1
|
Kanazawa N, Takatsuka Y, Tatsuno J, Ohta S, Ômura H. Phytochemicals that Regulate Oviposition Mistakes of Eurema mandarina on Oxalis corniculata. J Chem Ecol 2025; 51:9. [PMID: 39853493 DOI: 10.1007/s10886-025-01566-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 09/11/2024] [Accepted: 10/15/2024] [Indexed: 01/26/2025]
Abstract
Eurema mandarina is a pierid butterfly that primarily feeds on plants in the family Fabaceae. In mainland Japan, adult females preferentially lay eggs on Albizia julibrissin and Lespedeza cuneata. In the field, females may oviposit on non-fabaceous plants, although rarely. When maintained in our laboratory with their natural hosts removed, females showed moderate oviposition responses to Oxalis corniculata (Oxalidaceae), but newly hatched larvae failed to grow to the second instar on the leaves. This indicated that females made oviposition mistakes on O. corniculata because it is not suitable for larval development. We attempted to identify the phytochemicals that regulate oviposition of E. mandarina on O. corniculata. Females hardly responded to the methanolic leaf extract and its aqueous fraction but responded weakly to the most polar subfraction. Further fractionation of this subfraction by ion-exchange column chromatography revealed high oviposition-eliciting activity in the acidic subfraction and low activity in the acidic/neutral/amphoteric and neutral/amphoteric subfractions. Mass spectrometry and oviposition bioassays identified erythronic and threonic acids as stimulants in the acidic subfraction, and arabinose and arabitol as deterrents in the neutral/amphoteric subfraction. Leaf samples of O. corniculata varied greatly in the composition of the four components; however, none contained the concentration of stimulants necessary to induce oviposition without being counteracted by deterrents. These results suggest that oviposition mistakes on O. corniculata, though infrequently, occur when females discover non-hosts with sufficiently high concentrations of stimulants and sufficiently low concentrations of deterrents.
Collapse
Affiliation(s)
- Naoki Kanazawa
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, 739-8528, Japan
| | - Yuta Takatsuka
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, 739-8528, Japan
| | - Junei Tatsuno
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, 739-8528, Japan
| | - Shinji Ohta
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, 739-8528, Japan
| | - Hisashi Ômura
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, 739-8528, Japan.
- Seto Inland Sea Carbon-neutral Research Center, Hiroshima University, Higashihiroshima, 739-8528, Japan.
| |
Collapse
|
2
|
Mandal M, Roy A, Sarkar A. Understanding the possible cellular responses in plants under micro(nano)-plastic (MNPs): Balancing the structural harmony with functions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177732. [PMID: 39615174 DOI: 10.1016/j.scitotenv.2024.177732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/08/2024] [Accepted: 11/21/2024] [Indexed: 12/21/2024]
Abstract
The harmful impacts of micro(nano)-plastics (MNPs) on plants have gained significant attention in the last decades. Plants have a greater tendency to aggregate positively charged (+ve) MNPs on leaf surfaces and root tips, and it can be more challenging to enter the plant body than the negatively charged (-ve) MNPs. MNPs <20 nm can directly cross the cell wall and enter mainly via leaf stomata and root crack portion. Additionally, plants with aerenchyma tissue or higher water requirement might be more vulnerable to MNPs as well as environmental factors also affected MNPs uptake like porosity and structure (i.e. crack of soil) of soil, wind speed, etc. The subsequent translocation of MNPs hamper regular morphological, physiological, and biochemical functions by causing oxidative stress, altering several plant metabolic pathways, reducing the rate of photosynthesis and nutrient intake, etc. These induce cellular toxicity and chromosomal alteration; as a result, the total biomass and productivity reduce vigorously. However, there is a knowledge gap regarding MNPs' uptake by plants and related variables affecting phytotoxicity at the omics levels. So, the present literature review represents a comprehensive theoretical framework that includes genomics, transcriptomics, miRNAomics, proteomics, metabolomics, and ionomics/metallomics, which is established to understand the effects of MNPs on plants at the molecular level. As well as it will also help in further studies of the research community in the future because this field is still in the preliminary stages due to a lack of study.
Collapse
Affiliation(s)
- Mamun Mandal
- Laboratory of Applied Stress Biology, Department of Botany, University of Gour Banga, Malda 732103, West Bengal, India
| | - Anamika Roy
- Laboratory of Applied Stress Biology, Department of Botany, University of Gour Banga, Malda 732103, West Bengal, India
| | - Abhijit Sarkar
- Laboratory of Applied Stress Biology, Department of Botany, University of Gour Banga, Malda 732103, West Bengal, India.
| |
Collapse
|
3
|
Fei J, Bai X, Jiang C, Yin X, Ni BJ. A state-of-the-art review of environmental behavior and potential risks of biodegradable microplastics in soil ecosystems: Comparison with conventional microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176342. [PMID: 39312976 DOI: 10.1016/j.scitotenv.2024.176342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/03/2024] [Accepted: 09/15/2024] [Indexed: 09/25/2024]
Abstract
As the use of biodegradable plastics becomes increasingly widespread, their environmental behaviors and impacts warrant attention. Unlike conventional plastics, their degradability predisposes them to fragment into microplastics (MPs) more readily. These MPs subsequently enter the terrestrial environment. The abundant functional groups of biodegradable MPs significantly affect their transport and interactions with other contaminants (e.g., organic contaminants and heavy metals). The intermediates and additives released from depolymerization of biodegradable MPs, as well as coexisting contaminants, induce alterations in soil ecosystems. These processes indicate that the impacts of biodegradable MPs on soil ecosystems might significantly diverge from conventional MPs. However, an exhaustive and timely comparison of the environmental behaviors and effects of biodegradable and conventional MPs within soil ecosystems remains scarce. To address this gap, the Web of Science database and bibliometric software were utilized to identify publications with keywords containing biodegradable MPs and soil. Moreover, this review comprehensively summarizes the transport behavior of biodegradable MPs, their role as contaminant carriers, and the potential risks they pose to soil physicochemical properties, nutrient cycling, biota, and CO2 emissions as compared with conventional MPs. Biodegradable MPs, due to their great transport and adsorption capacity, facilitate the mobility of coexisting contaminants, potentially inducing widespread soil and groundwater contamination. Additionally, these MPs and their depolymerization products can disrupt soil ecosystems by altering physicochemical properties, increasing microbial biomass, decreasing microbial diversity, inhibiting the development of plants and animals, and increasing CO2 emissions. Finally, some perspectives are proposed to outline future research directions. Overall, this study emphasizes the pronounced effects of biodegradable MPs on soil ecosystems relative to their conventional counterparts and contributes to the understanding and management of biodegradable plastic contamination within the terrestrial ecosystem.
Collapse
Affiliation(s)
- Jiao Fei
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Xue Bai
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Chuanjia Jiang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China.
| | - Xianqiang Yin
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
4
|
Gao M, Peng H, Bai L, Ye B, Qiu W, Song Z. Response of wheat (Triticum aestivum L. cv.) to the coexistence of micro-/nanoplastics and phthalate esters alters its growth environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174484. [PMID: 38969134 DOI: 10.1016/j.scitotenv.2024.174484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Micro- and nano-plastics (MPs/NPs) have emerged as a global pollutant, yet their impact on the root environment of plants remains scarcely explored. Given the widespread pollution of phthalate esters (PAEs) in the environment due to the application of plastic products, the co-occurrence of MPs/NPs and PAEs could potentially threaten the growth medium of plants. This study examined the combined effects of polystyrene (PS) MPs/NPs and PAEs, specifically dibutyl phthalate and di-(2-ethylhexyl) phthalate, on the chemical properties and microbial communities in a wheat growth medium. It was observed that the co-pollution with MPs/NPs and PAEs significantly increased the levels of oxalic acid, formic acid, and total organic carbon (TOC), enhanced microbial activity, and promoted the indigenous input and humification of dissolved organic matter, while slightly reducing the pH of the medium solution. Although changes in chemical indices were primarily attributed to the addition of PAEs, no interaction between PS MPs/NPs and PAEs was detected. High-throughput sequencing revealed no significant change in microbial diversity within the media containing both PS MPs/NPs and PAEs compared to the media with PS MPs/NPs alone. However, alterations in energy and carbohydrate metabolism were noted. Proteobacteria dominated the bacterial communities in the medium solution across all treatment groups, followed by Bacteroidetes and Verrucomicrobia. The composition and structure of these microbial communities varied with the particle size of the PS in both single and combined treatments. Moreover, variations in TOC, oxalic acid, and formic acid significantly influenced the bacterial community composition in the medium, suggesting they could modulate the abundance of dominant bacteria to counteract the stress from exogenous pollutants. This research provides new insights into the combined effects of different sizes of PS particles and another abiotic stressor in the wheat root environment, providing a critical foundation for understanding plant adaptation in complex environmental conditions.
Collapse
Affiliation(s)
- Mingling Gao
- Department of Materials and Environmental Engineering, Shantou University, Shantou 515063, China
| | - Hongchang Peng
- Department of Materials and Environmental Engineering, Shantou University, Shantou 515063, China
| | - Linsen Bai
- Department of Materials and Environmental Engineering, Shantou University, Shantou 515063, China
| | - Biting Ye
- Department of Materials and Environmental Engineering, Shantou University, Shantou 515063, China
| | - Weiwen Qiu
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 3230, Hamilton 3240, New Zealand
| | - Zhengguo Song
- Department of Materials and Environmental Engineering, Shantou University, Shantou 515063, China.
| |
Collapse
|
5
|
Du X, Li X, Yang M, He Z, Xu T, Liu J, Guo X, Tang Z. Toxicological effects of di(2-ethylhexyl)phthalate on dandelions: Insights into physiological, metabolic, and molecular docking perspectives. CHEMOSPHERE 2024; 364:143229. [PMID: 39218265 DOI: 10.1016/j.chemosphere.2024.143229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/04/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Di(2-ethylhexyl)phthalate (DEHP) is one of the most widely used plasticizers in plastic manufacturing. However, the toxicological effects of DEHP on dandelions remain poorly understood. This study comprehensively analyzed and explored the response mechanisms of dandelions to 1, 10, 50, and 100 mg L-1 DEHP influencing the morphophysiological growth, metabolomics, and molecular docking. DEHP reduced chlorophyll synthesis, inhibited plant growth, and induced oxidative-state-associated stress, which was manifested by the excessive production of reactive oxygen species, an increase in antioxidant enzyme activities, and enhanced synthesis of some osmoregulatory compounds, including proline and soluble protein. An analysis of the integrated biological response index showed that the toxicity was dose-dependent. Molecular docking demonstrated that DEHP could bind stably to three enzymes, and the binding energy was peroxidase (POD) > catalase (CAT) > superoxide dismutase (SOD). Metabolomics revealed that metabolite abundance and metabolic pathways were altered by DEHP, with 88 and 72 primary metabolites identified in shoots and roots, respectively. Amino acid, sugar, and organic acid metabolism were severely disturbed, with the most significant effects being on carbohydrate metabolism, valine, leucine, and isoleucine biosynthesis. Our study elucidated the influence of DEHP exposure on dandelions, providing new insights into the toxicity mechanisms and toxicological risk assessment.
Collapse
Affiliation(s)
- Xinyi Du
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Xingfan Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Minghui Yang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Zhiqiang He
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Tianwei Xu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Jia Liu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150040, China
| | - Xiaorui Guo
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China.
| | - Zhonghua Tang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
6
|
Liang J, Ji X, Feng X, Su P, Xu W, Zhang Q, Ren Z, Li Y, Zhu Q, Qu G, Liu R. Phthalate acid esters: A review of aquatic environmental occurrence and their interactions with plants. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134187. [PMID: 38574659 DOI: 10.1016/j.jhazmat.2024.134187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 04/06/2024]
Abstract
The increasing use of phthalate acid esters (PAEs) in various applications has inevitably led to their widespread presence in the aquatic environment. This presents a considerable threat to plants. However, the interactions between PAEs and plants in the aquatic environment have not yet been comprehensively reviewed. In this review, the properties, occurrence, uptake, transformation, and toxic effects of PAEs on plants in the aquatic environment are summarized. PAEs have been prevalently detected in the aquatic environment, including surface water, groundwater, seawater, and sediment, with concentrations ranging from the ng/L or ng/kg to the mg/L or mg/kg range. PAEs in the aquatic environment can be uptake, translocated, and metabolized by plants. Exposure to PAEs induces multiple adverse effects in aquatic plants, including growth perturbation, structural damage, disruption of photosynthesis, oxidative damage, and potential genotoxicity. High-throughput omics techniques further reveal the underlying toxicity molecular mechanisms of how PAEs disrupt plants on the transcription, protein, and metabolism levels. Finally, this review proposes that future studies should evaluate the interactions between plants and PAEs with a focus on long-term exposure to environmental PAE concentrations, the effects of PAE alternatives, and human health risks via the intake of plant-based foods.
Collapse
Affiliation(s)
- Jiefeng Liang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xiaomeng Ji
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xiaoxia Feng
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Pinjie Su
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Wenzhuo Xu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Qingzhe Zhang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Zhihua Ren
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China
| | - Yiling Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Qingqing Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Runzeng Liu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
7
|
Yang X, Chen Y, Liu W, Huang T, Yang Y, Mao Y, Meng Y. Combined transcriptomics and metabolomics to analyse the response of Cuminum cyminum L. under Pb stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171497. [PMID: 38453091 DOI: 10.1016/j.scitotenv.2024.171497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/25/2024] [Accepted: 03/03/2024] [Indexed: 03/09/2024]
Abstract
Lead (Pb) can disrupt plant gene expression, modify metabolite contents, and influence the growth of plants. Cuminum cyminum L. is highly adaptable to adversity, but molecular mechanism by which it responds to Pb stress is unknown. For this study, transcriptomic and metabolomic sequencing was performed on root tissues of C. cyminum under Pb stress. Our results showed that high Pb stress increased the activity of peroxidase (POD), the contents of malondialdehyde (MDA) and proline by 80.03 %, 174.46 % and 71.24 %, respectively. Meanwhile, Pb stress decreased the activities of superoxide dismutase (SOD) and catalase (CAT) as well as contents of soluble sugars and GSH, which thus affected the growth of C. cyminum. In addition, Pb stress influenced the accumulation and transport of Pb in C. cyminum. Metabolomic results showed that Pb stress affected eight metabolic pathways involving 108 differentially expressed metabolites, primarily amino acids, organic acids, and carbohydrates. The differentially expressed genes identified through transcriptome analysis were mainly involved the oxidation reductase activity, transmembrane transport, phytohormone signaling, and MAPK signaling pathway. The results of this study will help to understand the molecular mechanisms of C. cyminum response to Pb stress, and provide a basis for screening seeds with strong resistance to heavy metals.
Collapse
Affiliation(s)
- Xinlong Yang
- College of Ecology and Environment, Xinjiang University, Urumqi 830017, China; Key Laboratory of Oasis Ecology of Education Ministry, Urumqi 830017, China
| | - Yinguang Chen
- School of Environment Science and Engineering, Tongji University, Shanghai 200092, China
| | - Weiguo Liu
- College of Ecology and Environment, Xinjiang University, Urumqi 830017, China; Key Laboratory of Oasis Ecology of Education Ministry, Urumqi 830017, China.
| | - Tingwen Huang
- College of Ecology and Environment, Xinjiang University, Urumqi 830017, China; Key Laboratory of Oasis Ecology of Education Ministry, Urumqi 830017, China
| | - Yang Yang
- College of Ecology and Environment, Xinjiang University, Urumqi 830017, China; Key Laboratory of Oasis Ecology of Education Ministry, Urumqi 830017, China
| | - Yuqing Mao
- Wuwei Academy of Agricultural Sciences, Wuwei 733000, China
| | - Yao Meng
- College of Ecology and Environment, Xinjiang University, Urumqi 830017, China; Key Laboratory of Oasis Ecology of Education Ministry, Urumqi 830017, China
| |
Collapse
|
8
|
Chen ZJ, Li ML, Gao SS, Sun YB, Han H, Li BL, Li YY. Plant Growth-Promoting Bacteria Influence Microbial Community Composition and Metabolic Function to Enhance the Efficiency of Hybrid pennisetum Remediation in Cadmium-Contaminated Soil. Microorganisms 2024; 12:870. [PMID: 38792702 PMCID: PMC11124114 DOI: 10.3390/microorganisms12050870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
The green and efficient remediation of soil cadmium (Cd) is an urgent task, and plant-microbial joint remediation has become a research hotspot due to its advantages. High-throughput sequencing and metabolomics have technical advantages in analyzing the microbiological mechanism of plant growth-promoting bacteria in improving phytoremediation of soil heavy metal pollution. In this experiment, a pot trial was conducted to investigate the effects of inoculating the plant growth-promoting bacterium Enterobacter sp. VY on the growth and Cd remediation efficiency of the energy plant Hybrid pennisetum. The test strain VY-1 was analyzed using high-throughput sequencing and metabolomics to assess its effects on microbial community composition and metabolic function. The results demonstrated that Enterobacter sp. VY-1 effectively mitigated Cd stress on Hybrid pennisetum, resulting in increased plant biomass, Cd accumulation, and translocation factor, thereby enhancing phytoremediation efficiency. Analysis of soil physical-chemical properties revealed that strain VY-1 could increase soil total nitrogen, total phosphorus, available phosphorus, and available potassium content. Principal coordinate analysis (PCoA) indicated that strain VY-1 significantly influenced bacterial community composition, with Proteobacteria, Firmicutes, Chloroflexi, among others, being the main differential taxa. Redundancy analysis (RDA) revealed that available phosphorus, available potassium, and pH were the primary factors affecting bacterial communities. Partial Least Squares Discriminant Analysis (PLS-DA) demonstrated that strain VY-1 modulated the metabolite profile of Hybrid pennisetum rhizosphere soil, with 27 differential metabolites showing significant differences, including 19 up-regulated and eight down-regulated expressions. These differentially expressed metabolites were primarily involved in metabolism and environmental information processing, encompassing pathways such as glutamine and glutamate metabolism, α-linolenic acid metabolism, pyrimidine metabolism, and purine metabolism. This study utilized 16S rRNA high-throughput sequencing and metabolomics technology to investigate the impact of the plant growth-promoting bacterium Enterobacter sp. VY-1 on the growth and Cd enrichment of Hybrid pennisetum, providing insights into the regulatory role of plant growth-promoting bacteria in microbial community structure and metabolic function, thereby improving the microbiological mechanisms of phytoremediation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yu-Ying Li
- Overseas Expertise Introduction Center for Discipline Innovation of Watershed Ecological Security in the Water Source Area of the Mid-line Project of South-to-North Water Diversion, College of Water Resource and Environment Engineering, Nanyang Normal University, Nanyang 473061, China; (Z.-J.C.)
| |
Collapse
|
9
|
Zhang H, Zhang K, Duan Y, Sun X, Lin L, An Q, Altaf MM, Zhu Z, Liu F, Jiao Y, Yin J, Xie C, Wang B, Feng H, Zhang X, Li D. Effect of EDDS on the rhizosphere ecology and microbial regulation of the Cd-Cr contaminated soil remediation using king grass combined with Piriformospora indica. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133266. [PMID: 38118201 DOI: 10.1016/j.jhazmat.2023.133266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/22/2023]
Abstract
The negative impacts of soil heavy metals composite pollution on agricultural production and human health are becoming increasingly prevalent. The applications of green chelating agents and microorganisms have emerged as promising alternate methods for enhancing phytoremediation. The regulatory effects of root secretion composition, microbial carbon source utilization, key gene expression, and soil microbial community structure were comprehensively analyzed through a combination of HPLC, Biolog EcoPlates, qPCR, and high-throughput screening techniques. The application of EDDS resulted in a favorable rhizosphere ecological environment for the king grass Piriformospora indica, characterized by a decrease in soil pH by 0.41 units, stimulation of succinic acid and fumaric acid secretion, and an increase in carbon source metabolic activity of amino acids and carbohydrates. Consequently, this improvement enhanced the bioavailability of Cd/Cr and increased the biomass of king grass by 25.7%. The expression of dissimilatory iron-reducing bacteria was significantly upregulated by 99.2%, while there was no significant difference in Clostridium abundance. Furthermore, the richness of the soil rhizosphere fungal community (Ascomycota: 45.8%, Rozellomycota: 16.7%) significantly increased to regulate the proportion of tolerant microbial dominant groups, promoting the improvement of Cd/Cr removal efficiency (Cd: 23.4%, Cr: 18.7%). These findings provide a theoretical basis for the sustainable development of chelating agent-assisted plants-microorganisms combined remediation of heavy metals in soil.
Collapse
Affiliation(s)
- Haixiang Zhang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Kailu Zhang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yali Duan
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Xiaoyan Sun
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Li Lin
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi) / Guangxi Key Laboratory of Sugarcane Genetic Improvement, Ministry of Agriculture and Rural Affairs, Nanning 530007, China
| | - Qianli An
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Molecular Biology of Crop Pathogens and Insects Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310000, China
| | - Muhammad Mohsin Altaf
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Zhiqiang Zhu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Fan Liu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yangqiu Jiao
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Jing Yin
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Can Xie
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Baijie Wang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Huiping Feng
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Xin Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Dong Li
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; Key Laboratory for Environmental Toxicology of Haikou / Center for Eco-Environmental Restoration aboratory of Marine Resource Utilization in South China Sea / Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China.
| |
Collapse
|
10
|
Lu YS, Liu ZB, Xu YY, Sha JY, Qu D, Sun YS. Uptake and accumulation of di(2-ethylhexyl) phthalate (DEHP) in a soil-ginseng system and toxicological mechanisms on ginseng (Panax ginseng C.A. Meyer). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:170040. [PMID: 38215853 DOI: 10.1016/j.scitotenv.2024.170040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/04/2024] [Accepted: 01/07/2024] [Indexed: 01/14/2024]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is regarded as a priority environmental pollutant. This study explored the adsorption and accumulation of DEHP within the ginseng-soil system and the mechanism of DEHP toxicity to ginseng (Panax ginseng C.A. Meyer). Under exposure to 22.10 mg/kg DEHP in soil, DEHP mainly accumulated in ginseng leaves (20.28 mg/kg), stems (4.84 mg/kg) and roots (2.00 mg/kg) after 42 days. The oxidative damage, metabolism, protein express of ginseng were comprehensively measured and analyzed. The results revealed that MDA presented an activation trend in ginseng stems and leaves after 42 days of DEHP exposure, while the opposite trend was observed for POD. Levels of ginsenoside metabolites Rg2, Rg3, Rg5, Rd, Rf and CK decreased in the ginseng rhizosphere exudates under DEHP stress. Further investigations revealed that DEHP disrupts ginsenoside synthesis by inducing glycosyltransferase (GS) and squalene synthase (SS) protein interactions. Molecular docking indicated that DEHP could stably bind to GS and SS by intermolecular forces. These findings provide new information on the ecotoxicological effect of DEHP on ginseng root.
Collapse
Affiliation(s)
- Yu-Shun Lu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zheng-Bo Liu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Yan-Yang Xu
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ji-Yue Sha
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Di Qu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Yin-Shi Sun
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China.
| |
Collapse
|
11
|
Han Y, Teng Y, Wang X, Wen D, Gao P, Yan D, Yang N. Biodegradable PBAT microplastics adversely affect pakchoi (Brassica chinensis L.) growth and the rhizosphere ecology: Focusing on rhizosphere microbial community composition, element metabolic potential, and root exudates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169048. [PMID: 38061654 DOI: 10.1016/j.scitotenv.2023.169048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 01/18/2024]
Abstract
Biodegradable plastics (BPs) have gained increased attention as a promising solution to plastics pollution problem. However, BPs often exhibited limited in situ biodegradation in the soil environment, so they may also release microplastics (MPs) into soils just like conventional non-degradable plastics. Therefore, it is necessary to evaluate the impacts of biodegradable MPs (BMPs) on soil ecosystem. Here, we explored the effects of biodegradable poly(butylene adipate-co-terephthalate) (PBAT) MPs and conventional polyethylene (PE) MPs on soil-plant (pakchoi) system at three doses (0.02 %, 0.2 %, and 2 %, w/w). Results showed that PBAT MPs reduced plant growth in a dose-dependent pattern, while PE MPs exhibited no significant phytotoxicity. High-dose PBAT MPs negatively affected the rhizosphere soil nutrient availability, e.g., decreased available phosphorus and available potassium. Metagenomics analysis revealed that PBAT MPs caused more serious interference with the rhizosphere microbial community composition and function than PE MPs. In particular, compared with PE MPs, PBAT MPs induced greater changes in functional potential of carbon, nitrogen, phosphorus, and sulfur cycles, which may lead to alterations in soil biogeochemical processes and ecological functions. Moreover, untargeted metabolomics showed that PBAT MPs and PE MPs differentially affect plant root exudates. Mantel tests, correlation analysis, and partial least squares path model analysis showed that changes in plant growth and root exudates were significantly correlated with soil properties and rhizosphere microbiome driven by the MPs-rhizosphere interactions. This work improves our knowledge of how biodegradable and conventional non-degradable MPs affect plant growth and the rhizosphere ecology, highlighting that BMPs might pose greater threat to soil ecosystems than non-degradable MPs.
Collapse
Affiliation(s)
- Yujuan Han
- Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Ying Teng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xiao Wang
- Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Dan Wen
- Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Peixin Gao
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Dong Yan
- Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Ning Yang
- Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
| |
Collapse
|
12
|
Zhang Y, Song Z, Zhao H, Chen H, Zhao B. Integrative physiological, transcriptomic and metabolomic analysis reveals how the roots of two ornamental Hydrangea macrophylla cultivars cope with lead (Pb) toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 910:168615. [PMID: 37984650 DOI: 10.1016/j.scitotenv.2023.168615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
Lead (Pb) soil contamination has caused serious ecological and environmental issues. Hydrangea macrophylla is a potential Pb-contaminated soil remediation plant, however, their Pb stress defense mechanism is largely unknown. Here, the physiology, transcriptomic and metabolome of two H. macrophylla cultivars (ML, Pb-sensitive cultivar; JC, Pb-resistant cultivar) under Pb stress were investigated. The results demonstrated that JC performed superiorly, with activities of the antioxidant enzymes superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were 1.25, 2.84, and 1.67 times higher than those of ML after Pb treatment, respectively, and the amount of soluble sugar in JC increased by 231.34 % compared with that in ML. The electrical conductivity (EC) value of the root exudates of JC was 43.71 % lower than that of ML under Pb stress. The non-targeted metabolomics analysis revealed 193 metabolites grouped into nine categories. Pb stress-induced differential expression of the 37 metabolites, among which the major metabolites up-regulated in ML were organic acids, while in JC, these were carbohydrates, fatty acids, organic acids and lipids. The transcriptomic analysis revealed that Pb exposure induced 1075 and 1314 differentially expressed genes (DEGs) in JC and ML, respectively. According to the functional annotation results, hub genes were primarily enriched in carbohydrate metabolism, root growth, and plant resistance to external stresses. A conjoint analysis of the two omics indicated that the cutin, suberine and wax biosynthesis pathway in JC played an essential role in Pb detoxification. These findings clarify the resistance mechanism of H. macrophylla to Pb stress and open up a new avenue for breeding H. macrophylla Pb-resistant cultivars.
Collapse
Affiliation(s)
- Yuyu Zhang
- The College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China
| | - Ziyi Song
- The College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China
| | - Huiqi Zhao
- The College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China
| | - Huan Chen
- The College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China
| | - Bing Zhao
- The College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
13
|
Santangeli M, Steininger-Mairinger T, Vetterlein D, Hann S, Oburger E. Maize (Zea mays L.) root exudation profiles change in quality and quantity during plant development - A field study. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 338:111896. [PMID: 37838155 DOI: 10.1016/j.plantsci.2023.111896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/02/2023] [Accepted: 10/10/2023] [Indexed: 10/16/2023]
Abstract
Deciphering root exudate composition of soil-grown plants is considered a crucial step to better understand plant-soil-microbe interactions affecting plant growth performance. In this study, two genotypes of Zea mays L. (WT, rth3) differing in root hair elongation were grown in the field in two substrates (sand, loam) in custom-made, perforated columns inserted into the field plots. Root exudates were collected at different plant developmental stages (BBCH 14, 19, 59, 83) using a soil-hydroponic-hybrid exudation sampling approach. Exudates were characterized by LC-MS based non-targeted metabolomics, as well as by photometric assays targeting total dissolved organic carbon, soluble carbohydrates, proteins, amino acids, and phenolics. Results showed that plant developmental stage was the main driver shaping both the composition and quantity of exuded compounds. Carbon (C) exudation per plant increased with increasing biomass production over time, while C exudation rate per cm² root surface area h-1 decreased with plant maturity. Furthermore, exudation rates were higher in the substrate with lower nutrient mobility (i.e., loam). Surprisingly, we observed higher exudation rates in the root hairless rth3 mutant compared to the root hair-forming WT sibling, though exudate metabolite composition remained similar. Our results highlight the impact of plant developmental stage on the plant-soil-microbe interplay.
Collapse
Affiliation(s)
- Michael Santangeli
- University of Natural Resources and Life Sciences, Vienna, Department of Forest and Soil Science, Institute of Soil Research, 3430 Tulln an der Donau, Austria; University of Natural Resources and Life Sciences, Vienna, Department of Chemistry, Institute of Analytical Chemistry, 1190 Vienna, Austria
| | - Teresa Steininger-Mairinger
- University of Natural Resources and Life Sciences, Vienna, Department of Chemistry, Institute of Analytical Chemistry, 1190 Vienna, Austria
| | - Doris Vetterlein
- Department of Soil System Science, UFZ, 06120 Halle/Saale, Germany; Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany
| | - Stephan Hann
- University of Natural Resources and Life Sciences, Vienna, Department of Chemistry, Institute of Analytical Chemistry, 1190 Vienna, Austria
| | - Eva Oburger
- University of Natural Resources and Life Sciences, Vienna, Department of Forest and Soil Science, Institute of Soil Research, 3430 Tulln an der Donau, Austria.
| |
Collapse
|
14
|
Li X, Zhang Y, Wang J, Zeng G, Tong X, Ullah S, Liu J, Zhou R, Lian J, Guo X, Tang Z. Revealing the metabolomics and biometrics underlying phytotoxicity mechanisms for polystyrene nanoplastics and dibutyl phthalate in dandelion (Taraxacum officinale). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167071. [PMID: 37714347 DOI: 10.1016/j.scitotenv.2023.167071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/01/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Micro/nanoplastics (M/NPs) and phthalates (PAEs) are emerging pollutants. Polystyrene (PS) MPs and dibutyl phthalate (DBP) are typical MPs and PAEs in the environment. However, how dandelion plants respond to the combined contamination of MPs and PAEs remains unclear. In this study, we evaluated the individual and combined effects of PS NPs (10 mg L-1) and DBP (50 mg L-1) on dandelion (Taraxacum officinale) seedlings. The results showed that compared to control and individual-treated plants, coexposure to PS NPs and DBP significantly affected plant growth, induced oxidative stress, and altered enzymatic and nonenzymatic antioxidant levels of dandelion. Similarly, photosynthetic attributes and chlorophyll fluorescence kinetic parameters were significantly affected by coexposure. Scanning electron microscopy (SEM) results showed that PS particles had accumulated in the root cortex of the dandelion. Metabolic analysis of dandelion showed that single and combined exposures caused the plant's metabolic pathways to be profoundly reprogrammed. As a consequence, the synthesis and energy metabolism of carbohydrates, amino acids, and organic acids were affected because galactose metabolism, the citric acid cycle, and alanine, aspartic acid and glutamic acid metabolism pathways were significantly altered. These results provide a new perspective on the phytotoxicity and environmental risk assessment of MPs and PAEs in individual or coexposures.
Collapse
Affiliation(s)
- Xingfan Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| | - Ye Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Jianxin Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Guangnian Zeng
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Xin Tong
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Shakir Ullah
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Jia Liu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150040, China
| | - Ranran Zhou
- Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, China
| | - Jiapan Lian
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaorui Guo
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| | - Zhonghua Tang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
15
|
Jing H, Wang H, Wang G, Liu G, Cheng Y. The mechanism effects of root exudate on microbial community of rhizosphere soil of tree, shrub, and grass in forest ecosystem under N deposition. ISME COMMUNICATIONS 2023; 3:120. [PMID: 37985715 PMCID: PMC10662252 DOI: 10.1038/s43705-023-00322-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/08/2023] [Accepted: 10/13/2023] [Indexed: 11/22/2023]
Abstract
Forests are composed of various plant species, and rhizosphere soil microbes are driven by root exudates. However, the interplay between root exudates, microbial communities in the rhizosphere soil of canopy trees, understory shrubs, grasses, and their responses to nitrogen (N) deposition remains unclear. Pinus tabulaeformis, Rosa xanthina, and Carex lancifolia were used to investigate root exudates, rhizosphere soil microbial communities, and their responses to N application in forest ecosystem. Root exudate abundances of P. tabulaeformis were significantly higher than that of R. xanthina and C. lancifolia, with carbohydrates dominating P. tabulaeformis and R. xanthina root exudates, fatty acids prevailing in C. lancifolia root exudates. Following N application, root exudate abundances of P. tabulaeformis and R. xanthina initially increased before decreasing, whereas those of C. lancifolia decreased. Microbial number of rhizosphere soil of C. lancifolia was higher than that of P. tabulaeformis and R. xanthina, but there was insignificant variation of rhizosphere soil microbial diversity among plant species. N application exerted promotional and inhibitory impacts on bacterial and fungal numbers, respectively, while bacterial and fungal diversities were increased by N application. Overall, N application had negative effects on root exudates of P. tabulaeformis, inhibiting rhizosphere soil microbial populations. N application suppressed rhizosphere soil microbial populations by increasing root exudates of R. xanthina. Conversely, N application elevated nutrient content in the rhizosphere soil of C. lancifolia, reducing root exudates and minimally promoting microbial populations. This study highlights the importance of understory vegetation in shaping soil microbial communities within forests under N deposition.
Collapse
Affiliation(s)
- Hang Jing
- School of Geography, Nanjing Normal University, 210023, Nanjing, China
| | - Huiling Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, 712100, Yangling, China
- Institute of Soil and Water Conservation, Chinese Academy of Science and Ministry of Water Resources, 712100, Yangling, China
| | - Guoliang Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, 712100, Yangling, China.
- Institute of Soil and Water Conservation, Chinese Academy of Science and Ministry of Water Resources, 712100, Yangling, China.
| | - Guobin Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, 712100, Yangling, China
- Institute of Soil and Water Conservation, Chinese Academy of Science and Ministry of Water Resources, 712100, Yangling, China
| | - Yi Cheng
- School of Geography, Nanjing Normal University, 210023, Nanjing, China
| |
Collapse
|
16
|
Gao H, Chen J, Wang C, Wang P, Wang R, Feng B. Regulatory mechanisms of submerged macrophyte on bacterial community recovery in decabromodiphenyl ether contaminated sediment: Microbiological and metabolomic perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122616. [PMID: 37757929 DOI: 10.1016/j.envpol.2023.122616] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/06/2023] [Accepted: 09/23/2023] [Indexed: 09/29/2023]
Abstract
Polybrominated diphenyl ether contamination in sediments poses serious threats to human health and ecological safety. Despite the broad application of submerged macrophytes for remediating pollutants, their regulatory influence on bacterial communities in contaminated sediments remains unclear. Herein, we analyzed the effects of decabromodiphenyl ether (BDE-209) and Hydrilla verticillata on sediment bacterial community and function using 16S rRNA gene sequencing and sediment metabolomics. Results showed that BDE-209 significantly inhibited sediment bacterial diversity and metabolic functions. It also enhanced bacterial interactions and altered both the bacterial community and metabolite composition. Uridine and inosine were critical metabolites that positively co-occurred with bacterial taxa inhibited by BDE-209. Notably, planting H. verticillata effectively alleviated the adverse impacts of BDE-209 by reducing its residuals, increasing the total organic carbon, and modifying metabolic profiles. Such mitigation was evidenced by enhancing bacterial diversity, restoring metabolic functions, and attenuating bacterial interactions. However, mitigation effectiveness depended on treatment time. Additionally, propionic acid, palmitic acid, and palmitoleic acid may facilitate the restoration of phylum Proteobacteria and class Planctomycetacia in H. verticillata planted sediment. Together, these findings improve understanding of BDE-209's impacts on aquatic ecosystems and provide valuable insights for ecological restoration using submerged macrophytes.
Collapse
Affiliation(s)
- Han Gao
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, PR China.
| | - Juan Chen
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, PR China.
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, PR China.
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, PR China.
| | - Rong Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, PR China.
| | - Bingbing Feng
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, PR China.
| |
Collapse
|
17
|
Liu Y, Zhang B, Yao Y, Wang B, Cao Y, Shen Y, Jia X, Xu F, Song Z, Zhao C, Gao H, Guo P. Insight into the plant-associated bacterial interactions: Role for plant arsenic extraction and carbon fixation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 894:164960. [PMID: 37348724 DOI: 10.1016/j.scitotenv.2023.164960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/24/2023]
Abstract
This study investigated the interactions between rhizosphere and endosphere bacteria during phytoextraction and how the interactions affect arsenic (As) extraction and carbon (C) fixation of plants. Pot experiments, high-throughput sequencing, metabonomics, and network analysis were integrated. Results showed that positive correlations dominated the interconnections within modules (>95 %), among modules (100 %), and among keystone taxa (>72 %) in the bacterial networks of plant rhizosphere, root endosphere, and shoot endosphere. This confirmed that cooperative interactions occurred between bacteria in the rhizosphere and endosphere during phytoextraction. Modules and keystone taxa positively correlating with plant As extraction and C fixation were identified, indicating that modules and keystone taxa promoted plant As extraction and C fixation simultaneously. This is mainly because modules and keystone taxa in plant rhizosphere, root endosphere, and shoot endosphere carried arsenate reduction and C fixation genes. Meanwhile, they up-regulated the significant metabolites related to plant As tolerance. Additionally, shoot C fixation increased peroxidase activity and biomass thereby facilitating plant As extraction was confirmed. This study revealed the mechanisms of plant-associated bacterial interactions contributing to plant As extraction and C fixation. More importantly, this study provided a new angle of view that phytoextraction can be applied to achieve multiple environmental goals, such as simultaneous soil remediation and C neutrality.
Collapse
Affiliation(s)
- Yibo Liu
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130012, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130012, PR China
| | - Baiyu Zhang
- Department of Civil Engineering, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, Canada A1B 3X5
| | - Ye Yao
- College of Physics, Jilin University, Changchun 130012, PR China
| | - Bo Wang
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130012, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130012, PR China
| | - Yiqi Cao
- Department of Civil Engineering, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, Canada A1B 3X5
| | - Yanping Shen
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130012, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130012, PR China
| | - Xiaohui Jia
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130012, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130012, PR China
| | - Fukai Xu
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130012, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130012, PR China
| | - Ziwei Song
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130012, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130012, PR China
| | - Chengpeng Zhao
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130012, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130012, PR China
| | - HongJie Gao
- Chinese Research Academy of Environmental Science, Beijing 100012, PR China.
| | - Ping Guo
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130012, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
18
|
Jin J, Wang C, Liu R, Gong J, Wang J, Niu X, Zheng R, Tang Z, Malik K, Li C. Soil microbial community compositions and metabolite profiles of Achnatherum inebrians affect phytoremediation potential in Cd contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132280. [PMID: 37591168 DOI: 10.1016/j.jhazmat.2023.132280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/19/2023]
Abstract
Cadmium (Cd) contamination poses serious risks to soil ecosystems and human health. Herein, the effect of two drunken horse grasses (Achnatherum inebrians) including endophytes Epichloë gansuensis infected (E+ ) and uninfected (E-) on the phytoremediation of Cd-contaminated soils were analyzed by coupling high-throughput sequencing and soil metabolomics. The results showed that the high-risk soil Cd decreased and the medium- and low-risk Cd fraction increased to varying degrees after planting E+ and E- plants in the soil. Meanwhile, total Cd content decreased by 19.7 % and 35.1 % in E+ and E- A. inebrians-planted soils, respectively. Principal coordinate analysis revealed a significant impact of E+ and E- plants on the soil microbial community. Most stress-tolerant and gram-positive functional bacterial taxa were enriched to stabilize Cd(II) in E+ planted soil. Several beneficial fungal groups related to saprotroph and symbiotroph were enriched to absorb Cd(II) in E- soil. Soil metabolomic analysis showed that the introduction of A. inebrians could weaken the threat of CdCl2 to soil microbe metabolism and improve soil quality, which in turn promoted plant growth and improved phytoremediation efficiency in Cd-contaminated soil. In conclusion, A. inebrians plants alleviate soil Cd pollution by regulating soil microbial metabolism and microbial community structure. These results provide valuable information for an in-depth understanding of the phytoremediation mechanisms of A. inebrians.
Collapse
Affiliation(s)
- Jie Jin
- State Key Laboratory of Grassland Agro-ecosystems, China; Center for Grassland Microbiome, China; Lanzhou University, Key Laboratory of Grassland Livestock Industry Innovation, China; Ministry of Agriculture and Rural Affairs, China; Engineering Research Center of Grassland Industry, China; Ministry of Education, China; College of Pastoral Agriculture Science and Technology, China; Lanzhou University, Lanzhou 730000, China
| | - Chao Wang
- State Key Laboratory of Grassland Agro-ecosystems, China; Center for Grassland Microbiome, China; Lanzhou University, Key Laboratory of Grassland Livestock Industry Innovation, China; Ministry of Agriculture and Rural Affairs, China; Engineering Research Center of Grassland Industry, China; Ministry of Education, China; College of Pastoral Agriculture Science and Technology, China; Lanzhou University, Lanzhou 730000, China
| | - Ronggui Liu
- State Key Laboratory of Grassland Agro-ecosystems, China; Center for Grassland Microbiome, China; Lanzhou University, Key Laboratory of Grassland Livestock Industry Innovation, China; Ministry of Agriculture and Rural Affairs, China; Engineering Research Center of Grassland Industry, China; Ministry of Education, China; College of Pastoral Agriculture Science and Technology, China; Lanzhou University, Lanzhou 730000, China
| | - Jiyi Gong
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Normal University, Guiyang, Guizhou 550025, China
| | - Jianfeng Wang
- State Key Laboratory of Grassland Agro-ecosystems, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China; Center for Grassland Microbiome, China; Lanzhou University, Key Laboratory of Grassland Livestock Industry Innovation, China; Ministry of Agriculture and Rural Affairs, China; Engineering Research Center of Grassland Industry, China; Ministry of Education, China; College of Pastoral Agriculture Science and Technology, China; Lanzhou University, Lanzhou 730000, China.
| | - Xueli Niu
- School of Life Science and Technology, Lingnan Normal University, Zhanjiang 524048, China
| | - Rong Zheng
- State Key Laboratory of Grassland Agro-ecosystems, China; Center for Grassland Microbiome, China; Lanzhou University, Key Laboratory of Grassland Livestock Industry Innovation, China; Ministry of Agriculture and Rural Affairs, China; Engineering Research Center of Grassland Industry, China; Ministry of Education, China; College of Pastoral Agriculture Science and Technology, China; Lanzhou University, Lanzhou 730000, China
| | - Zhonglong Tang
- Linxia Academy of Agricultural Sciences, Linxia 731100, China
| | - Kamran Malik
- State Key Laboratory of Grassland Agro-ecosystems, China; Center for Grassland Microbiome, China; Lanzhou University, Key Laboratory of Grassland Livestock Industry Innovation, China; Ministry of Agriculture and Rural Affairs, China; Engineering Research Center of Grassland Industry, China; Ministry of Education, China; College of Pastoral Agriculture Science and Technology, China; Lanzhou University, Lanzhou 730000, China
| | - ChunJie Li
- State Key Laboratory of Grassland Agro-ecosystems, China; Center for Grassland Microbiome, China; Lanzhou University, Key Laboratory of Grassland Livestock Industry Innovation, China; Ministry of Agriculture and Rural Affairs, China; Engineering Research Center of Grassland Industry, China; Ministry of Education, China; College of Pastoral Agriculture Science and Technology, China; Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
19
|
Sheng L, Zhao W, Yang X, Mao H, Zhu S. Response characteristics of rhizosphere microbial community and metabolites of Iris tectorum to Cr stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115218. [PMID: 37441947 DOI: 10.1016/j.ecoenv.2023.115218] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/18/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023]
Abstract
Chromium (Cr) is a toxic heavy element that interferes with plant metabolite biosynthesis and modifies the plant rhizosphere microenvironment, affecting plant growth. However, the interactions and response mechanisms between plants and rhizosphere bacteria under Cr stress still need to be fully understood. In this study, we used Iris tectorum as a research target and combined physiology, metabolomics, and microbiology to reveal the stress response mechanism of I. tectorum under heavy metal chromium stress. The results showed that Cr stress-induced oxidative stress inhibited plant growth and development and increased malondialdehyde and oxygen free radicals content. Also, it increased ascorbate peroxidase, peroxidase activity, and superoxide dismutase activity, as well as glutathione and soluble sugar content. Microbiome analysis showed that Cr stress changed the rhizosphere bacterial community diversity index by 33.56%. Proteobacteria, Actinobacteriota, and Chloroflexi together accounting for 71.21% of the total sequences. Meanwhile, the abundance of rhizosphere dominant and plant-promoting bacteria increased significantly with increasing time of Cr stress. The improvement of the soil microenvironment and the recruitment of bacteria by I. tectorum root secretions were significantly enhanced. By metabolomic analysis, five vital metabolic pathways were identified, involving 89 differentially expressed metabolites, divided into 15 major categories. In summary, a multi-omics approach was used in this study to reveal the interaction and stress response mechanisms between I. tectorum and rhizosphere bacterial communities under Cr stress, which provided theoretical basis for plant-microbial bioremediation of Cr-contaminated soils in constructed wetlands. This may provide more valuable information for wetland remediation of heavy metal pollution.
Collapse
Affiliation(s)
- Luying Sheng
- College of Eco-environment Engineering, Guizhou Minzu University, China; The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Wei Zhao
- College of Eco-environment Engineering, Guizhou Minzu University, China; The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Xiuqin Yang
- College of Eco-environment Engineering, Guizhou Minzu University, China
| | - Huan Mao
- College of Eco-environment Engineering, Guizhou Minzu University, China; The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Sixi Zhu
- College of Eco-environment Engineering, Guizhou Minzu University, China; The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China.
| |
Collapse
|
20
|
Peng M, He H, Jiang M, Wang Z, Li G, Zhuang L. Morphological, physiological and metabolomic analysis to unravel the adaptive relationship between root growth of ephemeral plants and different soil habitats. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107986. [PMID: 37651954 DOI: 10.1016/j.plaphy.2023.107986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023]
Abstract
To gain insights into the adaptive characteristics of ephemeral plants and enrich their potential for resource exploitation, the adaptive changes in two highly dominant species (Malcolmia scorpioides and Isatis violascens) to soil habitats (aeolian soil, AS; grey desert soil, GS) were investigated from the aspects of root morphology, physiology, and metabolism in this study. The results revealed that changes in root morphology and enzyme activity were affected by soil habitat. Total root length (TRL), root volume (RV) and root surface area (RSA) were higher in GS than in AS. The levels of proline (Pro), glutathione (GSH), soluble sugar (SS), and lysine (Lys) were higher in GS than in AS. Untargeted LC-MS metabolomics indicates that root metabolites of both species differed among the two soil habitats. Root responses to different soil habitats mainly affected some metabolic pathways. A total of 780 metabolites were identified, common differential metabolites (DMs) in both species included amino acids, fatty acids, organic acids, carbohydrates, benzene and derivatives, and flavonoids, which were mainly involved in carbohydrate metabolism, amino acid metabolism, flavonoid biosynthesis and fatty acid metabolism, and their abundance varied among different habitats and species. Some key DMs were significantly related to root morphology and enzyme activity, and indole, malonate, quercetin, uridine, tetrahydroharmine, and gluconolactone were important metabolites associated with root growth. Therefore, the response changes in root growth and metabolite of ephemeral plants in response to soil habitats reflect their ecological adaptation, and lay a foundation for the exploitation of plant resources in various habitats.
Collapse
Affiliation(s)
- Mengwen Peng
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, PR China
| | - Hao He
- Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, College of Agriculture, Shihezi University, Shihezi, Xinjiang, 832003, PR China
| | - Meng Jiang
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, PR China
| | - Zhongke Wang
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, PR China
| | - Guifang Li
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, PR China
| | - Li Zhuang
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, PR China.
| |
Collapse
|
21
|
Liu C, Yu J, Ying J, Zhang K, Hu Z, Liu Z, Chen S. Integrated metagenomics and metabolomics analysis reveals changes in the microbiome and metabolites in the rhizosphere soil of Fritillaria unibracteata. FRONTIERS IN PLANT SCIENCE 2023; 14:1223720. [PMID: 37600181 PMCID: PMC10436506 DOI: 10.3389/fpls.2023.1223720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023]
Abstract
Fritillaria unibracteata (FU) is a renowned herb in China that requires strict growth conditions in its cultivation process. During this process, the soil microorganisms and their metabolites may directly affect the growth and development of FU, for example, the pathogen infection and sipeimine production. However, few systematic studies have reported the changes in the microbiome and metabolites during FU cultivation thus far. In this work, we simultaneously used metagenomics and metabolomics technology to monitor the changes in microbial communities and metabolites in the rhizosphere of FU during its cultivation for one, two, and three years. Moreover, the interaction between microorganisms and metabolites was investigated by co-occurrence network analysis. The results showed that the microbial composition between the three cultivation-year groups was significantly different (2020-2022). The dominant genera changed from Pseudomonas and Botrytis in CC1 to Mycolicibacterium and Pseudogymnoascus in CC3. The relative abundances of beneficial microorganisms decreased, while the relative abundances of harmful microorganisms showed an increasing trend. The metabolomics results showed that significant changes of the of metabolite composition were observed in the rhizosphere soil, and the relative abundances of some beneficial metabolites showed a decreasing trend. In this study, we discussed the changes in the microbiome and metabolites during the three-year cultivation of FU and revealed the relationship between microorganisms and metabolites. This work provides a reference for the efficient and sustainable cultivation of FU.
Collapse
Affiliation(s)
- Chengcheng Liu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingsheng Yu
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jizhe Ying
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Kai Zhang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhigang Hu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhixiang Liu
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shilin Chen
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
22
|
Hua YJ, Xie F, Mao KJ, Luo YY, Ding YJ. Insights into the metabolite profiles of Rubus chingii Hu at different developmental stages of fruit. J Sep Sci 2023; 46:e2300264. [PMID: 37353914 DOI: 10.1002/jssc.202300264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/24/2023] [Accepted: 06/02/2023] [Indexed: 06/25/2023]
Abstract
The fruits of Rubus chingii Hu have high medicinal and nutritional values. However, the metabolite profiles of R. chingii, especially the alterations during different development stages of fruit, have not been comprehensively analyzed, hindering the effective utilization of the unique species. In this study, we comprehensively analyzed the metabolites of R. chingii fruit at four developmental stages using systematic untargeted and targeted liquid chromatography-mass spectrometry metabolomics analysis and identified 682 metabolites. Significant changes were observed in metabolite accumulation and composition in fruits during the different developmental stages. The contents of the index components, kaempferol-3-O-rutinoside and ellagic acid, were the highest in immature fruit. The analysis identified 64 differentially expressed flavonoids and 39 differentially expressed phenolic acids; the accumulation of most of these differentially expressed metabolites decreased with the developmental stages of fruit from immaturity to maturity. These results confirmed that the developmental stages of fruit are a critical factor in determining its secondary metabolite compositions. This study elucidated the metabolic profile of R. chingii fruit at different stages of development to understand the dynamic changes in metabolites.
Collapse
Affiliation(s)
- Yu-Jiao Hua
- Department of Clinical Pharmacy, Affiliated Hospital of Jiangnan University, Wuxi, P. R. China
| | - Fen Xie
- Department of Clinical Pharmacy, Affiliated Hospital of Jiangnan University, Wuxi, P. R. China
| | - Kun-Jun Mao
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, P. R. China
| | - Yi-Yuan Luo
- College of Traditional Chinese Medicine, Zhejiang Pharmaceutical University, Ningbo, P. R. China
| | - Yong-Juan Ding
- Department of Clinical Pharmacy, Affiliated Hospital of Jiangnan University, Wuxi, P. R. China
| |
Collapse
|
23
|
Li Y, Shi X, Tan W, Ling Q, Pei F, Luo S, Qin P, Yuan H, Huang L, Yu F. Metagenomics combined with metabolomics reveals the effect of Enterobacter sp. inoculation on the rhizosphere microenvironment of Bidens pilosa L. in heavy metal contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:132033. [PMID: 37453352 DOI: 10.1016/j.jhazmat.2023.132033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/24/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
Metagenomics analysis was performed to determine the effects of Enterobacter sp. FM-1 (FM-1) on key genera as well as functional genes in the rhizosphere of Bidens pilosa L. (B. pilosa L.). Moreover, metabolomics was used to reveal the differences among rhizosphere metabolites after FM-1 inoculation. FM-1 inoculation significantly increased the activity of enzymes associated with the carbon cycle in soil; among them, invertase activity increased by 5.52 units compared to a control. Specifically, the relative abundance of beneficial genera increased significantly, such as Lysobacter (0.45-2.58 unit increase) in low-contamination soils (LC) and Pseudomonas (31.17-45.99 unit increase) in high-contamination soils (HC). Comparison of different transformation processes of the C cycle revealed that inoculation of FM-1 increased the abundance of functional genes related to the carbon cycle in LC soil. In contrast, the nitrogen cycling pathway was significantly elevated in both the LC and HC soils. FM-1 inoculation reduced HM resistance gene abundance in the rhizosphere soil of B. pilosa L. in the LC soil. Moreover, FM-1 and B. pilosa L. interactions promoted the secretion of rhizosphere metabolites, in which lipids and amino acids played important roles in the phytoremediation process. Overall, we explored the rhizosphere effects induced by plantmicrobe interactions, providing new insights into the functional microbes and rhizosphere metabolites involved in phytoremediation.
Collapse
Affiliation(s)
- Yi Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China; College of Environment and Resources, Guangxi Normal University, Guilin, China; Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, China
| | - Xinwei Shi
- College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Weilan Tan
- College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Qiujie Ling
- College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Fengmei Pei
- College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Shiyu Luo
- College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Peiqing Qin
- College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Huijian Yuan
- Hunan Suining Huayuange National Wetland Park, Suining, China
| | - Liuan Huang
- Hunan Suining Huayuange National Wetland Park, Suining, China
| | - Fangming Yu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China; College of Environment and Resources, Guangxi Normal University, Guilin, China; Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, China.
| |
Collapse
|
24
|
Xiao H, Tan J, Li M, Yuan Z, Zhou H. The mechanism of Se(IV) multisystem resistance in Stenotrophomonas sp. EGS12 and its prospect in selenium-contaminated environment remediation. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131358. [PMID: 37027916 DOI: 10.1016/j.jhazmat.2023.131358] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/22/2023] [Accepted: 04/02/2023] [Indexed: 05/03/2023]
Abstract
Human activities have led to elevated levels of selenium (Se) in the environment, which poses a threat to ecosystems and human health. Stenotrophomonas sp. EGS12 (EGS12) has been identified as a potential candidate for the bioremediation of repair selenium-contaminated environment because of its ability to efficiently reduce Se(IV) to form selenium nanospheres (SeNPs). To better understand the molecular mechanism of EGS12 in response to Se(IV) stress, a combination of transmission electron microscopy (TEM), genome sequencing techniques, metabolomics and transcriptomics were employed. The results indicated that under 2 mM Se(IV) stress, 132 differential metabolites (DEMs) were identified, and they were significantly enriched in metabolic pathways such as glutathione metabolism and amino acid metabolism. Under the Se(IV) stress of 2 mM, 662 differential genes (DEGs) involved in heavy metal transport, stress response, and toxin synthesis were identified in EGS12. These findings suggest that EGS12 may respond to Se(IV) stress by engaging various mechanisms such as forming biofilms, repairing damaged cell walls/cell membranes, reducing Se(IV) translocation into cells, increasing Se(IV) efflux, multiplying Se(IV) reduction pathways and expelling SeNPs through cell lysis and vesicular transport. The study also discusses the potential of EGS12 to repair Se contamination alone and co-repair with Se-tolerant plants (e.g. Cardamine enshiensis). Our work provides new insights into microbial tolerance to heavy metals and offers valuable information for bio-remediation techniques on Se(IV) contamination.
Collapse
Affiliation(s)
- Hongshi Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, No.1Nongda Road, Furong, Changsha 410000, China
| | - Jun Tan
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China
| | - Mengjia Li
- College of Bioscience and Biotechnology, Hunan Agricultural University, No.1Nongda Road, Furong, Changsha 410000, China
| | - Zhihui Yuan
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, 130 Yangzitang Road, Lingling, Yongzhou 425199, China.
| | - Haiyan Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, No.1Nongda Road, Furong, Changsha 410000, China.
| |
Collapse
|
25
|
Sun S, Ma B, Wang G, Tan X. Linking microbial biogeochemical cycling genes to the rhizosphere of pioneering plants in a glacier foreland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:161944. [PMID: 36737018 DOI: 10.1016/j.scitotenv.2023.161944] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Glacier retreat raises global concerns but brings about the moment to study soil and ecosystem development. In nutrient-limited glacier forelands, the adaptability of pioneering plant and microbial species is facilitated by their interactions, including rhizosphere effects, but the details of this adaptability are not yet understood. In the rhizosphere of five pioneering plants, we comprehensively deciphered the microbial taxonomic and functional compositions. Two nitrogen-fixing microbial genera, Bradyrhizobium and Mesorhizobium, were among the most abundant taxa in the rhizomicrobiome. Moreover, several rhizobial genera, including Rhizobium, Pararhizobium, Allohrizobium, and Sinorhizobium, head the list of major modules in microbial co-occurrence networks, highlighting the vital roles of nitrogen-cycling taxa in the rhizomicrobiome of pioneering plants. Microbial genes involved in nitrogen, sulfur, phosphorus, and methane cycles were simultaneously correlated with microbial community dissimilarity, and 12 functional pathways were detected with distinct relative abundances among soils. Zooming in on the nitrogen-cycling genes, nifW, narC, nasA, nasB, and nirA were mainly responsible for the significant differences between soils. Furthermore, soil pH and the carbon/nitrogen ratio were among the topsoil properties interacting with nitrogen and sulfur cycling gene dissimilarity. These results explicitly linked biogeochemical cycling genes to the rhizomicrobiome and soil properties, revealing the roles of these genes as microbial drivers in mediating rhizosphere soil-plant-microbiome interactions.
Collapse
Affiliation(s)
- Shouqin Sun
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu 610065, China.
| | - Bin Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Genxu Wang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu 610065, China.
| | - Xiangfeng Tan
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
26
|
Chen Y, Zhen Z, Li G, Li H, Wei T, Huang F, Li T, Yang C, Ren L, Liang Y, Lin Z, Zhang D. Di-2-ethylhexyl phthalate (DEHP) degradation and microbial community change in mangrove rhizosphere gradients. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162022. [PMID: 36775151 DOI: 10.1016/j.scitotenv.2023.162022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/17/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Di-2-ethylhexyl phthalate (DEHP) is a widespread persistent organic pollutant in the environment. As an ultimate barrier preventing pollutant entry into the ocean, mangrove plays an important role in coastal ecosystem. However, little information is known about DEHP degradation in mangrove rhizosphere. In this study, a rhizobox was used to separate four consecutive rhizosphere compartments with distance of 0-2, 2-4, 4-6, and > 6 mm to the rhizoplane of Kandelia obovata and investigate DEHP gradient degradation behavior in rhizosphere. Sediments closer to the rhizoplane exhibited higher DEHP degradation efficiencies (74.4 % in 0-2 mm layer). More precisely, mangrove rhizosphere promoted the benzoic acid pathway and non-selectively accelerated the production of mono(2-ethylhexyl) phthalate, phthalic acid and benzoic acid. Higher sediment organic matter content, lower pH and less humus in rhizosphere benefited DEHP hydrolysis. In addition, rhizosphere significantly increased microbial biomass and activities comparing to bulk sediments. Some bacterial lineages with potential DEHP degradation capability exhibited a distance-dependent pattern that decreased with the distance to the rhizoplane, including Bacillales, Acidothermaceae, Gammaproteobacteria, and Sphingobacteriales. Our findings suggested that mangrove rhizosphere could accelerate DEHP degradation by altering sediment physicochemical properties and microbial composition, showing positive effects on coastal ecosystem services for eliminating phthalate acid ester contamination.
Collapse
Affiliation(s)
- Yijie Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Zhen Zhen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Gaoyang Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Huijun Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Ting Wei
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Fengcheng Huang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Tao Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Changhong Yang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Lei Ren
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Yanqiu Liang
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Zhong Lin
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China; Shenzhen Research Institute of Guangdong Ocean University, Shenzhen 518108, PR China.
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun 130021, PR China; Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
27
|
Wu Y, Zhao C, Zhao X, Yang L, Liu C, Jiang L, Liu G, Liu P, Luo L. Multi-omics-based identification of purple acid phosphatases and metabolites involved in phosphorus recycling in stylo root exudates. Int J Biol Macromol 2023; 241:124569. [PMID: 37100319 DOI: 10.1016/j.ijbiomac.2023.124569] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/01/2023] [Accepted: 04/12/2023] [Indexed: 04/28/2023]
Abstract
Stylo (Stylosanthes guianensis) is a tropical forage and cover crop that possesses low phosphate (Pi) tolerance traits. However, the mechanisms underlying its tolerance to low-Pi stress, particularly the role of root exudates, remain unclear. This study employed an integrated approach using physiological, biochemical, multi-omics, and gene function analyses to investigate the role of stylo root exudates in response to low-Pi stress. Widely targeted metabolomic analysis revealed that eight organic acids and one amino acid (L-cysteine) were significantly increased in the root exudates of Pi-deficient seedlings, among which tartaric acid and L-cysteine had strong abilities to dissolve insoluble-P. Furthermore, flavonoid-targeted metabolomic analysis identified 18 flavonoids that were significantly increased in root exudates under low-Pi conditions, mainly belonging to the isoflavonoid and flavanone subclasses. Additionally, transcriptomic analysis revealed that 15 genes encoding purple acid phosphatases (PAPs) had upregulated expression in roots under low-Pi conditions. Among them, SgPAP10 was characterized as a root-secreted phosphatase, and overexpression of SgPAP10 enhanced organic-P utilization by transgenic Arabidopsis. Overall, these findings provide detailed information regarding the importance of stylo root exudates in adaptation to low-Pi stress, highlighting the plant's ability to release Pi from organic-P and insoluble-P sources through root-secreted organic acids, amino acids, flavonoids, and PAPs.
Collapse
Affiliation(s)
- Yuanhang Wu
- College of Tropical Crops, Hainan University, Haikou 570228, China; Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
| | - Cang Zhao
- College of Tropical Crops, Hainan University, Haikou 570228, China; Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
| | - Xingkun Zhao
- College of Tropical Crops, Hainan University, Haikou 570228, China; Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
| | - Liyun Yang
- College of Tropical Crops, Hainan University, Haikou 570228, China; Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
| | - Chun Liu
- College of Tropical Crops, Hainan University, Haikou 570228, China; Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
| | - Lingyan Jiang
- College of Tropical Crops, Hainan University, Haikou 570228, China; Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
| | - Guodao Liu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Pandao Liu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Lijuan Luo
- College of Tropical Crops, Hainan University, Haikou 570228, China; Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China.
| |
Collapse
|
28
|
Jiang D, Li Y, Wang J, Lv X, Jiang Z, Cao B, Qu J, Ma S, Zhang Y. Exogenous application of Bradyrhizobium japonicum AC20 enhances soybean tolerance to atrazine via regulating rhizosphere soil microbial community and amino acid, carbohydrate metabolism related genes expression. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:472-483. [PMID: 36764263 DOI: 10.1016/j.plaphy.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/19/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Atrazine is used to control broad-leaved weeds in farmland and has negative impacts on soybean growth. Legume-rhizobium symbiosis plays an important role in regulating abiotic stress tolerance of plants, however, the mechanisms of rhizobia regulate the tolerance of soybean to atrazine based on the biochemical responses of the plant-soil system are limited. In this experiment, Glycine max (L.) Merr. Dongnong 252, planted in 20 mg kg-1 of atrazine-contaminated soil, was inoculated with Bradyrhizobium japonicum AC20, and the plant growth, rhizosphere soil microbial diversity and the expression of the genes related to soybean carbon and nitrogen metabolism were assessed. The results indicated that strain AC20 inoculation alleviated atrazine-induced growth inhibition via increasing the contents of leghemoglobin and total nitrogen in soybean seedlings. The psbA gene expression level of the soybean seedlings that inoculated strain AC20 was 1.4 times than that of no rhizobium inoculating treatments. Moreover, the inoculated AC20 increased the abundance of Acidobacteria and Actinobacteria in soybean rhizosphere. Transcriptome analysis demonstrated that strain AC20 regulated the genes expression of amino acid metabolism and carbohydrate metabolism of soybean seedlings. Correlation analysis between 16S rRNA and transcriptome showed that strain AC20 reduced Planctomycetes abundance so as to down-regulated the expression of genes Glyma. 13G087800, Glyma. 12G005100 and Glyma.12G098900 involved in starch synthesis pathway of soybean leaves. These results provide available information for the rhizobia application to enhance the atrazine tolerate in soybean seedlings.
Collapse
Affiliation(s)
- Duo Jiang
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yu Li
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jianmin Wang
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xinyu Lv
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Zhao Jiang
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Bo Cao
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jianhua Qu
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shouyi Ma
- Heilongjiang Academy of Land Reclamation Sciences, Harbin, 150030, PR China
| | - Ying Zhang
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, PR China; Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130132, PR China.
| |
Collapse
|
29
|
Wang Y, Xiang L, Wang F, Redmile-Gordon M, Bian Y, Wang Z, Gu C, Jiang X, Schäffer A, Xing B. Transcriptomic and metabolomic changes in lettuce triggered by microplastics-stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121081. [PMID: 36646407 DOI: 10.1016/j.envpol.2023.121081] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Microplastics (MPs) are a global threat to the environment, and plant uptake of MP particles (≤0.2 μm) is a particular cause for concern. However, physiological and molecular mechanisms underlying MP-induced growth inhibition need to be clarified. Towards this goal, we conducted a hydroponic experiment to investigate the accumulation of MPs, changes in physiology, gene expression, and metabolites in lettuce from a series of concentrations of fluorescence-labelled polystyrene MPs (0, 10, 20, 30, 40, 50 mg L-1, ∼0.2 μm). Our results showed that MPs accumulated in the lettuce root tips and leaf veins, resulting in the hypertonic injury of lettuce, and the down-regulation of genes related to ion homeostasis. Stress-related genes were up-regulated, and sphingolipid metabolism increased in response to MP additions, causing increased biosynthesis of ascorbic acid, terpenoid, and flavonoids in root exudates. Our findings provide a molecular-scale perspective on the response of leafy vegetables to MP-stress at a range of concentrations. This enables more comprehensive evaluation of the risks of MPs to human health and the ecological environment.
Collapse
Affiliation(s)
- Yu Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Leilei Xiang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China
| | - Fang Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China; University of Chinese Academy of Science, Beijing 100049, China; Institute for Environmental Research, RWTH Aachen University, Aachen 52074, Germany.
| | - Marc Redmile-Gordon
- Department of Environmental Horticulture, Royal Horticultural Society, Wisley, Surrey, GU23 6QB, UK
| | - Yongrong Bian
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Ziquan Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China
| | - Chenggang Gu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Xin Jiang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Andreas Schäffer
- Institute for Environmental Research, RWTH Aachen University, Aachen 52074, Germany
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
30
|
Shi R, Liu W, Lian Y, Zeb A, Wang Q. Type-dependent effects of microplastics on tomato (Lycopersicon esculentum L.): Focus on root exudates and metabolic reprogramming. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160025. [PMID: 36356752 DOI: 10.1016/j.scitotenv.2022.160025] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Much attention has been paid to the prevalence of microplastics (MPs) in terrestrial systems. MPs have been shown to affect the physio-biochemical properties of plants. Different MPs may have distinctive behaviors and diverse effects on plant growth. In the present study, the effects of polystyrene (PS), polyethylene (PE), and polypropylene (PP) MPs on physio-biochemical properties, root exudates, and metabolomics of tomato (Lycopersicon esculentum L.) under hydroponic conditions were investigated. Our results show that MPs exposure has adverse effects on tomato growth. MPs exposure had a significant type-dependent effect (p < 0.001) on photosynthetic gas parameters, chlorophyll content, and antioxidant enzyme activities. After exposure to MPs, the content of low molecular weight organic acids in tomato root exudates was significantly increased, which was considered as a strategy to alleviate the toxicity of MPs. In addition, MPs treatment significantly changed the metabolites of tomato root and leaf. Metabolic pathway analysis showed that MPs treatment had a great effect on amino acid metabolism. We also found that plants exposed to PS and PP MPs produced more significant metabolic reprogramming than those exposed to PE MPs. This study provides important implications for the mechanism studies on the toxic effect of various MPs on crops and their future risk assessment.
Collapse
Affiliation(s)
- Ruiying Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Weitao Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
| | - Yuhang Lian
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Aurang Zeb
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Qi Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| |
Collapse
|
31
|
Liu Y, Xu F, Ding L, Zhang G, Bai B, Han Y, Xiao L, Song Y, Li Y, Wan S, Li G. Microplastics reduce nitrogen uptake in peanut plants by damaging root cells and impairing soil nitrogen cycling. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130384. [PMID: 36444071 DOI: 10.1016/j.jhazmat.2022.130384] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/28/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Microplastic (MP) pollution severely impairs the sustainable development of modern agriculture. However, the mechanisms underlying the effects of MP contaminants on nutrient cycles in agroecosystems are poorly understood. In this study, we examined the impacts of two types of MPs, polypropylene (PP) and rubber crumb (RC), on nitrogen (N) transformation and N cycling in soil-peanut system. High concentrations of PP (1% w/w) and RC (1% w/w) inhibited vegetative growth and N uptake in peanut plants by damaging root cells and disturbing soil N cycling. These MPs damaged the plasma membranes of root cells and caused oxidative stress, as evidenced by the decreased number of xylem vessels, which in turn inhibited N uptake by roots. Integrated metagenomic and metabolomic analyses revealed that the differential soil metabolite levels in response to MP treatment affected the microbial community structure in the rhizosphere and the expression of key N cycling-related genes, resulting in altered N transformation and the decreased availability of N in rhizosphere soil. These findings provide the first evidence of the effects of MPs on N uptake in peanut plants and shed light on the importance of rational management of MPs for crop growth and yield in agroecosystems.
Collapse
Affiliation(s)
- Yiyang Liu
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Fangji Xu
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Liping Ding
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Guanchu Zhang
- Shandong Peanut Research Institute, No.126, Wannianquan Road, Licang District, Qingdao 266100, China
| | - Bo Bai
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yan Han
- Shandong Academy of Grape, Jinan 250199, China
| | - Lina Xiao
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yan Song
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Ying Li
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Shubo Wan
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
| | - Guowei Li
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
| |
Collapse
|
32
|
Lu B, Qian J, Hu J, Huang Y, Wang P, Shen J, He Y, Tang S, Liu Y, Zhang Y. Plant rhizosphere defense system respond differently to emerging polyfluoroalkyl substances F-53B and PFOS stress. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130119. [PMID: 36265386 DOI: 10.1016/j.jhazmat.2022.130119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
Chlorinated polyfluoroalkyl ether sulfonate (F-53B) and perfluorooctanesulfonate (PFOS) are used and emitted as fog inhibitors in the chromium plating industry, and they are widely detected worldwide. To study the effects of F-53B and PFOS on the rhizosphere defense system, they were added at two levels (0.1 and 50 mg L-1) to the soil where different plants (Lythrum salicaria and Phragmites communis) were grown. In bulk soils, high concentrations of F-53B/PFOS resulted in significant increases in soil pH, NH4+-N, and NO3--N (the effect of PFOS on NO3--N was not significant). Moreover, the extent of the effects of PFOS and F-53B on the physicochemical properties of bulk soils were different (e.g., PFOS caused an increase of NH4+-N by 8.94%-45.97% compared to 1.63%-25.20% for F-53B). Root exudates and PFASs together influenced the physicochemical properties of rhizosphere soils (e.g., TOC increased significantly in contaminated rhizosphere soils but did not change in non-bulk soils). Under the influence of F-53B/PFOS, the root exudates regulated by plants were changed and weakened the effect of F-53B/PFOS on microbial community of rhizosphere soil. The rhizosphere defense systems of different plants have both similarities and differences in response to different substances and concentrations.
Collapse
Affiliation(s)
- Bianhe Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Jin Qian
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China.
| | - Jing Hu
- Geosystems Research Institute, Mississippi State University, MS 39759, USA
| | | | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China.
| | - Junwei Shen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Yuxuan He
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Sijing Tang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Yin Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Yuhang Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| |
Collapse
|
33
|
Lohse M, Santangeli M, Steininger-Mairinger T, Oburger E, Reemtsma T, Lechtenfeld OJ, Hann S. The effect of root hairs on exudate composition: a comparative non-targeted metabolomics approach. Anal Bioanal Chem 2023; 415:823-840. [PMID: 36547703 PMCID: PMC9883335 DOI: 10.1007/s00216-022-04475-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/10/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
Root exudation is a major pathway of organic carbon input into soils. It affects soil physical properties, element solubility as well as speciation, and impacts the microbial community in the rhizosphere. Root exudates contain a large number of primary and secondary plant metabolites, and the amount and composition are highly variable depending on plant species and developmental stage. Detailed information about exudate composition will allow for a better understanding of exudate-driven rhizosphere processes and their feedback loops. Although non-targeted metabolomics by high-resolution mass spectrometry is an established tool to characterize root exudate composition, the extent and depth of the information obtained depends strongly on the analytical approach applied. Here, two genotypes of Zea mays L., differing in root hair development, were used to compare six mass spectrometric approaches for the analysis of root exudates. Reversed-phase liquid chromatography and hydrophilic interaction liquid chromatography combined with time-of-flight mass spectrometry (LC-TOF-MS), as well as direct infusion Fourier-transform ion cyclotron resonance mass spectrometry (DI-FT-ICR-MS), were applied with positive and negative ionization mode. By using the same statistical workflow, the six approaches resulted in different numbers of detected molecular features, ranging from 176 to 889, with a fraction of 48 to 69% of significant features (fold change between the two genotypes of > 2 and p-value < 0.05). All approaches revealed the same trend between genotypes, namely up-regulation of most metabolites in the root hair defective mutant (rth3). These results were in agreement with the higher total carbon and nitrogen exudation rate of the rth3-mutant as compared to the corresponding wild-type maize (WT). However, only a small fraction of features were commonly found across the different analytical approaches (20-79 features, 13-31% of the rth3-mutant up-regulated molecular formulas), highlighting the need for different mass spectrometric approaches to obtain a more comprehensive view into the composition of root exudates. In summary, 111 rth3-mutant up-regulated compounds (92 different molecular formulas) were detected with at least two different analytical approaches, while no WT up-regulated compound was found by both, LC-TOF-MS and DI-FT-ICR-MS. Zea mays L. exudate features obtained with multiple analytical approaches in our study were matched against the metabolome database of Zea mays L. (KEGG) and revealed 49 putative metabolites based on their molecular formula.
Collapse
Affiliation(s)
- Martin Lohse
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, 04318, Leipzig, Germany
| | - Michael Santangeli
- Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences, Vienna (BOKU), 3430, Tulln an Der Donau, Austria
- Department of Chemistry, Institute of Analytical Chemistry, University of Natural Resources and Life Sciences, Vienna (BOKU), 1190, Vienna, Austria
| | - Teresa Steininger-Mairinger
- Department of Chemistry, Institute of Analytical Chemistry, University of Natural Resources and Life Sciences, Vienna (BOKU), 1190, Vienna, Austria
| | - Eva Oburger
- Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences, Vienna (BOKU), 3430, Tulln an Der Donau, Austria.
| | - Thorsten Reemtsma
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, 04318, Leipzig, Germany
- Institute of Analytical Chemistry, University of Leipzig, 04103, Leipzig, Germany
| | - Oliver J Lechtenfeld
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, 04318, Leipzig, Germany.
- ProVIS, Centre for Chemical Microscopy, Helmholtz Centre for Environmental Research, UFZ, 04318, Leipzig, Germany.
| | - Stephan Hann
- Department of Chemistry, Institute of Analytical Chemistry, University of Natural Resources and Life Sciences, Vienna (BOKU), 1190, Vienna, Austria
| |
Collapse
|
34
|
Jia X, Wang Y, Zhao J, Gao Y, Zhang C, Feng X, Ding X. Effect of Glomus mosseae, cadmium, and elevated air temperature on main flavonoids and phenolic acids contents in alfalfa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:44819-44832. [PMID: 36697987 DOI: 10.1007/s11356-023-25506-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/18/2023] [Indexed: 01/27/2023]
Abstract
Global warming and heavy metal-contaminated soils co-occur in natural ecosystems. Flavonoids and phenolic acids in plants have significant antioxidant activity and free radical scavenging ability, which can quickly increase under adverse environments. Arbuscular mycorrhizal fungi (AMF) colonization can affect the synthesis of flavonoids and phenolic acids in host plants. This study focused on the main effect of Glomus mosseae, cadmium (Cd, 8 mg kg-1 dry soils), and elevated temperature (ET, + 3 °C) on main flavonoids and phenolic acids in 120-d Medicago sativa L. (alfalfa). Elevated temperature decreased G. mosseae colonization ratio by 49.5% under Cd exposure. Except for p-hydroxybenzoic acid, flavonoids and phenolic acids content in shoots increased (p < 0.05) under G. mosseae + Cd relative to Cd only. G. mosseae and Cd showed significant effects on rutin, quercetin, apigenin, liquiritigenin, gallic acid, p-hydroxybenzoic acid, p-coumaric acid, and ferulic acid, and G. mosseae colonization led to increases in these compounds by 41.7%, 35.4%, 32.2%, 267.8%, 84.7%, 33.5%, 102.8%, and 89.4%, respectively, under ET + Cd. Carbon, N, and Cd in alfalfa and G. mosseae colonization rate were significant factors on flavonoids and phenolic acids accumulation. Additionally, P content in shoots significantly influenced flavonoids content. G. mosseae inoculation significantly stimulated the synthesis of main flavonoids and phenolic acids in alfalfa shoots under ET + Cd, which was helpful to understand the regulation of AMF on non-enzyme antioxidant system of plants grown in heavy metal-contaminated soils under global change scenarios.
Collapse
Affiliation(s)
- Xia Jia
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of Ministry of Education, Shaanxi Key Laboratory of Land Consolidation, School of Water and Environment, Chang'an University, No. 126, Yanta Road, Xi'an, 710054, People's Republic of China.
| | - Yunjie Wang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of Ministry of Education, Shaanxi Key Laboratory of Land Consolidation, School of Water and Environment, Chang'an University, No. 126, Yanta Road, Xi'an, 710054, People's Republic of China
| | - Jiamin Zhao
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of Ministry of Education, Shaanxi Key Laboratory of Land Consolidation, School of Water and Environment, Chang'an University, No. 126, Yanta Road, Xi'an, 710054, People's Republic of China
| | - Yunfeng Gao
- School of Land Engineering, Chang'an University, No. 126, Yanta Road, Xi'an, 710054, People's Republic of China
| | - Chunyan Zhang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of Ministry of Education, Shaanxi Key Laboratory of Land Consolidation, School of Water and Environment, Chang'an University, No. 126, Yanta Road, Xi'an, 710054, People's Republic of China
| | - Xiaojuan Feng
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of Ministry of Education, Shaanxi Key Laboratory of Land Consolidation, School of Water and Environment, Chang'an University, No. 126, Yanta Road, Xi'an, 710054, People's Republic of China
| | - Xiaoyi Ding
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of Ministry of Education, Shaanxi Key Laboratory of Land Consolidation, School of Water and Environment, Chang'an University, No. 126, Yanta Road, Xi'an, 710054, People's Republic of China
| |
Collapse
|
35
|
The review of nanoplastics in plants: Detection, analysis, uptake, migration and risk. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2022.116889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
36
|
Gao Y, Jia X, Zhao Y, Zhao J, Ding X, Zhang C, Feng X. Effect of arbuscular mycorrhizal fungi (Glomus mosseae) and elevated air temperature on Cd migration in the rhizosphere soil of alfalfa. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114342. [PMID: 36442403 DOI: 10.1016/j.ecoenv.2022.114342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/15/2022] [Accepted: 11/23/2022] [Indexed: 06/16/2023]
Abstract
Cadmium (Cd) migration in the rhizosphere soil is easily affected by plants and microorganisms. Global warming significantly affects plant growth, and arbuscular mycorrhizal fungi (AMF) can chelate heavy metals by mycelium, cell wall components, and mycelial secretion. Here, we investigated the regulation of Glomus mosseae on Cd migration in the rhizosphere soil of alfalfa under elevated temperature (ET, + 3 °C). Elevated temperature significantly decreased G. mosseae colonization rate in the roots by 49.5% under Cd exposure. Under ET + G. mosseae + Cd relative to ET + Cd, the contents of free amino acids, total and easily extractable glomalin-related soil protein (GRSP), and root Cd increased significantly; however, the changes in DTPA-Cd in the rhizosphere soil and Cd in the shoots were insignificant. In addition, G. mosseae colonization enhanced the bioconcentration factor of Cd in the roots and the total removal rate of Cd in the rhizosphere soil by 63.4% and 16.3%, respectively, under ET + Cd. However, the changes in the expression of iron-regulated transport 1 (IRT1) and natural resistance-associated macrophage protein 1 genes were insignificant under ET + G. mosseae + Cd relative to ET + Cd. In summary, temperature and G. mosseae significantly affected Cd fate in the rhizosphere soil, and IRT1 gene and rhizosphere soil pH, N, and C/N ratio were significant factors influencing Cd migration. Additionally, G. mosseae improved the remediation efficiency of Cd-contaminated soils by alfalfa under ET. The results will help us understand the regulation of AMF on the phytoremediation of heavy metal-contaminated soils under global warming scenarios.
Collapse
Affiliation(s)
- Yunfeng Gao
- Shaanxi Key Laboratory of Land Consolidation, School of Land Engineering, Chang'an University, Xi'an 710054, PR China
| | - Xia Jia
- Key laboratory of Degraded and Unused Land Consolidation Engineering, the Ministry of Land and Resources, Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of Ministry of Education, Shaanxi Key Laboratory of Land Consolidation, School of Water and Environment, Chang'an University, Xi'an 710054, PR China.
| | - Yonghua Zhao
- Shaanxi Key Laboratory of Land Consolidation, School of Land Engineering, Chang'an University, Xi'an 710054, PR China
| | - Jiamin Zhao
- Key laboratory of Degraded and Unused Land Consolidation Engineering, the Ministry of Land and Resources, Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of Ministry of Education, Shaanxi Key Laboratory of Land Consolidation, School of Water and Environment, Chang'an University, Xi'an 710054, PR China
| | - Xiaoyi Ding
- Key laboratory of Degraded and Unused Land Consolidation Engineering, the Ministry of Land and Resources, Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of Ministry of Education, Shaanxi Key Laboratory of Land Consolidation, School of Water and Environment, Chang'an University, Xi'an 710054, PR China
| | - Chunyan Zhang
- Key laboratory of Degraded and Unused Land Consolidation Engineering, the Ministry of Land and Resources, Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of Ministry of Education, Shaanxi Key Laboratory of Land Consolidation, School of Water and Environment, Chang'an University, Xi'an 710054, PR China
| | - Xiaojuan Feng
- Key laboratory of Degraded and Unused Land Consolidation Engineering, the Ministry of Land and Resources, Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of Ministry of Education, Shaanxi Key Laboratory of Land Consolidation, School of Water and Environment, Chang'an University, Xi'an 710054, PR China
| |
Collapse
|
37
|
Zhao R, Ren W, Wang H, Li Z, Teng Y, Luo Y. Nontargeted metabolomic analysis to unravel alleviation mechanisms of carbon nanotubes on inhibition of alfalfa growth under pyrene stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158405. [PMID: 36058326 DOI: 10.1016/j.scitotenv.2022.158405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Carbon nanotubes have displayed great potential in enhancing phytoremediation of PAHs polluted soils. However, the response of plants to the coexistence of carbon nanotubes and PAHs and the associated influencing mechanisms remain largely unknown. Here, the effect of carbon nanotubes on alfalfa growth and pyrene uptake under exposure to pyrene was evaluated through sand culture experiment and gas chromatography time-of-flight mass spectrometer (GC-TOF-MS) based metabolomics. Results showed that pyrene at 10 mg kg-1 obviously reduced the shoot fresh weight of alfalfa by 18.3 %. Multiwall carbon nanotubes (MWCNTs) at 25 and 50 mg kg-1 significantly enhanced the shoot fresh weight in a dose-dependent manner, nearly by 80 % at 50 mg kg-1. Pyrene was mainly accumulated in alfalfa roots, in which the concentration was 35 times as much as that in shoots. MWCNTs greatly enhanced the accumulation of pyrene in alfalfa roots, almost by two times at 50 mg kg-1, while decreased pyrene concentration in shoots, from 0.11 mg kg-1 to 0.044 mg kg-1 at MWCNTs concentration of 50 mg kg-1. Metabolomics data revealed that pyrene at 10 mg kg-1 trigged significant metabolic changes in alfalfa root exudates, downregulating 27 metabolites. MWCNTs generated an increase in the contents of some downregulated metabolites caused by pyrene stress, which were restored to the original level or even higher, mainly including organic acids and amino acids. MWNCTs significantly enriched some metabolic pathways positively correlated with shoot growth and pyrene accumulation in shoots under exposure to pyrene, including TCA cycle, glyoxylate and dicarboxylate metabolism, cysteine and methione metabolism as well as alanine, aspartate and glutamate metabolism. This work highlights the regulation effect of MWCNTs on the metabolism of root exudates, which are helpful for alfalfa to alleviate the stress from pyrene contamination.
Collapse
Affiliation(s)
- Rui Zhao
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Nanjing University of Information Science & Technology, Nanjing 210044, China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Wenjie Ren
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Huimin Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhenxuan Li
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Ying Teng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongming Luo
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
38
|
Jiang L, Zhu X, Luo C, Song D, Song M. The synergistic toxicity effect of di(2-ethylhexyl)phthalate and plant growth disturbs the structure and function of soil microbes in the rhizosphere. ENVIRONMENT INTERNATIONAL 2022; 170:107629. [PMID: 36395556 DOI: 10.1016/j.envint.2022.107629] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is a dominant phthalic acid ester in the environment and commonly occurs at high concentration in agricultural soils. Its influence on the soil microbial community has been widely reported, while research related to its effects on microbial structure, function, and interactions in the rhizosphere, a microbial hotspot region in the terrestrial ecosystem, is still limited. This study investigated the response of microbes in the rhizosphere to DEHP contamination. DEHP reduced microbial quantity, shifted the microbial community structure, and enriched the soil bacteria with potential DEHP degraders. Although the rhizosphere can alleviate DEHP toxicity, DEHP still played an important role in microbial community construction in the rhizosphere. Interestingly, some microbes were influenced by the synergistic toxicity effect of DEHP addition and plant growth, and there were significant differences in their relative abundance and alpha diversity in soil treated with both DEHP and planting compared to soils with just DEHP spiking or planting. The genes related to cell motility, metabolism of terpenoids and polyketides, protein families, genetic information processing, and replication and repair pathways changed only in soil treated with both DEHP and planting further proved the existence of synergistic toxicity. Anyway, the impact of DEHP on microbial function in the rhizosphere was important with 52.42‰ of the genes being changed. The change in cell motility, biofilm formation, and genes related to the quorum sensing pathway might affect the relationship between microbes, which play a crucial role in ecosystem function. This was further proven by changes in the microbial co-occurrence pattern. Our results can benefit risk evaluation of DEHP to microbial community in the rhizosphere, which is important for the effective function of terrestrial ecosystems and soil health.
Collapse
Affiliation(s)
- Longfei Jiang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| | - Xiaoping Zhu
- The Pearl River Hydraulic Research Institute, Guangzhou 510000, China
| | - Chunling Luo
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China; Joint Institute of Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China.
| | - Dandan Song
- Joint Institute of Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China
| | - Mengke Song
- Joint Institute of Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, China.
| |
Collapse
|
39
|
Dubrovskaya E, Golubev S, Muratova A, Pozdnyakova N, Bondarenkova A, Sungurtseva I, Panchenko L, Turkovskaya O. Effect of remediation techniques on petroleum removal from and on biological activity of a drought-stressed Kastanozem soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:84702-84713. [PMID: 35788480 DOI: 10.1007/s11356-022-21742-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Many petroleum extraction and refinement plants are located in arid climates. Therefore, the remediation of petroleum-polluted soils is complicated by the low moisture conditions. We ran a 70-day experiment to test the efficacy of various combining of remediation treatments with sorghum, yellow medick, and biochar to remove petroleum from and change the biological activity of Kastanozem, a soil typical of the dry steppes and semideserts of the temperate zone. At normal moisture, the maximum petroleum-degradation rate (40%) was obtained with sorghum-biochar. At low moisture, the petroleum-degradation rate was 22 and 30% with yellow medick alone and with yellow medick - sorghum, respectively. Biochar and the biochar-plant interaction had little effect on soil remediation. Both plants promoted the numbers of soil microbes in their rhizosphere: yellow medick promoted mostly hydrocarbon-oxidizing microorganisms, whereas sorghum promoted both hydrocarbon-oxidizing and total heterotrophic microorganisms. Low moisture did not limit microbial development. In the rhizosphere of sorghum, dehydrogenase and urease activities were maximal at normal moisture, whereas in the rhizosphere of yellow medick, they were maximal at low moisture. Peroxidase activity was promoted by the plants in unpolluted soil and was close to the control values in polluted soil. Biochar and the biochar-plant interaction did not noticeably affect the biological activity of the soil.
Collapse
Affiliation(s)
- Ekaterina Dubrovskaya
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, pr. Entuziastov 13, Saratov, 410049, Russia.
| | - Sergey Golubev
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, pr. Entuziastov 13, Saratov, 410049, Russia
| | - Anna Muratova
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, pr. Entuziastov 13, Saratov, 410049, Russia
| | - Natalia Pozdnyakova
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, pr. Entuziastov 13, Saratov, 410049, Russia
| | - Anastasia Bondarenkova
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, pr. Entuziastov 13, Saratov, 410049, Russia
| | - Irina Sungurtseva
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, pr. Entuziastov 13, Saratov, 410049, Russia
| | - Leonid Panchenko
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, pr. Entuziastov 13, Saratov, 410049, Russia
| | - Olga Turkovskaya
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, pr. Entuziastov 13, Saratov, 410049, Russia
| |
Collapse
|
40
|
Qian F, Huang X, Su X, Bao Y. Responses of microbial communities and metabolic profiles to the rhizosphere of Tamarix ramosissima in soils contaminated by multiple heavy metals. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129469. [PMID: 35820335 DOI: 10.1016/j.jhazmat.2022.129469] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Heavy metals (HMs) contamination around smelters poses serious stress to soil microbiome. However, the co-effect of multiple HMs and native vegetation rhizosphere on the soil ecosystem remains unclear. Herein, effects of high HMs level and the rhizosphere (Tamarix ramosissima) on soil bacterial community structure and metabolic profiles in sierozem were analyzed by coupling high-throughput sequencing and soil metabolomics. Plant roots alleviated the threat of HMs by absorbing and stabilizing them in soil. High HMs level decreased the richness and diversity of soil bacterial community and increased numbers of special bacteria. Plant roots changed the contribution of HMs species shaping the bacterial community. Cd and Zn were the main contributors to bacterial distribution in non-rhizosphere soil, however, Pb and Cu became the most important HMs in rhizosphere soil. HMs induced more dominant metal-tolerant bacteria in non-rhizosphere than rhizosphere soil. Meanwhile, critical metabolites varied by rhizosphere in co-occurrence networks. Moreover, the same HMs-tolerant bacteria were regulated by different metabolites, e.g. unclassified family AKYG1722 was promoted by Dodecanoic acid in non-rhizosphere soil, while promoted by Octadecane, 2-methyl- in rhizosphere soil. The study illustrated that high HMs level and rhizosphere affected soil properties and metabolites, by which soil microbial community structure was reshaped.
Collapse
Affiliation(s)
- Fanghan Qian
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xinjian Huang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiangmiao Su
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yanyu Bao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
41
|
Jin J, Song Z, Zhao B, Zhang Y, Wang R. Physiological and metabolomics responses of Hydrangea macrophylla (Thunb.) Ser. and Hydrangea strigosa Rehd. to lead exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 243:113960. [PMID: 35985200 DOI: 10.1016/j.ecoenv.2022.113960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/21/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Hydrangea is a potential remediation plant for lead (Pb) pollution. Plant roots communicate with soil through the release of root exudates. It is crucial to study rhizoremediation mechanisms to understand the response of root exudates to contamination stress. Here, we investigated the physiological responses and metabolomic profiling of two Hydrangea species, a horticultural cultivar (Hydrangea macrophylla (Thunb.) Ser.) and a wild type (Hydrangea strigosa Rehd.), under Pb-free and Pb-stressed conditions for 50 days. The results showed that Pb treatment adversely affected the biomass and root growth of the two species. H. strigosa was a Pb-tolerant species with higher superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) activities and more ascorbic acid (AsA) content in roots. Metabolomic profiling showed that 181 and 169 compounds were identified in H. macrophylla and H. strigosa root exudates, respectively, among which 18 showed significant differences between H. macrophylla and H. strigosa under Pb exposure. H. strigosa showed significantly (P < 0.05) higher secretion of sucrose, glycolic acid, and nonanoic acid than H. macrophylla after Pb treatment. Pb stress promoted fatty acid metabolism in H. strigosa, suppressed amino acid metabolism in H. macrophylla, and promoted a higher carbohydrate metabolism in H. strigosa compared with H. macrophylla. This study provides a possible mechanism for the high Pb absorption potential of Hydrangea.
Collapse
Affiliation(s)
- Jing Jin
- The College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China
| | - Ziyi Song
- The College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China
| | - Bing Zhao
- The College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China.
| | - Yuyu Zhang
- The College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China
| | - Ruirui Wang
- The College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
42
|
Antifungal Peptide P852 Controls Fusarium Wilt in Faba Bean (Viciafaba L.) by Promoting Antioxidant Defense and Isoquinoline Alkaloid, Betaine, and Arginine Biosyntheses. Antioxidants (Basel) 2022; 11:antiox11091767. [PMID: 36139841 PMCID: PMC9495604 DOI: 10.3390/antiox11091767] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
Green pesticides are highly desirable, as they are environmentally friendly and efficient. In this study, the antifungal peptide P852 was employed to suppress Fusarium wilt in the Faba bean. The disease index and a range of physiological and metabolomic analyses were performed to explore the interactions between P852 and the fungal disease. The incidence and disease index of Fusarium wilt were substantially decreased in diseased Faba beans that were treated with two different concentrations of P852 in both the climate chamber and field trial. For the first time, P852 exhibited potent antifungal effects on Fusarium in an open field condition. To explore the mechanisms that underlie P852′s antifungal effects, P852 treatment was found to significantly enhance antioxidant enzyme capacities including guaiacol peroxidase (POD), superoxide dismutase (SOD), catalase (CAT), and the activities of antifungal enzymes including chitinase and β-1,3-glucanase, as well as plant dry and fresh weights, and chlorophyll content compared to the control group (p ≤ 0.05). Metabolomics analysis of the diseased Faba bean treated with P852 showed changes in the TCA cycle, biological pathways, and many primary and secondary metabolites. The Faba bean treated with a low concentration of P852 (1 μg/mL, IC50) led to upregulated arginine and isoquinoline alkaloid biosynthesis, whereas those treated with a high concentration of P852 (10 μg/mL, MFC) exhibited enhanced betaine and arginine accumulation. Taken together, these findings suggest that P852 induces plant tolerance under Fusarium attack by enhancing the activities of antioxidant and antifungal enzymes, and restoring plant growth and development.
Collapse
|
43
|
Guo J, Wu Y, Jiang M, Wu C, Wang G. An LC–MS-based metabolomic approach provides insights into the metabolite profiles of Ginkgo biloba L. at different developmental stages and in various organs. Food Res Int 2022; 159:111644. [DOI: 10.1016/j.foodres.2022.111644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 11/04/2022]
|
44
|
Geng H, Wang F, Yan C, Ma S, Zhang Y, Qin Q, Tian Z, Liu R, Chen H, Zhou B, Yuan R. Rhizosphere microbial community composition and survival strategies in oligotrophic and metal(loid) contaminated iron tailings areas. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129045. [PMID: 35525218 DOI: 10.1016/j.jhazmat.2022.129045] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 06/14/2023]
Abstract
In this study, the metal(loid) fractions in two alkaline iron tailings areas with similar physico-chemical properties and the enrichment ability of dominant plants in these areas were investigated. Additionally, high-throughput sequencing and metagenome analysis were used to examine the rhizosphere microbial community structures and their strategies and potential for carbon fixation, nitrogen metabolism, and metal(loid) resistance in mining areas. Results showed that Salsola collina, Setaria viridis, and Xanthium sibiricum have strong enrichment capacity for As, and the maximum transport factor for Mn can reach 4.01. The richness and diversity of bacteria were the highest in rhizosphere tailings, and the dominant phyla were Proteobacteria, Actinobacteria, Ascomycota, and Thaumarchaeota. The key taxa present in rhizosphere tailings were generally metal(loid) resistant, especially Sphingomonas, Pseudomonas, Nocardioides, and Microbacterium. The reductive citrate cycle was the main carbon fixation pathway of microorganisms in tailings. Rhizosphere microorganisms have evolved a series of survival strategies and can adapt to oligotrophic and metal(loid) polluted mining environments. The results of this study provide a basis for the potential application of plant-microbial in situ remediation of alkaline tailings.
Collapse
Affiliation(s)
- Huanhuan Geng
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China; School of Environment, Beijing Normal University, No. 19, Xinjiekouwai St, Haidian District, Beijing 100875, China
| | - Fei Wang
- School of Environment, Beijing Normal University, No. 19, Xinjiekouwai St, Haidian District, Beijing 100875, China.
| | - Changchun Yan
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Shuai Ma
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Yiyue Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Qizheng Qin
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), D11 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Zhijun Tian
- Beijing Geo-engineering Design and Research Institute, 6 East Yuanlin Road, Miyun District, Beijing 101500, China
| | - Ruiping Liu
- Chinese Academy of Environmental Planning, Ministry of Ecology and Environment, 15 Shixing St, Shijingshan District, Beijing 100043, China
| | - Huilun Chen
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Beihai Zhou
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Rongfang Yuan
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| |
Collapse
|
45
|
Lin Y, Zhang P, Wu Q, Zhang Y, Wei Q, Sun Y, Wu Y, Sun S, Cui G. Leymus chinensis Adapts to Degraded Soil Environments by Changing Metabolic Pathways and Root Exudate Components. FRONTIERS IN PLANT SCIENCE 2022; 13:894346. [PMID: 35693172 PMCID: PMC9178329 DOI: 10.3389/fpls.2022.894346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/01/2022] [Indexed: 06/15/2023]
Abstract
Phytoremediation is a promising remediation strategy for degraded soil restoration. Root exudates are the main carrier substances for information communication and energy transfer between plant roots and soil, which play non-negligible roles in the restoration process. This work investigated the adaptation of Leymus chinensis root exudates to different degraded levels of soil and the mechanism of rhizosphere restoration in a 3-year degraded soil field study. We found that the soil quality at each degradation level significantly increased, with the soil organic matter (SOM) content slightly increasing by 1.82%, moderately increasing by 3.27%, and severely increasing by 3.59%, and there were significant increases in the contents of available nutrients such as available phosphorus (AP), ammonia nitrogen (AN), and nitrate nitrogen (NN). The physiological activities indicated that root tissue cells also mobilize oxidative stress to respond to the soil environment pressure. A total of 473 main components were obtained from root exudates by gas chromatography-time-of-flight mass spectrometry (GC-TOFMS), including acids, alcohols, carbohydrates, and other major primary metabolites. OPLS-DA revealed that soil degradation exerted an important influence on the metabolic characteristics of root exudates, and the numbers of both up- and downregulated metabolic characteristic peaks increased with the increase in the degree of degradation. Forty-three metabolites underwent clear changes, including some defense-related metabolites and osmotic adjustment substances that were significantly changed. These changes mainly mobilized a series of lipid metabolism pathways to maintain the fluidity of membrane function and help plants adapt to unfavorable soil environmental conditions. The PPP energy metabolism pathway was mobilized in response to slight degradation, and TCA energy pathways responded to the environmental pressure of severe soil degradation.
Collapse
Affiliation(s)
- Yulong Lin
- School of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Pan Zhang
- School of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Qingying Wu
- School of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, China
| | - Qianhao Wei
- School of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yihang Sun
- School of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yuchen Wu
- School of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Shixuan Sun
- School of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Guowen Cui
- School of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| |
Collapse
|
46
|
Wang R, Liu J, Jiang W, Ji P, Li Y. Metabolomics and Microbiomics Reveal Impacts of Rhizosphere Metabolites on Alfalfa Continuous Cropping. Front Microbiol 2022; 13:833968. [PMID: 35531271 PMCID: PMC9069006 DOI: 10.3389/fmicb.2022.833968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Alfalfa long-term continuous cropping (CC) can pose a serious threat to alfalfa production. However, the mechanism of alfalfa CC obstacle is unclear as of today. Our preliminary study showed that the main factors of CC obstacle were not the lack of nutrients or water in alfalfa rhizosphere soils. Further, we evaluated physic-chemical property, microbial population structure, and metabolite differences of alfalfa rhizosphere soils with CC for 1, 7, and 14 years based on analysis of metabolomics and microbiomics. Four phenolic acid metabolites, including p-coumaric acid, ferulic acid, vanillic acid, and p-hydroxybenzoic acid, were found to have significant differences among different CC years, which may be the key factors of CC obstacle. Among them, p-coumaric acid and ferulic acid could significantly decrease the germination rate of alfalfa seeds by 21.11 and 16.67% at the concentration of 100 μg/mL and the height (root length) of alfalfa seedlings by 21% (32.9%) and 13.72% (16.45%). Moreover, these metabolites could effectively promote the growth of some pathogenic fungi, causing alfalfa root rot. Among them, p-coumaric acid obviously and significantly aggravated the occurrence of alfalfa root rot. With the increase of CC years, soil microbial community changed from fungi to bacteria; fungi decreased by 10.83%, fungi increased by 8.08%, and beneficial microorganisms decreased with the increase of CC years. Field analysis and experimental verification showed that the above results were consistent with that of CC obstacle in the field. Among the key metabolites, the autotoxicity of p-coumaric acid was the strongest. This study fully proved that the continuous accumulation of autotoxic substances in alfalfa rhizosphere was the key factor causing alfalfa CC obstacles.
Collapse
Affiliation(s)
- Ruiting Wang
- Agricultural College, Northeast Agricultural University, Harbin, China
| | - Jinxin Liu
- Agricultural College, Northeast Agricultural University, Harbin, China
| | - Wanyi Jiang
- Agricultural College, Northeast Agricultural University, Harbin, China
| | - Pingsheng Ji
- Department of Plant Pathology, University of Georgia, Tifton, GA, United States
| | - Yonggang Li
- Agricultural College, Northeast Agricultural University, Harbin, China
| |
Collapse
|
47
|
Effects of Imazethapyr on Soybean Root Growth and Soil Microbial Communities in Sloped Fields. SUSTAINABILITY 2022. [DOI: 10.3390/su14063518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
The herbicide imazethapyr was previously recommended for controlling weeds in soybean fields. However, the effects of imazethapyr on soil microbial communities and their relationship with crop root growth in sloped soils remain unclear. In this study, a field experiment was conducted on a sloped field to explore the effects of imazethapyr on crop root growth, microbial communities, microbial co-occurrence networks, and the interactions between microbes and crop root growth. The field experiment included two factors: slope and imazethapyr. The slope factor included three different slope gradients: 5° (S1), 10° (S2), and 15° (S3). The imazethapyr factor included two treatments: with (I1) and without (I0) imazethapyr. Thus, six total combinations of slope and imazethapyr treatments were tested in this study: S1I1, S2I1, S3I1, S1I0, S2I0, and S3I0. The results show that, compared to the I0 treatments, the I1 treatments significantly increased the soybean root length, surface area, and volume by 11.7~26.5 m, 171.7~324.2 cm2, and 1.8~3.1 cm3, respectively, across all the slopes. The Proteobacteria, Actinobacteriota, and Bacteroidota bacterial phyla and Ascomycota and Basidiomycota fungal phyla were found to be the top phyla represented bacterial and fungal communities. These five phyla were scattered in co-occurrence networks of bacterial and fungal communities, suggesting these phyla play critical roles in enhancing the stability of co-occurrence networks. Compared to the I0 treatments, the I1 treatments increased nodes from Proteobacteria, Actinobacteriota, and Bacteroidota phyla by 6.4%, 9.1%, and 11.2%, respectively, in the bacterial co-occurrence network. Similarly, in the fungal co-occurrence network, the I1 treatments improved nodes from Ascomycota and Basidiomycota phyla by 1.8% and 5.8%, respectively. Compared to the I0 treatments, the I1 treatments increased positive relations by 8.3% and 3.2%, respectively, in the bacterial and fungal co-occurrence networks. Moreover, the I1 treatments increased the relative abundance of root-promoting biomarkers and suppressed root-limiting biomarkers. However, the application of imazethapyr reduced the diversity and richness of bacterial and fungal communities in general. Furthermore, the nodes and links of bacterial co-occurrence networks in the I0 treatments were 9.2% and 78.8% higher than these in the I1 treatments. Similarly, the I1 treatments also decreased 17.9% of fungal community links compared to the I0 treatments. Our data also show that compared to the I0 treatments, the I1 treatments decreased almost all gene families encoding nitrogen and carbon cycling pathways. In conclusion, the application of imazethapyr increased soybean root growth by increasing root-promoting biomarkers and improved the stability and cooperation of co-occurrence networks of bacterial and fungal communities. However, the application of imazethapyr had some negative impacts on microbial communities, such as reducing the diversity of bacterial and fungal communities and nitrogen and carbon cycling pathways.
Collapse
|
48
|
Wu C, Ma Y, Wang D, Shan Y, Song X, Hu H, Ren X, Ma X, Luo J, Cui J, Ma Y. Microbiology combined with metabonomics revealing the response of soil microorganisms and their metabolic functions exposed to phthalic acid esters. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 233:113338. [PMID: 35228031 DOI: 10.1016/j.ecoenv.2022.113338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/02/2022] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
As microplastics became the focus of global attention, the hazards of plastic plasticizers (PAEs) have gradually attracted people's attention. Agricultural soil is one of its hardest hit areas. However, current research of its impact on soil ecology only stops at the microorganism itself, and there is still lack of conclusion on the impact of soil metabolism. To this end, three most common PAEs (Dimethyl phthalate: DMP, Dibutyl phthalate: DBP and Bis (2-ethylhexyl) phthalate: DEHP) were selected and based on high-throughput sequencing and metabolomics platforms, the influence of PAEs residues on soil metabolic functions were revealed for the first time. PAEs did not significantly changed the alpha diversity of soil bacteria in the short term, but changed their community structure and interfered with the complexity of community symbiosis network. Metabolomics indicated that exposure to DBP can significantly change the soil metabolite profile. A total of 172 differential metabolites were found, of which 100 were up-regulated and 72 were down-regulated. DBP treatment interfered with 43 metabolic pathways including basic metabolic processes. In particular, it interfered with the metabolism of residual steroids and promoted the metabolism of various plasticizers. In addition, through differential labeling and collinear analysis, some bacteria with the degradation potential of PAEs, such as Gordonia, were excavated.
Collapse
Affiliation(s)
- Changcai Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, 450001 Zhengzhou, China
| | - Yajie Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Dan Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Yongpan Shan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Xianpeng Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Hongyan Hu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Xiangliang Ren
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Xiaoyan Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Junyu Luo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China.
| | - Jinjie Cui
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, 450001 Zhengzhou, China.
| | - Yan Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China.
| |
Collapse
|
49
|
Wu C, Ma Y, Wang D, Shan Y, Song X, Hu H, Ren X, Ma X, Cui J, Ma Y. Integrated microbiology and metabolomics analysis reveal plastic mulch film residue affects soil microorganisms and their metabolic functions. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127258. [PMID: 34844367 DOI: 10.1016/j.jhazmat.2021.127258] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Research on microplastic pollution of terrestrial soils is catching up with the aquatic environment, especially agricultural soil systems. Plastic residues have caused various environmental problems in mulch film extensively used agricultural areas. However, studies focusing specifically on the potential influence of mulch film residues on the metabolic cycle of soil systems have yet to be conducted. Here, high-throughput sequencing combined with metabolomics were first used to study the effects of residual mulch on soil microbial communities and related metabolic functions. Plastic film treatment did not significantly affect soil physicochemical properties including pH, organic matter and nitrogen, etc in short term. However, it did significantly changed overall community structure of soil bacteria, and interfered with complexity of soil bacterial symbiosis networks; exposure time and concentration of residues were particularly important factors affecting community structure. Furthermore, metabolomics analysis showed that film residue significantly changed soil metabolite spectrum, and interfered with basic carbon and lipid metabolism, and also affected basic cellular processes such as membrane transport and, in particular, interfered with the biosynthesis of secondary metabolites, as well as, biodegradation and metabolism of xenobiotics. Additionally, through linear discriminant and collinear analysis, some new potential microplastic degrading bacteria including Nitrospira, Nocardioidaceae and Pseudonocardiaceae have been excavated.
Collapse
Affiliation(s)
- Changcai Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, 450001 Zhengzhou, China
| | - Yajie Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Dan Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Yongpan Shan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Xianpeng Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Hongyan Hu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Xiangliang Ren
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Xiaoyan Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Jinjie Cui
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, 450001 Zhengzhou, China.
| | - Yan Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China.
| |
Collapse
|
50
|
Lv Y, Tang C, Liu X, Zhang M, Chen B, Hu X, Chen S, Zhu X. Optimization of Environmental Conditions for Microbial Stabilization of Uranium Tailings, and the Microbial Community Response. Front Microbiol 2021; 12:770206. [PMID: 34966366 PMCID: PMC8710664 DOI: 10.3389/fmicb.2021.770206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/19/2021] [Indexed: 11/21/2022] Open
Abstract
Uranium pollution in tailings and its decay products is a global environmental problem. It is of great significance to use economical and efficient technologies to remediate uranium-contaminated soil. In this study, the effects of pH, temperature, and inoculation volume on stabilization efficiency and microbial community response of uranium tailings were investigated by a single-factor batch experiment in the remediation process by mixed sulfate-reducing bacteria (SRB) and phosphate-solubilizing bacteria (PSB, Pantoea sp. grinm-12). The results showed that the optimal parameters of microbial stabilization by mixed SRB-PSB were pH of 5.0, temperature of 25°C, and inoculation volume of 10%. Under the optimal conditions, the uranium in uranium tailings presented a tendency to transform from the acid-soluble state to residual state. In addition, the introduction of exogenous SRB-PSB can significantly increase the richness and diversity of endogenous microorganisms, effectively maintain the reductive environment for the microbial stabilization system, and promote the growth of functional microorganisms, such as sulfate-reducing bacteria (Desulfosporosinus and Desulfovibrio) and iron-reducing bacteria (Geobacter and Sedimentibacter). Finally, PCoA and CCA analyses showed that temperature and inoculation volume had significant effects on microbial community structure, and the influence order of the three environmental factors is as follows: inoculation volume > temperature > pH. The outcomes of this study provide theoretical support for the control of uranium in uranium-contaminated sites.
Collapse
Affiliation(s)
- Ying Lv
- National Engineering Research Center for Environment-Friendly Metallurgy in Producing Premium Non-ferrous Metals, GRINM Group Co., Ltd., Beijing, China
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, China
- GRINM Resources and Environment Technology Co., Ltd., Beijing, China
- General Research Institute for Non-ferrous Metals, Beijing, China
| | - Chuiyun Tang
- National Engineering Research Center for Environment-Friendly Metallurgy in Producing Premium Non-ferrous Metals, GRINM Group Co., Ltd., Beijing, China
- GRINM Resources and Environment Technology Co., Ltd., Beijing, China
- General Research Institute for Non-ferrous Metals, Beijing, China
| | - Xingyu Liu
- National Engineering Research Center for Environment-Friendly Metallurgy in Producing Premium Non-ferrous Metals, GRINM Group Co., Ltd., Beijing, China
- GRINM Resources and Environment Technology Co., Ltd., Beijing, China
- GRIMAT Engineering Institute Co., Ltd., Beijing, China
| | - Mingjiang Zhang
- National Engineering Research Center for Environment-Friendly Metallurgy in Producing Premium Non-ferrous Metals, GRINM Group Co., Ltd., Beijing, China
- GRINM Resources and Environment Technology Co., Ltd., Beijing, China
- GRIMAT Engineering Institute Co., Ltd., Beijing, China
| | - Bowei Chen
- National Engineering Research Center for Environment-Friendly Metallurgy in Producing Premium Non-ferrous Metals, GRINM Group Co., Ltd., Beijing, China
- GRINM Resources and Environment Technology Co., Ltd., Beijing, China
- GRIMAT Engineering Institute Co., Ltd., Beijing, China
| | - Xuewu Hu
- National Engineering Research Center for Environment-Friendly Metallurgy in Producing Premium Non-ferrous Metals, GRINM Group Co., Ltd., Beijing, China
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, China
- GRINM Resources and Environment Technology Co., Ltd., Beijing, China
- General Research Institute for Non-ferrous Metals, Beijing, China
| | - Susu Chen
- National Engineering Research Center for Environment-Friendly Metallurgy in Producing Premium Non-ferrous Metals, GRINM Group Co., Ltd., Beijing, China
- GRINM Resources and Environment Technology Co., Ltd., Beijing, China
- General Research Institute for Non-ferrous Metals, Beijing, China
| | - Xuezhe Zhu
- National Engineering Research Center for Environment-Friendly Metallurgy in Producing Premium Non-ferrous Metals, GRINM Group Co., Ltd., Beijing, China
- GRINM Resources and Environment Technology Co., Ltd., Beijing, China
- General Research Institute for Non-ferrous Metals, Beijing, China
| |
Collapse
|