1
|
Gil-Villalba S, Palau J, Soder-Walz JM, Vallecillo MA, Corregidor J, Tirado A, Shouakar-Stash O, Guivernau M, Viñas M, Soler A, Rosell M. Use of isotopic (C, Cl) and molecular biology tools to assess biodegradation in a source area of chlorinated ethenes after biostimulation with Emulsified Vegetable Oil (EVO). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175351. [PMID: 39151619 DOI: 10.1016/j.scitotenv.2024.175351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024]
Abstract
Enhanced In Situ Bioremediation (EISB) using Emulsified Vegetable Oil (EVO) as a long-term electron donor has gained prominence for the treatment of groundwater contaminated with chlorinated ethenes (CEs). This study explores the potential of isotopic and molecular biology tools (MBT) to investigate the CEs (PCE, TCE and cis-DCE) bioremediation using EVO in a contaminated site. A multiple approach using C and Cl-CSIA, quantification of Dehalococcoides (Dhc) and specific reductive dechlorination (RD) gene population, and hydrochemical data in microcosm experiments and field samples was applied. Despite the high partitioning of CEs into the EVO phase, the carbon isotopic values of the remaining CEs fraction in the aqueous phase did not exhibit significant changes caused by phase partitioning in laboratory experiments. Both microcosm experiments and field data revealed a rapid RD of PCE and TCE, resulting in the transient accumulation of cis-DCE, which was slowly degraded to vinyl chloride (VC). These results agreed with the presence of Dhc populations and a shift to stronger reducing conditions in the field: i) RD functional genes (tceA, vcrA and bvcA) exhibited a trend to higher values and ii) a substantial increase in Dhc populations (up to 30% of the total bacterial populations) was observed over time. The dual-element isotope slope ΛC-Cl for RD of cis-DCE obtained from field data (ΛC - Cl = 5 ± 3) was similar to the one determined from the microcosm experiments under controlled anoxic conditions (ΛC - Cl = 4.9 ± 0.8). However, ΛC-Cl values differ from those reported so far for laboratory studies with Dhc strains and mixed cultures containing Dhc, i.e., between 8.3 and 17.8. This observation underscores the potential variety of reductive dehalogenases involved during cis-DCE RD and the importance of determining site-specific Λ and ɛ values in order to improve the identification and quantification of transformation processes in the field.
Collapse
Affiliation(s)
- Sergio Gil-Villalba
- Grup MAiMA, SGR Mineralogia Aplicada, Geoquímica i Hidrogeologia (MAGH), Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Martí Franquès s/n, 08028 Barcelona, Spain.
| | - Jordi Palau
- Grup MAiMA, SGR Mineralogia Aplicada, Geoquímica i Hidrogeologia (MAGH), Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Martí Franquès s/n, 08028 Barcelona, Spain
| | - Jesica M Soder-Walz
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona (UAB), Carrer de les Sitges s/n, Bellaterra, Spain
| | - Miguel A Vallecillo
- Environmental Resources Management Iberia SAU, Rambla de Catalunya 33, 08007 Barcelona, Spain
| | - Jordi Corregidor
- Environmental Resources Management Iberia SAU, Rambla de Catalunya 33, 08007 Barcelona, Spain
| | - Andrea Tirado
- Environmental Resources Management Iberia SAU, Rambla de Catalunya 33, 08007 Barcelona, Spain
| | | | - Miriam Guivernau
- Sustainability in Biosystems Programme, Institute of Agrifood Research and Technology (IRTA), Torre Marimon, Caldes de Montbui, Barcelona, Spain
| | - Marc Viñas
- Sustainability in Biosystems Programme, Institute of Agrifood Research and Technology (IRTA), Torre Marimon, Caldes de Montbui, Barcelona, Spain
| | - Albert Soler
- Grup MAiMA, SGR Mineralogia Aplicada, Geoquímica i Hidrogeologia (MAGH), Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Martí Franquès s/n, 08028 Barcelona, Spain
| | - Monica Rosell
- Grup MAiMA, SGR Mineralogia Aplicada, Geoquímica i Hidrogeologia (MAGH), Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Martí Franquès s/n, 08028 Barcelona, Spain
| |
Collapse
|
2
|
Zhang X, Yi L, Li R. Identification of dense nonaqueous phase liquid sources in groundwater: a review of isotope technique. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:52688-52706. [PMID: 39190252 DOI: 10.1007/s11356-024-34427-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 07/15/2024] [Indexed: 08/28/2024]
Abstract
Excessive dense nonaqueous phase liquids (DNAPLs) in subsurface aquifers posed a threat to human health and sustainable development of groundwater resources. Accurately identifying the sources of DNAPLs is crucial for groundwater remediation and prevention efforts. In the previous studies, significant advances were made in using isotope techniques for identifying DNAPLs in groundwater. In this paper, we provide a comprehensive overview of the commonly used isotopic tools applied to source identification. This overview will outline the advantages and limitations of the isotope technique and describe the needs for future research. Isotope tracing techniques are based on the unique isotopic characteristics of DNAPLs from different sources, enabling the identification and differentiation of DNAPL sources. The δ13C and δ37Cl values are most commonly used for identifying DNAPLs in groundwater. In field applications, however, the differences in isotopic characteristics from diverse sources can be weakened after undergoing a series of human and natural factors, which can affect the accuracy of source identification. To improve the accuracy of DNAPL source identification, a dual-isotope tracing approach seems the best available solution. Nonetheless, in the face of complex polluted environments, the dual-isotope method seems stretched. Therefore, further researches remain to be carried out to accurately and efficiently assess the sources of DNAPLs in groundwater and their individual contributions. This is a prerequisite for groundwater resource conservation and remediation efforts.
Collapse
Affiliation(s)
- Xiang Zhang
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| | - Lixin Yi
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China.
| | - Ruotong Li
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| |
Collapse
|
3
|
Khan MI, Yoo K, Schwab L, Kümmel S, Nijenhuis I. Characterization of anaerobic biotransformation of hexachlorocyclohexanes by novel microbial consortia enriched from channel and river sediments. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135198. [PMID: 39013321 DOI: 10.1016/j.jhazmat.2024.135198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/11/2024] [Accepted: 07/11/2024] [Indexed: 07/18/2024]
Abstract
The microbial biotransformation of hexachlorocyclohexane (HCH) by novel anaerobic microbial consortia enriched from sediments of an industrial effluent channel and the river Ravi in Pakistan was examined. The anaerobic consortia were capable of biotransforming α-, β-, γ-, and δ-HCH through reductive dichloroelimination, resulting in the formation of benzene and monochlorobenzene. Concerning γ-HCH biotransformation by the channel and river cultures, isotopic fractionations for carbon (εC) were - 5.3 ± 0.4 (‰) and - 10.6 ± 1.2 (‰), while isotopic fractionations for chlorine (εCl) were - 4.4 ± 0.4 (‰) and - 7.8 ± 0.9 (‰), respectively. Furthermore, lambda values (Λ), representing the correlation of δ13C and δ37Cl fractionation, were determined to be 1.1 ± 0.1 and 1.3 ± 0.1 for γ-HCH biotransformation, suggesting a reductive dichloroelimination as the initial step of HCH biotransformation in both cultures. Amplicon sequencing targeting the 16S rRNA genes revealed that Desulfomicrobium populations were considerably increased in both cultures, indicating their possible involvement in the degradation process. These findings suggest that Desulfomicrobium-like populations may have an important role in biotransformation of HCH and novel anaerobic HCH-degrading microbial consortia could be useful bioaugmentation agents for the bioremediation of HCH-contaminated sites in Pakistan.
Collapse
Affiliation(s)
- Muhammad Imran Khan
- Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany; Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan.
| | - Keunje Yoo
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan 49112, South Korea
| | - Laura Schwab
- Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
| | - Steffen Kümmel
- Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
| | - Ivonne Nijenhuis
- Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
| |
Collapse
|
4
|
Trueba-Santiso A, Torrentó C, Soder-Walz JM, Fernández-Verdejo D, Rosell M, Marco-Urrea E. Dual C-Cl isotope fractionation offers potential to assess biodegradation of 1,2-dichloropropane and 1,2,3-trichloropropane by Dehalogenimonas cultures. CHEMOSPHERE 2024; 358:142170. [PMID: 38679177 DOI: 10.1016/j.chemosphere.2024.142170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 03/25/2024] [Accepted: 04/26/2024] [Indexed: 05/01/2024]
Abstract
1,2-dichloropropane (1,2-DCP) and 1,2,3-trichloropropane (1,2,3-TCP) are hazardous chemicals frequently detected in groundwater near agricultural zones due to their historical use in chlorinated fumigant formulations. In this study, we show that the organohalide-respiring bacterium Dehalogenimonas alkenigignens strain BRE15 M can grow during the dihaloelimination of 1,2-DCP and 1,2,3-TCP to propene and allyl chloride, respectively. Our work also provides the first application of dual isotope approach to investigate the anaerobic reductive dechlorination of 1,2-DCP and 1,2,3-TCP. Stable carbon and chlorine isotope fractionation values for 1,2-DCP (ƐC = -13.6 ± 1.4 ‰ and ƐCl = -27.4 ± 5.2 ‰) and 1,2,3-TCP (ƐC = -3.8 ± 0.6 ‰ and ƐCl = -0.8 ± 0.5 ‰) were obtained resulting in distinct dual isotope slopes (Λ12DCP = 0.5 ± 0.1, Λ123TCP = 4 ± 2). However direct comparison of ΛC-Cl among different substrates is not possible and investigation of the C and Cl apparent kinetic isotope effects lead to the hypothesis that concerted dichloroelimination mechanism is more likely for both compounds. In fact, whole cell activity assays using cells suspensions of the Dehalogenimonas-containing culture grown with 1,2-DCP and methyl viologen as electron donor suggest that the same set of reductive dehalogenases was involved in the transformation of 1,2-DCP and 1,2,3-TCP. This study opens the door to the application of isotope techniques for evaluating biodegradation of 1,2-DCP and 1,2,3-TCP, which often co-occur in groundwaters near agricultural fields.
Collapse
Affiliation(s)
- Alba Trueba-Santiso
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona (UAB), Carrer de les Sitges s/n, Bellaterra, Spain
| | - Clara Torrentó
- Grup MAiMA, SGR Mineralogia Aplicada, Geoquímica i Hidrogeologia (MAGH), Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), c/ Martí Franquès s/n, 08028, Barcelona, Spain
| | - Jesica M Soder-Walz
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona (UAB), Carrer de les Sitges s/n, Bellaterra, Spain
| | - David Fernández-Verdejo
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona (UAB), Carrer de les Sitges s/n, Bellaterra, Spain
| | - Mònica Rosell
- Grup MAiMA, SGR Mineralogia Aplicada, Geoquímica i Hidrogeologia (MAGH), Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), c/ Martí Franquès s/n, 08028, Barcelona, Spain
| | - Ernest Marco-Urrea
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona (UAB), Carrer de les Sitges s/n, Bellaterra, Spain.
| |
Collapse
|
5
|
Li Y, Wu N, Song J, Wang Z, Li P, Song Y. Differential and mechanism analysis of sulfate influence on the degradation of 1,1,2- trichloroethane by nano- and micron-size zero-valent iron. ENVIRONMENTAL TECHNOLOGY 2024; 45:2612-2627. [PMID: 36763460 DOI: 10.1080/09593330.2023.2179944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
The in-situ reduction of zero-valent iron (ZVI) is an effective method for removing chlorinated aliphatic hydrocarbons (CAHs) from groundwater. The heterogeneity of environmental conditions is also crucial in affecting dechlorination efficiency. Until now, the effect of Sulfate (SO42-) on ZVI activity has been debated, and the related mechanism research on SO42- behaviour during the abiotic reduction process of chlorinated alkanes is still lacking. In this study, the impacts of SO42- concentrations (0, 2, 4, 8, 80 mM) on the degradation of 1,1,2-trichloroethane (1,1,2-TCA) by micron-size ZVI (mZVI) and nano-size ZVI (nZVI) were systematically investigated. For mZVI, Kobs increased by 0.6 (2 mM), 0.5 (4 mM), 1.1 (8 mM), and 1.6 times (80 mM). For nZVI, Kobs decreased by 32% (2 mM), 39% (4 mM), 45% (8 mM), and 9% (80 mM). The results showed that SO42- increased the rate of 1,1,2-TCA degradation by mZVI but weakened the reduction performance of nZVI; however, this inhibition was reduced when the concentration reached 80 mM. SO42- controlled the degradation of 1,1,2-TCA mainly through the formation of different iron-sulfate complexes on the ZVI surface: water-soluble bidentate iron-sulfate complexes formed on the mZVI surface promoted the corrosion of the oxide layer and accelerated the reduction of 1,1,2-TCA, monodentate complexes mainly formed on the nZVI surface inhibited the reduction of 1,1,2-TCA by blocking surface sites. These results demonstrate the proof of concept to assist land managers in the field application of ZVI technology for the remediation of CAHs contaminated sites with different background concentrations of SO42-.
Collapse
Affiliation(s)
- Yi Li
- Beijing Key Laboratory of Industrial Land Contamination and Remediation, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, People's Republic of China
| | - Naijin Wu
- Beijing Key Laboratory of Industrial Land Contamination and Remediation, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, People's Republic of China
| | - Jiuhao Song
- Beijing Key Laboratory of Industrial Land Contamination and Remediation, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, People's Republic of China
| | - Zhenxia Wang
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai, People's Republic of China
| | - Peizhong Li
- Beijing Key Laboratory of Industrial Land Contamination and Remediation, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, People's Republic of China
| | - Yun Song
- Beijing Key Laboratory of Industrial Land Contamination and Remediation, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, People's Republic of China
| |
Collapse
|
6
|
Chen Q, Shi H, Liang Y, Qin L, Zeng H, Song X. Degradation Characteristics and Remediation Ability of Contaminated Soils by Using β-HCH Degrading Bacteria. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2767. [PMID: 36833464 PMCID: PMC9957227 DOI: 10.3390/ijerph20042767] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Three degradation strains that can utilize β-Hexachlorocyclohexanes (β-HCH) as the sole carbon source were isolated from the soil substrate of constructed wetland under long-term β-HCH stress, and they were named A1, J1, and M1. Strains A1 and M1 were identified as Ochrobactrum sp. and strain J1 was identified as Microbacterium oxydans sp. by 16S rRNA gene sequence analysis. The optimum conditions for degradation with these three strains, A1, J1, and M1, were pH = 7, 30 °C, and 5% inoculum amount, and the degradation rates of 50 μg/L β-HCH under these conditions were 58.33%, 51.96%, and 50.28%, respectively. Degradation characteristics experiments showed that root exudates could increase the degradation effects of A1 and M1 on β-HCH by 6.95% and 5.82%, respectively. In addition, the degradation bacteria A1 and J1 mixed in a ratio of 1:1 had the highest degradation rate of β-HCH, which was 69.57%. An experiment on simulated soil remediation showed that the compound bacteria AJ had the best effect on promoting the degradation of β-HCH in soil within 98 d, and the degradation rate of β-HCH in soil without root exudates was 60.22%, whereas it reached 75.02% in the presence of root exudates. The addition of degradation bacteria or degradation bacteria-root exudates during soil remediation led to dramatic changes in the community structure of the soil microorganisms, as well as a significant increase in the proportion of aerobic and Gram-negative bacterial groups. This study can enrich the resources of β-HCH degrading strains and provided a theoretical basis for the on-site engineering treatment of β-HCH contamination.
Collapse
Affiliation(s)
- Qing Chen
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Huijun Shi
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Yanpeng Liang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China
- Collaborative Innovation Center for Water Pollution Control and Water Security in Karst Region, Guilin University of Technology, Guilin 541004, China
| | - Litang Qin
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China
| | - Honghu Zeng
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
- Collaborative Innovation Center for Water Pollution Control and Water Security in Karst Region, Guilin University of Technology, Guilin 541004, China
| | - Xiaohong Song
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
7
|
Cui G, Lartey-Young G, Chen C, Ma L. Photodegradation of pesticides using compound-specific isotope analysis (CSIA): a review. RSC Adv 2021; 11:25122-25140. [PMID: 35478915 PMCID: PMC9037106 DOI: 10.1039/d1ra01658j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/14/2021] [Indexed: 12/20/2022] Open
Abstract
Pesticides are commonly applied in agriculture to protect crops from pests, weeds, and harmful pathogens. However, chronic, low-level exposure to pesticides can be toxic to humans. Photochemical degradation of pesticides in water, soil, and other environmental media can alter their environmental fate and toxicity. Compound-specific isotope analysis (CSIA) is an advanced diagnostic tool to quantify the degradation of organic pollutants and provide insight into reaction mechanisms without the need to identify transformation products. CSIA allows for the direct quantification of organic degradation, including pesticides. This review summarizes the recent developments observed in photodegradation studies on different categories of pesticides using CSIA technology. Only seven pesticides have been studied using photodegradation, and these studies have mostly occurred in the last five years. Knowledge gaps in the current literature, as well as potential approaches for CSIA technology for pesticide monitoring, are discussed in this review. Furthermore, the CSIA analytical method is challenged by chemical element types, the accuracy of instrument analysis, reaction conditions, and the stability of degradation products. Finally, future research applications and the operability of this method are also discussed.
Collapse
Affiliation(s)
- Guolu Cui
- School of Environmental Science and Engineering, Tongji University 1239 Siping Road Shanghai 200092 China
- Shanghai Institute of Pollution Control and Ecological Security Shanghai 200092 China
| | - George Lartey-Young
- School of Environmental Science and Engineering, Tongji University 1239 Siping Road Shanghai 200092 China
- Shanghai Institute of Pollution Control and Ecological Security Shanghai 200092 China
| | - Chong Chen
- School of Environmental Science and Engineering, Tongji University 1239 Siping Road Shanghai 200092 China
- Shanghai Institute of Pollution Control and Ecological Security Shanghai 200092 China
| | - Limin Ma
- School of Environmental Science and Engineering, Tongji University 1239 Siping Road Shanghai 200092 China
- Shanghai Institute of Pollution Control and Ecological Security Shanghai 200092 China
| |
Collapse
|
8
|
Jin B, Zhang J, Xu W, Rolle M, Liu J, Zhang G. Simultaneous determination of stable chlorine and bromine isotopic ratios for bromochlorinated trihalomethanes using GC-qMS. CHEMOSPHERE 2021; 264:128529. [PMID: 33038736 DOI: 10.1016/j.chemosphere.2020.128529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/05/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
Bromochlorinated compounds are organic contaminants originating from different natural and anthropic sources and increasingly found in different environmental compartments. This work presents an online approach for compound specific stable isotope analysis of chlorine and bromine isotope ratios for bromochlorinated trihalomethanes using gas chromatography coupled to quadrupole mass spectrometry (GC-qMS). An evaluation scheme was developed to simultaneously determine stable chlorine and bromine isotope ratios based on the mass spectral data of two target compounds: dibromochloromethane and dichlorobromomethane. The analytical technique was optimized by assessing the impact of different instrumental parameters, including dwell time, split ratios, and ionization energy. Successively, static headspace samples containing the two target compounds at aqueous concentrations ranging from 0.1 mg/L to 5 mg/L were analyzed in order to test the precision and reproducibility of the proposed approach. The results showed a good precision under the optimized instrumental conditions, with relative standard deviations ranging between 0.05% and 0.5% for chlorine and bromine isotope analysis. Finally, the method was tested in a source identification problem in which the simultaneous determination of chlorine and bromine stable isotope ratios allowed the clear distinction of dibromochloromethane from three different manufacturers.
Collapse
Affiliation(s)
- Biao Jin
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; Guangdong Key Laboratory of Environmental Protection and Resources Utilization, China; University of Chinese Academy of Sciences, Beijing, 10069, China.
| | - Jiyun Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 10069, China
| | - Wenli Xu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 10069, China
| | - Massimo Rolle
- DTU Environment, Department of Environmental Engineering, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Jinzhong Liu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| |
Collapse
|
9
|
Liu Y, Kümmel S, Yao J, Nijenhuis I, Richnow HH. Dual C-Cl isotope analysis for characterizing the anaerobic transformation of α, β, γ, and δ-hexachlorocyclohexane in contaminated aquifers. WATER RESEARCH 2020; 184:116128. [PMID: 32777634 DOI: 10.1016/j.watres.2020.116128] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/26/2020] [Accepted: 06/27/2020] [Indexed: 06/11/2023]
Abstract
Hexachlorocyclohexanes (HCHs) are widespread and persistent environmental pollutants, which cause heavy contamination in soil, sediment and groundwater. An anaerobic consortium, which was enriched on β-HCH using a soil sample from a contaminated area of a former pesticide factory, was capable to transform α, β, γ, and δ-HCH via tetrachlorocyclohexene isomers stoichiometrically to benzene and chlorobenzene. The carbon and chlorine isotope enrichment factors (εC and εCl) of the dehalogenation of the four isomers ranged from -1.9 ± 0.3 to -6.4 ± 0.7‰ and from -1.6 ± 0.2 to -3.2 ± 0.6‰, respectively, and the correlation of δ37Cl and δ13C (Λ values) of the four isomers ranged from 1.1 ± 0.1 to 2.4 ± 0.2. The evaluation of Λ and the apparent kinetic isotope effects (AKIE) for carbon and chlorine may lead to the hypothesis that the two eliminated chlorine atoms of α- and γ-HCH were in axial positions, the same as for the β-HCH conformer which has six chlorine atoms in axial positions after ring flip. The dichloroelimination of δ-HCH resulted in distinct AKIE and Λ values as one chlorine atom is in axial whereas the other chlorine atoms are in the equatorial positions. Significant chlorine and carbon isotope fractionations of HCH isomers were observed in the samples from a contaminated aquifer (Bitterfeld, Germany). The 37Cl/35Cl and 13C/12C isotope fractionation patterns of HCH isomers from laboratory experiments were used diagnostically in a model to characterize microbial dichloroelimination in the field study. The comparison of isotope fractionation patterns indicates that the transformation of HCH isomers at the field was mainly governed by microbial dichloroelimination transformation.
Collapse
Affiliation(s)
- Yaqing Liu
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Steffen Kümmel
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Jun Yao
- School of Water Resources and Environment, China University of Geosciences, Beijing, Beijing, 100083, China
| | - Ivonne Nijenhuis
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318, Leipzig, Germany.
| | - Hans-Hermann Richnow
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318, Leipzig, Germany.
| |
Collapse
|
10
|
Liu Y, Liu J, Renpenning J, Nijenhuis I, Richnow HH. Dual C-Cl Isotope Analysis for Characterizing the Reductive Dechlorination of α- and γ-Hexachlorocyclohexane by Two Dehalococcoides mccartyi Strains and an Enrichment Culture. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:7250-7260. [PMID: 32441516 DOI: 10.1021/acs.est.9b06407] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hexachlorocyclohexanes (HCHs) are persistent organic contaminants that threaten human health. Microbial reductive dehalogenation is one of the most important attenuation processes in contaminated environments. This study investigated carbon and chlorine isotope fractionation of α- and γ-HCH during the reductive dehalogenation by three anaerobic cultures. The presence of tetrachlorocyclohexene (TeCCH) indicated that reductive dichloroelimination was the first step of bond cleavage. Isotope enrichment factors (εC and εCl) were derived from the transformation of γ-HCH (εC, from -4.0 ± 0.5 to -4.4 ± 0.6 ‰; εCl, from -2.9 ± 0.4 to -3.3 ± 0.4 ‰) and α-HCH (εC, from -2.4 ± 0.2 to -3.0 ± 0.4 ‰; εCl, from -1.4 ± 0.3 to -1.8 ± 0.2 ‰). During α-HCH transformation, no enantioselectivity was observed, and similar εc values were obtained for both enantiomers. The correlation of 13C and 37Cl fractionation (Λ = Δδ13C/Δδ37Cl ≈ εC/εCl) of γ-HCH (from 1.1 ± 0.3 to 1.2 ± 0.1) indicates similar bond cleavage during the reductive dichloroelimination by the three cultures, similar to α-HCH (1.7 ± 0.2 to 2.0 ± 0.3). The different isotope fractionation patterns during reductive dichloroelimination and dehydrochlorination indicates that dual-element stable isotope analysis can potentially be used to evaluate HCH transformation pathways at contaminated field sites.
Collapse
Affiliation(s)
- Yaqing Liu
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, Leipzig 04318, Germany
| | - Jia Liu
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, Leipzig 04318, Germany
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Haidian District, Beijing 100083, PR China
| | - Julian Renpenning
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, Leipzig 04318, Germany
| | - Ivonne Nijenhuis
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, Leipzig 04318, Germany
| | - Hans-Hermann Richnow
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, Leipzig 04318, Germany
| |
Collapse
|
11
|
Zimmermann J, Halloran LJS, Hunkeler D. Tracking chlorinated contaminants in the subsurface using compound-specific chlorine isotope analysis: A review of principles, current challenges and applications. CHEMOSPHERE 2020; 244:125476. [PMID: 31830644 DOI: 10.1016/j.chemosphere.2019.125476] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
Many chlorinated hydrocarbons have gained notoriety as persistent organic pollutants in the environment. Engineered and natural remediation efforts require a monitoring tool to track the progress of degradation processes. Compound-specific isotope analysis (CSIA) is a robust method to evaluate the origin and fate of contaminants in the environment and does not rely on concentration measurements. While carbon CSIA has established itself in the routine assessment of contaminated sites, studies incorporating chlorine isotopes have only recently become more common. Although some aspects of chlorine isotope analysis are more challenging than carbon isotope analysis, having additional isotopic data yields valuable information for contaminated site management. This review provides an overview of chlorine isotope fractionation of chlorinated contaminants in the subsurface by different processes and presents analytical techniques and unresolved challenges in chlorine isotope analysis. A summary of successful field applications illustrates the potential of using chlorine isotope data. Finally, approaches in modelling chlorine isotope fractionation due to degradation, diffusion, and sorption processes are discussed.
Collapse
Affiliation(s)
- Jeremy Zimmermann
- Centre for Hydrogeology and Geothermics, University of Neuchâtel, Rue Emile-Argand 11, CH-2000, Neuchâtel, Switzerland.
| | - Landon J S Halloran
- Centre for Hydrogeology and Geothermics, University of Neuchâtel, Rue Emile-Argand 11, CH-2000, Neuchâtel, Switzerland
| | - Daniel Hunkeler
- Centre for Hydrogeology and Geothermics, University of Neuchâtel, Rue Emile-Argand 11, CH-2000, Neuchâtel, Switzerland
| |
Collapse
|
12
|
Ojeda AS, Phillips E, Sherwood Lollar B. Multi-element (C, H, Cl, Br) stable isotope fractionation as a tool to investigate transformation processes for halogenated hydrocarbons. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:567-582. [PMID: 31993605 DOI: 10.1039/c9em00498j] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Compound-specific isotope analysis (CSIA) is a powerful tool to evaluate transformation processes of halogenated compounds. Many halogenated hydrocarbons allow for multiple stable isotopic systems (C, H, Cl, Br) to be measured for a single compound. This has led to a large body of literature describing abiotic and biotic transformation pathways and reaction mechanisms for contaminants such as chlorinated alkenes and alkanes as well as brominated hydrocarbons. Here, the current literature is reviewed and a new compilation of Λ values for multi-isotopic systems for halogenated hydrocarbons is presented. Case studies of each compound class are discussed and thereby the current strengths of multi-element isotope analysis, continuing challenges, and gaps in our current knowledge are identified for practitioners of multi-element CSIA to address in the near future.
Collapse
Affiliation(s)
- Ann Sullivan Ojeda
- Department of Geosciences, Auburn University, Auburn, Alabama 36849, USA.
| | | | | |
Collapse
|