1
|
Zhang X, Huo Y, Kong Y, Zhou W, Qin F, Hu X. Effects of short-term florfenicol exposure on the gene expression pattern, midgut microbiota, and metabolome in the lepidopteran model silkworm (Bombyx mori). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169099. [PMID: 38056650 DOI: 10.1016/j.scitotenv.2023.169099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023]
Abstract
Florfenicol (FF), an alternative veterinary antibiotic for chloramphenicol, has been widely utilized in livestock breeding to prevent and treat bacterial diseases. However, the toxicological effects of FF have yet to be fully disclosed. The domesticated silkworm (Bombyx mori), a lepidopteran model, was selected to assess the toxicological effects of FF dietary exposure with multi-omics. The findings showed that high-dose (250 μg/L) FF exposure increased the whole cocoon weight. High-dose FF exposure affected the species richness and community diversity of the microbiota in the silkworm midgut. Biochemical processes and innate immunity were impacted by FF exposure. The KEGG pathways impacted by the midgut microbiota and their metabolites were compared, and several pathways were found to be related to the two ecosystems. In addition, the innate immunity and lipid metabolism pathways were impacted, and some of the differentially expressed genes were enriched in these pathways. These related pathways may involve crosstalk between the midgut microbiota shift, midgut biological functions, and global gene expression. Therefore, our study also advances the application of the silkworm larval model in assessing antibiotic metabolic toxicity and provides novel insights into the potential risks of FF.
Collapse
Affiliation(s)
- Xing Zhang
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yiming Huo
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yifei Kong
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Wenlin Zhou
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Feiju Qin
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xiaolong Hu
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
2
|
Praise S, Miyazawa M, Phung LD, Nishiyama M, Kumar A, Watanabe T. Impact of nCuO containing treated wastewater on soil microbes and dissolved organic matter in paddy field leachate. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122923. [PMID: 37977365 DOI: 10.1016/j.envpol.2023.122923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Using treated wastewater (TWW) resources in agriculture is a major pathway for disseminating nanoparticles. Copper-oxide nanoparticles (nCuO) offer potential benefits, but their presence in the environment poses risks to agricultural and environmental sustainability. This study examined soil microbial transformations and the composition of leachate dissolved organic matter (DOM) of paddy soils irrigated with nCuO-contaminated TWW at different concentrations (T2: 0.02 mgL-1, T3: 0.2 mgL-1, T4: 2.0 mgL-1) and examined the differences in Cu source (T5: 0.2 mgL-1 CuSO4). Results showed negative impacts on the absolute microbial abundance with up to 46 % reduction relative to the control treatment (T1). Changes in relative abundance of specific microbes at the genus level deviated from the corresponding phyla. Acidobacteria, Actinobacteria, Chloroflexi, and Verrucomicrobia phyla increased in the surface (0-3 cm) and subsurface (3-15 cm) layers responding differently to nCuO. In the 0-3 cm layer, Nitrospirae, Euryarchaeota, and Crenarchaeota increased, but only Dechloromonas genus from Proteobacteria increased with increasing nCuO. No significant variations were observed in the DOM composition, except in T4, which had a significantly low content of dissolved organic carbon (DOC), total dissolved nitrogen, and terrestrial humic-like and protein-like components. Ninety-eight distinct genera were identified, of which 44%, including 15 bacteria and two archaea, varied between the surface and subsurface, among treatments, and significantly correlated with more DOM parameters in the subsurface. T4 had the highest microbial diversity in the 0-3 layer, and Cu treatments slightly increased the diversity index in the subsurface. Moreover, the effects differed by Cu source, with T3 showing 10 % more reduction in the subsurface and 17 % less reduction in the surface than T5. The variable microbial responses to nCuO and their strong correlations with DOM highlight the need to consider the potential consequences of low nCuO concentrations on biogeochemical cycles.
Collapse
Affiliation(s)
- Susan Praise
- Faculty of Agriculture, Yamagata University, Yamagata, Wakaba Machi 1-23, Tsuruoka Shi, Yamagata, 997-8555, Japan.
| | - Masaaki Miyazawa
- Faculty of Agriculture, Yamagata University, Yamagata, Wakaba Machi 1-23, Tsuruoka Shi, Yamagata, 997-8555, Japan.
| | - Luc Duc Phung
- Faculty of Agriculture, Yamagata University, Yamagata, Wakaba Machi 1-23, Tsuruoka Shi, Yamagata, 997-8555, Japan.
| | - Masateru Nishiyama
- Faculty of Agriculture, Yamagata University, Yamagata, Wakaba Machi 1-23, Tsuruoka Shi, Yamagata, 997-8555, Japan.
| | - Arun Kumar
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| | - Toru Watanabe
- Faculty of Agriculture, Yamagata University, Yamagata, Wakaba Machi 1-23, Tsuruoka Shi, Yamagata, 997-8555, Japan.
| |
Collapse
|
3
|
Kassem A, Abbas L, Coutinho O, Opara S, Najaf H, Kasperek D, Pokhrel K, Li X, Tiquia-Arashiro S. Applications of Fourier Transform-Infrared spectroscopy in microbial cell biology and environmental microbiology: advances, challenges, and future perspectives. Front Microbiol 2023; 14:1304081. [PMID: 38075889 PMCID: PMC10703385 DOI: 10.3389/fmicb.2023.1304081] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/03/2023] [Indexed: 01/02/2024] Open
Abstract
Microorganisms play pivotal roles in shaping ecosystems and biogeochemical cycles. Their intricate interactions involve complex biochemical processes. Fourier Transform-Infrared (FT-IR) spectroscopy is a powerful tool for monitoring these interactions, revealing microorganism composition and responses to the environment. This review explores the diversity of applications of FT-IR spectroscopy within the field of microbiology, highlighting its specific utility in microbial cell biology and environmental microbiology. It emphasizes key applications such as microbial identification, process monitoring, cell wall analysis, biofilm examination, stress response assessment, and environmental interaction investigation, showcasing the crucial role of FT-IR in advancing our understanding of microbial systems. Furthermore, we address challenges including sample complexity, data interpretation nuances, and the need for integration with complementary techniques. Future prospects for FT-IR in environmental microbiology include a wide range of transformative applications and advancements. These include the development of comprehensive and standardized FT-IR libraries for precise microbial identification, the integration of advanced analytical techniques, the adoption of high-throughput and single-cell analysis, real-time environmental monitoring using portable FT-IR systems and the incorporation of FT-IR data into ecological modeling for predictive insights into microbial responses to environmental changes. These innovative avenues promise to significantly advance our understanding of microorganisms and their complex interactions within various ecosystems.
Collapse
Affiliation(s)
- Amin Kassem
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, United States
| | - Lana Abbas
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, United States
| | - Oliver Coutinho
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, United States
| | - Somie Opara
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, United States
| | - Hawraa Najaf
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, United States
| | - Diana Kasperek
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, United States
| | - Keshav Pokhrel
- Department of Mathematics and Statistics, University of Michigan-Dearborn, Dearborn, MI, United States
| | - Xiaohua Li
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, United States
| | - Sonia Tiquia-Arashiro
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, United States
| |
Collapse
|
4
|
Wang H, Zhao Y, Yin S, Dai Y, Zhao J, Wang Z, Xing B. Antagonism toxicity of CuO nanoparticles and mild ocean acidification to marine algae. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130857. [PMID: 36709738 DOI: 10.1016/j.jhazmat.2023.130857] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/14/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
The toxicity of CuO nanoparticles (NPs) to marine microalgae (Emiliania huxleyi) under ocean acidification (OA) conditions (pHs 8.10, 7.90, 7.50) was investigated. CuO NPs (5.0 mg/L) caused significant toxicity (e.g., 48-h growth inhibition, 20%) under normal pH (8.10), and severe OA (pH 7.50) increased the toxicity of CuO NPs (e.g., 48-h growth inhibition, 68%). However, toxicity antagonism was observed with a growth inhibition (48 h) decreased to 37% after co-exposure to CuO NPs and mild OA (pH 7.90), which was attributed to the released Cu2+ ions from CuO NPs. Based on biological responses as obtained from RNA-sequencing, the dissolved Cu2+ ions (0.078 mg/L) under mild OA were found to increase algae division (by 17%) and photosynthesis (by 28%) through accelerating photosynthetic electron transport and promoting ATP synthesis. In addition, mild OA enhanced EPS secretion by 41% and further increased bioavailable Cu2+ ions, thus mitigating OA-induced toxicity. In addition, excess Cu2+ ions could be transformed into less toxic Cu2S and Cu2O based on X-ray absorption near-edge spectroscopy (XANES) and high-resolution transmission electron microscopy (HR-TEM), which could additionally regulate the antagonism effect of CuO NPs and mild OA. The information advances our knowledge in nanotoxicity to marine organisms under global climate change.
Collapse
Affiliation(s)
- Hao Wang
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, PR China
| | - Yating Zhao
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, PR China
| | - Shuang Yin
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, PR China
| | - Yanhui Dai
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, PR China
| | - Jian Zhao
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, PR China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China.
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
5
|
Zhang X, Hou X, Ma L, Shi Y, Zhang D, Qu K. Analytical methods for assessing antimicrobial activity of nanomaterials in complex media: advances, challenges, and perspectives. J Nanobiotechnology 2023; 21:97. [PMID: 36941596 PMCID: PMC10026445 DOI: 10.1186/s12951-023-01851-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/07/2023] [Indexed: 03/23/2023] Open
Abstract
Assessing the antimicrobial activity of engineered nanomaterials (ENMs), especially in realistic scenarios, is of great significance for both basic research and applications. Multiple analytical methods are available for analysis via off-line or on-line measurements. Real-world samples are often complex with inorganic and organic components, which complicates the measurements of microbial viability and/or metabolic activity. This article highlights the recent advances achieved in analytical methods including typical applications and specifics regarding their accuracy, cost, efficiency, and user-friendliness. Methodological drawbacks, technique gaps, and future perspectives are also discussed. This review aims to help researchers select suitable methods for gaining insight into antimicrobial activities of targeted ENMs in artificial and natural complex matrices.
Collapse
Affiliation(s)
- Xuzhi Zhang
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Xiangyi Hou
- School of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Liangyu Ma
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Yaqi Shi
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Dahai Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.
| | - Keming Qu
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China.
| |
Collapse
|
6
|
Hong Y, Tu Q, Cheng H, Huangfu X, Chen Z, He Q. Chronic high-dose silver nanoparticle exposure stimulates N 2O emissions by constructing anaerobic micro-environment. WATER RESEARCH 2022; 225:119104. [PMID: 36155009 DOI: 10.1016/j.watres.2022.119104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/05/2022] [Accepted: 09/10/2022] [Indexed: 06/16/2023]
Abstract
Silver nanoparticles (Ag-NPs) were found to be responsible for nitrous oxide (N2O) generation; however, the mechanism of Ag-NP induced N2O production remains controversial and needs to be elucidated. In this study, chronic Ag-NP exposure experiments were conducted in five independent sequencing batch biofilm reactors to systematically assess the effects of Ag-NPs on N2O emission. The results indicated that a low dose of Ag-NPs (< 1 mg/L) slightly suppressed N2O generation by less than 22.99% compared with the no-Ag-NP control method. In contrast, a high dose (5 mg/L) of Ag-NPs stimulated N2O emission by 67.54%. ICP-MS and SEM-EDS together revealed that high Ag-NP content accumulated on the biofilm surface when exposed to 5 mg/L Ag-NPs. N2O and DO microelectrodes, as well as N2O isotopic composition analyses, further demonstrated that the accumulated Ag-NPs construct the anaerobic zone in the biofilm, which is the primary factor for the stimulation of the nitrite reduction pathway to release N2O. A metagenomic analysis further attributed the higher N2O emissions under exposure to a high dose of Ag-NPs to the higher relative abundance of narB and nirK genes (i.e. 1.52- and 1.29-fold higher, respectively). These findings collectively suggest that chronic exposure to high doses of Ag-NPs could enhance N2O emissions by forming anaerobic micro-environments in biofilms.
Collapse
Affiliation(s)
- Yiyihui Hong
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Qianqian Tu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China; China TieGong Investment & Construction Group Co., Ltd, Beijing 101300, China
| | - Hong Cheng
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
| | - Xiaoliu Huangfu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Ziwei Chen
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Qiang He
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| |
Collapse
|
7
|
Wang L, Qu F, Zhu Z, Zhao Y, Chen X, Shi M, Wei Z. The important role of tricarboxylic acid cycle metabolism pathways and core bacterial communities in carbon sequestration during chicken manure composting. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 150:20-29. [PMID: 35785624 DOI: 10.1016/j.wasman.2022.06.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/11/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
As a kind of livestock manure, chicken manure (CM) was rich in organic matter and microorganisms. However, a large amount of foul gas discharged by its random stacking not only threatened the environment, but also caused harm to human health. In view of the serious carbon loss and the unclear action mechanism of microbial community on carbon metabolism during CM composting, the effect of adding regulators on the sequestration of organic carbon was explored. Therefore, the purpose of this study was to explore the regulation mechanism of adding tricarboxylic acid cycle (TCA cycle) regulators on the core carbon metabolism pathway during CM composting. The results showed that the adenosine triphosphate (ATP) and malonic acid (MA) slowed down organic carbon degradation, resulting in lower carbon loss rate, which were 64.99% (CK), 62.35% (MA), and 61.26% (ATP) in each treatment. By comparing the abundance and structure of the carbon-related bacterial communities in different treatments, it was found that adding ATP and MA not only reduced the bacterial community abundance, but also tended to be similar in bacterial community composition. Moreover, the microbial specificity related to carbon metabolism pathway was enhanced, while the related gene expression and gene abundance were weakened. The regulation of TCA cycle metabolism pathway was confirmed to be the main way to improve organic carbon content. These findings revealed the positive effects of ATP and MA on carbon fixation from the perspective of gene metabolism.
Collapse
Affiliation(s)
- Liqin Wang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Fengting Qu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zechen Zhu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaomeng Chen
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Mingzi Shi
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
8
|
Xie T, Xi Y, Liu Y, Liu H, Su Z, Huang Y, Xu W, Wang D, Zhang C, Li X. Long-term effects of Cu(II) on denitrification in hydrogen-based membrane biofilm reactor: Performance, extracellular polymeric substances and microbial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154526. [PMID: 35288132 DOI: 10.1016/j.scitotenv.2022.154526] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Divalent copper (Cu(II)) frequently coexists with nitrate (NO3-) in industrial wastewater and the effect of Cu(II) on the autotrophic denitrification system using H2 as the electron donor remains unknown. In this study, the hydrogen-based membrane biofilm reactor (H2-MBfR) was operated continuously over 150 days to explore the effect of Cu(II) on the performance of autotrophic denitrification system and understand the key roles of EPS and microbial community. More than 95% of 20 mg-N/L NO3- was removed at 1-5 mg/L Cu(II), and the removal rate of NO3--N was stabilized to 82% at 10 mg/L Cu(II) after a short period, while NH4+ and NO2- in effluent were hardly detected, indicated that high concentration of Cu(II) did not permanently inhibit the denitrification performance in H2-MBfR. Colorimetric determination showed that Cu(II) stimulated the secretion of EPS, in which the protein (PN) content was much higher than polysaccharide (PS). The PN/PS ratios increased from 0.93 to 1.99, and the PN was more sensitive to copper invasion. The results of three-dimensional excitation-emission matrix illustrated that tryptophan was the main component of EPS chelating Cu(II) to reduce toxicity. The results of Fourier-transform infrared demonstrated that hydroxyl, carboxyl, and protein amide groups bound and reduced Cu(II). Furthermore, Cu(II) was effectively removed (>80%), and the results of distribution and morphology analysis of Cu(II) show that the electron-dense deposits of monovalent copper (Cu(I)) were found in EPS and biofilms and the reduction of Cu(II) to Cu(I) was an obvious self-defense reaction of biofilm to copper stress. The microbial richness and diversity decreased with the long-term exposure to Cu(II), while the relative abundance of denitrifiers Azospira and Dechloromonas increased. This study provides a scientific basis for the optimal design of treatment system for removal of nitrate and recovery of heavy metals simultaneously.
Collapse
Affiliation(s)
- Tanghuan Xie
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yanni Xi
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yanfen Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Huinian Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zhu Su
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yicai Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Weihua Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Chang Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Xin Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| |
Collapse
|
9
|
Cao W, Gong J, Zeng G, Qin M, Qin L, Zhang Y, Fang S, Li J, Tang S, Chen Z. Impacts of typical engineering nanomaterials on the response of rhizobacteria communities and rice (Oryza sativa L.) growths in waterlogged antimony-contaminated soils. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128385. [PMID: 35152103 DOI: 10.1016/j.jhazmat.2022.128385] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
The combined eco-risks of Sb (widely presented in soils, especially nearing mining areas) and the engineering nanomaterials (ENMs) (applied in agriculture and soil remediation) still remain uncovered. The current study investigated the impacts of single and combined exposure of CuO, CeO2 nanoparticles (NPs) and multi-walled carbon nanotube (MWCNTs) with Sb on rice growths and rhizosphere bacterial communities. The results showed that co-exposure of CuO NPs (0.075 wt%) with Sb (III) posed the most adverse impacts on root biomass and branches (up to 66.59% and 70.00% compared to other treatments, respectively). Treatments containing MWCNTs showed insignificant dose-dependent effects, while CeO2 NPs combined with Sb (III) showed significant synergistic stimulating effects on the fresh weights of root and shoot, by 68.30% and 73.48% (p < 0.05) compared to single Sb exposure, respectively. The rice planting increased the percentage of non-specifically sorbed Sb in soils by 1.50-14.49 than the no-planting stage. Analysis on microbial communities revealed that co-exposure of CuO NPs with Sb (III) induced the greatest adverse impacts on rhizobacteria abundances and community structures at both phylum and genus levels. Therein, significant decrease of Bacteroidetes, Acidobacteria and increase of Firmicutes abundance at the phylum level were observed. This study provided information about the risks of different ENMs released to Sb-contaminated soils under flooded condition on both crops and bacterial communities.
Collapse
Affiliation(s)
- Weicheng Cao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Jilai Gong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; State Environmental Protection Key Laboratory of Monitoring for Heavy Metal Pollutants, Changsha 410082, PR China.
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Meng Qin
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Lei Qin
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Yiqiu Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Siyuan Fang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Juan Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Siqun Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Zengping Chen
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| |
Collapse
|
10
|
Wu S, Gaillard JF, Gray KA. The impacts of metal-based engineered nanomaterial mixtures on microbial systems: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146496. [PMID: 34030287 DOI: 10.1016/j.scitotenv.2021.146496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/23/2021] [Accepted: 03/11/2021] [Indexed: 05/24/2023]
Abstract
The last decade has witnessed tremendous growth in the commercial use of metal-based engineered nanomaterials (ENMs) for a wide range of products and processes. Consequently, direct and indirect release into environmental systems may no longer be considered negligible or insignificant. Yet, there is an active debate as to whether there are real risks to human or ecological health with environmental exposure to ENMs. Previous research has focused primarily on the acute effects of individual ENMs using pure cultures under controlled laboratory environments, which may not accurately reveal the ecological impacts of ENMs under real environmental conditions. The goal of this review is to assess our current understanding of ENM effects as we move from exposure of single to multiple ENMs or microbial species. For instance, are ENMs' impacts on microbial communities predicted by their intrinsic physical or chemical characteristics or their effects on single microbial populations; how do chronic ENM interactions compare to acute toxicity; does behavior under simplified laboratory conditions reflect that in environmental media; finally, is biological stress modified by interactions in ENM mixtures relative to that of individual ENM? This review summarizes key findings and our evolving understanding of the ecological effects of ENMs under complex environmental conditions on microbial systems, identifies the gaps in our current knowledge, and indicates the direction of future research.
Collapse
Affiliation(s)
- Shushan Wu
- Department of Civil and Environmental Engineering, Northwestern University, USA.
| | | | - Kimberly A Gray
- Department of Civil and Environmental Engineering, Northwestern University, USA.
| |
Collapse
|
11
|
Shi M, Zhao Y, Zhang A, Zhao M, Zhai W, Wei Z, Song Y, Tang X, He P. Factoring distinct materials and nitrogen-related microbes into assessments of nitrogen pollution risks during composting. BIORESOURCE TECHNOLOGY 2021; 329:124896. [PMID: 33657502 DOI: 10.1016/j.biortech.2021.124896] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/17/2021] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
The aim of this study was to evaluate nitrogen pollution risks from distinct materials composting with the discrepancy of component, including chicken manure, municipal solid and straw waste (CM, MSW, SW). Results showed total nitrogen maximum mean concentrations were observed in CM (39.57 g/kg). Pollution risks in CM were continuous, while MSW and SW mainly concentrated during heating phases. Microbial analysis confirmed that pollution risks from ammonification and nitrification were more prevalent in CM. The risks of pollution caused by nitrate reduction accompanied N2O were the most serious in MSW. The multifunctional nitrogen-related microbes Pseudomonas and Bacillus were affected by microenvironments and contributed to different pollution risks. Furthermore, PICRUSt analysis identified the "inferred" key genes (pmoC-amoC, nrfH, nifD etc.) related to nitrogen pollution risks. This study evaluated nitrogen pollution risks and proposed the future directions, providing theoretical basis and feasible optimization measures for the mitigation of nitrogen pollution during composting.
Collapse
Affiliation(s)
- Mingzi Shi
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - An Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Maoyuan Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Wenhao Zhai
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| | - Yangyang Song
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaofei Tang
- Heilongjiang Province Environmental Science Research Institute, Harbin 150056, China
| | - Pingping He
- Heilongjiang Province Environmental Science Research Institute, Harbin 150056, China
| |
Collapse
|
12
|
Xie E, Zhao X, Li K, Zhang P, Zhou X, Zhao X. Microbial community structure in the river sediments from upstream of Guanting Reservoir: Potential impacts of reclaimed water recharge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:142609. [PMID: 33069478 DOI: 10.1016/j.scitotenv.2020.142609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/18/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
This work systematically investigated the microbial community structure in the river sediments from upstream of Guanting Reservoir, Beijing, China. A total of 6 wastewater treatment plants (WWTPs) locate along the main rivers connected to the reservoir. Water and sediment samples were collected at sites near the effluents of WWTPs (regarded as W groups) or at the upstream/downstream rivers (R groups) to reveal the roles of the reclaimed water recharge. Multivariate techniques including typical statistical analysis, redundancy analysis (RDA), nonmetric multidimensional scaling analysis, and molecular ecological network analysis were used to evaluate the results and their relationships. The representative C/N/P water parameters and concentrations of target organic contaminants kept stable for W and R sites, while the microbial community parameters varied greatly for two groups. The microbial population at W sites were higher but with a lower biological diversity (with a lower Shannon index) than that at R sites, indicating WWTPs greatly altered the microbial community structure at the local reach. RDA results revealed that total organic carbon (TOC) and organophosphorus pesticides (OPPs) were two dominant factors affecting the function and composition of microbial communities at the phylum level. The network analysis revealed that the microbes with the most interactions mainly from R sites and they had closer relationships with each other.
Collapse
Affiliation(s)
- En Xie
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, China
| | - Xiaohui Zhao
- Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China.
| | - Kun Li
- Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Panwei Zhang
- Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Xiuhua Zhou
- Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Xiao Zhao
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, China.
| |
Collapse
|
13
|
Pino-Otín MR, Ballestero D, Navarro E, Mainar AM, Val J. Effects of the insecticide fipronil in freshwater model organisms and microbial and periphyton communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 764:142820. [PMID: 33121789 DOI: 10.1016/j.scitotenv.2020.142820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 05/24/2023]
Abstract
Fipronil is a broad-spectrum insecticide whose release in the environment damages many non-target organisms. This study evaluated the toxicity of fipronil at two biological levels using in vivo conditions and environmentally relevant concentrations: the first based on two model organisms (aquatic invertebrate Daphnia magna and the unicellular freshwater alga Chlamydomonas reinhardtii) and a second based on three natural communities (river periphyton and freshwater and soil microbial communities). The physicochemical properties of fipronil make it apparently unstable in the environment, so its behaviour was followed with high performance liquid chromatography (HPLC) under the different test conditions. The most sensitive organism to fipronil was D. magna, with median lethal dose (LC50) values from 0.07 to 0.38 mg/L (immobilisation test). Toxicity was not affected by the media used (MOPS or river water), but it increased with temperature. Fipronil produced effects on the photosynthetic activity of C. reinhardtii at 20 °C in MOPS (EC50 = 2.44 mg/L). The freshwater periphyton presented higher sensitivity to fipronil (photosynthetic yield EC50 of 0.74 mg/L) in MOPS and there was a time-dependent effect (toxicity increased with time). Toxicity was less evident when periphyton and C. reinhardtii tests were performed in river water, where the solubility of fipronil is poor. Finally, the assessment of the metabolic profiles using Biolog EcoPlates showed that bacteria communities were minimally affected by fipronil. The genetic identification of these communities based on 16S rRNA gene sequencing revealed that many of the taxa are specialists in degrading high molecular weight compounds, including pesticides. This work allows us to better understand the impact of fipronil on the environment at different levels of the food chain and in different environmental conditions, a necessary point given its presence in the environment and the complex behaviour of this compound.
Collapse
Affiliation(s)
| | - Diego Ballestero
- Universidad San Jorge, Villanueva de Gállego, 50830 Zaragoza, Spain.
| | - Enrique Navarro
- Pyrenean Institute of Ecology, CSIC, Av. Montañana 1005, Zaragoza 50059, Spain.
| | - Ana M Mainar
- I3A, Universidad de Zaragoza, c/ Mariano Esquillor s/n, 50018 Zaragoza, Spain.
| | - Jonatan Val
- Universidad San Jorge, Villanueva de Gállego, 50830 Zaragoza, Spain; Pyrenean Institute of Ecology, CSIC, Av. Montañana 1005, Zaragoza 50059, Spain.
| |
Collapse
|
14
|
Evariste L, Braylé P, Mouchet F, Silvestre J, Gauthier L, Flahaut E, Pinelli E, Barret M. Graphene-Based Nanomaterials Modulate Internal Biofilm Interactions and Microbial Diversity. Front Microbiol 2021; 12:623853. [PMID: 33841352 PMCID: PMC8032548 DOI: 10.3389/fmicb.2021.623853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/28/2021] [Indexed: 02/04/2023] Open
Abstract
Graphene-based nanomaterials (GBMs), such as graphene oxide (GO) and reduced graphene oxide (rGO), possess unique properties triggering high expectations for the development of new technological applications and are forecasted to be produced at industrial-scale. This raises the question of potential adverse outcomes on living organisms and especially toward microorganisms constituting the basis of the trophic chain in ecosystems. However, investigations on GBMs toxicity were performed on various microorganisms using single species that are helpful to determine toxicity mechanisms but fail to predict the consequences of the observed effects at a larger organization scale. Thus, this study focuses on the ecotoxicological assessment of GO and rGO toward a biofilm composed of the diatom Nitzschia palea associated to a bacterial consortium. After 48 and 144 h of exposure to these GBMs at 0, 0.1, 1, and 10 mg.L−1, their effects on the diatom physiology, the structure, and the metabolism of bacterial communities were measured through the use of flow cytometry, 16S amplicon sequencing, and Biolog ecoplates, respectively. The exposure to both of these GBMs stimulated the diatom growth. Besides, GO exerted strong bacterial growth inhibition as from 1 mg.L−1, influenced the taxonomic composition of diatom-associated bacterial consortium, and increased transiently the bacterial activity related to carbon cycling, with weak toxicity toward the diatom. On the contrary, rGO was shown to exert a weaker toxicity toward the bacterial consortium, whereas it influenced more strongly the diatom physiology. When compared to the results from the literature using single species tests, our study suggests that diatoms benefited from diatom-bacteria interactions and that the biofilm was able to maintain or recover its carbon-related metabolic activities when exposed to GBMs.
Collapse
Affiliation(s)
- Lauris Evariste
- Laboratoire d'écologie fonctionnelle et environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Paul Braylé
- Laboratoire d'écologie fonctionnelle et environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Florence Mouchet
- Laboratoire d'écologie fonctionnelle et environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Jérôme Silvestre
- Laboratoire d'écologie fonctionnelle et environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Laury Gauthier
- Laboratoire d'écologie fonctionnelle et environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Emmanuel Flahaut
- CIRIMAT, Université de Toulouse, CNRS, INPT, UPS, UMR CNRS-UPS-INP N°5085, Université Toulouse 3 Paul Sabatier, Bât. CIRIMAT, Toulouse, France
| | - Eric Pinelli
- Laboratoire d'écologie fonctionnelle et environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Maialen Barret
- Laboratoire d'écologie fonctionnelle et environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| |
Collapse
|
15
|
Coclet C, Garnier C, D’Onofrio S, Durrieu G, Pasero E, Le Poupon C, Omanović D, Mullot JU, Misson B, Briand JF. Trace Metal Contamination Impacts Predicted Functions More Than Structure of Marine Prokaryotic Biofilm Communities in an Anthropized Coastal Area. Front Microbiol 2021; 12:589948. [PMID: 33679628 PMCID: PMC7933014 DOI: 10.3389/fmicb.2021.589948] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 01/29/2021] [Indexed: 12/25/2022] Open
Abstract
Trace metal (TM) contamination in marine coastal areas is a worldwide threat for aquatic communities. However, little is known about the influence of a multi-chemical contamination on both marine biofilm communities' structure and functioning. To determine how TM contamination potentially impacted microbial biofilms' structure and their functions, polycarbonate (PC) plates were immerged in both surface and bottom of the seawater column, at five sites, along strong TM contamination gradients, in Toulon Bay. The PC plates were incubated during 4 weeks to enable colonization by biofilm-forming microorganisms on artificial surfaces. Biofilms from the PC plates, as well as surrounding seawaters, were collected and analyzed by 16S rRNA amplicon gene sequencing to describe prokaryotic community diversity, structure and functions, and to determine the relationships between bacterioplankton and biofilm communities. Our results showed that prokaryotic biofilm structure was not significantly affected by the measured environmental variables, while the functional profiles of biofilms were significantly impacted by Cu, Mn, Zn, and salinity. Biofilms from the contaminated sites were dominated by tolerant taxa to contaminants and specialized hydrocarbon-degrading microorganisms. Functions related to major xenobiotics biodegradation and metabolism, such as methane metabolism, degradation of aromatic compounds, and benzoate degradation, as well as functions involved in quorum sensing signaling, extracellular polymeric substances (EPS) matrix, and biofilm formation were significantly over-represented in the contaminated site relative to the uncontaminated one. Taken together, our results suggest that biofilms may be able to survive to strong multi-chemical contamination because of the presence of tolerant taxa in biofilms, as well as the functional responses of biofilm communities. Moreover, biofilm communities exhibited significant variations of structure and functional profiles along the seawater column, potentially explained by the contribution of taxa from surrounding sediments. Finally, we found that both structure and functions were significantly distinct between the biofilm and bacterioplankton, highlighting major differences between the both lifestyles, and the divergence of their responses facing to a multi-chemical contamination.
Collapse
Affiliation(s)
- Clément Coclet
- Université de Toulon, Laboratoire MAPIEM, EA 4323, Toulon, France
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography, UM110, La Garde, France
| | - Cédric Garnier
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography, UM110, La Garde, France
| | - Sébastien D’Onofrio
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography, UM110, La Garde, France
| | - Gaël Durrieu
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography, UM110, La Garde, France
| | - Emilie Pasero
- Microbia Environnement Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Christophe Le Poupon
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography, UM110, La Garde, France
| | - Dario Omanović
- Division for Marine and Environmental Research, Ruðer Bošković Institute, Zagreb, Croatia
| | | | - Benjamin Misson
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography, UM110, La Garde, France
| | | |
Collapse
|
16
|
Gomes IB, Simões M, Simões LC. Copper Surfaces in Biofilm Control. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2491. [PMID: 33322518 PMCID: PMC7764739 DOI: 10.3390/nano10122491] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 12/21/2022]
Abstract
Biofilms are structures comprising microorganisms associated to surfaces and enclosed by an extracellular polymeric matrix produced by the colonizer cells. These structures protect microorganisms from adverse environmental conditions. Biofilms are typically associated with several negative impacts for health and industries and no effective strategy for their complete control/eradication has been identified so far. The antimicrobial properties of copper are well recognized among the scientific community, which increased their interest for the use of these materials in different applications. In this review the use of different copper materials (copper, copper alloys, nanoparticles and copper-based coatings) in medical settings, industrial equipment and plumbing systems will be discussed considering their potential to prevent and control biofilm formation. Particular attention is given to the mode of action of copper materials. The putative impact of copper materials in the health and/or products quality is reviewed taking into account their main use and the possible effects on the spread of antimicrobial resistance.
Collapse
Affiliation(s)
- Inês B. Gomes
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal;
| | - Manuel Simões
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal;
| | - Lúcia C. Simões
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
| |
Collapse
|
17
|
Copper-Polyurethane Composite Materials: Particle Size Effect on the Physical-Chemical and Antibacterial Properties. Polymers (Basel) 2020; 12:polym12091934. [PMID: 32867134 PMCID: PMC7563828 DOI: 10.3390/polym12091934] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 12/20/2022] Open
Abstract
In this work, thermoplastic polyurethane (TPU) composites incorporated with 1.0 wt% Cu particles were synthesized by the melt blending method. The effect of the incorporated copper particle size on the antibacterial, thermal, rheological, and mechanical properties of TPU was investigated. The obtained results showed that (i) the addition of copper particles increased the thermal and mechanical properties because they acted as co-stabilizers of polyurethane (PU) (ii) copper nanoparticles decreased the viscosity of composite melts, and (iii) microparticles > 0.5 µm had a tendency to easily increase the maximum torque and formation of agglomerates. SEM micrographics showed that a good mixture between TPU and copper particles was obtained by the extrusion process. Additionally, copper-TPU composite materials effectively inhibited the growth of the Gram-negative Escherichia coli and the Gram-positive Staphylococcus aureus. Considering that the natural concentration of copper in the blood is in the range of 0.7-0.12 mg/L and that the total migration value of copper particles from TPU was 1000 times lower, the results suggested that TPU nanocomposites could be adequately employed for biomedical applications without a risk of contamination.
Collapse
|
18
|
Wang Y, Tang P, Xiao Y, Liu J, Chen Y, Yang Y. Alterations in Rumen Bacterial Community and Metabolome Characteristics of Cashmere Goats in Response to Dietary Nutrient Density. Animals (Basel) 2020; 10:E1193. [PMID: 32674381 PMCID: PMC7401628 DOI: 10.3390/ani10071193] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/01/2020] [Accepted: 07/10/2020] [Indexed: 12/14/2022] Open
Abstract
This study was conducted to investigate the impacts of dietary energy and protein on rumen bacterial composition and ruminal metabolites. A total of 12 ruminal samples were collected from Shaanbei white cashmere goats which were divided into two groups, including high-energy and high-protein (Group H; crude protein, CP: 9.37% in dry matter; metabolic energy, ME: 9.24 MJ/kg) and control (Group C; CP: 8.73%; ME: 8.60 MJ/kg) groups. Thereby, 16S rRNA gene sequencing and a quantitative polymerase chain reaction were performed to identify the rumen bacterial community. Metabolomics analysis was done to investigate the rumen metabolites and the related metabolic pathways in Groups C and H. The high-energy and high-protein diets increased the relative abundance of phylum Bacteroidetes and genera Prevotella_1 and Succiniclasticum, while decreasing the number of Proteobacteria (p < 0.05). The dominant differential metabolites were amino acids, peptides, and analogs. Tyrosine metabolism played an important role among the nine main metabolic pathways. Correlation analysis revealed that both Prevotella_1 (r = 0.608, p < 0.05) and Ruminococcus_2 (r = 0.613, p < 0.05) showed a positive correlation with catechol. Our findings revealed that the diets with high energy and protein levels in Group H significantly altered the composition of ruminal bacteria and metabolites, which can help to improve the dietary energy and protein use efficiency in goats.
Collapse
Affiliation(s)
| | | | | | | | - Yulin Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (Y.W.); (P.T.); (Y.X.); (J.L.)
| | - Yuxin Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (Y.W.); (P.T.); (Y.X.); (J.L.)
| |
Collapse
|
19
|
Metagenomic insights into microbial characterizations in explaining the distinction of biofilter performance during start-up. Biodegradation 2020; 31:183-199. [PMID: 32462278 DOI: 10.1007/s10532-020-09902-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 05/13/2020] [Indexed: 11/25/2022]
Abstract
As an effective alternative for dissolved nitrogen removal, biofilter closely associates its treatment performance to structural and/or operational conditions. In this study, a set of four different biofilters including MAVF (mature aerated vertical flow), NAVF (new aerated vertical flow), NVF (new non-aerated vertical flow), and BHF (baffled non-aerated horizontal flow) were employed to purify low C/N ratio (3.8) domestic wastewater. All the filters were packed with round ceramsite operated under varying hydraulic loading rates (HLRs) of 0.024-0.18 m/day. During the start-up, both the physicochemical and microbial characterizations were investigated. It was found that, carbon and nitrogen could achieve ideal removal in MAVF once added with further sedimentation, while phosphorus displayed an unsatisfactory sequestration in any of the four filters probably due to the high inflow load and/or lack of alternate anaerobic/aerobic conditions. Filter clustering based on percent removal and removal rate constant displayed a consistent pattern, which was similar to that based on taxa of phylum from 16S rRNA sequencing, or phylum/genus/species from shotgun metagenomic sequencing although there were obvious distinctions in taxa compositions among direct comparison. Meanwhile, gene function annotation revealed that filter clustering based on metabolic pathways was consistent with that based on purification performance. These consistencies might imply that the treatment performance was mainly determined by microbial degradation. The enrichment of specific functional microbes responsible for the degradation of certain pollutants, such as carbohydrates, matched well with the defined purification performance.
Collapse
|
20
|
Zhang X, Yuan H, Wang Y, Guan L, Zeng Z, Jiang Z, Zhang X. Cell Surface Energy Affects the Structure of Microalgal Biofilm. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3057-3063. [PMID: 32160744 DOI: 10.1021/acs.langmuir.0c00274] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Microalgae biofilm-based culture systems have wide applications in environmental engineering and biotechnology. Biofilm structure is critical for the transport of nutrients, gas, and signaling molecules in a microalgal biofilm. This work aims to understand the influence of cell surface energy (SE) on the microalgal biofilm structure. Three microalgae species were used as model cells in the study: Chlorella sp., Nannochloris oculata, and Chlorella pyrenoidosa. First, by mediating biofilm culture conditions, we obtained Chlorella sp. cells with SEs of 40.4 ± 1.5, 44.7 ± 1.0, and 62. 7 ± 1.2 mJ/m2, N. oculata cells with SEs of 47.7 ± 0.5, 41.1 ± 1.0, and 62.6 ± 1.2 mJ/m2, and C. pyrenoidosa cells with SEs of 64.0 ± 0.6, 62.1 ± 0.7, and 62.8 ± 0.6 mJ/m2. Then, based on the characterizations of biofilm structures, we found that cell SE can significantly affect the microalgae biofilm structure. When the cell SEs ranged from 40 to 50 mJ/m2, the microalgae cells formed heterogeneous biofilms with a large number of open voids, and the biofilm porosity was higher than 20%. Alternatively, when the cell SEs ranged from 50 to 65 mJ/m2, the cells formed a flat, homogeneous biofilm with the porosity lower than 20%. Finally, the influencing mechanism of cell SE on biofilm structure was interpreted based on the thermodynamic theory via analyzing the co-adhesion energy between cells. The study has important implications in understanding factors that influence the biofilm structures.
Collapse
Affiliation(s)
- Xinru Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Research Center of Energy Saving and Environmental Protection, Beijing 100083, China
| | - Hao Yuan
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yi Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Libo Guan
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ziyi Zeng
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zeyi Jiang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Key Laboratory for Energy Saving and Emission Reduction of Metallurgical Industry, Beijing 100083, China
| | - Xinxin Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Key Laboratory for Energy Saving and Emission Reduction of Metallurgical Industry, Beijing 100083, China
| |
Collapse
|
21
|
Wang L, Hua X, Zhang L, Song N, Dong D, Guo Z. Influence of organic carbon fractions of freshwater biofilms on the sorption for phenanthrene and ofloxacin: The important role of aliphatic carbons. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 685:818-826. [PMID: 31238285 DOI: 10.1016/j.scitotenv.2019.06.203] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 06/13/2019] [Accepted: 06/13/2019] [Indexed: 06/09/2023]
Abstract
Sorption to biofilms is thought to be a crucial process controlling the fate of trace organic contaminants in aquatic systems. The organic composition of biofilms is regarded as the determining factor in the sorption mechanism of biofilm organic carbon fractions; however, its role is not well known. Here, the sorption of phenanthrene and ofloxacin was modeled with classic and emerging organic contaminants, respectively, by comparatively investigating nine type of freshwater biofilms cultured in a river, lake, and reservoir in spring, summer, and autumn. The chemical features of the nine biofilms were analyzed using elemental analysis, infrared spectroscopy, X-ray photoelectron spectroscopy, and carbon-13 nuclear magnetic resonance. Results showed that the freshwater biofilms were aliphatic-rich natural amorphous solid substances with O-containing functional groups, and their surface polarity was significantly lower than their bulk polarity. All the isotherms of phenanthrene and ofloxacin sorption by the biofilms were linear. The organic carbon-normalized partition coefficient values for phenanthrene and ofloxacin on the nine biofilms ranged from 91.9 to 364.2 L g-1 and 3.2 to 43.2 L g-1, respectively. The van der Waals interaction between a majority of aliphatic carbon (73.4%-83.9%) in biofilms and the two sorbates was much stronger than π-π interactions between a minority of aromatic carbon (12.7%-21.7%) and sorbates. The surface polarity of the biofilms regulated polar interactions including the hydrogen bonding and electron donor-acceptor interactions. Both the aliphatic carbon and surface polarity in the biofilms enhanced the sorption of phenanthrene and ofloxacin. The sorption characteristics and mechanisms of polycyclic aromatic hydrocarbons and antibiotics on biofilms shown in our present and previous studies are different from those of other ubiquitous natural solid materials such as soils and sediments. This study provides insight into the importance of aliphatic carbon fractions of freshwater biofilms for the sorption of classic and emerging organic contaminants.
Collapse
Affiliation(s)
- Liting Wang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Xiuyi Hua
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Liwen Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Na Song
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Deming Dong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Zhiyong Guo
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China.
| |
Collapse
|