1
|
Møller MT, Birch H, Sjøholm KK, Skjolding LM, Xie H, Papazian S, Mayer P. Determining Marine Biodegradation Kinetics of Chemicals Discharged from Offshore Oil Platforms─Whole Mixture Testing at High Dilutions Increases Environmental Relevance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17454-17463. [PMID: 39292649 DOI: 10.1021/acs.est.4c05692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Offshore oil platforms discharge enormous volumes of produced water that contain mixtures of petrochemicals and production chemicals. It is crucial to avoid the discharge of particularly those chemicals that are persistent in the marine environment. This study aims to (1) develop a biodegradation testing approach for discharged chemicals by native marine microorganism, (2) determine how dilution affects biodegradation, and (3) determine biodegradation kinetics for many discharged chemicals at low and noninhibitory concentrations. Produced water from an offshore oil platform was diluted in the ratio of 1:20, 1:60, and 1:200 in seawater from the same location and incubated for 60 days at 10 °C. Automated solid-phase microextraction GC-MS was used as a sensitive analytical technique, and chemical-specific primary degradation was determined based on peak area ratios between biotic test systems and abiotic controls. Biodegradation was inhibited at lower dilutions, consistent with ecotoxicity tests. Biodegradation kinetics were determined at the highest dilution for 139 chemicals (43 tentatively identified), and 6 chemicals were found persistent (half-life >60 days). Nontargeted analysis by liquid chromatography-high-resolution MS was demonstrated as a proof-of-principle for a comprehensive assessment. Biodegradation testing of chemicals in discharges provides the possibility to assess hundreds of chemicals at once and find the persistent ones.
Collapse
Affiliation(s)
- Mette T Møller
- Technical University of Denmark, Department of Environmental and Resource Engineering, Building 115, 2800 Kgs. Lyngby, Denmark
| | - Heidi Birch
- Technical University of Denmark, Department of Environmental and Resource Engineering, Building 115, 2800 Kgs. Lyngby, Denmark
| | - Karina K Sjøholm
- Technical University of Denmark, Department of Environmental and Resource Engineering, Building 115, 2800 Kgs. Lyngby, Denmark
| | - Lars M Skjolding
- Technical University of Denmark, Department of Environmental and Resource Engineering, Building 115, 2800 Kgs. Lyngby, Denmark
| | - Hongyu Xie
- Department of Environmental Science, Stockholm University, Stockholm 106 91, Sweden
| | - Stefano Papazian
- Department of Environmental Science, Stockholm University, Stockholm 106 91, Sweden
- National Facility for Exposomics, Metabolomics Platform, Science for Life Laboratory, Stockholm University, Solna 171 65, Sweden
| | - Philipp Mayer
- Technical University of Denmark, Department of Environmental and Resource Engineering, Building 115, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
2
|
Welch SA, Grung M, Madsen AL, Jannicke Moe S. Development of a probabilistic risk model for pharmaceuticals in the environment under population and wastewater treatment scenarios. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:1715-1735. [PMID: 38771172 DOI: 10.1002/ieam.4939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 04/01/2024] [Accepted: 04/12/2024] [Indexed: 05/22/2024]
Abstract
Preparing for future environmental pressures requires projections of how relevant risks will change over time. Current regulatory models of environmental risk assessment (ERA) of pollutants such as pharmaceuticals could be improved by considering the influence of global change factors (e.g., population growth) and by presenting uncertainty more transparently. In this article, we present the development of a prototype object-oriented Bayesian network (BN) for the prediction of environmental risk for six high-priority pharmaceuticals across 36 scenarios: current and three future population scenarios, combined with infrastructure scenarios, in three Norwegian counties. We compare the risk, characterized by probability distributions of risk quotients (RQs), across scenarios and pharmaceuticals. Our results suggest that RQs would be greatest in rural counties, due to the lower development of current wastewater treatment facilities, but that these areas consequently have the most potential for risk mitigation. This pattern intensifies under higher population growth scenarios. With this prototype, we developed a hierarchical probabilistic model and demonstrated its potential in forecasting the environmental risk of chemical stressors under plausible demographic and management scenarios, contributing to the further development of BNs for ERA. Integr Environ Assess Manag 2024;20:1715-1735. © 2024 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Samuel A Welch
- Norwegian Institute for Water Research (NIVA), Oslo, Norway
| | - Merete Grung
- Norwegian Institute for Water Research (NIVA), Oslo, Norway
| | | | - S Jannicke Moe
- Norwegian Institute for Water Research (NIVA), Oslo, Norway
| |
Collapse
|
3
|
Manaia CM, Aga DS, Cytryn E, Gaze WH, Graham DW, Guo J, Leonard AFC, Li L, Murray AK, Nunes OC, Rodriguez-Mozaz S, Topp E, Zhang T. The Complex Interplay Between Antibiotic Resistance and Pharmaceutical and Personal Care Products in the Environment. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:637-652. [PMID: 36582150 DOI: 10.1002/etc.5555] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/29/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) are important environmental contaminants. Nonetheless, what drives the evolution, spread, and transmission of antibiotic resistance dissemination is still poorly understood. The abundance of ARB and ARGs is often elevated in human-impacted areas, especially in environments receiving fecal wastes, or in the presence of complex mixtures of chemical contaminants, such as pharmaceuticals and personal care products. Self-replication, mutation, horizontal gene transfer, and adaptation to different environmental conditions contribute to the persistence and proliferation of ARB in habitats under strong anthropogenic influence. Our review discusses the interplay between chemical contaminants and ARB and their respective genes, specifically in reference to co-occurrence, potential biostimulation, and selective pressure effects, and gives an overview of mitigation by existing man-made and natural barriers. Evidence and strategies to improve the assessment of human health risks due to environmental antibiotic resistance are also discussed. Environ Toxicol Chem 2024;43:637-652. © 2022 SETAC.
Collapse
Affiliation(s)
- Célia M Manaia
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Diana S Aga
- Chemistry Department, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Eddie Cytryn
- Institute of Soil, Water and Environmental Sciences, Volcani Institute, Agricultural Research Organization, Rishon-Lezion, Israel
| | - William H Gaze
- European Centre for Environment and Human Health, University of Exeter Medical School, Penryn Campus, Cornwall, UK
| | - David W Graham
- School of Engineering, Newcastle University, Newcastle, UK
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, Queensland, Australia
| | - Anne F C Leonard
- European Centre for Environment and Human Health, University of Exeter Medical School, Penryn Campus, Cornwall, UK
| | - Liguan Li
- Environmental Microbiome Engineering and Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, The University of Hong Kong, Hong Kong, China
| | - Aimee K Murray
- European Centre for Environment and Human Health, University of Exeter Medical School, Penryn Campus, Cornwall, UK
| | - Olga C Nunes
- Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Sara Rodriguez-Mozaz
- Catalan Institute for Water Research, Girona, Spain
- Universitat de Girona, Girona, Spain
| | - Edward Topp
- Agriculture and Agri-Food Canada, London, Ontario, Canada
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
4
|
Jentzsch F, Kümmerer K, Olsson O. Status quo on identified transformation products of organic ultraviolet filters and their persistence. Int J Cosmet Sci 2023; 45 Suppl 1:101-126. [PMID: 37638891 DOI: 10.1111/ics.12908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/14/2023] [Accepted: 03/22/2023] [Indexed: 08/29/2023]
Abstract
Organic micropollutants of concern-including organic UV filters (UVF)-are getting increasing attention. Personal care products such as sunscreens or cosmetic articles often contain large quantities of UVF. These substances enter the environment either directly (during outdoor activities) or indirectly (via sewages from households). Therefore, the removal or degradation of UVF by natural or technical treatment processes is important to understand. UVF are often incompletely removed and transformed to side products of incomplete mineralization by abiotic and biotic processes. An extensive overview on transformation products (TPs) is essential to systematically identify knowledge gaps and to derive research needs. While there are many reviews on the UVF themselves, the number of reviews which focus on their TPs is limited. Consequently, this review gives an overview on the latest findings regarding TPs of UVF. In this publication, known TPs of UVF, which were formed during abiotic and biotic processes, are reviewed. Target substances were defined and a literature database was reviewed for studies on TPs of the target substances. The first list of studies was shortened stepwise, thus generating a final list of studies which contained only the relevant studies. Since biodegradation is one of the most important pathways for removal of organic compounds from the environment, this review presents an overview on known TPs of organic UVF and their biodegradability, which determines their environmental fate. In this way, all identified TPs of UVF were listed and checked for information on their biodegradability. A total of 2731 records of studies were assessed. Forty-two studies, which assessed 46 processes that lead to the formation of identified TPs, were included in this review. One hundred and seventyseven different TPs resulting from 11 different UVF were identified. Little to no data on the biodegradability was found for TPs. This indicates a severe lack of data on the biodegradability of TPs of organic UVF substances. Since most TPs lack information on biodegradability, further research should provide information on both-identity and biodegradability-of formed TPs to be able to assess their hazardousness for the environment.
Collapse
Affiliation(s)
- Franziska Jentzsch
- Institute of Sustainable Chemistry, Faculty of Sustainability, Leuphana University of Lüneburg, Lüneburg, Germany
| | - Klaus Kümmerer
- Institute of Sustainable Chemistry, Faculty of Sustainability, Leuphana University of Lüneburg, Lüneburg, Germany
| | - Oliver Olsson
- Institute of Sustainable Chemistry, Faculty of Sustainability, Leuphana University of Lüneburg, Lüneburg, Germany
| |
Collapse
|
5
|
Dolu T, Nas B. Dissemination of nonsteroidal anti-inflammatory drugs (NSAIDs) and metabolites from wastewater treatment plant to soils and agricultural crops via real-scale different agronomic practices. ENVIRONMENTAL RESEARCH 2023; 227:115731. [PMID: 36958380 DOI: 10.1016/j.envres.2023.115731] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/13/2023] [Accepted: 03/19/2023] [Indexed: 05/08/2023]
Abstract
One of the most consumed pharmaceutical subgroups across the world is nonsteroidal anti-inflammatory drugs (NSAIDs). However, the dissemination of these compounds to the natural environments through agronomic practices is a serious global problem. The hypothesis of this study is to reveal the transition of selected NSAIDs, paracetamol (PAR), diclofenac (DCF), ibuprofen (IBU), and naproxen (NAP) together with six main metabolites, detected in raw/treated wastewater (RWW/TWW) and sewage sludge generated in an urban wastewater treatment plant (WWTP) to soils and agricultural crops (corn, barley, sunflower, and sugar beet) through two widely applied agronomic practices, irrigation with TWW and application of sewage sludge as soil amendment. In other words, the cycles of 10 NSAIDs have been evaluated by simultaneously monitoring their concentrations in RWW/TWW, sewage sludge, soils, and crops. It was determined that the parent compounds and detected metabolites were treated at quite higher removal efficiencies (93.4 - >99.9%) in the studied WWTP, while DCF was eliminated poorly (7.9-52.2%). However, although it changes seasonally for some compounds, it was determined that the concentrations of almost all investigated NSAIDs increased at the determined irrigation points in the discharge channel (DC) where agricultural irrigations were performed. Apart from that, DCF, NAP, and 2-hydroxyibuprofen (2-OH-IBU) were always detected in sewage sludge seasonally up to about 20.5, 11.3, and 3.7 ng/g, respectively. While 2-OH-IBU was determined as the dominant metabolite in RWW, TWW, and sewage sludge, the metabolite of 1-hydroxyibuprofen (1-OH-IBU) was determined as the dominant compound in soils. Although 1-OH-IBU was not detected in TWW and sewage sludge in any season, detecting this metabolite as a common compound in all investigated soils (up to 60.1 ng/kg) reveals that this compound is the primary transformation product of IBU in soils. It was observed that at least one of the metabolites of IBU (1-OH-IBU and/or 2-OH-IBU) was detected in all plants grown (up to 0.75 ng/g), especially during the periods when both agricultural practices were applied. In addition, the detection of 1-OH-IBU with increasing concentrations from root to shoots in corn grown as a result of both agronomic practices shows that this compound has a high translocation potential in the corn plant. Apart from this, it was determined that PAR was detected in corn (up to 43.3 ng/kg) and barley (up to 16.8 ng/kg) within the scope of irrigation with TWW, and NAP was detected in sugar beet (up to 11.2 ng/kg) through sewage sludge application.
Collapse
Affiliation(s)
- Taylan Dolu
- Department of Environmental Engineering, Konya Technical University, Konya, Turkey.
| | - Bilgehan Nas
- Department of Environmental Engineering, Konya Technical University, Konya, Turkey.
| |
Collapse
|
6
|
van Dijk J, Dekker SC, Kools SAE, van Wezel AP. European-wide spatial analysis of sewage treatment plants and the possible benefits to nature of advanced treatment to reduce pharmaceutical emissions. WATER RESEARCH 2023; 241:120157. [PMID: 37300966 DOI: 10.1016/j.watres.2023.120157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/26/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
Pharmaceuticals are known to widely occur in the environment and to affect the health of ecosystems. Sewage treatment plants (STPs) are main emission pathways for pharmaceuticals, which are often not sufficiently removed during wastewater treatment. In Europe, STP treatment requirements are specified under the Urban WasteWater Treatment Directive (UWWTD). The introduction of advanced treatment techniques, such as ozonation and activated carbon, under the UWWTD is expected to be an important option to reduce pharmaceutical emissions. In this study, we present a European-wide analysis of STPs reported under the UWWTD, their current treatment level and potential to remove a set of 58 prioritised pharmaceuticals. Three different scenarios were analysed to show 1) UWWTD present effectiveness, 2) the effectiveness at full UWWTD compliance, and 3) the effectiveness when advanced treatment is implemented at STPs with a treatment capacity of >100.000 person equivalents. Based on a literature study, the potential of individual STPs to reduce pharmaceutical emissions ranged from an average of 9% for STPs with primary treatment to 84% for STPs applying advanced treatment. Results of our calculations show that European-wide emission of pharmaceuticals can be reduced with 68% when large STPs are updated with advanced treatment, but spatial differences exist. We argue that adequate attention should also be paid with regards to preventing environmental impacts of STPs with a capacity <100.000 p.e. Circa 44% of total STP effluent is emitted near Natura2000 sites (EU nature protection areas). Of all surface waters receiving STP effluent for which the ecological status has been assessed under the Water Framework Directive, 77% have a status of less than good. Relatively often only primary treatment is applied to wastewater emitted into coastal waters. This analysis can be used to further model pharmaceutical concentrations in European surface waters, to identify STPs for which more advanced treatment might be required and to protect EU aquatic biodiversity.
Collapse
Affiliation(s)
- Joanke van Dijk
- Copernicus Institute of Sustainable Development, Utrecht University, 3584, CB, Utrecht, the Netherlands; Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94240, GE, 1090, Amsterdam, the Netherlands.
| | - Stefan C Dekker
- Copernicus Institute of Sustainable Development, Utrecht University, 3584, CB, Utrecht, the Netherlands
| | | | - Annemarie P van Wezel
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94240, GE, 1090, Amsterdam, the Netherlands
| |
Collapse
|
7
|
Wang T, Faria Albanese JA, de Vos WM, de Grooth J. Continuous pH regulation for PES@CoFe2O4 based catalytic UF membranes: Preventing adsorption for optimal degradation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
8
|
Späth J, Brodin T, Falås P, Niinipuu M, Lindberg R, Fick J, Nording M. Effects of conventionally treated and ozonated wastewater on the damselfly larva oxylipidome in response to on-site exposure. CHEMOSPHERE 2022; 309:136604. [PMID: 36179924 DOI: 10.1016/j.chemosphere.2022.136604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 09/12/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Pharmaceutical residues discharged through insufficiently treated or untreated wastewater enter aquatic environments, where they may adversely impact organisms such as aquatic invertebrates. Ozonation, an advanced wastewater treatment technique, has been successfully implemented to enhance the removal of a broad range of pharmaceuticals, however diverse byproducts and transformation products that are formed during the ozonation process make it difficult to predict how ozonated wastewater may affect aquatic biota. The aim of this study was to investigate effects on fatty acid metabolites, oxylipins, in a common invertebrate species, damselfly larvae, after on-site exposure to conventional wastewater treatment plant (WWTP) effluent and additionally ozonated effluent at a full-scale WWTP. Subsequent ozonation of the conventionally treated wastewater was assessed in terms of i) removal of pharmaceuticals and ii) potential sub-lethal effects on the oxylipidome. Northern damselfly (Coenagrion hastulatum) larvae were exposed for six days in the treatment plant facility to either conventional WWTP effluent or ozonated effluent and the effects on pharmaceutical levels and oxylipin levels were compared with those from tap water control exposure. Ozonation removed pharmaceuticals at an average removal efficiency of 67% (ozone dose of 0.49 g O3/g DOC). Of 38 pharmaceuticals detected in the effluent, 16 were removed to levels below the limit of quantification by ozonation. Levels of two oxylipins, 12(13)-EpODE and 15(16)-EpODE, were reduced in larvae exposed to the conventionally treated wastewater in comparison to the tap water control. 15(16)-EpODE was reduced in the larvae exposed to ozonated effluent in comparison to the tap water control. One oxylipin, 8-HETE, was significantly lower in larvae exposed to conventional WWTP effluent compared to ozonated effluent. In conclusion, the study provides proof-of-principle that damselfly larvae can be used on-site to test the impact of differentially treated wastewater.
Collapse
Affiliation(s)
- Jana Späth
- Department of Chemistry, Umeå University, SE 90187, Umeå, Sweden.
| | - Tomas Brodin
- Department of Wildlife, Fish, And Environmental Studies, Swedish University of Agricultural Sciences, SE 90183, Umeå, Sweden.
| | - Per Falås
- Department of Chemical Engineering, Lund University, SE 22100, Lund, Sweden.
| | - Mirva Niinipuu
- Department of Chemistry, Umeå University, SE 90187, Umeå, Sweden.
| | - Richard Lindberg
- Department of Chemistry, Umeå University, SE 90187, Umeå, Sweden.
| | - Jerker Fick
- Department of Chemistry, Umeå University, SE 90187, Umeå, Sweden.
| | - Malin Nording
- Department of Chemistry, Umeå University, SE 90187, Umeå, Sweden.
| |
Collapse
|
9
|
Pistocchi A, Alygizakis NA, Brack W, Boxall A, Cousins IT, Drewes JE, Finckh S, Gallé T, Launay MA, McLachlan MS, Petrovic M, Schulze T, Slobodnik J, Ternes T, Van Wezel A, Verlicchi P, Whalley C. European scale assessment of the potential of ozonation and activated carbon treatment to reduce micropollutant emissions with wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157124. [PMID: 35792263 DOI: 10.1016/j.scitotenv.2022.157124] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Micropollutants (MPs) in wastewater pose a growing concern for their potential adverse effects on the receiving aquatic environment, and some countries have started requiring that wastewater treatment plants remove them to a certain extent. Broad spectrum advanced treatment processes, such as ozonation, activated carbon or their combination, are expected to yield a significant reduction in the toxicity of effluents. Here we quantify the reduction of effluent toxicity potentially achieved by implementing these advanced treatment solutions in a selection of European wastewater treatment plants. To this end, we refer to a list of "total pollution proxy substances" (TPPS) composed of 1337 chemicals commonly found in wastewater effluents according to a compilation of datasets of measured concentrations. We consider these substances as an approximation of the "chemical universe" impinging on the European wastewater system. We evaluate the fate of the TPPS in conventional and advanced treatment plants using a compilation of experimental physicochemical properties that describe their sorption, volatilization and biodegradation during activated sludge treatment, as well as known removal efficiency in ozonation and activated carbon treatment, while filling the gaps through in silico prediction models. We estimate that the discharge of micropollutants with wastewater effluents in the European Union has a cumulative MP toxicity to the environment equal to the discharge of untreated wastewater of ca. 160 million population equivalents (PE), i.e. about 30 % of the generated wastewater in the EU. If all plants above a capacity of 100,000 PE were equipped with advanced treatment, we show that this load would be reduced to about 95 million PE. In addition, implementing advanced treatment in wastewater plants above 10,000 PE discharging to water bodies with an average dilution ratio smaller than 10 would yield a widespread improvement in terms of exposure of freshwater ecosystems to micropollutants, almost halving the part of the stream network exposed to the highest toxic risks. Our analysis provides background for a cost-effectiveness appraisal of advanced treatment "at the end of the pipe", which could lead to optimized interventions. This should not be regarded as a stand-alone solution, but as a complement to policies for the control of emissions at the source for the most problematic MPs.
Collapse
Affiliation(s)
| | | | - Werner Brack
- Helmholtz Centre for Environmental Research - UFZ, Department of Effect-Directed Analysis, Permoserstr. 15, 04318 Leipzig, Germany; Department of Evolutionary Ecology and Environmental Toxicology, Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Alistair Boxall
- Environment and Geography Department, University of York, Heslington York YO10 5NG, UK
| | - Ian T Cousins
- Department of Environmental Science, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Jörg E Drewes
- Urban Water Systems Engineering, Technical University of Munich, D-85748 Garching, Germany
| | - Saskia Finckh
- Helmholtz Centre for Environmental Research - UFZ, Department of Effect-Directed Analysis, Permoserstr. 15, 04318 Leipzig, Germany
| | - Tom Gallé
- LIST, Environmental Research and Innovation Dept., 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - Marie A Launay
- Micropollutants Competence Centre Baden-Württemberg, Institute of Sanitary Engineering, Water Quality and Solid Waste Management, University of Stuttgart, Bandtaele 2, 70569 Stuttgart, Germany
| | - Michael S McLachlan
- Department of Environmental Science, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Mira Petrovic
- Catalan Institute for Water Research (ICRA), Girona, and Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Tobias Schulze
- Helmholtz Centre for Environmental Research - UFZ, Department of Effect-Directed Analysis, Permoserstr. 15, 04318 Leipzig, Germany
| | | | | | - Annemarie Van Wezel
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Paola Verlicchi
- Department of Engineering, University of Ferrara, Ferrara, Italy
| | | |
Collapse
|
10
|
Puhlmann N, Olsson O, Kümmerer K. Transformation products of sulfonamides in aquatic systems: Lessons learned from available environmental fate and behaviour data. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154744. [PMID: 35339561 DOI: 10.1016/j.scitotenv.2022.154744] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Sulfonamides (SUAs) and their transformation products (TPs) contribute to environmental pollution. Importance of research on TPs' properties has been emphasised, e.g. allowing a comprehensive environmental risk assessment of their parent compounds. However, TPs' properties have been discussed in reviews on SUAs only marginally, if at all. For the first time, a scientific literature review aims to discuss the current state of knowledge on SUA-TPs including research gaps, and commonalities of SUA-TPs and TPs in general. Literature on SUA-TPs was consulted systematically to collect data on occurrence, physicochemical properties, degradability, and (eco)toxicity. TPs of 14 SUAs were reviewed, and aspects applicable for TPs in general were identified to guide future handling of TPs as a complex category of compounds. The data of sulfamethoxazole (SMX), the main representative, was analysed in more detail to discuss insights on a chemical level. Literature search resulted in 607 SUA-TPs reported in 222 publications. Only for 4%, 31%, and 35% of these TPs, data on occurrence in aquatic systems, on degradation, and (eco)toxicity, respectively, was found. Several mixtures of SUA-TPs were more ecotoxic than their parent compounds, e.g. 10 of 15 mixtures of SMX-TPs. Only few TPs were tested as single substance. Although several TPs could be eliminated experimentally, their mineralisation rate remained often unknown. Thus, further transformation to persistent TPs could not be ruled out. Standardised biodegradability tests of individual TPs would monitor their mineralisation rate, but are almost completely lacking. Reasons are likely poor availability of TPs, but also the focus on abiotic water treatment. Data assessment demonstrated that data of high significance according to standard methods, e.g. OECD methods for chronic (eco)toxicity and ready biodegradability, is needed to assess environmental risks of prioritised TPs, but also to redesign their parent pharmaceutical for complete environmental mineralisation in a long-term (Benign by Design).
Collapse
Affiliation(s)
- Neele Puhlmann
- Institute of Sustainable Chemistry, Leuphana University of Lüneburg, Universitätsallee 1, 21335 Lüneburg, Germany
| | - Oliver Olsson
- Institute of Sustainable Chemistry, Leuphana University of Lüneburg, Universitätsallee 1, 21335 Lüneburg, Germany.
| | - Klaus Kümmerer
- Institute of Sustainable Chemistry, Leuphana University of Lüneburg, Universitätsallee 1, 21335 Lüneburg, Germany; Research and Education Hub, International Sustainable Chemistry Collaborative Center ISC3, Germany.
| |
Collapse
|
11
|
Amsel AK, Olsson O, Kümmerer K. Inventory of biodegradation data of ionic liquids. CHEMOSPHERE 2022; 299:134385. [PMID: 35337825 DOI: 10.1016/j.chemosphere.2022.134385] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Ionic liquids (ILs) are increasingly of interest for environmentally open applications. Therefore, completely mineralising ILs are highly desirable. We reviewed the current state of knowledge on ILs' environmental biodegradability and identified research needs. Literature data were evaluated as for applied standard methods (e.g. OECD, ISO, APHA) for biodegradation of ILs in order to get an overview on the validity of the test results received and ILs' biodegradability. 109 studies were evaluated. The ILs were categorised based on the cation's core structure. The biodegradation data was classified according to a traffic light system (red: 0-19% degradation, amber: 20-59% degradation, green: ≥ 60% degradation). Not all studies could be assessed for compliance with the test guidelines due to missing test parameters. Moreover, no study discussed all validation criteria as defined by the test guidelines. Consequently, the reliability and quality of the existing biodegradation data is restrained. With regard to the different cations classified for ≥ 60% biodegradability, phosphonium ILs are the least biodegradable, followed by imidazolium ones. The most ILs that were biodegradable are cholinium ILs. The results indicate the need for more and qualitatively better testing according to standard methods including application and reporting of all validation criteria in order to get reliable data that enables the comparison of the test data and a comprehensive understanding of ILs' biodegradability. Moreover, reliable data allows the selection of sufficiently environmentally biodegradable ILs if an introduction into the environment during use cannot be excluded.
Collapse
Affiliation(s)
- Ann-Kathrin Amsel
- Institute of Sustainable Chemistry, Leuphana University of Lüneburg, Universitätsallee 1, 21335, Lüneburg, Germany; Research and Education Hub, International Sustainable Chemistry Collaborative Centre (ISC(3)), Leuphana University of Lüneburg, Universitätsallee 1, 21335, Lüneburg, Germany
| | - Oliver Olsson
- Institute of Sustainable Chemistry, Leuphana University of Lüneburg, Universitätsallee 1, 21335, Lüneburg, Germany
| | - Klaus Kümmerer
- Institute of Sustainable Chemistry, Leuphana University of Lüneburg, Universitätsallee 1, 21335, Lüneburg, Germany; Research and Education Hub, International Sustainable Chemistry Collaborative Centre (ISC(3)), Leuphana University of Lüneburg, Universitätsallee 1, 21335, Lüneburg, Germany.
| |
Collapse
|
12
|
Wastewater effluent affects behaviour and metabolomic endpoints in damselfly larvae. Sci Rep 2022; 12:6830. [PMID: 35474093 PMCID: PMC9042914 DOI: 10.1038/s41598-022-10805-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/13/2022] [Indexed: 11/29/2022] Open
Abstract
Wastewater treatment plant effluents have been identified as a major contributor to increasing anthropogenic pollution in aquatic environments worldwide. Yet, little is known about the potentially adverse effects of wastewater treatment plant effluent on aquatic invertebrates. In this study, we assessed effects of wastewater effluent on the behaviour and metabolic profiles of damselfly larvae (Coenagrion hastulatum), a common aquatic invertebrate species. Four key behavioural traits: activity, boldness, escape response, and foraging (traits all linked tightly to individual fitness) were studied in larvae before and after one week of exposure to a range of effluent dilutions (0, 50, 75, 100%). Effluent exposure reduced activity and foraging, but generated faster escape response. Metabolomic analyses via targeted and non-targeted mass spectrometry methods revealed that exposure caused significant changes to 14 individual compounds (4 amino acids, 3 carnitines, 3 lysolipids, 1 peptide, 2 sugar acids, 1 sugar). Taken together, these compound changes indicate an increase in protein metabolism and oxidative stress. Our findings illustrate that wastewater effluent can affect both behavioural and physiological traits of aquatic invertebrates, and as such might pose an even greater threat to aquatic ecosystems than previously assumed. More long-term studies are now needed evaluate if these changes are linked to adverse effects on fitness. The combination of behavioural and metabolomic assessments provide a promising tool for detecting effects of wastewater effluent, on multiple biological levels of organisation, in aquatic ecosystems.
Collapse
|
13
|
Silva AR, Alves MM, Pereira L. Progress and prospects of applying carbon-based materials (and nanomaterials) to accelerate anaerobic bioprocesses for the removal of micropollutants. Microb Biotechnol 2022; 15:1073-1100. [PMID: 34586713 PMCID: PMC8966012 DOI: 10.1111/1751-7915.13822] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 11/28/2022] Open
Abstract
Carbon-based materials (CBM), including activated carbon (AC), activated fibres (ACF), biochar (BC), nanotubes (CNT), carbon xenogels (CX) and graphene nanosheets (GNS), possess unique properties such as high surface area, sorption and catalytic characteristics, making them very versatile for many applications in environmental remediation. They are powerful redox mediators (RM) in anaerobic processes, accelerating the rates and extending the level of the reduction of pollutants and, consequently, affecting positively the global efficiency of their partial or total removal. The extraordinary conductive properties of CBM, and the possibility of tailoring their surface to address specific pollutants, make them promising as catalysts in the treatment of effluents containing diverse pollutants. CBM can be combined with magnetic nanoparticles (MNM) assembling catalytic and magnetic properties in a single composite (C@MNM), allowing their recovery and reuse after the treatment process. Furthermore, these composites have demonstrated extraordinary catalytic properties. Evaluation of the toxicological and environmental impact of direct and indirect exposure to nanomaterials is an important issue that must be considered when nanomaterials are applied. Though the chemical composition, size and physical characteristics may contribute to toxicological effects, the potential toxic impact of using CBM is not completely clear and is not always assessed. This review gives an overview of the current research on the application of CBM and C@MNM in bioremediation and on the possible environmental impact and toxicity.
Collapse
Affiliation(s)
- Ana Rita Silva
- CEB –Centre of Biological EngineeringUniversity of MinhoCampus de GualtarBraga4710‐057Portugal
| | - Maria Madalena Alves
- CEB –Centre of Biological EngineeringUniversity of MinhoCampus de GualtarBraga4710‐057Portugal
| | - Luciana Pereira
- CEB –Centre of Biological EngineeringUniversity of MinhoCampus de GualtarBraga4710‐057Portugal
| |
Collapse
|
14
|
Barcellos DDS, Procopiuck M, Bollmann HA. Management of pharmaceutical micropollutants discharged in urban waters: 30 years of systematic review looking at opportunities for developing countries. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151128. [PMID: 34710408 DOI: 10.1016/j.scitotenv.2021.151128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/17/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
Pharmaceutical micropollutants' contamination of urban waters has been studied globally for decades, but the concentration of innovations in management initiatives is still in developed economies. The gap between the locus of innovations in pharmaceuticals and the relative stagnation in less developed economies to manage waste originating in this activity seems fruitful for investigations on innovation in integrated micropollutant management strategies. These tensions allow for advances in current knowledge for environmental management and, particularly, finding solutions for the contamination by pharmaceutical micropollutants of urban water bodies in developing countries. We aim to list the main strategies for managing pharmaceutical micropollutants discussed to point out opportunities for developing countries to advance in this direction. Methodologically, we conducted a systematic literature review from 1990 to 2020, covering 3027 documents on "pharmaceutical micropollutants management." The framework formed by the macro-approach to integrated management operationalized by the dimensional micro-approaches: technical, organizational, community, and governmental allowed us to understand that (1) the management of pharmaceutical micropollutants tends to occur through a technical approach centered on the removal of aquatic matrices, green chemistry, and urine diversion; (2) management with an organizational approach has enabled removing drugs from water bodies by drug take-back program, collaborative projects, drug use reduction, and better organizational practices; (3) the community approach have helped minimize this type of pollution by reducing the consumption of medicines and the proper destination for medicines that are no longer in use. Finally, the government management approach emerges as a source of legal, economic, and informational instruments to reduce pollution by pharmaceutical micropollutants. Furthermore, these management approaches allowed us to identify 15 opportunities for possible adjustments for developing societies. These opportunities can be promising for practices and research and, in the medium term, contribute to minimizing pollution by pharmaceutical micropollutants in urban waters.
Collapse
Affiliation(s)
- Demian da Silveira Barcellos
- Graduate Program in Urban Management (PPGTU), Pontifical Catholic University of Paraná (PUCPR), 1155 Imaculada Conceição St, Curitiba, Parana, Brazil.
| | - Mario Procopiuck
- Graduate Program in Urban Management (PPGTU), Pontifical Catholic University of Paraná (PUCPR), 1155 Imaculada Conceição St, Curitiba, Parana, Brazil.
| | - Harry Alberto Bollmann
- Graduate Program in Urban Management (PPGTU), Pontifical Catholic University of Paraná (PUCPR), 1155 Imaculada Conceição St, Curitiba, Parana, Brazil.
| |
Collapse
|
15
|
Mamba FB, Mbuli BS, Ramontja J. Recent Advances in Biopolymeric Membranes towards the Removal of Emerging Organic Pollutants from Water. MEMBRANES 2021; 11:798. [PMID: 34832027 PMCID: PMC8619572 DOI: 10.3390/membranes11110798] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/22/2022]
Abstract
Herein, this paper details a comprehensive review on the biopolymeric membrane applications in micropollutants' removal from wastewater. As such, the implications of utilising non-biodegradable membrane materials are outlined. In comparison, considerations on the concept of utilising nanostructured biodegradable polymeric membranes are also outlined. Such biodegradable polymers under considerations include biopolymers-derived cellulose and carrageenan. The advantages of these biopolymer materials include renewability, biocompatibility, biodegradability, and cost-effectiveness when compared to non-biodegradable polymers. The modifications of the biopolymeric membranes were also deliberated in detail. This included the utilisation of cellulose as matrix support for nanomaterials. Furthermore, attention towards the recent advances on using nanofillers towards the stabilisation and enhancement of biopolymeric membrane performances towards organic contaminants removal. It was noted that most of the biopolymeric membrane applications focused on organic dyes (methyl blue, Congo red, azo dyes), crude oil, hexane, and pharmaceutical chemicals such as tetracycline. However, more studies should be dedicated towards emerging pollutants such as micropollutants. The biopolymeric membrane performances such as rejection capabilities, fouling resistance, and water permeability properties were also outlined.
Collapse
Affiliation(s)
- Feziwe B. Mamba
- Department of Chemical Sciences, Faculty of Science, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa;
| | - Bhekani S. Mbuli
- DST/Mintek Nanotechnology Innovation Centre, University of Johannesburg, Johannesburg 2028, South Africa
| | - James Ramontja
- Centre for Nanomaterials Science Research, University of Johannesburg, Johannesburg 2028, South Africa
| |
Collapse
|
16
|
Trawiński J, Szpot P, Zawadzki M, Skibiński R. Photochemical transformation of fentanyl under the simulated solar radiation - Enhancement of the process by heterogeneous photocatalysis and in silico analysis of toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148171. [PMID: 34119797 DOI: 10.1016/j.scitotenv.2021.148171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
In this study the photochemical transformation of fentanyl-a very potent opioid drug-under simulated solar radiation was investigated for the first time. This pharmaceutical is frequently detected in various environment samples at concentrations that should be regarded as potentially harmful. Nevertheless, to date, no drug phototransformation products (TPs) have been reported. Considering fentanyl's exceptionally high toxicity, knowledge of the properties of these potential TPs is essential in order to properly assess its pollution impact. In this study, all photolytic experiments were performed using a xenon lamp (D65 filter) and RP-UHPLC coupled with the ESI-high-resolution tandem mass spectrometry. The phototransformation of fentanyl in natural river water and the application of heterogeneous photocatalysis as a possible way of decontaminating water were also investigated. Fentanyl turned out to be photostable, but twenty-six previously unreported TPs (formed mainly as a consequence of hydroxylation and oxidation) were found and characterized. The applied catalysts-TiO2 and ZnO-showed very high effectiveness, and the presence of the natural water matrix further increased the photodecomposition rate (up to 600 times) relative to direct photolysis. Importantly, the almost complete degradation of the parent compound as well as its TPs after 16 min of irradiation indicated that heterogeneous photocatalysis can be considered an efficient way of treatment of fentanyl-contaminated water. The computational analysis of toxicity showed that fentanyl may be more harmful to rodents and aquatic species than its TPs. However, some of these products are probably more mutagenic and developmentally toxic. Additionally, one product in particular may be a strong estrogenic compound, proving the importance of assessing TPs' toxic properties. The evaluation of bioaccumulation, bioconcentration and biodegradability revealed that fentanyl possesses unfavorable properties compared to TPs.
Collapse
Affiliation(s)
- Jakub Trawiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland
| | - Paweł Szpot
- Wroclaw Medical University, Department of Forensic Medicine, 4 J. Mikulicza-Radeckiego Street, Wroclaw 50-345, Poland; Institute of Toxicology Research, 45 Kasztanowa Street, Borowa 55-093, Poland
| | - Marcin Zawadzki
- Wroclaw Medical University, Department of Forensic Medicine, 4 J. Mikulicza-Radeckiego Street, Wroclaw 50-345, Poland; Institute of Toxicology Research, 45 Kasztanowa Street, Borowa 55-093, Poland
| | - Robert Skibiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland.
| |
Collapse
|
17
|
de Morais E Silva L, Alves VM, Dantas ERB, Scotti L, Lopes WS, Muratov EN, Scotti MT. Chemical safety assessment of transformation products of landfill leachate formed during the Fenton process. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126438. [PMID: 34182425 DOI: 10.1016/j.jhazmat.2021.126438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
Organic chemicals identified in raw landfill leachate (LL) and their transformation products (TPs), formed during Fenton treatment, were analyzed for chemical safety following REACH guidelines. The raw LL was located in the metropolitan region of Campina Grande, in northeast Brazil. We elucidated 197 unique chemical structures, including 154 compounds that were present in raw LL and 82 compounds that were detected in the treated LL, totaling 39 persistent compounds and 43 TPs. In silico models were developed to identify and prioritize the potential level of hazard/risk these compounds pose to the environment and society. The models revealed that the Fenton process improved the biodegradability of TPs. Still, a slight increase in ecotoxicological effects was observed among the compounds in treated LL compared with those present in raw LL. No differences were observed for aryl hydrocarbon receptor (AhR) and antioxidant response element (ARE) mutagenicity. Similar behavior among both raw and treated LL samples was observed for biodegradability; Tetrahymena pyriformis, Daphnia magna, Pimephales promelas and ARE, AhR, and Ames mutagenicity. Overall, our results suggest that raw and treated LL samples have similar activity profiles for all endpoints other than biodegradability.
Collapse
Affiliation(s)
- Luana de Morais E Silva
- Post-Graduate Program in Science and Environmental Technology, Department of Sanitary and Environmental Engineering, State University of Paraíba, 58429-500 Campina Grande, Paraíba, Brazil
| | - Vinicius M Alves
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Edilma R B Dantas
- Post-Graduate Program in Science and Environmental Technology, Department of Sanitary and Environmental Engineering, State University of Paraíba, 58429-500 Campina Grande, Paraíba, Brazil
| | - Luciana Scotti
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, 58051-900 João Pessoa, Paraíba, Brazil; Teaching and Research Management - University Hospital, Federal University of Paraíba-Campus I, 58051-970 João Pessoa, Paraíba, Brazil
| | - Wilton Silva Lopes
- Post-Graduate Program in Science and Environmental Technology, Department of Sanitary and Environmental Engineering, State University of Paraíba, 58429-500 Campina Grande, Paraíba, Brazil
| | - Eugene N Muratov
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA; Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, 58051-900 João Pessoa, Paraíba, Brazil
| | - Marcus Tullius Scotti
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, 58051-900 João Pessoa, Paraíba, Brazil.
| |
Collapse
|
18
|
Grabitz E, Olsson O, Kümmerer K. Towards the design of organosilicon compounds for environmental degradation by using structure biodegradability relationships. CHEMOSPHERE 2021; 279:130442. [PMID: 33887595 DOI: 10.1016/j.chemosphere.2021.130442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/20/2021] [Accepted: 03/27/2021] [Indexed: 06/12/2023]
Abstract
Organosilicon compounds have numerous applications in consumer products. After entering the environment most of them are resistant against microbial degradation and they persist in the environment. Accordingly, they are ubiquitously present in the environment. Therefore, better environmentally degradable organosilicon compounds are urgently needed. A systematic investigation of environmental degradability of organosilicon compounds allows to derive some general design principles, which in turn would enable chemists to reduce or better avoid environmental persistence of organosilicon compounds in the environment. Therefore, in this study, all organosilicon substances registered in the European Chemicals Agency (ECHA) database were evaluated for their environmental biodegradability. Results of own experiments with different organosilicon substances were added to extend the data basis. A dataset was generated. An assessment of all data was done and invalid data were excluded. The remaining 182 substances were grouped regarding their structure to derive general rules for the environmental biodegradability of organosilicon compounds. Non-biodegradable at all were for example cyclic, linear and branched siloxanes. Groups like ethers, esters, oximes, amines, and amides were prone to hydrolysis, which can result in readily biodegradable intermediates if they do not contain silicon functional groups anymore. This knowledge could be used for the design of better degradable organosilicon compounds as non-degradable substances should be avoided if they enter the environment after their usage.
Collapse
Affiliation(s)
- Elisa Grabitz
- Institute of Sustainable and Environmental Chemistry Leuphana University of Lüneburg Universitätsallee 1, 21335, Lüneburg, Germany.
| | - Oliver Olsson
- Institute of Sustainable and Environmental Chemistry Leuphana University of Lüneburg Universitätsallee 1, 21335, Lüneburg, Germany.
| | - Klaus Kümmerer
- Institute of Sustainable and Environmental Chemistry Leuphana University of Lüneburg Universitätsallee 1, 21335, Lüneburg, Germany.
| |
Collapse
|
19
|
Kaci MM, Nasrallah N, Atmani F, Kebir M, Guernanou R, Soukeur A, Trari M. Enhanced photocatalytic performance of CuAl2O4 nanoparticles spinel for dye degradation under visible light. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04496-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Corominas L, Gimeno P, Constantino C, Daldorph P, Comas J. Can source control of pharmaceuticals decrease the investment needs in urban wastewater infrastructure? JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124375. [PMID: 33213978 DOI: 10.1016/j.jhazmat.2020.124375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/05/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
The source control of pharmaceuticals involves influencing the everyday consumption volume and compound choice. This paper evaluates how source control contributes to protecting the environmental health and decreasing the investment needs in urban wastewater infrastructure. Different levels of reduction in diclofenac consumption (as recommended by the European Medicines Agency) compensated by equivalent increases in naproxen consumption (a less environmentally harmful compound) are evaluated. The different loads of compounds are fed into a microcontaminant fate and transport model of the Llobregat river basin (Spain) to assess the investment needs in tertiary treatment to reach diclofenac and naproxen concentrations below environmental quality standards. The results show that, despite the implementation of source control measures, tertiary treatment upgrades are still required in every scenario evaluated. Even though source control of pharmaceuticals decreases the investment needs in urban wastewater infrastructure, apparent concentrations reductions (i.e. statistically significant differences relative to the reference situation) are only observed in drastic substitutions of diclofenac by naproxen (a reduction in the total diclofenac consumption by 73% and a corresponding increase in naproxen consumption). The results also show that Spain is on good track with regards to the substitution of diclofenac by naproxen (among the top 5 in Europe), and this paper shows how positive this substitution can be for the environment.
Collapse
Affiliation(s)
- Lluís Corominas
- ICRA, Catalan Institute for Water Research, Carrer Emili Grahit 101, E-17003 Girona, Spain; Universitat de Girona, Girona, Spain.
| | - Pau Gimeno
- ICRA, Catalan Institute for Water Research, Carrer Emili Grahit 101, E-17003 Girona, Spain; Universitat de Girona, Girona, Spain
| | - Carlos Constantino
- Atkins, (The Hub) 500 Park Avenue, Aztec West, Almondsbury, Bristol BS32 4RZ, UK
| | - Peter Daldorph
- Atkins, (The Hub) 500 Park Avenue, Aztec West, Almondsbury, Bristol BS32 4RZ, UK
| | - Joaquim Comas
- ICRA, Catalan Institute for Water Research, Carrer Emili Grahit 101, E-17003 Girona, Spain; Universitat de Girona, Girona, Spain; Laboratory of Chemical and Environmental Engineering (LEQUIA), Institute of the Environment, University of Girona, E-17003 Girona, Spain
| |
Collapse
|
21
|
Bork M, Lange J, Graf-Rosenfellner M, Hensen B, Olsson O, Hartung T, Fernández-Pascual E, Lang F. Urban storm water infiltration systems are not reliable sinks for biocides: evidence from column experiments. Sci Rep 2021; 11:7242. [PMID: 33790334 PMCID: PMC8012575 DOI: 10.1038/s41598-021-86387-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 03/15/2021] [Indexed: 11/30/2022] Open
Abstract
Groundwater quality in urban catchments is endangered by the input of biocides, such as those used in facade paints to suppress algae and fungal growth and washed off by heavy rainfall. Their retention in storm water infiltration systems (SIS) depends, in addition to their molecular properties, on chemical properties and structure of the integrated soil layer. These soil properties change over time and thus possibly also the relevance of preferential flow paths, e.g. due to ongoing biological activity. To investigate the mobility of biocides in SIS, we analyzed the breakthrough of differently adsorbing tracers (bromide, uranine, sulforhodamine B) and commonly used biocides (diuron, terbutryn, octhilinone) in laboratory column experiments of undisturbed soil cores of SIS, covering ages from 3 to 18 years. Despite similar soil texture and chemical soil properties, retention of tracers and biocides differed distinctly between SIS. Tracer and biocide breakthrough ranged from 54% and 5%, to 96% and 54%, respectively. We related the reduced solute retention to preferential transport in macropores as could be confirmed by brilliant blue staining. Our results suggest an increasing risk of groundwater pollution with increasing number of macropores related to biological activity and the age of SIS.
Collapse
Affiliation(s)
- Marcus Bork
- Hydrology, Faculty of Environment and Natural Resources, University of Freiburg, 79098, Freiburg, Germany. .,Soil Ecology, Faculty of Environment and Natural Resources, University of Freiburg, 79098, Freiburg, Germany.
| | - Jens Lange
- Hydrology, Faculty of Environment and Natural Resources, University of Freiburg, 79098, Freiburg, Germany
| | - Markus Graf-Rosenfellner
- Soil Ecology, Faculty of Environment and Natural Resources, University of Freiburg, 79098, Freiburg, Germany
| | - Birte Hensen
- Institute of Sustainable and Environmental Chemistry, Leuphana University Lüneburg, 21335, Lünbeburg, Germany
| | - Oliver Olsson
- Institute of Sustainable and Environmental Chemistry, Leuphana University Lüneburg, 21335, Lünbeburg, Germany
| | - Thomas Hartung
- Soil Ecology, Faculty of Environment and Natural Resources, University of Freiburg, 79098, Freiburg, Germany
| | - Elena Fernández-Pascual
- Institute of Sustainable and Environmental Chemistry, Leuphana University Lüneburg, 21335, Lünbeburg, Germany.,Environmental Research Institute, University College Cork, Cork, T23 XE10, Ireland
| | - Friederike Lang
- Soil Ecology, Faculty of Environment and Natural Resources, University of Freiburg, 79098, Freiburg, Germany
| |
Collapse
|
22
|
van Dijk J, Gustavsson M, Dekker SC, van Wezel AP. Towards 'one substance - one assessment': An analysis of EU chemical registration and aquatic risk assessment frameworks. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 280:111692. [PMID: 33293165 DOI: 10.1016/j.jenvman.2020.111692] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/05/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
With the Green Deal the EU aims to achieve a circular economy, restore biodiversity and reduce environmental pollution. As a part of the Green Deal a 'one-substance one-assessment' (OS-OA) approach for chemicals has been proposed. The registration and risk assessment of chemicals on the European market is currently fragmented across different legal frameworks, dependent on the chemical's use. In this review, we analysed the five main European chemical registration frameworks and their risk assessment procedures for the freshwater environment, covering 1) medicines for human use, 2) veterinary medicines, 3) pesticides, 4) biocides and 5) industrial chemicals. Overall, the function of the current frameworks is similar, but important differences exist between the frameworks' environmental protection goals and risk assessment strategies. These differences result in inconsistent assessment outcomes for similar chemicals. Chemicals are also registered under multiple frameworks due to their multiple uses, and chemicals which are not approved under one framework are in some instances allowed on the market under other frameworks. In contrast, an OS-OA will require a uniform hazard assessment between all different frameworks. In addition, we show that across frameworks the industrial chemicals are the least hazardous for the freshwater environment (median PNEC of 2.60E-2 mg/L), whilst biocides are the most toxic following current regulatory assessment schemes (median PNEC of 1.82E-4 mg/L). Finally, in order to facilitate a successful move towards a OS-OA approach we recommend a) harmonisation of environmental protection goals and risk assessment strategies, b) that emission, use and production data should be made publicly available and that data sharing becomes a priority, and c) an alignment of the criteria used to classify problematic substances.
Collapse
Affiliation(s)
- Joanke van Dijk
- Copernicus Institute of Sustainable Development, Utrecht University, Princetonlaan 8a, CB, Utrecht, 3584, the Netherlands.
| | - Mikael Gustavsson
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, SE-412 96, Sweden
| | - Stefan C Dekker
- Copernicus Institute of Sustainable Development, Utrecht University, Princetonlaan 8a, CB, Utrecht, 3584, the Netherlands
| | - Annemarie P van Wezel
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Sciencepark 904, XH Amsterdam, 1098, the Netherlands
| |
Collapse
|
23
|
Wang J, Li S, Zhu Y, Guo J, Liu J, He B. Targeted eco-pharmacovigilance as an optimized management strategy for adverse effects of pharmaceuticals in the environment. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 82:103565. [PMID: 33321209 DOI: 10.1016/j.etap.2020.103565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/25/2020] [Accepted: 12/09/2020] [Indexed: 05/21/2023]
Abstract
From a perspective of drug administration, eco-pharmacovigilance (EPV) has been proposed as a new approach to prevent the environmental risks posed by pharmaceutical emerging contaminants. However, it is impracticable to practice unitary and rigor EPV process for all the pharmaceutical substances with complex and diversified chemical, biological or toxicological properties. We proposed the "targeted EPV" that is the science and activities associated with the targeted detection, evaluation, understanding, and prevention of adverse effects of high-priority hazardous pharmaceuticals in the environment, especially focusing on the control of main anthropogenic sources of pharmaceutical emission among key stakeholders in high-risk areas could be used as an optimized management strategy for pharmaceutical pollution. "Targeted EPV" implementation should focus on the targeted monitoring of the occurrence of high-priority pharmaceuticals in environmental samples, the targeted reporting of over-standard discharge, the targeted management for main emission sources, the targeted legislation and researches on high-priority pharmaceutical pollutants, as well as the targeted educational strategies for specific key populations.
Collapse
Affiliation(s)
- Jun Wang
- Department of Pharmacology, College of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Shulan Li
- Department of Pharmacology, College of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Yujie Zhu
- Department of Pharmacology, College of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Jie Guo
- Department of Pharmacology, College of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Juan Liu
- Department of Pharmacology, College of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Bingshu He
- Hubei Province Women and Children Hospital, Wuhan, China.
| |
Collapse
|
24
|
Liu L, Li J, Xin Y, Huang X, Liu C. Evaluation of wetland substrates for veterinary antibiotics pollution control in lab-scale systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116152. [PMID: 33307393 DOI: 10.1016/j.envpol.2020.116152] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/03/2020] [Accepted: 11/22/2020] [Indexed: 06/12/2023]
Abstract
The behaviors of typical veterinary antibiotics (oxytetracycline, ciprofloxacin and sulfamethazine) and 75 types of corresponding antibiotic resistant genes (ARGs) in four substrate systems (zeolite, gravel, red brick, and oyster shell) were investigated in this study. The results indicated that during treating synthetic livestock wastewater with individual antibiotic influent concentration of 100 μg/L, the effluent contained oxytetracycline and ciprofloxacin concentrations of 0.7-1.5 μg/L and 1.0-1.9 μg/L, respectively, in the zeolite and red brick systems, which were significantly lower than those of the other substrate systems (4.6-14.5 μg/L). Statistical correlation analyses indicated that the difference regarding oxytetracycline and ciprofloxacin removal among the four substrates was determined by their adsorption capacity which was controlled by the chemisorption mechanism. The average removal efficiency of sulfamethazine in the gravel system (48%) was higher than that of the other substrate systems (34-45%), and biodegradation may alter the sulfamethazine performance because of its co-metabolism process. Although tetG, floR, sul1, and qacEΔ1 were the dominant ARGs in all substrate systems (8.74 × 10-2-6.34 × 10-1), there was difference in the total ARG enrichment levels among the four substrates. Oyster shell exhibited the lowest total relative abundance (1.56 × 100) compared to that of the other substrates (1.82 × 100-2.27 × 100), and the ARG total relative abundance exhibited significant negative and positive correlations with the substrate pH and system bacterial diversity (P < 0.05), respectively. In summary, this study indicated that due to the difference of adsorption capacity and residual abundant nutrient in wastewater, the wetland substrate selection can affect the removal efficiency of veterinary antibiotics, and antibiotics may not be the determining factor of ARG enrichment in the substrate system.
Collapse
Affiliation(s)
- Lin Liu
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; Fujian Institute of Innovation, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Jie Li
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Xin
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu Huang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Chaoxiang Liu
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
25
|
Schmid C, Cozzarini L, Zambello E. Microplastic's story. MARINE POLLUTION BULLETIN 2021; 162:111820. [PMID: 33203604 DOI: 10.1016/j.marpolbul.2020.111820] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
The problem of microplastic pollution is now the order of the day in front of everyone's eyes affecting the environment and the health of leaving creature. This work aims to retrace the history of microplastics in a critical way through a substantial bibliographic collection, defining the points still unresolved and those that can be resolved. Presence of marine litter in different environments is reviewed on a global scale, focusing in particular on micro and macro plastics definition, classification and characterization techniques.
Collapse
Affiliation(s)
- Chiara Schmid
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6A, 34127 Trieste, Italy
| | - Luca Cozzarini
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6A, 34127 Trieste, Italy.
| | - Elena Zambello
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6A, 34127 Trieste, Italy
| |
Collapse
|
26
|
Nguyen PY, Carvalho G, Reis MAM, Oehmen A. A review of the biotransformations of priority pharmaceuticals in biological wastewater treatment processes. WATER RESEARCH 2021; 188:116446. [PMID: 33038717 DOI: 10.1016/j.watres.2020.116446] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/19/2020] [Accepted: 09/22/2020] [Indexed: 05/18/2023]
Abstract
Wastewater effluent discharges have been considered as one of the main sources of synthetic chemicals entering into the aquatic environment. Even though they occur at low concentrations, pharmaceutically active compounds (PhACs) can have an impact on ecological toxicity that affects aquatic organisms. Moreover, new regulations in development toward preserving water quality reinforces the increasing need to monitor and abate some PhACs in wastewater treatment plants (WWTPs), where they are typically only partially eliminated. Unlike most previous reviews, we have focussed on how the main biological and chemical molecular factors impact the biotransformations of key PhACs in biological WWTP processes. Biotransformations have been found to be an important contributor towards the removal of PhACs from WWTP effluents. This review paper critically assesses these aspects and the recent advances that have been achieved in wastewater treatment processes for biodegradation of 7 PhACs; namely the non-steroidal anti-inflammatory drug (NSAID) diclofenac (DCF); the macrolide antibiotics azithromycin (AZM), erythromycin (ERY) and clarithromycin (CLR); the two natural estrogens estrone (E1) and 17β-estradiol (E2), and the synthetic estrogen 17α-ethinylesradiol (EE2). These represent the micropollutants of the EU Watch list in Decision 2015/495/EU that are most relevant to WWTPs due to their frequent detection. The metabolic pathways, transformation products and impact of relevant factors to biological WWTP processes is addressed in this review. The biokinetics of PhAC biodegradation in different engineered bioprocesses is also discussed. Promising technologies and operational strategies that are likely to have a high impact on controlling PhAC releases are highlighted and future research needs are also proposed.
Collapse
Affiliation(s)
- P Y Nguyen
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | - Gilda Carvalho
- Advanced Water Management Centre, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Maria A M Reis
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Adrian Oehmen
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
27
|
Assessment of the biotic and abiotic elimination processes of five micropollutants during cultivation of the green microalgae Acutodesmus obliquus. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.biteb.2020.100512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Zhao F, Chen L, Yen H, Sun L, Li S, Li M, Feng Q, Yang L. Multimedia mass balance approach to characterizing the transport potential of antibiotics in soil-plant systems following manure application. JOURNAL OF HAZARDOUS MATERIALS 2020; 393:122363. [PMID: 32120210 DOI: 10.1016/j.jhazmat.2020.122363] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/16/2020] [Accepted: 02/20/2020] [Indexed: 06/10/2023]
Abstract
Antibiotics are ubiquitous in agro-ecosystems worldwide, which can pose remarkable risks to ecological security and human health. However, comprehensive evaluation on the multimedia fate and transport potential of antibiotics in soil-plant systems is still lacking. A mass balance approach was performed to gain insights into the transport and fate of antibiotics in soil-plant systems following manure application. Our results showed that more than 99 % of antibiotics were released from applied manure fertilizer into the soil-plant system. Antibiotic concentrations in soil and plant compartments increased over 120 days. Most of the antibiotics persisted in soil (about 65 %), while less than 0.1 % accumulated in the plants. Rainfall-induced runoff, subsurface interflow and soil water infiltration were alternative transport pathways for antibiotics in soil-plant systems although their contributions were limited. Dissipation was the main removal pathway for antibiotics accounting for about 33 % of total input mass. Tetracyclines had higher mass proportion in soil following by quinolones, whereas most of sulfonamides and macrolides were dissipated. Mass balance approach based on tracking environmental fates of antibiotics can facilitate the understandings in the source comparisons and mitigation strategies, and therefore provide insights to inform modeling and limiting the transport of manure-borne antibiotics to neighboring environmental compartments.
Collapse
Affiliation(s)
- Fangkai Zhao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liding Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haw Yen
- Blackland Research and Extension Center, Texas A&M University, Temple, TX, 76502, USA
| | - Long Sun
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Shoujuan Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingyu Feng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Lei Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
29
|
Wang P, Sun Q, Wan R, Du Q, Xia X. Progesterone affects the transcription of genes in the circadian rhythm signaling and hypothalamic-pituitary-gonadal axes and changes the sex ratio in crucian carp (Carassius auratus). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 77:103378. [PMID: 32279014 DOI: 10.1016/j.etap.2020.103378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 10/22/2019] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
Progesterone (P4) is an extensively applied progestin in human and veterinary medicine that has been widely detected in ambient aquatic environments, which can be detrimental to the health of aquatic organisms. Here we investigate the long-term effects of P4 on the transcription of genes related to the circadian rhythm signaling pathway and hypothalamic-pituitary-gonadal (HPG) axes in the crucian carp, which may have a potentially negative on endocrine-disrupting and sex differentiation impacts. Our results suggest that the expression of genes associated with the circadian rhythm signaling pathway are altered following exposure for 10, 20, 30, 40, 50 and 60 d, leading to disorders in the endocrine system disorders and the regulation of HPG axes-related gene expression. These maladies may affect gonadal development and the reproductive systems of crucian carp and provide a plausible mechanism for the observed change in sex ratio toward females after 180 d.
Collapse
Affiliation(s)
- Peijin Wang
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.
| | - Qingyu Sun
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.
| | - Ruyan Wan
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.
| | - Qiyan Du
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.
| | - Xiaohua Xia
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.
| |
Collapse
|
30
|
Wang J, Li S, He B. Chinese physicians' attitudes toward eco-directed sustainable prescribing from the perspective of ecopharmacovigilance: a cross-sectional study. BMJ Open 2020; 10:e035502. [PMID: 32487575 PMCID: PMC7265008 DOI: 10.1136/bmjopen-2019-035502] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Eco-directed sustainable prescribing (EDSP) is an effective upstream way to reduce the environmental footprints of active pharmaceutical ingredients (APIs), a kind of emerging contaminants, from the patients' excretion. EDSP is one of the key steps in the programme of ecopharmacovigilance (EPV), a drug administration route on API pollution. OBJECTIVE To assess the attitudes of physicians prescribing medicines regarding EDSP from the perspective of EPV. DESIGN A cross-sectional study conducted from March 2019 to June 2019. SETTING 5 government general hospitals in Hubei province, China. PARTICIPANTS 405 physicians were randomly selected and 262 valid questionnaires were obtained. OUTCOME MEASURES A self-developed questionnaire, which inquired about the participant characteristics, perceptions and attitudes toward API pollution, EPV and EDSP from an EPV perspective, was emailed to collect data from physicians. RESULTS Most physicians agreed the existence of APIs in environment, worried about the potential environmental and ecological risks of API residues, supported the effectiveness and necessity of EDSP under an EPV perspective in decreasing environmental exposure of excreted APIs, and showed their willingness to participate in the EDSP practices. Nevertheless, no respondent identified the environmental impacts as the aspects regarding medicines affecting his(her) prescription decision, none was satisfied with knowledge on EDSP and showed confidence toward EDSP. The most important barrier to the effective implementation of EDSP was identified as 'poor awareness of EDSP and EPV'. Most responding physicians (97%) reported that they held the wait-and-see or conservative attitudes towards EDSP practice. The biggest concerns in low-dose prescribing and prescribing of drugs possessing environment-friendly excretion profiles, two EDSP approaches, were the possible negative impact on therapeutic outcomes and too complicated and professional drug evaluation process, respectively. CONCLUSIONS Chinese physicians had positive attitudes towards EDSP from the perspective of EPV. However, their environmental consciousness during prescribing and the related education were insufficient.
Collapse
Affiliation(s)
- Jun Wang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Shulan Li
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Bingshu He
- Orthopedic Surgery, Hubei Province Woman and Child Hospital, Wuhan, Hubei, China
| |
Collapse
|
31
|
Hensen B, Olsson O, Kümmerer K. A strategy for an initial assessment of the ecotoxicological effects of transformation products of pesticides in aquatic systems following a tiered approach. ENVIRONMENT INTERNATIONAL 2020; 137:105533. [PMID: 32113087 DOI: 10.1016/j.envint.2020.105533] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 01/03/2020] [Accepted: 01/26/2020] [Indexed: 06/10/2023]
Abstract
In order to conduct a fast and comprehensive toxicity screening of pesticide transformation products (TPs), this study used a tiered approach by a combination of in silico and experimental methods to determine the probability to be of relevance for risk assessment. The six pesticides Boscalid, Penconazole, Diuron, Terbutryn, Octhilinone (OIT), and Mecoprop were used as model compounds. Identification of corresponding environmental known and unknown TPs were done by literature analysis and photolysis experiments in combination. Aquatic solutions of the pesticides were photolysed to generate TPs which can be expected in the aquatic environment. The resulting mixtures were screened for TPs by high resolution LC-MS/MS. The herein developed approach was conducted at three different tiers: Literature review and in silico methods were used to predict exemplary the environmental bacterial toxicity and the genotoxicity of every single TP at tier I. In case of indications to be toxic, experiments at tier II were applied. Hereby, the photolytic mixtures containing parent compound and TPs were used for the consecutive toxicity test. Microtox assay for the parent compounds and the photolytic mixture was conducted to determine the acute and chronic toxicity and the growth inhibition of V. fischeri. Umu-tests were conducted to determine primary DNA damage. At tier III, single substance standards were used to conduct toxicity tests in case of toxic indication by previous tiers and availability of analytical standard. Identification of TPs revealed 45 known environmental TPs that originated from the six pesticides. The number of substances that need to be assessed was therefore more than sevenfold. By the tiered approach, it was possible to assess toxicological effects on environmental bacteria of 94% of the selected TPs. For 20% we found strong evidence to be toxic to environmental bacteria, as they were assessed at least at two tiers. For further 44% of the TPs we found slight evidence, as they could be assessed at one tier. Contrary, this approach turned out to be unsuitable to assess genotoxic effects of TPs neither by in silico tools nor by experiments. The number of substances that could probably pose a risk onto environment was quadrupled in comparison to the consideration of solely the parent compounds. Thus, this study demonstrates that the conducted screening approach allows for easy and fast identification of environmental relevant TPs. However, the study presented was a very first screening. Its applicability domain needs to be assessed further. For this purpose as a very next step the approach suggested here should be verified by applying additional endpoints and including additional parent compounds.
Collapse
Affiliation(s)
- Birte Hensen
- Institute of Sustainable and Environmental Chemistry, Leuphana University of Lüneburg, Universitätsallee 1, 21335 Lüneburg, Germany.
| | - Oliver Olsson
- Institute of Sustainable and Environmental Chemistry, Leuphana University of Lüneburg, Universitätsallee 1, 21335 Lüneburg, Germany.
| | - Klaus Kümmerer
- Institute of Sustainable and Environmental Chemistry, Leuphana University of Lüneburg, Universitätsallee 1, 21335 Lüneburg, Germany
| |
Collapse
|
32
|
Westphal J, Kümmerer K, Olsson O. Experimental and in silico assessment of fate and effects of the UV filter 2-phenylbenzimidazole 5-sulfonic acid and its phototransformation products in aquatic solutions. WATER RESEARCH 2020; 171:115393. [PMID: 31884378 DOI: 10.1016/j.watres.2019.115393] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 11/19/2019] [Accepted: 12/12/2019] [Indexed: 06/10/2023]
Abstract
Often ingredients of personal care products are present in treated wastewaters, e. g grey water (GW), and are discharged into aquatic systems. Conventional treatment of GW does not fully eliminate micropollutants such as the UV filter substance 2-phenylbenzimidazole-5-sulfonic acid (PBSA). Photolysis has been proposed as an alternative treatment method for other micropollutants, but it is not clear yet whether it can also be used to eliminate PBSA. One goal of this study was to better understand the basic pathways involved in this process. It aimed to identify photo-transformation products (PTPs) by using, in the test conditions, an initial concentration of PBSA higher than those expected in the environment. The photolysis experiments were carried out using Xenon and UV lamps. Under Xenon irradiation only slight primary elimination was found. UV irradiation resulted in almost complete primary elimination of PBSA but not in full mineralization. Four isomeric mono-hydroxylated PTPs were identified by high resolution mass spectrometry (HRMS) which could be confirmed by other studies. A modified luminescent bacteria test (LBT) with Vibrio fischeri was employed to assess acute and chronic toxic effects of the irradiated photolytic mixtures. A strong correlation was found between the kinetics of two of the PTPs and luminescence inhibition indicating bacterial toxicity. Using a set of in silico quantitative structure-activity relationship (QSAR) models, this study also offered new insights concerning the environmental fate and toxicity of the TPs of PBSA as the TPs generated by UV-treatment are more persistent and partly more toxic than PBSA.
Collapse
Affiliation(s)
- Janin Westphal
- Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Faculty of Sustainablilty, Leuphana University of Lüneburg, Universitätsallee1/C13, DE-21335, Lüneburg, Germany.
| | - Klaus Kümmerer
- Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Faculty of Sustainablilty, Leuphana University of Lüneburg, Universitätsallee1/C13, DE-21335, Lüneburg, Germany.
| | - Oliver Olsson
- Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Faculty of Sustainablilty, Leuphana University of Lüneburg, Universitätsallee1/C13, DE-21335, Lüneburg, Germany.
| |
Collapse
|
33
|
Porter AW, Wolfson SJ, Häggblom M, Young LY. Microbial transformation of widely used pharmaceutical and personal care product compounds. F1000Res 2020; 9. [PMID: 32148768 PMCID: PMC7043110 DOI: 10.12688/f1000research.21827.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/18/2020] [Indexed: 01/17/2023] Open
Abstract
Pharmaceutical and personal care products (PPCPs) are commonly used chemicals that are increasingly detected in urban-impacted environments, particularly those receiving treated wastewater. PPCPs may have toxicological effects on the macrofauna that are exposed through contaminated water; thus, there is interest in microbially mediated transformations that may degrade PPCPs. This review discusses specific examples of PPCP transformations that may occur in anoxic environments, including O-methylation and O-demethylation.
Collapse
Affiliation(s)
- Abigail W Porter
- Department of Environmental Sciences, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | - Sarah J Wolfson
- Department of Environmental Sciences, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA.,Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Max Häggblom
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | - Lily Y Young
- Department of Environmental Sciences, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
34
|
Späth J, Nording M, Lindberg R, Brodin T, Jansson S, Yang J, Wan D, Hammock B, Fick J. Novel metabolomic method to assess the effect-based removal efficiency of advanced wastewater treatment techniques. ENVIRONMENTAL CHEMISTRY (COLLINGWOOD, VIC.) 2020; 17:1-5. [PMID: 33692653 PMCID: PMC7943040 DOI: 10.1071/en19270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Unprecedented levels of chemicals of anthropogenic origin are currently released into surface waters globally. Wastewater treatment plant effluent has been identified as a major source, containing a broad mixture of pharmaceuticals and consumer chemicals. Therefore, there is a need for implementation of advanced wastewater treatment techniques, such as ozonation and adsorption methods, to reduce the contamination. However, there are conflicting findings on the toxicity of treated effluent and only limited possibilities for assessing the effect-based removal efficiency (EBRE) of different treatment techniques. Here, we describe a metabolomics approach to detect perturbations in fatty acid catabolic pathways as a proxy for biological effects. Metabolites in three fatty acid pathways were analyzed in a common damselfly larva (Coenagrion hastulatum) by liquid chromatography coupled to mass spectrometry. The larvae were exposed for one week to either conventionally treated effluent (activated sludge treatment), effluent additionally treated with ozone or effluent additionally treated with biochar filtration and results were compared with those from tap water control exposure. Five lipoxygenase-derived oxylipins (9,10,13-TriHOME, 9,12,13-TriHOME, 9-HODE, 9-HOTrE, and 13-HOTrE) decreased in response to conventionally treated effluent exposure. By using an additional treatment step, oxylipin levels were restored with exception of 9,10,13-TriHOME (ozonated effluent), and 9-HOTrE and 13-HOTrE (effluent filtered with biochar). In conclusion, exposure to wastewater effluent affected fatty acid metabolite levels in damselfly larvae, and a subset of the analyzed metabolites may serve as indicators for biological effects in biota in response to effluent exposure. To that effect, our findings suggest a new metabolomics protocol for assessing EBRE.
Collapse
Affiliation(s)
- Jana Späth
- Department of Chemistry, Umeå University, SE 90187 Umeå, Sweden
| | - Malin Nording
- Department of Chemistry, Umeå University, SE 90187 Umeå, Sweden
| | | | - Tomas Brodin
- Department of Ecology and Environmental Science, Umeå University, SE 90187 Umeå, Sweden
- Department of Wildlife, Fish, and Environmental Studies, SLU, Umeå, Sweden
| | - Stina Jansson
- Department of Chemistry, Umeå University, SE 90187 Umeå, Sweden
| | - Jun Yang
- Department of Entomology and Nematology, University of California at Davis, Davis, CA 95616, USA
| | - Debin Wan
- Department of Entomology and Nematology, University of California at Davis, Davis, CA 95616, USA
| | - Bruce Hammock
- Department of Entomology and Nematology, University of California at Davis, Davis, CA 95616, USA
| | - Jerker Fick
- Department of Chemistry, Umeå University, SE 90187 Umeå, Sweden
| |
Collapse
|
35
|
Jentzsch F, Reich M, Kümmerer K, Olsson O. Photolysis of mixtures of UV filters octocrylene and ethylhexyl methoxycinnamate leads to formation of mixed transformation products and different kinetics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 697:134048. [PMID: 32380599 DOI: 10.1016/j.scitotenv.2019.134048] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/06/2019] [Accepted: 08/21/2019] [Indexed: 06/11/2023]
Abstract
The treatment with ultraviolet (UV) light is a well-known technique for water disinfection. Photodegradation by UV light is in discussion as measure for advanced water treatment that could provide a potential removal option for micropollutants. Micropollutants such as ingredients from personal care products are also present in grey water. Grey water gets increasingly attention as a source for water reuse. For that purpose it has to be treated. UV-treatment is an option. However, the knowledge on the fate of micropollutants within such a treatment is little. Therefore, we investigated the fate of the UV filters ethylhexyl methoxycinnamate (EHMC), and octocrylene (OCR) as for both UV filters the presence in grey water was reported. OCR as a single compound was investigated with regard to its degradation kinetics and possible photo-transformation products (photo-TPs). These results were compared with those of EHMC previously reported in literature. The mixture of the two UV filters was also investigated to reveal if mixture effects occur regarding the elimination of the UV filters and the formation of TPs. A medium pressure mercury vapor lamp (200-400 nm) was employed for photolysis. This study shows that OCR itself was eliminated below the limit of detection after 256 min and that photo-TPs were formed. The photolysis of the mixture demonstrated alterations of the degradation rates and patterns. Additional TPs were formed by the reaction of the UV filters or TPs with each other. The study shows that more attention should be paid to mixture-effects and mixture-TPs that may cause further follow-up effects.
Collapse
Affiliation(s)
- F Jentzsch
- Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Faculty of Sustainability, Leuphana University of Lüneburg, Universitätsallee 1, DE-21335 Lüneburg, Germany.
| | - M Reich
- Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Faculty of Sustainability, Leuphana University of Lüneburg, Universitätsallee 1, DE-21335 Lüneburg, Germany.
| | - K Kümmerer
- Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Faculty of Sustainability, Leuphana University of Lüneburg, Universitätsallee 1, DE-21335 Lüneburg, Germany.
| | - O Olsson
- Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Faculty of Sustainability, Leuphana University of Lüneburg, Universitätsallee 1, DE-21335 Lüneburg, Germany.
| |
Collapse
|
36
|
Zhao F, Yang L, Chen L, Li S, Sun L. Bioaccumulation of antibiotics in crops under long-term manure application: Occurrence, biomass response and human exposure. CHEMOSPHERE 2019; 219:882-895. [PMID: 30572238 DOI: 10.1016/j.chemosphere.2018.12.076] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/05/2018] [Accepted: 12/09/2018] [Indexed: 06/09/2023]
Abstract
Long-term manure application gives rise to the uptake of antibiotics by plants and antibiotics subsequent entry into the food chain, representing an important alternative pathway for human exposure to antibiotics. The antibiotics can cause negative effects on crop growth and productivity. The bioaccumulation and translocation of 14 target antibiotics in peanuts (Arachis hypogaea L.) and their effects on peanut relative biomass in fields with long-term (≥15 years) manure application were studied. The results showed that all the target antibiotics were found in manures and rhizosphere soils, and most of them were found in all peanut tissues (roots, shells, kernels, stem, and leaves). The antibiotic concentrations in peanut tissues were varied with the characteristics of antibiotics in soils. Tetracyclines were the dominating antibiotic compounds in all peanut tissues, accounting for 61%-80% of total antibiotics due to their relatively high concentration in rhizosphere soil. Most tetracyclines and quinolones preferentially accumulated in the roots and translocated to other peanut tissues than sulfonamides and macrolides. Furthermore, the influence of antibiotics in soil and crops on relative biomass of crop tissues varied with tissues and antibiotic types. Antibiotics significantly inhibited the tissue relative biomass in most cases, although stimulation of some antibiotics to crop biomass was also observed. We found that 18.3% of the variance of the peanut relative biomass was explained by antibiotics in soils and tissues. The estimated threshold of daily intake values suggests that the consumption of peanut kernels grown in field conditions with long-term manure application presents a moderate risk to human health.
Collapse
Affiliation(s)
- Fangkai Zhao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Liding Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shoujuan Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Long Sun
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|