1
|
Wisuthiphaet N, Zhang H, Liu X, Nitin N. Detection of Escherichia coli Using Bacteriophage T7 and Analysis of Excitation‑Emission Matrix Fluorescence Spectroscopy. J Food Prot 2024; 87:100396. [PMID: 39521134 DOI: 10.1016/j.jfp.2024.100396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/11/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Conventional detection methods require the isolation and enrichment of bacteria, followed by molecular, biochemical, or culture-based analysis. To address some of the limitations of conventional methods, this study develops a machine learning (ML) approach to analyze the excitation-emission matrix (EEM) fluorescence data generated based on bacteriophage T7 and Escherichia coli interactions for in-situ detection of live bacteria in the presence of fresh produce homogenate. We trained classification models using various ML algorithms based on the 3-D EEM data generated with bacteria and their interactions with a T7 phage. These ML algorithms, including linear Support Vector Classifier (SVC) and Random Forest (RF), demonstrate high accuracy (>0.85) for detecting E. coli at 102 CFU/ml concentration within 6 h. Additionally, these ML models can differentiate among different E. coli concentration levels. For example, the Gaussian Process model achieved an accuracy of 92% in detecting different concentration levels of live E. coli. Application of these ML methods to detect E. coli in spinach homogenate yielded an accuracy of 89% using the linear-SVC model. Furthermore, feature selection techniques were employed to reduce the dimensionality of the data, revealing that only six features were necessary for achieving classification accuracy (>0.85) of spinach homogenate samples containing 102 CFU/ml of E. coli. These findings highlight the potential of this novel bacterial detection methodology, offering rapid, specific, and efficient solutions for applications in food safety and environmental monitoring.
Collapse
Affiliation(s)
- Nicharee Wisuthiphaet
- Department of Biotechnology, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok, Thailand
| | - Huanle Zhang
- School of Computer Science and Technology, Shandong University, Shandong, China
| | - Xin Liu
- Department of Computer Science, University of California, Davis, Davis, California, United States
| | - Nitin Nitin
- Department of Food Science & Technology, University of California, Davis, Davis, California, United States; Department of Biological & Agricultural Engineering, University of California, Davis, Davis, California, United States.
| |
Collapse
|
2
|
Kye H, Nam SH, Kim E, Koo J, Shin Y, Lee J, Hwang TM. Application of tryptophan-like fluorescence index to quantify the trace organic compounds removal in wastewater ozonation. CHEMOSPHERE 2024; 363:142862. [PMID: 39029713 DOI: 10.1016/j.chemosphere.2024.142862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/29/2024] [Accepted: 07/14/2024] [Indexed: 07/21/2024]
Abstract
The effectiveness of ozonation, one of the techniques known for destroying organic contaminants from wastewater, depends on the composition of the wastewater matrix. The required ozone (O3) dose is determined based on the target compounds during ozonation. Hydroxyl radicals are quantified using a probe compound. The para-chlorobenzoic acid (pCBA) is typically used as a probe compound to measure hydroxyl radicals. However, real-time measurement is impossible, as the analysis process consumes time and resources. This study aimed to evaluate the spectroscopic characteristics of various organic substances in wastewater ozonation through fluorescence excitation-emission matrix and parallel factor analysis. The study also demonstrated that real-time analyzable tryptophan-like fluorescence (TLF) can be used as a hydroxyl radical index. Importantly, the correlation between para-chlorobenzoic acid and TLF was derived, and the results showed a high correlation (R2 = 0.91), confirming the reliability of our findings. Seven trace organic compounds, classified based on their reactivity with O3 and hydroxyl radicals, were selected as target compounds and treated with O3. The TLF index was used as a model factor for the removal rate of the target compounds. The experimental and model values matched when the O3 dose was below 1.0 g O3/g DOC (RMSE: 0.0445-0.0895).
Collapse
Affiliation(s)
- Homin Kye
- Korea Institute of Civil Engineering and Building Technology, 283 Goyangdae-Ro, Ilsanseo-gu, Goyang-Si, Gyeonggi-Do, 10223, Republic of Korea
| | - Sook-Hyun Nam
- Korea Institute of Civil Engineering and Building Technology, 283 Goyangdae-Ro, Ilsanseo-gu, Goyang-Si, Gyeonggi-Do, 10223, Republic of Korea
| | - Eunju Kim
- Korea Institute of Civil Engineering and Building Technology, 283 Goyangdae-Ro, Ilsanseo-gu, Goyang-Si, Gyeonggi-Do, 10223, Republic of Korea
| | - Jaewuk Koo
- Korea Institute of Civil Engineering and Building Technology, 283 Goyangdae-Ro, Ilsanseo-gu, Goyang-Si, Gyeonggi-Do, 10223, Republic of Korea
| | - Yonghyun Shin
- Korea Institute of Civil Engineering and Building Technology, 283 Goyangdae-Ro, Ilsanseo-gu, Goyang-Si, Gyeonggi-Do, 10223, Republic of Korea
| | - Juwon Lee
- Korea Institute of Civil Engineering and Building Technology, 283 Goyangdae-Ro, Ilsanseo-gu, Goyang-Si, Gyeonggi-Do, 10223, Republic of Korea; Department of Chemical and Biochemical Engineering, Western University London, Ontario, Canada
| | - Tae-Mun Hwang
- Korea Institute of Civil Engineering and Building Technology, 283 Goyangdae-Ro, Ilsanseo-gu, Goyang-Si, Gyeonggi-Do, 10223, Republic of Korea.
| |
Collapse
|
3
|
Cid-Escobar D, Folch A, Ferrer N, Katuva J, Sanchez-Vila X. An assessment tool to improve rural groundwater access: Integrating hydrogeological modelling with socio-technical factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168864. [PMID: 38040365 DOI: 10.1016/j.scitotenv.2023.168864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
Sustainable exploitation of groundwater resources for drinking water provision in rural communities in sub-Sahara Africa remains elusive due to the limited knowledge of these hydrogeological systems. This is exacerbated by poor maintenance of existing infrastructure, limited technical capacity, the socio-economic characteristics of the area and poor governance. Assessing the likelihood of a given individual user experiencing water shortage calls for an interdisciplinary approach. After a preliminary multifactorial analysis incorporating a range of variables from technical to societal, it was found that most of the overall risk of water shortage for an individual household could be attributed to three factors; (1) Proximity, specified as the distance to the closest supply well (determined by geographical parameters), (2) Availability of good quality water in the wells (determined by hydrogeological understanding and modelling), and (3) Sustainability (determined by socio-technical and socio-economic parameters). In the latter case, a distinction was made between hardware functionality- the water point's performance considering a sufficient yield and reliability through time- and software functionality, based on a combination of socioeconomic data from surveys and analysed using Multiple Factor Analysis (MFA). All three factors are eventually mapped onto indicators in the range of [0-1] and then represented in a Geographical Information System based on the partition of the entire spatial domain (e.g., counties, villages, and neighbourhoods). The three indicators are then combined in a final index based on the product of the three factors, thus mapping time-dependent overall risk and allowing the assessment of temporal risk-evolution scenarios. The methodology is applied to Kwale County, Kenya, where community handpumps and groundwater points comprise the main water supply system. Apart from mapping the present situation, the methodology is finally used to assess the impact of future climate scenarios.
Collapse
Affiliation(s)
- Daniela Cid-Escobar
- Department of Civil and Environmental Engineering (DECA), Universitat Politècnica de Catalunya (UPC), Jordi Girona 1-3, 08034 Barcelona, Spain; Associated Unit: Hydrogeology Group (UPC-CSIC), Spain.
| | - Albert Folch
- Department of Civil and Environmental Engineering (DECA), Universitat Politècnica de Catalunya (UPC), Jordi Girona 1-3, 08034 Barcelona, Spain; Associated Unit: Hydrogeology Group (UPC-CSIC), Spain
| | - Nuria Ferrer
- Department of Civil and Environmental Engineering (DECA), Universitat Politècnica de Catalunya (UPC), Jordi Girona 1-3, 08034 Barcelona, Spain; Associated Unit: Hydrogeology Group (UPC-CSIC), Spain
| | - Jacob Katuva
- School of Geography and the Environment, Oxford University, Oxford OX1 2JD, UK; Fundifix Water Services Trust, Kwa Mbithi Kimotho Building, Ngaie-Tseikuru Road Junction, Kyuso Centre, Kitui, Kenya
| | - Xavier Sanchez-Vila
- Department of Civil and Environmental Engineering (DECA), Universitat Politècnica de Catalunya (UPC), Jordi Girona 1-3, 08034 Barcelona, Spain; Associated Unit: Hydrogeology Group (UPC-CSIC), Spain
| |
Collapse
|
4
|
Lenaker PL, Corsi SR, De Cicco LA, Olds HT, Dila DK, Danz ME, McLellan SL, Rutter TD. Modeled predictions of human-associated and fecal-indicator bacteria concentrations and loadings in the Menomonee River, Wisconsin using in-situ optical sensors. PLoS One 2023; 18:e0286851. [PMID: 37289789 PMCID: PMC10249839 DOI: 10.1371/journal.pone.0286851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 05/24/2023] [Indexed: 06/10/2023] Open
Abstract
Human sewage contamination of waterways is a major issue in the United States and throughout the world. Models were developed for estimation of two human-associated fecal-indicator and three general fecal-indicator bacteria (HIB and FIB) using in situ optical field-sensor data for estimating concentrations and loads of HIB and FIB and the extent of sewage contamination in the Menomonee River in Milwaukee, Wisconsin. Three commercially available optical sensor platforms were installed into an unfiltered custom-designed flow-through system along with a refrigerated automatic sampler at the Menomonee River sampling location. Ten-minute optical sensor measurements were made from November 2017 to December 2018 along with the collection of 153 flow-weighted discrete water samples (samples) for HIB, FIB, dissolved organic carbon (DOC), and optical properties of water. Of those 153 samples, 119 samples were from event-runoff periods, and 34 were collected during low-flow periods. Of the 119 event-runoff samples, 43 samples were from event-runoff combined sewer overflow (CSO) influenced periods (event-CSO periods). Models included optical sensor measurements as explanatory variables with a seasonal variable as an interaction term. In some cases, separate models for event-CSO periods and non CSO-periods generally improved model performance, as compared to using all the data combined for estimates of FIB and HIB. Therefore, the CSO and non-CSO models were used in final estimations for CSO and non-CSO time periods, respectively. Estimated continuous concentrations for all bacteria markers varied over six orders of magnitude during the study period. The greatest concentrations, loads, and proportion of sewage contamination occurred during event-runoff and event-CSO periods. Comparison to water quality standards and microbial risk assessment benchmarks indicated that estimated bacteria levels exceeded recreational water quality criteria between 34 and 96% of the entire monitoring period, highlighting the benefits of high-frequency monitoring compared to traditional grab sample collection. The application of optical sensors for estimation of HIB and FIB markers provided a thorough assessment of bacterial presence and human health risk in the Menomonee River.
Collapse
Affiliation(s)
- Peter L. Lenaker
- U.S. Geological Survey, Upper Midwest Water Science Center, Madison, Wisconsin, United States of America
| | - Steven R. Corsi
- U.S. Geological Survey, Upper Midwest Water Science Center, Madison, Wisconsin, United States of America
| | - Laura A. De Cicco
- U.S. Geological Survey, Upper Midwest Water Science Center, Madison, Wisconsin, United States of America
| | - Hayley T. Olds
- U.S. Geological Survey, Upper Midwest Water Science Center, Madison, Wisconsin, United States of America
| | - Debra K. Dila
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Mari E. Danz
- U.S. Geological Survey, Upper Midwest Water Science Center, Madison, Wisconsin, United States of America
| | - Sandra L. McLellan
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Troy D. Rutter
- U.S. Geological Survey, Upper Midwest Water Science Center, Madison, Wisconsin, United States of America
| |
Collapse
|
5
|
Wang X, Wu R, He Y. Field evidences of fluorescent dissolved organic matter (FDOM) as potential fingerprints for agricultural and urban sources in river environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27352-z. [PMID: 37155107 DOI: 10.1007/s11356-023-27352-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/26/2023] [Indexed: 05/10/2023]
Abstract
Field evidences of the fluorescence differences between agricultural and urban river reaches are still lack. In this study, the middle reaches of Danhe River (DH) and Mihe River (MH) in Shouguang, China, were designed as agricultural and urban river reaches, respectively, to compare the the fluorescence differences in disparate river reaches using excitation-emission matrix coupled with parallel factor analysis (EEM-PARAFAC). Three fluorescence components were identified. C1 (Ex/Em=230,255,295 nm/420 nm) was categorized as humic-like fluorophores, C2 (Ex/Em=230,275 nm/330 nm) was recognized as tryptophan-like substances, and C3 (Ex/Em=215 nm/290 nm) was noted as tyrosine-like and phenylalanine-like compounds. The results showed that the FDOM posed significant differences between agricultural and urban river reaches (P < 0.001). The monitoring sites in DH were rich in C2 (1.90 ± 0.62 Raman Unit (RU), mean ± standard deviation), and the monitoring sites in MH were rich in C3 (1.32 ± 0.51 RU). Redundancy analysis revealed that C2 could be regarded as a fluorescence indicator of agricultural sewage in river environment, while C3 was recognized as a fluorescence indicator of domestic sewage in river environment. In conclusion, this study provided field evidences of FDOM as potential fingerprints for agricultural and urban sources in river environment.
Collapse
Affiliation(s)
- Xiangyu Wang
- College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Ruilin Wu
- College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
- Department of Ecology and Environment of Shanxi Province, Taiyuan, 030024, Shanxi, China
| | - Yong He
- College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
6
|
Abdelhafiz MA, Liu J, Jiang T, Pu Q, Aslam MW, Zhang K, Meng B, Feng X. DOM influences Hg methylation in paddy soils across a Hg contamination gradient. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121237. [PMID: 36758923 DOI: 10.1016/j.envpol.2023.121237] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Rice paddies provide optimum conditions for Hg methylation, and paddy soil is a hot spot for Hg methylation and the predominant source of methylmercury (MeHg) accumulated in rice grains. The role of dissolved organic matter (DOM) in controlling Hg bioavailability and methylation in rice paddy systems remains unclear. Paddy soils from eight various cultivation sites in China were chosen to investigate the variations in soil DOM and the influence of DOM concentration and optical characteristics on Hg methylation in rice paddy systems. In the present study, 151 rhizosphere soil samples were collected, and UV-Vis absorption and fluorescent spectroscopy were used to identify the optical properties of DOM. The relationship between MeHg and DOM's optical property indices revealed the production of MeHg consumes lower molecular weight DOM. Moreover, the correlation between DOM concentration and its optical characteristics highlighted the significant role of humic components on MeHg variability in paddy soil. Variation and correlation results demonstrated the allochthonous origin of DOM in the Hg-contaminated soil, with a higher molecular weight and humic character of DOM, as well as the dominant role of autochthonous DOM in promoting Hg methylation in uncontaminated soil. The current study indicated that soil organic matter and its dissolved fractions tend to limit Hg bioavailability and subsequently diminish MeHg production in contaminated paddy soils. Furthermore, the leading roles of allochthonous DOM in protecting MeHg from degradation and autochthonous DOM signatures in enhancing MeHg production in paddy soils. Overall, these findings provide insight into the correlative distributions of DOM and Hg along a Hg concentration gradient in paddy soil, thereby highlighting their potential role in controlling Hg bioavailability and regulating Hg methylation in the soil ecosystems.
Collapse
Affiliation(s)
- Mahmoud A Abdelhafiz
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Geology Department, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt
| | - Jiang Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Tao Jiang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Qiang Pu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Muhammad Wajahat Aslam
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Kun Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Bo Meng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| |
Collapse
|
7
|
Bieroza M, Acharya S, Benisch J, ter Borg RN, Hallberg L, Negri C, Pruitt A, Pucher M, Saavedra F, Staniszewska K, van’t Veen SGM, Vincent A, Winter C, Basu NB, Jarvie HP, Kirchner JW. Advances in Catchment Science, Hydrochemistry, and Aquatic Ecology Enabled by High-Frequency Water Quality Measurements. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4701-4719. [PMID: 36912874 PMCID: PMC10061935 DOI: 10.1021/acs.est.2c07798] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
High-frequency water quality measurements in streams and rivers have expanded in scope and sophistication during the last two decades. Existing technology allows in situ automated measurements of water quality constituents, including both solutes and particulates, at unprecedented frequencies from seconds to subdaily sampling intervals. This detailed chemical information can be combined with measurements of hydrological and biogeochemical processes, bringing new insights into the sources, transport pathways, and transformation processes of solutes and particulates in complex catchments and along the aquatic continuum. Here, we summarize established and emerging high-frequency water quality technologies, outline key high-frequency hydrochemical data sets, and review scientific advances in key focus areas enabled by the rapid development of high-frequency water quality measurements in streams and rivers. Finally, we discuss future directions and challenges for using high-frequency water quality measurements to bridge scientific and management gaps by promoting a holistic understanding of freshwater systems and catchment status, health, and function.
Collapse
Affiliation(s)
- Magdalena Bieroza
- Department
of Soil and Environment, SLU, Box 7014, Uppsala 750
07 Sweden
| | - Suman Acharya
- Department
of Environment and Genetics, School of Agriculture, Biomedicine and
Environment, La Trobe University, Albury/Wodonga Campus, Victoria 3690, Australia
| | - Jakob Benisch
- Institute
for Urban Water Management, TU Dresden, Bergstrasse 66, Dresden 01068, Germany
| | | | - Lukas Hallberg
- Department
of Soil and Environment, SLU, Box 7014, Uppsala 750
07 Sweden
| | - Camilla Negri
- Environment
Research Centre, Teagasc, Johnstown Castle, Wexford Y35 Y521, Ireland
- The
James
Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, United Kingdom
- School
of
Archaeology, Geography and Environmental Science, University of Reading, Whiteknights, Reading RG6 6AB, United Kingdom
| | - Abagael Pruitt
- Department
of Biological Sciences, University of Notre
Dame, Notre
Dame, Indiana 46556, United States
| | - Matthias Pucher
- Institute
of Hydrobiology and Aquatic Ecosystem Management, Vienna University of Natural Resources and Life Sciences, Gregor Mendel Straße 33, Vienna 1180, Austria
| | - Felipe Saavedra
- Department
for Catchment Hydrology, Helmholtz Centre
for Environmental Research - UFZ, Theodor-Lieser-Straße 4, Halle (Saale) 06120, Germany
| | - Kasia Staniszewska
- Department
of Earth and Atmospheric Sciences, University
of Alberta, Edmonton, Alberta T6G 2E3, Canada
| | - Sofie G. M. van’t Veen
- Department
of Ecoscience, Aarhus University, Aarhus 8000, Denmark
- Envidan
A/S, Silkeborg 8600, Denmark
| | - Anna Vincent
- Department
of Biological Sciences, University of Notre
Dame, Notre
Dame, Indiana 46556, United States
| | - Carolin Winter
- Environmental
Hydrological Systems, University of Freiburg, Friedrichstraße 39, Freiburg 79098, Germany
- Department
of Hydrogeology, Helmholtz Centre for Environmental
Research - UFZ, Permoserstr.
15, Leipzig 04318, Germany
| | - Nandita B. Basu
- Department
of Civil and Environmental Engineering and Department of Earth and
Environmental Sciences, and Water Institute, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Helen P. Jarvie
- Water Institute
and Department of Geography and Environmental Management, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - James W. Kirchner
- Department
of Environmental System Sciences, ETH Zurich, Zurich CH-8092, Switzerland
- Swiss
Federal Research Institute WSL, Birmensdorf CH-8903, Switzerland
| |
Collapse
|
8
|
Vucinic L, O'Connell D, Dubber D, Coxon C, Gill L. Multiple fluorescence approaches to identify rapid changes in microbial indicators at karst springs. JOURNAL OF CONTAMINANT HYDROLOGY 2023; 254:104129. [PMID: 36634484 DOI: 10.1016/j.jconhyd.2022.104129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Karst springs are globally important for drinking water supply but are often also exceptionally vulnerable to contamination. Such springs usually exhibit strong variation in microbial water quality in sharp response to rainfall events, thus, posing a health hazard to consumers of water supplied from these sources. The rapid detection of such changes is extremely important as well as being able to establish a link to the sources of such pollution, so that appropriate measures can be taken both in terms of immediate protection of human health and the management of karst aquifers. In this study, a fluorescence-based multi-parameter approach was trialed in order to evaluate which methods can be used to monitor rainfall-induced rapid changes in microbial water quality at karst springs, as well as determine whether such changes can be linked to sources of human effluent contamination. The results from three monitoring periods at two karst springs revealed marked responses to rainfall events for all of the microbial parameters measured. Total cell count (TCC) measurements using flow cytometry (FCM) showed very strong positive correlations with the more conventionally monitored faecal indicator bacteria (FIB) and total coliforms (TC), indicating that such a fluorescence-based and cultivation-independent technique can be very useful to indicate rapid changes in microbial water quality at karst springs. Furthermore, very strong positive correlations were also found between tryptophan-like fluorescence (TLF) measurements and concentrations of all monitored microbial parameters, again demonstrating that such a fluorescence-based approach can also be useful for detecting rapid changes in concentrations of traditional faecal indicators. Interestingly, it was found that fluorescent whitening compounds (FWCs) signals do not necessarily follow temporal variations of microbial indicators. However, the frequency of detection of positive FWCs signals may still reveal useful information about the overall magnitude of human wastewater effluent impacts on karst aquifer systems.
Collapse
Affiliation(s)
- Luka Vucinic
- Department of Civil, Structural and Environmental Engineering, University of Dublin, Trinity College, Dublin, Ireland.
| | - David O'Connell
- Department of Civil, Structural and Environmental Engineering, University of Dublin, Trinity College, Dublin, Ireland
| | - Donata Dubber
- Department of Civil, Structural and Environmental Engineering, University of Dublin, Trinity College, Dublin, Ireland
| | - Catherine Coxon
- Department of Geology, Trinity Centre for the Environment, University of Dublin, Trinity College, Dublin, Ireland
| | - Laurence Gill
- Department of Civil, Structural and Environmental Engineering, University of Dublin, Trinity College, Dublin, Ireland
| |
Collapse
|
9
|
Lee YK, Yoo HY, Ko KS, He W, Karanfil T, Hur J. Tracing microplastic (MP)-derived dissolved organic matter in the infiltration of MP-contaminated sand system and its disinfection byproducts formation. WATER RESEARCH 2022; 221:118806. [PMID: 35803044 DOI: 10.1016/j.watres.2022.118806] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Microplastic (MP) pollution in soil/subsurface environments has been increasingly researched, given the uncertainties associated with the heterogeneous matrix of these systems. In this study, we tracked the spectroscopic signatures of MP-derived dissolved organic matter (MP-DOM) in infiltrated water from MP contaminated sandy subsurface systems and examined their potential to form trihalomethanes (THMs) and haloacetic acids (HAAs) by chlorination. Sand-packed columns with commercial MPs (expanded polystyrene and polyvinylchloride) on the upper layer were used as the model systems. Regardless of the plastic type, the addition of MPs resulted in a higher amount of DOM during infiltration compared with the clean sand system. This enhancement was more pronounced when the added MPs were UV-irradiated for 14 days. The infiltration was further characterized using FT-IR and fluorescence spectroscopy, which identified two fluorescent components (humic-like C1 and protein/phenol-like C2). Compared with pure MP-DOM, C1 was more predominant in sand infiltration than C2. Further studies have established that C2 may be more labile in terms of biodegradation and mineral adsorption that may occur within the sand column. However, both these environmental interferences were inadequate for entirely expanding the spectroscopic signatures of MP-DOM in sand infiltration. The infiltration also exhibited a higher potential in generating carbonaceous disinfection byproducts than natural groundwater and riverside bank filtrates. A significant correlation between the generated THMs and decreased C1 suggests the possibility of using humic-like components as optical precursors of carbonaceous DBPs in MP-contaminated subsurface systems. This study highlighted an overlooked contribution of MPs in terms of the infiltration of DOM levels in sandy subsurface systems and the potential environmental risk when used as drinking water sources.
Collapse
Affiliation(s)
- Yun Kyung Lee
- Department of Environment and Energy, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, South Korea
| | - Ha-Young Yoo
- Department of Environment and Energy, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, South Korea; K-water Institute, 200 Sintanjin-Ro, Daedeok-Gu, Daejeon 34350, South Korea
| | - Kyung-Seok Ko
- Groundwater Environment Research Center, Korea Institute of Geoscience and Mineral Resources, 124 Gwahak-ro, Yuseong-gu, Daejeon 34132, South Korea
| | - Wei He
- Ministry of Education Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Tanju Karanfil
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anerson, SC 29635, United States
| | - Jin Hur
- Department of Environment and Energy, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, South Korea.
| |
Collapse
|
10
|
Bedell E, Harmon O, Fankhauser K, Shivers Z, Thomas E. A continuous, in-situ, near-time fluorescence sensor coupled with a machine learning model for detection of fecal contamination risk in drinking water: Design, characterization and field validation. WATER RESEARCH 2022; 220:118644. [PMID: 35667167 DOI: 10.1016/j.watres.2022.118644] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
We designed and validated a sensitive, continuous, in-situ, remotely reporting tryptophan-like fluorescence sensor and coupled it with a machine learning model to predict high-risk fecal contamination in water (>10 colony forming units (CFU)/100mL E. coli). We characterized the sensor's response to multiple fluorescence interferents with benchtop analysis. The sensor's minimum detection limit (MDL) of tryptophan dissolved in deionized water was 0.05 ppb (p <0.01) and its MDL of the correlation to E. coli present in wastewater effluent was 10 CFU/100 mL (p <0.01). Fluorescence response declined exponentially with increased water temperature and a correction factor was calculated. Inner filter effects, which cause signal attenuation at high concentrations, were shown to have negligible impact in an operational context. Biofouling was demonstrated to increase the fluorescence signal by approximately 82% in a certain context, while mineral scaling reduced the sensitivity of the sensor by approximately 5% after 24 hours with a scaling solution containing 8 times the mineral concentration of the Colorado River. A machine learning model was developed, with TLF measurements as the primary feature, to output fecal contamination risk levels established by the World Health Organization. A training and validation data set for the model was built by installing four sensors on Boulder Creek, Colorado for 88 days and enumerating 298 grab samples for E. coli with membrane filtration. The machine learning model incorporated a proxy feature for fouling (time since last cleaning) which improved model performance. A binary classification model was able to predict high risk fecal contamination with 83% accuracy (95% CI: 78% - 87%), sensitivity of 80%, and specificity of 86%. A model distinguishing between all World Health Organization established risk categories performed with an overall accuracy of 64%. Integrating TLF measurements into an ML model allows for anomaly detection and noise reduction, permitting contamination prediction despite biofilm or mineral scaling formation on the sensor's lenses. Real-time detection of high risk fecal contamination could contribute to a major step forward in terms of microbial water quality monitoring for human health.
Collapse
Affiliation(s)
- Emily Bedell
- Mortenson Center in Global Engineering, University of Colorado Boulder, 4001 Discovery Drive, Boulder, 80303, Colorado, United States of America; SweetSense Inc., Boulder, Colorado, USA
| | - Olivia Harmon
- Mortenson Center in Global Engineering, University of Colorado Boulder, 4001 Discovery Drive, Boulder, 80303, Colorado, United States of America
| | - Katie Fankhauser
- Mortenson Center in Global Engineering, University of Colorado Boulder, 4001 Discovery Drive, Boulder, 80303, Colorado, United States of America; SweetSense Inc., Boulder, Colorado, USA
| | | | - Evan Thomas
- Mortenson Center in Global Engineering, University of Colorado Boulder, 4001 Discovery Drive, Boulder, 80303, Colorado, United States of America; SweetSense Inc., Boulder, Colorado, USA.
| |
Collapse
|
11
|
Niloy NM, Haque MM, Tareq SM. Temporal changes in hydrochemistry and DOM characteristics of the Brahmaputra River: implication to the seasonality of water quality. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:35165-35178. [PMID: 35044604 DOI: 10.1007/s11356-022-18618-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Fluorescent dissolved organic matter (fDOM) in the Brahmaputra River water was characterized using excitation-emission matrix fluorescence spectroscopy (EEM) and parallel factor analysis (PARAFAC) model. EEM and PARAFAC model identified five fluorophores (Peak A, C, M, T, Tuv) and four fDOM components (two humic-, tryptophan-, and tyrosine-like) in the Brahmaputra River water. DOC varied between 0.8 and 3.9 mg/L and along with the intensities of the fDOM components showed higher concentration in the pre-monsoon and monsoon than post-monsoon. Higher biological oxygen demand (BOD) and chemical oxygen demand (COD) confirmed the presence of a high amount of organic pollutants in the Brahmaputra River of Bangladesh. Cations and anions concentrations were comparatively lower in the monsoon and pre-monsoon compared to post-monsoon. Mg2+, Na+, and HCO3- ions were predominant; catchments were carbonate mineral-dominated; and the abundance of Na+ and SO42- ions described the presence of uncommon dissolution in the Brahmaputra River. Optical indices described that fDOM components were less aromatic, had low molecular size and weight, terrestrial and biological derived, and were largely affected by microbial decomposition. The Brahmaputra River water was in the higher microbial risk at the pre-monsoon and monsoon than the post-monsoon of the year. Entropy and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) methods based water quality index (WQI) was developed using PARAFAC components matrix of DOM. Newly derived WQI showed high seasonal variability of water quality in the Brahmaputra River due to the changes in local hydro-climate.
Collapse
Affiliation(s)
- Nahin Mostofa Niloy
- Hydrobiogeochemistry and Pollution Control Laboratory, Department of Environmental Sciences, Jahangirnagar University, Dhaka, 1342, Bangladesh.
| | - Md Morshedul Haque
- Hydrobiogeochemistry and Pollution Control Laboratory, Department of Environmental Sciences, Jahangirnagar University, Dhaka, 1342, Bangladesh
- Department of Environmental Protection Technology, German University Bangladesh, Gazipur, 1702, Bangladesh
| | - Shafi M Tareq
- Hydrobiogeochemistry and Pollution Control Laboratory, Department of Environmental Sciences, Jahangirnagar University, Dhaka, 1342, Bangladesh.
| |
Collapse
|
12
|
Sorensen JPR, Nayebare J, Carr AF, Lyness R, Campos LC, Ciric L, Goodall T, Kulabako R, Curran CMR, MacDonald AM, Owor M, Read DS, Taylor RG. In-situ fluorescence spectroscopy is a more rapid and resilient indicator of faecal contamination risk in drinking water than faecal indicator organisms. WATER RESEARCH 2021; 206:117734. [PMID: 34655933 DOI: 10.1016/j.watres.2021.117734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/24/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Faecal indicator organisms (FIOs) are limited in their ability to protect public health from the microbial contamination of drinking water because of their transience and time required to deliver a result. We evaluated alternative rapid, and potentially more resilient, approaches against a benchmark FIO of thermotolerant coliforms (TTCs) to characterise faecal contamination over 14 months at 40 groundwater sources in a Ugandan town. Rapid approaches included: in-situ tryptophan-like fluorescence (TLF), humic-like fluorescence (HLF), turbidity; sanitary inspections; and total bacterial cells by flow cytometry. TTCs varied widely in six sampling visits: a third of sources tested both positive and negative, 50% of sources had a range of at least 720 cfu/100 mL, and a two-day heavy rainfall event increased median TTCs five-fold. Using source medians, TLF was the best predictor in logistic regression models of TTCs ≥10 cfu/100 mL (AUC 0.88) and best correlated to TTC enumeration (ρs 0.81), with HLF performing similarly. Relationships between TLF or HLF and TTCs were stronger in the wet season than the dry season, when TLF and HLF were instead more associated with total bacterial cells. Source rank-order between sampling rounds was considerably more consistent, according to cross-correlations, using TLF or HLF (min ρs 0.81) than TTCs (min ρs 0.34). Furthermore, dry season TLF and HLF cross-correlated more strongly (ρs 0.68) than dry season TTCs (ρs 0.50) with wet season TTCs, when TTCs were elevated. In-situ TLF or HLF are more rapid and resilient indicators of faecal contamination risk than TTCs.
Collapse
Affiliation(s)
- James P R Sorensen
- British Geological Survey, Maclean Building, Wallingford, OX10 8BB, United Kingdom of Great Britain and Northern Ireland UK; Department of Geography, University College London, London WC1E 6BT, United Kingdom of Great Britain and Northern Ireland UK.
| | - Jacintha Nayebare
- Department of Geology and Petroleum Studies, Makerere University, Uganda
| | - Andrew F Carr
- Department of Geography, University College London, London WC1E 6BT, United Kingdom of Great Britain and Northern Ireland UK
| | - Robert Lyness
- Department of Civil, Environmental & Geomatic Engineering, University College London, London WC1E 6BT, United Kingdom of Great Britain and Northern Ireland UK
| | - Luiza C Campos
- Department of Civil, Environmental & Geomatic Engineering, University College London, London WC1E 6BT, United Kingdom of Great Britain and Northern Ireland UK
| | - Lena Ciric
- Department of Civil, Environmental & Geomatic Engineering, University College London, London WC1E 6BT, United Kingdom of Great Britain and Northern Ireland UK
| | - Timothy Goodall
- UK Centre for Ecology & Hydrology (UKCEH), Maclean Building, Wallingford, OX10 8BB, United Kingdom of Great Britain and Northern Ireland UK
| | - Robinah Kulabako
- Department of Civil and Environmental Engineering, Makerere University, Uganda
| | - Catherine M Rushworth Curran
- Catherine M Rushworth Curran Ltd., 27 Silverhall Street, Isleworth, TW7 6RF, United Kingdom of Great Britain and Northern Ireland UK
| | - Alan M MacDonald
- British Geological Survey, Lyell Centre, Research Avenue South, Edinburgh EH14 4AP, United Kingdom of Great Britain and Northern Ireland UK
| | - Michael Owor
- Department of Geology and Petroleum Studies, Makerere University, Uganda
| | - Daniel S Read
- UK Centre for Ecology & Hydrology (UKCEH), Maclean Building, Wallingford, OX10 8BB, United Kingdom of Great Britain and Northern Ireland UK
| | - Richard G Taylor
- Department of Geography, University College London, London WC1E 6BT, United Kingdom of Great Britain and Northern Ireland UK
| |
Collapse
|
13
|
Corsi SR, De Cicco LA, Hansen AM, Lenaker PL, Bergamaschi BA, Pellerin BA, Dila DK, Bootsma MJ, Spencer SK, Borchardt MA, McLellan SL. Optical Properties of Water for Prediction of Wastewater Contamination, Human-Associated Bacteria, and Fecal Indicator Bacteria in Surface Water at Three Watershed Scales. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:13770-13782. [PMID: 34591452 DOI: 10.1021/acs.est.1c02644] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Relations between spectral absorbance and fluorescence properties of water and human-associated and fecal indicator bacteria were developed for facilitating field sensor applications to estimate wastewater contamination in waterways. Leaking wastewater conveyance infrastructure commonly contaminates receiving waters. Methods to quantify such contamination can be time consuming, expensive, and often nonspecific. Human-associated bacteria are wastewater specific but require discrete sampling and laboratory analyses, introducing latency. Human sewage has fluorescence and absorbance properties different than those of natural waters. To assist real-time field sensor development, this study investigated optical properties for use as surrogates for human-associated bacteria to estimate wastewater prevalence in environmental waters. Three spatial scales were studied: Eight watershed-scale sites, five subwatershed-scale sites, and 213 storm sewers and open channels within three small watersheds (small-scale sites) were sampled (996 total samples) for optical properties, human-associated bacteria, fecal indicator bacteria, and, for selected samples, human viruses. Regression analysis indicated that bacteria concentrations could be estimated by optical properties used in existing field sensors for watershed and subwatershed scales. Human virus occurrence increased with modeled human-associated bacteria concentration, providing confidence in these regressions as surrogates for wastewater contamination. Adequate regressions were not found for small-scale sites to reliably estimate bacteria concentrations likely due to inconsistent local sanitary sewer inputs.
Collapse
Affiliation(s)
- Steven R Corsi
- U.S. Geological Survey, 8505 Research Way, Middleton, Wisconsin 53562, United States
| | - Laura A De Cicco
- U.S. Geological Survey, 8505 Research Way, Middleton, Wisconsin 53562, United States
| | - Angela M Hansen
- United States Geological Survey, 6000 J Street, Placer Hall, Sacramento, California 95819, United States
| | - Peter L Lenaker
- U.S. Geological Survey, 8505 Research Way, Middleton, Wisconsin 53562, United States
| | - Brian A Bergamaschi
- United States Geological Survey, 6000 J Street, Placer Hall, Sacramento, California 95819, United States
| | - Brian A Pellerin
- United States Geological Survey, 12201 Sunrise Valley Dr., Reston, Virginia 20192, United States
| | - Debra K Dila
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E Greenfield Avenue, Milwaukee, Wisconsin 53204, United States
| | - Melinda J Bootsma
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E Greenfield Avenue, Milwaukee, Wisconsin 53204, United States
| | - Susan K Spencer
- U.S. Department of Agriculture, Agricultural Research Service, 2615 Yellowstone Dr., Marshfield, Wisconsin 54449, United States
| | - Mark A Borchardt
- U.S. Department of Agriculture, Agricultural Research Service, 2615 Yellowstone Dr., Marshfield, Wisconsin 54449, United States
| | - Sandra L McLellan
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E Greenfield Avenue, Milwaukee, Wisconsin 53204, United States
| |
Collapse
|
14
|
Individual choices and universal rights for drinking water in rural Africa. Proc Natl Acad Sci U S A 2021; 118:2105953118. [PMID: 34580221 PMCID: PMC8501757 DOI: 10.1073/pnas.2105953118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2021] [Indexed: 11/18/2022] Open
Abstract
Globally, four out of five people without safe drinking water live in rural areas. The human right to water identifies inalienable attributes of drinking water services in terms of affordability, proximity, quality, and reliability. It is unknown how specific attributes correspond to people’s priorities to address the multibillion-dollar costs of maintaining services in rural Africa to 2030. Evidence from Kenya indicates that improving reliability by repairing waterpoint faults within 2 d is the dominant attribute in securing user payments. Attributes of water quality and proximity register less support and seem more suited to public funding. Charting common ground between universal rights and individual choices can inform public policy in the design of sustainable funding for rural water service delivery. More than 500 million rural Africans lack safe drinking water. The human right to water and United Nations Sustainable Development Goal SDG6.1 promote a policy shift from building water infrastructure to sustaining water services. However, the financial calculus is bleak with the costs of “safely managed”’ or “basic” water services in rural Africa beyond current government budgets and donor funds. The funding shortfall is compounded by the disappointing results of earlier policy initiatives in Africa. This is partly because of a failure to understand which attributes of water services rural people value. We model more than 11,000 choice observations in rural Kenya by attributes of drinking water quality, price, reliability, and proximity. Aggregate analysis disguises alternative user priorities in three choice classes. The two larger choice classes tolerate lower service levels with higher payments. A higher water service level reflects the smallest choice class favored by women and the lower wealth group. For the lower wealth group, slower repair times are accepted in preference to a lower payment. Some people discount potable water and proximity, and most people choose faster repair times and lower payments. We argue policy progress needs to chart common ground between individual choices and universal rights. Guaranteeing repair times may provide a policy lever to unlock individual payments to complement public investment in water quality and waterpoint proximity to support progressive realization of a universal right.
Collapse
|
15
|
Chaúque BJM, Rott MB. Solar disinfection (SODIS) technologies as alternative for large-scale public drinking water supply: Advances and challenges. CHEMOSPHERE 2021; 281:130754. [PMID: 34029967 DOI: 10.1016/j.chemosphere.2021.130754] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/25/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
Gastrointestinal waterborne diseases, continue to stand out among the most lethal diseases in developing countries, because of consuming contaminated water taken from unsafe sources. Advances made in recent decades in methods of solar water disinfection (SODIS) have shown that SODIS is an effective and inexpensive method of providing drinking water, capable of substantially reducing the prevalence and mortality of waterborne diseases. The increased impact of SODIS in communities lacking drinking water services depends on a successful upgrade from conventional SODIS (based on PET bottle reactors) in high flow continuous flow systems for solar water disinfection (CFSSWD). This review aimed to identify the main limitations of conventional SODIS that hinder its application as a large-scale drinking water supply strategy, and to propose ways to overcome these limitations (without making it economically inaccessible) based on the current frontier of advances technological. It was found that the successful development of the CFSSWD depends on overcoming the current limitations of conventional SODIS and the development of systems whose configurations allow combining the properties of solar pasteurization (SOPAS) and SODIS. Different improvements need to be made to the main components of the CFSSWD, such as increasing the performance of solar radiation collectors, photo and thermal reactors and heat exchangers. The integration of disinfection technologies based on photocatalytic and photothermal nanomaterials also needs to be achieved. The performance evaluation of the CFSSWD should be made considering resistant microorganisms, such as the environmental resistance structures of bacteria or protozoa (spores or (oo)cysts) as targets of disinfection approaches.
Collapse
Affiliation(s)
- Beni Jequicene Mussengue Chaúque
- Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Universidade Federal Do Rio Grande Do Sul, Brazil; Department of Science, Technology, Engineering and Mathematics, Universidade Rovuma, Niassa Branch, Mozambique.
| | - Marilise Brittes Rott
- Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Universidade Federal Do Rio Grande Do Sul, Brazil.
| |
Collapse
|
16
|
Simões J, Yang Z, Dong T. An ultrasensitive fluorimetric sensor for pre-screening of water microbial contamination risk. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 258:119805. [PMID: 33957453 DOI: 10.1016/j.saa.2021.119805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/21/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
In recent years, global efforts have been directed towards the development of water safety routines, consequently demanding cost-effective sensors capable of detecting outbreaks at early stages. This work reports the development and study of an original in-field tryptophan fluorimetric sensor as a potential indicator of real-time microbial contamination in water. The sensor excitation and emission wavelengths were selected with respect to the coliform bacteria tryptophan peak; 280 nm for excitation and 330 nm for emission. The in-lab tests with standard samples show a detection limit of 4.89 nM (≈0.1 μg/l) for L-tryptophan. The sensor exhibited good linearity over three orders of magnitude and considerable detection reproducibility, which was confirmed during calibration tests. Small-scale in situ tests showed that the sensor was better correlated with coliform bacteria than other online sensors such as turbidity. This suggests that the fluorimetric tryptophan sensor can be integrated into early warning systems that quickly assess changes in water microbial quality.
Collapse
Affiliation(s)
- João Simões
- Department of Microsystems-IMS, Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway-USN, P.O. Box 235, Kongsberg 3603, Norway
| | - Zhaochu Yang
- Chongqing Key Laboratory of Micro-Nano Systems and Intelligent Transduction, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Municipal Key Laboratory of Institutions of Higher Education on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China
| | - Tao Dong
- Department of Microsystems-IMS, Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway-USN, P.O. Box 235, Kongsberg 3603, Norway.
| |
Collapse
|
17
|
Sundaresan R, Mariyappan V, Chen SM, Keerthi M, Ramachandran R. Electrochemical sensor for detection of tryptophan in the milk sample based on MnWO4 nanoplates encapsulated RGO nanocomposite. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126889] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Palacios YB, Durantini JE, Heredia DA, Martínez SR, González de la Torre L, Durantini AM. Tuning the Polarity of Fullerene C 60 Derivatives for Enhanced Photodynamic Inactivation †. Photochem Photobiol 2021; 97:1431-1444. [PMID: 34115882 DOI: 10.1111/php.13465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/08/2021] [Indexed: 12/21/2022]
Abstract
In this article, four novel fulleropyrrolidines derivatives were synthesized to study how the effect of polarity and positive charge distribution can influence the efficacy of photodynamic inactivation treatments to kill bacteria. The design of the photosensitizers was based on DFT calculations that allowed us to estimate the dipolar moment of the molecules. Neutral compounds bearing N-methyl bis-acetoxy-ethyl (1) and bis-hydroxyethyl (2) amine were the starting material to obtain the dicationic analogs N,N-dimethyl bis-methoxyethyl (3), and bis-acetoxy-ethyl) (4) methylammonio. As expected from fullerene C60 derivatives, compounds 1-4 absorb in the UV region, with a peak at 430 nm, a broader range of absorption up to 710 nm, and exhibit weak fluorescence emission in toluene and reverse micelles. In the biomimetic AOT micellar system, the highest singlet oxygen photosensitization was found for compounds 1, followed by 3, 2, and 4. Whereas 4 was the most effective reducing nitro blue tetrazolium in the presence of β-NADH. The influence of type I and type II mechanism on the photodynamic activity of compounds 3 and 4 was further examined in the presence of L-tryptophan and two reactive oxygen species scavengers. In vitro experiments indicated that the compounds with the highest dipolar moments, 3 (37.19 D) and 4 (38.46 D), inactivated methicillin-resistant Staphylococcus aureus and Escherichia coli bacteria using an energy dose <2.4 J cm-2 . No inactivation was observed for the neutral analogs with the lowest dipolar moments. These findings help to optimize sensitizer structures to improve photodynamic inactivation.
Collapse
Affiliation(s)
- Yohana B Palacios
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, Argentina
| | - Javier E Durantini
- IITEMA-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, Argentina
| | - Daniel A Heredia
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, Argentina
| | - Sol R Martínez
- IITEMA-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, Argentina
| | - Laura González de la Torre
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, Argentina
| | - Andrés M Durantini
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, Argentina
| |
Collapse
|
19
|
Huo C, Ahmed Dar A, Nawaz A, Hameed J, Albashar G, Pan B, Wang C. Groundwater contamination with the threat of COVID-19: Insights into CSR theory of Carroll's pyramid. JOURNAL OF KING SAUD UNIVERSITY. SCIENCE 2021; 33:101295. [PMID: 35996465 PMCID: PMC9387516 DOI: 10.1016/j.jksus.2020.101295] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 05/07/2023]
Abstract
In this study, we elucidated the effect of sewage drain on groundwater contamination as including different contaminants, microbes, and pathogens, which deteriorating the groundwater by poor infiltration and seepage. This is getting severer in developing countries like India, Bangladesh, and Pakistan, where unprocessed effluent is discharged into the water bodies. This study was planned to elucidate the effect of sewage drain (based on distance 0-5, 5-10, 15-20, 20-25 m) from two different sewage drains to explain the different physiochemical, and biological parameters including total soluble solids (TSS), chloride, total dissolved solids (TDS), calcium, total hardness, magnesium, nitrate, chemical oxygen demand (COD), dissolved oxygen (D.O.), and biological oxygen demand (BOD). Drainage channel number-1 results showed that E. coli (positive), coliform count (22.75-48.66 /100 mL), and BOD (8-25.75 mgL-1) remained above the permissible limit of the World Health Organization (WHO). Besides, drainage channel number 2 results exposed that E. coli (positive), coliform count (17.7-47 /100 mL), and BOD (6.25-21.5 mg/ L) was not within the permissible limit of WHO. The presence of COVID-19 in the stool has been significantly reported in the literature. The presence of stool in sewage drain leading to groundwater contamination can be an emerging threat to water pollution and could lead to the spread of COVID-19. This study helps to minimize this threat with the help of corporate social responsibility (CSR). Because organizational responsibility towards its society is one of the critical factors to contain numerous issues related to the society.
Collapse
Affiliation(s)
- Chunhui Huo
- Asia-Australia Business College, Liaoning University, Shenyang, China
| | - Afzal Ahmed Dar
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian, China
| | - Ahsan Nawaz
- Institute of Construction Project Management, Collage of Civil Engineering & Architecture, Zhejiang University, Hangzhou, China
| | - Javaria Hameed
- Asia-Australia Business College, Liaoning University, Shenyang, China
| | - Gadah Albashar
- Department of Zoology, College of Science, King Saud University, Riad, Saudi Arabia
| | - Bao Pan
- School of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xian, China
| | - Chuanyi Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian, China
| |
Collapse
|
20
|
Nowicki S, deLaurent ZR, de Villiers EP, Githinji G, Charles KJ. The utility of Escherichia coli as a contamination indicator for rural drinking water: Evidence from whole genome sequencing. PLoS One 2021; 16:e0245910. [PMID: 33481909 PMCID: PMC7822521 DOI: 10.1371/journal.pone.0245910] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/09/2021] [Indexed: 12/12/2022] Open
Abstract
Across the water sector, Escherichia coli is the preferred microbial water quality indicator and current guidance upholds that it indicates recent faecal contamination. This has been challenged, however, by research demonstrating growth of E. coli in the environment. In this study, we used whole genome sequencing to investigate the links between E. coli and recent faecal contamination in drinking water. We sequenced 103 E. coli isolates sampled from 9 water supplies in rural Kitui County, Kenya, including points of collection (n = 14) and use (n = 30). Biomarkers for definitive source tracking remain elusive, so we analysed the phylogenetic grouping, multi-locus sequence types (MLSTs), allelic diversity, and virulence and antimicrobial resistance (AMR) genes of the isolates for insight into their likely source. Phylogroup B1, which is generally better adapted to water environments, is dominant in our samples (n = 69) and allelic diversity differences (z = 2.12, p = 0.03) suggest that naturalised populations may be particularly relevant at collection points with lower E. coli concentrations (<50 / 100mL). The strains that are more likely to have originated from human and/or recent faecal contamination (n = 50), were found at poorly protected collection points (4 sites) or at points of use (12 sites). We discuss the difficulty of interpreting health risk from E. coli grab samples, especially at household level, and our findings support the use of E. coli risk categories and encourage monitoring that accounts for sanitary conditions and temporal variability.
Collapse
Affiliation(s)
- Saskia Nowicki
- School of Geography and the Environment, University of Oxford, Oxford, United Kingdom
| | - Zaydah R. deLaurent
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Etienne P. de Villiers
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- Department of Public Health, Pwani University, Kilifi, Kenya
| | - George Githinji
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Katrina J. Charles
- School of Geography and the Environment, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
21
|
Tareq SM, Haque MM, Niloy NM. Comment on "Spatiotemporal variations of DOM components in the Kushiro River impacted by a wetland" by Shafiquzzaman et al. 2020. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:4887-4888. [PMID: 33037544 DOI: 10.1007/s11356-020-11098-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Shafi M Tareq
- Hydrobiogeochemistry and Pollution Control Laboratory, Department of Environmental Sciences, Jahangirnagar University, Dhaka, 1342, Bangladesh.
| | - Md Morshedul Haque
- Hydrobiogeochemistry and Pollution Control Laboratory, Department of Environmental Sciences, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Nahin Mostofa Niloy
- Hydrobiogeochemistry and Pollution Control Laboratory, Department of Environmental Sciences, Jahangirnagar University, Dhaka, 1342, Bangladesh
| |
Collapse
|
22
|
Ward JST, Lapworth DJ, Read DS, Pedley S, Banda ST, Monjerezi M, Gwengweya G, MacDonald AM. Tryptophan-like fluorescence as a high-level screening tool for detecting microbial contamination in drinking water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 750:141284. [PMID: 33182170 DOI: 10.1016/j.scitotenv.2020.141284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/23/2020] [Accepted: 07/25/2020] [Indexed: 06/11/2023]
Abstract
Regular monitoring of drinking water quality is vital to identify contamination of potable water supplies. Testing for microbial contamination is important to prevent transmission of waterborne disease, but establishing and maintaining a water quality monitoring programme requires sustained labour, consumables and resources. In low resource settings such as developing countries, this can prove difficult, but measuring microbial contamination is listed as a requirement of reaching the UN's Sustainable Development Goal 6 for water and sanitation. A nine-month water quality monitoring programme was conducted in rural Malawi to assess the suitability of tryptophan-like fluorescence (TLF), an emerging method for rapidly detecting microbial contamination, as a drinking water quality monitoring tool. TLF data was compared with thermotolerant coliforms (TTCs, E. coli) and inorganic hydrochemical parameters. A large (n = 235) temporal dataset was collected from five groundwater drinking water sources, with samples collected once or twice weekly depending on the season. The results show that TLF can indicate a broader contamination risk but is not as sensitive to short term variability when compared to other faecal indicators. This is likely due to a broad association of TLF with elevated DOC concentrations from a range of different sources. Elevated TLF may indicate preferential conditions for the persistence of TTCs and/or E. coli, but not necessarily a public health risk from microbial contamination. TLF is therefore a more precautionary risk indicator than microbial culturing techniques and could prove useful as a high-level screening tool for initial risk assessment. For widespread use of TLF to be successful, standardisation of TLF values associated with different levels of risk is required, however, this study highlights the difficulties of equating TLF thresholds to TTCs or E. coli data because of the influence of DOC/HLF on the TLF signal.
Collapse
Affiliation(s)
- Jade S T Ward
- British Geological Survey, Keyworth, Nottinghamshire NG12 5GG, UK; UK Centre for Ecology & Hydrology, Wallingford OX10 8BB, UK; Department of Civil and Environmental Engineering, University of Surrey, Guildford GU2 7XH, UK.
| | | | - Daniel S Read
- UK Centre for Ecology & Hydrology, Wallingford OX10 8BB, UK
| | - Steve Pedley
- Department of Civil and Environmental Engineering, University of Surrey, Guildford GU2 7XH, UK
| | | | | | | | | |
Collapse
|
23
|
Ward JST, Lapworth DJ, Read DS, Pedley S, Banda ST, Monjerezi M, Gwengweya G, MacDonald AM. Large-scale survey of seasonal drinking water quality in Malawi using in situ tryptophan-like fluorescence and conventional water quality indicators. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 744:140674. [PMID: 32755770 DOI: 10.1016/j.scitotenv.2020.140674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Faecally-contaminated drinking water is a risk to human health, with the greatest risks to those living in developing countries. UN Sustainable Development Goal 6 aims to address this issue. Tryptophan-like fluorescence (TLF) shows potential as a rapid method for detecting microbial contamination in drinking water, which could reduce the spread of waterborne diseases. This study is the first to investigate the effectiveness of TLF for a large-scale survey using a randomised, spot-sampling approach. The large-scale survey took place in Malawi, sub-Saharan Africa, in the dry season (n = 183). A subset of sources were revisited at the end of the following wet season (n = 41). The effectiveness of TLF was assessed by comparing TLF results to thermotolerant coliforms (TTC), humic-like fluorescence (HLF), inorganic hydrochemical data and sanitary risk scores. The most prominent differences in microbial water quality were observed between source types, with little variation between districts and seasons. TLF, TTCs, turbidity and sanitary risk scores were all elevated at alternative sources (shallow wells and tap stands) compared to hand-pumped boreholes. In the dry season, 18% of hand-pumped boreholes showed TTC contamination, which increase to 21% in the wet season. Groundwater recharge processes are likely responsible for seasonal variability of inorganic hydrochemistry at hand-pumped boreholes. TLF was able to distinguish no and low WHO risk classes (TTC 0-9 cfu/100 mL) from medium, high and very high risk classes (TTC 10 - >1000 cfu/100 mL). TLF failed to distinguish between no and low risk classes, which limits the use of TLF for assessing water quality to drinking water standards. This dataset indicates that HLF may raise baseline TLF for samples with low TLF values, increasing false positives. Therefore, TLF is better suited as a rapid high-level water quality screening tool to assess moderate and high levels of faecal contamination.
Collapse
Affiliation(s)
- Jade S T Ward
- British Geological Survey, Keyworth, Nottinghamshire NG12 5GG, UK; UK Centre for Ecology & Hydrology, Wallingford OX10 8BB, UK; Department of Civil and Environmental Engineering, University of Surrey, Guildford, GU2 7XH, UK.
| | | | - Daniel S Read
- UK Centre for Ecology & Hydrology, Wallingford OX10 8BB, UK
| | - Steve Pedley
- Department of Civil and Environmental Engineering, University of Surrey, Guildford, GU2 7XH, UK
| | | | | | | | | |
Collapse
|
24
|
Sorensen JPR, Carr AF, Nayebare J, Diongue DML, Pouye A, Roffo R, Gwengweya G, Ward JST, Kanoti J, Okotto-Okotto J, van der Marel L, Ciric L, Faye SC, Gaye CB, Goodall T, Kulabako R, Lapworth DJ, MacDonald AM, Monjerezi M, Olago D, Owor M, Read DS, Taylor RG. Tryptophan-like and humic-like fluorophores are extracellular in groundwater: implications as real-time faecal indicators. Sci Rep 2020; 10:15379. [PMID: 32958794 PMCID: PMC7505957 DOI: 10.1038/s41598-020-72258-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 06/17/2020] [Indexed: 12/17/2022] Open
Abstract
Fluorescent natural organic matter at tryptophan-like (TLF) and humic-like fluorescence (HLF) peaks is associated with the presence and enumeration of faecal indicator bacteria in groundwater. We hypothesise, however, that it is predominantly extracellular material that fluoresces at these wavelengths, not bacterial cells. We quantified total (unfiltered) and extracellular (filtered at < 0.22 µm) TLF and HLF in 140 groundwater sources across a range of urban population densities in Kenya, Malawi, Senegal, and Uganda. Where changes in fluorescence occurred following filtration they were correlated with potential controlling variables. A significant reduction in TLF following filtration (ΔTLF) was observed across the entire dataset, although the majority of the signal remained and thus considered extracellular (median 96.9%). ΔTLF was only significant in more urbanised study areas where TLF was greatest. Beneath Dakar, Senegal, ΔTLF was significantly correlated to total bacterial cells (ρs 0.51). No significant change in HLF following filtration across all data indicates these fluorophores are extracellular. Our results suggest that TLF and HLF are more mobile than faecal indicator bacteria and larger pathogens in groundwater, as the predominantly extracellular fluorophores are less prone to straining. Consequently, TLF/HLF are more precautionary indicators of microbial risks than faecal indicator bacteria in groundwater-derived drinking water.
Collapse
Affiliation(s)
- James P R Sorensen
- British Geological Survey, Maclean Building, Wallingford, OX10 8BB, UK.
- Department of Geography, University College London, London, WC1E 6BT, UK.
| | - Andrew F Carr
- Department of Geography, University College London, London, WC1E 6BT, UK
| | - Jacintha Nayebare
- Department of Geology and Petroleum Studies, Makerere University, Kampala, Uganda
| | - Djim M L Diongue
- Department of Geology, Universite Cheikh Anta Diop, Dakar, Senegal
| | - Abdoulaye Pouye
- Department of Geology, Universite Cheikh Anta Diop, Dakar, Senegal
| | - Raphaëlle Roffo
- Department of Geography, University College London, London, WC1E 6BT, UK
| | - Gloria Gwengweya
- Chancellor College, University of Malawi, P.O. Box 280, Zomba, Malawi
| | - Jade S T Ward
- British Geological Survey, Keyworth, NG12 5GG, UK
- Department of Civil and Environmental Engineering, University of Surrey, Guildford, GU2 7XH, UK
| | - Japhet Kanoti
- Department of Geology, University of Nairobi, Nairobi, Kenya
| | - Joseph Okotto-Okotto
- Victoria Institute for Research on Environment and Development (VIRED) International, Rabuour Environment and Development Centre, Kisumu-Nairobi Road, P.O. Box, Kisumu, 6423-40103, Kenya
| | | | - Lena Ciric
- Department of Civil, Environmental and Geomatic Engineering, University College London, London, WC1E 6BT, UK
| | - Seynabou C Faye
- Department of Geology, Universite Cheikh Anta Diop, Dakar, Senegal
| | - Cheikh B Gaye
- Department of Geology, Universite Cheikh Anta Diop, Dakar, Senegal
| | - Timothy Goodall
- Centre for Ecology and Hydrology, Maclean Building, Wallingford, OX10 8BB, UK
| | - Robinah Kulabako
- Department of Civil and Environmental Engineering, Makerere University, Kampala, Uganda
| | - Daniel J Lapworth
- British Geological Survey, Maclean Building, Wallingford, OX10 8BB, UK
| | - Alan M MacDonald
- British Geological Survey, Lyell Centre, Research Avenue South, Edinburgh, EH14 4AP, UK
| | - Maurice Monjerezi
- Chancellor College, University of Malawi, P.O. Box 280, Zomba, Malawi
| | - Daniel Olago
- Department of Geology, University of Nairobi, Nairobi, Kenya
| | - Michael Owor
- Department of Geology and Petroleum Studies, Makerere University, Kampala, Uganda
| | - Daniel S Read
- Centre for Ecology and Hydrology, Maclean Building, Wallingford, OX10 8BB, UK
| | - Richard G Taylor
- Department of Geography, University College London, London, WC1E 6BT, UK
| |
Collapse
|
25
|
Chromophoric Dissolved Organic Matter as a Tracer of Fecal Contamination for Bathing Water Quality Monitoring in the Northern Tyrrhenian Sea (Latium, Italy). JOURNAL OF MARINE SCIENCE AND ENGINEERING 2020. [DOI: 10.3390/jmse8060430] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Dissolved organic matter present in natural aquatic environments is a heterogeneous mixture of allochthonous and autochthonous materials. In coastal areas vulnerable to sewage waste, its biologically active component, the chromophoric dissolved organic matter (CDOM), is expected to change its composition and distribution in relation to anthropogenic activities, suggesting the possible use of CDOM as a proxy of fecal contamination. This study aimed at testing such hypothesis by investigating and relating the optical properties of CDOM with Escherichia coli abundance, physiological state, and enzymatic activities in a bathing area of the Northern Tyrrhenian Sea (Latium, Italy) affected by urban wastewaters. The parallel factor analysis (PARAFAC) applied to the excitation–emission matrices (EEMs) of CDOM allowed us to distinguish three main components: C1 (λEx/λEm = 342 nm/435 nm), C2 (λEx/λEm = 281–373 nm/460 nm), and C3 (λEx/λEm = 286 nm/360 nm). C1 and C2 corresponded to humic acids of terrestrial origin, while C3 to tryptophan, whose fluorescence peak was detected close to sewage sites, strongly related to active E. coli cells. The comparison between spectral and microbiological methods is suggested as a suitable approach to monitor bathing water quality for the implementation of coastal observing system capability.
Collapse
|
26
|
Demonstration of Tryptophan-Like Fluorescence Sensor Concepts for Fecal Exposure Detection in Drinking Water in Remote and Resource Constrained Settings. SUSTAINABILITY 2020. [DOI: 10.3390/su12093768] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Low-cost, field-deployable, near-time methods for assessing water quality are not available when and where waterborne infection risks are greatest. We describe the development and testing of a novel device for the measurement of tryptophan-like fluorescence (TLF), making use of recent advances in deep-ultraviolet light emitting diodes (UV-LEDs) and sensitive semiconductor photodiodes and photomultipliers. TLF is an emerging indicator of water quality that is associated with members of the coliform group of bacteria and therefore potential fecal contamination. Following the demonstration of close correlation between TLF and E. coli in model waters and proof of principle with sensitivity of 4 CFU/mL for E. coli, we further developed a two-LED flow-through configuration capable of detecting TLF levels corresponding to “high risk” fecal contamination levels (>10 CFU/100 mL). Findings to date suggest that this device represents a scalable solution for remote monitoring of drinking water supplies to identify high-risk drinking water in near-time. Such information can be immediately actionable to reduce risks.
Collapse
|
27
|
Nakar A, Schmilovitch Z, Vaizel-Ohayon D, Kroupitski Y, Borisover M, Sela Saldinger S. Quantification of bacteria in water using PLS analysis of emission spectra of fluorescence and excitation-emission matrices. WATER RESEARCH 2020; 169:115197. [PMID: 31670087 DOI: 10.1016/j.watres.2019.115197] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/11/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
Bacterial contamination of drinking water is a considerable concern for public health. Tryptophan-like fluorescence (TLF) has been widely suggested to enable fast and inexpensive monitoring and quantification of bacterial contamination of water. Typically, TLF is determined at a certain excitation (ex)/emission (em) wavelengths pair. The aim of this study was to assess fluorescence spectroscopy supported with partial least squares (PLS) algorithms as a tool for a rapid evaluation of the microbial quality of water, by comparing the use of a single ex/em wavelengths pair, of the spectrum of emission obtained at a single excitation wavelength to that of whole excitation-emission matrices (EEMs). For that, laboratory-grown Escherichia coli, Bacillus subtilis and Pseudomonas aeruginosa were studied as the model systems, as well as 90 groundwater samples from 6 different wells in Israel. The groundwater samples were characterized for fluorescence emission, coliforms, fecal coliforms, fecal streptococci and heterotrophic plate counts. The PLS analysis of emission spectra and, especially, of EEMs was capable of meaningfully reducing the detection limit of microorganisms in model systems, as compared with the single ex/em wavelengths pair-based determination commonly used, reaching a detection threshold as low as 10 CFU/ml. Use of PLS-analyzed EEMs becomes beneficial also in terms of correlation and similarity between the actual and predicted bacterial concentrations. Similarly, improved detection of bacteria was also achieved in groundwater samples. Furthermore, at a level of >104 CFU/ml, use of EEMs coupled with PLS enabled discrimination between E. coli, B. subtilis and P. aeruginosa.
Collapse
Affiliation(s)
- Amir Nakar
- Institute of Biochemistry and Food Science, Hebrew University of Jerusalem, Rehovot, Israel; Institute of Agricultural Engineering, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel; Department of Food Science, Institute of Postharvest and Food Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Ze'ev Schmilovitch
- Institute of Agricultural Engineering, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | | | - Yulia Kroupitski
- Department of Food Science, Institute of Postharvest and Food Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Mikhail Borisover
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel.
| | - Shlomo Sela Saldinger
- Department of Food Science, Institute of Postharvest and Food Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel.
| |
Collapse
|
28
|
Carstea EM, Popa CL, Baker A, Bridgeman J. In situ fluorescence measurements of dissolved organic matter: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 699:134361. [PMID: 31683216 DOI: 10.1016/j.scitotenv.2019.134361] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/20/2019] [Accepted: 09/07/2019] [Indexed: 05/22/2023]
Abstract
There is a need for an inexpensive, reliable and fast monitoring tool to detect contaminants in a short time, for quick mitigation of pollution sources and site remediation, and for characterization of natural dissolved organic matter (DOM). Fluorescence spectroscopy has proven to be an excellent technique in quantifying aquatic DOM, from autochthonous, allochthonous or anthropogenic sources. This paper reviews the advances in in situ fluorescence measurements of DOM and pollutants in various water environments. Studies have demonstrated, using high temporal-frequency DOM fluorescence data, that marine autochthonous production of DOM is highly complex and that the allochthonous input of DOM from freshwater to marine water can be predicted. Furthermore, river measurement studies found a delayed fluorescence response of DOM following precipitation compared to turbidity and discharge, with various lags, depending on season, site and input of dissolved organic carbon (DOC) concentration. In addition, research has shown that blue light fluorescence (λemission = 430-500 nm) can be a good proxy for DOC, in environments with terrestrial inputs, and ultraviolet fluorescence (λemission = UVA-320-400 nm) for biochemical oxygen demand, and also E. coli in environments with sanitation issues. The correction of raw fluorescence data improves the relationship between fluorescence intensity and these parameters. This review also presents the specific steps and parameters that must be considered before and during in situ fluorescence measurement session for a harmonized qualitative and quantitative protocol. Finally, the strengths and weaknesses of the research on in situ fluorescence are identified.
Collapse
Affiliation(s)
- Elfrida M Carstea
- National Institute of R&D for Optoelectronics, Atomistilor 409, 077125 Magurele, Romania.
| | - Cristina L Popa
- National Institute of R&D for Optoelectronics, Atomistilor 409, 077125 Magurele, Romania.
| | - Andy Baker
- Connected Waters Initiative Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia.
| | - John Bridgeman
- Faculty of Engineering and Informatics, University of Bradford, Richmond Road, Bradford BD7 1DP, UK.
| |
Collapse
|
29
|
Ferrer N, Folch A, Masó G, Sanchez S, Sanchez-Vila X. What are the main factors influencing the presence of faecal bacteria pollution in groundwater systems in developing countries? JOURNAL OF CONTAMINANT HYDROLOGY 2020; 228:103556. [PMID: 31727265 DOI: 10.1016/j.jconhyd.2019.103556] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/06/2019] [Accepted: 09/29/2019] [Indexed: 05/12/2023]
Abstract
Groundwater is the major source of drinking water in most rural areas in developing countries. This resource is threatened by the potential presence of faecal bacteria coming from a variety of sources and pollution paths, the former including septic tanks, landfills, and crop irrigation with untreated, or insufficiently treated, sewage effluent. Accurately assessing the microbiological safety of water resources is essential to reduce diseases caused by waterborne faecal exposure. The objective of this study is to discern which are the most significant sanitary, hydrogeological, geochemical, and physical variables influencing the presence of faecal bacterial pollution in groundwater by means of statistical multivariate analyses. The concentration of Escherichia coli was measured in a number of waterpoints of different types in a rural area located in the coast of Kenya, assessing both a dry and a wet season. The results from the analyses reaffirm that the design of the well and their maintenance, the distance to latrines, and the geological structure of the waterpoints are the most significant variables affecting the presence of E. coli. Most notably, the presence of faecal bacteria in the study area correlates negatively with the concentration of ion Na+ (being an indirect indicator of fast recharge in the study site), and also negatively with the length of the water column inside the well.
Collapse
Affiliation(s)
- Núria Ferrer
- Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya, Jordi Girona 1-3, 08034 Barcelona, Spain; Associated Unit: Hydrogeology Group (UPC-CSIC), Barcelona, Spain.
| | - Albert Folch
- Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya, Jordi Girona 1-3, 08034 Barcelona, Spain; Associated Unit: Hydrogeology Group (UPC-CSIC), Barcelona, Spain
| | - Guillem Masó
- Instituto Pirenaico de Ecología (IPE-CSIC), Av. Ntra. Sra. Victoria 16, 22700 Jaca, Huesca, Spain
| | - Silvia Sanchez
- Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya, Jordi Girona 1-3, 08034 Barcelona, Spain; Associated Unit: Hydrogeology Group (UPC-CSIC), Barcelona, Spain
| | - Xavier Sanchez-Vila
- Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya, Jordi Girona 1-3, 08034 Barcelona, Spain; Associated Unit: Hydrogeology Group (UPC-CSIC), Barcelona, Spain
| |
Collapse
|
30
|
Jiang T, Bravo AG, Skyllberg U, Björn E, Wang D, Yan H, Green NW. Influence of dissolved organic matter (DOM) characteristics on dissolved mercury (Hg) species composition in sediment porewater of lakes from southwest China. WATER RESEARCH 2018; 146:146-158. [PMID: 30243058 DOI: 10.1016/j.watres.2018.08.054] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 08/20/2018] [Accepted: 08/25/2018] [Indexed: 06/08/2023]
Abstract
The origin and composition of dissolved organic matter (DOM) in porewater of lake sediments is intricate and decisive for fate of pollutants including mercury (Hg). While there are many reports on the relationship between dissolved organic carbon concentration (DOC) and mercury (Hg) concentrations in aquatic systems, there are few in which DOM compositional properties, that may better explain the fate of Hg, have been the focus. In this study, porewaters from sediments of three lakes, Caihai Lake (CH), Hongfeng Lake (HF) and Wujiangdu Lake (WJD), all located in southwest China, were selected to test the hypothesis that DOM optical properties control the fate of Hg in aquatic ecosystems. Porewater DOM was extracted and characterized by UV-Vis absorption and fluorescence spectroscopy. A two end-member (autochthonous and allochthonous DOM) mixing model was used to unveil the origin of DOM in porewaters of the three lakes. Our results show a higher input of terrestrial DOM in the pristine lake CH, as compared to lakes HF and WJD lakes, which were both influenced by urban environments and enriched in autochthonous DOM. While the relationships between the concentrations of DOC and the different chemical forms of Hg forms were quite inconsistent, we found important links between specific DOM components and the fate of Hg in the three lakes. In particular, our results suggest that allochthonous, terrestrial DOM inhibits Hg(II) availability for Hg methylating micro-organisms. In contrast, autochthonous DOM seems to have been stimulated MeHg formation, likely by enhancing the activity of microbial communities. Indeed, DOM biodegradation experiments revealed that differences in the microbial activity could explain the variation in the concentration of MeHg. While relationships between concentrations of DOC and Hg vary among different sites and provide little information about Hg cycling, we conclude that the transport and transformation of Hg (e.g. the methylation process) are more strongly linked to DOM chemical composition and reactivity.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Environment Science and Engineering, College of Resources and Environment, Southwest University, Chongqing, 400716, China; Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå SE-90183, Sweden
| | - Andrea G Bravo
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish National Research Council (CSIC), Barcelona, 08034, Spain
| | - Ulf Skyllberg
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå SE-90183, Sweden
| | - Erik Björn
- Department of Chemistry, Umeå University, SE-901-87, Umeå, Sweden
| | - Dingyong Wang
- Department of Environment Science and Engineering, College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Haiyu Yan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China.
| | - Nelson W Green
- School of Chemical and Biomolecular Engineering, Atlanta, GA, 30332, United States
| |
Collapse
|