1
|
Yan C, Cai X, Zhou X, Luo Z, Deng J, Tian X, Shi J, Li W, Luo Y. Boosting peroxymonosulfate activation via Fe-Cu bimetallic hollow nanoreactor derived from copper smelting slag for efficient degradation of organics: The dual role of Cu. J Colloid Interface Sci 2025; 678:858-871. [PMID: 39222606 DOI: 10.1016/j.jcis.2024.08.203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Valorization of iron-rich metallurgical slags in the construction of Fenton-like catalysts has an appealing potential from the perspective of sustainable development. For the first time, copper smelting slag (CSS) was utilized as the precursor to synthesize hollow sea urchin-like Fe-Cu nanoreactors (Cu1.5Fe1Si) to activate peroxymonosulfate (PMS) for chlortetracycline hydrochloride (CTC) degradation. The hyper-channels and nano-sized cavities were formed in the catalysts owing to the induction and modification of Cu, not only promoting the in-situ growth of silicates and the formation of cavities due to the etching of SiO2 microspheres, but also resulting the generation of nanotubes through the distortion and rotation of the nanosheets. It was found that 100 % CTC degradation rate can be achieved within 10 min for Cu1.5Fe1Si, 75 times higher than that of Cu0Fe1Si (0.0024 up to 0.18 M-1‧min-1). The unique nanoconfined microenvironment structure could enrich reactants in the catalyst cavities, prolong the residence time of molecules, and increase the utilization efficiency of active species. Density functional theory (DFT) calculations show that Cu1.5Fe1Si has strong adsorption energy and excellent electron transport capacity for PMS, and Fe-Fe sites are mainly responsible for the activation of PMS, while Cu assists in accelerating the Fe(II)/Fe(Ⅲ) cycle and promotes the catalytic efficiency. The excellent mineralization rate (83.32 % within 10 min) and efficient treatment of CTC in consecutive trials corroborated the high activity and stability of the Cu1.5Fe1Si. This work provides a new idea for the rational design of solid waste-based eco-friendly functional materials, aiming at consolidating their practical application in advanced wastewater treatment.
Collapse
Affiliation(s)
- Cuirong Yan
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Faculty of Environmental and Chemical Engineering, Kunming Metallurgy College, Kunming, Yunnan 650033, China
| | - Xiunan Cai
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| | - Xintao Zhou
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| | - Zhongqiu Luo
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Jiguang Deng
- Department of Chemical Engineering and Technology, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Xincong Tian
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Jinyu Shi
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Wenhao Li
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Yongming Luo
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| |
Collapse
|
2
|
Yang Y, Xu Y, Zhong D, Qiao Q, Zeng H. Efficient removal of Cr(VI) by chitosan cross-linked bentonite loaded nano-zero-valent iron composite: Performance and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136183. [PMID: 39418910 DOI: 10.1016/j.jhazmat.2024.136183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/06/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
A nano-zero-valent iron loaded with 2-aminoterephthalic acid cross-linked chitosan/bentonite (2ACB@nZVI) was developed to remove Cr(VI) from aqueous solution through adsorption-reduction. It was characterized by FTIR, XRD, TGA, BET, SEM, EDS, electrochemistry and XPS. This analysis showed that chitosan cross-linked bentonite not only enhanced the adsorption effect of chitosan and its chemical stability, but also provided a good carrier for loading nZVI and effectively improves its reaction activity. The optimal mass ratios of chitosan: bentonite and 2ACB:nZVI for synthesizing the 2ACB@nZVI composite were 3:1 and 1:4, respectively. The pH value had a great influence on the removal rate of Cr(VI), and its optimal value was 2.0. This is because nZVI was more susceptible to corrosion under acidic conditions, and a large amount of Fe(II) was leached to reduce the adsorbed Cr(VI) on the surface of 2ACB@nZVI. The Cr(VI) removal by 2ACB@nZVI constituted a spontaneous endothermic reaction, aligning with both the pseudo-second-order kinetic model and the Langmuir adsorption isotherm, with a maximum adsorption capacity reached 406.36 mg g-1 at 318 K. 2ACB@nZVI had a strong tolerance to co-existing ions, and the removal rate remained about 80 % after aging for 30 days or six cycles. The main mechanisms included electrostatic adsorption, complexation, reduction, and coprecipitation. Reduction contributed 86.67 % to the removal of Cr(VI), and Fe(II) was the key to Cr(VI) reduction. This study provided a new idea for the efficient treatment of Cr(VI) wastewater.
Collapse
Affiliation(s)
- Yuqin Yang
- School of College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Yunlan Xu
- School of College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Dengjie Zhong
- School of College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Qingmei Qiao
- School of College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Hanlu Zeng
- School of College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| |
Collapse
|
3
|
Shanmuganathan R, Nguyen ND, Al-Ansari MM. Synthesis of zero valent copper/iron nanoparticles using Piper betle leaves for the removal of pharmaceutical contaminant atorvastatin. ENVIRONMENTAL RESEARCH 2024; 257:119334. [PMID: 38838750 DOI: 10.1016/j.envres.2024.119334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
In this study, bimetallic Cu-Fe nanoparticles were synthesized using the green approach with Piper betle leaves, and the removal efficiency of one of the pharmaceutical compounds, Atorvastatin, was investigated. UV, SEM, FTIR, EDAX, particle size, and zeta potential measurements were used to confirm nanoparticle fabrication. The removal efficiency of Atorvastatin (10 mg/L) by bimetallic Cu-Fe nanoparticles was 67% with a contact time of 30 min at pH 4, the adsorbent dosage of 0.2 g/L, and stirring at 100 rpm. Piper betle bimetallic Cu-Fe nanoparticles have demonstrated excellent stability, reusability, and durability, even after being reused five times. Furthermore, the synthesized bimetallic Cu-Fe nanoparticles demonstrated remarkable antimicrobial properties against gram-negative strains such as Escherichia coli and Klebsiella pneumoniae, gram-positive strains such as Staphylococcus aureus and Bacillus subtilis, and fungi such as Aspergillus niger. In addition, the antioxidant properties of the synthesized bimetallic Cu-Fe nanoparticles were assessed using the DPPH radical scavenging assay. The results indicated that the nanoparticles had good antioxidant activity. Thus, using Piper betle extract to make Cu-Fe nanoparticles made the procedure less expensive, chemical-free, and environmentally friendly, and the synthesized bimetallic Cu-Fe nanoparticles helped remove the pharmaceutical compound Atorvastatin from wastewater.
Collapse
Affiliation(s)
- Rajasree Shanmuganathan
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; School of Engineering & Technology, Duy Tan University, Da Nang, Viet Nam
| | - N D Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; School of Engineering & Technology, Duy Tan University, Da Nang, Viet Nam
| | - Mysoon M Al-Ansari
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box, 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
4
|
Ghosh A, Mondal S, Kanrar S, Srivastava A, Pandey MD, Ghosh UC, Sasikumar P. Efficient removal of chromate from wastewater using a one-pot synthesis of chitosan cross-linked ceria incorporated hydrous copper oxide bio-polymeric composite. Int J Biol Macromol 2024; 276:134016. [PMID: 39032886 DOI: 10.1016/j.ijbiomac.2024.134016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Remediating hexavalent chromium [Cr(VI)] from contaminated water systems is a significant concern due to its harmful effects on human health, aquatic life, and plants. To tackle this issue, scientists have created a chitosan cross-linked hydrous ceria incorporated cupric oxide bio-polymeric composite (CHCCO) by combining chitosan biopolymer with corresponding metal ions using glutaraldehyde as a cross-linker. The composite was characterized using advanced analytical instruments such as FTIR, p-XRD, SEM, XPS, etc. The synthesized composite (CHCCO) was then tested for its efficiency in removing Cr(VI) from synthetic Cr(VI) aqueous samples. The parameters examined included pH, material dose, contact time, concentration, temperature, and co-existing ions. The experimental data showed that the kinetics and equilibrium data fit well with the pseudo-second-order and the Freundlich isotherm models, respectively. Thermodynamic analysis demonstrated that the investigated surface adsorption process is spontaneous and endothermic. Except for the SO42- ion, no other species imparts adverse influence significantly on the reaction. The CHCCO bio-composite surfaces were refreshed using a dilute NaOH (1.0 M) solution and effectively recycled five times for Cr(VI) adsorption, indicating no significant surface activity deterioration. This study highlights the high effectiveness of CHCCO bio-polymeric composites in Cr(VI) remediation and the potential for this technology as an easy-to-use technique for environmental restoration.
Collapse
Affiliation(s)
- Ayan Ghosh
- Department of Chemistry, Presidency University, 86/1 College Street, Kolkata, West Bengal 700073, India
| | - Sumana Mondal
- Department of Chemistry, Presidency University, 86/1 College Street, Kolkata, West Bengal 700073, India
| | - Sarat Kanrar
- Department of Chemistry, Presidency University, 86/1 College Street, Kolkata, West Bengal 700073, India
| | - Ankur Srivastava
- Department of Chemistry, Institute of Science, Banaras Hindu University, 221005, Varanasi, India
| | - Mrituanjay D Pandey
- Department of Chemistry, Institute of Science, Banaras Hindu University, 221005, Varanasi, India
| | - Uday Chand Ghosh
- Department of Chemistry, Presidency University, 86/1 College Street, Kolkata, West Bengal 700073, India
| | - Palani Sasikumar
- Department of Chemistry, Presidency University, 86/1 College Street, Kolkata, West Bengal 700073, India.
| |
Collapse
|
5
|
Duan Y, Liu F, Liu X, Li M. Removal of Cr(VI) by glutaraldehyde-crosslinked chitosan encapsulating microscale zero-valent iron: Synthesis, mechanism, and longevity. J Environ Sci (China) 2024; 142:115-128. [PMID: 38527878 DOI: 10.1016/j.jes.2023.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/04/2023] [Accepted: 07/04/2023] [Indexed: 03/27/2024]
Abstract
Microscale zero-valent iron (mZVI) has shown great potential for groundwater Cr(VI) remediation. However, low Cr(VI) removal capacity caused by passivation restricted the wide use of mZVI. We prepared mZVI/GCS by encapsulating mZVI in a porous glutaraldehyde-crosslinked chitosan matrix, and the formation of the passivation layer was alleviated by reducing the contact between zero-valent iron particles. The average pore diameter of mZVI/GCS was 8.775 nm, which confirmed the mesoporous characteristic of this material. Results of batch experiments demonstrated that mZVI/GCS exhibited high Cr(VI) removal efficiency in a wide range of pH (2-10) and temperature (5-35°C). Common groundwater coexisting ions slightly affected mZVI/GCS. The material showed great reusability, and the average Cr(VI) removal efficiency was 90.41% during eight cycles. In this study, we also conducted kinetics and isotherms analysis. Pseudo-second-order model was the most matched kinetics model. The Cr(VI) adsorption process was fitted by both Langmuir and Freundlich isotherms models, and the maximum Langmuir adsorption capacity of mZVI/GCS reached 243.63 mg/g, which is higher than the adsorption capacities of materials reported in most of the previous studies. Notably, the column capacity for Cr(VI) removal of a mZVI/GCS-packed column was 6.4 times higher than that of a mZVI-packed column in a 50-day experiment. Therefore, mZVI/GCS with a porous structure effectively relieved passivation problems of mZVI and showed practical application prospects as groundwater Cr(VI) remediation material with practical application prospects.
Collapse
Affiliation(s)
- Yijun Duan
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Fang Liu
- Transportation Institute of Inner Mongolia University, Hohhot 010070, China
| | - Xiang Liu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Miao Li
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
6
|
Wei X, You Y, Fan Z, Sheng G, Ma J, Huang Y, Xu H. Controllable integration of nano zero-valent iron into MOFs with different structures for the purification of hexavalent chromium-contaminated water: Combined insights of scavenging performance and potential mechanism investigations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173395. [PMID: 38795988 DOI: 10.1016/j.scitotenv.2024.173395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/14/2024] [Accepted: 05/19/2024] [Indexed: 05/28/2024]
Abstract
This work combined the stability of the porous structure of metal-organic frameworks with the strong reducibility of nano zero-valent iron, for the controllable integration of NZVI into MOFs to utilize the advantages of each component with enhancing the rapid decontamination and scavenging of Cr(VI) from wastewater. Hence, four kinds of MOFs/NZVI composites namely ZIF67/NZVI, MOF74/NZVI, MIL101(Fe)/NZVI, CuBTC/NZVI, were prepared for Cr(VI) capture. The results indicated that the stable structure of ZIF67, MOF74, MIL101(Fe), CuBTC, was beneficial for the dispersion of NZVI that could help more close contact between MOFs/NZVI reactive sites and Cr(VI), subsequently, MOFs/NZVI was proved to be better scavengers for Cr(VI) scavenging than NZVI alone. The Cr(VI) capture achieved the maximum adsorption capacity at pH ~ 4.0, which might be due to the participation of more H+ in the reaction and better corrosion of NZVI at lower pH. Mechanism investigation demonstrated synergy of adsorption, reduction and surface precipitation resulted in enhanced Cr(VI) scavenging, and Fe(0), dissolved and surface-bound Fe(II) were the primary reducing species. The findings of this investigation indicated that the as-prepared composites of ZIF67/NZVI, MOF74/NZVI, MIL101(Fe)/NZVI, CuBTC/NZVI, with high oxidation resistance and excellent reactivity, could provide reference for the decontamination and purification of actual Cr(VI)-containing wastewater.
Collapse
Affiliation(s)
- Xuemei Wei
- School of Chemistry and Chemical Engineering, Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Zhejiang 312000, PR China
| | - Yanran You
- School of Chemistry and Chemical Engineering, Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Zhejiang 312000, PR China
| | - Zheyu Fan
- School of Chemistry and Chemical Engineering, Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Zhejiang 312000, PR China
| | - Guodong Sheng
- School of Chemistry and Chemical Engineering, Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Zhejiang 312000, PR China.
| | - Jingyuan Ma
- Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, PR China
| | - Yuying Huang
- Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, PR China
| | - Huiting Xu
- School of Chemistry and Chemical Engineering, Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Zhejiang 312000, PR China
| |
Collapse
|
7
|
Wani AK, Akhtar N, Mir TUG, Rahayu F, Suhara C, Anjli A, Chopra C, Singh R, Prakash A, El Messaoudi N, Fernandes CD, Ferreira LFR, Rather RA, Américo-Pinheiro JHP. Eco-friendly and safe alternatives for the valorization of shrimp farming waste. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:38960-38989. [PMID: 37249769 PMCID: PMC10227411 DOI: 10.1007/s11356-023-27819-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 05/17/2023] [Indexed: 05/31/2023]
Abstract
The seafood industry generates waste, including shells, bones, intestines, and wastewater. The discards are nutrient-rich, containing varying concentrations of carotenoids, proteins, chitin, and other minerals. Thus, it is imperative to subject seafood waste, including shrimp waste (SW), to secondary processing and valorization for demineralization and deproteination to retrieve industrially essential compounds. Although several chemical processes are available for SW processing, most of them are inherently ecotoxic. Bioconversion of SW is cost-effective, ecofriendly, and safe. Microbial fermentation and the action of exogenous enzymes are among the significant SW bioconversion processes that transform seafood waste into valuable products. SW is a potential raw material for agrochemicals, microbial culture media, adsorbents, therapeutics, nutraceuticals, and bio-nanomaterials. This review comprehensively elucidates the valorization approaches of SW, addressing the drawbacks of chemically mediated methods for SW treatments. It is a broad overview of the applications associated with nutrient-rich SW, besides highlighting the role of major shrimp-producing countries in exploring SW to achieve safe, ecofriendly, and efficient bio-products.
Collapse
Affiliation(s)
- Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Tahir Ul Gani Mir
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Farida Rahayu
- Research Center for Applied Microbiology, National Research and Innovation Agency, Bogor, 16911, Indonesia
| | - Cece Suhara
- Research Center for Horticulture and Plantation, National Research and Innovation Agency, Bogor, 16911, Indonesia
| | - Anjli Anjli
- HealthPlix Technologies Private Limited, Bengaluru, 560103, India
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Ajit Prakash
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Noureddine El Messaoudi
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Ibn Zohr University, 80000, Agadir, Morocco
| | - Clara Dourado Fernandes
- Graduate Program in Process Engineering, Tiradentes University, Ave. Murilo Dantas, 300, Farolândia, Aracaju, SE, 49032-490, Brazil
| | - Luiz Fernando Romanholo Ferreira
- Graduate Program in Process Engineering, Tiradentes University, Ave. Murilo Dantas, 300, Farolândia, Aracaju, SE, 49032-490, Brazil
- Institute of Technology and Research, Ave. Murilo Dantas, 300, Farolândia, Aracaju, SE, 49032-490, Brazil
| | - Rauoof Ahmad Rather
- Division of Environmental Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar 190025, Srinagar, Jammu and Kashmir, India
| | - Juliana Heloisa Pinê Américo-Pinheiro
- Department of Forest Science, Soils and Environment, School of Agronomic Sciences, São Paulo State University (UNESP), Ave. Universitária, 3780, Botucatu, SP, 18610-034, Brazil.
- Graduate Program in Environmental Sciences, Brazil University, Street Carolina Fonseca, 584, São Paulo, SP, 08230-030, Brazil.
| |
Collapse
|
8
|
Hamza A, Ho KC, Chan MK. Recent development of substrates for immobilization of bimetallic nanoparticles for wastewater treatment: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:40873-40902. [PMID: 38839740 DOI: 10.1007/s11356-024-33798-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/20/2024] [Indexed: 06/07/2024]
Abstract
Bimetallic nanoparticles (BMNPs) have gained considerable attention due to their remarkable catalytic properties, making them invaluable in wastewater treatment applications. One of these challenges lies in the propensity of BMNPs to aggregate due to Van der Waals interactions, which can reduce their overall performance. Additionally, retrieving exhausted NPs from the treated solution for subsequent reuse remains a significant hurdle. Moreover, the leaching of NPs into the discharged wastewater can have harmful effects on humans as well as aquatic life. To overcome these issues, various substrates have been researched to maximize the efficiency and stability of the NPs. This review paper delves into the pivotal role of various substrates in immobilizing BMNPs, providing a comprehensive analysis of their performances, advantages, and drawbacks. The substrates encompass a diverse range of materials, including organic, inorganic, organic-inorganic, beads, fibers, and membranes. Each substrate type offers unique attributes, influencing the stability, efficiency, and recyclability of BMNPs. This review paper aims to provide an up-to-date and detailed analysis and comparison of the substrates used for the immobilization of BMNPs. This work further reviews the underlying mechanisms of the composites involved in treating pollutants from wastewater and how these mechanisms are enhanced by the synergistic effects produced by the substrate and BMNPs. Furthermore, the reusability and sustainability of these composites are discussed. Also, high-performing substrates are highlighted to give direction to future research focusing on the immobilization of BMNPs in the application of wastewater treatment.
Collapse
Affiliation(s)
- Ali Hamza
- Centre for Water Research, Faculty of Engineering and the Built Environment, SEGi University, Jalan Teknologi, Kota Damansara, 47810, Petaling Jaya, Selangor, Malaysia
| | - Kah Chun Ho
- School of Engineering, Faculty of Innovation and Technology, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia.
- Clean Technology Impact Lab, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia.
| | - Mieow Kee Chan
- Centre for Water Research, Faculty of Engineering and the Built Environment, SEGi University, Jalan Teknologi, Kota Damansara, 47810, Petaling Jaya, Selangor, Malaysia
| |
Collapse
|
9
|
Mondal A, Mumford K, Dubey BK, Arora M. Effect of solution chemistry on the sedimentation, dissolution, and aggregation of the bimetallic Fe/Cu nanoparticles pre- and post-grafted with carboxymethyl cellulose. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170966. [PMID: 38367731 DOI: 10.1016/j.scitotenv.2024.170966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/29/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
The suitability of iron-based nanomaterials or composites for in-situ remediation hinges on their physicochemical stability. Introducing surface modifications like metal doping or polymer grafting can regulate interparticle forces, influencing particle stability. Thus, probing how grafting methods (i.e., pre- or post-grafting) tune material properties controlling interparticle forces, comprehend the synergistic effect of metal doping and polymer grafting, and evaluate stability under varying geochemical conditions are the way forward in designing sustainable remediation strategies. To this end, time-dependent sedimentation, dissolution, and aggregation of four synthesized iron-based nanoparticles (bare iron (Fe), copper doped bimetallic iron/copper (Fe/Cu), pre- and post-grafted Fe/Cu with carboxymethyl cellulose (CMC) - CMCpre-Fe/Cu and CMCpost-Fe/Cu, respectively) were carried out as a function of solution chemistry (i.e., pH - 5 to 10, ionic strength, IS - 0 to 100 mM NaCl, initial particle concentration, C0-20 to 200 mg.L-1) mimicking geoenvironmental conditions. CMCpre-Fe/Cu exhibited markedly higher particle availability (> 91 %) against sedimentation than others (bare Fe/Cu (11.28 %) > bare Fe (7.33 %) > CMCpost-Fe/Cu (6.09 %)) - suggesting the pivotal role of grafting method on particle stability. XDLVO energy profiles revealed pre-grafting altered magnetic properties favoring surface charge-driven electrostatic repulsion over magnetic attraction, thereby limiting aggregation-induced particle settling. In contrast, superior magnetic force overrides the electrostatic behavior for bare and post-grafted particles. Unlike bare and post-grafted nanoparticles, CMCpre-Fe/Cu aggregate size correlated positively with [H+] and IS, consistent with their settling behavior. Rise in C0 showed a visible negative effect on particle aggregation and, thereby, sedimentation except for CMCpre-Fe/Cu by facilitating particle collision through Brownian movement. Both acidic pH and copper doping promoted nanoparticle dissolution, whereas pre-grafting can provide a plausible solution against nanoparticle toxicity and loss of reactivity due to ionic release. To recapitulate, these findings are imperative in building a sustainable framework for environmental remediation application.
Collapse
Affiliation(s)
- Abhisek Mondal
- Department of Infrastructure Engineering, The University of Melbourne, Melbourne, Australia; Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Kathryn Mumford
- Department of Chemical Engineering, The University of Melbourne, Melbourne, Australia.
| | - Brajesh K Dubey
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Meenakshi Arora
- Department of Infrastructure Engineering, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
10
|
Ameen F, Alown F, Dawoud T, Sharaf A, Sakayanathan P, Alyahya S. Versatility of copper-iron bimetallic nanoparticles fabricated using Hibiscus rosa-sinensis flower phytochemicals: various enzymes inhibition, antibiofilm effect, chromium reduction and dyes removal. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:142. [PMID: 38507144 DOI: 10.1007/s10653-024-01918-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/15/2024] [Indexed: 03/22/2024]
Abstract
Bimetallic nanoparticles (NPs) are considered superior in terms of stability and function with respect to its monometallic counterparts. Hence, in the present study Hibiscus rosa-sinensis flower extract was used to synthesis copper-iron bimetallic nanoparticles (HF-FCNPs). HF-FCNPs was characterized and its applications (biological and environmental) were determined. HF-FCNPs were spherical in shape with high percentage of copper inducted into the NPs. HF-FCNPs inhibited mammalian glucosidases [maltase (IC50: 548.71 ± 61.01 µg/mL), sucrase (IC50: 441.34 ± 36.03 µg/mL), isomaltase (IC50: 466.37 ± 27.09 µg/mL) and glucoamylase (IC50: 403.12 ± 14.03 µg/mL)], alpha-amylase (IC50: 16.27 ± 1.73 µg/mL) and acetylcholinesterase [AChE (IC50: 0.032 ± 0.004 µg/mL)] activities. HF-FCNPs showed competitive inhibition against AChE, maltase and sucrase activities; mixed inhibition against isomaltase and glucoamylase activities; whereas non-competitive inhibition against α-amylase activity. HF-FCNPs showed zone of inhibition of 16 ± 2 mm against S. mutans at 100 µg/mL concentration. HF-FCNPs inhibited biofilm formation of dental pathogen, S. mutans. SEM and confocal microscopy analysis revealed the disruption of network formation and bacterial cell death induced by HF-FCNPs treatment on tooth model of S. mutans biofilm. HF-FCNPs efficiently removed hexavalent chromium in pH-independent manner and followed first order kinetics. Through Langmuir isotherm fit the qmax (maximum adsorption capacity) was determined to be 62.5 mg/g. Further, HF-FCNPs removed both anionic and cationic dyes. Altogether, facile synthesis of HF-FCNPs was accomplished and its biological (enzyme inhibition and antibiofilm activity) and environmental (catalyst to remove pollutants) applications have been understood.
Collapse
Affiliation(s)
- Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Fadaa Alown
- Science Department, Faculty of Basic Education, Public Authority for Applied Education and Training (Paaet), Kuwait City, Kuwait
| | - Turki Dawoud
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abeer Sharaf
- Jeddah Second Health Cluster- King Fahad General Hospital, Laboratory and Blood Bank Department-NAT Lab, Jeddah, Saudi Arabia
| | | | - Sami Alyahya
- Wellness and Preventive Medicine Institute, King Abdulaziz City for Science and Technology, P.O. Box 6086, 11442, Riyadh, Saudi Arabia
| |
Collapse
|
11
|
Ding D, Zhao Y, Chen Y, Xu C, Fan X, Tu Y, Zhao D. Recent advances in bimetallic nanoscale zero-valent iron composite for water decontamination: Synthesis, modification and mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120187. [PMID: 38310792 DOI: 10.1016/j.jenvman.2024.120187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/08/2023] [Accepted: 01/20/2024] [Indexed: 02/06/2024]
Abstract
The environmental pollution of water is one of the problems that have plagued human society. The bimetallic nanoscale zero-valent iron (BnZVI) technology has increased wide attention owing to its high performance for water treatment and soil remediation. In recent years, the BnZVI technology based on the development of nZVI has been further developed. The material chemistry, synthesis methods, and immobilization or surface stabilization of bimetals are discussed. Further, the data of BnZVI (Fe/Ni, Fe/Cu, Fe/Pd) articles that have been studied more frequently in the last decade are summarized in terms of the types of contaminants and the number of research literatures on the same contaminants. Five contaminants including trichloroethylene (TCE), Decabromodi-phenyl Ether (BDE209), chromium (Cr(VI)), nitrate and 2,4-dichlorophenol (2,4-DCP) were selected for in-depth discussion on their influencing factors and removal or degradation mechanisms. Herein, comprehensive views towards mechanisms of BnZVI applications including adsorption, hydrodehalogenation and reduction are provided. Particularly, some ambiguous concepts about formation of micro progenitor cell, production of hydrogen radicals (H·) and H2 and the electron transfer are highlighted. Besides, in-depth discussion of selectivity for N2 from nitrates and co-precipitation of chromium are emphasized. The difference of BnZVI is also discussed.
Collapse
Affiliation(s)
- Dahai Ding
- Key Laboratory of and Functional Molecule Design and Interface Process, Anhui Jianzhu University, Hefei 230601, PR China.
| | - Yuanyuan Zhao
- Key Laboratory of and Functional Molecule Design and Interface Process, Anhui Jianzhu University, Hefei 230601, PR China.
| | - Yan Chen
- Key Laboratory of and Functional Molecule Design and Interface Process, Anhui Jianzhu University, Hefei 230601, PR China.
| | - Chaonan Xu
- Key Laboratory of and Functional Molecule Design and Interface Process, Anhui Jianzhu University, Hefei 230601, PR China.
| | - Xudong Fan
- Key Laboratory of and Functional Molecule Design and Interface Process, Anhui Jianzhu University, Hefei 230601, PR China.
| | - Yingying Tu
- Key Laboratory of and Functional Molecule Design and Interface Process, Anhui Jianzhu University, Hefei 230601, PR China.
| | - Donglin Zhao
- Key Laboratory of and Functional Molecule Design and Interface Process, Anhui Jianzhu University, Hefei 230601, PR China.
| |
Collapse
|
12
|
Yang X, Yang W, Chen Y, Li Z, Yang G. Chitosan-stabilized iron-copper nanoparticles for efficient removal of nitrate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:97298-97309. [PMID: 37589845 DOI: 10.1007/s11356-023-29319-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023]
Abstract
Chitosan-stabilized iron-copper nanomaterials (CS-nZVI/Cu) were successfully prepared and applied to the nitrate removal. Batch experiments were conducted to examine the effects of experimental parameters on nitrate removal, including Cu loading, CS-nZVI/Cu dosages, initial nitrate concentrations, and initial pHs. From the experimental date, it was concluded that CS-nZVI/Cu has a high nitrate removal efficiency, which can be more than 97%, respectively, at Cu loading = 5%, dosages of CS-nZVI/Cu = 3 g/L, initial nitrate concentrations of 30~120 mg/L, and initial pH values = 2~9. Additionally, the kinetic data for CS-nZVI/Cu were found to fit well with the first-order kinetic model with a rate constant of 0.15 (mg∙L)1-n/min, where n=1. The Langmuir model showed a good fit for NO3- removal, indicating that monolayer chemisorption occurred. The SEM and TEM analyses showed that the addition of chitosan resulted in improved dispersion of the CS-nZVI/Cu. The CS-nZVI/Cu nanomaterials have a more complete elliptical shape and are between 50 and 100 nm in size. The XRD analysis showed that the chitosan encapsulation reduced the oxidation of the iron component and the main product was Fe3O4. The FT-IR analysis showed that the immobilization of chitosan and the iron was accomplished by the ligand interaction. The nitrogen adsorption-desorption isotherm results showed that the CS-nZVI/Cu specific surface area and pore volume decreased significantly after the reaction. Adsorption, oxidation, and reduction are possible mechanisms for nitrate removal by CS-nZVI/Cu. The XPS analysis investigated the contribution of nZVI and Cu in the removal mechanism. Adding copper accelerates the reaction time and rate. In addition, nZVI played a vital role in reducing nitrate to N2. Based on these results, it looks like CS-nZVI/Cu could be a satisfactory material for nitrate removal.
Collapse
Affiliation(s)
- Xiaxia Yang
- State Key Laboratory of Materials Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Pukou District, Nanjing, 211816, People's Republic of China
| | - Wenhong Yang
- State Key Laboratory of Materials Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Pukou District, Nanjing, 211816, People's Republic of China
| | - Yingjie Chen
- State Key Laboratory of Materials Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Pukou District, Nanjing, 211816, People's Republic of China
| | - Zixi Li
- State Key Laboratory of Materials Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Pukou District, Nanjing, 211816, People's Republic of China
| | - Gang Yang
- State Key Laboratory of Materials Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Pukou District, Nanjing, 211816, People's Republic of China.
| |
Collapse
|
13
|
Zhang P, Xie C, Li Y, Sun B, Yao S, He J, Zhang K, Zhu S, Kong L. Effective reinforcement ozone oxidation degradation of N,N-dimethylformamide with cobalt doping micro electrolysis composite. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
14
|
Som I, Roy M, Saha R. Polyethylene glycol-modified mesoporous zerovalent iron nanoparticle as potential catalyst for improved reductive degradation of Congo red from wastewater. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023:1-24. [PMID: 37243365 DOI: 10.1080/10934529.2023.2215679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/23/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023]
Abstract
In this study, bare zero-valent iron nanoparticles (nZVI) have been modified using polyethylene glycol (PEG) of various molecular weight in a facile technique. The synthesized nZVI modified with PEG, M.W. of 600 and 6000 was denoted by nZVI-PEG600 and nZVI-PEG6000, respectively, and compared their catalytic activity towards the reductive degradation of Congo red (CR) using NaBH4.The existence of PEG layer surrounds the nZVI core was confirmed by several characterization tools, such as XRD, FTIR, FESEM and TEM. Herein, both nZVI-PEG600 and nZVI-PEG6000 exhibited remarkable removal efficiencies of 89.6% and 99.2% within 14 min of reaction time. The optimum reaction parameters were found to be as follows: 0.2 g L-1 catalyst dose and initial dye concentration of 2 × 10-5 molL-1 etc. Kinetic studies of dye degradation were investigated which follow pseudo-1st-order kinetics. The TOC analysis confirmed the complete mineralization of CR dye by nZVI-PEG6000 nanocatalyst. GCMS analysis of plausible degraded products was performed to elucidate a probable mechanistic pathway of CR degradation. Further, we have investigated the degradation of two anionic dyes mixture, i.e., CR and methyl orange (MO) using best catalyst, i.e., nZVI-PEG6000.
Collapse
Affiliation(s)
- Ipsita Som
- Department of Chemistry, National Institute of Technology, Durgapur, India
| | - Mouni Roy
- Department of Chemistry, Banasthali University, Banasthali, Rajasthan, India
| | - Rajnarayan Saha
- Department of Chemistry, National Institute of Technology, Durgapur, India
| |
Collapse
|
15
|
Legesse AT, Belay TA. In Situ Synthesis of Bimetallic Cu/Al for Removal of Cr(VI) from Synthetic Aqueous Solution. CHEMISTRY AFRICA 2023. [DOI: 10.1007/s42250-023-00632-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
16
|
Teng D, Jin P, Guo W, Liu J, Wang W, Li P, Cao Y, Zhang L, Zhang Y. Recyclable Magnetic Iron Immobilized onto Chitosan with Bridging Cu Ion for the Enhanced Adsorption of Methyl Orange. Molecules 2023; 28:molecules28052307. [PMID: 36903554 PMCID: PMC10005193 DOI: 10.3390/molecules28052307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Chitosan (CS) is a natural and low-cost adsorbent for capturing metal ions and organic compounds. However, the high solubility of CS in acidic solution would make it difficult to recycle the adsorbent from the liquid phase. In this study, the CS/Fe3O4 was prepared via Fe3O4 nanoparticles immobilized onto a CS surface, and the DCS/Fe3O4-Cu was further fabricated after surface modification and the adsorption of Cu ions. The meticulously tailored material displayed the sub-micron size of an agglomerated structure with numerous magnetic Fe3O4 nanoparticles. During the adsorption of methyl orange (MO), the DCS/Fe3O4-Cu delivered a superior removal efficiency of 96.4% at 40 min, which is more than twice the removal efficiency of 38.7% for pristine CS/Fe3O4. At an initial MO concentration of 100 mg L-1, the DCS/Fe3O4-Cu exhibited the maximum adsorption capacity of 144.60 mg g-1. The experimental data were well explained by the pseudo-second-order model and Langmuir isotherm, suggesting the dominant monolayer adsorption. The composite adsorbent still maintained a large removal rate of 93.5% after five regeneration cycles. This work develops an effective strategy to simultaneously achieve high adsorption performance and convenient recyclability for wastewater treatment.
Collapse
Affiliation(s)
- Daoguang Teng
- Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou 450001, China
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Peng Jin
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Wenhuan Guo
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Jiang Liu
- Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou 450001, China
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Wei Wang
- Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou 450001, China
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Peng Li
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yijun Cao
- Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou 450001, China
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Ling Zhang
- Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou 450001, China
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
- Correspondence: (L.Z.); (Y.Z.)
| | - Ying Zhang
- Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou 450001, China
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
- Correspondence: (L.Z.); (Y.Z.)
| |
Collapse
|
17
|
Gao F, Zhang M, Zhang W, Ahmad S, Wang L, Tang J. Synthesis of carboxymethyl cellulose stabilized sulfidated nanoscale zero-valent iron (CMC-S-nZVI) for enhanced reduction of nitrobenzene. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
18
|
Zr4+ cross-linked chitosan-thiourea composite for efficient detoxification of Cr(VI) ions in aqueous solution. Carbohydr Polym 2022; 296:119872. [DOI: 10.1016/j.carbpol.2022.119872] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/01/2022] [Accepted: 07/12/2022] [Indexed: 01/04/2023]
|
19
|
Liang Z, Qi T, Liu H, Wang L, Li Q. Zero-valent bimetallic catalyst/absorbent for simultaneous facilitation of MgSO 3 oxidation and arsenic uptake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157147. [PMID: 35798112 DOI: 10.1016/j.scitotenv.2022.157147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Cobalt (Co)-based catalysts can efficiently reduce the heat waste from sulfate concentration by enhancing sulfite oxidation during wet flue gas desulfurization system. However, arsenic (As) can poison such catalysts and migrate into the sulfate by-products, resulting in severe secondary pollution. In this study, a zero-valent Co/iron (Fe)-based nanoparticle (NZV-Co2Fe1) was fabricated and applied as a bifunctional catalyst/adsorbent. The catalytic stability of the Co-based catalyst was enhanced by the introduction of Fe because the poisonous effect of As was substantially suppressed because of the high adsorption capacity of Fe for As. Compared with the noncatalytic benchmark, the presence of 0.5 g/L NZV-Co2Fe1 can increase the rate of MgSO3 oxidation by approximately 12-fold even at a high concentration of As (2.5 mg/L). The Langmuir model was fitted to the As adsorption isotherms, indicating that As uptake is a single-layer adsorption process. The pseudo-second-order kinetic model indicated that As was removed through chemisorption. The oxidation pathway of As(III) involves reactive radicals (mainly OH, SO4- and SO5-) and ligand-to-metal charge transfer between SO32- and Co2+. The availability of MgSO3 improved the removal efficiency at high concentrations of As(III) (1 mg/L). These results indicate that using NZV-Co2Fe1 as a catalyst to purify the by-products of flue gas desulfurization can effectively prevent secondary pollution.
Collapse
Affiliation(s)
- Zhengwei Liang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Tieyue Qi
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Hui Liu
- School of Foreign Languages, North China Electric Power University, Beijing 102206, PR China
| | - Lidong Wang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Qiangwei Li
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China.
| |
Collapse
|
20
|
Alturki AM. Facile synthesis route for chitosan nanoparticles doped with various concentrations of the biosynthesized copper oxide nanoparticles: Electrical conductivity and antibacterial properties. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
21
|
Bai J, Zhang M, Wang X, Zhang J, Yang Z, Fan L, An Y, Guan R. Combination of Micelle Collapse and CuNi Surface Dissolution for Electrodeposition of Magnetic Freestanding Chitosan Film. NANOMATERIALS 2022; 12:nano12152629. [PMID: 35957059 PMCID: PMC9370670 DOI: 10.3390/nano12152629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/16/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022]
Abstract
Magnetic chitosan hydrogel has aroused immense attention in recent years due to their biomedical significance and magnetic responsiveness. Here, A new electrodeposition method is reported for the fabrication of a novel CuNi-based magnetic chitosan freestanding film (MCFF) in an acidic chitosan plating bath containing SDS-modified CuNi NPs. Contrary to chitosan’s anodic and cathodic deposition, which typically involves electrochemical oxidation, the synthetic process is triggered by coordination of chitosan with Cu and Ni ions in situ generated by the controlled surface dissolution of the suspended NPs with the acidic plating bath. The NPs provide not only the ions required for chitosan growth but also become entrapped during electrodeposition, thereby endowing the composite with magnetic properties. The obtained MCFF offers a wide range of features, including good mechanical strength, magnetic properties, homogeneity, and morphological transparency. Besides the fundamental interest of the synthesis itself, sufficient mechanical strength ensures that the hydrogel can be used by either peeling it off of the electrode or by directly building a complex hydrogel electrode. Its fast and easy magnetic steering, separation and recovery, large surface area, lack of secondary pollution, and strong chelating capability could lead to it finding applications as an electrochemical detector or adsorbent.
Collapse
Affiliation(s)
- Jingyuan Bai
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China; (J.B.); (M.Z.); (X.W.)
| | - Meilin Zhang
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China; (J.B.); (M.Z.); (X.W.)
| | - Xuejiao Wang
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China; (J.B.); (M.Z.); (X.W.)
| | - Jin Zhang
- Engineering Research Center of Continuous Extrusion, Ministry of Education, Dalian Jiaotong University, Dalian 116028, China; (Z.Y.); (L.F.)
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi’an 710072, China;
- Correspondence: (J.Z.); (R.G.)
| | - Zhou Yang
- Engineering Research Center of Continuous Extrusion, Ministry of Education, Dalian Jiaotong University, Dalian 116028, China; (Z.Y.); (L.F.)
| | - Longyi Fan
- Engineering Research Center of Continuous Extrusion, Ministry of Education, Dalian Jiaotong University, Dalian 116028, China; (Z.Y.); (L.F.)
| | - Yanan An
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi’an 710072, China;
| | - Renguo Guan
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China; (J.B.); (M.Z.); (X.W.)
- Engineering Research Center of Continuous Extrusion, Ministry of Education, Dalian Jiaotong University, Dalian 116028, China; (Z.Y.); (L.F.)
- Correspondence: (J.Z.); (R.G.)
| |
Collapse
|
22
|
New insights into iron/nickel-carbon ternary micro-electrolysis toward 4-nitrochlorobenzene removal: Enhancing reduction and unveiling removal mechanisms. J Colloid Interface Sci 2022; 612:308-322. [PMID: 34998191 DOI: 10.1016/j.jcis.2021.12.116] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/07/2021] [Accepted: 12/18/2021] [Indexed: 12/11/2022]
Abstract
The ternary micro-electrolysis material iron/nickel-carbon (Fe/Ni-AC) with enhanced reducibility was constructed by introducing the trace transition metal Ni based on the iron/carbon (Fe/AC) system and used for the removal of 4-nitrochlorobenzene (4-NCB) in solution. The composition and structures of the Fe/Ni-AC were analyzed by various characterizations to estimate its feasibility as reductants for pollutants. The removal efficiency of 4-NCB by Fe/Ni-AC was considerably greater than that of Fe/AC and iron/nickel (Fe/Ni) binary systems. This was mainly due to the enhanced reducibility of 4-NCB by the synergism between anode and double-cathode in the ternary micro-electrolysis system (MES). In the Fe/Ni-AC ternary MES, zero-iron (Fe0) served as anode involved in the formation of galvanic couples with activated carbon (AC) and zero-nickel (Ni0), respectively, where AC and Ni0 functioned as double-cathode, thereby promoting the electron transfer and the corrosion of Fe0. The cathodic and catalytic effects of Ni0 that existed simultaneously could not only facilitate the corrosion of Fe0 but also catalyze H2 to form active hydrogen (H*), which was responsible for 4-NCB transformation. Besides, AC acted as a supporter which could offer the reaction interface for in-situ reduction, and at the same time provide interconnection space for electrons and H2 to transfer from Fe0 to the surface of Ni0. The results suggest that a double-cathode of Ni0 and AC could drive much more electrons, Fe2+ and H*, thus serving as effective reductants for 4-NCB reduction.
Collapse
|
23
|
The removal of Cr(VI) from aqueous and saturated porous media by nanoscale zero-valent iron stabilized with flaxseed gum extract: Synthesis by continuous flow injection method. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-022-1069-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Wu H, Liu Y, Chen B, Yang F, Wang L, Kong Q, Ye T, Lian J. Enhanced adsorption of molybdenum(VI) from aquatic solutions by chitosan-coated zirconium–iron sulfide composite. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119736] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
Wang M, Liu C, Shi H, Long T, Zhang C, Liu B. Facile synthesis of chitosan-derived maillard reaction productions coated CuFeO 2 with abundant oxygen vacancies for higher Fenton-like catalytic performance. CHEMOSPHERE 2021; 283:131191. [PMID: 34182636 DOI: 10.1016/j.chemosphere.2021.131191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/13/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
The two shortcomings of the Fenton-like catalyst delafossite-type oxide (CuFeO2) lie in its spontaneous agglomeration and deactivation under neutral working pH. To remedy these drawbacks, novel Fenton-like catalyst chitosan-derived maillard reaction productions coated CuFeO2 with abundant oxygen vacancies (OV-CuFeO2@MRPs) was synthesized by hydrothermal method with no extra chemical reducing agent. The systemic characterization illustrated that richer oxygen vacancies and higher particles dispersion of OV-CuFeO2@MRPs contributed to better Rhodamine B (RhB) degradation under neutral pH compared to pure CuFeO2. Cooper antisite defects in OV-CuFeO2@MRPs were evidenced by X-ray powder diffraction (XRD), fourier transform infrared spectrometer (FTIR), Raman spectra and energy dispersive X-ray spectrometer (EDX) linescan. To keep the charge balance, OV-CuFeO2@MRPs should form rich oxygen vacancies, which was confirmed by X-ray photoelectron spectroscopy (XPS) and solid-state electron paramagnetic resonance spectrometer (solid-state EPR). Furthermore, the electrochemical impedance spectroscopy (EIS) analysis revealed that oxygen vacancies could improve the electron transfer. Scavenging experiments and electron spin resonance spectroscopy (ESR) analysis demonstrated that OH was main active radical during Fenton-like reaction, and the density functional theory (DFT) calculation verified that the oxygen vacancy could effectively adsorb H2O2 and elongate O-O bond of H2O2, thus promoting the activation of H2O2 into OH.
Collapse
Affiliation(s)
- Mengliang Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210046, China
| | - Cong Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210046, China
| | - Hang Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210046, China
| | - Tianyi Long
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210046, China
| | - Chenyong Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210046, China
| | - Bo Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210046, China.
| |
Collapse
|
26
|
Kumar S, Brar RS, Babu JN, Dahiya A, Saha S, Kumar A. Synergistic effect of pistachio shell powder and nano-zerovalent copper for chromium remediation from aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:63422-63436. [PMID: 34231145 DOI: 10.1007/s11356-021-15285-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Pistachio shell powder supported nano-zerovalent copper (ZVC@PS) material prepared by borohydride reduction was characterized using SEM, FTIR, XRD, TGA/DTA, BET, and XPS. SEM, XRD, and XPS revealed the nano-zerovalent copper to consist of a core-shell structure with CuO shell and Cu(0) core with a particle size of 40-100 nm and spherical morphology aggregated on PS biomass. ZVC@PS was found to contain 39% (w/w %) Cu onto the pistachio shell biomass. Batch sorption of Cr(VI) from the aqueous using ZVC@PS was studied and was optimized for dose (0.1-0.5 g/L), initial Cr(VI) concentration(1-20 mg/L), and pH (2-12). Optimized conditions were 0.1 g/L doses of sorbent and pH=3 for Cr(VI) adsorption. Langmuir and Freundlich adsorption isotherm models fitted well to the adsorption behavior of ZVC@PS for Cr(VI) with a pseudo-second-order kinetic behavior. ZVC@PS (0.1g/L) exhibits qmax for Cr(VI) removal up to 110.9 mg/g. XPS and other spectroscopic evidence suggest the adsorption of Cr(VI) by pistachio shell powder, coupled with reductive conversion of Cr(VI) to Cr(III) by ZVC particles to produce a synergistic effect for the efficient remediation of Cr(VI) from aqueous medium.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Chemistry, Akal University, Talwandi Sabo, Bathinda, Punjab, 151302, India.
| | | | - J Nagendra Babu
- Department of Chemistry, School of Basic and Applied Science, Central University of Punjab, Bathinda, Punjab, 151001, India
| | - Amarjeet Dahiya
- Department of Chemistry, School of Basic and Applied Science, Central University of Punjab, Bathinda, Punjab, 151001, India
| | - Sandip Saha
- Department of Chemistry, Akal University, Talwandi Sabo, Bathinda, Punjab, 151302, India
| | - Avneesh Kumar
- Department of Botany, Akal University, Talwandi Sabo, Bathinda, Punjab, 151302, India
| |
Collapse
|
27
|
Yang W, Xi D, Li C, Yang Z, Lin Z, Si M. "In-situ synthesized" iron-based bimetal promotes efficient removal of Cr(VI) in by zero-valent iron-loaded hydroxyapatite. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126540. [PMID: 34252675 DOI: 10.1016/j.jhazmat.2021.126540] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Anionic Cr(VI) and cationic heavy metals generally co-exist in industrial effluents and threaten the public health. Zero-valent iron (ZVI) particles tent to passivate rapidly, which results in a gradual drop in its reactivity. In this work, a strategy of "in-situ synthesized" iron-based bimetal was first developed to stimulate the self-activation of passivated ZVI. During this process, ZVI-loaded hydroxyapatite (ZVI/HAP) was prepared to enhance the affinity for co-existing Cu2+, which promoted the in-situ Cu0 deposition on ZVI/HAP to form a Fe-Cu bimetal. The deposited Cu0 significantly decreased the activation energy (Ea) of Cr(VI) reduction by 24.9%, and its corresponding Cr(VI) removal (96.53%) was much higher that of single Cr(VI) system (68.67%) within 9 h. More importantly, the removal of Cr(VI) and Cu2+ were synchronously achieved. Systematical electrochemical characterizations were first introduced to explore the galvanic behaviors of iron-based bimetal. The charge transfer resistance and the negative open circuit potential of ZVI/HAP significantly decreased with the Cu0 deposition, thereby accelerating the electron transfer from Fe0 to Cu2+. The enhanced electron transfer further facilitated the Fe(II) release to promote Cr(VI) reduction. This "in-situ synthesized" iron-based bimetal strategy provides a novel pattern for ZVI activation and exhibits practical application in remediation of combined contaminant.
Collapse
Affiliation(s)
- Weichun Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha 410083, PR China
| | - Dongdong Xi
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Chaofang Li
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Zhihui Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha 410083, PR China
| | - Zhang Lin
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha 410083, PR China
| | - Mengying Si
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China.
| |
Collapse
|
28
|
Wang Y, Lin N, Gong Y, Wang R, Zhang X. Cu-Fe embedded cross-linked 3D hydrogel for enhanced reductive removal of Cr(VI): Characterization, performance, and mechanisms. CHEMOSPHERE 2021; 280:130663. [PMID: 33971416 DOI: 10.1016/j.chemosphere.2021.130663] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Porous hydrogel, as a high-efficiency adsorbent for heavy metals, suffers the drawbacks of the use of expensive and toxic reagents during the process of preparation, further limiting its application ranges. Besides, the heavy metals couldn't be transformed into nontoxic species, which leads to the environmental pollution risk. Herein, a three-dimensionally (3D) structured Cu-Fe embedded cross-linked cellulose hydrogel (nFeCu-CH) was innovatively fabricated by a novel self-assembly and in-situ reduction method, which exhibited exceptionally enhanced adsorption-reduction property towards Cr(VI) wastewater. The results of degradation experiment exhibited that the removal reaction followed Langmuir-Hinshelwood first order kinetic model and the degradation rate constant decreased with solution pH and initial Cr(VI) concentration, while increased with nFeCu-CH dosage and temperature. Regeneration studies demonstrated that more than 88% of Cr(VI) was removed by nFeCu-CH even after five times of cycling. nFeCu-CH exhibited excellent reductive activity, which had a close connection with the superiority of 3D crosslinked architectures and bimetallic synergistic effect. And 97.1% of Cr(VI) could be removed when nFeCu-CH dosage was 9.5 g/L, pH was 5, initial concentration of Cr(VI) was 20 mg/L and temperature was 303 K. Combined with cellulose hydrogel not only could provide additional active sites, but also could restrain the crystallite growth and agglomeration of nano-metallic particles, leading to the promotion of Cr(VI) removal. In addition, coating with Cu facilitated the generation and transformation of electrons according to the continuous redox cycles of Fe(III)/Fe(II) and Cu(II)/Cu(I), leading to the further improvement of the reductivity of nFeCu-CH. Multiple interaction mechanisms including adsorption, reduction and co-precipitation between nFeCu-CH and Cr(VI) were realized. The current work suggested that nFeCu-CH with highly reactive sites, excellent stability and recyclability was considered as an potential material for remediation of Cr(VI) contaminated wastewater.
Collapse
Affiliation(s)
- Yin Wang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Naipeng Lin
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yishu Gong
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Ruotong Wang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xiaodong Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| |
Collapse
|
29
|
Orooji Y, Nezafat Z, Nasrollahzadeh M, Kamali TA. Polysaccharide-based (nano)materials for Cr(VI) removal. Int J Biol Macromol 2021; 188:950-973. [PMID: 34343587 DOI: 10.1016/j.ijbiomac.2021.07.182] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/20/2021] [Accepted: 07/27/2021] [Indexed: 01/13/2023]
Abstract
Chromium is a potentially poisonous and carcinogenic species, which originates from human activities and various industries such as leather, steel, iron, and electroplating industries. Chromium is present in various oxidation states, among which hexavalent chromium (Cr(VI)) is highly toxic as a natural contaminant. Therefore, chromium, particularly Cr(VI), must be eliminated from the environment, soil, and water to overcome significant problems due to its accumulation in the environment. There are different approaches such as adsorption, ion exchange, photocatalytic reduction, etc. for removing Cr(VI) from the environment. By converting Cr(VI) to Cr(III), its toxicity is reduced. Cr(III) is essential for the human diet, even in small amounts. Today, biopolymers such as alginate, cellulose, gum, pectin, starch, chitin, and chitosan have received much attention for the removal of environmental pollutants. Biopolymers, particularly polysaccharides, are very useful compounds due to their OH and NH2 functional groups and some advantages such as biodegradability, biocompatibility, and accessibility. Therefore, they can be widely applied in catalytic applications and as efficient adsorbents for the removal of toxic compounds from the environment. This review briefly investigates the application of polysaccharide-based (nano)materials for efficient Cr(VI) removal from the environment using adsorption/reduction, photocatalytic, and chemical reduction mechanisms.
Collapse
Affiliation(s)
- Yasin Orooji
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Zahra Nezafat
- Department of Chemistry, Faculty of Science, University of Qom, Qom 37185-359, Iran
| | | | - Taghi A Kamali
- Department of Chemistry, Faculty of Science, University of Qom, Qom 37185-359, Iran
| |
Collapse
|
30
|
Ye J, Wang Y, Xu Q, Wu H, Tong J, Shi J. Removal of hexavalent chromium from wastewater by Cu/Fe bimetallic nanoparticles. Sci Rep 2021; 11:10848. [PMID: 34035405 PMCID: PMC8149398 DOI: 10.1038/s41598-021-90414-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/04/2021] [Indexed: 11/09/2022] Open
Abstract
Passivation of nanoscale zerovalent iron hinders its efficiency in water treatment, and loading another catalytic metal has been found to improve the efficiency significantly. In this study, Cu/Fe bimetallic nanoparticles were prepared by liquid-phase chemical reduction for removal of hexavalent chromium (Cr(VI)) from wastewater. Synthesized bimetallic nanoparticles were characterized by transmission electron microscopy, Brunauer-Emmet-Teller isotherm, and X-ray diffraction. The results showed that Cu loading can significantly enhance the removal efficiency of Cr(VI) by 29.3% to 84.0%, and the optimal Cu loading rate was 3% (wt%). The removal efficiency decreased with increasing initial pH and Cr(VI) concentration. The removal of Cr(VI) was better fitted by pseudo-second-order model than pseudo-first-order model. Thermodynamic analysis revealed that the Cr(VI) removal was spontaneous and endothermic, and the increase of reaction temperature facilitated the process. X-ray photoelectron spectroscopy (XPS) analysis indicated that Cr(VI) was completely reduced to Cr(III) and precipitated on the particle surface as hydroxylated Cr(OH)3 and CrxFe1-x(OH)3 coprecipitation. Our work could be beneficial for the application of iron-based nanomaterials in remediation of wastewater.
Collapse
Affiliation(s)
- Jien Ye
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Yi Wang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Qiao Xu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Hanxin Wu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Jianhao Tong
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Jiyan Shi
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
31
|
Mohammadi SZ, Darijani Z, Karimi MA. The Synthesis of Magnetic Activated Carbon/Cobalt Nanocomposite for Fast Removal of Cr(VI) from Wastewater: Kinetics, Thermodynamics, and Adsorption Equilibrium Studies. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2021. [DOI: 10.1134/s0036024421140144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
Abhinaya M, Parthiban R, Kumar PS, Vo DVN. A review on cleaner strategies for extraction of chitosan and its application in toxic pollutant removal. ENVIRONMENTAL RESEARCH 2021; 196:110996. [PMID: 33716028 DOI: 10.1016/j.envres.2021.110996] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/01/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
Existence of human beings in this world require a cleaner environment, in which, water is the main requirement for living. Owing to the considerable development in civilisation and considerable population explosion, an increase in the contamination of natural water resources by means of non-biodegradable contaminants like heavy metals is observed thereby increasing the need for treatment of water before usage. Despite the existence of specific limits for disposal of heavy metals in water resources, studies still show high contamination of heavy metals in all these water resources. This review provides a brief note on sources and toxicity of different heavy metals in various oxidation states, their effects as well as highlights the numerous available and advanced techniques for heavy metals removal. Of all techniques adsorption is found to be beneficial as it doesn't inculcate any secondary pollutants to the environment. Additionally, this article has investigated the advantages of polymer nanocomposites in adsorption and mainly focused on biopolymer chitosan owing to its abundance in natural environment. The cleaner techniques for the extraction of chitosan and its functionalisation using different types of nanofillers are comprehensively discussed in this review. This article suggests a better alternative for conventional adsorbents as well as aids in remediation of wastes.
Collapse
Affiliation(s)
- M Abhinaya
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| | - R Parthiban
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India.
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India.
| | - Dai-Viet N Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| |
Collapse
|
33
|
Bayat M, Nasernejad B, Falamaki C. Preparation and characterization of nano-galvanic bimetallic Fe/Sn nanoparticles deposited on talc and its enhanced performance in Cr(VI) removal. Sci Rep 2021; 11:7715. [PMID: 33833296 PMCID: PMC8032741 DOI: 10.1038/s41598-021-87106-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/24/2021] [Indexed: 02/01/2023] Open
Abstract
In this study, talc-supported nano-galvanic Sn doped nZVI (Talc-nZVI/Sn) bimetallic particles were successfully synthesized and utilized for Cr(VI) remediation. Talc-nZVI/Sn nanoparticles were characterized by FESEM, EDS, FTIR, XRD, zeta potential, and BET analysis. The findings verified the uniform dispersion of nZVI/Sn spherical nanoparticles on talc surface with a size of 30-200 nm, and highest specific surface area of 146.38 m2/g. The formation of numerous nano-galvanic cells between nZVI core and Sn shell enhanced the potential of bimetallic particles in Cr(VI) mitigation. Moreover, batch experiments were carried out to investigate optimum conditions for Cr(VI) elimination and total Cr(VI) removal was achieved in 20 min using Sn/Fe mass ratio of 6/1, the adsorbent dosage of 2 g/L, initial Cr(VI) concentration of 80 mg/L, at the acidic environment (pH = 5) and temperature of 303 K. Besides, co-existing of metallic cations turned out to facilitate the electron transfer from the nano-galvanic couple of NZVI/Sn, and suggested the revolution of bimetallic particles to trimetallic composites. The aging study of the nanocomposite confirmed its constant high activity during 60 days. The removal reaction was well described by the pseudo-second-order kinetic and the modified Langmuir isotherm models. Overall, due to the synergistic galvanic cell effect of nZVI/Sn nanoparticles and full coverage of active sites by Sn layer, Talc-nZVI/6Sn was utilized as a promising nanocomposite for fast and highly efficient Cr(VI) elimination.
Collapse
Affiliation(s)
- Mitra Bayat
- Department of Chemical Engineering, Amirkabir University of Technology, 15875-4413, Tehran, Iran
| | - Bahram Nasernejad
- Department of Chemical Engineering, Amirkabir University of Technology, 15875-4413, Tehran, Iran.
| | - Cavus Falamaki
- Department of Chemical Engineering, Amirkabir University of Technology, 15875-4413, Tehran, Iran
| |
Collapse
|
34
|
Bimetal CuFe Nanoparticles—Synthesis, Properties, and Applications. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11051978] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bimetal CuFe (copper-iron) nanoparticles, which are based on the earth-abundant and inexpensive metals, have generated a great deal of interest in recent years. The possible modification of the chemical and physical properties of these nanoparticles by changing their size, structure, and composition has contributed to the development of material science. At the same time, the strong tendency of these elements to oxidize under atmospheric conditions makes the synthesis of pure bimetallic CuFe nanoparticles still a great challenge. This review reports on different synthetic approaches to bimetallic CuFe nanoparticles and bimetallic CuFe nanoparticles supported on various materials (active carbide, carbide nanotubes, silica, graphite, cellulose, mesoporous carbide), their structure, physical, and chemical properties, as well as their utility as catalysts, including electrocatalysis and photocatalysis.
Collapse
|
35
|
Farooqi ZH, Akram MW, Begum R, Wu W, Irfan A. Inorganic nanoparticles for reduction of hexavalent chromium: Physicochemical aspects. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123535. [PMID: 33254738 PMCID: PMC7382355 DOI: 10.1016/j.jhazmat.2020.123535] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/07/2020] [Accepted: 07/20/2020] [Indexed: 05/24/2023]
Abstract
Hexavalent Chromium [Cr(VI)] is a highly carcinogenic and toxic material. It is one of the major environmental contaminants in aquatic system. Its removal from aqueous medium is a subject of current research. Various technologies like adsorption, membrane filtration, solvent extraction, coagulation, biological treatment, ion exchange and chemical reduction for removal of Cr(VI) from waste water have been developed. But chemical reduction of Cr(VI) to Cr(III) has attracted a lot of interest in the past few years because, the reduction product [Cr(III)] is one of the essential nutrients for organisms. Various nanoparticles based systems have been designed for conversion of Cr(VI) into Cr(III) which have not been critically reviewed in literature. This review present recent research progress of classification, designing and characterization of various inorganic nanoparticles reported as catalysts/reductants for rapid conversion of Cr(VI) into Cr(III) in aqueous medium. Kinetics and mechanism of nanoparticles enhanced/catalyzed reduction of Cr(VI) and factors affecting the reduction process have been discussed critically. Personal future insights have been also predicted for further development in this area.
Collapse
Affiliation(s)
- Zahoor H Farooqi
- Institute of Chemistry, University of the Punjab, New Campus, Lahore, 54590, Pakistan.
| | - Muhammad Waseem Akram
- Institute of Chemistry, University of the Punjab, New Campus, Lahore, 54590, Pakistan
| | - Robina Begum
- Institute of Chemistry, University of the Punjab, New Campus, Lahore, 54590, Pakistan.
| | - Weitai Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Ahmad Irfan
- Research Center for Advanced Materials Science, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia; Department of Chemistry, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| |
Collapse
|
36
|
Yang C, Ge C, Li X, Li L, Wang B, Lin A, Yang W. Does soluble starch improve the removal of Cr(VI) by nZVI loaded on biochar? ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111552. [PMID: 33396093 DOI: 10.1016/j.ecoenv.2020.111552] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 06/12/2023]
Abstract
A novel material that nano zero valent iron (nZVI) loaded on biochar with stable starch stabilization (nZVI/SS/BC) was synthesized and used for the removal of hexavalent chromium [Cr(VI)] in simulated wastewater. It was indicated that as the pyrolysis temperature of rice straw increased, the removal rate of Cr(VI) by nZVI/SS/BC first increased and then decreased. nZVI/SS/BC made from biochar pyrolyzed at 600 °C (nZVI/SS/BC600) had the highest removal efficiency and was suitable for a wide pH range (pH 2.1-10.0). The results showed that 99.67% of Cr(VI) was removed by nZVI/SS/BC600, an increase of 45.93% compared to the control group, which did not add soluble starch during synthesis. The pseudo-second-order model and the Langmuir model were more in line with reaction. The maximum adsorption capacity for Cr(VI) by nZVI/SS/BC600 was 122.86 mg·g-1. The properties of the material were analyzed by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) mapping, Brunauer-Emmett-Teller (BET), Fourier-transform infrared (FTIR), and X-ray diffraction (XRD). The results showed that the nZVI particles were uniformly supported on the biochar, and the BET surface areas of nZVI/SS/BC was 40.4837 m2·g-1, an increase of 8.79 times compared with the control group. Mechanism studies showed that soluble starch reduced the formation of metal oxides, thereby improving the reducibility of the material, and co-precipitates were formed during the reaction. All results indicated that nZVI/SS/BC was a potential repair material that can effectively overcome the limitations of nZVI and achieve efficient and rapid repair of Cr(VI).
Collapse
Affiliation(s)
- Chun Yang
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chazhong Ge
- Chinese Academy for Environmental Planning, Beijing 100012, China
| | - Xiaoliang Li
- Chinese Academy for Environmental Planning, Beijing 100012, China
| | - Lu Li
- Chinese Academy for Environmental Planning, Beijing 100012, China
| | - Bin Wang
- Qinhuangdao Bohai Biological Research Institute of Beijing University of Chemical Technology, Qinhuangdao, Hebei 066000, China
| | - Aijun Lin
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Qinhuangdao Bohai Biological Research Institute of Beijing University of Chemical Technology, Qinhuangdao, Hebei 066000, China.
| | - Wenjie Yang
- Chinese Academy for Environmental Planning, Beijing 100012, China; College of Renewable Energy, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
37
|
Maamoun I, Falyouna O, Eljamal R, Bensaida K, Eljamal O. Optimization Modeling of nFe0/Cu-PRB Design for Cr(VI) Removal from Groundwater. ACTA ACUST UNITED AC 2021. [DOI: 10.18178/ijesd.2021.12.5.1330] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Hexavalent chromium is one of the highly toxic heavy metals which could lead to severe health issues when it is discharged into aquifers as industrial wastewater. In the current study nFe0/Cu was successfully employed in PRB technology for Cr(VI) removal from groundwater. Batch and column experiments confirmed the high reactive performance of nFe0/Cu towards Cr(VI) removal by around 85% removal efficiency. The main pathways for Cr-species removal by nFe0/Cu were determined as the reduction of Cr(VI) to Cr(III) by both nFe0 and Cu0 and the precipitation/co-precipitation of Cr(III) with the released iron oxides on the nFe0/Cu surface. The developed 3D-surface response optimization model confirmed the reciprocal relation between the residence time, barrier thickness and hydraulic conductivity. The interaction and sensitivity analysis between the model’s parameters were significantly crucial for defining the optimal design conditions of the nFe0/Cu-PRB. Generally, the current study could represent a great contribution in scaling-up the PRB technology towards the real field applications.
Collapse
|
38
|
Xu Z, Sun Z, Zhou Y, Zhang D, Gao Y, Chen W. Enhanced reactivity and electron selectivity of GAC-Fe-Cu ternary micro-electrolysis system toward p-chloronitrobenzene under oxic conditions. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:123122. [PMID: 33027877 DOI: 10.1016/j.jhazmat.2020.123122] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/18/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
A novel GAC-Fe-Cu ternary micro-electrolysis system was synthesized for the removal of p-chloronitrobenzene (p-CNB) under oxic conditions. p-CNB could be efficiently removed by GAC-Fe-Cu at a wide initial pH range of 1.0-9.0. In particular, the p-CNB removal efficiency of 96.96 % was obtained at initial pH of 7.2, and the degradation (44.96 %) was the major removal pathway. Additionally, reduction and oxidation simultaneously contributed to the degradation of p-CNB. The results indicated that OH was the prime reactive species under acidic conditions while O2- dominated the degradation of p-CNB under neutral conditions. Reduction reaction was remarkably enhanced in the presence of dissolved oxygen and the iron corrosion could be accelerated by in-situ generated H2O2. Furthermore, XPS analysis of GAC-Fe-Cu revealed the surface-mediated electron transfer and oxidant generation process. The excellent degradation efficiency of p-CNB at initial pH of 7.2 was attributed to the enhanced electron selectivity of GAC-Fe-Cu as well as the high selectivity of near-surface generated O2- toward p-CNB and its intermediate products.
Collapse
Affiliation(s)
- Zhihua Xu
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai 200093, PR China
| | - Zhenhua Sun
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai 200093, PR China
| | - Yuwei Zhou
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai 200093, PR China
| | - Daofang Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai 200093, PR China.
| | - Yuquan Gao
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai 200093, PR China
| | - Weifang Chen
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai 200093, PR China.
| |
Collapse
|
39
|
Agricultural and Biomedical Applications of Chitosan-Based Nanomaterials. NANOMATERIALS 2020; 10:nano10101903. [PMID: 32987697 PMCID: PMC7598667 DOI: 10.3390/nano10101903] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023]
Abstract
Chitosan has emerged as a biodegradable, nontoxic polymer with multiple beneficial applications in the agricultural and biomedical sectors. As nanotechnology has evolved as a promising field, researchers have incorporated chitosan-based nanomaterials in a variety of products to enhance their efficacy and biocompatibility. Moreover, due to its inherent antimicrobial and chelating properties, and the availability of modifiable functional groups, chitosan nanoparticles were also directly used in a variety of applications. In this review, the use of chitosan-based nanomaterials in agricultural and biomedical fields related to the management of abiotic stress in plants, water availability for crops, controlling foodborne pathogens, and cancer photothermal therapy is discussed, with some insights into the possible mechanisms of action. Additionally, the toxicity arising from the accumulation of these nanomaterials in biological systems and future research avenues that had gained limited attention from the scientific community are discussed here. Overall, chitosan-based nanomaterials show promising characteristics for sustainable agricultural practices and effective healthcare in an eco-friendly manner.
Collapse
|
40
|
Latif A, Sheng D, Sun K, Si Y, Azeem M, Abbas A, Bilal M. Remediation of heavy metals polluted environment using Fe-based nanoparticles: Mechanisms, influencing factors, and environmental implications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114728. [PMID: 32408081 DOI: 10.1016/j.envpol.2020.114728] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/01/2020] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
Environmental pollution by heavy metals (HMs) has raised considerable attention due to their toxic impacts on plants, animals and human beings. Thus, the environmental cleanup of these toxic (HMs) is extremely urgent both from the environmental and biological point of view. To remediate HMs-polluted environment, several nanoparticles (NPs) such as metals and its oxides, carbon materials, zeolites, and bimetallic NPs have been documented. Among these, Fe-based NPs have emerged as an effective choice for remediating environmental contamination, due to infinite size, high reactivity, and adsorption properties. This review summarizes the utilization of various Fe-based NPs such as nano zero-valent iron (NZVI), modified-NZVI, supported-NZVI, doped-NZVI, and Fe oxides and hydroxides in remediating the HMs-polluted environment. It presents a comprehensive elaboration on the possible reaction mechanisms between the Fe-based NPs and heavy metals, including adsorption, oxidation/reduction, and precipitation. Subsequently, the environmental factors (e.g., pH, organic matter, and redox) affecting the reactivity of the Fe-based NPs with heavy metals are also highlighted in the current study. Research shows that Fe-based NPs can be toxic to living organisms. In this context, this review points out the environmental hazards associated with the application of Fe-based NPs and proposes future recommendations for the utilization of these NPs.
Collapse
Affiliation(s)
- Abdul Latif
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China; Department of Agriculture, Soil and Water, Testing Laboratory for Research, DG Khan, Pakistan
| | - Di Sheng
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Kai Sun
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Youbin Si
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.
| | - Muhammad Azeem
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Aown Abbas
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Bilal
- Department of Agriculture, Soil and Water, Testing Laboratory for Research, DG Khan, Pakistan
| |
Collapse
|
41
|
Fan C, Chen N, Qin J, Yang Y, Feng C, Li M, Gao Y. Biochar stabilized nano zero-valent iron and its removal performance and mechanism of pentavalent vanadium(V(V)). Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124882] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
42
|
Xu Z, Sun Z, Zhou Y, Zhang D, Gao Y, Huang Y, Chen W. Enhanced hydrodechlorination of p-chloronitrobenzene by a GAC-Fe-Cu ternary micro-electrolysis system: Synergistic effects and removal mechanism. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116391] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
43
|
Wu H, Wei W, Xu C, Meng Y, Bai W, Yang W, Lin A. Polyethylene glycol-stabilized nano zero-valent iron supported by biochar for highly efficient removal of Cr(VI). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 188:109902. [PMID: 31704325 DOI: 10.1016/j.ecoenv.2019.109902] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/26/2019] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
In this study, polyethylene glycol (PEG)-stabilized nano zero-valent iron (nZVI) supported by biochar (BC) (PEG-nZVI@BC) was prepared to remedy Cr(VI) with high efficiency. The morphology, functional groups, and crystalline structure of PEG-nZVI@BC composites were characterized, revealing that when PEG was added, a large number of -OH functional groups were introduced, and nZVI was effectively dispersed on the BC surface with a smaller particle size. The results of Cr(VI) remediation experiments showed Cr(VI) removal rate by PEG-nZVI@BC (97.38%) was much greater than that by BC-loaded nZVI (nZVI@BC) (51.73%). The pseudo second-order and Sips isotherm models provide the best simulation for Cr(VI) removal experimental data, respectively. The main remediation mechanism of Cr(VI) was reduction and co-precipitation of Cr-containing metal deposits onto PEG-nZVI@BC. Ecotoxicity assessment revealed PEG-nZVI@BC (1.00 g/L) has little influence on rice germination and growth, but resisted the toxicity of Cr(VI) to rice. The modified Community Bureau of Reference (BCR) sequential extraction showed pyrolysis could increase the percentage of oxidizable and residual Cr and diminish the environmental risk of Cr release from post-removal composites.
Collapse
Affiliation(s)
- Huihui Wu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Wenxia Wei
- Beijing Key Laboratory of Industrial Land Contamination and Remediation, Environmental Protection Research Institute of Light Industry, Beijing, 100089, PR China
| | - Congbin Xu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yue Meng
- Beijing Management Division of North Grand Canal, Beijing, 101100, PR China
| | - Wenrong Bai
- Beijing Management Division of North Grand Canal, Beijing, 101100, PR China
| | - Wenjie Yang
- Chinese Academy for Environmental Planning, Beijing, 100012, PR China.
| | - Aijun Lin
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China; Qinhuangdao Bohai Biological Research Institute of Beijing University of Chemical Technology, Qinhuangdao, 066000, PR China.
| |
Collapse
|
44
|
Almond Shell-Derived, Biochar-Supported, Nano-Zero-Valent Iron Composite for Aqueous Hexavalent Chromium Removal: Performance and Mechanisms. NANOMATERIALS 2020; 10:nano10020198. [PMID: 31979270 PMCID: PMC7074915 DOI: 10.3390/nano10020198] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/18/2020] [Accepted: 01/21/2020] [Indexed: 11/24/2022]
Abstract
Nano-zero-valent iron biochar derived from almond shell (nZVI-ASBC) was used for hexavalent chromium (CR) removal. Experiments showed that pH was the main factor (p < 0.01) that affected the experimental results. At a dosage of 10 mg·L−1 and pH of 2–6, in the first 60 min, nZVI-ASBC exhibited a removal efficiency of 99.8%, which was approximately 20% higher than the removal yield at pH 7–11. Fourier transform infrared spectroscopy results indicated N-H was the main functional group that influenced the chemisorption process. The pseudo second-order dynamics and Langmuir isotherm models proved to be the most suitable. Thermodynamic studies showed that the reaction was exothermic and spontaneous at low temperatures (T < 317 K). Various interaction mechanisms, including adsorption and reduction, were adopted for the removal of Cr(VI) using the nZVI-ASBC composite. The findings showed that the BC-modified nZVI prepared with almond shell exerts a good effect and could be used for the removal of Cr(VI).
Collapse
|
45
|
Zhang M, Wan Y, Wen Y, Li C, Kanwal A. A novel Poly(vinyl alcohol) / carboxymethyl cellulose / yeast double degradable hydrogel with yeast foaming and double degradable property. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 187:109765. [PMID: 31670239 DOI: 10.1016/j.ecoenv.2019.109765] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/24/2019] [Accepted: 10/04/2019] [Indexed: 06/10/2023]
Abstract
A novel polyvinyl alcohol/carboxymethyl cellulose/yeast double degradable hydrogel was prepared with yeast as a foaming agent. The chemical structure of the hydrogel was characterized by FTIR and XPS. The micro-structure of the hydrogel was observed by SEM. The specific surface area and pore size of hydrogel were measured by BET. Methylene blue adsorption capacity of the hydrogels were investigated and the adsorption mechanism was explored. The biodegradability of double degradable hydrogel was investigated. The results showed that yeast was encapsulated in hydrogel by electrostatic action. With the addition of yeast, not only the specific surface area and average pore size of the hydrogel increased but also methylene blue maximum adsorption capacity of the double degradable hydrogel (110 ± 3.5 mg/g) was significantly higher than that of the hydrogel without yeast (57 ± 1.9 mg/g). The adsorption mechanism was dominated by chemical adsorption and was accompanied by biodegradable and electrostatic adsorption. The kinetic data were fitted to the pseudo-second-order kinetic model reasonably well. The introduction of yeast promoted the biodegradable of hydrogel and increased the degradation rate of polyvinyl alcohol in the material with a maximum degradation rate of 45 ± 2.8%.
Collapse
Affiliation(s)
- Min Zhang
- College of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Yu Wan
- College of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Yunxuan Wen
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing, 100048, China.
| | - Chengtao Li
- College of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Aqsa Kanwal
- College of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| |
Collapse
|
46
|
Gopal G, Sankar H, Natarajan C, Mukherjee A. Tetracycline removal using green synthesized bimetallic nZVI-Cu and bentonite supported green nZVI-Cu nanocomposite: A comparative study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 254:109812. [PMID: 31733482 DOI: 10.1016/j.jenvman.2019.109812] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 10/26/2019] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
Antibiotics, one of the most abundant contaminants in the natural water systems possess various difficulties to remediate through conventional water treatment methods. Tetracycline (TC) remains one of the most widely used antibiotics for human and veterinary applications because of its broad-spectrum antibacterial activity. In the current study, we have employed nano zero-valent technology-based antibiotic remediation. In a first of its kind work, we applied bimetallic nZVI-Cu nanoparticles synthesized using pomegranate rind extract for remediation. TC removal of 72 ± 0.5% (initial TC concentration 10 mg/L) was obtained with the nZVI-Cu concentration of 750 mg/L at pH 7. To overcome the colloidal instability and enhance TC removal further, the bimetallic nanoparticles were formed in-situ over bentonite. The bentonite supported composite (B/nZVI-Cu) was used to treat TC an initial concentration of 10 mg/L and the results confirmed significant enhancement in removal with a substantially decreased nanoparticle loading. Using only 150 mg/L of B/nZVI-Cu at pH 7, 95 ± 0.05% of TC could be removed. The nanoparticles and the composites were characterized by SEM, FT-IR, and XRD analyses. The removal process was followed by UV-Visible analyses in conjunction with TOC, ORP and LCMS measurements. For treatment using B/nZVI-Cu, the reusability of the composite was established up to three cycles of operation, and the process was validated in the real water systems. Substantially decreased residual toxicity of the composite treated TC solution lends credence to the environmental sustainability of the process.
Collapse
Affiliation(s)
- Geetha Gopal
- Centre for Nanobiotechnology, VIT, Vellore, Tamil Nadu, India
| | - Hema Sankar
- Centre for Nanobiotechnology, VIT, Vellore, Tamil Nadu, India
| | | | | |
Collapse
|
47
|
Zhou Z, Liu X, Zhang M, Jiao J, Zhang H, Du J, Zhang B, Ren Z. Preparation of highly efficient ion-imprinted polymers with Fe 3O 4 nanoparticles as carrier for removal of Cr(VI) from aqueous solution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 699:134334. [PMID: 33736196 DOI: 10.1016/j.scitotenv.2019.134334] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/05/2019] [Accepted: 09/05/2019] [Indexed: 06/12/2023]
Abstract
Fe3O4 magnetic nanoparticles were prepared by hydrothermal synthesis and their surface was modified by the sol-gel method. Polymers imprinted with magnetic Cr (VI) were prepared by using Cr2O72- as template ion, 4-vinyl pyridine (4-VP) as monomer, isopropanol as solvent and Fe3O4 as matrix. The effects of solvent type, amount of Cr (VI) addition and volume of crosslinking agent on the adsorption properties of the imprinted polymers were investigated. The polymers were characterized by Fourier transform infrared (FT-IR) spectroscopy, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA). The adsorption equilibrium was reached within 50 min, and the maximum adsorption capacity was 201.55 mg·g-1. The adsorption process conformed to the Langmuir model, and the results of kinetic fitting showed that the pseudo-first-order kinetic model applied. In the Cr2O72-/AlF4- and Cr2O72-/CrO42- competitive systems, the imprinted polymer showed good selectivity to the template ions, with relative selectivity factors of 6.91 and 5.99, respectively. When the imprinted polymer was reused 6 times, the adsorption capacity decreased by only 8.2%, demonstrating good reusability.
Collapse
Affiliation(s)
- Zhiyong Zhou
- College of Chemical Engineering, Beijing University of Chemical Technology, No. 15, North Third Ring Road East, Beijing 100029, People's Republic of China
| | - Xueting Liu
- College of Chemical Engineering, Beijing University of Chemical Technology, No. 15, North Third Ring Road East, Beijing 100029, People's Republic of China
| | - Minghui Zhang
- College of Chemical Engineering, Beijing University of Chemical Technology, No. 15, North Third Ring Road East, Beijing 100029, People's Republic of China
| | - Jian Jiao
- College of Chemical Engineering, Beijing University of Chemical Technology, No. 15, North Third Ring Road East, Beijing 100029, People's Republic of China
| | - Hewei Zhang
- College of Chemical Engineering, Beijing University of Chemical Technology, No. 15, North Third Ring Road East, Beijing 100029, People's Republic of China
| | - Jian Du
- College of Chemical Engineering, Beijing University of Chemical Technology, No. 15, North Third Ring Road East, Beijing 100029, People's Republic of China
| | - Bing Zhang
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, No. 15, North Third Ring Road East, Beijing 100029, People's Republic of China.
| | - Zhongqi Ren
- College of Chemical Engineering, Beijing University of Chemical Technology, No. 15, North Third Ring Road East, Beijing 100029, People's Republic of China.
| |
Collapse
|
48
|
Caetano AA, Chagas PMB, Vieira SS, Moratta TF, Terra JCS, Ardisson JD, Guimarães IDR. Nanostructured iron oxides stabilized by chitosan: using copper to enhance degradation by a combined mechanism. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00473a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The H2O2 decomposition profile suggests a combined mechanism. Spherical-shaped materials were synthesized and facilitated the reuse process.
Collapse
Affiliation(s)
- Aline Aparecida Caetano
- Laboratório de Catálise Ambiental e Novos Materiais
- Departamento de Química
- Universidade Federal de Lavras
- Lavras
- Brazil
| | - Pricila Maria Batista Chagas
- Laboratório de Catálise Ambiental e Novos Materiais
- Departamento de Química
- Universidade Federal de Lavras
- Lavras
- Brazil
| | - Sara Silveira Vieira
- Laboratório de Química
- Departamento de Química
- Universidade Federal de Minas Gerais
- Belo Horizonte
- Brazil
| | - Thais Fernandes Moratta
- Laboratório de Catálise Ambiental e Novos Materiais
- Departamento de Química
- Universidade Federal de Lavras
- Lavras
- Brazil
| | - Júlio C. S. Terra
- Center for Green Chemistry and Catalysis
- Department of Chemistry
- McGill University
- QC
- Canada
| | - José Domingos Ardisson
- Laboratório de Física Aplicada
- Centro de Desenvolvimento da Tecnologia Nuclear
- Belo Horizonte
- Brazil
| | - Iara Do Rosário Guimarães
- Laboratório de Catálise Ambiental e Novos Materiais
- Departamento de Química
- Universidade Federal de Lavras
- Lavras
- Brazil
| |
Collapse
|
49
|
Jin L, Chai L, Yang W, Wang H, Zhang L. Two-Dimensional Titanium Carbides (Ti 3C 2T x) Functionalized by Poly(m-phenylenediamine) for Efficient Adsorption and Reduction of Hexavalent Chromium. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 17:ijerph17010167. [PMID: 31881705 PMCID: PMC6982338 DOI: 10.3390/ijerph17010167] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 11/16/2022]
Abstract
Titanium carbides (MXenes) are promising multifunctional materials. However, the negative surface charge and layer-by-layer restacking of MXenes severely restrict their application in the field of anionic pollutants, including in hexavalent chromium (Cr(VI)). Herein, Ti3C2Tx MXenes was functionalized through in situ polymerization and intercalation of poly(m-phenylenediamine) (PmPD), then Ti3C2Tx/PmPD composites were obtained. Delightedly, Ti3C2Tx/PmPD composites exhibited positive surface charge, expanded interlayer spacing, and enhanced hydrophobicity. Furthermore, the specific surface area of Ti3C2Tx/PmPD composite was five and 23 times that of Ti3C2Tx and PmPD, respectively. These advantages endowed Ti3C2Tx/PmPD composite with an excellent adsorption capacity of Cr(VI) (540.47 mg g-1), which was superior to PmPD (384.73 mg g-1), Ti3C2Tx MXene (137.45 mg g-1), and the reported MXene-based adsorbents. The Cr(VI) removal mechanism mainly involved electrostatic adsorption, reduction, and chelation interaction. This study developed a simple functionalization strategy, which would greatly explore the potential of MXenes in the field of anionic pollutants.
Collapse
Affiliation(s)
- Linfeng Jin
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Liyuan Chai
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha 410083, China
- Water Pollution Control Technology Key Lab of Hunan Province, Changsha 410004, China
| | - Weichun Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha 410083, China
- Water Pollution Control Technology Key Lab of Hunan Province, Changsha 410004, China
| | - Haiying Wang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha 410083, China
- Water Pollution Control Technology Key Lab of Hunan Province, Changsha 410004, China
- Correspondence: (H.W.); (L.Z.); Tel.: +86-731-8883-0875 (H.W.); Fax: +86-731-8871-0171 (H.W.)
| | - Liyuan Zhang
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
- Correspondence: (H.W.); (L.Z.); Tel.: +86-731-8883-0875 (H.W.); Fax: +86-731-8871-0171 (H.W.)
| |
Collapse
|
50
|
Yan X, Song M, Zhou M, Ding C, Wang Z, Wang Y, Yang W, Yang Z, Liao Q, Shi Y. Response of Cupriavidus basilensis B-8 to CuO nanoparticles enhances Cr(VI) reduction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 688:46-55. [PMID: 31229827 DOI: 10.1016/j.scitotenv.2019.05.438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 06/09/2023]
Abstract
CuO nanoparticles (NPs) released into aqueous environments induce metal toxicity, which generally exerts negative effects on various organisms and leads to great challenge for wastewater biotreatment. In this study, a promotion effect of CuO NPs on biological process was first found. Cr(VI) reduction by Cupriavidus basilensis B-8 (hereafter B-8) was enhanced in the presence of CuO NPs. The efficiency of Cr(VI) bioreduction was much higher with B-8 and CuO NPs (approximately 100%) than with B-8 (approximately 37.6%) and CuO NPs (39.9-44.7%) alone, indicating a stimulatory effect of CuO NPs on Cr(VI) reduction by B-8. Our material analyses revealed different response mechanisms of B-8 to Cr(VI), with and without CuO NPs. The addition of CuO NPs influenced the interaction of Cr(VI) with the N-, P-, S-, and C-related functional groups of B-8. Transcriptomic analysis indicated that multiple mechanisms, including Cr(VI) uptake and reactive oxygen species detoxification, were induced by Cr(VI). Many genes involved in various metabolic processes were significantly upregulated by the addition of CuO NPs. To a certain extent, the pressure of DNA repairment by B-8 induced by Cr(VI) was also alleviated by the presence of CuO NPs. They contributed to facilitate B-8 growth and enhance Cr(VI) reduction, even with 50 mg/L Cr(VI). This study not only elaborated the mechanisms of bacterial Cr(VI) reduction when enhanced by CuO NPs, but also provided a novel perspective for wastewater biotreatment.
Collapse
Affiliation(s)
- Xu Yan
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Mengmeng Song
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Mo Zhou
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Chunlian Ding
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Zhongren Wang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Yunyan Wang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Weichun Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Zhihui Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Qi Liao
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Yan Shi
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China.
| |
Collapse
|