥ 8) PFAS, short-chain (<C8) PFAS are more commonly detected in groundwater. Statistical differences were found between the groundwater obtained from different land use. PFAS detected in groundwater from industrial land use were significant different (p<0.01) than other land usages. Spatial difference of PFAS concentrations and distributions in groundwater were also found. PFAS concentrations in groundwater at the furthest downstream area (mean 26.4 ng/L) were the highest followed by the middle reaches (mean 16.2 ng/L), and the upstream area (mean 4.3 ng/L). PFHxS, which was detected dominantly in the middle reach areas, contributed 51% of the total PFAS concentration, but was not detected in the upstream area. There was no health risk by drinking groundwater but found the effect of PFHxS leakage incident on groundwater.
Collapse
Affiliation(s)
- Zhi Yuan Yong
- Department of Civil and Environmental Engineering, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Ki Yong Kim
- Department of Civil and Environmental Engineering, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Jeong-Eun Oh
- Department of Civil and Environmental Engineering, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan, 46241, Republic of Korea.
| |
Collapse
|
34
|
Kim KY, Ekpe OD, Lee HJ, Oh JE. Perfluoroalkyl substances and pharmaceuticals removal in full-scale drinking water treatment plants. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123235. [PMID: 32947684 DOI: 10.1016/j.jhazmat.2020.123235] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/04/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
The concentrations of 14 perfluoroalkyl substances (PFASs) and 46 pharmaceuticals in raw water and drinking water from five drinking water treatment plants were determined to assess removal of the chemicals during treatment. 10 out of 14 PFASs were detected in the raw and drinking water samples. The mean perfluorohexane sulfonate concentrations in raw and drinking water were the highest with levels of 106 and 69.6 ng L-1, respectively and the other PFAS concentrations were lower. The ∑14PFAS and individual PFAS removal efficiencies for the treatment plants were -36.9% to 70.7% (mean 31.3%) but the granular activated carbon process removed >80% of the total amount of long-chain PFASs that was removed. The removal efficiency increased as the perfluorocarbon chain length increased. The removal efficiencies increased by 14.2% and 11.2% from the shortest to the longest perfluoroalkyl carboxylic acid and perfluoroalkyl sulfonic acid chain lengths, respectively. 20 out of 46 pharmaceuticals were detected in the raw water samples, but most were removed completely during treatment. Only caffeine, carbamazepine, crotamiton, fenbendazole, metformin, and sulfamethoxazole were detected in the drinking water samples. Oxidation processes contributed >90% of the overall treatment plant removal efficiency except for metformin.
Collapse
Affiliation(s)
- Ki Yong Kim
- Department of Civil and Environmental Engineering, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Okon Dominic Ekpe
- Department of Civil and Environmental Engineering, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Heon-Jun Lee
- Department of Civil and Environmental Engineering, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Jeong-Eun Oh
- Department of Civil and Environmental Engineering, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan, 46241, Republic of Korea.
| |
Collapse
|
35
|
Chen Z, Ren G, Ma X, Ding Y, Hui Y, Qin P, Xu Z, Gu X, Yuan F, Liu Y. Perfluoroalkyl substances in the Lingang hybrid constructed wetland, Tianjin, China: occurrence, distribution characteristics, and ecological risks. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:38580-38590. [PMID: 32623677 DOI: 10.1007/s11356-020-09921-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
In this study, the occurrence, spatial distribution, sources, and ecological risks of perfluoroalkyl substances (PFASs) in the surface waters of the Lingang hybrid constructed wetland were systematically investigated. Twenty-three PFASs were analyzed from 7 representative sampling zones. The obtained results indicated that PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFOS, and HFPO-DA were frequently detected; and PFBA, PFOA, and PFOS were the dominant PFASs with the relative abundances in ranges of 26.91 to 52.26%, 11.79 to 28.79%, and 0 to 31.98%, respectively. The total concentrations of 8 PFASs (Σ8PFASs) ranged from 25.9 to 56.6 ng/L, and the highest concentration was observed in subsurface flow wetland. Moreover, HFPO-DA with high toxicity was detected in wetlands for the first time. Based on the principal component analysis-multiple linear regression (PCA-MLR) analysis, three sources and their contributions were fluoropolymer processing aids (67.6%), fluororesin coatings and metal plating (17.9%), and food packaging materials and atmospheric precipitation (14.5%), respectively. According to the risk quotients (RQs), the ecological risk of 8 PFASs was low to the aquatic organisms.
Collapse
Affiliation(s)
- Ziang Chen
- School of Civil and Transportation Engineering, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Gengbo Ren
- School of Civil and Transportation Engineering, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Xiaodong Ma
- School of Civil and Transportation Engineering, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.
| | - Ye Ding
- Tianjin Environmental Protection Technical Development Center, Tianjin, 300191, China
| | - Yunmin Hui
- Tianjin Environmental Protection Technical Development Center, Tianjin, 300191, China.
| | - Pingping Qin
- Tianjin Environmental Protection Technical Development Center, Tianjin, 300191, China
| | - Zhuoqi Xu
- School of Civil and Transportation Engineering, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Xiujun Gu
- Tianjin Lingang Construction Development Co., Ltd, Tianjin, 300450, China
| | - Fang Yuan
- Tianjin Lingang Construction Development Co., Ltd, Tianjin, 300450, China
| | - Yanhai Liu
- Tianjin Lingang Construction Development Co., Ltd, Tianjin, 300450, China
| |
Collapse
|
36
|
Choo G, Oh JE. Seasonal occurrence and removal of organophosphate esters in conventional and advanced drinking water treatment plants. WATER RESEARCH 2020; 186:116359. [PMID: 32898789 DOI: 10.1016/j.watres.2020.116359] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/16/2020] [Accepted: 08/29/2020] [Indexed: 06/11/2023]
Abstract
In this study, the fate of organophosphate esters (OPEs) in conventional and advanced drinking water treatment plants (DWTPs) was investigated in field scale. In addition, the risk of OPEs by drinking water was assessed. The average total OPE concentrations in raw and treated water were lower in the rainy season (94.3 and 57.1 ng/L, respectively) than dry season (163 and 84.2 ng/L, respectively). Advanced DWTPs showed better removal efficiencies of major OPEs rather than those in conventional DWTPs. The average removal rates for two chlorinated OPEs, including tris(2-chloroethyl)phosphate (TCEP) and tris(1-chloro-2-propyl)phosphate (TCIPP), were negative (TCEP: -87%, TCIPP: -41%) for a conventional DWTP but positive (TCEP: 46%, TCIPP: 49%) for advanced DWTPs using granular activated carbon filtration. The average removal rates for advanced DWTPs were statistically higher for the alkyl/aryl OPEs, tri-n-butyl phosphate (TNBP: 67%) and tris(2-butoxyethyl) phosphate (TBOEP: 63%), than those for the conventional DWTPs (TNBP: 21%, TBOEP: 25%). The hazardous quotient (HQ) of major OPEs were lower for advanced DWTPs and water irrigated from upstream sties/reservoir compared to that of conventional DWTPs and water irrigated from downstream sites. We believe that this is the first comparison of OPE removal efficiencies achieved in conventional and advanced DWTPs.
Collapse
Affiliation(s)
- Gyojin Choo
- Department of Civil and Environmental Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Jeong-Eun Oh
- Department of Civil and Environmental Engineering, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
37
|
Guardian MGE, Boongaling EG, Bernardo-Boongaling VRR, Gamonchuang J, Boontongto T, Burakham R, Arnnok P, Aga DS. Prevalence of per- and polyfluoroalkyl substances (PFASs) in drinking and source water from two Asian countries. CHEMOSPHERE 2020; 256:127115. [PMID: 32454354 DOI: 10.1016/j.chemosphere.2020.127115] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/14/2020] [Accepted: 05/16/2020] [Indexed: 05/06/2023]
Abstract
The present study focuses on the determination of the occurrence and levels of per- and polyfluoroalkyl substances (PFASs) in the drinking and source water from the Philippines and Thailand. A total of 46 samples (18 commercial bottled waters, 5 drinking water from vending machine (re-fill stations) and 23 source water) were analyzed using liquid chromatography with tandem high-resolution mass spectrometry. Using the targeted method, 12 different PFASs were detected in the drinking water samples with total quantifiable PFASs (∑PFASs) levels ranging from 7.16 to 59.49 ng/L; 15 PFASs were detected in source water with ∑PFASs ranging from 15.55 to 65.65 ng/L. A 100% detection frequency was observed for perfluoroheptanoic acid (PFHpA), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluorosulfonic acid (PFOS) in all water samples. Six other PFASs, not included in the targeted analysis, were detected using the suspect screening approach. For the first time, the presence of 2-(N-methylperfluorooctanesulfonamido) acetic acid (N-MeFOSAA) in drinking water is reported, and 3 novel PFASs (C5H5OF8, C6H4O2F6, and C9H2O2F16) were detected using suspect screening in source water. Combined results from target and suspect screening analysis showed that PFASs detected were predominantly (52%) short-chain (with fluorinated alkyl chain of ≤6) which could be explained by their high mobility in the environment. The detected PFASs levels in drinking water will not likely pose immediate health risk to consumers according to US EPA health advisory for PFOS and PFOA of 70 ng/L, but inclusion of bottled and drinking water from re-fill stations in monitoring programs is warranted.
Collapse
Affiliation(s)
- Mary Grace E Guardian
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, 14260, United States
| | - Edison G Boongaling
- BEST Environmental Services & Testing Corp., Prime Building, Barangay Salawag, Dasmariñas, Cavite, 4114, Philippines
| | | | - Jirasak Gamonchuang
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Tittaya Boontongto
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Rodjana Burakham
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Prapha Arnnok
- Department of Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| | - Diana S Aga
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, 14260, United States.
| |
Collapse
|
38
|
Nanocellulose and Polycaprolactone Nanospun Composite Membranes and Their Potential for the Removal of Pollutants from Water. Molecules 2020; 25:molecules25030683. [PMID: 32041154 PMCID: PMC7037911 DOI: 10.3390/molecules25030683] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/28/2020] [Accepted: 02/01/2020] [Indexed: 11/16/2022] Open
Abstract
A composite membrane based on polycaprolactone (PCL) and cellulose nanofibers (CNF) with different compositions was prepared using the electro-spinning method, with the objective of developing organic membranes with good mechanical properties to remove contaminants from water. Water is a resource of primary importance for life and human activities. In this sense, cellulose obtained from agave bagasse and polycaprolactone nanofibers was used to prepare membranes that were tested by filtering tap water. The membranes obtained presented a porosity and structure on a nanometric scale. The water quality variables evaluated after filtration with the PCL/CNF membranes showed 100% turbidity removal, 100% conductivity, and heavy metal removal of the order of 75% to 99% for iron and chromium. CNF comprises biowaste derived from tequila production, and it has added value. Electro-spun CNF and PCL membranes can be applied as a “green” and eco-friendly filtration system for water purification.
Collapse
|
39
|
Choo G, Wang W, Cho HS, Kim K, Park K, Oh JE. Legacy and emerging persistent organic pollutants in the freshwater system: Relative distribution, contamination trends, and bioaccumulation. ENVIRONMENT INTERNATIONAL 2020; 135:105377. [PMID: 31841807 DOI: 10.1016/j.envint.2019.105377] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
In this study, a comprehensive investigation was performed to understand the overall occurrence, relative distribution, and bioaccumulation of seven different groups of POPs, comprising 27 polybrominated diphenyl ethers (PBDEs), 76 polychlorinated biphenyls (PCBs), 23 organochlorine pesticides (OCPs), three hexabromocyclododecanes (HBCDs), and 13 perfluoroalkyl substances (PFASs) as legacy POPs, and 41 polychlorinated naphthalenes (PCNs) and 24 short-chain chlorinated paraffins (SCCPs) as emerging POPs, by monitoring crucian carp, sediment, and river water in the freshwater system. Among the targeted POPs, SCCPs were predominant in sediment and crucian carp (more than 95%), while a dominance of PFASs was observed in river water (92%). Principal component analysis revealed four different groups/patterns of POPs in all media: one for PBDEs, PCBs, and OCPs, another for HBCDs and PFASs, and the two others for PCNs and SCCPs. Also, sexually dimorphic growth-dependent accumulation of legacy POPs was observed in crucian carp such that POPs concentration increased with increasing fish size and males recorded significantly higher levels of POPs compared to females.
Collapse
Affiliation(s)
- Gyojin Choo
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Wenting Wang
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Hyeon-Seo Cho
- College of Fisheries and Ocean Sciences, Chonnam National University, Yeosu 61186, Republic of Korea
| | - Kyungtae Kim
- National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Kyunghwa Park
- National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Jeong-Eun Oh
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
40
|
Mahinroosta R, Senevirathna L. A review of the emerging treatment technologies for PFAS contaminated soils. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 255:109896. [PMID: 32063301 DOI: 10.1016/j.jenvman.2019.109896] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 11/09/2019] [Accepted: 11/18/2019] [Indexed: 05/22/2023]
Abstract
Contamination of soils with poly- and perfluoroalkyl substances (PFAS) has become a challenging issue due to the adverse effects of these substances on both the environment and public health. PFAS have strong chemical structures and their bonding with soil makes them challenging to eliminate from soil environments. Traditional methods of soil remediation have not been successful in their reduction or removal from the environment. This paper provides a comprehensive evaluation of existing and emerging technologies for remediating PFAS contaminated soils with guidance on which approach to use in different contexts. The functions of all remediation technologies, their suitability, limitations, and the scale applied from laboratory to the field are presented as a baseline for understanding the research need for treatment in soil environments. To date, the immobilization method has been a significant part of the remediation solution for PFAS contaminated soils, although its long-term efficiency still needs further investigation. Soil washing and thermal treatment techniques have been tested at the field scale, but they are expensive and energy-intensive due to the use of a large volume of washing solvent and the high melting point of PFAS, respectively; both methods need a large initial investment for their installation. Other remediation technologies, such as chemical oxidation, ball milling, and electron beams, have been progressed in the laboratory. However, additional research is needed to make them feasible, cost-effective and applicable in the field.
Collapse
Affiliation(s)
- Reza Mahinroosta
- School of Engineering, Faculty of Business, Justice and Behavioural Sciences, Charles Sturt University, New South Wales, Australia.
| | - Lalantha Senevirathna
- School of Engineering, Faculty of Business, Justice and Behavioural Sciences, Charles Sturt University, New South Wales, Australia.
| |
Collapse
|
41
|
Yu X, Yin H, Peng H, Lu G, Liu Z, Li H, Dang Z. Degradation mechanism, intermediates and toxicology assessment of tris-(2-chloroisopropyl) phosphate using ultraviolet activated hydrogen peroxide. CHEMOSPHERE 2020; 241:124991. [PMID: 31590022 DOI: 10.1016/j.chemosphere.2019.124991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/27/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
Organophosphate flame retardants (OPFRs), one kind of emerging flame retardants, have received prevalent attention owing to their ubiquity in aquatic matrices and their characteristics of being refractory to biodegradation. In current research, the degradation mechanism of tris-(2-chloroisopropyl) phosphate (TCPP), one of OPFRs, and its toxicological evaluation using UV-driven hydroxyl radical oxidation were investigated. A pseudo-first order reaction was fitted with an apparent rate constant (Kobs) of 0.1328 min-1 on transformation of TCPP in the case of CH2O2 0.1 mM, pH 6.6-7.1 and 4.7 mW cm-2 UV irradiation. High resolution mass spectroscopy analyses identified nine degradation products (eg., C6H13Cl2O4P (m/z 251.0002), C9H17Cl2O5P (m/z 307.0266), C9H17Cl2O6P (m/z 323.0217), C9H18Cl3O5P (m/z 343.0033)) during transformation of TCPP. The removal efficiency dropped by inhibitory effect of natural organic matters and anions, implying that the complete mineralization of TCPP may be difficult in actual water treatment process. The toxicity assessment has shown an decrease in reactive oxygen species (ROS) and apoptosis, membrane potential (MP) elevation of Escherichia coli, and biological molecular function revision (eg., metabolism and DNA biosynthesis), indicating that toxicity of degradation products were conspicuously decreased in comparison with intact TCPP. To sum up, effective detoxification of TCPP can be realized by a UV driving radical-based oxidation, which will provide an alternative safe treatment method to control TCPP in water matrix.
Collapse
Affiliation(s)
- Xiaolong Yu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Hua Yin
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China.
| | - Hui Peng
- Department of Chemistry, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Guining Lu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Zehua Liu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Huanyong Li
- Analytical and Testing Center, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Zhi Dang
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| |
Collapse
|
42
|
Kwak JI, Lee TY, Seo H, Kim D, Kim D, Cui R, An YJ. Ecological risk assessment for perfluorooctanoic acid in soil using a species sensitivity approach. JOURNAL OF HAZARDOUS MATERIALS 2020; 382:121150. [PMID: 31561195 DOI: 10.1016/j.jhazmat.2019.121150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 08/15/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
Perfluorooctanoic acid (PFOA) is one of the persistent organic pollutants that has been listed in Annex A of the Stockholm Convention and has attracted attention owing to its endocrine-disrupting properties. However, there is currently little information available regarding the soil ecotoxicity of PFOA and the associated ecological risks. Accordingly, in this study, we sought to assess the soil ecological risk of PFOA based on a probabilistic approach using data obtained from multispecies bioassays and soil toxicity assessments, from which we generated soil species sensitivity distributions and estimated soil protective concentrations for PFOA. Using the latter distributions, we also undertook a probabilistic ecological risk assessment. On the basis of acute and chronic toxicity estimates obtained from bioassays involving eight soil-associated organisms from six diverse taxonomic groups, we could deduce that PFOA poses a negligible risk to soil ecosystems. However, we also found that this chemical may be more toxic than some of the established endocrine-disrupting chemicals such as bisphenol A, nonylphenol, and methylparaben, thereby indicating that further in-depth studies would be necessary to obtain a better understanding of the toxic potential of this chemical in the soil environment.
Collapse
Affiliation(s)
- Jin Il Kwak
- Department of Environmental Health Science, Konkuk University, Seoul, 05029, South Korea
| | - Tae-Yang Lee
- Department of Environmental Health Science, Konkuk University, Seoul, 05029, South Korea
| | - Hyomin Seo
- Department of Environmental Health Science, Konkuk University, Seoul, 05029, South Korea
| | - Dokyung Kim
- Department of Environmental Health Science, Konkuk University, Seoul, 05029, South Korea
| | - Dasom Kim
- Department of Environmental Health Science, Konkuk University, Seoul, 05029, South Korea
| | - Rongxue Cui
- Department of Environmental Health Science, Konkuk University, Seoul, 05029, South Korea
| | - Youn-Joo An
- Department of Environmental Health Science, Konkuk University, Seoul, 05029, South Korea.
| |
Collapse
|
43
|
Ekpe OD, Choo G, Barceló D, Oh JE. Introduction of emerging halogenated flame retardants in the environment. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/bs.coac.2019.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
44
|
Affiliation(s)
- Susan D. Richardson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29205, United States
| | - Susana Y. Kimura
- Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
45
|
Worldwide trends in tracing poly- and perfluoroalkyl substances (PFAS) in the environment. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.02.011] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
46
|
Ünlü Endirlik B, Bakır E, Boşgelmez İİ, Eken A, Narin İ, Gürbay A. Assessment of perfluoroalkyl substances levels in tap and bottled water samples from Turkey. CHEMOSPHERE 2019; 235:1162-1171. [PMID: 31561307 DOI: 10.1016/j.chemosphere.2019.06.228] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/28/2019] [Accepted: 06/30/2019] [Indexed: 05/05/2023]
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFASs) draw considerable attention for their potential toxic effects in humans and environment. Drinking water is accepted as one of the major exposure pathways for PFASs. In this study, we measured concentrations of 10 perfluoroalkyl substances in 94 tap water samples collected in two different sampling periods (August 2017 and February 2018) from 33 provinces of Turkey, as well as in 26 different brands of plastic and glass-bottled water samples sold in supermarkets in Turkey. Perfluorohexanoic acid (PFHxA), perfluorobutane sulfonate (PFBS) and perfluoropentanoic acid (PFPeA) were the most frequently detected PFASs in the samples of tap waters. The maximum concentrations in tap waters were measured as 2.90, 2.37, 2.18, 2.04, and 1.93 ng/L, for PFHxA, perfluorooctanoic acid (PFOA), perfluorohexane sulfonate (PFHxS), perfluorooctane sulfonate (PFOS), and perfluorobutanoic acid (PFBA), respectively. The most abundant perfluorinated chemical in tap water samples was PFBA with 17%, followed by PFOS (13%), PFBS (12%), perfluoroheptanoic acid (PFHpA) (11%), PFHxA (11%), and PFOA (11%). The total PFASs concentration in tap water ranged from 0.08 to 11.27 ng/L. As regards bottled waters, the concentrations of PFASs were generally lower than those in tap water samples. These results revealed that tap water samples in Turkey might be considered generally safe based on the established guidelines around the world. However, due to their persistence and potential to accumulate and reach higher concentrations in the environment, careful monitoring of PFASs in all types of water is critical.
Collapse
Affiliation(s)
- Burcu Ünlü Endirlik
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Erciyes University, 38280, Kayseri, Turkey.
| | - Elçin Bakır
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Erciyes University, 38280, Kayseri, Turkey
| | - İffet İpek Boşgelmez
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Erciyes University, 38280, Kayseri, Turkey; Ziya Eren Drug Application and Research Center, Erciyes University, 38280, Kayseri, Turkey
| | - Ayşe Eken
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Erciyes University, 38280, Kayseri, Turkey
| | - İbrahim Narin
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, 38280, Kayseri, Turkey
| | - Aylin Gürbay
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, 06100, Ankara, Turkey
| |
Collapse
|
47
|
Liu J, Zhao X, Liu Y, Qiao X, Wang X, Ma M, Jin X, Liu C, Zheng B, Shen J, Guo R. High contamination, bioaccumulation and risk assessment of perfluoroalkyl substances in multiple environmental media at the Baiyangdian Lake. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109454. [PMID: 31352209 DOI: 10.1016/j.ecoenv.2019.109454] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/02/2019] [Accepted: 07/17/2019] [Indexed: 06/10/2023]
Abstract
The contamination of perfluoroalkyl substances (PFASs) in the Baiyangdian Lake has exacerbated readily since 2008. This study analyzed the perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkane sulfonic acids (PFSAs) in the surface water, sediment, and fish of the Baiyangdian Lake. In the surface water, the total concentration of PFASs ranged in 1193-3462 ng L-1 (mean 1734 ng L-1) in the rainy season and 469-1724 ng L-1 (mean 876 ng L-1) in the dry season. The total concentration of PFASs in the sediment ranged in 1.97-13.3 ng g-1 (mean 6.53 ng g-1). It was found that PFCAs and PFSAs with longer chains were more easily adsorbed in the sediment. Among the collected fish samples, the enrichment of PFASs in the tissues fell in the order of liver > cheek > muscle. For the muscle, stomach, and liver tissues of the fish samples, significant correlations existed between the δ15N values and the concentration of perfluorooctane sulfonic acid (PFOS). The contents of PFOS and perfluorooctanoic acid (PFOA) in the fish were not at a level high enough to significantly risk human health.
Collapse
Affiliation(s)
- Jie Liu
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory of Source Water Protection, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xingru Zhao
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory of Source Water Protection, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yan Liu
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory of Source Water Protection, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiaocui Qiao
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory of Source Water Protection, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xing Wang
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory of Source Water Protection, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Mengyu Ma
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory of Source Water Protection, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xiaoling Jin
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory of Source Water Protection, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Chengyou Liu
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory of Source Water Protection, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Binghui Zheng
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory of Source Water Protection, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Jinshan Shen
- College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Rui Guo
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory of Source Water Protection, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
48
|
Yu X, Yin H, Peng H, Lu G, Dang Z. Oxidation degradation of tris-(2-chloroisopropyl) phosphate by ultraviolet driven sulfate radical: Mechanisms and toxicology assessment of degradation intermediates using flow cytometry analyses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 687:732-740. [PMID: 31412476 DOI: 10.1016/j.scitotenv.2019.06.163] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/08/2019] [Accepted: 06/11/2019] [Indexed: 06/10/2023]
Abstract
Organophosphate flame retardants (OPFRs) were frequently detected in biotic and abiotic matrix owing to their persistence and recalcitrant degradation. Some specific OPFRs, such as tris-(2-chloroisopropyl) phosphate (TCPP), pose a significant potential risk to human health due to their high water solubility. Therefore, an environmentally sound and high efficient technique is in urgent need of controlling TCPP. This research is focused on degrading TCPP using ultraviolet-persulfate (UV/PS) technique. The degradation reaction of TCPP followed a pseudo-first order kinetics with an apparent rate constant (kobs) at 0.1653 min-1. As the photocatalytic reaction proceeded, TCPP was transformed to twelve degradation intermediates via the selective electron-transfer reactions induced by activated sulfate radical. Anions existence and pH value significantly inhibited the degradation efficiency, implying that it was hard for TCPP to reach up to complete mineralization in actual water treatment process. Additionally, toxicological assessment of degradation intermediate mixture was conducted using Flow cytometry (FCM) analyses, and the result showed that the intracellular reactive oxygen species (ROS) and cell apoptotic rates significantly declined, and membrane potential (MP) increased in comparison with original TCPP. On the other hand, the negative impacts of these degradation products on DNA biosynthesis in Escherichia coli were weakened based on cell cycle analysis, all of which indicated that toxicity of these degradation intermediates was obviously reduced via UV/PS treatment. To summarize, an appropriate mineralization is effective for TCPP detoxification, suggesting the feasibility of TCPP control using UV/PS treatment in water matrix.
Collapse
Affiliation(s)
- Xiaolong Yu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Hua Yin
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China.
| | - Hui Peng
- Department of Chemistry, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Guining Lu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Zhi Dang
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| |
Collapse
|
49
|
Meng J, Liu S, Zhou Y, Wang T. Are perfluoroalkyl substances in water and fish from drinking water source the major pathways towards human health risk? ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 181:194-201. [PMID: 31195228 DOI: 10.1016/j.ecoenv.2019.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 05/05/2023]
Abstract
Due to potential adverse effects and bioaccumulation in biota and humans, perfluoroalkyl substances (PFASs) have raised wide attention in recent years. Ingestion is a vital pathway for PFASs to transmit to humans especially through water and fish. In present study, PFASs in water and fish from the drinking water source of Beijing in China were investigated. Three layers of water were collected in order to find the connection between concentrations of PFASs and depth of water, which showed no prominent correlation. PFASs in water from Miyun Reservoir with concentrations of 5.30-8.50 ng/L, were relatively lower compared with other reports on raw drinking water. Perfluorobutanoic acid (PFBA) and perfluorooctanoic acid (PFOA) were the dominant PFASs. In addition, six species of fish (including Cyprinus carpio, Carassius auratus, Erythroculter dabryi, Pseudohemiculter dispar, Hypophthalmichthys molitrix and Siniperca chuatsi) were analyzed, with concentrations of PFASs ranging from 1.70 to 14.32 ng/g wet weight (w.w.). Due to relatively stronger bioaccumulation potential, long chain perfluorinated carboxylates (PFCAs) and perfluorinated sulfonates (PFSAs) were detected with higher concentrations, especially perfluoroundecanoic acid (PFUdA) and perfluorodecanoic acid (PFDA). The estimated daily intake (EDI) of PFASs through drinking water and fish consumption were 0.20-0.34 and 3.44-12.61 ng/kg bw/day based on Exposure Factors Handbook of Chinese Population, respectively. In addition, the EDI of high-priority concern PFASs via pork, chicken and dust were also calculated, with value of 0.015-0.043, 0.003-0.013 and 0.074-0.390 ng/kg bw/day, respectively. The total EDI of PFOS and PFOA via diverse pathways were less than suggested tolerable daily intake (PFOS, 150 ng/kg bw/day; PFOA, 1500 ng/kg bw/day), indicating that the detected levels would not cause severe health effects on Beijing residents.
Collapse
Affiliation(s)
- Jing Meng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sifan Liu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yunqiao Zhou
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tieyu Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
50
|
Ya M, Yu N, Zhang Y, Su H, Tang S, Su G. Biomonitoring of organophosphate triesters and diesters in human blood in Jiangsu Province, eastern China: Occurrences, associations, and suspect screening of novel metabolites. ENVIRONMENT INTERNATIONAL 2019; 131:105056. [PMID: 31369981 DOI: 10.1016/j.envint.2019.105056] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/16/2019] [Accepted: 07/23/2019] [Indexed: 06/10/2023]
Abstract
Since organophosphate (OP) triesters are ubiquitous in environmental matrices, there is an increasing concern regarding human exposure to OP triesters or their metabolites. In this study, we measured levels of 16 OP triesters and 4 OP diesters in n = 99 human blood samples of non-occupationally exposed adults (aged 18-87) from Jiangsu Province, eastern China. Based on the measured concentrations, statistical difference and correlativity were calculated to characterize the population diversity and potential sources of OP triester and diester. Di (2-ethylhexyl) phosphate (DEHP) and 2-ethylhexyl diphenyl phosphate (EHDPP) were found in many participants' blood, with median concentrations of 1.2 (range: n.d. - 44.7, detection frequency: 99%) and 0.85 (n.d. - 28.8, 68%) ng mL-1, respectively. Blood samples of older participants contained significantly lower concentrations of OP diesters or triesters than their younger counterparts (p < 0.01). Regional- and age-specific differences in the blood concentrations of OP triesters and diesters were attributed to disparities in environmental exposure intensity. EHDPP and tris (phenyl) phosphate (TPHP), the predominant OP triesters, exhibited significant positive correlation (p < 0.01, r = 0.84) suggestive of analogous transport behavior from similar exposure sources to humans. The increased correlations between diphenyl phosphate (DPHP) and TPHP as well as with EHDPP as observed from the multivariate regression suggests that DPHP could be derived from the metabolism of both TPHP (the crucial precursor) and EHDPP. When the blood samples were subsequently screened using high-resolution spectrometry, we detected five novel OP metabolites: glucuronide conjugates of hydroxylated DEHP (OH-DEHP glucuronide conjugate), 2-ethylhexyl monophenyl phosphate (EHMPP), hydroxylated EHMPP (OH-EHMPP), dihydroxylated bis(2-butoxyethyl) phosphate (di-OH-BBOEP), and dihydroxylated tris(butyl) phosphate (di-OH-TNBP). Overall, this study provides novel information regarding the occurrence of OP triesters and diesters, and further suggested several novel OP metabolites in human blood.
Collapse
Affiliation(s)
- Miaolei Ya
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
| | - Nanyang Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yayun Zhang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
| | - Huijun Su
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
| | - Song Tang
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Guanyong Su
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China.
| |
Collapse
|